squ11z1 commited on
Commit
001ba67
·
verified ·
1 Parent(s): e69d1c1

Delete benchmark_results

Browse files
benchmark_results/chronos_extended_results.json DELETED
@@ -1,298 +0,0 @@
1
- {
2
- "model": "Chronos-1.5B (GGUF)",
3
- "base_model": "VibeThinker-1.5B",
4
- "principle": "Spectrum-to-Signal",
5
- "gguf_file": "chronos-o1-1.5b-f16.gguf",
6
- "evaluation_date": "2025-12-13T18:23:52.731239",
7
- "backend": "llama-cpp-python",
8
- "context_window": 16384,
9
- "max_generation": 15000,
10
- "results": {
11
- "aime_2024": {
12
- "score": 60.0,
13
- "total": 30,
14
- "correct": 18,
15
- "baseline": 50.4,
16
- "delta": 9.6,
17
- "avg_response_length": 35209,
18
- "reasoning_shown_count": 28,
19
- "results": [
20
- {
21
- "question_id": 0,
22
- "question": "Every morning Aya goes for a $9$-kilometer-long walk and stops at a coffee shop afterwards. When she...",
23
- "correct": true,
24
- "model_answer": "204",
25
- "correct_answer": "204",
26
- "response_length": 20814,
27
- "reasoning_shown": true
28
- },
29
- {
30
- "question_id": 1,
31
- "question": "Let $ABC$ be a triangle inscribed in circle $\\omega$. Let the tangents to $\\omega$ at $B$ and $C$ in...",
32
- "correct": true,
33
- "model_answer": "113",
34
- "correct_answer": "113",
35
- "response_length": 38590,
36
- "reasoning_shown": true
37
- },
38
- {
39
- "question_id": 2,
40
- "question": "Each vertex of a regular octagon is independently colored either red or blue with equal probability....",
41
- "correct": false,
42
- "model_answer": "any subset missing one element will have difference set equal to the entire group. Because even though that element is missing, other pairs can generate all differences.",
43
- "correct_answer": "371",
44
- "response_length": 51650,
45
- "reasoning_shown": true
46
- },
47
- {
48
- "question_id": 3,
49
- "question": "Define $f(x)=|| x|-\\tfrac{1}{2}|$ and $g(x)=|| x|-\\tfrac{1}{4}|$. Find the number of intersections o...",
50
- "correct": false,
51
- "model_answer": "2",
52
- "correct_answer": "385",
53
- "response_length": 39251,
54
- "reasoning_shown": true
55
- },
56
- {
57
- "question_id": 4,
58
- "question": "Let $p$ be the least prime number for which there exists a positive integer $n$ such that $n^{4}+1$ ...",
59
- "correct": true,
60
- "model_answer": "110",
61
- "correct_answer": "110",
62
- "response_length": 32837,
63
- "reasoning_shown": true
64
- },
65
- {
66
- "question_id": 5,
67
- "question": "Let $ABCD$ be a tetrahedron such that $AB=CD= \\sqrt{41}$, $AC=BD= \\sqrt{80}$, and $BC=AD= \\sqrt{89}$...",
68
- "correct": false,
69
- "model_answer": "2",
70
- "correct_answer": "104",
71
- "response_length": 36863,
72
- "reasoning_shown": true
73
- },
74
- {
75
- "question_id": 6,
76
- "question": "Let $\\mathcal{B}$ be the set of rectangular boxes with surface area $54$ and volume $23$. Let $r$ be...",
77
- "correct": true,
78
- "model_answer": "721",
79
- "correct_answer": "721",
80
- "response_length": 30271,
81
- "reasoning_shown": true
82
- },
83
- {
84
- "question_id": 7,
85
- "question": "There exist real numbers $x$ and $y$, both greater than 1, such that $\\log_x\\left(y^x\\right)=\\log_y\\...",
86
- "correct": true,
87
- "model_answer": "25",
88
- "correct_answer": "025",
89
- "response_length": 28317,
90
- "reasoning_shown": true
91
- },
92
- {
93
- "question_id": 8,
94
- "question": "Alice and Bob play the following game. A stack of $n$ tokens lies before them. The players take turn...",
95
- "correct": true,
96
- "model_answer": "809",
97
- "correct_answer": "809",
98
