Spaces:
Runtime error
Runtime error
| """ | |
| Copyright (c) Meta Platforms, Inc. and affiliates. | |
| All rights reserved. | |
| This source code is licensed under the license found in the | |
| LICENSE file in the root directory of this source tree. | |
| """ | |
| """ | |
| original code from | |
| https://github.com/GuyTevet/motion-diffusion-model/blob/main/diffusion/gaussian_diffusion.py | |
| under an MIT license | |
| https://github.com/GuyTevet/motion-diffusion-model/blob/main/LICENSE | |
| """ | |
| import enum | |
| import math | |
| from copy import deepcopy | |
| import numpy as np | |
| import torch | |
| import torch as th | |
| from diffusion.losses import discretized_gaussian_log_likelihood, normal_kl | |
| from diffusion.nn import mean_flat, sum_flat | |
| def get_named_beta_schedule(schedule_name, num_diffusion_timesteps, scale_betas=1.0): | |
| """ | |
| Get a pre-defined beta schedule for the given name. | |
| The beta schedule library consists of beta schedules which remain similar | |
| in the limit of num_diffusion_timesteps. | |
| Beta schedules may be added, but should not be removed or changed once | |
| they are committed to maintain backwards compatibility. | |
| """ | |
| if schedule_name == "linear": | |
| # Linear schedule from Ho et al, extended to work for any number of | |
| # diffusion steps. | |
| scale = scale_betas * 1000 / num_diffusion_timesteps | |
| beta_start = scale * 0.0001 | |
| beta_end = scale * 0.02 | |
| return np.linspace( | |
| beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64 | |
| ) | |
| elif schedule_name == "cosine": | |
| return betas_for_alpha_bar( | |
| num_diffusion_timesteps, | |
| lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, | |
| ) | |
| else: | |
| raise NotImplementedError(f"unknown beta schedule: {schedule_name}") | |
| def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, | |
| which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
| :param num_diffusion_timesteps: the number of betas to produce. | |
| :param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
| produces the cumulative product of (1-beta) up to that | |
| part of the diffusion process. | |
| :param max_beta: the maximum beta to use; use values lower than 1 to | |
| prevent singularities. | |
| """ | |
| betas = [] | |
| for i in range(num_diffusion_timesteps): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
| return np.array(betas) | |
| class ModelMeanType(enum.Enum): | |
| """ | |
| Which type of output the model predicts. | |
| """ | |
| PREVIOUS_X = enum.auto() # the model predicts x_{t-1} | |
| START_X = enum.auto() # the model predicts x_0 | |
| EPSILON = enum.auto() # the model predicts epsilon | |
| class ModelVarType(enum.Enum): | |
| """ | |
| What is used as the model's output variance. | |
| The LEARNED_RANGE option has been added to allow the model to predict | |
| values between FIXED_SMALL and FIXED_LARGE, making its job easier. | |
| """ | |
| LEARNED = enum.auto() | |
| FIXED_SMALL = enum.auto() | |
| FIXED_LARGE = enum.auto() | |
| LEARNED_RANGE = enum.auto() | |
| class LossType(enum.Enum): | |
| MSE = enum.auto() # use raw MSE loss (and KL when learning variances) | |
| RESCALED_MSE = ( | |
| enum.auto() | |
| ) # use raw MSE loss (with RESCALED_KL when learning variances) | |
| KL = enum.auto() # use the variational lower-bound | |
| RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB | |
| def is_vb(self): | |
| return self == LossType.KL or self == LossType.RESCALED_KL | |
| class GaussianDiffusion: | |
| """ | |
| Utilities for training and sampling diffusion models. | |
| Ported directly from here, and then adapted over time to further experimentation. | |
| https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 | |
| :param betas: a 1-D numpy array of betas for each diffusion timestep, | |
| starting at T and going to 1. | |
| :param model_mean_type: a ModelMeanType determining what the model outputs. | |
| :param model_var_type: a ModelVarType determining how variance is output. | |
| :param loss_type: a LossType determining the loss function to use. | |
| :param rescale_timesteps: if True, pass floating point timesteps into the | |
| model so that they are always scaled like in the | |
| original paper (0 to 1000). | |
| """ | |
| def __init__( | |
| self, | |
| *, | |
| betas, | |
| model_mean_type, | |
| model_var_type, | |
| loss_type, | |
| rescale_timesteps=False, | |
| lambda_vel=0.0, | |
| data_format="pose", | |
| model_path=None, | |
| ): | |
| self.model_mean_type = model_mean_type | |
