File size: 41,913 Bytes
5b60e22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
{
"dataset_name": "Mu-Math",
"group_index": 1,
"source_file": "/hkfs/work/workspace/scratch/tum_fmp0582-dndworkspace/自己训练lora/prepare/data/math/Mu-Math.json",
"selected_indices": [
13,
25,
39,
56,
77,
81,
108,
118,
124,
189,
198,
205,
206,
210,
217,
232,
233,
236,
259,
274,
275,
283,
287,
291,
301,
303,
334,
353,
371,
375,
385,
390,
397,
410,
412,
422,
428,
435,
438,
450,
467,
471,
474,
476,
477,
480,
481,
496,
499,
502,
503,
517,
524,
534,
549,
568,
574,
583,
586,
600,
617,
632,
640,
644,
656,
669,
680,
687,
706,
709,
710,
719,
745,
755,
762,
768,
771,
776,
777,
787,
801,
837,
849,
854,
927,
928,
936,
949,
964,
978,
1007,
1014,
1015,
1018,
1031,
1036,
1052,
1058,
1066,
1075
],
"total_records": 1084,
"sample_count": 100,
"generated_at": "2025-11-05T12:58:28Z",
"seed": 4171135963,
"samples": [
{
"prompt": "Compute the integral: $\\int{\\frac{ 2 \\cdot x^3 }{ \\sqrt{x^2+16} } d x}$.",
"response": "$\\int{\\frac{ 2 \\cdot x^3 }{ \\sqrt{x^2+16} } d x}$ =$C+128\\cdot\\left(\\frac{1}{3\\cdot\\left(\\cos\\left(\\arctan\\left(\\frac{x}{4}\\right)\\right)\\right)^3}-\\frac{1}{\\cos\\left(\\arctan\\left(\\frac{x}{4}\\right)\\right)}\\right)$",
"system": ""
},
{
"prompt": "Sketch the curve: \n\n$y=5 \\cdot x \\cdot \\sqrt{4-x^2}$. \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
"response": "This is the final answer to the problem: \n1. The domain (in interval notation): $[-2,2]$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(-\\sqrt{2},\\sqrt{2}\\right)$\n6. Intervals where the function is decreasing: $\\left(-2,-\\sqrt{2}\\right), \\left(\\sqrt{2},2\\right)$\n7. Intervals where the function is concave up: $(-2,0)$\n8. Intervals where the function is concave down: $(0,2)$\n9. Points of inflection: $P(0,0)$",
"system": ""
},
{
"prompt": "Region $R$ is the region in the first quadrant bounded by the graphs of $y=2 \\cdot x$ and $y=x^2$.\n\n1. Write, but do not evaluate, an integral expression that gives the volume of the solid generated from revolving the region $R$ about the vertical line $x=3$.\n2. Write, but do not evaluate, an integral expression that gives the volume of the solid generated from revolving the region $R$ about the vertical line $x=-2$.",
"response": "1. $V$ = $\\int_0^4\\pi\\cdot\\left(\\left(3-\\frac{1}{2}\\cdot y\\right)^2-\\left(3-\\sqrt{y}\\right)^2\\right)dy$\n2. $V$ = $\\int_0^4\\pi\\cdot\\left(\\left(-2-\\sqrt{y}\\right)^2-\\left(-2-\\frac{1}{2}\\cdot y\\right)^2\\right)dy$",
"system": ""
},
{
"prompt": "Find a rectangular equation which is equivalent to the following parametric equations:\n\n$x^2=t^3-3 \\cdot t^2+3 \\cdot t-1$ \n\n$y^2=t^3+6 \\cdot t^2+12 \\cdot t+8$",
"response": "This is the final answer to the problem: $\\sqrt[3]{x^2}-\\sqrt[3]{y^2}=-3$",
"system": ""
},
{
"prompt": "Solve the integral: $\\int{\\frac{ \\cos(x)^3 }{ \\sin(x)^9 } d x}$.",
"response": "$\\int{\\frac{ \\cos(x)^3 }{ \\sin(x)^9 } d x}$ =$C-\\left(\\frac{1}{3}\\cdot\\left(\\cot(x)\\right)^6+\\frac{1}{4}\\cdot\\left(\\cot(x)\\right)^4+\\frac{1}{8}\\cdot\\left(\\cot(x)\\right)^8\\right)$",
"system": ""
},
{
"prompt": "Find the radius of convergence and sum of the series: $\\frac{ 1 }{ 2 }+\\frac{ x }{ 1 \\cdot 3 }+\\frac{ x^2 }{ 1 \\cdot 2 \\cdot 4 }+\\cdots+\\frac{ x^n }{ \\left(n!\\right) \\cdot (n+2) }+\\cdots$ .",
"response": "This is the final answer to the problem: 1. Radius of convergence:$R=\\infty$\n2. Sum: $f(x)=\\begin{cases}\\frac{1}{x^2}+\\frac{x\\cdot e^x-e^x}{x^2},&x\\ne0\\\\\\frac{1}{2},&x=0\\end{cases}$",
"system": ""
},
{
"prompt": "Compute the integral: $\\int{\\frac{ 6 }{ \\sin(3 \\cdot x)^6 } d x}$.",
