File size: 14,420 Bytes
e674b93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import torch
import torch.nn as nn
import numpy as np
from tqdm import tqdm

class GaussianFourierProjection(nn.Module):
    """Gaussian random features for encoding time steps."""
    def __init__(self, embed_dim, scale=30.):
        super().__init__()
        # Randomly sample weights (frequencies) during initialization.
        # These weights (frequencies) are fixed during optimization and are not trainable.
        self.W = nn.Parameter(torch.randn(embed_dim // 2) * scale, requires_grad=False)
    
    def forward(self, x):
        # Cosine(2 pi freq x), Sine(2 pi freq x)
        x_proj = x[:, None] * self.W[None, :] * 2 * np.pi
        return torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)


class Dense(nn.Module):
    """

    Maps an embedding vector to a bias/scale tensor that can be broadcast over a

    2-D feature map (B, C, H, W) – output shape is (B, C, 1, 1).

    """
    def __init__(self, input_dim: int, output_dim: int):
        super().__init__()
        self.dense = nn.Linear(input_dim, output_dim)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B = x.size(0)
        x = x.view(B, -1)                 # (B, input_dim)
        return self.dense(x).view(B, -1, 1, 1)   # (B, C, 1, 1)


class UNet(nn.Module):
    """A time-dependent score-based model built upon U-Net architecture."""

    def __init__(self, marginal_prob_std, channels=[32, 64, 128, 256, 512], embed_dim=256,

                 embed_dim_mask=256, input_dim_mask=4*256*256):
        """Initialize a time-dependent score-based network.



        Args:

            marginal_prob_std: A function that takes time t and gives the standard

                deviation of the perturbation kernel p_{0t}(x(t) | x(0)).

            channels: The number of channels for feature maps of each resolution.

            embed_dim: The dimensionality of Gaussian random feature embeddings.

        """
        super().__init__()
        # Gaussian random feature embedding layer for time
        self.time_embed = nn.Sequential(
            GaussianFourierProjection(embed_dim=embed_dim),
            nn.Linear(embed_dim, embed_dim)
        )
        
        # flatten the mask and apply a linear layer
        self.cond_embed = nn.Sequential(
            nn.Flatten(),
            nn.Linear(input_dim_mask, embed_dim_mask)
        )

        # Encoding layers where the resolution decreases
        self.conv1 = nn.Conv2d(4, channels[0], 3, stride=2, bias=False, padding=1)
        self.t_mod1 = Dense(embed_dim, channels[0])
        self.gnorm1 = nn.GroupNorm(4, num_channels=channels[0])

        self.conv1a = nn.Conv2d(channels[0], channels[0], 3, stride=1, bias=False, padding=1)
        self.t_mod1a = Dense(embed_dim, channels[0])
        self.gnorm1a = nn.GroupNorm(4, num_channels=channels[0])

        self.conv2 = nn.Conv2d(channels[0], channels[1], 3, stride=2, bias=False, padding=1)
        self.t_mod2 = Dense(embed_dim, channels[1])
        self.y_mod2 = Dense(embed_dim, channels[1])
        self.gnorm2 = nn.GroupNorm(32, num_channels=channels[1])
        
        self.conv2a = nn.Conv2d(channels[1], channels[1], 3, stride=1, bias=False, padding=1)
        self.t_mod2a = Dense(embed_dim, channels[1])
        self.y_mod2a = Dense(embed_dim, channels[1])
        self.gnorm2a = nn.GroupNorm(32, num_channels=channels[1])

        self.conv3 = nn.Conv2d(channels[1], channels[2], 3, stride=2, bias=False, padding=1)
        self.t_mod3 = Dense(embed_dim, channels[2])
        self.y_mod3 = Dense(embed_dim, channels[2])
        self.gnorm3 = nn.GroupNorm(32, num_channels=channels[2])
        
        self.conv3a = nn.Conv2d(channels[2], channels[2], 3, stride=1, bias=False, padding=1)
        self.t_mod3a = Dense(embed_dim, channels[2])
        self.y_mod3a = Dense(embed_dim, channels[2])
        self.gnorm3a = nn.GroupNorm(32, num_channels=channels[2])