| self.model_var_type = model_var_type | |
| self.loss_type = loss_type | |
| self.rescale_timesteps = rescale_timesteps | |
| self.data_format = data_format | |
| self.lambda_vel = lambda_vel | |
| if self.lambda_vel > 0.0: | |
| assert ( | |
| self.loss_type == LossType.MSE | |
| ), "Geometric losses are supported by MSE loss type only!" | |
| # Use float64 for accuracy. | |
| betas = np.array(betas, dtype=np.float64) | |
| self.betas = betas | |
| assert len(betas.shape) == 1, "betas must be 1-D" | |
| assert (betas > 0).all() and (betas <= 1).all() | |
| self.num_timesteps = int(betas.shape[0]) | |
| alphas = 1.0 - betas | |
| self.alphas_cumprod = np.cumprod(alphas, axis=0) | |
| self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) | |
| self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) | |
| assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) | |
| # calculations for diffusion q(x_t | x_{t-1}) and others | |
| self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) | |
| self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) | |
| self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) | |
| self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) | |
| self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) | |
| # calculations for posterior q(x_{t-1} | x_t, x_0) | |
| self.posterior_variance = ( | |
| betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
| ) | |
| # log calculation clipped because the posterior variance is 0 at the | |
| # beginning of the diffusion chain. | |
| self.posterior_log_variance_clipped = np.log( | |
| np.append(self.posterior_variance[1], self.posterior_variance[1:]) | |
| ) | |
| self.posterior_mean_coef1 = ( | |
| betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
| ) | |
| self.posterior_mean_coef2 = ( | |
| (1.0 - self.alphas_cumprod_prev) | |
| * np.sqrt(alphas) | |
| / (1.0 - self.alphas_cumprod) | |
| ) | |
| self.l2_loss = lambda a, b: (a - b) ** 2 | |
| def masked_l2(self, a, b, mask): | |
| loss = self.l2_loss(a, b) | |
| loss = sum_flat(loss * mask.float()) | |
| n_entries = a.shape[1] * a.shape[2] | |
| non_zero_elements = sum_flat(mask) * n_entries | |
| mse_loss_val = loss / non_zero_elements | |
| return mse_loss_val | |
| def q_mean_variance(self, x_start, t): | |
| """ | |
| Get the distribution q(x_t | x_0). | |
| :param x_start: the [N x C x ...] tensor of noiseless inputs. | |
| :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
| :return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
| """ | |
| mean = ( | |
| _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
| ) | |
| variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) | |
| log_variance = _extract_into_tensor( | |
| self.log_one_minus_alphas_cumprod, t, x_start.shape | |
| ) | |
| return mean, variance, log_variance | |
| def q_sample(self, x_start, t, noise=None): | |
| """ | |
| Diffuse the dataset for a given number of diffusion steps. | |
| In other words, sample from q(x_t | x_0). | |
| :param x_start: the initial dataset batch. | |
| :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
| :param noise: if specified, the split-out normal noise. | |
| :return: A noisy version of x_start. | |
| """ | |
| if noise is None: | |
| noise = th.randn_like(x_start) | |
| assert noise.shape == x_start.shape | |
| return ( | |
| _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
| + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) | |
| * noise | |
| ) | |
| def q_posterior_mean_variance(self, x_start, x_t, t): | |
| """ | |
| Compute the mean and variance of the diffusion posterior: | |
| q(x_{t-1} | x_t, x_0) | |
| """ | |
| assert x_start.shape == x_t.shape, f"x_start: {x_start.shape}, x_t: {x_t.shape}" | |
| posterior_mean = ( | |
| _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start | |
| + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
| ) | |
| posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) | |
| posterior_log_variance_clipped = _extract_into_tensor( | |
| self.posterior_log_variance_clipped, t, x_t.shape | |
| ) | |
| assert ( | |
| posterior_mean.shape[0] | |
| == posterior_variance.shape[0] | |
| == posterior_log_variance_clipped.shape[0] | |
| == x_start.shape[0] | |
| ) | |
| return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
| def p_mean_variance( | |
| self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None | |
| ): | |
| """ | |
| Apply the model to get p(x_{t-1} | x_t), as well as a prediction of | |
| the initial x, x_0. | |
