File size: 14,420 Bytes
e674b93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import torch
import torch.nn as nn
import numpy as np
from tqdm import tqdm
class GaussianFourierProjection(nn.Module):
"""Gaussian random features for encoding time steps."""
def __init__(self, embed_dim, scale=30.):
super().__init__()
# Randomly sample weights (frequencies) during initialization.
# These weights (frequencies) are fixed during optimization and are not trainable.
self.W = nn.Parameter(torch.randn(embed_dim // 2) * scale, requires_grad=False)
def forward(self, x):
# Cosine(2 pi freq x), Sine(2 pi freq x)
x_proj = x[:, None] * self.W[None, :] * 2 * np.pi
return torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
class Dense(nn.Module):
"""
Maps an embedding vector to a bias/scale tensor that can be broadcast over a
2-D feature map (B, C, H, W) – output shape is (B, C, 1, 1).
"""
def __init__(self, input_dim: int, output_dim: int):
super().__init__()
self.dense = nn.Linear(input_dim, output_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
B = x.size(0)
x = x.view(B, -1) # (B, input_dim)
return self.dense(x).view(B, -1, 1, 1) # (B, C, 1, 1)
class UNet(nn.Module):
"""A time-dependent score-based model built upon U-Net architecture."""
def __init__(self, marginal_prob_std, channels=[32, 64, 128, 256, 512], embed_dim=256,
embed_dim_mask=256, input_dim_mask=4*256*256):
"""Initialize a time-dependent score-based network.
Args:
marginal_prob_std: A function that takes time t and gives the standard
deviation of the perturbation kernel p_{0t}(x(t) | x(0)).
channels: The number of channels for feature maps of each resolution.
embed_dim: The dimensionality of Gaussian random feature embeddings.
"""
super().__init__()
# Gaussian random feature embedding layer for time
self.time_embed = nn.Sequential(
GaussianFourierProjection(embed_dim=embed_dim),
nn.Linear(embed_dim, embed_dim)
)
# flatten the mask and apply a linear layer
self.cond_embed = nn.Sequential(
nn.Flatten(),
nn.Linear(input_dim_mask, embed_dim_mask)
)
# Encoding layers where the resolution decreases
self.conv1 = nn.Conv2d(4, channels[0], 3, stride=2, bias=False, padding=1)
self.t_mod1 = Dense(embed_dim, channels[0])
self.gnorm1 = nn.GroupNorm(4, num_channels=channels[0])
self.conv1a = nn.Conv2d(channels[0], channels[0], 3, stride=1, bias=False, padding=1)
self.t_mod1a = Dense(embed_dim, channels[0])
self.gnorm1a = nn.GroupNorm(4, num_channels=channels[0])
self.conv2 = nn.Conv2d(channels[0], channels[1], 3, stride=2, bias=False, padding=1)
self.t_mod2 = Dense(embed_dim, channels[1])
self.y_mod2 = Dense(embed_dim, channels[1])
self.gnorm2 = nn.GroupNorm(32, num_channels=channels[1])
self.conv2a = nn.Conv2d(channels[1], channels[1], 3, stride=1, bias=False, padding=1)
self.t_mod2a = Dense(embed_dim, channels[1])
self.y_mod2a = Dense(embed_dim, channels[1])
self.gnorm2a = nn.GroupNorm(32, num_channels=channels[1])
self.conv3 = nn.Conv2d(channels[1], channels[2], 3, stride=2, bias=False, padding=1)
self.t_mod3 = Dense(embed_dim, channels[2])
self.y_mod3 = Dense(embed_dim, channels[2])
self.gnorm3 = nn.GroupNorm(32, num_channels=channels[2])
self.conv3a = nn.Conv2d(channels[2], channels[2], 3, stride=1, bias=False, padding=1)
self.t_mod3a = Dense(embed_dim, channels[2])
self.y_mod3a = Dense(embed_dim, channels[2])
self.gnorm3a = nn.GroupNorm(32, num_channels=channels[2])
self.conv4 = nn.Conv2d(channels[2], channels[3], 3, stride=2, bias=False, padding=1)
self.t_mod4 = Dense(embed_dim, channels[3])