- "response_length": 36569,
99
- "reasoning_shown": true
100
- },
101
- {
102
- "question_id": 9,
103
- "question": "Jen enters a lottery by picking $4$ distinct numbers from $S=\\{1,2,3,\\cdots,9,10\\}.$ $4$ numbers are...",
104
- "correct": true,
105
- "model_answer": "116",
106
- "correct_answer": "116",
107
- "response_length": 39577,
108
- "reasoning_shown": true
109
- },
110
- {
111
- "question_id": 10,
112
- "question": "Rectangles $ABCD$ and $EFGH$ are drawn such that $D,E,C,F$ are collinear. Also, $A,D,H,G$ all lie on...",
113
- "correct": true,
114
- "model_answer": "104",
115
- "correct_answer": "104",
116
- "response_length": 34939,
117
- "reasoning_shown": true
118
- },
119
- {
120
- "question_id": 11,
121
- "question": "Consider the paths of length $16$ that follow the lines from the lower left corner to the upper righ...",
122
- "correct": true,
123
- "model_answer": "294",
124
- "correct_answer": "294",
125
- "response_length": 21751,
126
- "reasoning_shown": true
127
- },
128
- {
129
- "question_id": 12,
130
- "question": "Find the largest possible real part of \\[(75+117i)z+\\frac{96+144i}{z}\\]where $z$ is a complex number...",
131
- "correct": true,
132
- "model_answer": "540",
133
- "correct_answer": "540",
134
- "response_length": 22756,
135
- "reasoning_shown": true
136
- },
137
- {
138
- "question_id": 13,
139
- "question": "Eight circles of radius $34$ are sequentially tangent, and two of the circles are tangent to $AB$ an...",
140
- "correct": false,
141
- "model_answer": "2024",
142
- "correct_answer": "197",
143
- "response_length": 62139,
144
- "reasoning_shown": true
145
- },
146
- {
147
- "question_id": 14,
148
- "question": "Let $A$, $B$, $C$, and $D$ be point on the hyperbola $\\frac{x^2}{20}- \\frac{y^2}{24} = 1$ such that ...",
149
- "correct": false,
150
- "model_answer": "",
151
- "correct_answer": "480",
152
- "response_length": 26,
153
- "reasoning_shown": false
154
- },
155
- {
156
- "question_id": 15,
157
- "question": "Among the 900 residents of Aimeville, there are 195 who own a diamond ring, 367 who own a set of gol...",
158
- "correct": true,
159
- "model_answer": "73",
160
- "correct_answer": "073",
161
- "response_length": 43730,
162
- "reasoning_shown": true
163
- },
164
- {
165
- "question_id": 16,
166
- "question": "Let $\\triangle ABC$ have circumcenter $O$ and incenter $I$ with $\\overline{IA}\\perp\\overline{OI}$, c...",
167
- "correct": true,
168
- "model_answer": "468",
169
- "correct_answer": "468",
170
- "response_length": 41499,
171
- "reasoning_shown": true
172
- },
173
- {
174
- "question_id": 17,
175
- "question": "Find the number of triples of nonnegative integers \\((a,b,c)\\) satisfying \\(a + b + c = 300\\) and\n\\b...",
176
- "correct": true,
177
- "model_answer": "601",
178
- "correct_answer": "601",
179
- "response_length": 40149,
180
- "reasoning_shown": true
181
- },
182
- {
183
- "question_id": 18,
184
- "question": "Let \\(O=(0,0)\\), \\(A=\\left(\\tfrac{1}{2},0\\right)\\), and \\(B=\\left(0,\\tfrac{\\sqrt{3}}{2}\\right)\\) be ...",
185
- "correct": false,
186
- "model_answer": "1",
187
- "correct_answer": "023",
188
- "response_length": 45824,
189
- "reasoning_shown": true
190
- },
191
- {
192
- "question_id": 19,
193
- "question": "Let $\\omega\\neq 1$ be a 13th root of unity. Find the remainder when\n\\[\\prod_{k=0}^{12}(2-2\\omega^k+\\...",
194
- "correct": true,
195
- "model_answer": "321",
196
- "correct_answer": "321",
197
- "response_length": 31675,
198
- "reasoning_shown": true
199
- },
200
- {
201
- "question_id": 20,