| :param model: the model, which takes a signal and a batch of timesteps | |
| as input. | |
| :param x: the [N x C x ...] tensor at time t. | |
| :param t: a 1-D Tensor of timesteps. | |
| :param clip_denoised: if True, clip the denoised signal into [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. Applies before | |
| clip_denoised. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :return: a dict with the following keys: | |
| - 'mean': the model mean output. | |
| - 'variance': the model variance output. | |
| - 'log_variance': the log of 'variance'. | |
| - 'pred_xstart': the prediction for x_0. | |
| """ | |
| if model_kwargs is None: | |
| model_kwargs = {} | |
| B, C = x.shape[:2] | |
| assert t.shape == (B,) | |
| model_output = model(x, self._scale_timesteps(t), **model_kwargs) | |
| model_variance, model_log_variance = { | |
| # for fixedlarge, we set the initial (log-)variance like so | |
| # to get a better decoder log likelihood. | |
| ModelVarType.FIXED_LARGE: ( | |
| np.append(self.posterior_variance[1], self.betas[1:]), | |
| np.log(np.append(self.posterior_variance[1], self.betas[1:])), | |
| ), | |
| ModelVarType.FIXED_SMALL: ( | |
| self.posterior_variance, | |
| self.posterior_log_variance_clipped, | |
| ), | |
| }[self.model_var_type] | |
| model_variance = _extract_into_tensor(model_variance, t, x.shape) | |
| model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) | |
| def process_xstart(x): | |
| if denoised_fn is not None: | |
| x = denoised_fn(x) | |
| if clip_denoised: | |
| return x.clamp(-1, 1) | |
| return x | |
| pred_xstart = process_xstart(model_output) | |
| pred_xstart = pred_xstart.permute(0, 2, 1).unsqueeze(2) | |
| model_mean, _, _ = self.q_posterior_mean_variance( | |
| x_start=pred_xstart, x_t=x, t=t | |
| ) | |
| assert ( | |
| model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape | |
| ), print( | |
| f"{model_mean.shape} == {model_log_variance.shape} == {pred_xstart.shape} == {x.shape}" | |
| ) | |
| return { | |
| "mean": model_mean, | |
| "variance": model_variance, | |
| "log_variance": model_log_variance, | |
| "pred_xstart": pred_xstart, | |
| } | |
| def _predict_xstart_from_eps(self, x_t, t, eps): | |
| assert x_t.shape == eps.shape | |
| return ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t | |
| - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps | |
| ) | |
| def _predict_xstart_from_xprev(self, x_t, t, xprev): | |
| assert x_t.shape == xprev.shape | |
| return ( | |
| _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev | |
| - _extract_into_tensor( | |
| self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape | |
| ) | |
| * x_t | |
| ) | |
| def _predict_eps_from_xstart(self, x_t, t, pred_xstart): | |
| return ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t | |
| - pred_xstart | |
| ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
| def _scale_timesteps(self, t): | |
| if self.rescale_timesteps: | |
| return t.float() * (1000.0 / self.num_timesteps) | |
| return t | |
| def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None): | |
| """ | |
| Compute the mean for the previous step, given a function cond_fn that | |
| computes the gradient of a conditional log probability with respect to | |
| x. In particular, cond_fn computes grad(log(p(y|x))), and we want to | |
| condition on y. | |
| This uses the conditioning strategy from Sohl-Dickstein et al. (2015). | |
| """ | |
| gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs) | |
| new_mean = ( | |
| p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() | |
| ) | |
| return new_mean | |
| def condition_mean_with_grad(self, cond_fn, p_mean_var, x, t, model_kwargs=None): | |
| """ | |
| Compute the mean for the previous step, given a function cond_fn that | |
| computes the gradient of a conditional log probability with respect to | |
| x. In particular, cond_fn computes grad(log(p(y|x))), and we want to | |
| condition on y. | |
| This uses the conditioning strategy from Sohl-Dickstein et al. (2015). | |
| """ | |
| gradient = cond_fn(x, t, p_mean_var, **model_kwargs) | |
| new_mean = ( | |
| p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() | |
| ) | |
| return new_mean | |
| def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): | |
| """ | |
| Compute what the p_mean_variance output would have been, should the | |
| model's score function be conditioned by cond_fn. | |
| See condition_mean() for details on cond_fn. | |
| Unlike condition_mean(), this instead uses the conditioning strategy | |
| from Song et al (2020). | |