        self.conv4 = nn.Conv2d(channels[2], channels[3], 3, stride=2, bias=False, padding=1)
        self.t_mod4 = Dense(embed_dim, channels[3])
        self.y_mod4 = Dense(embed_dim, channels[3])
        self.gnorm4 = nn.GroupNorm(32, num_channels=channels[3])
        
        self.conv4a = nn.Conv2d(channels[3], channels[3], 3, stride=1, bias=False, padding=1)
        self.t_mod4a = Dense(embed_dim, channels[3])
        self.y_mod4a = Dense(embed_dim, channels[3])
        self.gnorm4a = nn.GroupNorm(32, num_channels=channels[3])

        self.conv5 = nn.Conv2d(channels[3], channels[4], 3, stride=2, bias=False, padding=1)
        self.t_mod5 = Dense(embed_dim, channels[4])
        self.y_mod5 = Dense(embed_dim, channels[4])
        self.gnorm5 = nn.GroupNorm(32, num_channels=channels[4])

        self.conv5a = nn.Conv2d(channels[4], channels[4], 3, stride=1, bias=False, padding=1)
        self.t_mod5a = Dense(embed_dim, channels[4])
        self.y_mod5a = Dense(embed_dim, channels[4])
        self.gnorm5a = nn.GroupNorm(32, num_channels=channels[4])
        
        # Decoding layers where the resolution increases
        self.tconv5b = nn.Conv2d(channels[4], channels[4], 3, stride=1, bias=False, padding=1)
        self.t_mod6b = Dense(embed_dim, channels[4])
        self.y_mod6b = Dense(embed_dim, channels[4])
        self.tgnorm5b = nn.GroupNorm(32, num_channels=channels[4])
        
        self.tconv5 = nn.ConvTranspose2d(2*channels[4], channels[3], 3, stride=2, bias=False, padding=1, output_padding=1)
        self.t_mod6 = Dense(embed_dim, channels[3])
        self.y_mod6 = Dense(embed_dim, channels[3])
        self.tgnorm5 = nn.GroupNorm(32, num_channels=channels[3])
        
        self.tconv4b = nn.Conv2d(2*channels[3], channels[3], 3, stride=1, bias=False, padding=1)
        self.t_mod7b = Dense(embed_dim, channels[3])
        self.y_mod7b = Dense(embed_dim, channels[3])
        self.tgnorm4b = nn.GroupNorm(32, num_channels=channels[3])

        self.tconv4 = nn.ConvTranspose2d(2*channels[3], channels[2], 3, stride=2, bias=False, padding=1, output_padding=1)
        self.t_mod7 = Dense(embed_dim, channels[2])
        self.y_mod7 = Dense(embed_dim, channels[2])
        self.tgnorm4 = nn.GroupNorm(32, num_channels=channels[2])
        
        self.tconv3b = nn.Conv2d(2*channels[2], channels[2], 3, stride=1, bias=False, padding=1)
        self.t_mod8b = Dense(embed_dim, channels[2])
        self.y_mod8b = Dense(embed_dim, channels[2])
        self.tgnorm3b = nn.GroupNorm(32, num_channels=channels[2])
        
        self.tconv3 = nn.ConvTranspose2d(2*channels[2], channels[1], 3, stride=2, bias=False, padding=1, output_padding=1)
        self.t_mod8 = Dense(embed_dim, channels[1])
        self.y_mod8 = Dense(embed_dim, channels[1])
        self.tgnorm3 = nn.GroupNorm(32, num_channels=channels[1])
        
        self.tconv2b = nn.Conv2d(2*channels[1], channels[1], 3, stride=1, bias=False, padding=1)
        self.t_mod9b = Dense(embed_dim, channels[1])
        self.y_mod9b = Dense(embed_dim, channels[1])
        self.tgnorm2b = nn.GroupNorm(32, num_channels=channels[1])