"response": "$\\int{\\frac{ 6 }{ \\sin(3 \\cdot x)^6 } d x}$ =$-\\frac{2\\cdot\\cos(3\\cdot x)}{5\\cdot\\sin(3\\cdot x)^5}+\\frac{24}{5}\\cdot\\left(-\\frac{\\cos(3\\cdot x)}{9\\cdot\\sin(3\\cdot x)^3}-\\frac{2}{9}\\cdot\\cot(3\\cdot x)\\right)+C$",
"system": ""
},
{
"prompt": "Calculate integral: $I=\\int{4 \\cdot \\cos\\left(3 \\cdot \\ln(2 \\cdot x)\\right) d x}$.",
"response": "This is the final answer to the problem: $\\frac{1}{10}\\cdot\\left(C+4\\cdot x\\cdot\\cos\\left(3\\cdot\\ln(2\\cdot x)\\right)+12\\cdot x\\cdot\\sin\\left(3\\cdot\\ln(2\\cdot x)\\right)\\right)$",
"system": ""
},
{
"prompt": "Calculate integral: $\\int_{\\frac{ 1 }{ 2 }}^{\\frac{ \\sqrt{3} }{ 2 }}{\\frac{ 1 }{ x \\cdot \\sqrt{9-9 \\cdot x^2} } d x}$.",
"response": "$$\\int_{\\frac{ 1 }{ 2 }}^{\\frac{ \\sqrt{3} }{ 2 }}{\\frac{ 1 }{ x \\cdot \\sqrt{9-9 \\cdot x^2} } d x}=\\frac{1}{6}\\ln\\left(\\frac{7}{3}+\\frac{4}{\\sqrt{3}}\\right)$$",
"system": ""
},
{
"prompt": "Find a normal vector and a tangent vector for $2 \\cdot x^3-x^2 \\cdot y^2=3 \\cdot x-y-7$ at point $P$ : $(1,-2)$",
"response": "Normal vector:$\\vec{N}=\\vec{i}-\\vec{j}$Tangent vector: $\\vec{T}=\\vec{i}+\\vec{j}$",
"system": ""
},
{
"prompt": "Find the extrema of a function $y=\\frac{ 2 \\cdot x^4 }{ 4 }-\\frac{ x^3 }{ 3 }-\\frac{ 3 \\cdot x^2 }{ 2 }+2$. Then determine the largest and smallest value of the function when $-2 \\le x \\le 4$.",
"response": "This is the final answer to the problem: \n\n1. Extrema points: $P\\left(\\frac{3}{2},\\frac{1}{32}\\right), P\\left(-1,\\frac{4}{3}\\right), P(0,2)$\n2. The largest value: $\\frac{254}{3}$\n3. The smallest value: $\\frac{1}{32}$",
"system": ""
},
{
"prompt": "Use the method of Lagrange multipliers to maximize $U(x,y)=8 \\cdot x^{\\frac{ 4 }{ 5 }} \\cdot y^{\\frac{ 1 }{ 5 }}$; $4 \\cdot x+2 \\cdot y=12$.",
"response": "Answer: maximum $16.715$ at $P(2.4,1.2)$",
"system": ""
},
{
"prompt": "Use the method of Lagrange multipliers to maximize $U(x,y)=8 \\cdot x^{\\frac{ 4 }{ 5 }} \\cdot y^{\\frac{ 1 }{ 5 }}$; $4 \\cdot x+2 \\cdot y=12$.",
"response": "Answer: maximum $16.715$ at $P(2.4,1.2)$",
"system": ""
},
{
"prompt": "Find $\\frac{ d y }{d x}$ for $y=x \\cdot \\arccsc(x)$.",
"response": "$\\frac{ d y }{d x}$= $-\\frac{x}{|x|\\cdot\\sqrt{x^2-1}}+\\arccsc(x)$",
"system": ""
},
{
"prompt": "Compute the partial derivatives of the implicit function $z(x,y)$, given by the equation $-x-6 \\cdot y+z=3 \\cdot \\cos(-x-6 \\cdot y+z)$.\n\nSubmit as your final answer:\n\na. $\\frac{\\partial z}{\\partial x}$;\n\nb. $\\frac{\\partial z}{\\partial y}$.",
"response": "This is the final answer to the problem: \na. $1$;\n\nb. $6$.",
"system": ""
},
{
"prompt": "Solve the integral: $\\int{\\frac{ \\sqrt{x+10}+3 }{ (x+10)^2-\\sqrt{x+10} } d x}$.",
"response": "$\\int{\\frac{ \\sqrt{x+10}+3 }{ (x+10)^2-\\sqrt{x+10} } d x}$ =$C+\\frac{8}{3}\\cdot\\ln\\left(\\left|\\sqrt{x+10}-1\\right|\\right)-\\frac{4}{3}\\cdot\\ln\\left(11+\\sqrt{x+10}+x\\right)-\\frac{4}{\\sqrt{3}}\\cdot\\arctan\\left(\\frac{1}{\\sqrt{3}}\\cdot\\left(1+2\\cdot\\sqrt{x+10}\\right)\\right)$",
"system": ""
},
{
"prompt": "Solve the integral: $\\int{\\frac{ \\sqrt{x+10}+3 }{ (x+10)^2-\\sqrt{x+10} } d x}$.",
"response": "$\\int{\\frac{ \\sqrt{x+10}+3 }{ (x+10)^2-\\sqrt{x+10} } d x}$ =$C+\\frac{8}{3}\\cdot\\ln\\left(\\left|\\sqrt{x+10}-1\\right|\\right)-\\frac{4}{3}\\cdot\\ln\\left(11+\\sqrt{x+10}+x\\right)-\\frac{4}{\\sqrt{3}}\\cdot\\arctan\\left(\\frac{1}{\\sqrt{3}}\\cdot\\left(1+2\\cdot\\sqrt{x+10}\\right)\\right)$",
"system": ""
},
{
