import torch, math from torch import nn from einops import rearrange # building block modules def exists(x): return x is not None class LayerNorm(nn.Module): def __init__(self, dim): super().__init__() self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) def forward(self, x): eps = 1e-5 if x.dtype == torch.float32 else 1e-3 var = torch.var(x, dim = 1, unbiased = False, keepdim = True) mean = torch.mean(x, dim = 1, keepdim = True) return (x - mean) * (var + eps).rsqrt() * self.g class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = LayerNorm(dim) def forward(self, x, *args, **kwargs): x = self.norm(x) return self.fn(x, *args, **kwargs) class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, *args, **kwargs): return self.fn(x, *args, **kwargs) + x class Block(nn.Module): def __init__(self, dim, dim_out, groups = 8): super().__init__() self.proj = nn.Conv2d(dim, dim_out, 3, padding = 1) if dim_out%groups != 0: groups = 1 self.norm = nn.GroupNorm(groups, dim_out) self.act = nn.SiLU() def forward(self, x, scale_shift = None): x = self.proj(x) x = self.norm(x) if exists(scale_shift): scale, shift = scale_shift x = x * (scale + 1) + shift x = self.act(x) return x class ResnetBlock(nn.Module): def __init__(self, dim, dim_out, *, time_emb_dim = None, groups = 8): super().__init__() self.mlp = nn.Sequential( nn.SiLU(), nn.Linear(time_emb_dim, dim_out * 2) ) if exists(time_emb_dim) else None self.block1 = Block(dim, dim_out, groups = groups) self.block2 = Block(dim_out, dim_out, groups = groups) self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity() def forward(self, x, time_emb = None): scale_shift = None if exists(self.mlp) and exists(time_emb): time_emb = self.mlp(time_emb) time_emb = rearrange(time_emb, 'b c -> b c 1 1') scale_shift = time_emb.chunk(2, dim = 1) h = self.block1(x, scale_shift = scale_shift) h = self.block2(h) return h + self.res_conv(x) """ Input Tensor and Output Tensor should be in the format of (BT, C, H, W) with # dims = 4 """ class Linear_SpatialAttention(nn.Module): def __init__(self, dim, patch_size, heads=4, dim_head=32): super(Linear_SpatialAttention, self).__init__() self.scale = dim_head ** -0.5 self.patch_size = patch_size self.heads = heads hidden_dim = dim_head*heads # No of Channel for (Q, K, V) self.to_qkv = nn.Conv2d(dim, hidden_dim*3, kernel_size=1, padding=0, bias=False) self.to_out = nn.Sequential( nn.Conv2d(hidden_dim, dim, kernel_size=1), LayerNorm(dim) ) def forward(self, x): assert x.ndim == 4 BT, C, H, W = x.shape nh, nw = H//self.patch_size, W//self.patch_size qkv = self.to_qkv(x).chunk(3, dim=1) # qkv tuple in (q, k , v) # [B, Head × C, X × P, Y × P] -> [B, Head × X × Y, C, P × P] q, k, v = map(lambda t: rearrange(t, 'b (h c) (nh ph) (nw pw) -> b (h nh nw) c (ph pw)', h=self.heads, ph=self.patch_size, pw=self.patch_size, nh=nh, nw=nw), qkv) q = q.softmax(dim=-2) k = k.softmax(dim=-1) q = q*self.scale context = torch.einsum('b h d n, b h e n -> b h d e', k, v) out = torch.einsum('b h d e, b h d n -> b h e n', context, q) out = rearrange(out, 'b (h nh nw) c (ph pw) -> b (h c) (nh ph) (nw pw)', h=self.heads, ph=self.patch_size, pw=self.patch_size, nh=nh, nw=nw) out = self.to_out(out) return out """ Input Tensor and Output Tensor should be in the format of (B, T, C, H, W) with # dims = 5 """ class Linear_TemporalAttention(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super(Linear_TemporalAttention, self).__init__() self.scale = dim_head ** -0.5 self.heads = heads hidden_dim = dim_head*heads # No of Channel for (Q, K, V) self.to_qkv = nn.Conv2d(dim, hidden_dim*3, kernel_size=1, padding=0, bias=False) self.to_out = nn.Sequential( nn.Conv2d(hidden_dim, dim, kernel_size=1), LayerNorm(dim) ) def forward(self, x): assert x.ndim == 5 B, T, C, H, W = x.shape x = x.reshape(B*T, C, H, W) qkv = self.to_qkv(x).chunk(3, dim=1) # qkv tuple in (q, k , v) # [B, Head × C, X × P, Y × P] -> [B, Head × X × Y, C, P × P] q, k, v = map(lambda t: rearrange(t, '(b t) (h c) x y -> b (h x y) c t', h=self.heads, x=H, y=W, t=T), qkv) q = q.softmax(dim=-2) k = k.softmax(dim=-1) q = q*self.scale