| """ | |
| alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
| eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) | |
| eps = eps - (1 - alpha_bar).sqrt() * cond_fn( | |
| x, self._scale_timesteps(t), **model_kwargs | |
| ) | |
| out = p_mean_var.copy() | |
| out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) | |
| out["mean"], _, _ = self.q_posterior_mean_variance( | |
| x_start=out["pred_xstart"], x_t=x, t=t | |
| ) | |
| return out | |
| def condition_score_with_grad(self, cond_fn, p_mean_var, x, t, model_kwargs=None): | |
| """ | |
| Compute what the p_mean_variance output would have been, should the | |
| model's score function be conditioned by cond_fn. | |
| See condition_mean() for details on cond_fn. | |
| Unlike condition_mean(), this instead uses the conditioning strategy | |
| from Song et al (2020). | |
| """ | |
| alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
| eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) | |
| eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, t, p_mean_var, **model_kwargs) | |
| out = p_mean_var.copy() | |
| out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) | |
| out["mean"], _, _ = self.q_posterior_mean_variance( | |
| x_start=out["pred_xstart"], x_t=x, t=t | |
| ) | |
| return out | |
| def p_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| const_noise=False, | |
| ): | |
| """ | |
| Sample x_{t-1} from the model at the given timestep. | |
| :param model: the model to sample from. | |
| :param x: the current tensor at x_{t-1}. | |
| :param t: the value of t, starting at 0 for the first diffusion step. | |
| :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. | |
| :param cond_fn: if not None, this is a gradient function that acts | |
| similarly to the model. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :return: a dict containing the following keys: | |
| - 'sample': a random sample from the model. | |
| - 'pred_xstart': a prediction of x_0. | |
| """ | |
| out = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| nonzero_mask = (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
| if cond_fn is not None: | |
| out["mean"] = self.condition_mean( | |
| cond_fn, out, x, t, model_kwargs=model_kwargs | |
| ) | |
| sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise | |
| return {"sample": sample, "pred_xstart": out["pred_xstart"]} | |
| def p_sample_with_grad( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| ): | |
| """ | |
| Sample x_{t-1} from the model at the given timestep. | |
| :param model: the model to sample from. | |
| :param x: the current tensor at x_{t-1}. | |
| :param t: the value of t, starting at 0 for the first diffusion step. | |
| :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. | |
| :param cond_fn: if not None, this is a gradient function that acts | |
| similarly to the model. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :return: a dict containing the following keys: | |
| - 'sample': a random sample from the model. | |
| - 'pred_xstart': a prediction of x_0. | |
| """ | |
| with th.enable_grad(): | |
| x = x.detach().requires_grad_() | |
| out = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| noise = th.randn_like(x) | |
| nonzero_mask = (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
| if cond_fn is not None: | |
| out["mean"] = self.condition_mean_with_grad( | |
| cond_fn, out, x, t, model_kwargs=model_kwargs | |
| ) | |
| sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise | |
| return {"sample": sample, "pred_xstart": out["pred_xstart"].detach()} | |
| def p_sample_loop( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| skip_timesteps=0, | |
| init_image=None, | |
| randomize_class=False, | |
| cond_fn_with_grad=False, | |
| dump_steps=None, | |
| const_noise=False, | |
| ): | |
| """ | |
| Generate samples from the model. | |
| :param model: the model module. | |
| :param shape: the shape of the samples, (N, C, H, W). | |
| :param noise: if specified, the noise from the encoder to sample. | |
| Should be of the same shape as `shape`. | |
| :param clip_denoised: if True, clip x_start predictions to [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. | |
| :param cond_fn: if not None, this is a gradient function that acts | |
| similarly to the model. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :param device: if specified, the device to create the samples on. | |
| If not specified, use a model parameter's device. | |
| :param progress: if True, show a tqdm progress bar. | |