202
- "question": "Let \\(b\\ge 2\\) be an integer. Call a positive integer \\(n\\) \\(b\\text-\\textit{eautiful}\\) if it has e...",
203
- "correct": false,
204
- "model_answer": "15",
205
- "correct_answer": "211",
206
- "response_length": 40970,
207
- "reasoning_shown": true
208
- },
209
- {
210
- "question_id": 21,
211
- "question": "Find the number of rectangles that can be formed inside a fixed regular dodecagon ($12$-gon) where e...",
212
- "correct": false,
213
- "model_answer": "6",
214
- "correct_answer": "315",
215
- "response_length": 42574,
216
- "reasoning_shown": true
217
- },
218
- {
219
- "question_id": 22,
220
- "question": "A list of positive integers has the following properties:\n$\\bullet$ The sum of the items in the list...",
221
- "correct": true,
222
- "model_answer": "236",
223
- "correct_answer": "236",
224
- "response_length": 52111,
225
- "reasoning_shown": true
226
- },
227
- {
228
- "question_id": 23,
229
- "question": "Find the number of ways to place a digit in each cell of a 2x3 grid so that the sum of the two numbe...",
230
- "correct": true,
231
- "model_answer": "45",
232
- "correct_answer": "045",
233
- "response_length": 34868,
234
- "reasoning_shown": true
235
- },
236
- {
237
- "question_id": 24,
238
- "question": "Let $x,y$ and $z$ be positive real numbers that satisfy the following system of equations:\n\\[\\log_2\\...",
239
- "correct": true,
240
- "model_answer": "33",
241
- "correct_answer": "033",
242
- "response_length": 12557,
243
- "reasoning_shown": true
244
- },
245
- {
246
- "question_id": 25,
247
- "question": "Let ABCDEF be a convex equilateral hexagon in which all pairs of opposite sides are parallel. The tr...",
248
- "correct": false,
249
- "model_answer": "",
250
- "correct_answer": "080",
251
- "response_length": 26,
252
- "reasoning_shown": false
253
- },
254
- {
255
- "question_id": 26,
256
- "question": "Alice chooses a set $A$ of positive integers. Then Bob lists all finite nonempty sets $B$ of positiv...",
257
- "correct": true,
258
- "model_answer": "55",
259
- "correct_answer": "055",
260
- "response_length": 26137,
261
- "reasoning_shown": true
262
- },
263
- {
264
- "question_id": 27,
265
- "question": "Let $N$ be the greatest four-digit positive integer with the property that whenever one of its digit...",
266
- "correct": false,
267
- "model_answer": "5694",
268
- "correct_answer": "699",
269
- "response_length": 39108,
270
- "reasoning_shown": true
271
- },
272
- {
273
- "question_id": 28,
274
- "question": "Torus $T$ is the surface produced by revolving a circle with radius $3$ around an axis in the plane ...",
275
- "correct": false,
276
- "model_answer": "0",
277
- "correct_answer": "127",
278
- "response_length": 47624,
279
- "reasoning_shown": true
280
- },
281
- {
282
- "question_id": 29,
283
- "question": "There is a collection of $25$ indistinguishable white chips and $25$ indistinguishable black chips. ...",
284
- "correct": false,
285
- "model_answer": "the columns' colors must be set such that for each row i with color R_i = C, the columns intersecting that row can only have color C if they include any cell from the row.",
286
- "correct_answer": "902",
287
- "response_length": 61055,
288
- "reasoning_shown": true
289
- }
290
- ]
291
- },
292
- "aime_2025": {
293
- "score": 0,
294
- "total": 0,
295
- "error": "Config name is missing.\nPlease pick one among the available configs: ['AIME2025-I', 'AIME2025-II']\nExample of usage:\n\t`load_dataset('opencompass/AIME2025', 'AIME2025-I')`"
296
- }
297
- }
298
- }