        self.tconv2 = nn.ConvTranspose2d(2*channels[1], channels[0], 3, stride=2, bias=False, padding=1, output_padding=1)
        self.t_mod9 = Dense(embed_dim, channels[0])
        self.y_mod9 = Dense(embed_dim, channels[0])
        self.tgnorm2 = nn.GroupNorm(32, num_channels=channels[0])

        self.tconv1b = nn.Conv2d(2*channels[0], channels[0], 3, stride=1, bias=False, padding=1)
        self.t_mod10b = Dense(embed_dim, channels[0])
        self.y_mod10b = Dense(embed_dim, channels[0])
        self.tgnorm1b = nn.GroupNorm(32, num_channels=channels[0])

        self.tconv1 = nn.ConvTranspose2d(2*channels[0], channels[0], 3, stride=2, bias=False, padding=1, output_padding=1)
        self.t_mod10 = Dense(embed_dim, channels[0])
        self.y_mod10 = Dense(embed_dim, channels[0])
        self.tgnorm1 = nn.GroupNorm(32, num_channels=channels[0])
        
        self.tconv0 = nn.ConvTranspose2d(channels[0], 4, 3, stride=1, padding=1, output_padding=0)

        # The swish activation function
        self.act = nn.SiLU()
        # A restricted version of the `marginal_prob_std` function, after specifying a Lambda.
        self.marginal_prob_std = marginal_prob_std

    def forward(self, x, t, y=None):
        # Obtain the Gaussian random feature embedding for t
        embed = self.act(self.time_embed(t))
        y_embed = self.cond_embed(y)

        # Encoding path, downsampling
        h1 = self.conv1(x) + self.t_mod1(embed)
        h1 = self.act(self.gnorm1(h1))
        
        h1a = self.conv1a(h1) + self.t_mod1a(embed)
        h1a = self.act(self.gnorm1a(h1a))

        # 2nd conv
        h2 = self.conv2(h1a) + self.t_mod2(embed)
        h2 = h2 * self.y_mod2(y_embed)
        h2 = self.act(self.gnorm2(h2))

        h2a = self.conv2a(h2) + self.t_mod2a(embed)
        h2a = h2a * self.y_mod2a(y_embed)
        h2a = self.act(self.gnorm2a(h2a))

        # 3rd conv
        h3 = self.conv3(h2a) + self.t_mod3(embed)
        h3 = h3 * self.y_mod3(y_embed)
        h3 = self.act(self.gnorm3(h3))

        h3a = self.conv3a(h3) + self.t_mod3a(embed)
        h3a = h3a * self.y_mod3a(y_embed)
        h3a = self.act(self.gnorm3a(h3a))

        # 4th conv
        h4 = self.conv4(h3a) + self.t_mod4(embed)
        h4 = h4 * self.y_mod4(y_embed)
        h4 = self.act(self.gnorm4(h4))

        h4a = self.conv4a(h4) + self.t_mod4a(embed)
        h4a = h4a * self.y_mod4a(y_embed)
        h4a = self.act(self.gnorm4a(h4a))

        # 5th conv
        h5 = self.conv5(h4a) + self.t_mod5(embed)
        h5 = h5 * self.y_mod5(y_embed)
        h5 = self.act(self.gnorm5(h5))

        h5a = self.conv5a(h5) + self.t_mod5a(embed)
        h5a = h5a * self.y_mod5a(y_embed)
        h5a = self.act(self.gnorm5a(h5a))

        # Decoding path up sampling
        h = self.tconv5b(h5a) + self.t_mod6b(embed)
        h = h * self.y_mod5(y_embed)
        h = self.act(self.tgnorm5b(h))
        