| :param const_noise: If True, will noise all samples with the same noise throughout sampling | |
| :return: a non-differentiable batch of samples. | |
| """ | |
| final = None | |
| if dump_steps is not None: | |
| dump = [] | |
| for i, sample in enumerate( | |
| self.p_sample_loop_progressive( | |
| model, | |
| shape, | |
| noise=noise, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| device=device, | |
| progress=progress, | |
| skip_timesteps=skip_timesteps, | |
| init_image=init_image, | |
| randomize_class=randomize_class, | |
| cond_fn_with_grad=cond_fn_with_grad, | |
| const_noise=const_noise, | |
| ) | |
| ): | |
| if dump_steps is not None and i in dump_steps: | |
| dump.append(deepcopy(sample["sample"])) | |
| final = sample | |
| if dump_steps is not None: | |
| return dump | |
| return final["sample"] | |
| def p_sample_loop_progressive( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| skip_timesteps=0, | |
| init_image=None, | |
| randomize_class=False, | |
| cond_fn_with_grad=False, | |
| const_noise=False, | |
| ): | |
| """ | |
| Generate samples from the model and yield intermediate samples from | |
| each timestep of diffusion. | |
| Arguments are the same as p_sample_loop(). | |
| Returns a generator over dicts, where each dict is the return value of | |
| p_sample(). | |
| """ | |
| if device is None: | |
| device = next(model.parameters()).device | |
| assert isinstance(shape, (tuple, list)) | |
| if noise is not None: | |
| img = noise | |
| else: | |
| img = th.randn(*shape, device=device) | |
| if skip_timesteps and init_image is None: | |
| init_image = th.zeros_like(img) | |
| indices = list(range(self.num_timesteps - skip_timesteps))[::-1] | |
| if init_image is not None: | |
| my_t = th.ones([shape[0]], device=device, dtype=th.long) * indices[0] | |
| img = self.q_sample(init_image, my_t, img) | |
| if progress: | |
| # Lazy import so that we don't depend on tqdm. | |
| from tqdm.auto import tqdm | |
| indices = tqdm(indices) | |
| # number of timestamps to diffuse | |
| for i in indices: | |
| t = th.tensor([i] * shape[0], device=device) | |
| if randomize_class and "y" in model_kwargs: | |
| model_kwargs["y"] = th.randint( | |
| low=0, | |
| high=model.num_classes, | |
| size=model_kwargs["y"].shape, | |
| device=model_kwargs["y"].device, | |
| ) | |
| with th.no_grad(): | |
| sample_fn = ( | |
| self.p_sample_with_grad if cond_fn_with_grad else self.p_sample | |
| ) | |
| out = sample_fn( | |
| model, | |
| img, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| const_noise=const_noise, | |
| ) | |
| yield out | |
| img = out["sample"] | |
| def ddim_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| eta=0.0, | |
| ): | |
| """ | |
| Sample x_{t-1} from the model using DDIM. | |
| Same usage as p_sample(). | |
| """ | |
| out_orig = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| if cond_fn is not None: | |
| out = self.condition_score( | |
| cond_fn, out_orig, x, t, model_kwargs=model_kwargs | |
| ) | |
| else: | |
| out = out_orig | |
| # Usually our model outputs epsilon, but we re-derive it | |
| # in case we used x_start or x_prev prediction. | |
| eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) | |
| alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
| alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) | |
| sigma = ( | |
| eta | |
| * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) | |
| * th.sqrt(1 - alpha_bar / alpha_bar_prev) | |
| ) | |
| noise = th.randn_like(x) | |
| mean_pred = ( | |
| out["pred_xstart"] * th.sqrt(alpha_bar_prev) | |
| + th.sqrt(1 - alpha_bar_prev - sigma**2) * eps | |
| ) | |
| nonzero_mask = ( | |
| (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
| ) # no noise when t == 0 | |
| sample = mean_pred + nonzero_mask * sigma * noise | |
| return {"sample": sample, "pred_xstart": out_orig["pred_xstart"]} | |
| def ddim_sample_with_grad( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| eta=0.0, | |
| ): | |
| """ | |
| Sample x_{t-1} from the model using DDIM. | |
| Same usage as p_sample(). | |
| """ | |
| with th.enable_grad(): | |
| x = x.detach().requires_grad_() | |
| out_orig = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| if cond_fn is not None: | |
| out = self.condition_score_with_grad( | |
| cond_fn, out_orig, x, t, model_kwargs=model_kwargs | |
| ) | |
| else: | |
| out = out_orig | |
| out["pred_xstart"] = out["pred_xstart"].detach() | |
| # Usually our model outputs epsilon, but we re-derive it | |
| # in case we used x_start or x_prev prediction. | |
| eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) | |
| alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
| alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) | |
| sigma = ( | |
| eta | |
| * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) | |
| * th.sqrt(1 - alpha_bar / alpha_bar_prev) | |
| ) | |
| # Equation 12. | |
| noise = th.randn_like(x) | |
| mean_pred = ( | |
| out["pred_xstart"] * th.sqrt(alpha_bar_prev) | |
| + th.sqrt(1 - alpha_bar_prev - sigma**2) * eps | |
| ) | |
| nonzero_mask = ( | |
| (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
| ) # no noise when t == 0 | |
| sample = mean_pred + nonzero_mask * sigma * noise | |
| return {"sample": sample, "pred_xstart": out_orig["pred_xstart"].detach()} | |
| def ddim_reverse_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| model_kwargs=None, | |
| eta=0.0, | |
| ): | |
| """ | |
| Sample x_{t+1} from the model using DDIM reverse ODE. | |
| """ | |
| assert eta == 0.0, "Reverse ODE only for deterministic path" | |
| out = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| # Usually our model outputs epsilon, but we re-derive it | |
| # in case we used x_start or x_prev prediction. | |
| eps = ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x | |
| - out["pred_xstart"] | |
| ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape) | |
| alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape) | |
| # Equation 12. reversed | |
| mean_pred = ( | |
| out["pred_xstart"] * th.sqrt(alpha_bar_next) | |
| + th.sqrt(1 - alpha_bar_next) * eps | |
| ) | |
| return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} | |
| def ddim_sample_loop( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| eta=0.0, | |
| skip_timesteps=0, | |
| init_image=None, | |
| randomize_class=False, | |
| cond_fn_with_grad=False, | |
| dump_steps=None, | |
| const_noise=False, | |
| ): | |
| """ | |
| Generate samples from the model using DDIM. | |
| Same usage as p_sample_loop(). | |
| """ | |
| if dump_steps is not None: | |
| raise NotImplementedError() | |
| if const_noise == True: | |
| raise NotImplementedError() | |
| final = None | |
| for sample in self.ddim_sample_loop_progressive( | |
| model, | |
| shape, | |
| noise=noise, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| device=device, | |
| progress=progress, | |
| eta=eta, | |
| skip_timesteps=skip_timesteps, | |
| init_image=init_image, | |
| randomize_class=randomize_class, | |
| cond_fn_with_grad=cond_fn_with_grad, | |
| ): | |
| final = sample | |
| return final["pred_xstart"] | |
| def ddim_sample_loop_progressive( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| eta=0.0, | |
| skip_timesteps=0, | |
| init_image=None, | |
| randomize_class=False, | |
| cond_fn_with_grad=False, | |
| ): | |
| """ | |
| Use DDIM to sample from the model and yield intermediate samples from | |
| each timestep of DDIM. | |
| Same usage as p_sample_loop_progressive(). | |
| """ | |
| if device is None: | |
| device = next(model.parameters()).device | |
| assert isinstance(shape, (tuple, list)) | |
| if noise is not None: | |
| img = noise | |
| else: | |
| img = th.randn(*shape, device=device) | |
| if skip_timesteps and init_image is None: | |
| init_image = th.zeros_like(img) | |
| indices = list(range(self.num_timesteps - skip_timesteps))[::-1] | |
| if init_image is not None: | |
| my_t = th.ones([shape[0]], device=device, dtype=th.long) * indices[0] | |
| img = self.q_sample(init_image, my_t, img) | |
| if progress: | |
| # Lazy import so that we don't depend on tqdm. | |
| from tqdm.auto import tqdm | |
| indices = tqdm(indices) | |
| for i in indices: | |
| t = th.tensor([i] * shape[0], device=device) | |
| if randomize_class and "y" in model_kwargs: | |
| model_kwargs["y"] = th.randint( | |
| low=0, | |
| high=model.num_classes, | |
| size=model_kwargs["y"].shape, | |
| device=model_kwargs["y"].device, | |
| ) | |
| with th.no_grad(): | |
| sample_fn = ( | |
| self.ddim_sample_with_grad | |
| if cond_fn_with_grad | |
| else self.ddim_sample | |
| ) | |
| out = sample_fn( | |
| model, | |
| img, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| eta=eta, | |
| ) | |
| yield out | |
| img = out["sample"] | |
| def plms_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| cond_fn_with_grad=False, | |
| order=2, | |
| old_out=None, | |
| ): | |
| """ | |
| Sample x_{t-1} from the model using Pseudo Linear Multistep. | |
| Same usage as p_sample(). | |
| """ | |
| if not int(order) or not 1 <= order <= 4: | |
| raise ValueError("order is invalid (should be int from 1-4).") | |