"prompt": "An alternating current for outlets in a home has voltage given by the function $V(t)=150 \\cdot \\cos(368 \\cdot t)$, where $V$ is the voltage in volts at time $t$ in seconds.\n\n1. Find the period of the function.\n2. Determine the number of periods that occur when $1$ sec. has passed.",
"response": "This is the final answer to the problem: \n\n1. the period of the function: $\\frac{\\pi}{184}$\n2. the number of periods: $58.56901906$",
"system": ""
},
{
"prompt": "Compute $\\sqrt[4]{90}$ with accuracy $0.0001$.",
"response": "This is the final answer to the problem: $3.0801$",
"system": ""
},
{
"prompt": "Solve the integral: $\\int{\\tan(x)^4 d x}$.",
"response": "$\\int{\\tan(x)^4 d x}$ = $C + x + 1/3 (sec^2(x) - 4) tan(x)$",
"system": ""
},
{
"prompt": "Solve the integral: $\\int{\\tan(x)^4 d x}$.",
"response": "$\\int{\\tan(x)^4 d x}$ = $C + x + 1/3 (sec^2(x) - 4) tan(x)$",
"system": ""
},
{
"prompt": "Solve $\\cos(2 \\cdot t)-5 \\cdot \\sin(t)-3=0$.",
"response": "This is the final answer to the problem: $t=(-1)^{n+1}\\cdot\\frac{\\pi}{6}+n\\cdot\\pi$",
"system": ""
},
{
"prompt": "Solve the following equations: 1. $-10 c=-80$\n2. $n-(-6)=12$\n3. $-82+x=-20$\n4. $-\\frac{ r }{ 2 }=5$\n5. $r-3.4=7.1$\n6. $\\frac{ g }{ 2.5 }=1.8$\n7. $4.8 m=43.2$\n8. $\\frac{ 3 }{ 4 } t=\\frac{ 9 }{ 20 }$\n9. $3\\frac{2}{3}+m=5\\frac{1}{6}$",
"response": "The solutions to the given equations are: \n1. $c=8$\n2. $n=6$\n3. $x=62$\n4. $r=-10$\n5. $r=10.5$\n6. $g=\\frac{ 9 }{ 2 }$\n7. $m=9$\n8. $t=\\frac{3}{5}$\n9. $m=\\frac{3}{2}$",
"system": ""
},
{
"prompt": "The region bounded by the arc of the curve $y=\\sqrt{2} \\cdot \\sin(2 \\cdot x)$, $0 \\le x \\le \\frac{ \\pi }{ 2 }$, is revolved around the X-axis. Compute the surface area of this solid of revolution.",
"response": "Surface Area: $\\frac{\\pi}{4}\\cdot\\left(12\\cdot\\sqrt{2}+\\ln\\left(17+12\\cdot\\sqrt{2}\\right)\\right)$",
"system": ""
},
{
"prompt": "Find $y'$ and $y''$ for $x^2+6 \\cdot x \\cdot y-2 \\cdot y^2=3$.",
"response": "$y'$= $\\frac{x+3\\cdot y}{2\\cdot y-3\\cdot x}$; \n\n$y''$= $\\frac{11\\cdot\\left(x^2+6\\cdot x\\cdot y-2\\cdot y^2\\right)}{(3\\cdot x-2\\cdot y)^3}$.",
"system": ""
},
{
"prompt": "Find $y'$ and $y''$ for $x^2+6 \\cdot x \\cdot y-2 \\cdot y^2=3$.",
"response": "$y'$= $\\frac{x+3\\cdot y}{2\\cdot y-3\\cdot x}$; \n\n$y''$= $\\frac{11\\cdot\\left(x^2+6\\cdot x\\cdot y-2\\cdot y^2\\right)}{(3\\cdot x-2\\cdot y)^3}$.",
"system": ""
},
{
"prompt": "Find the derivative of the function $y=\\frac{ 3 \\cdot \\csc(x)-4 \\cdot \\sin(x) }{ 8 \\cdot \\left(\\cos(x)\\right)^5 }-\\frac{ 76 }{ 5 } \\cdot \\cot(3 \\cdot x)$.",
"response": "$y'$=$\\frac{228}{5\\cdot\\left(\\sin(3\\cdot x)\\right)^2}+\\frac{16\\cdot\\left(\\cos(x)\\right)^6-5\\cdot\\left(\\cos(x)\\right)^4-3\\cdot\\left(\\cos(x)\\right)^6\\cdot\\left(\\csc(x)\\right)^2}{8\\cdot\\left(\\cos(x)\\right)^{10}}$",
"system": ""
},
{
"prompt": "Solve $\\sin(x)+7 \\cdot \\cos(x)+7=0$.",
"response": "This is the final answer to the problem: $x=2\\cdot\\pi\\cdot k-2\\cdot\\arctan(7) \\lor x=\\pi+2\\cdot\\pi\\cdot k$",
"system": ""
},
{
"prompt": "Find the gradient: $f(x,y)=\\frac{ \\sqrt{x}+y^2 }{ x \\cdot y }$.",
"response": "$\\nabla f(x,y)$ =$\\left\\langle\\frac{1}{2\\cdot x\\cdot y\\cdot\\sqrt{x}}-\\frac{\\sqrt{x}+y^2}{y\\cdot x^2},\\frac{2}{x}-\\frac{\\sqrt{x}+y^2}{x\\cdot y^2}\\right\\rangle$",
"system": ""
},
{
"prompt": "Find the Fourier series of the periodic function $f(x)=\\frac{ x^2 }{ 2 }$ in the interval $-2 \\cdot \\pi \\le x<2 \\cdot \\pi$ if $f(x)=f(x+4 \\cdot \\pi)$.",
"response": "The Fourier series is: $\\frac{2\\cdot\\pi^2}{3}+\\sum_{n=1}^\\infty\\left(\\frac{8\\cdot(-1)^n}{n^2}\\cdot\\cos\\left(\\frac{n\\cdot x}{2}\\right)\\right)$",
"system": ""
