File size: 48,065 Bytes
0529935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
{
  "dataset_name": "Mu-Math",
  "group_index": 0,
  "source_file": "/hkfs/work/workspace/scratch/tum_fmp0582-dndworkspace/自己训练lora/prepare/data/math/Mu-Math.json",
  "selected_indices": [
    0,
    34,
    53,
    63,
    73,
    87,
    88,
    89,
    94,
    96,
    104,
    110,
    114,
    137,
    144,
    148,
    171,
    175,
    178,
    185,
    187,
    190,
    196,
    204,
    208,
    220,
    221,
    242,
    278,
    284,
    292,
    295,
    298,
    311,
    331,
    351,
    352,
    364,
    373,
    374,
    387,
    389,
    396,
    398,
    403,
    405,
    413,
    469,
    475,
    512,
    516,
    525,
    527,
    535,
    548,
    555,
    578,
    614,
    620,
    637,
    655,
    691,
    697,
    699,
    727,
    732,
    734,
    737,
    739,
    741,
    765,
    782,
    793,
    807,
    814,
    816,
    826,
    828,
    848,
    866,
    872,
    885,
    901,
    903,
    906,
    917,
    939,
    940,
    946,
    975,
    1001,
    1010,
    1025,
    1028,
    1053,
    1060,
    1063,
    1069,
    1070,
    1082
  ],
  "total_records": 1084,
  "sample_count": 100,
  "generated_at": "2025-11-05T12:58:28Z",
  "seed": 4171135963,
  "samples": [
    {
      "prompt": "Evaluate the integral by choosing the order of integration: $\\int_{0}^1{\\int_{1}^2{\\left(\\frac{ y }{ x+y^2 }\\right) d y} d x}$.",
      "response": "$\\int_{0}^1{\\int_{1}^2{\\left(\\frac{ y }{ x+y^2 }\\right) d y} d x}$ =$\\ln\\left(\\frac{25\\cdot\\sqrt{5}}{32}\\right)$",
      "system": ""
    },
    {
      "prompt": "Determine the intervals of upward concavity and downward concavity for the function $f(x)=e^x \\cdot \\left(x^2-1\\right)$.",
      "response": "1. Interval(s) of upward concavity: $\\left(\\frac{2\\cdot\\sqrt{3}-4}{2},\\infty\\right), \\left(-\\infty,-\\frac{4+2\\cdot\\sqrt{3}}{2}\\right)$\n2. Interval(s) of downward concavity: $\\left(-\\frac{4+2\\cdot\\sqrt{3}}{2},\\frac{2\\cdot\\sqrt{3}-4}{2}\\right)$",
      "system": ""
    },
    {
      "prompt": "Solve $3 \\cdot \\sin(x)+4 \\cdot \\cos(x)=5$.",
      "response": "This is the final answer to the problem: $x=-\\arcsin\\left(\\frac{4}{5}\\right)+\\frac{\\pi}{2}+2\\cdot\\pi\\cdot n$  ",
      "system": ""
    },
    {
      "prompt": "$f(x)=x+\\sin(2 \\cdot x)$ over  $x$= $\\left[-\\frac{ \\pi }{ 2 },\\frac{ \\pi }{ 2 }\\right]$. \n\nDetermine:\n1. intervals where  $f$ is increasing\n2. intervals where  $f$ is decreasing\n3. local minima  of  $f$\n4. local maxima of  $f$\n5. intervals where  $f$ is concave up\n6. intervals where  $f$ is concave down\n7. the inflection points of  $f$",
      "response": "1. intervals where  $f$  is increasing :  $\\left(-\\frac{\\pi}{3},\\frac{\\pi}{3}\\right)$\n2. intervals where  $f$  is decreasing:  $\\left(\\frac{\\pi}{3},\\frac{\\pi}{2}\\right), \\left(-\\frac{\\pi}{2},-\\frac{\\pi}{3}\\right)$\n3. local minima of  $f$:  $-\\frac{\\pi}{3}$\n4. local maxima of  $f$:  $\\frac{\\pi}{3}$\n5. intervals where  $f$ is concave up :  $\\left(-\\frac{\\pi}{2},0\\right)$\n6. intervals where  $f$ is concave down:  $\\left(0,\\frac{\\pi}{2}\\right)$\n7. the inflection points of  $f$:  $0$",
      "system": ""
    },
    {
      "prompt": "Determine the equation of the hyperbola using the information given: Endpoints of the conjugate axis located at $(3,2)$, $(3,4)$ and focus located at $(7,3)$.",
      "response": "The equation is: $\\frac{(x-3)^2}{15}-\\frac{(y-3)^2}{1}=1$",
      "system": ""
    },
    {
      "prompt": "Compute the derivative of the function $y=\\arcsin\\left(\\sqrt{1-9 \\cdot x^2}\\right)$.",
      "response": "$y'$= $-\\frac{3\\cdot x}{\\sqrt{1-9\\cdot x^2}\\cdot|x|}$",
      "system": ""
    },
    {
      "prompt": "Let $R$ be the region bounded by the graphs of $y=\\ln(x)$ and $y=x-5$. Write, but do not evaluate, an integral expression for the volume of the solid generated when $R$ is rotated around the $y$-axis.",
      "response": "$V$ = $\\pi\\cdot\\int_b^d\\left((y+5)^2-\\left(e^y\\right)^2\\right)dy$",
      "system": ""
    },
    {
      "prompt": "Let $R$ be the region bounded by the graphs of $y=\\ln(x)$ and $y=x-5$. Write, but do not evaluate, an integral expression for the volume of the solid generated when $R$ is rotated around the $y$-axis.",
      "response": "$V$ = $\\pi\\cdot\\int_b^d\\left((y+5)^2-\\left(e^y\\right)^2\\right)dy$",
      "system": ""
    },
    {
      "prompt": "Consider the differential equation $\\frac{ d y }{d x}=\\frac{ 4+y }{ x }$. Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(3)=-3$.",
      "response": "$y$ = $\\frac{|x|}{3}-4$",
      "system": ""
    },
    {
      "prompt": "Determine a definite integral that represents the region enclosed by one petal of $r=\\cos\\left(3 \\cdot \\theta\\right)$ .",
      "response": "This is the final answer to the problem:$\\int_0^{\\frac{\\pi}{6}}\\cos\\left(3\\cdot\\theta\\right)^2d\\theta$ = $\\frac{\\pi}{12}$  ",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\frac{ -9 \\cdot \\sqrt[3]{x} }{ 9 \\cdot \\sqrt[3]{x^2}+3 \\cdot \\sqrt{x} } d x}$.",
      "response": "$\\int{\\frac{ -9 \\cdot \\sqrt[3]{x} }{ 9 \\cdot \\sqrt[3]{x^2}+3 \\cdot \\sqrt{x} } d x}$ =$-\\left(C+\\frac{1}{3}\\cdot\\sqrt[6]{x}^2+\\frac{2}{27}\\cdot\\ln\\left(\\frac{1}{3}\\cdot\\left|1+3\\cdot\\sqrt[6]{x}\\right|\\right)+\\frac{3}{2}\\cdot\\sqrt[6]{x}^4-\\frac{2}{3}\\cdot\\sqrt[6]{x}^3-\\frac{2}{9}\\cdot\\sqrt[6]{x}\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ 6 }{ \\sin(3 \\cdot x)^6 } d x}$.",
