File size: 12,968 Bytes
93155de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import torch
import torch.nn as nn
import torch.optim as optim
import math
import torch.jit as jit
import random



#==============================================================================================
#==============================================================================================
#=========================================SYMPHONY=============================================
#==============================================================================================
#==============================================================================================


class Adam(optim.Optimizer):
    def __init__(self, params, lr=3e-4, weight_decay=0.01, betas=((math.sqrt(5)-1)/2, 0.995)):
        defaults = dict(lr=lr, betas=betas)
        super().__init__(params, defaults)
        self.wd = weight_decay
        self.lr = lr
        self.beta1, self.beta2 = betas
        self.beta1_, self.beta2_ = 1-self.beta1, 1-self.beta2
        self.eps = 1e-8  # You can make this configurable if needed


    @torch.no_grad()
    def step(self):
        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue

                grad = p.grad

                state = self.state[p]
                if len(state) == 0:
                    state['m'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    state['v'] = torch.zeros_like(p, memory_format=torch.preserve_format)


                m = state['m']
                v = state['v']

                # Update biased first moment estimate
                m.mul_(self.beta1).add_(grad, alpha=self.beta1_)
                # Update biased second raw moment estimate
                v.mul_(self.beta2).addcmul_(grad, grad, value=self.beta2_)

                # Update parameters
                p.add_(m/(v.sqrt() + self.eps) + self.wd*p, alpha=-self.lr)
                





#Rectified Huber Symmetric Error Loss Function via JIT Module
# nn.Module -> JIT C++ graph
class ReHSE(jit.ScriptModule):
    def __init__(self):
        super(ReHSE, self).__init__()

    @jit.script_method
    def forward(self, e):
        return (e * torch.tanh(e/2)).mean()


#Rectified Huber Asymmetric Error Loss Function via JIT Module
# nn.Module -> JIT C++ graph
class ReHAE(jit.ScriptModule):
    def __init__(self):
        super(ReHAE, self).__init__()

    @jit.script_method
    def forward(self, e):
        return (torch.abs(e) * torch.tanh(e/2)).mean()
    


#ReSine Activation Function
# nn.Module -> JIT C++ graph
class ReSine(jit.ScriptModule):
    def __init__(self, hidden_dim=256):
        super(ReSine, self).__init__()
        k = 1/math.sqrt(hidden_dim)
        self.s = nn.Parameter(data=2.0*k*torch.rand(hidden_dim)-k, requires_grad=True)
 
    @jit.script_method
    def forward(self, x):
        s = torch.sigmoid(self.s)
        x = s*torch.sin(x/s)
        return x/(1+torch.exp(-1.5*x/s))

#SilentDropout
# nn.Module -> JIT C++ graph
class SilentDropout(jit.ScriptModule):
    def __init__(self, p=0.5):
        super(SilentDropout, self).__init__()
        self.p = p

    @jit.script_method
    def forward(self, x):
        mask = (torch.rand_like(x) > self.p).float()
        return  mask * x + (1.0-mask) * x.detach()


class Swaddling(jit.ScriptModule):
    def __init__(self):
        super(Swaddling, self).__init__()

    @jit.script_method
    def Omega(self, x):
        return torch.log((1+x)/(1-x))

    @jit.script_method
    def omega(self, x):
        return x*torch.log(x)


    @jit.script_method
    def forward(self, x, k):
        return (self.Omega(x**(1/k.detach())) + k * self.omega(x) + self.Omega(k**2)).mean()



class FeedForward(jit.ScriptModule):
    def __init__(self, f_in, h_dim, f_out):
        super(FeedForward, self).__init__()


        self.ffw = nn.Sequential(
            nn.Linear(f_in, h_dim),
            nn.LayerNorm(h_dim),
            nn.Linear(h_dim, h_dim),
            ReSine(h_dim),
            nn.Linear(h_dim, f_out)
        )



    @jit.script_method
    def forward(self, x):
        return self.ffw(x)