},
{
"prompt": "Compute the integral: $\\int{\\frac{ 1 }{ 2 \\cdot \\sin\\left(\\frac{ x }{ 2 }\\right)^6 } d x}$.",
"response": "$\\int{\\frac{ 1 }{ 2 \\cdot \\sin\\left(\\frac{ x }{ 2 }\\right)^6 } d x}$ =$C-\\frac{1}{5}\\cdot\\left(\\cot\\left(\\frac{x}{2}\\right)\\right)^5-\\frac{2}{3}\\cdot\\left(\\cot\\left(\\frac{x}{2}\\right)\\right)^3-\\cot\\left(\\frac{x}{2}\\right)$",
"system": ""
},
{
"prompt": "|$n$ \n\n$\\ln(n)$ \n\n| |\n| 1 | 0.00 |\n| 2 | 0.69 |\n| 3 | 1.10 |\n| 4 | 1.39 |\n| 5 | 1.61 |\n| 6 | 1.79 |\n| 7 | 1.95 |\n| 8 | 2.08 |\n| 9 | 2.20 |\n| 10 | 2.30 |\n\n \n \nUsing the table above, estimate the logarithm.1. $\\ln(16)$\n2. $\\ln\\left(3^4\\right)$\n3. $\\ln(2.5)$\n4. $\\ln\\left(\\sqrt{630}\\right)$\n5. $\\ln(0.4)$",
"response": "1. $\\ln(16)$≈$2.78$\n2. $\\ln\\left(3^4\\right)$≈$4.4$\n3. $\\ln(2.5)$≈$0.92$\n4. $\\ln\\left(\\sqrt{630}\\right)$≈$3.2228$\n5. $\\ln(0.4)$≈$-0.92$",
"system": ""
},
{
"prompt": "Solve the following problems by integration of the geometric series:\n\n$\\sum_{n=0}^\\infty\\left(x^n\\right)=\\frac{ 1 }{ 1-x }$, $|x|<1$\n\n1. $\\sum_{n=0}^\\infty\\left(\\frac{ 1 }{ (n+1) \\cdot 2^{n+1} }\\right)$\n2. $\\sum_{n=2}^\\infty\\left(\\frac{ 1 }{ n \\cdot 5^{n+1} }\\right)$\n3. $\\sum_{n=1}^\\infty\\left(\\frac{ 1 }{ n \\cdot 6^{n+3} }\\right)$\n4. $\\sum_{n=0}^\\infty\\left(\\frac{ 1 }{ (n+1) \\cdot (n+2) \\cdot 4^{n+2} }\\right)$\n5. $\\sum_{n=3}^\\infty\\left(\\frac{ 1 }{ n \\cdot (n+1) \\cdot 4^{n+3} }\\right)$",
"response": "1. $\\ln(2)$\n2. $\\frac{1}{5}\\cdot\\ln\\left(\\frac{5}{4}\\right)-\\frac{1}{25}$\n3. $\\frac{1}{216}\\cdot\\ln\\left(\\frac{6}{5}\\right)$\n4. $\\frac{ 3 }{ 4 } \\cdot \\ln\\left(\\frac{ 3 }{ 4 }\\right)+\\frac{ 1 }{ 4 }$\n5. $\\frac{3}{64}\\cdot\\ln\\left(\\frac{3}{4}\\right)+\\frac{83}{6144}$",
"system": ""
},
{
"prompt": "Find the Taylor series for $f(x)=\\frac{ x }{ (2+x)^3 }$, centered at $x=-1$. Write out the sum of the first four non-zero terms, followed by dots.",
"response": "This is the final answer to the problem: $x\\cdot\\left(1-3\\cdot(x+1)+6\\cdot(x+1)^2-10\\cdot(x+1)^3+\\cdots\\right)$=\r\n= $-1 + 4 (x + 1) - 9 (x + 1)^2 + 16 (x + 1)^3$\r\n",
"system": ""
},
{
"prompt": "Write the Taylor series for the function $f(x)=x \\cdot \\cos(2 \\cdot x)$ at the point $x=\\frac{ \\pi }{ 2 }$ up to the third term (zero or non-zero).",
"response": "This is the final answer to the problem: $-\\frac{\\pi}{2}-\\left(x-\\frac{\\pi}{2}\\right)+\\pi\\cdot\\left(x-\\frac{\\pi}{2}\\right)^2$",
"system": ""
},
{
"prompt": "Compute $\\int_{0}^{\\frac{ 1 }{ 3 }}{e^{-\\frac{ x^2 }{ 3 }} d x}$ with accuracy $0.00001$.",
"response": "This is the final answer to the problem: $0.32926$",
"system": ""
},
{
"prompt": "Find the moment of inertia of an isosceles triangle $I_{x}$ relative to its hypotenuse, if at each of its points the surface density is proportional to its distance to the hypotenuse.",
"response": "$I_{x}$ = $\\frac{k}{10}\\cdot a^5$",
"system": ""
},
{
"prompt": "Make full curve sketching of $y=\\ln\\left(\\left|\\frac{ 3 \\cdot x-2 }{ 3 \\cdot x+2 }\\right|\\right)$. Submit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
"response": "This is the final answer to the problem:\n\n1. The domain (in interval notation) $\\left(-\\infty,-\\frac{2}{3}\\right)\\cup\\left(-\\frac{2}{3},\\frac{2}{3}\\right)\\cup\\left(\\frac{2}{3},\\infty\\right)$\n2. Vertical asymptotes $x=\\frac{2}{3}, x=-\\frac{2}{3}$\n3. Horizontal asymptotes $y=0$\n4. Slant asymptotes None\n5. Intervals where the function is increasing $\\left(\\frac{2}{3},\\infty\\right), \\left(-\\infty,-\\frac{2}{3}\\right)$\n6. Intervals where the function is decreasing $\\left(-\\frac{2}{3},\\frac{2}{3}\\right)$\n7. Intervals where the function is concave up $\\left(-\\frac{2}{3},0\\right), \\left(-\\infty,-\\frac{2}{3}\\right)$\n8. Intervals where the function is concave down $\\left(0,\\frac{2}{3}\\right) \\cup \\left(\\frac{2}{3}, \\infty\\right)$\n9. Points of inflection $P(0,0)$",