      "response": "$\\int{\\frac{ 6 }{ \\sin(3 \\cdot x)^6 } d x}$ =$-\\frac{2\\cdot\\cos(3\\cdot x)}{5\\cdot\\sin(3\\cdot x)^5}+\\frac{24}{5}\\cdot\\left(-\\frac{\\cos(3\\cdot x)}{9\\cdot\\sin(3\\cdot x)^3}-\\frac{2}{9}\\cdot\\cot(3\\cdot x)\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier integral of the function $q(x)=\\begin{cases} 0, & x<0 \\\\ 2 \\cdot \\pi \\cdot x, & 0 \\le x \\le 1 \\\\ 0, & x>1 \\end{cases}$.",
      "response": "$q(x)$ = $\\int_0^\\infty\\left(\\frac{2\\cdot\\left(\\alpha\\cdot\\sin\\left(\\alpha\\right)+\\cos\\left(\\alpha\\right)-1\\right)\\cdot\\cos\\left(\\alpha\\cdot x\\right)+2\\cdot\\left(\\sin\\left(\\alpha\\right)-\\alpha\\cdot\\cos\\left(\\alpha\\right)\\right)\\cdot\\sin\\left(\\alpha\\cdot x\\right)}{\\alpha^2}\\right)d\\alpha$",
      "system": ""
    },
    {
      "prompt": "Solve the following series via differentiation of the geomtric series  \n\n$\\sum_{n=0}^\\infty\\left(x^n\\right)=\\frac{ 1 }{ 1-x }$,$|x|<1$\n\n1. $\\sum_{n=1}^\\infty\\left(\\frac{ n }{ 6^{n-1} }\\right)$\n2. $\\sum_{n=2}^\\infty\\left(\\frac{ n }{ 3^{n-1} }\\right)$\n3. $\\sum_{n=3}^\\infty\\left(\\frac{ n }{ 2^{n+1} }\\right)$\n4. $\\sum_{n=2}^\\infty\\left(\\frac{ n+1 }{ 5^n }\\right)$\n5. $\\sum_{n=2}^\\infty\\left(\\frac{ n \\cdot (n-1) }{ 4^n }\\right)$\n6. $\\sum_{n=2}^\\infty\\left(\\frac{ n^2 }{ 4^n }\\right)$",
      "response": "1. $\\frac{36}{25}$\n2. $\\frac{5}{4}$\n3. $\\frac{1}{2}$\n4. $\\frac{13}{80}$\n5. $\\frac{8}{27}$\n6. $\\frac{53}{108}$",
      "system": ""
    },
    {
      "prompt": "Find the derivative of the function $y=\\arcsin\\left(\\frac{ a }{ x }\\right)-\\arctan\\left(\\frac{ x }{ a }\\right)$.",
      "response": "This is the final answer to the problem: $-\\frac{a}{a^2+x^2}-\\frac{a}{|x|\\cdot\\sqrt{x^2-a^2}}$",
      "system": ""
    },
    {
      "prompt": "Let $R$ be the region in the first quadrant bounded by the graph of $y=3 \\cdot \\arctan(x)$ and the lines $x=\\pi$ and $y=1$.\n\nFind the volume of the solid generated when $R$ is revolved about the line $x=\\pi$.",
      "response": "The volume of the solid is $36.736$ units³.",
      "system": ""
    },
    {
      "prompt": "Make full curve sketching of $f(x)=\\frac{ 3 \\cdot x^3 }{ 3 \\cdot x^2-4 }$.  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptote(s)\n3. Horizontal asymptote(s)\n4. Slant asymptote(s)\n5. Interval(s) where the function is increasing\n6. Interval(s) where the function is decreasing\n7. Interval(s) where the function is concave up\n8. Interval(s) where the function is concave down\n9. Point(s) of inflection",
      "response": "This is the final answer to the problem:\n\n1. The domain (in interval notation) $\\left(-1\\cdot\\infty,-2\\cdot3^{-1\\cdot2^{-1}}\\right)\\cup\\left(-2\\cdot3^{-1\\cdot2^{-1}},2\\cdot3^{-1\\cdot2^{-1}}\\right)\\cup\\left(2\\cdot3^{-1\\cdot2^{-1}},\\infty\\right)$\n2. Vertical asymptote(s) $x=-\\frac{2}{\\sqrt{3}}, x=\\frac{2}{\\sqrt{3}}$\n3. Horizontal asymptote(s) None\n4. Slant asymptote(s) $y=x$\n5. Interval(s) where the function is increasing $(2,\\infty), (-\\infty,-2)$\n6. Interval(s) where the function is decreasing $\\left(0,\\frac{2}{\\sqrt{3}}\\right), \\left(-\\frac{2}{\\sqrt{3}},0\\right), \\left(-2,-\\frac{2}{\\sqrt{3}}\\right), \\left(\\frac{2}{\\sqrt{3}},2\\right)$\n7. Interval(s) where the function is concave up $\\left(\\frac{2}{\\sqrt{3}},\\infty\\right), \\left(-\\frac{2}{\\sqrt{3}},0\\right)$\n8. Interval(s) where the function is concave down $\\left(0,\\frac{2}{\\sqrt{3}}\\right), \\left(-\\infty,-\\frac{2}{\\sqrt{3}}\\right)$\n9. Point(s) of inflection $P(0,0)$",
      "system": ""
    },
    {
      "prompt": "Find the first derivative of the function: $y=(x+11)^5 \\cdot (3 \\cdot x-7)^4 \\cdot (x-12) \\cdot (x+4)$.",
      "response": "$y'$ =$\\left(\\frac{5}{x+11}+\\frac{12}{3\\cdot x-7}+\\frac{1}{x-12}+\\frac{1}{x+4}\\right)\\cdot(x+11)^5\\cdot(3\\cdot x-7)^4\\cdot(x-12)\\cdot(x+4)$",
      "system": ""
    },
    {
      "prompt": "Find the directional derivative of $f(x,y,z)=x^2+y \\cdot z$ at $P(1,-3,2)$ in the direction of increasing $t$ along the path\n\n$\\vec{r}(t)=t^2 \\cdot \\vec{i}+3 \\cdot t \\cdot \\vec{j}+\\left(1-t^3\\right) \\cdot \\vec{k}$.",
      "response": "$f_{u}(P)$=$\\frac{11}{\\sqrt{22}}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{x^{-4} \\cdot \\left(3+x^2\\right)^{\\frac{ 1 }{ 2 }} d x}$.",
      "response": "$\\int{x^{-4} \\cdot \\left(3+x^2\\right)^{\\frac{ 1 }{ 2 }} d x}$ =$C-\\frac{1}{9}\\cdot\\left(1+\\frac{3}{x^2}\\right)\\cdot\\sqrt{1+\\frac{3}{x^2}}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{x^{-4} \\cdot \\left(3+x^2\\right)^{\\frac{ 1 }{ 2 }} d x}$.",
      "response": "$\\int{x^{-4} \\cdot \\left(3+x^2\\right)^{\\frac{ 1 }{ 2 }} d x}$ =$C-\\frac{1}{9}\\cdot\\left(1+\\frac{3}{x^2}\\right)\\cdot\\sqrt{1+\\frac{3}{x^2}}$",
      "system": ""
    },
    {
      "prompt": "Find a normal vector and a tangent vector for $2 \\cdot x^3-x^2 \\cdot y^2=3 \\cdot x-y-7$  at point $P$ : $(1,-2)$",
      "response": "Normal vector:$\\vec{N}=\\vec{i}-\\vec{j}$Tangent vector: $\\vec{T}=\\vec{i}+\\vec{j}$",
      "system": ""
    },
    {
      "prompt": "Find the extrema of a function $y=\\frac{ 2 \\cdot x^4 }{ 4 }-\\frac{ x^3 }{ 3 }-\\frac{ 3 \\cdot x^2 }{ 2 }+2$. Then determine the largest and smallest value of the function when $-2 \\le x \\le 4$.",
      "response": "This is the final answer to the problem: \n\n1. Extrema points: $P\\left(\\frac{3}{2},\\frac{1}{32}\\right), P\\left(-1,\\frac{4}{3}\\right), P(0,2)$\n2. The largest value: $\\frac{254}{3}$\n3. The smallest value: $\\frac{1}{32}$",
      "system": ""
    },
    {
      "prompt": "Use the method of Lagrange multipliers to maximize $U(x,y)=8 \\cdot x^{\\frac{ 4 }{ 5 }} \\cdot y^{\\frac{ 1 }{ 5 }}$; $4 \\cdot x+2 \\cdot y=12$.",
      "response": "Answer: maximum $16.715$ at $P(2.4,1.2)$",
      "system": ""
    },
    {
      "prompt": "Find $\\frac{ d y }{d x}$  for $y=x \\cdot \\arccsc(x)$.",