self.y_mod4 = Dense(embed_dim, channels[3])
self.gnorm4 = nn.GroupNorm(32, num_channels=channels[3])
self.conv4a = nn.Conv2d(channels[3], channels[3], 3, stride=1, bias=False, padding=1)
self.t_mod4a = Dense(embed_dim, channels[3])
self.y_mod4a = Dense(embed_dim, channels[3])
self.gnorm4a = nn.GroupNorm(32, num_channels=channels[3])
self.conv5 = nn.Conv2d(channels[3], channels[4], 3, stride=2, bias=False, padding=1)
self.t_mod5 = Dense(embed_dim, channels[4])
self.y_mod5 = Dense(embed_dim, channels[4])
self.gnorm5 = nn.GroupNorm(32, num_channels=channels[4])
self.conv5a = nn.Conv2d(channels[4], channels[4], 3, stride=1, bias=False, padding=1)
self.t_mod5a = Dense(embed_dim, channels[4])
self.y_mod5a = Dense(embed_dim, channels[4])
self.gnorm5a = nn.GroupNorm(32, num_channels=channels[4])
# Decoding layers where the resolution increases
self.tconv5b = nn.Conv2d(channels[4], channels[4], 3, stride=1, bias=False, padding=1)
self.t_mod6b = Dense(embed_dim, channels[4])
self.y_mod6b = Dense(embed_dim, channels[4])
self.tgnorm5b = nn.GroupNorm(32, num_channels=channels[4])
self.tconv5 = nn.ConvTranspose2d(2*channels[4], channels[3], 3, stride=2, bias=False, padding=1, output_padding=1)
self.t_mod6 = Dense(embed_dim, channels[3])
self.y_mod6 = Dense(embed_dim, channels[3])
self.tgnorm5 = nn.GroupNorm(32, num_channels=channels[3])
self.tconv4b = nn.Conv2d(2*channels[3], channels[3], 3, stride=1, bias=False, padding=1)
self.t_mod7b = Dense(embed_dim, channels[3])
self.y_mod7b = Dense(embed_dim, channels[3])
self.tgnorm4b = nn.GroupNorm(32, num_channels=channels[3])
self.tconv4 = nn.ConvTranspose2d(2*channels[3], channels[2], 3, stride=2, bias=False, padding=1, output_padding=1)
self.t_mod7 = Dense(embed_dim, channels[2])
self.y_mod7 = Dense(embed_dim, channels[2])
self.tgnorm4 = nn.GroupNorm(32, num_channels=channels[2])
self.tconv3b = nn.Conv2d(2*channels[2], channels[2], 3, stride=1, bias=False, padding=1)
self.t_mod8b = Dense(embed_dim, channels[2])
self.y_mod8b = Dense(embed_dim, channels[2])
self.tgnorm3b = nn.GroupNorm(32, num_channels=channels[2])
self.tconv3 = nn.ConvTranspose2d(2*channels[2], channels[1], 3, stride=2, bias=False, padding=1, output_padding=1)
self.t_mod8 = Dense(embed_dim, channels[1])
self.y_mod8 = Dense(embed_dim, channels[1])
self.tgnorm3 = nn.GroupNorm(32, num_channels=channels[1])
self.tconv2b = nn.Conv2d(2*channels[1], channels[1], 3, stride=1, bias=False, padding=1)
self.t_mod9b = Dense(embed_dim, channels[1])
self.y_mod9b = Dense(embed_dim, channels[1])
self.tgnorm2b = nn.GroupNorm(32, num_channels=channels[1])
self.tconv2 = nn.ConvTranspose2d(2*channels[1], channels[0], 3, stride=2, bias=False, padding=1, output_padding=1)
self.t_mod9 = Dense(embed_dim, channels[0])
self.y_mod9 = Dense(embed_dim, channels[0])
self.tgnorm2 = nn.GroupNorm(32, num_channels=channels[0])
self.tconv1b = nn.Conv2d(2*channels[0], channels[0], 3, stride=1, bias=False, padding=1)
self.t_mod10b = Dense(embed_dim, channels[0])
self.y_mod10b = Dense(embed_dim, channels[0])
self.tgnorm1b = nn.GroupNorm(32, num_channels=channels[0])
self.tconv1 = nn.ConvTranspose2d(2*channels[0], channels[0], 3, stride=2, bias=False, padding=1, output_padding=1)
self.t_mod10 = Dense(embed_dim, channels[0])
self.y_mod10 = Dense(embed_dim, channels[0])
self.tgnorm1 = nn.GroupNorm(32, num_channels=channels[0])
self.tconv0 = nn.ConvTranspose2d(channels[0], 4, 3, stride=1, padding=1, output_padding=0)
# The swish activation function
self.act = nn.SiLU()