# nn.Module -> JIT C++ graph
class ActorCritic(jit.ScriptModule):
    def __init__(self, state_dim, action_dim, h_dim, max_action=1.0):
        super().__init__()


        self.action_dim = action_dim
        q_nodes = h_dim//4

        self.a = FeedForward(state_dim, h_dim, 3*action_dim)
        self.a_max = nn.Parameter(data= max_action, requires_grad=False)
        self.std = 1/math.e

        self.qA = FeedForward(state_dim+action_dim, h_dim, q_nodes)
        self.qB = FeedForward(state_dim+action_dim, h_dim, q_nodes)
        self.qC = FeedForward(state_dim+action_dim, h_dim, q_nodes)
        self.qnets = nn.ModuleList([self.qA, self.qB, self.qC])


        self.q_dist = q_nodes*len(self.qnets)
        indexes = torch.arange(0, self.q_dist, 1)/self.q_dist
        weights = torch.tanh((math.pi*(1-indexes))**math.e)
        self.probs = nn.Parameter(data= weights/torch.sum(weights), requires_grad=False)

        self.e = 1e-3
        self.e_ = 1-self.e

    #========= Actor Forward Pass =========
    
    @jit.script_method
    def actor(self, state, action:bool = True, noise:bool=True):
        ASB = torch.tanh(self.a(state)/2).reshape(-1, 3, self.action_dim)
        A, S, B =   ASB [:, 0], ASB[:, 1].abs(), ASB[:, 2].abs()
        N = self.std * torch.randn_like(A).clamp(-math.e, math.e)
        return self.a_max * torch.tanh(float(action) * S * A + float(noise) * N), S.clamp(self.e, self.e_), B.clamp(self.e, self.e_)

    #========= Critic Forward Pass =========
    # take 3 distributions and concatenate them
    @jit.script_method
    def critic(self, state, action):
        x = torch.cat([state, action], -1)
        return torch.cat([qnet(x) for qnet in self.qnets], dim=-1)



    @jit.script_method
    def critic_soft(self, state, action):
        q = self.probs * self.critic(state, action).sort(dim=-1)[0]
        q =  q.sum(dim=-1, keepdim=True)
        return q, q.detach()



class Nets(jit.ScriptModule):
    def __init__(self, state_dim, action_dim, h_dim, max_action, device):
        super(Nets, self).__init__()

        self.online = ActorCritic(state_dim, action_dim, h_dim, max_action=max_action).to(device)
        self.target = ActorCritic(state_dim, action_dim, h_dim, max_action=max_action).to(device)
        self.target.load_state_dict(self.online.state_dict())

        self.rehse = ReHSE()
        self.rehae = ReHAE()
        self.sw = Swaddling()
        self.tau = 0.005
        self.tau_ = 1.0 - self.tau
        self.alpha = (math.sqrt(5)-1)/2
        self.alpha_= 1.0 - self.alpha
        self.q_next_ema = torch.zeros(1, device=device)


    @torch.no_grad()
    def tau_update(self):
        for target_param, param in zip(self.target.qnets.parameters(), self.online.qnets.parameters()):
            target_param.data.copy_(self.tau_*target_param.data + self.tau*param.data) 


    @jit.script_method
    def forward(self, state, action, reward, next_state, not_done_gamma):

        next_action, next_scale, next_beta = self.online.actor(next_state)
        q_next_target, q_next_target_value = self.target.critic_soft(next_state, next_action)
        q_target = reward + not_done_gamma * q_next_target_value
        q_pred = self.online.critic(state, action)

        q_next_ema = self.alpha * self.q_next_ema + self.alpha_ * q_next_target_value
        nets_loss = -self.rehae((q_next_target - q_next_ema)/q_next_ema.abs()) + self.rehse(q_pred-q_target) + self.sw(next_scale, next_beta) 
        self.q_next_ema = q_next_ema.mean()

        return nets_loss, next_scale.detach()



# Define the algorithm
class Symphony(object):
    def __init__(self, capacity, state_dim, action_dim, h_dim, device, max_action, learning_rate=3e-4):

        self.state_dim = state_dim
        self.action_dim = action_dim
        self.device = device


        self.replay_buffer = ReplayBuffer(capacity, state_dim, action_dim, device)
        self.nets = Nets(state_dim, action_dim, h_dim, max_action, device)
        self.nets_optimizer = Adam(self.nets.online.parameters(), lr=learning_rate)
        self.batch_size = self.nets.online.q_dist


    def select_action(self, state, action = True, noise=True):
        state = torch.tensor(state, dtype=torch.float32, device=self.device).reshape(-1,self.state_dim)
        with torch.no_grad(): action = self.nets.online.actor(state, action, noise)[0]
        return action.cpu().data.numpy().flatten()