      "response": "$\\frac{ d y }{d x}$= $-\\frac{x}{|x|\\cdot\\sqrt{x^2-1}}+\\arccsc(x)$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier integral of the function $q(x)=\\begin{cases} 0, & x<0 \\\\ \\pi \\cdot x, & 0 \\le x \\le 1 \\\\ 0, & x>1 \\end{cases}$.",
      "response": "$q(x)$ = $\\int_0^\\infty\\left(\\frac{\\left(\\alpha\\cdot\\sin\\left(\\alpha\\right)+\\cos\\left(\\alpha\\right)-1\\right)\\cdot\\cos\\left(\\alpha\\cdot x\\right)+\\left(\\sin\\left(\\alpha\\right)-\\alpha\\cdot\\cos\\left(\\alpha\\right)\\right)\\cdot\\sin\\left(\\alpha\\cdot x\\right)}{\\alpha^2}\\right)d\\alpha$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier integral of the function $q(x)=\\begin{cases} 0, & x<0 \\\\ \\pi \\cdot x, & 0 \\le x \\le 1 \\\\ 0, & x>1 \\end{cases}$.",
      "response": "$q(x)$ = $\\int_0^\\infty\\left(\\frac{\\left(\\alpha\\cdot\\sin\\left(\\alpha\\right)+\\cos\\left(\\alpha\\right)-1\\right)\\cdot\\cos\\left(\\alpha\\cdot x\\right)+\\left(\\sin\\left(\\alpha\\right)-\\alpha\\cdot\\cos\\left(\\alpha\\right)\\right)\\cdot\\sin\\left(\\alpha\\cdot x\\right)}{\\alpha^2}\\right)d\\alpha$",
      "system": ""
    },
    {
      "prompt": "Given $y=x^6-\\frac{ 9 }{ 2 } \\cdot x^5+\\frac{ 15 }{ 2 } \\cdot x^4-5 \\cdot x^3+10$ find where the function is concave up, down, and point(s) of inflection.",
      "response": "Concave up:$(1,\\infty), (-\\infty,0)$Concave down:$(0,1)$Point(s) of Inflection:$P(1,9), P(0,10)$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series of the function $u=\\left|\\sin(x)\\right|$ in the interval $[-\\pi,\\pi]$.",
      "response": "The Fourier series is: $\\frac{2}{\\pi}-\\frac{4}{\\pi}\\cdot\\left(\\frac{\\cos(2\\cdot x)}{1\\cdot3}+\\frac{\\cos(4\\cdot x)}{3\\cdot5}+\\frac{\\cos(6\\cdot x)}{5\\cdot7}+\\cdots\\right)$",
      "system": ""
    },
    {
      "prompt": "Solve the following equations: 1. $-10 c=-80$\n2. $n-(-6)=12$\n3. $-82+x=-20$\n4. $-\\frac{ r }{ 2 }=5$\n5. $r-3.4=7.1$\n6. $\\frac{ g }{ 2.5 }=1.8$\n7. $4.8 m=43.2$\n8. $\\frac{ 3 }{ 4 } t=\\frac{ 9 }{ 20 }$\n9. $3\\frac{2}{3}+m=5\\frac{1}{6}$",
      "response": "The solutions to the given equations are:  \n1. $c=8$\n2. $n=6$\n3. $x=62$\n4. $r=-10$\n5. $r=10.5$\n6. $g=\\frac{ 9 }{ 2 }$\n7. $m=9$\n8. $t=\\frac{3}{5}$\n9. $m=\\frac{3}{2}$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=\\frac{ x^3 }{ 3 \\cdot (x+2)^2 }$.  \n\nProvide the following:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $(-1\\cdot\\infty,-2)\\cup(-2,\\infty)$\n2. Vertical asymptotes: $x=-2$\n3. Horizontal asymptotes: None\n4. Slant asymptotes: $y=\\frac{x}{3}-\\frac{4}{3}$\n5. Intervals where the function is increasing: $(0,\\infty), (-2,0), (-\\infty,-6)$\n6. Intervals where the function is decreasing: $(-6,-2)$\n7. Intervals where the function is concave up: $(0,\\infty)$\n8. Intervals where the function is concave down: $(-2,0), (-\\infty,-2)$\n9. Points of inflection: $P(0,0)$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=\\frac{ x^3 }{ 3 \\cdot (x+2)^2 }$.  \n\nProvide the following:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $(-1\\cdot\\infty,-2)\\cup(-2,\\infty)$\n2. Vertical asymptotes: $x=-2$\n3. Horizontal asymptotes: None\n4. Slant asymptotes: $y=\\frac{x}{3}-\\frac{4}{3}$\n5. Intervals where the function is increasing: $(0,\\infty), (-2,0), (-\\infty,-6)$\n6. Intervals where the function is decreasing: $(-6,-2)$\n7. Intervals where the function is concave up: $(0,\\infty)$\n8. Intervals where the function is concave down: $(-2,0), (-\\infty,-2)$\n9. Points of inflection: $P(0,0)$",
      "system": ""
    },
    {
      "prompt": "Find the radius of convergence and sum of the series:  $\\frac{ 2 }{ 4 }+\\frac{ 2 \\cdot x }{ 1 \\cdot 5 }+\\frac{ 2 \\cdot (x)^2 }{ 1 \\cdot 2 \\cdot 6 }+\\cdots+\\frac{ 2 \\cdot (x)^n }{ \\left(n!\\right) \\cdot (n+4) }+\\cdots$ .",
      "response": "This is the final answer to the problem: 1. Radius of convergence:$R=\\infty$\n2. Sum: $f(x)=\\begin{cases}\\frac{12}{x^4}+\\frac{\\left(x\\cdot\\left(16\\cdot x\\cdot e^x-16\\cdot e^x\\right)-8\\cdot e^x\\cdot x^3\\right)\\cdot x^3+\\left(4\\cdot e^x+2\\cdot e^x\\cdot x^2+2\\cdot e^x\\cdot x^3-4\\cdot x\\cdot e^x\\right)\\cdot x^4}{x^8},&x\\ne0\\\\\\frac{1}{2},&x=0\\end{cases}$",
      "system": ""
    },
    {
      "prompt": "Evaluate the integral: $I=\\int{\\left(x^3+3\\right) \\cdot \\cos(2 \\cdot x) d x}$.",
      "response": "This is the final answer to the problem: $\\frac{1}{256}\\cdot\\left(384\\cdot\\sin(2\\cdot x)+128\\cdot x^3\\cdot\\sin(2\\cdot x)+192\\cdot x^2\\cdot\\cos(2\\cdot x)-96\\cdot\\cos(2\\cdot x)-256\\cdot C-192\\cdot x\\cdot\\sin(2\\cdot x)\\right)$",
      "system": ""
    },
    {
      "prompt": "Solve the following system of equations:\n\n$\\sin(x) \\cdot \\sin(y)=\\frac{ \\sqrt{3} }{ 4 }$  \n\n$\\cos(x) \\cdot \\cos(y)=\\frac{ \\sqrt{3} }{ 4 }$",
      "response": "This is the final answer to the problem: $x=\\frac{\\pi}{6}+\\frac{\\pi}{2}\\cdot(2\\cdot n+k)$ and $y=\\frac{\\pi}{3}+\\frac{\\pi}{2}\\cdot(k-2\\cdot n)$ or $x=\\frac{\\pi}{3}+\\frac{\\pi}{2}\\cdot(2\\cdot n+k)$ and $y=\\frac{\\pi}{6}+\\frac{\\pi}{2}\\cdot(k-2\\cdot n)$, where $k$ and $n$ are integers ",
      "system": ""
    },
    {
      "prompt": "Find the second derivative $\\frac{d ^2y}{ d x^2}$ of the function $x=5 \\cdot \\left(\\cos(t)\\right)^3$, $y=6 \\cdot \\left(\\sin(3 \\cdot t)\\right)^3$.",
      "response": "$\\frac{d ^2y}{ d x^2}$=$\\frac{-15\\cdot\\left(\\cos(t)\\right)^2\\cdot\\sin(t)\\cdot\\left(324\\cdot\\sin(3\\cdot t)-486\\cdot\\left(\\sin(3\\cdot t)\\right)^3\\right)-\\left(30\\cdot\\cos(t)-45\\cdot\\left(\\cos(t)\\right)^3\\right)\\cdot54\\cdot\\left(\\sin(3\\cdot t)\\right)^2\\cdot\\cos(3\\cdot t)}{\\left(-15\\cdot\\left(\\cos(t)\\right)^2\\cdot\\sin(t)\\right)^3}$",