"system": ""
},
{
"prompt": "The force of gravity $\\vec{F}$ acting on an object is given by $\\vec{F}=m \\cdot \\vec{g}$, where $m$ is the mass of the object (expressed in kilograms) and $\\vec{g}$ is acceleration resulting from gravity, with $\\left\\lVert\\vec{g}\\right\\rVert=9.8$ N/kg. A $2$-kg disco ball hangs by a chain from the ceiling of a room. \n\n1. Find the force of gravity $\\vec{F}$ acting on a disco ball and find its magnitude.\n2. Find the force of tension $\\vec{T}$ in the chain and its magnitude.\n\nExpress answers using standard unit vectors.",
"response": "1. $\\vec{F}$=$-19.6\\cdot\\vec{k}$; $\\left\\lVert\\vec{F}\\right\\rVert$=$19.6$\n2. $\\vec{T}$=$19.6\\cdot\\vec{k}$; $\\left\\lVert\\vec{T}\\right\\rVert$=$19.6$",
"system": ""
},
{
"prompt": "Find the derivative of the function $y=\\frac{ 2 \\cdot \\csc(x)-7 \\cdot \\sin(x) }{ 4 \\cdot \\left(\\cos(x)\\right)^5 }-\\frac{ 3 }{ 5 } \\cdot \\cot(2 \\cdot x)$.",
"response": "$y'$=$\\frac{6}{5\\cdot\\left(\\sin(2\\cdot x)\\right)^2}+\\frac{28\\cdot\\left(\\cos(x)\\right)^6-25\\cdot\\left(\\cos(x)\\right)^4-2\\cdot\\left(\\cos(x)\\right)^6\\cdot\\left(\\csc(x)\\right)^2}{4\\cdot\\left(\\cos(x)\\right)^{10}}$",
"system": ""
},
{
"prompt": "Find the derivative of the function $y=\\arcsin\\left(\\frac{ 2 \\cdot x }{ 1+x^2 }\\right)$.",
"response": "$y'$=$\\frac{2\\cdot\\left(1-x^2\\right)}{\\left|1-x^2\\right|\\cdot\\left(1+x^2\\right)}$",
"system": ""
},
{
"prompt": "Find the sum of the $\\sum_{n=0}^\\infty\\left(\\frac{ (-1)^n }{ (2 \\cdot n+1)! }\\right)$ with estimate error $0.01$.",
"response": "This is the final answer to the problem: $\\frac{101}{120}$",
"system": ""
},
{
"prompt": "For the function $f(x)=x^{11}-6 \\cdot x^{10}$, determine:\n\n1. Intervals where:\n1. $f$ is increasing\n2. $f$ is decreasing\n3. $f$ is concave up\n4. $f$ is concave down\n\n3. find:\n1. local minima\n2. local maxima\n3. the inflection points of $f$",
"response": "This is the final answer to the problem:1. Intervals where:\n1. $f$ is increasing: $\\left(\\frac{60}{11},\\infty\\right), (-\\infty,0)$\n2. $f$ is decreasing: $\\left(0,\\frac{60}{11}\\right)$\n3. $f$ is concave up: $\\left(\\frac{54}{11},\\infty\\right)$\n4. $f$ is concave down: $\\left(0,\\frac{54}{11}\\right), (-\\infty,0)$\n\n3. find:\n1. local minima: $\\frac{60}{11}$\n2. local maxima: $0$\n3. the inflection points of $f$: $P\\left(\\frac{54}{11},-\\frac{2529990231179046912}{285311670611}\\right)$",
"system": ""
},
{
"prompt": "Consider points $P$$P(3,7,-2)$ and $Q$$P(1,1,-3)$. Determine the angle between vectors $\\vec{OP}$ and $\\vec{OQ}$. Express the answer in radians rounded to two decimal places.",
"response": "$\\theta$ =$0.91$",
"system": ""
},
{
"prompt": "Consider points $P$$P(3,7,-2)$ and $Q$$P(1,1,-3)$. Determine the angle between vectors $\\vec{OP}$ and $\\vec{OQ}$. Express the answer in radians rounded to two decimal places.",
"response": "$\\theta$ =$0.91$",
"system": ""
},
{
"prompt": "Find the Fourier expansion of this function: $f(x)=x^2$ at $(-\\pi,\\pi)$.",
"response": "The Fourier series is: $f(x)=\\frac{\\pi^2}{3}+4\\cdot\\sum_{n=1}^\\infty\\left(\\frac{(-1)^{n}\\cdot\\cos(n\\cdot x)}{n^2}\\right)$",
"system": ""
},
{
"prompt": "Find the Fourier expansion of this function: $f(x)=x^2$ at $(-\\pi,\\pi)$.",