        # Skip connection from the encoding path
        h = self.tconv5(torch.cat([h, h5], dim=1)) + self.t_mod6(embed)
        h = h * self.y_mod6(y_embed)
        h = self.act(self.tgnorm5(h))

        h = self.tconv4b(torch.cat([h, h4a], dim=1)) + self.t_mod7b(embed)
        h = h * self.y_mod7b(y_embed)
        h = self.act(self.tgnorm4b(h))

        h = self.tconv4(torch.cat([h, h4], dim=1)) + self.t_mod7(embed)
        h = h * self.y_mod7(y_embed)
        h = self.act(self.tgnorm4(h))

        h = self.tconv3b(torch.cat([h, h3a], dim=1)) + self.t_mod8b(embed)
        h = h * self.y_mod8b(y_embed)
        h = self.act(self.tgnorm3b(h))

        h = self.tconv3(torch.cat([h, h3], dim=1)) + self.t_mod8(embed)
        h = h * self.y_mod8(y_embed)
        h = self.act(self.tgnorm3(h))

        h = self.tconv2b(torch.cat([h, h2a], dim=1)) + self.t_mod9b(embed)
        h = h * self.y_mod9b(y_embed)
        h = self.act(self.tgnorm2b(h))

        h = self.tconv2(torch.cat([h, h2], dim=1)) + self.t_mod9(embed)
        h = h * self.y_mod9(y_embed)
        h = self.act(self.tgnorm2(h))

        h = self.tconv1b(torch.cat([h, h1a], dim=1)) + self.t_mod10b(embed)
        h = h * self.y_mod10b(y_embed)
        h = self.act(self.tgnorm1b(h))

        h = self.tconv1(torch.cat([h, h1], dim=1)) + self.t_mod10(embed)
        h = h * self.y_mod10(y_embed)
        h = self.act(self.tgnorm1(h))

        h = self.tconv0(h)
        
        # Normalize output
        h = h / self.marginal_prob_std(t)[:, None, None, None]

        return h


def marginal_prob_std(t, Lambda, device='cpu'):
    """Compute the standard deviation of $p_{0t}(x(t) | x(0))$.



    Args:

        t: A vector of time steps.

        Lambda: The $\lambda$ in our SDE.



    Returns:

        std : The standard deviation.

    """
    t = t.to(device)
    std = torch.sqrt((Lambda**(2 * t) - 1.) / 2. / np.log(Lambda))
    return std


def diffusion_coeff(t, Lambda, device='cpu'):
    """Compute the diffusion coefficient of our SDE.



    Args:

        t: A vector of time steps.

        Lambda: The $\lambda$ in our SDE.



    Returns:

        diff_coeff : The vector of diffusion coefficients.

    """
    diff_coeff = Lambda**t
    return diff_coeff.to(device)


def Euler_Maruyama_sampler(score_model,

                          marginal_prob_std,

                          diffusion_coeff,

                          batch_size=1,

                          x_shape=(4, 256, 256),

                          num_steps=250,

                          device='cuda',

                          eps=1e-3, 

                          y=None):
    """Generate samples from score-based models with the Euler-Maruyama solver.



    Args:

        score_model: A PyTorch model that represents the time-dependent score-based model.

        marginal_prob_std: A function that gives the standard deviation of

            the perturbation kernel.

        diffusion_coeff: A function that gives the diffusion coefficient of the SDE.

        batch_size: The number of samplers to generate by calling this function once.

        num_steps: The number of sampling steps.

            Equivalent to the number of discretized time steps.

        device: 'cuda' for running on GPUs, and 'cpu' for running on CPUs.

        eps: The smallest time step for numerical stability.



    Returns:

        Samples.

    """
    t = torch.ones(batch_size).to(device)
    r = torch.randn(batch_size, *x_shape).to(device)
    init_x = r * marginal_prob_std(t)[:, None, None, None]
    init_x = init_x.to(device)
    time_steps = torch.linspace(1., eps, num_steps).to(device)
    step_size = time_steps[0] - time_steps[1]
    x = init_x
    with torch.no_grad():
        for time_step in tqdm(time_steps):
            batch_time_step = torch.ones(batch_size, device=device) * time_step
            g = diffusion_coeff(batch_time_step)
            mean_x = x + (g**2)[:, None, None, None] * score_model(x, batch_time_step, y=y) * step_size
            x = mean_x + torch.sqrt(step_size) * g[:, None, None, None] * torch.randn_like(x)
    # Do not include any noise in the last sampling step.
    return mean_x