      "system": ""
    },
    {
      "prompt": "Solve $\\sin(x)+7 \\cdot \\cos(x)+7=0$.",
      "response": "This is the final answer to the problem: $x=2\\cdot\\pi\\cdot k-2\\cdot\\arctan(7) \\lor x=\\pi+2\\cdot\\pi\\cdot k$",
      "system": ""
    },
    {
      "prompt": "The velocity of a bullet from a rifle can be approximated by  $v(t)=6400 \\cdot t^2-6505 \\cdot t+2686$ where  $t$ is seconds after the shot and  $v$ is the velocity measured in feet per second. This equation only models the velocity for the first half- second after the shot:  $0 \\le t \\le 0.5$ What is the total distance the bullet travels in  $0.5$ sec?",
      "response": "The total distance is:$796.54166667$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series of the periodic function $f(x)=\\frac{ x^2 }{ 2 }$ in the interval $-2 \\cdot \\pi \\le x<2 \\cdot \\pi$  if $f(x)=f(x+4 \\cdot \\pi)$.",
      "response": "The Fourier series is: $\\frac{2\\cdot\\pi^2}{3}+\\sum_{n=1}^\\infty\\left(\\frac{8\\cdot(-1)^n}{n^2}\\cdot\\cos\\left(\\frac{n\\cdot x}{2}\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series of the periodic function $f(x)=\\frac{ x^2 }{ 2 }$ in the interval $-2 \\cdot \\pi \\le x<2 \\cdot \\pi$  if $f(x)=f(x+4 \\cdot \\pi)$.",
      "response": "The Fourier series is: $\\frac{2\\cdot\\pi^2}{3}+\\sum_{n=1}^\\infty\\left(\\frac{8\\cdot(-1)^n}{n^2}\\cdot\\cos\\left(\\frac{n\\cdot x}{2}\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ 1 }{ 2 \\cdot \\sin\\left(\\frac{ x }{ 2 }\\right)^6 } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ 2 \\cdot \\sin\\left(\\frac{ x }{ 2 }\\right)^6 } d x}$ =$C-\\frac{1}{5}\\cdot\\left(\\cot\\left(\\frac{x}{2}\\right)\\right)^5-\\frac{2}{3}\\cdot\\left(\\cot\\left(\\frac{x}{2}\\right)\\right)^3-\\cot\\left(\\frac{x}{2}\\right)$",
      "system": ""
    },
    {
      "prompt": "|$n$  \n\n$\\ln(n)$  \n\n|  |\n| 1 | 0.00 |\n| 2 | 0.69 |\n| 3 | 1.10 |\n| 4 | 1.39 |\n| 5 | 1.61 |\n| 6 | 1.79 |\n| 7 | 1.95 |\n| 8 | 2.08 |\n| 9 | 2.20 |\n| 10 | 2.30 |\n\n  \n  \nUsing the table above, estimate the logarithm.1. $\\ln(16)$\n2. $\\ln\\left(3^4\\right)$\n3. $\\ln(2.5)$\n4. $\\ln\\left(\\sqrt{630}\\right)$\n5. $\\ln(0.4)$",
      "response": "1. $\\ln(16)$≈$2.78$\n2. $\\ln\\left(3^4\\right)$≈$4.4$\n3. $\\ln(2.5)$≈$0.92$\n4. $\\ln\\left(\\sqrt{630}\\right)$≈$3.2228$\n5. $\\ln(0.4)$≈$-0.92$",
      "system": ""
    },
    {
      "prompt": "Solve the following problems by integration of the geometric series:\n\n$\\sum_{n=0}^\\infty\\left(x^n\\right)=\\frac{ 1 }{ 1-x }$, $|x|<1$\n\n1. $\\sum_{n=0}^\\infty\\left(\\frac{ 1 }{ (n+1) \\cdot 2^{n+1} }\\right)$\n2. $\\sum_{n=2}^\\infty\\left(\\frac{ 1 }{ n \\cdot 5^{n+1} }\\right)$\n3. $\\sum_{n=1}^\\infty\\left(\\frac{ 1 }{ n \\cdot 6^{n+3} }\\right)$\n4. $\\sum_{n=0}^\\infty\\left(\\frac{ 1 }{ (n+1) \\cdot (n+2) \\cdot 4^{n+2} }\\right)$\n5. $\\sum_{n=3}^\\infty\\left(\\frac{ 1 }{ n \\cdot (n+1) \\cdot 4^{n+3} }\\right)$",
      "response": "1. $\\ln(2)$\n2. $\\frac{1}{5}\\cdot\\ln\\left(\\frac{5}{4}\\right)-\\frac{1}{25}$\n3. $\\frac{1}{216}\\cdot\\ln\\left(\\frac{6}{5}\\right)$\n4. $\\frac{ 3 }{ 4 } \\cdot \\ln\\left(\\frac{ 3 }{ 4 }\\right)+\\frac{ 1 }{ 4 }$\n5. $\\frac{3}{64}\\cdot\\ln\\left(\\frac{3}{4}\\right)+\\frac{83}{6144}$",
      "system": ""
    },
    {
      "prompt": "Solve the following problems by integration of the geometric series:\n\n$\\sum_{n=0}^\\infty\\left(x^n\\right)=\\frac{ 1 }{ 1-x }$, $|x|<1$\n\n1. $\\sum_{n=0}^\\infty\\left(\\frac{ 1 }{ (n+1) \\cdot 2^{n+1} }\\right)$\n2. $\\sum_{n=2}^\\infty\\left(\\frac{ 1 }{ n \\cdot 5^{n+1} }\\right)$\n3. $\\sum_{n=1}^\\infty\\left(\\frac{ 1 }{ n \\cdot 6^{n+3} }\\right)$\n4. $\\sum_{n=0}^\\infty\\left(\\frac{ 1 }{ (n+1) \\cdot (n+2) \\cdot 4^{n+2} }\\right)$\n5. $\\sum_{n=3}^\\infty\\left(\\frac{ 1 }{ n \\cdot (n+1) \\cdot 4^{n+3} }\\right)$",
      "response": "1. $\\ln(2)$\n2. $\\frac{1}{5}\\cdot\\ln\\left(\\frac{5}{4}\\right)-\\frac{1}{25}$\n3. $\\frac{1}{216}\\cdot\\ln\\left(\\frac{6}{5}\\right)$\n4. $\\frac{ 3 }{ 4 } \\cdot \\ln\\left(\\frac{ 3 }{ 4 }\\right)+\\frac{ 1 }{ 4 }$\n5. $\\frac{3}{64}\\cdot\\ln\\left(\\frac{3}{4}\\right)+\\frac{83}{6144}$",
      "system": ""
    },
    {
      "prompt": "Given functions $p(x)=\\frac{ 1 }{ \\sqrt{x} }$ and $m(x)=x^2-4$,\nstate the domain of each of the following functions\nusing interval notation:\n\n1. $\\frac{ p(x) }{ m(x) }$\n2. $p\\left(m(x)\\right)$\n3. $m\\left(p(x)\\right)$",
      "response": "1. Domain of $\\frac{ p(x) }{ m(x) }$: $(0,2)\\cup(2,\\infty)$\n2. Domain of $p\\left(m(x)\\right)$: $(-\\infty,-2)\\cup(2,\\infty)$\n3. Domain of $m\\left(p(x)\\right)$: $(0,\\infty)$",
      "system": ""
    },
    {
      "prompt": "Using the series expansion for the function $(1+x)^m$ calculate approximately $\\sqrt[3]{29}$ with accuracy 0.0001.",
      "response": "This is the final answer to the problem: $3.0723$",
      "system": ""
    },
    {
      "prompt": "Write the Taylor series for the function $f(x)=x \\cdot \\cos(2 \\cdot x)$ at the point $x=\\frac{ \\pi }{ 2 }$ up to the third term (zero or non-zero).",
      "response": "This is the final answer to the problem: $-\\frac{\\pi}{2}-\\left(x-\\frac{\\pi}{2}\\right)+\\pi\\cdot\\left(x-\\frac{\\pi}{2}\\right)^2$",
      "system": ""
    },
    {
      "prompt": "Find the sum of the $\\sum_{n=0}^\\infty\\left(\\frac{ (-1)^n }{ (2 \\cdot n+1)! }\\right)$ with estimate error $0.01$.",
      "response": "This is the final answer to the problem: $\\frac{101}{120}$",
      "system": ""
    },
    {
      "prompt": "For the function  $f(x)=x^{11}-6 \\cdot x^{10}$, determine:\n\n1. Intervals where:\n1. $f$ is increasing\n2. $f$ is decreasing\n3. $f$ is concave up\n4. $f$ is concave down\n\n3. find:\n1. local minima\n2. local maxima\n3. the inflection points of $f$",