"response": "The Fourier series is: $f(x)=\\frac{\\pi^2}{3}+4\\cdot\\sum_{n=1}^\\infty\\left(\\frac{(-1)^{n}\\cdot\\cos(n\\cdot x)}{n^2}\\right)$",
"system": ""
},
{
"prompt": "Write the Taylor series for the function $f(x)=x \\cdot \\sin(2 \\cdot x)$ at the point $x=\\pi$ up to the third term (zero or non-zero).",
"response": "This is the final answer to the problem: $0+2\\cdot\\pi\\cdot(x-\\pi)+\\frac{4}{2}\\cdot(x-\\pi)^2$",
"system": ""
},
{
"prompt": "Write the Taylor series for the function $f(x)=x \\cdot \\sin(2 \\cdot x)$ at the point $x=\\pi$ up to the third term (zero or non-zero).",
"response": "This is the final answer to the problem: $0+2\\cdot\\pi\\cdot(x-\\pi)+\\frac{4}{2}\\cdot(x-\\pi)^2$",
"system": ""
},
{
"prompt": "Compute the second derivative $\\frac{d ^2y}{ d x^2}$ for the parametrically defined function $x=2 \\cdot \\cos(3 \\cdot t)$, $y=\\sin(2 \\cdot t)$.",
"response": "$\\frac{d ^2y}{ d x^2}$=$-\\frac{24\\cdot\\sin(2\\cdot t)\\cdot\\sin(3\\cdot t)+36\\cdot\\cos(2\\cdot t)\\cdot\\cos(3\\cdot t)}{216\\cdot\\left(\\sin(3\\cdot t)\\right)^3}$",
"system": ""
},
{
"prompt": "Compute the second derivative $\\frac{d ^2y}{ d x^2}$ for the parametrically defined function $x=2 \\cdot \\cos(3 \\cdot t)$, $y=\\sin(2 \\cdot t)$.",
"response": "$\\frac{d ^2y}{ d x^2}$=$-\\frac{24\\cdot\\sin(2\\cdot t)\\cdot\\sin(3\\cdot t)+36\\cdot\\cos(2\\cdot t)\\cdot\\cos(3\\cdot t)}{216\\cdot\\left(\\sin(3\\cdot t)\\right)^3}$",
"system": ""
},
{
"prompt": "Compute the integral $\\int{\\frac{ 6 \\cdot x^3-7 \\cdot x^2+3 \\cdot x-1 }{ 2 \\cdot x-3 \\cdot x^2 } d x}$.",
"response": "Answer is:$-x^2+x-\\frac{1}{3}\\cdot\\ln\\left(\\left|x-\\frac{2}{3}\\right|\\right)+\\frac{1}{2}\\cdot\\ln\\left(\\left|1-\\frac{2}{3\\cdot x}\\right|\\right)+C$",
"system": ""
},
{
"prompt": "Solve the following equations: 1. $-t+(5 t-7)=-5$\n2. $21-3 (2-w)=-12$\n3. $9=8 b-(2 b-3)$\n4. $4.5 r-2 r+3 (r-1)=10.75$\n5. $1.2 (x-8)+2.4 (x+1)=7.2$\n6. $4.9 m+(-3.2 m)-13=-2.63$\n7. $4 (2.25 w+3.1)-2.75 w=44.9$",
"response": "The solutions to the given equations are: 1. $t=\\frac{ 1 }{ 2 }$\n2. $w=-9$\n3. $b=1$\n4. $r=\\frac{ 5 }{ 2 }$\n5. $x=4$\n6. $m=\\frac{ 61 }{ 10 }$\n7. $w=\\frac{ 26 }{ 5 }$",
"system": ""
},
{
"prompt": "Compute the integral $\\int{\\frac{ \\sqrt{1+x^2} }{ x } d x}$.",
"response": "$\\int{\\frac{ \\sqrt{1+x^2} }{ x } d x}$ =$\\sqrt{x^2+1}+\\frac{1}{2}\\cdot\\ln\\left(\\left|\\frac{\\sqrt{x^2+1}-1}{\\sqrt{x^2+1}+1}\\right|\\right)+C$",
"system": ""
},
{
"prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of function $\\sqrt{x+2}$ with the center $a=1$.",
"response": "$\\sqrt{x+2}$ =$\\sum_{n=0}^\\infty\\left(3^{\\frac{1}{2}-n}\\cdot C_{\\frac{1}{2}}^n\\cdot(x-1)^n\\right)$",
"system": ""
},
{
"prompt": "Given that $\\frac{ 1 }{ 1-x }=\\sum_{n=0}^\\infty x^n$ , use term-by-term differentiation or integration to find power series for function $f(x)=\\ln(x)$ centered at $x=1$ .",
"response": "$\\ln(x)$ =$\\sum_{n=0}^\\infty\\left((-1)^n\\cdot\\frac{(x-1)^{n+1}}{n+1}\\right)$",
"system": ""
},
{
"prompt": "Compute the integral $\\int{\\frac{ \\tan(x) }{ \\sqrt{\\sin(x)^4+\\cos(x)^4} } d x}$.",
"response": "$\\int{\\frac{ \\tan(x) }{ \\sqrt{\\sin(x)^4+\\cos(x)^4} } d x}$ =$\\frac{1}{2}\\cdot\\ln\\left(\\tan(x)^2+\\sqrt{\\tan(x)^4+1}\\right)+C$",
"system": ""
},
{
"prompt": "Find the first derivative of the function: $y=\\left(3 \\cdot a^2-2 \\cdot a \\cdot b \\cdot x+\\frac{ 5 }{ 3 } \\cdot b^2 \\cdot x^2\\right) \\cdot \\sqrt[3]{\\left(\\frac{ a }{ 3 }+\\frac{ b }{ 3 } \\cdot x\\right)^2}$.",
"response": "The first derivative is:$\\frac{40\\cdot b^3\\cdot x^2}{9\\cdot3^{\\frac{2}{3}}\\cdot\\sqrt[3]{a+b\\cdot x}}$",
"system": ""
},
{