v /= (H*W) context = torch.einsum('b h d n, b h e n -> b h d e', k, v) out = torch.einsum('b h d e, b h d n -> b h e n', context, q) out = rearrange(out, 'b (h x y) c t -> (b t) (h c) x y', h=self.heads, x=H, y=W, t=T) out = self.to_out(out) return out.reshape(B, T, C, H, W) # Does not Follow what suggested by the paper as could not ensure the spatial factor of 2 def Downsample2D(dim_in, dim_out): return nn.Conv2d(dim_in, dim_out, kernel_size=(4, 4), stride=(2, 2), padding=(1,1)) def Upsample2D(dim_in, dim_out): return nn.ConvTranspose2d(dim_in, dim_out, kernel_size=(4, 4), stride=(2, 2), padding=(1,1)) def ChannelConversion(dim_in, dim_out): return nn.Conv2d(dim_in, dim_out, kernel_size=(3,3), padding=(1,1)) """ Input Tensor and Output Tensor should be in the format of (BT, C, H, W) with # dims = 4 """ class Quadratic_SpatialAttention(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super(Quadratic_SpatialAttention, self).__init__() self.scale = dim_head ** -0.5 self.heads = heads hidden_dim = dim_head*heads # No of Channel for (Q, K, V) self.to_qkv = nn.Conv2d(dim, hidden_dim*3, kernel_size=1, padding=0, bias=False) self.to_out = nn.Sequential( nn.Conv2d(hidden_dim, dim, kernel_size=1) ) def forward(self, x): assert x.ndim == 4 BT, C, H, W = x.shape qkv = self.to_qkv(x).chunk(3, dim=1) # qkv tuple in (q, k , v) # [B, Head × C, X × P, Y × P] -> [B, Head × X × Y, C, P × P] q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h=self.heads), qkv) q = q*self.scale sim = torch.einsum('b h d i, b h d j -> b h i j', q, k) attn = sim.softmax(dim = -1) out = torch.einsum('b h i j, b h d j -> b h i d', attn, v) out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = H, y = W) out = self.to_out(out) return out """ Input Tensor and Output Tensor should be in the format of (B, T, C, H, W) with # dims = 5 """ class Quadratic_TemporalAttention(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super(Quadratic_TemporalAttention, self).__init__() self.scale = dim_head ** -0.5 self.heads = heads hidden_dim = dim_head*heads # No of Channel for (Q, K, V) self.to_qkv = nn.Conv2d(dim, hidden_dim*3, kernel_size=1, padding=0, bias=False) self.to_out = nn.Sequential( nn.Conv2d(hidden_dim, dim, kernel_size=1), ) def forward(self, x): assert x.ndim == 5 B, T, C, H, W = x.shape x = x.reshape(B*T, C, H, W) qkv = self.to_qkv(x).chunk(3, dim=1) # qkv tuple in (q, k , v) # [B, Head × C, X × P, Y × P] -> [B, Head × X × Y, C, P × P] q, k, v = map(lambda t: rearrange(t, '(b t) (h c) x y -> b h (c x y) t', h=self.heads, x=H, y=W, t=T), qkv) q = q*self.scale sim = torch.einsum('b h d i, b h d j -> b h i j', q, k) attn = sim.softmax(dim = -1) out = torch.einsum('b h i j, b h d j -> b h i d', attn, v) out = rearrange(out, 'b h t (c x y) -> (b t) (h c) x y', h=self.heads, x=H, y=W, t=T) out = self.to_out(out) return out.reshape(B, T, C, H, W) """ A series of functions required for Diffusion Model copied from DiffCast code """ def extract(a, t, x_shape): b, *_ = t.shape out = a.gather(-1, t) return out.reshape(b, *((1,) * (len(x_shape) - 1))) def linear_beta_schedule(timesteps): """ linear schedule, proposed in original ddpm paper """ scale = 1000 / timesteps beta_start = scale * 0.0001 beta_end = scale * 0.02 return torch.linspace(beta_start, beta_end, timesteps, dtype = torch.float64) def cosine_beta_schedule(timesteps, s = 0.008): """ cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ """ steps = timesteps + 1 t = torch.linspace(0, timesteps, steps, dtype = torch.float64) / timesteps alphas_cumprod = torch.cos((t + s) / (1 + s) * math.pi * 0.5) ** 2 alphas_cumprod = alphas_cumprod / alphas_cumprod[0] betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) return torch.clip(betas, 0, 0.999) def sigmoid_beta_schedule(timesteps, start = -3, end = 3, tau = 1, clamp_min = 1e-5): """ sigmoid schedule proposed in https://arxiv.org/abs/2212.11972 - Figure 8 better for images > 64x64, when used during training """ steps = timesteps + 1 t = torch.linspace(0, timesteps, steps, dtype = torch.float64) / timesteps v_start = torch.tensor(start / tau).sigmoid() v_end = torch.tensor(end / tau).sigmoid() alphas_cumprod = (-((t * (end - start) + start) / tau).sigmoid() + v_end) / (v_end - v_start) alphas_cumprod = alphas_cumprod / alphas_cumprod[0] betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) return torch.clip(betas, 0, 0.999) # sinusoidal positional embeds class SinusoidalPosEmb(nn.Module): def __init__(self, dim): super(SinusoidalPosEmb, self).