      "response": "This is the final answer to the problem:1. Intervals where:\n1. $f$ is increasing: $\\left(\\frac{60}{11},\\infty\\right), (-\\infty,0)$\n2. $f$ is decreasing: $\\left(0,\\frac{60}{11}\\right)$\n3. $f$ is concave up: $\\left(\\frac{54}{11},\\infty\\right)$\n4. $f$ is concave down: $\\left(0,\\frac{54}{11}\\right), (-\\infty,0)$\n\n3. find:\n1. local minima: $\\frac{60}{11}$\n2. local maxima: $0$\n3. the inflection points of $f$: $P\\left(\\frac{54}{11},-\\frac{2529990231179046912}{285311670611}\\right)$",
      "system": ""
    },
    {
      "prompt": "A town has an initial population of $80\\ 000$. It grows at a constant rate of $2200$ per year for $5$ years. The linear function that models the town’s population P as a function of the year is: $P(t)=80\\ 000+2200 \\cdot t$, where $t$ is the number of years since the model began. When will the population reach $120\\ 000$?",
      "response": "$t$: $\\frac{200}{11}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ 6 \\cdot x^3-7 \\cdot x^2+3 \\cdot x-1 }{ 2 \\cdot x-3 \\cdot x^2 } d x}$.",
      "response": "Answer is:$-x^2+x-\\frac{1}{3}\\cdot\\ln\\left(\\left|x-\\frac{2}{3}\\right|\\right)+\\frac{1}{2}\\cdot\\ln\\left(\\left|1-\\frac{2}{3\\cdot x}\\right|\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Solve the following equations: 1. $-t+(5 t-7)=-5$\n2. $21-3 (2-w)=-12$\n3. $9=8 b-(2 b-3)$\n4. $4.5 r-2 r+3 (r-1)=10.75$\n5. $1.2 (x-8)+2.4 (x+1)=7.2$\n6. $4.9 m+(-3.2 m)-13=-2.63$\n7. $4 (2.25 w+3.1)-2.75 w=44.9$",
      "response": "The solutions to the given equations are: 1. $t=\\frac{ 1 }{ 2 }$\n2. $w=-9$\n3. $b=1$\n4. $r=\\frac{ 5 }{ 2 }$\n5. $x=4$\n6. $m=\\frac{ 61 }{ 10 }$\n7. $w=\\frac{ 26 }{ 5 }$",
      "system": ""
    },
    {
      "prompt": "Solve the following equations: 1. $-t+(5 t-7)=-5$\n2. $21-3 (2-w)=-12$\n3. $9=8 b-(2 b-3)$\n4. $4.5 r-2 r+3 (r-1)=10.75$\n5. $1.2 (x-8)+2.4 (x+1)=7.2$\n6. $4.9 m+(-3.2 m)-13=-2.63$\n7. $4 (2.25 w+3.1)-2.75 w=44.9$",
      "response": "The solutions to the given equations are: 1. $t=\\frac{ 1 }{ 2 }$\n2. $w=-9$\n3. $b=1$\n4. $r=\\frac{ 5 }{ 2 }$\n5. $x=4$\n6. $m=\\frac{ 61 }{ 10 }$\n7. $w=\\frac{ 26 }{ 5 }$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ \\sqrt{1+x^2} }{ x } d x}$.",
      "response": "$\\int{\\frac{ \\sqrt{1+x^2} }{ x } d x}$ =$\\sqrt{x^2+1}+\\frac{1}{2}\\cdot\\ln\\left(\\left|\\frac{\\sqrt{x^2+1}-1}{\\sqrt{x^2+1}+1}\\right|\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of function $\\sqrt{x+2}$ with the center $a=1$.",
      "response": "$\\sqrt{x+2}$ =$\\sum_{n=0}^\\infty\\left(3^{\\frac{1}{2}-n}\\cdot C_{\\frac{1}{2}}^n\\cdot(x-1)^n\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series expansion for periodic (period $2$) $f(x)=x-1$ (at $(-1,1]$).",
      "response": "The Fourier series is: $f(x)\\approx\\sum_{n=1}^\\infty-\\frac{2\\cdot(-1)^n\\cdot\\sin(n\\cdot\\pi\\cdot x)}{\\pi\\cdot n}-1$",
      "system": ""
    },
    {
      "prompt": "Use the table of integrals to evaluate the integral $\\int{\\left(\\sin(y)\\right)^2 \\cdot \\left(\\cos(y)\\right)^3 d y}$. \n\nUse this link to access the table of integrals: [Table of Integrals](https://openstax.org/books/calculus-volume-2/pages/a-table-of-integrals)",
      "response": "1. Submit the formula used: $\\int{\\left(\\cos(u)\\right)^3 d u}=\\frac{ 1 }{ 3 } \\cdot \\left(2+\\left(\\cos(u)\\right)^2\\right) \\cdot \\sin(u)+c, \\int{\\left(\\sin(u)\\right)^n \\cdot \\left(\\cos(u)\\right)^m d u}=-\\frac{ \\left(\\sin(u)\\right)^{n-1} \\cdot \\left(\\cos(u)\\right)^{m+1} }{ n+m }+\\frac{ n-1 }{ n+m } \\cdot \\int{\\left(\\sin(u)\\right)^{n-2} \\cdot \\left(\\cos(u)\\right)^m d u}$  (For example: to evaluate $\\int{(x+3)^2 d x}$ you would use and submit the formula $\\int{u^n d u}=\\frac{ u^{n+1} }{ n+1 }+C$).\n2. $\\int{\\left(\\sin(y)\\right)^2 \\cdot \\left(\\cos(y)\\right)^3 d y}$=$-\\frac{\\sin(y)\\cdot\\left(\\cos(y)\\right)^4}{5}+\\frac{1}{5}\\cdot\\frac{1}{3}\\cdot\\left(2+\\left(\\cos(y)\\right)^2\\right)\\cdot\\sin(y)+c$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ x^3 }{ \\sqrt{4 \\cdot x^2+4 \\cdot x+5} } d x}$.",
      "response": "$\\int{\\frac{ x^3 }{ \\sqrt{4 \\cdot x^2+4 \\cdot x+5} } d x}$ =$\\left(\\frac{1}{12}\\cdot x^2-\\frac{5}{48}\\cdot x-\\frac{5}{96}\\right)\\cdot\\sqrt{4\\cdot x^2+4\\cdot x+5}+\\frac{5}{16}\\cdot\\ln\\left(x+\\frac{1}{2}+\\sqrt{1+\\left(x+\\frac{1}{2}\\right)^2}\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ 1 }{ (x-3) \\cdot \\sqrt{10 \\cdot x-24-x^2} } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ (x-3) \\cdot \\sqrt{10 \\cdot x-24-x^2} } d x}$ =$-\\frac{2}{\\sqrt{3}}\\cdot\\arctan\\left(\\frac{\\sqrt{-x^2+10\\cdot x-24}}{\\sqrt{3}\\cdot x-4\\cdot\\sqrt{3}}\\right)+C$",
      "system": ""
    },
    {
      "prompt": "The electrical resistance  $R$ produced by wiring resistors  $R_{1}$ and  $R_{2}$ in parallel can be calculated from the formula  $\\frac{ 1 }{ R }=\\frac{ 1 }{ R_{1} }+\\frac{ 1 }{ R_{2} }$. If  $R_{1}$ and  $R_{2}$ are measured to be $7$ ohm and $6$ ohm respectively, and if these measurements are accurate to within $0.05$ ohm, estimate the maximum possible error in computing $R$.",
      "response": "Maximum possible error:$0.02514793$",
      "system": ""
    },
    {
      "prompt": "Solve $\\sin(x)+\\cos(x)-2 \\cdot \\sqrt{2} \\cdot \\sin(x) \\cdot \\cos(x)=0$.",
      "response": "This is the final answer to the problem: $x=(-1)^{n+1}\\cdot\\frac{\\pi}{6}-\\frac{\\pi}{4}+\\pi\\cdot n, x=\\frac{\\pi}{4}+2\\cdot\\pi\\cdot k$",
      "system": ""
    },
    {
      "prompt": "Compute the derivative $y=\\arctan\\left(\\frac{ 4-\\cos\\left(\\frac{ x }{ 2 }\\right) }{ 1+4 \\cdot \\cos\\left(\\frac{ x }{ 2 }\\right) }\\right)$.",