"prompt": "Find a “reasonable” upper-bound on the error in approximating $f(x)=x \\cdot \\ln(x)$ by its 3rd order Taylor polynomial $P_{3}(x)$ at $a=1$ valid for all values of $x$ such that $|x-1| \\le 0.7$.",
"response": "This is the final answer to the problem: $\\frac{2}{(0.3)^3}\\cdot\\frac{(0.7)^4}{4!}$",
"system": ""
},
{
"prompt": "A projectile is shot in the air from ground level with an initial velocity of $500$ m/sec at an angle of $60$ with the horizontal. What is the maximum range? Round your answer to one decimal digit.",
"response": "Answer: $22092.5$ m",
"system": ""
},
{
"prompt": "Sketch the curve: \n\n$y=2 \\cdot x \\cdot \\sqrt{3-x^2}$. \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
"response": "This is the final answer to the problem: \n1. The domain (in interval notation): $\\left[-1\\cdot3^{2^{-1}},3^{2^{-1}}\\right]$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(-\\sqrt{\\frac{3}{2}},\\sqrt{\\frac{3}{2}}\\right)$\n6. Intervals where the function is decreasing: $\\left(\\sqrt{\\frac{3}{2}},3^{2^{-1}}\\right), \\left(-3^{2^{-1}},-\\sqrt{\\frac{3}{2}}\\right)$\n7. Intervals where the function is concave up: $\\left(-3^{2^{-1}},0\\right)$\n8. Intervals where the function is concave down: $\\left(0,3^{2^{-1}}\\right)$\n9. Points of inflection: $P(0,0)$",
"system": ""
},
{
"prompt": "For the curve $x=a\\left(t-\\sin(t)\\right)$, $y=a\\left(1-\\cos(t)\\right)$ determine the curvature. Use $a=10$.",
"response": "The curvature is:$\\frac{1}{40\\cdot\\left|\\sin\\left(\\frac{t}{2}\\right)\\right|}$",
"system": ""
},
{
"prompt": "Compute $\\sqrt[3]{130}$ with accuracy $0.0001$.",
"response": "This is the final answer to the problem: $5.0658$",
"system": ""
},
{
"prompt": "Compute the integral: $\\int{\\frac{ x }{ \\left(x^2-4 \\cdot x+8\\right)^2 } d x}$.",
"response": "$\\int{\\frac{ x }{ \\left(x^2-4 \\cdot x+8\\right)^2 } d x}$ =$C+\\frac{x-2}{2\\cdot\\left(8+2\\cdot(x-2)^2\\right)}+\\frac{1}{8}\\cdot\\arctan\\left(\\frac{1}{2}\\cdot(x-2)\\right)-\\frac{1}{2\\cdot\\left(x^2-4\\cdot x+8\\right)}$",
"system": ""
},
{
"prompt": "Determine the Taylor series for $y=\\left(\\sin(x)\\right)^2$, centered at $x_{0}=\\frac{ \\pi }{ 2 }$. Write out the sum of the first three non-zero terms, followed by dots.",
"response": "This is the final answer to the problem: $1-\\frac{2}{2!}\\cdot\\left(x-\\frac{\\pi}{2}\\right)^2+\\frac{2^3}{4!}\\cdot\\left(x-\\frac{\\pi}{2}\\right)^4+\\cdots$",
"system": ""
},
{
"prompt": "Compute the integral: $\\int{\\frac{ \\sin(x)^4 }{ \\cos(x) } d x}$.",
"response": "$\\int{\\frac{ \\sin(x)^4 }{ \\cos(x) } d x}$ =$C-\\frac{1}{2}\\cdot\\ln\\left(\\left|\\frac{1-\\sin(x)}{1+\\sin(x)}\\right|\\right)-\\frac{1}{3}\\cdot\\left(\\sin(x)\\right)^3-\\sin(x)$",
"system": ""
},
{
"prompt": "Find the Fourier series of the function $f(x)=\\frac{ -1 }{ 2 } \\cdot x$ in the interval $[-2,2]$.",
"response": "The Fourier series is: $\\sum_{n=1}^\\infty\\left(\\frac{2\\cdot(-1)^n}{\\pi\\cdot n}\\cdot\\sin\\left(\\frac{\\pi\\cdot n\\cdot x}{2}\\right)\\right)$",
"system": ""
},
{
"prompt": "Find the moment of inertia of one arch of the cycloid $x=3 \\cdot a \\cdot \\left(\\frac{ t }{ 2 }-\\sin\\left(\\frac{ t }{ 2 }\\right)\\right)$, $y=3 \\cdot a \\cdot \\left(1-\\cos\\left(\\frac{ t }{ 2 }\\right)\\right)$ relative to the x-axis.",
"response": "Moment of Inertia: $\\frac{1152}{5}\\cdot a^3$",
"system": ""
},
{
"prompt": "Find the tangential and normal components of acceleration if $\\vec{r}(t)=\\left\\langle 6 \\cdot t,3 \\cdot t^2,2 \\cdot t^3 \\right\\rangle$",
"response": "$a_{T}$ =$\\frac{12\\cdot t^3+6\\cdot t}{\\sqrt{t^4+t^2+1}}$ ; $a_{N}$ = $\\frac{6\\cdot\\sqrt{t^4+4\\cdot t^2+1}}{\\sqrt{t^4+t^2+1}}$",