__init__() self.dim = dim def forward(self, x): device = x.device half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device=device) * -emb) emb = x[:, None] * emb[None, :] emb = torch.cat((emb.sin(), emb.cos()), dim=-1) return emb class Time_MLP(nn.Module): def __init__(self, dim, time_dim, fourier_dim=32): super(Time_MLP, self).__init__() self.mlp = nn.Sequential( SinusoidalPosEmb(fourier_dim), nn.Linear(fourier_dim, time_dim), nn.GELU(), nn.Linear(time_dim, time_dim) ) def forward(self, x): return self.mlp(x) class RelativePositionBias(nn.Module): def __init__( self, heads = 8, num_buckets = 32, max_distance = 128 ): super().__init__() self.num_buckets = num_buckets self.max_distance = max_distance self.relative_attention_bias = nn.Embedding(num_buckets, heads) @staticmethod def _relative_position_bucket(relative_position, num_buckets = 32, max_distance = 128): ret = 0 n = -relative_position num_buckets //= 2 ret += (n < 0).long() * num_buckets n = torch.abs(n) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).long() val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret def forward(self, n, device): q_pos = torch.arange(n, dtype = torch.long, device = device) k_pos = torch.arange(n, dtype = torch.long, device = device) rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1') rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance) values = self.relative_attention_bias(rp_bucket) return rearrange(values, 'i j h -> h i j') """ Input Tensor and Output Tensor should be in the format of (B, T, C, H, W) with # dims = 5 """ class TemporalAttention_Pos(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super(TemporalAttention_Pos, self).__init__() self.scale = dim_head ** -0.5 self.heads = heads hidden_dim = dim_head*heads # No of Channel for (Q, K, V) self.to_qkv = nn.Conv2d(dim, hidden_dim*3, kernel_size=1, padding=0) self.to_out = nn.Sequential( nn.Conv2d(hidden_dim, dim, kernel_size=1), ) def forward(self, x, rel_pos=None): assert x.ndim == 5 B, T, C, H, W = x.shape x = x.reshape(B*T, C, H, W) qkv = self.to_qkv(x).chunk(3, dim=1) # qkv tuple in (q, k , v) # [B, Head × C, X × P, Y × P] -> [B, Head × X × Y, C, P × P] q, k, v = map(lambda t: rearrange(t, '(b t) (h c) x y -> (b x y) h c t', h=self.heads, x=H, y=W, t=T), qkv) q = q*self.scale sim = torch.einsum('b h d i, b h d j -> b h i j', q, k) if rel_pos is not None: sim += rel_pos attn = sim.softmax(dim = -1) out = torch.einsum('b h i j, b h d j -> b h i d', attn, v) out = rearrange(out, '(b x y) h t c -> (b t) (h c) x y', h=self.heads, x=H, y=W, t=T) out = self.to_out(out) return out.reshape(B, T, C, H, W) class TemporalAttention(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super(TemporalAttention, self).__init__() self.scale = dim_head ** -0.5 self.heads = heads hidden_dim = dim_head*heads self.to_k = nn.Linear(dim, hidden_dim, bias=False) self.to_q = nn.Linear(dim, hidden_dim, bias=False) self.to_v = nn.Linear(dim, hidden_dim, bias=False) self.to_out = nn.Linear(hidden_dim, dim) def forward(self, x): assert x.ndim == 5 B, T, C, H, W = x.shape x = rearrange(x, 'b t c h w -> b (h w) t c') q, k, v = self.to_q(x), self.to_k(x), self.to_v(x) q = rearrange(q, '... n (h d) -> ... h n d', h=self.heads) # B (H W) Head T Dim k = rearrange(k, '... n (h d) -> ... h n d', h=self.heads) v = rearrange(v, '... n (h d) -> ... h n d', h=self.heads) q = q*self.scale sim = torch.einsum('... h i d, ... h j d -> ... h i j', q, k) attn = sim.softmax(dim=-1) out = torch.einsum('... h i j, ... h j d -> ... h i d', attn, v) out = rearrange(out, '... h i d -> ... i (h d)', h=self.heads) out = self.to_out(out) out = rearrange(out, 'b (h w) t c -> b t c h w', h=H, w=W) return out