Spaces:
Sleeping
Sleeping
| # ============================================================================== | |
| # Causal Convergence Simulator (Final Documented Version) | |
| # ============================================================================== | |
| # Author: Carlos R. Santos (in collaboration with a development partner) | |
| # | |
| # This Gradio application provides a real-time, interactive 3D simulation | |
| # of the Causal Convergence principle. An agent (sphere) autonomously | |
| # navigates a 3D space by learning from its immediate past ("causal echo") | |
| # to determine the most logical next step towards a new random target. | |
| # ============================================================================== | |
| import gradio as gr | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from mpl_toolkits.mplot3d import Axes3D | |
| import math | |
| from scipy.special import comb | |
| import json | |
| import time | |
| # --- Core Mathematical Functions --- | |
| def bernstein_poly(i, n, t): | |
| """ The Bernstein polynomial, which is the basis for Bézier curves. """ | |
| return comb(n, i) * (t**(i)) * ((1 - t)**(n - i)) | |
| def bezier_curve_3d(points, n_times=20): | |
| """ Generates a 3D Bézier curve from a list of control points. """ | |
| n_points = len(points) | |
| points_q = [np.array([quantize(p[0]), quantize(p[1]), quantize(p[2])]) for p in points] | |
| x_points, y_points, z_points = np.array([p[0] for p in points_q]), np.array([p[1] for p in points_q]), np.array([p[2] for p in points_q]) | |
| t = np.linspace(0.0, 1.0, n_times) | |
| polynomial_array = np.array([bernstein_poly(i, n_points - 1, t) for i in range(n_points)]) | |
| x_vals, y_vals, z_vals = np.dot(x_points, polynomial_array), np.dot(y_points, polynomial_array), np.dot(z_points, polynomial_array) | |
| return x_vals, y_vals, z_vals | |
| def learn_from_echo_3d(echo_points: list): | |
| """ Calculates the essence of motion (the inertia vector) from the echo. """ | |
| if len(echo_points) < 2: return {"velocity_vector": np.array([0, 0, 0])} | |
| p1, p2 = np.array(echo_points[0]), np.array(echo_points[-1]) | |
| return {"velocity_vector": p2 - p1} | |
| def quantize(value, multiple=4): | |
| """ Rounds a value to the nearest specified multiple. """ | |
| return multiple * round(value / multiple) | |
| # --- Main Gradio Simulation Engine --- | |
| def infinite_simulation_engine(camera_angle: int): | |
| """ | |
| A generator function that runs an infinite simulation loop, yielding | |
| a new plot for the Gradio UI on each frame. | |
| """ | |
| # 1. Initialize the simulation state | |
| start_point = np.array([quantize(v) for v in [0., 0., 0.]]) | |
| inertia_vector = np.array([quantize(v) for v in [10., 10., 10.]]) | |
| trail_history = [start_point.tolist()] | |
| fig = plt.figure(figsize=(8, 8)); ax = fig.add_subplot(111, projection='3d') | |
| background_color = '#0a0a0a'; fig.patch.set_facecolor(background_color); ax.set_facecolor(background_color) | |
| cycle_num = 0 | |
| while True: # The infinite loop | |
| cycle_num += 1 | |
| # 2. The previous target becomes the new starting point | |
| current_point = np.array(trail_history[-1]) | |
| # 3. Generate a new random target, quantized to the grid | |
| random_target_raw = np.random.rand(3) * 50 - 25 | |
| next_target = np.array([quantize(v) for v in random_target_raw]) | |
| # 4. Calculate the trajectory for the current cycle | |
| control_point = current_point + inertia_vector | |
| curve_points = [current_point, control_point, next_target] | |
| x_cycle, y_cycle, z_cycle = bezier_curve_3d(curve_points) | |
| # 5. Update the continuous trail history | |
| new_trail_points = list(zip(x_cycle, y_cycle, z_cycle)) | |
| trail_history.extend(new_trail_points) | |
| max_trail_length = 150 | |
| trail_history = trail_history[-max_trail_length:] | |
| # 6. Learn the inertia from the end of this cycle for the *next* one | |
| echo_size = 10 | |
| echo_points = trail_history[-echo_size:] | |
| inertia_vector = learn_from_echo_3d(echo_points)["velocity_vector"] | |
| trail_np = np.array(trail_history) | |
| # 7. Render and yield each frame of the current cycle | |
| for frame_idx in range(len(x_cycle)): | |
| ax.cla() # Clear the plot for the new frame | |
| ax.xaxis.pane.fill = False; ax.yaxis.pane.fill = False; ax.zaxis.pane.fill = False | |
| ax.grid(color='#222222', linestyle='--'); ax.view_init(elev=30., azim=camera_angle) | |
| ax.set_xlim(-30, 30); ax.set_ylim(-30, 30); ax.set_zlim(-30, 30) | |
| ax.set_xticklabels([]); ax.set_yticklabels([]); ax.set_zticklabels([]) | |
| # Draw static elements | |
| ax.scatter(*current_point, s=150, c='lime', alpha=0.7) | |
| ax.scatter(*next_target, s=150, c='red', marker='X', alpha=0.9) | |
| # Draw the gradient trail | |
| trail_end_index = len(trail_history) - len(x_cycle) + frame_idx | |
| trail_start_index = max(0, trail_end_index - 12) | |
| current_trail_segment = trail_history[trail_start_index:trail_end_index+1] | |
| if len(current_trail_segment) > 1: | |
| for i in range(len(current_trail_segment) - 1): | |
| p1, p2 = current_trail_segment[i], current_trail_segment[i+1] | |
| alpha = 0.8 * (i / 12) | |
| ax.plot([p1[0], p2[0]], [p1[1], p2[1]], [p1[2], p2[2]], color='#ff4500', linewidth=4, alpha=alpha) | |
| # Draw the agent sphere | |
| ax.plot([x_cycle[frame_idx]], [y_cycle[frame_idx]], [z_cycle[frame_idx]], 'o', color='#ff4500', markersize=8, markeredgecolor='white') | |
| # Draw info text | |
| info_text = f"Cycle: {cycle_num}\nTarget: {np.round(next_target)}"; ax.text2D(0.05, 0.95, info_text, transform=ax.transAxes, color='white') | |
| yield fig | |
| time.sleep(0.01) # Controls animation speed for UI responsiveness | |
| plt.close(fig) | |
| # --- Gradio User Interface --- | |
| with gr.Blocks(theme=gr.themes.Base(primary_hue="purple", secondary_hue="orange")) as demo: | |
| gr.Markdown("# ✨ Causal Convergence Simulator ✨"); gr.Markdown("### The Mathematics of the Next Step") | |
| with gr.Tabs(): | |
| with gr.TabItem("🔬 The Simulation"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown("Control the camera perspective and start the simulation. The agent (sphere) will navigate autonomously, generating new random targets and leaving a fading trail of its inertia."); camera_angle_slider = gr.Slider(-180, 180, value=25, label="Camera Angle (Azimuth)"); start_btn = gr.Button("🚀 Start Simulation", variant="primary") | |
| with gr.Column(scale=2): | |
| plot_output = gr.Plot(label="Real-Time Visualization") | |
| with gr.TabItem("📜 The Theory"): | |
| # Load the explanation from an external markdown file | |
| with open("explanation.md", "r", encoding="utf-8") as f: | |
| gr.Markdown(f.read()) | |
| start_btn.click(fn=infinite_simulation_engine, inputs=[camera_angle_slider], outputs=[plot_output]) | |
| if __name__ == "__main__": | |
| demo.launch() |