      "response": "$y'$= $\\frac{\\sin\\left(\\frac{x}{2}\\right)}{2+2\\cdot\\left(\\cos\\left(\\frac{x}{2}\\right)\\right)^2}$",
      "system": ""
    },
    {
      "prompt": "For which positive $p$ does the series $\\sum_{n=1}^\\infty\\left(\\frac{ p^{n^2} }{ 2^n }\\right)$ converge?",
      "response": "Converges for: $p\\le1$.",
      "system": ""
    },
    {
      "prompt": "For which positive $p$ does the series $\\sum_{n=1}^\\infty\\left(\\frac{ p^{n^2} }{ 2^n }\\right)$ converge?",
      "response": "Converges for: $p\\le1$.",
      "system": ""
    },
    {
      "prompt": "Given $y=3 \\cdot x^5+10 \\cdot x^4-20$ find where the function is concave up, down, and point(s) of inflection.",
      "response": "Concave up:$(0,\\infty), (-2,0)$Concave down:$(-\\infty,-2)$Point(s) of Inflection:$P(-2,44)$",
      "system": ""
    },
    {
      "prompt": "Find the derivative of $y=x \\cdot \\sin(x)+2 \\cdot x \\cdot \\cos(x)-2 \\cdot \\sin(x)+\\ln\\left(\\sin(x)\\right)+c^2$.",
      "response": "This is the final answer to the problem: $y'=\\frac{\\left(\\sin(x)\\right)^2+x\\cdot\\sin(x)\\cdot\\cos(x)-2\\cdot x\\cdot\\left(\\sin(x)\\right)^2+\\cos(x)}{\\sin(x)}$",
      "system": ""
    },
    {
      "prompt": "Find the derivative of $y=x \\cdot \\sin(x)+2 \\cdot x \\cdot \\cos(x)-2 \\cdot \\sin(x)+\\ln\\left(\\sin(x)\\right)+c^2$.",
      "response": "This is the final answer to the problem: $y'=\\frac{\\left(\\sin(x)\\right)^2+x\\cdot\\sin(x)\\cdot\\cos(x)-2\\cdot x\\cdot\\left(\\sin(x)\\right)^2+\\cos(x)}{\\sin(x)}$",
      "system": ""
    },
    {
      "prompt": "Find the Taylor series of the given function $f(x)=\\cos(x)$  centered at the indicated point: $a=\\frac{ \\pi }{ 2 }$ .",
      "response": "$\\cos(x)$ =$\\sum_{n=0}^\\infty\\left((-1)^{n+1}\\cdot\\frac{\\left(x-\\frac{\\pi}{2}\\right)^{2\\cdot n+1}}{(2\\cdot n+1)!}\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the Taylor series of the given function $f(x)=\\cos(x)$  centered at the indicated point: $a=\\frac{ \\pi }{ 2 }$ .",
      "response": "$\\cos(x)$ =$\\sum_{n=0}^\\infty\\left((-1)^{n+1}\\cdot\\frac{\\left(x-\\frac{\\pi}{2}\\right)^{2\\cdot n+1}}{(2\\cdot n+1)!}\\right)$",
      "system": ""
    },
    {
      "prompt": "Differentiate $\\sqrt{x \\cdot y}-x=y^5$.",
      "response": "This is the final answer to the problem: $\\frac{dy}{dx}=\\frac{2\\cdot x^{\\frac{1}{2}}\\cdot y^{\\frac{1}{2}}-y}{x-10\\cdot x^{\\frac{1}{2}}\\cdot y^{\\frac{9}{2}}}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ 2 \\cdot \\tan(x)+3 }{ \\sin(x)^2+2 \\cdot \\cos(x)^2 } d x}$.",
      "response": "$\\int{\\frac{ 2 \\cdot \\tan(x)+3 }{ \\sin(x)^2+2 \\cdot \\cos(x)^2 } d x}$ =$C+\\frac{3}{\\sqrt{2}}\\cdot\\arctan\\left(\\frac{1}{\\sqrt{2}}\\cdot\\tan(x)\\right)+\\ln\\left(2+\\left(\\tan(x)\\right)^2\\right)$",
      "system": ""
    },
    {
      "prompt": "For the function $y=(4-x)^3 \\cdot (x+1)^2$ specify the points where local maxima and minima of $y$ occur. Submit as your final answer:\n\n1. The point(s) where local maxima occur\n2. The point(s) where local minima occur",
      "response": "This is the final answer to the problem:  \n1. The point(s) where local maxima occur $P(1,108)$\n2. The point(s) where local minima occur $P(-1,0)$",
      "system": ""
    },
    {
      "prompt": "Evaluate $\\int\\int\\int_{E}{\\left(x^3+y^3+z^3\\right) d V}$, where  $E$=$\\left\\{(x,y,z)|0 \\le x \\le 2,0 \\le y \\le 2 \\cdot x,0 \\le z \\le 4-x-y\\right\\}$.",
      "response": "$I$  =  $\\frac{112}{5}$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series expansion of the function $f(x)=\\begin{cases} -x, & -\\pi<x \\le 0 \\\\ \\frac{ x^2 }{ \\pi }, & 0<x \\le \\pi \\end{cases}$ with the period $2 \\cdot \\pi$ at interval $[-\\pi,\\pi]$.",
      "response": "The Fourier series is: $f(x)=\\frac{5\\cdot\\pi}{12}+\\sum_{n=1}^\\infty\\left(\\frac{(-1)^n\\cdot3-1}{\\pi\\cdot n^2}\\cdot\\cos(n\\cdot x)+\\left(\\frac{2}{\\pi^2\\cdot n^3}\\cdot\\left((-1)^n-1\\right)\\right)\\cdot\\sin(n\\cdot x)\\right)$",
      "system": ""
    },
    {
      "prompt": "Identify the intervals where $f(x)=\\frac{ 1 }{ 4 } \\cdot x^4+\\frac{ 1 }{ 3 } \\cdot x^3-8 \\cdot x^2-16 \\cdot x$ is increasing and where decreasing on the interval $[-4,4]$. Then determine the relative extrema of $f(x)$. Lastly, determine the absolute extrema of $f(x)$.",
      "response": "$f(x)$ is increasing at the interval: $(-4,-1)$ and is decreasing at the interval: $(-1,4)$\n\nLocal Minimum: $P\\left(-4,-\\frac{64}{3}\\right)$\n\nLocal Maximum:$P\\left(-1,\\frac{95}{12}\\right)$\n\nAbsolute Minimum:$P\\left(4,-\\frac{320}{3}\\right)$\n\nAbsolute Maximum:$P\\left(-1,\\frac{95}{12}\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the Taylor series for $f(x)=\\ln\\left(\\sqrt{3} \\cdot x+\\sqrt{1+3 \\cdot x^2}\\right)$, centered at $x=0$. Write out the sum of the first four non-zero terms, followed by dots.",
      "response": "This is the final answer to the problem: $\\sqrt{3} x - (\\sqrt{3} x^3)/2 + (27 \\sqrt{3} x^5)/40 - (135 \\sqrt{3} x^7)/112 + O(x^9)$",
      "system": ""
    },
    {
      "prompt": "A projectile is shot in the air from ground level with an initial velocity of $500$ m/sec at an angle of $60$ deg with the horizontal. At what time is the maximum range of the projectile attained? ",
      "response": "$t$ = $88.37$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier integral of the function $q(x)=\\begin{cases} 0, & x<0 \\\\ 5 \\cdot \\pi \\cdot x, & 0 \\le x \\le 4 \\\\ 0, & x>4 \\end{cases}$.",
      "response": "$q(t)$ = $\\int_0^\\infty\\frac{\\left(5\\cdot\\left(4\\cdot\\sin\\left(4\\cdot\\alpha\\right)\\cdot\\alpha+\\cos\\left(4\\cdot\\alpha\\right)-1\\right)\\cdot\\cos\\left(\\alpha\\cdot t\\right)+5\\cdot\\left(\\sin\\left(4\\cdot\\alpha\\right)-4\\cdot\\alpha\\cdot\\cos\\left(4\\cdot\\alpha\\right)\\right)\\cdot\\sin\\left(\\alpha\\cdot t\\right)\\right)}{\\alpha^2}d \\alpha$",