| def get_model_output(x, t): | |
| with th.set_grad_enabled(cond_fn_with_grad and cond_fn is not None): | |
| x = x.detach().requires_grad_() if cond_fn_with_grad else x | |
| out_orig = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| if cond_fn is not None: | |
| if cond_fn_with_grad: | |
| out = self.condition_score_with_grad( | |
| cond_fn, out_orig, x, t, model_kwargs=model_kwargs | |
| ) | |
| x = x.detach() | |
| else: | |
| out = self.condition_score( | |
| cond_fn, out_orig, x, t, model_kwargs=model_kwargs | |
| ) | |
| else: | |
| out = out_orig | |
| # Usually our model outputs epsilon, but we re-derive it | |
| # in case we used x_start or x_prev prediction. | |
| eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) | |
| return eps, out, out_orig | |
| alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
| alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) | |
| eps, out, out_orig = get_model_output(x, t) | |
| if order > 1 and old_out is None: | |
| # Pseudo Improved Euler | |
| old_eps = [eps] | |
| mean_pred = ( | |
| out["pred_xstart"] * th.sqrt(alpha_bar_prev) | |
| + th.sqrt(1 - alpha_bar_prev) * eps | |
| ) | |
| eps_2, _, _ = get_model_output(mean_pred, t - 1) | |
| eps_prime = (eps + eps_2) / 2 | |
| pred_prime = self._predict_xstart_from_eps(x, t, eps_prime) | |
| mean_pred = ( | |
| pred_prime * th.sqrt(alpha_bar_prev) | |
| + th.sqrt(1 - alpha_bar_prev) * eps_prime | |
| ) | |
| else: | |
| # Pseudo Linear Multistep (Adams-Bashforth) | |
| old_eps = old_out["old_eps"] | |
| old_eps.append(eps) | |
| cur_order = min(order, len(old_eps)) | |
| if cur_order == 1: | |
| eps_prime = old_eps[-1] | |
| elif cur_order == 2: | |
| eps_prime = (3 * old_eps[-1] - old_eps[-2]) / 2 | |
| elif cur_order == 3: | |
| eps_prime = (23 * old_eps[-1] - 16 * old_eps[-2] + 5 * old_eps[-3]) / 12 | |
| elif cur_order == 4: | |
| eps_prime = ( | |
| 55 * old_eps[-1] | |
| - 59 * old_eps[-2] | |
| + 37 * old_eps[-3] | |
| - 9 * old_eps[-4] | |
| ) / 24 | |
| else: | |
| raise RuntimeError("cur_order is invalid.") | |
| pred_prime = self._predict_xstart_from_eps(x, t, eps_prime) | |
| mean_pred = ( | |
| pred_prime * th.sqrt(alpha_bar_prev) | |
| + th.sqrt(1 - alpha_bar_prev) * eps_prime | |
| ) | |
| if len(old_eps) >= order: | |
| old_eps.pop(0) | |
| nonzero_mask = (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
| sample = mean_pred * nonzero_mask + out["pred_xstart"] * (1 - nonzero_mask) | |
| return { | |
| "sample": sample, | |
| "pred_xstart": out_orig["pred_xstart"], | |
| "old_eps": old_eps, | |
| } | |
| def plms_sample_loop( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| skip_timesteps=0, | |
| init_image=None, | |
| randomize_class=False, | |
| cond_fn_with_grad=False, | |
| order=2, | |
| ): | |
| """ | |
| Generate samples from the model using Pseudo Linear Multistep. | |
| Same usage as p_sample_loop(). | |
| """ | |
| final = None | |
| for sample in self.plms_sample_loop_progressive( | |
| model, | |
| shape, | |
| noise=noise, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| device=device, | |
| progress=progress, | |
| skip_timesteps=skip_timesteps, | |
| init_image=init_image, | |
| randomize_class=randomize_class, | |
| cond_fn_with_grad=cond_fn_with_grad, | |
| order=order, | |
| ): | |
| final = sample | |
| return final["sample"] | |
| def plms_sample_loop_progressive( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| skip_timesteps=0, | |
| init_image=None, | |
| randomize_class=False, | |
| cond_fn_with_grad=False, | |
| order=2, | |
| ): | |
| """ | |
| Use PLMS to sample from the model and yield intermediate samples from each | |
| timestep of PLMS. | |
| Same usage as p_sample_loop_progressive(). | |
| """ | |
| if device is None: | |
| device = next(model.parameters()).device | |
| assert isinstance(shape, (tuple, list)) | |
| if noise is not None: | |
| img = noise | |
| else: | |
| img = th.randn(*shape, device=device) | |
| if skip_timesteps and init_image is None: | |
| init_image = th.zeros_like(img) | |
| indices = list(range(self.num_timesteps - skip_timesteps))[::-1] | |
| if init_image is not None: | |
| my_t = th.ones([shape[0]], device=device, dtype=th.long) * indices[0] | |
| img = self.q_sample(init_image, my_t, img) | |
| if progress: | |
| # Lazy import so that we don't depend on tqdm. | |
| from tqdm.auto import tqdm | |
| indices = tqdm(indices) | |
| old_out = None | |
| for i in indices: | |
| t = th.tensor([i] * shape[0], device=device) | |
| if randomize_class and "y" in model_kwargs: | |
