Spaces:
Running
on
T4
Running
on
T4
Commit
·
197a064
1
Parent(s):
b12806d
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,11 +18,13 @@ print (API_KEY)
|
|
| 18 |
title = "<h1><center>Markup-to-Image Diffusion Models with Scheduled Sampling</center></h1>"
|
| 19 |
authors = "<center>Yuntian Deng, Noriyuki Kojima, Alexander M. Rush</center>"
|
| 20 |
info = '<center><a href="https://openreview.net/pdf?id=81VJDmOE2ol">Paper</a> <a href="https://github.com/da03/markup2im">Code</a></center>'
|
|
|
|
| 21 |
|
| 22 |
with gr.Blocks() as demo:
|
| 23 |
gr.Markdown(title)
|
| 24 |
gr.Markdown(authors)
|
| 25 |
gr.Markdown(info)
|
|
|
|
| 26 |
with gr.Row():
|
| 27 |
with gr.Column(scale=2):
|
| 28 |
textbox = gr.Textbox(label=r'Type LaTeX formula below and click "Generate"', lines=1, max_lines=1, placeholder='Type LaTeX formula here and click "Generate"', value=r'\sum_{t=1}^T\E_{y_t \sim {\tilde P(y_t| y_0)}} \left\| \frac{y_t - \sqrt{\bar{\alpha}_t}y_0}{\sqrt{1-\bar{\alpha}_t}} - \epsilon_\theta(y_t, t)\right\|^2.')
|
|
|
|
| 18 |
title = "<h1><center>Markup-to-Image Diffusion Models with Scheduled Sampling</center></h1>"
|
| 19 |
authors = "<center>Yuntian Deng, Noriyuki Kojima, Alexander M. Rush</center>"
|
| 20 |
info = '<center><a href="https://openreview.net/pdf?id=81VJDmOE2ol">Paper</a> <a href="https://github.com/da03/markup2im">Code</a></center>'
|
| 21 |
+
notice = "<p><center><strong>Notice:</strong> Due to resource constraints, we've transitioned from GPU to CPU processing for this demo, which results in longer inference times. We appreciate your understanding.</center></p>"
|
| 22 |
|
| 23 |
with gr.Blocks() as demo:
|
| 24 |
gr.Markdown(title)
|
| 25 |
gr.Markdown(authors)
|
| 26 |
gr.Markdown(info)
|
| 27 |
+
gr.Markdown(notice)
|
| 28 |
with gr.Row():
|
| 29 |
with gr.Column(scale=2):
|
| 30 |
textbox = gr.Textbox(label=r'Type LaTeX formula below and click "Generate"', lines=1, max_lines=1, placeholder='Type LaTeX formula here and click "Generate"', value=r'\sum_{t=1}^T\E_{y_t \sim {\tilde P(y_t| y_0)}} \left\| \frac{y_t - \sqrt{\bar{\alpha}_t}y_0}{\sqrt{1-\bar{\alpha}_t}} - \epsilon_\theta(y_t, t)\right\|^2.')
|