    """

    def select_action(self, state,  action = True, noise=True):

        with torch.no_grad(): return self.nets.online.actor(state, action, noise)[0]

    """



    def train(self):

        torch.manual_seed(random.randint(0,2**32-1))

        state, action, reward, next_state, not_done_gamma = self.replay_buffer.sample(self.batch_size)
        self.nets_optimizer.zero_grad(set_to_none=True)
        
        nets_loss, scale = self.nets(state, action, reward, next_state, not_done_gamma)

        nets_loss.backward()
        self.nets_optimizer.step()
        self.nets.tau_update()

        return scale






class ReplayBuffer:
    def __init__(self, capacity, state_dim, action_dim, device):

        self.capacity, self.length, self.device = capacity, 0, device

        self.states = torch.zeros((self.capacity, state_dim), dtype=torch.float32, device=device)
        self.actions = torch.zeros((self.capacity, action_dim), dtype=torch.float32, device=device)
        self.rewards = torch.zeros((self.capacity, 1), dtype=torch.float32, device=device)
        self.next_states = torch.zeros((self.capacity, state_dim), dtype=torch.float32, device=device)
        self.not_dones_gamma = torch.zeros((self.capacity, 1), dtype=torch.float32, device=device)

        self.norm = 1.0


    def add(self, state, action, reward, next_state, done):

        if self.length<self.capacity: self.length += 1

        idx = self.length-1

        self.states[idx,:] = torch.tensor(state, dtype=torch.float32, device=self.device)
        self.actions[idx,:] = torch.tensor(action, dtype=torch.float32, device=self.device)
        self.rewards[idx,:] = torch.tensor([reward/self.norm], dtype=torch.float32, device=self.device)
        self.next_states[idx,:] = torch.tensor(next_state, dtype=torch.float32, device=self.device)
        self.not_dones_gamma[idx,:] = torch.tensor([0.99 * (1.0 - float(done))], dtype=torch.float32, device=self.device)

        if self.length>=self.capacity:
            shift = 2 if self.not_dones_gamma[0,:].item() == 0.0 else 1
            self.states = torch.roll(self.states, shifts=-shift, dims=0)
            self.actions = torch.roll(self.actions, shifts=-shift, dims=0)
            self.rewards = torch.roll(self.rewards, shifts=-shift, dims=0)
            self.next_states = torch.roll(self.next_states, shifts=-shift, dims=0)
            self.not_dones_gamma = torch.roll(self.not_dones_gamma, shifts=-shift, dims=0)



    def sample(self, batch_size):

        indices = torch.multinomial(self.probs, num_samples=batch_size, replacement=True)

        return (
            self.states[indices],
            self.actions[indices],
            self.rewards[indices],
            self.next_states[indices],
            self.not_dones_gamma[indices]
        )


    def __len__(self):
        return self.length
    

    #==============================================================
    #==============================================================
    #===========================HELPERS============================
    #==============================================================
    #==============================================================

    def norm_fill(self, times:int):


        print("copying replay data, current length", self.length)

        self.states = self.states[:self.length].repeat(times, 1)
        self.actions = self.actions[:self.length].repeat(times, 1)
        self.rewards = self.rewards[:self.length].repeat(times, 1)
        self.next_states = self.next_states[:self.length].repeat(times, 1)
        self.not_dones_gamma = self.not_dones_gamma[:self.length].repeat(times, 1)

        self.norm = torch.mean(torch.abs(self.rewards)).item()

        self.rewards /= self.norm

        self.length = times*self.length

        norm_index = torch.arange(0, self.length, 1)/self.length
        weights = torch.tanh((math.pi*norm_index)**math.e)
        self.probs =  weights/torch.sum(weights)

        print("new replay buffer length: ", self.length)