| model_kwargs["y"] = th.randint( | |
| low=0, | |
| high=model.num_classes, | |
| size=model_kwargs["y"].shape, | |
| device=model_kwargs["y"].device, | |
| ) | |
| with th.no_grad(): | |
| out = self.plms_sample( | |
| model, | |
| img, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| cond_fn_with_grad=cond_fn_with_grad, | |
| order=order, | |
| old_out=old_out, | |
| ) | |
| yield out | |
| old_out = out | |
| img = out["sample"] | |
| def _vb_terms_bpd( | |
| self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None | |
| ): | |
| """ | |
| Get a term for the variational lower-bound. | |
| The resulting units are bits (rather than nats, as one might expect). | |
| This allows for comparison to other papers. | |
| :return: a dict with the following keys: | |
| - 'output': a shape [N] tensor of NLLs or KLs. | |
| - 'pred_xstart': the x_0 predictions. | |
| """ | |
| true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance( | |
| x_start=x_start, x_t=x_t, t=t | |
| ) | |
| out = self.p_mean_variance( | |
| model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs | |
| ) | |
| kl = normal_kl( | |
| true_mean, true_log_variance_clipped, out["mean"], out["log_variance"] | |
| ) | |
| kl = mean_flat(kl) / np.log(2.0) | |
| decoder_nll = -discretized_gaussian_log_likelihood( | |
| x_start, means=out["mean"], log_scales=0.5 * out["log_variance"] | |
| ) | |
| assert decoder_nll.shape == x_start.shape | |
| decoder_nll = mean_flat(decoder_nll) / np.log(2.0) | |
| # At the first timestep return the decoder NLL, | |
| # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t)) | |
| output = th.where((t == 0), decoder_nll, kl) | |
| return {"output": output, "pred_xstart": out["pred_xstart"]} | |
| def training_losses(self, model, x_start, t, model_kwargs=None, noise=None): | |
| """ | |
| Compute training losses for a single timestep. | |
| :param model: the model to evaluate loss on. | |
| :param x_start: the [N x C x ...] tensor of inputs. | |
| :param t: a batch of timestep indices. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :param noise: if specified, the specific Gaussian noise to try to remove. | |
| :return: a dict with the key "loss" containing a tensor of shape [N]. | |
| Some mean or variance settings may also have other keys. | |
| """ | |
| mask = model_kwargs["y"]["mask"] | |
| if model_kwargs is None: | |
| model_kwargs = {} | |
| if noise is None: | |
| noise = th.randn_like(x_start) | |
| x_t = self.q_sample( | |
| x_start, t, noise=noise | |
| ) # use the formula to diffuse the starting tensor by t steps | |
| terms = {} | |
| # set random dropout for conditioning in training | |
| model_kwargs["cond_drop_prob"] = 0.2 | |
| model_output = model(x_t, self._scale_timesteps(t), **model_kwargs) | |
| target = { | |
| ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance( | |
| x_start=x_start, x_t=x_t, t=t | |
| )[0], | |
| ModelMeanType.START_X: x_start, | |
| ModelMeanType.EPSILON: noise, | |
| }[self.model_mean_type] | |
| model_output = model_output.permute(0, 2, 1).unsqueeze(2) | |
| assert model_output.shape == target.shape == x_start.shape | |
| missing_mask = model_kwargs["y"]["missing"][..., 0] | |
| missing_mask = missing_mask.unsqueeze(1).unsqueeze(1) | |
| missing_mask = mask * missing_mask | |
| terms["rot_mse"] = self.masked_l2(target, model_output, missing_mask) | |
| if self.lambda_vel > 0.0: | |
| target_vel = target[..., 1:] - target[..., :-1] | |
| model_output_vel = model_output[..., 1:] - model_output[..., :-1] | |
| terms["vel_mse"] = self.masked_l2( | |
| target_vel, | |
| model_output_vel, | |
| mask[:, :, :, 1:], | |
| ) | |
| terms["loss"] = terms["rot_mse"] + (self.lambda_vel * terms.get("vel_mse", 0.0)) | |
| with torch.no_grad(): | |
| terms["vb"] = self._vb_terms_bpd( | |
| model, | |
| x_start, | |
| x_t, | |
| t, | |
| clip_denoised=False, | |
| model_kwargs=model_kwargs, | |
| )["output"] | |
| return terms | |
| def _extract_into_tensor(arr, timesteps, broadcast_shape): | |
| """ | |
| Extract values from a 1-D numpy array for a batch of indices. | |
| :param arr: the 1-D numpy array. | |
| :param timesteps: a tensor of indices into the array to extract. | |
| :param broadcast_shape: a larger shape of K dimensions with the batch | |
| dimension equal to the length of timesteps. | |
| :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. | |
| """ | |
| res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() | |
| while len(res.shape) < len(broadcast_shape): | |
| res = res[..., None] | |
| return res.expand(broadcast_shape) | |