      "system": ""
    },
    {
      "prompt": "Evaluate the integral: $I=\\int{3 \\cdot x \\cdot \\ln\\left(4+\\frac{ 1 }{ x }\\right) d x}$.",
      "response": "This is the final answer to the problem: $\\left(\\frac{3}{2}\\cdot x^2\\cdot\\ln(4\\cdot x+1)-\\frac{3\\cdot x^2}{4}+\\frac{3\\cdot x}{8}-\\frac{3}{32}\\cdot\\ln\\left(x+\\frac{1}{4}\\right)\\right)-\\left(\\frac{3}{2}\\cdot x^2\\cdot\\ln(x)-\\left(C+\\frac{3}{4}\\cdot x^2\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "A box is to be made with the following properties:\n\nThe length of the base, $l$, is twice the length of a width $w$.\n\nThe cost of material to be used for the lateral faces and the top of the box is three times as the cost of the material to be used for the lower base.\n\nFind the dimensions of the box in terms of its fixed volume $V$ such that the cost of  the used material is the minimum.",
      "response": "This is the final answer to the problem: $y=\\frac{2}{3}\\cdot\\sqrt[3]{\\frac{4\\cdot V}{3}}, w=\\frac{1}{2}\\cdot\\sqrt[3]{\\frac{9\\cdot V}{2}}, l=\\sqrt[3]{\\frac{9\\cdot V}{2}}$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\frac{ 1 }{ \\sin(x)^5 } d x}$.",
      "response": "This is the final answer to the problem: $C+\\frac{1}{16}\\cdot\\left(2\\cdot\\left(\\tan\\left(\\frac{x}{2}\\right)\\right)^2+6\\cdot\\ln\\left(\\left|\\tan\\left(\\frac{x}{2}\\right)\\right|\\right)+\\frac{1}{4}\\cdot\\left(\\tan\\left(\\frac{x}{2}\\right)\\right)^4-\\frac{2}{\\left(\\tan\\left(\\frac{x}{2}\\right)\\right)^2}-\\frac{1}{4\\cdot\\left(\\tan\\left(\\frac{x}{2}\\right)\\right)^4}\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the first derivative $y_{x}'$ of the function: $x=\\arcsin\\left(\\frac{ t }{ \\sqrt{2+2 \\cdot t^2} }\\right)$, $y=\\arccos\\left(\\frac{ 1 }{ \\sqrt{2+2 \\cdot t^2} }\\right)$, $t \\ge 0$.",
      "response": "$y_{x}'$ =$\\frac{t\\cdot\\sqrt{t^2+2}}{\\sqrt{2\\cdot t^2+1}}$",
      "system": ""
    },
    {
      "prompt": "A profit is earned when revenue exceeds the cost. Suppose the profit function for a skateboard manufacturer is given by $P(x)=30 \\cdot x-0.3 \\cdot x^2-250$, where  $x$ is the number of skateboards sold.\n\n1. Find the exact profit from the sale of the thirtieth skateboard.\n2. Find the marginal profit function and use it to estimate the profit from the sale of the thirtieth skateboard.",
      "response": "This is the final answer to the problem:\n\n1. the exact profit from the sale of the thirtieth skateboard: $12.3$\n2. the marginal profit function and the sale of the thirtieth skateboard: $30-0.6\\cdot x, 12.6$",
      "system": ""
    },
    {
      "prompt": "A profit is earned when revenue exceeds the cost. Suppose the profit function for a skateboard manufacturer is given by $P(x)=30 \\cdot x-0.3 \\cdot x^2-250$, where  $x$ is the number of skateboards sold.\n\n1. Find the exact profit from the sale of the thirtieth skateboard.\n2. Find the marginal profit function and use it to estimate the profit from the sale of the thirtieth skateboard.",
      "response": "This is the final answer to the problem:\n\n1. the exact profit from the sale of the thirtieth skateboard: $12.3$\n2. the marginal profit function and the sale of the thirtieth skateboard: $30-0.6\\cdot x, 12.6$",
      "system": ""
    },
    {
      "prompt": "For the curve $x=a\\left(t-\\sin(t)\\right)$, $y=a\\left(1-\\cos(t)\\right)$ determine the curvature. Use $a=12$.",
      "response": "The curvature is:$\\frac{1}{48\\cdot\\left|\\sin\\left(\\frac{t}{2}\\right)\\right|}$",
      "system": ""
    },
    {
      "prompt": "Find the integral $\\int{\\frac{ 1 }{ \\sqrt[3]{\\left(\\sin(x)\\right)^{11} \\cdot \\cos(x)} } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ \\sqrt[3]{\\left(\\sin(x)\\right)^{11} \\cdot \\cos(x)} } d x}$ =$-\\frac{3\\cdot\\left(1+4\\cdot\\left(\\tan(x)\\right)^2\\right)}{8\\cdot\\left(\\tan(x)\\right)^2\\cdot\\sqrt[3]{\\left(\\tan(x)\\right)^2}}+C$",
      "system": ""
    },
    {
      "prompt": "Find the 3rd order Taylor polynomial $P_{3}(x)$ for the function $f(x)=\\arctan(x)$ in powers of $x-1$ and give the Lagrange form of the remainder.",
      "response": "$P_{3}(x)$=$\\frac{ \\pi }{ 4 }+\\frac{ 1 }{ 2 } \\cdot (x-1)-\\frac{ 1 }{ 4 } \\cdot (x-1)^2+\\frac{ 1 }{ 12 } \\cdot (x-1)^3$  \n\n$R_{3}(x)$=$\\frac{ -\\frac{ 48 \\cdot c^3 }{ \\left(1+c^2\\right)^4 }+\\frac{ 24 \\cdot c }{ \\left(1+c^2\\right)^3 } }{ 4! } \\cdot (x-1)^4$",
      "system": ""
    },
    {
      "prompt": "Find $\\frac{ d y }{d x}$ if $y=\\frac{ 5 \\cdot x^2-3 \\cdot x }{ \\left(3 \\cdot x^7+2 \\cdot x^6\\right)^4 }$.",
      "response": "$\\frac{ d y }{d x}$ = $\\frac{-390\\cdot x^2+23\\cdot x+138}{x^{24}\\cdot(3\\cdot x+2)^5}$",
      "system": ""
    },
    {
      "prompt": "Make full curve sketching of $f(x)=\\frac{ 3 \\cdot x^3 }{ 2 \\cdot x^2-3 }$.  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptote(s)\n3. Horizontal asymptote(s)\n4. Slant asymptote(s)\n5. Interval(s) where the function is increasing\n6. Interval(s) where the function is decreasing\n7. Interval(s) where the function is concave up\n8. Interval(s) where the function is concave down\n9. Point(s) of inflection",