# A restricted version of the `marginal_prob_std` function, after specifying a Lambda.
self.marginal_prob_std = marginal_prob_std
def forward(self, x, t, y=None):
# Obtain the Gaussian random feature embedding for t
embed = self.act(self.time_embed(t))
y_embed = self.cond_embed(y)
# Encoding path, downsampling
h1 = self.conv1(x) + self.t_mod1(embed)
h1 = self.act(self.gnorm1(h1))
h1a = self.conv1a(h1) + self.t_mod1a(embed)
h1a = self.act(self.gnorm1a(h1a))
# 2nd conv
h2 = self.conv2(h1a) + self.t_mod2(embed)
h2 = h2 * self.y_mod2(y_embed)
h2 = self.act(self.gnorm2(h2))
h2a = self.conv2a(h2) + self.t_mod2a(embed)
h2a = h2a * self.y_mod2a(y_embed)
h2a = self.act(self.gnorm2a(h2a))
# 3rd conv
h3 = self.conv3(h2a) + self.t_mod3(embed)
h3 = h3 * self.y_mod3(y_embed)
h3 = self.act(self.gnorm3(h3))
h3a = self.conv3a(h3) + self.t_mod3a(embed)
h3a = h3a * self.y_mod3a(y_embed)
h3a = self.act(self.gnorm3a(h3a))
# 4th conv
h4 = self.conv4(h3a) + self.t_mod4(embed)
h4 = h4 * self.y_mod4(y_embed)
h4 = self.act(self.gnorm4(h4))
h4a = self.conv4a(h4) + self.t_mod4a(embed)
h4a = h4a * self.y_mod4a(y_embed)
h4a = self.act(self.gnorm4a(h4a))
# 5th conv
h5 = self.conv5(h4a) + self.t_mod5(embed)
h5 = h5 * self.y_mod5(y_embed)
h5 = self.act(self.gnorm5(h5))
h5a = self.conv5a(h5) + self.t_mod5a(embed)
h5a = h5a * self.y_mod5a(y_embed)
h5a = self.act(self.gnorm5a(h5a))
# Decoding path up sampling
h = self.tconv5b(h5a) + self.t_mod6b(embed)
h = h * self.y_mod5(y_embed)
h = self.act(self.tgnorm5b(h))
# Skip connection from the encoding path
h = self.tconv5(torch.cat([h, h5], dim=1)) + self.t_mod6(embed)
h = h * self.y_mod6(y_embed)
h = self.act(self.tgnorm5(h))
h = self.tconv4b(torch.cat([h, h4a], dim=1)) + self.t_mod7b(embed)
h = h * self.y_mod7b(y_embed)
h = self.act(self.tgnorm4b(h))
h = self.tconv4(torch.cat([h, h4], dim=1)) + self.t_mod7(embed)
h = h * self.y_mod7(y_embed)
h = self.act(self.tgnorm4(h))
h = self.tconv3b(torch.cat([h, h3a], dim=1)) + self.t_mod8b(embed)
h = h * self.y_mod8b(y_embed)
h = self.act(self.tgnorm3b(h))
h = self.tconv3(torch.cat([h, h3], dim=1)) + self.t_mod8(embed)
h = h * self.y_mod8(y_embed)
h = self.act(self.tgnorm3(h))
h = self.tconv2b(torch.cat([h, h2a], dim=1)) + self.t_mod9b(embed)
h = h * self.y_mod9b(y_embed)
h = self.act(self.tgnorm2b(h))
h = self.tconv2(torch.cat([h, h2], dim=1)) + self.t_mod9(embed)
h = h * self.y_mod9(y_embed)
h = self.act(self.tgnorm2(h))
h = self.tconv1b(torch.cat([h, h1a], dim=1)) + self.t_mod10b(embed)
h = h * self.y_mod10b(y_embed)
h = self.act(self.tgnorm1b(h))
h = self.tconv1(torch.cat([h, h1], dim=1)) + self.t_mod10(embed)
h = h * self.y_mod10(y_embed)
h = self.act(self.tgnorm1(h))
h = self.tconv0(h)
# Normalize output
h = h / self.marginal_prob_std(t)[:, None, None, None]
return h
def marginal_prob_std(t, Lambda, device='cpu'):
"""Compute the standard deviation of $p_{0t}(x(t) | x(0))$.
Args:
t: A vector of time steps.
Lambda: The $\lambda$ in our SDE.
Returns:
std : The standard deviation.
"""
t = t.to(device)
std = torch.sqrt((Lambda**(2 * t) - 1.) / 2. / np.log(Lambda))
return std
def diffusion_coeff(t, Lambda, device='cpu'):
"""Compute the diffusion coefficient of our SDE.
Args:
t: A vector of time steps.
Lambda: The $\lambda$ in our SDE.
Returns:
diff_coeff : The vector of diffusion coefficients.
"""
diff_coeff = Lambda**t
return diff_coeff.to(device)
def Euler_Maruyama_sampler(score_model,
marginal_prob_std,
diffusion_coeff,
batch_size=1,
x_shape=(4, 256, 256),
num_steps=250,
device='cuda',
eps=1e-3,
y=None):
"""Generate samples from score-based models with the Euler-Maruyama solver.
Args:
score_model: A PyTorch model that represents the time-dependent score-based model.
marginal_prob_std: A function that gives the standard deviation of
the perturbation kernel.
diffusion_coeff: A function that gives the diffusion coefficient of the SDE.
batch_size: The number of samplers to generate by calling this function once.
num_steps: The number of sampling steps.
Equivalent to the number of discretized time steps.
device: 'cuda' for running on GPUs, and 'cpu' for running on CPUs.
eps: The smallest time step for numerical stability.
Returns:
Samples.
"""
t = torch.ones(batch_size).to(device)
r = torch.randn(batch_size, *x_shape).to(device)
init_x = r * marginal_prob_std(t)[:, None, None, None]
init_x = init_x.to(device)
time_steps = torch.linspace(1., eps, num_steps).to(device)
step_size = time_steps[0] - time_steps[1]
x = init_x
with torch.no_grad():
for time_step in tqdm(time_steps):
batch_time_step = torch.ones(batch_size, device=device) * time_step
g = diffusion_coeff(batch_time_step)
mean_x = x + (g**2)[:, None, None, None] * score_model(x, batch_time_step, y=y) * step_size
x = mean_x + torch.sqrt(step_size) * g[:, None, None, None] * torch.randn_like(x)
# Do not include any noise in the last sampling step.
return mean_x |