      "response": "This is the final answer to the problem:\n\n1. The domain (in interval notation) $\\left(-1\\cdot\\infty,-1\\cdot3^{2^{-1}}\\cdot2^{-1\\cdot2^{-1}}\\right)\\cup\\left(-1\\cdot3^{2^{-1}}\\cdot2^{-1\\cdot2^{-1}},3^{2^{-1}}\\cdot2^{-1\\cdot2^{-1}}\\right)\\cup\\left(3^{2^{-1}}\\cdot2^{-1\\cdot2^{-1}},\\infty\\right)$\n2. Vertical asymptote(s) $x=\\frac{\\sqrt{3}}{\\sqrt{2}}, x=-\\frac{\\sqrt{3}}{\\sqrt{2}}$\n3. Horizontal asymptote(s) None\n4. Slant asymptote(s) $y=\\frac{3}{2}\\cdot x$\n5. Interval(s) where the function is increasing $\\left(\\frac{3}{\\sqrt{2}},\\infty\\right), \\left(-\\infty,-\\frac{3}{\\sqrt{2}}\\right)$\n6. Interval(s) where the function is decreasing $\\left(-\\frac{3}{\\sqrt{2}},-\\frac{\\sqrt{3}}{\\sqrt{2}}\\right), \\left(\\frac{\\sqrt{3}}{\\sqrt{2}},\\frac{3}{\\sqrt{2}}\\right), \\left(0,\\frac{\\sqrt{3}}{\\sqrt{2}}\\right), \\left(-\\frac{\\sqrt{3}}{\\sqrt{2}},0\\right)$\n7. Interval(s) where the function is concave up $\\left(-\\frac{\\sqrt{3}}{\\sqrt{2}},0\\right), \\left(\\frac{\\sqrt{3}}{\\sqrt{2}},\\infty\\right)$\n8. Interval(s) where the function is concave down $\\left(0,\\frac{\\sqrt{3}}{\\sqrt{2}}\\right), \\left(-\\infty,-\\frac{\\sqrt{3}}{\\sqrt{2}}\\right)$\n9. Point(s) of inflection $P(0,0)$",
      "system": ""
    },
    {
      "prompt": "Find the second derivative $\\frac{d ^2y}{ d x^2}$ of the function $x=\\left(4 \\cdot \\sin(t)\\right)^3$, $y=2 \\cdot \\sin(2 \\cdot t)$.",
      "response": "$\\frac{d ^2y}{ d x^2}$=$\\frac{\\left(2304\\cdot\\left(\\sin(t)\\right)^3-1536\\cdot\\sin(t)\\right)\\cdot\\cos(2\\cdot t)-1536\\cdot\\left(\\sin(t)\\right)^2\\cdot\\cos(t)\\cdot\\sin(2\\cdot t)}{7077888\\cdot\\left(\\cos(t)\\right)^3\\cdot\\left(\\sin(t)\\right)^6}$",
      "system": ""
    },
    {
      "prompt": "Find the area of a triangle bounded by the x-axis, the line $f(x)=12-\\frac{ 1 }{ 3 } \\cdot x$, and the line perpendicular to $f(x)$ that passes through the origin.",
      "response": "The area of the triangle is $\\frac{972}{5}$",
      "system": ""
    },
    {
      "prompt": "Given $x^3-2 \\cdot x^2 \\cdot y^2+5 \\cdot x+y-5=0$, evaluate $\\frac{d ^2y}{ d x^2}$ at $x=1$.",
      "response": "This is the final answer to the problem: $\\frac{d^2y}{dx^2}=-\\frac{238}{27}$ or $\\frac{d^2y}{dx^2}=-\\frac{319}{27}$",
      "system": ""
    },
    {
      "prompt": "Determine the interval(s) on which $f(x)=x^3 \\cdot e^{-x}$ is decreasing.",
      "response": "The function is decreasing on the interval(s) $(3,\\infty)$.",
      "system": ""
    },
    {
      "prompt": "Consider points $A$$P(3,-1,2)$, $B$$P(2,1,5)$, and $C$$P(1,-2,-2)$.\n\n1. Find the area of parallelogram ABCD with adjacent sides $\\vec{AB}$ and $\\vec{AC}$.\n2. Find the area of triangle ABC.\n3. Find the distance from point $A$ to line BC.",
      "response": "1. $A$=$5\\cdot\\sqrt{6}$\n2. $A$=$\\frac{5\\cdot\\sqrt{6}}{2}$\n3. $d$=$\\frac{5\\cdot\\sqrt{6}}{\\sqrt{59}}$",
      "system": ""
    },
    {
      "prompt": "Find the equation of the tangent line to the curve: $r=3+\\cos(2 \\cdot t)$, $t=\\frac{ 3 \\cdot \\pi }{ 4 }$.",
      "response": "$y$  =  $\\frac{1}{5}\\cdot\\left(x+\\frac{3}{\\sqrt{2}}\\right)+\\frac{3}{\\sqrt{2}}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{x \\cdot \\arctan(2 \\cdot x)^2 d x}$.",
      "response": "$\\int{x \\cdot \\arctan(2 \\cdot x)^2 d x}$ =$\\frac{1}{16}\\cdot\\left(2\\cdot\\left(\\arctan(2\\cdot x)\\right)^2+2\\cdot\\ln\\left(4\\cdot x^2+1\\right)+8\\cdot x^2\\cdot\\left(\\arctan(2\\cdot x)\\right)^2-8\\cdot x\\cdot\\arctan(2\\cdot x)\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{x \\cdot \\arctan(2 \\cdot x)^2 d x}$.",
      "response": "$\\int{x \\cdot \\arctan(2 \\cdot x)^2 d x}$ =$\\frac{1}{16}\\cdot\\left(2\\cdot\\left(\\arctan(2\\cdot x)\\right)^2+2\\cdot\\ln\\left(4\\cdot x^2+1\\right)+8\\cdot x^2\\cdot\\left(\\arctan(2\\cdot x)\\right)^2-8\\cdot x\\cdot\\arctan(2\\cdot x)\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Calculate the second-order partial derivatives. (Treat $A$,$B$,$C$,$D$ as constants.)\n\n$f(x,y,z)=\\sin\\left(x+z^y\\right)$.",
      "response": "$f_{xx}(x,y,z)$=$-\\sin\\left(x+z^y\\right)$ \n\n$f_{xy}(x,y,z)$=$f_{yx}(x,y,z)$=$-z^y\\cdot\\ln(z)\\cdot\\sin\\left(x+z^y\\right)$  \n\n$f_{yy}(x,y,z)$=$-z^y\\cdot\\left(\\ln(z)\\right)^2\\cdot\\left(-\\cos\\left(x+z^y\\right)+z^y\\cdot\\sin\\left(x+z^y\\right)\\right)$  \n\n$f_{yz}(x,y,z)$=$f_{zy}(x,y,z)$=$z^{-1+y}\\cdot\\left(\\cos\\left(x+z^y\\right)\\cdot\\left(1+y\\cdot\\ln(z)\\right)-y\\cdot z^y\\cdot\\ln(z)\\cdot\\sin\\left(x+z^y\\right)\\right)$  \n\n$f_{zz}(x,y,z)$=$y\\cdot z^{-2+y}\\cdot\\left((-1+y)\\cdot\\cos\\left(x+z^y\\right)-y\\cdot z^y\\cdot\\sin\\left(x+z^y\\right)\\right)$  \n\n$f_{xz}(x,y,z)$=$f_{zx}(x,y,z)$=$-y\\cdot z^{-1+y}\\cdot\\sin\\left(x+z^y\\right)$",
      "system": ""
    },
    {
      "prompt": "Calculate the second-order partial derivatives. (Treat $A$,$B$,$C$,$D$ as constants.)\n\n$f(x,y,z)=\\sin\\left(x+z^y\\right)$.",
      "response": "$f_{xx}(x,y,z)$=$-\\sin\\left(x+z^y\\right)$ \n\n$f_{xy}(x,y,z)$=$f_{yx}(x,y,z)$=$-z^y\\cdot\\ln(z)\\cdot\\sin\\left(x+z^y\\right)$  \n\n$f_{yy}(x,y,z)$=$-z^y\\cdot\\left(\\ln(z)\\right)^2\\cdot\\left(-\\cos\\left(x+z^y\\right)+z^y\\cdot\\sin\\left(x+z^y\\right)\\right)$  \n\n$f_{yz}(x,y,z)$=$f_{zy}(x,y,z)$=$z^{-1+y}\\cdot\\left(\\cos\\left(x+z^y\\right)\\cdot\\left(1+y\\cdot\\ln(z)\\right)-y\\cdot z^y\\cdot\\ln(z)\\cdot\\sin\\left(x+z^y\\right)\\right)$  \n\n$f_{zz}(x,y,z)$=$y\\cdot z^{-2+y}\\cdot\\left((-1+y)\\cdot\\cos\\left(x+z^y\\right)-y\\cdot z^y\\cdot\\sin\\left(x+z^y\\right)\\right)$  \n\n$f_{xz}(x,y,z)$=$f_{zx}(x,y,z)$=$-y\\cdot z^{-1+y}\\cdot\\sin\\left(x+z^y\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the extrema of a function $y=\\frac{ x^4 }{ 4 }-\\frac{ 2 \\cdot x^3 }{ 3 }-\\frac{ x^2 }{ 2 }+2$. Then determine the largest and smallest value of the function when $-2 \\le x \\le 4$.",
      "response": "This is the final answer to the problem: \n\n1. Extrema points: $P\\left(\\frac{2-2\\cdot\\sqrt{2}}{2},1.969\\right), P(0,2), P\\left(\\frac{2+2\\cdot\\sqrt{2}}{2},-1.8023\\right)$\n2. The largest value: $\\frac{46}{3}$\n3. The smallest value: $-1.8023$",
      "system": ""
    }
  ]
}