"system": ""
},
{
"prompt": "Find $\\frac{ d y }{d x}$, given $y=\\tan(2 \\cdot v)$ and $v=\\arctan(2 \\cdot x-1)$.",
"response": "This is the final answer to the problem: $\\frac{dy}{dx}=\\frac{2\\cdot x^2-2\\cdot x+1}{2\\cdot\\left(x-x^2\\right)^2}$",
"system": ""
},
{
"prompt": "Find $\\frac{ d y }{d x}$, given $y=\\tan(2 \\cdot v)$ and $v=\\arctan(2 \\cdot x-1)$.",
"response": "This is the final answer to the problem: $\\frac{dy}{dx}=\\frac{2\\cdot x^2-2\\cdot x+1}{2\\cdot\\left(x-x^2\\right)^2}$",
"system": ""
},
{
"prompt": "Let $z=e^{1-x \\cdot y}$, $x=t^{\\frac{ 1 }{ 3 }}$, $y=t^3$. Find $\\frac{ d z }{d t}$.",
"response": "$\\frac{ d z }{d t}$ =$\\frac{-(10\\cdot e)}{3}\\cdot e^{-t^3\\cdot\\sqrt[3]{t}}\\cdot t^2\\cdot\\sqrt[3]{t}$",
"system": ""
},
{
"prompt": "Find the derivative of the function: $y=-3 \\cdot x^{\\sqrt[3]{2 \\cdot x}}$.",
"response": "$\\frac{ d y }{d x}$ =$-\\left(\\frac{3\\cdot\\sqrt[3]{2}}{x^{\\frac{2}{3}}}+\\frac{\\sqrt[3]{2}\\cdot\\ln(x)}{x^{\\frac{2}{3}}}\\right)\\cdot x^{\\sqrt[3]{2}\\cdot\\sqrt[3]{x}}$",
"system": ""
},
{
"prompt": "Let $R$ be the region bounded by the graphs of $y=\\frac{ 1 }{ x+2 }$ and $y=-\\frac{ 1 }{ 2 } \\cdot x+3$.\n\nFind the volume of the solid generated when $R$ is rotated about the vertical line $x=-3$.",
"response": "The volume of the solid is $292.097$ units³.",
"system": ""
},
{
"prompt": "Find zeros of $f(x)=\\sin(x)+\\sin(2 \\cdot x)+2 \\cdot \\sin(x) \\cdot \\sin(2 \\cdot x)-2 \\cdot \\cos(x)-\\cos(2 \\cdot x)$.",
"response": "This is the final answer to the problem: $x_1=-\\frac{\\pi}{2}+2\\cdot\\pi\\cdot n, x_2=-\\frac{2\\cdot\\pi}{3}+2\\cdot\\pi\\cdot n, x_3=\\frac{2\\cdot\\pi}{3}+2\\cdot\\pi\\cdot n, x_4=(-1)^n\\cdot\\frac{\\pi}{6}+\\pi\\cdot n$",
"system": ""
},
{
"prompt": "Find the Fourier series of the function $\\psi(x)=e^{-x}$ in the interval $(-2 \\cdot \\pi,\\pi \\cdot 2)$.",
"response": "The Fourier series is: $e^{-x}=\\frac{\\left(e^{2\\cdot\\pi}-e^{-2\\cdot\\pi}\\right)}{\\pi}\\cdot\\left(\\frac{1}{4}+\\sum_{n=1}^\\infty\\left(\\frac{(-1)^n}{4+n^2}\\cdot\\left(2\\cdot\\cos\\left(\\frac{n}{2}\\cdot x\\right)+n\\cdot\\sin\\left(\\frac{n}{2}\\cdot x\\right)\\right)\\right)\\right)$",
"system": ""
},
{
"prompt": "Find the Fourier series of the function $\\psi(x)=e^{-x}$ in the interval $(-2 \\cdot \\pi,\\pi \\cdot 2)$.",
"response": "The Fourier series is: $e^{-x}=\\frac{\\left(e^{2\\cdot\\pi}-e^{-2\\cdot\\pi}\\right)}{\\pi}\\cdot\\left(\\frac{1}{4}+\\sum_{n=1}^\\infty\\left(\\frac{(-1)^n}{4+n^2}\\cdot\\left(2\\cdot\\cos\\left(\\frac{n}{2}\\cdot x\\right)+n\\cdot\\sin\\left(\\frac{n}{2}\\cdot x\\right)\\right)\\right)\\right)$",
"system": ""
},
{
"prompt": "Using the series expansion for the function $(1+x)^m$ calculate approximately $\\sqrt[3]{7}$ with accuracy 0.0001.",
"response": "This is the final answer to the problem: $1.9129$",
"system": ""
},
{
"prompt": "Using the series expansion for the function $(1+x)^m$ calculate approximately $\\sqrt[3]{7}$ with accuracy 0.0001.",
"response": "This is the final answer to the problem: $1.9129$",
"system": ""
},
{
"prompt": "Given $y=3 \\cdot x^5+20 \\cdot x^4+40 \\cdot x^3+100$ find where the function is concave up, down, and point(s) of inflection.",
"response": "Concave up:$(0,\\infty)$Concave down:$(-2,0), (-\\infty,-2)$Point(s) of Inflection:$P(0,100)$",
"system": ""
},
{
"prompt": "Compute the integral: $\\int{\\frac{ -12 }{ \\sin(6 \\cdot x)^6 } d x}$.",
"response": "$\\int{\\frac{ -12 }{ \\sin(6 \\cdot x)^6 } d x}$ =$C+2\\cdot\\cot(6\\cdot x)+\\frac{2}{5}\\cdot\\left(\\cot(6\\cdot x)\\right)^5+\\frac{4}{3}\\cdot\\left(\\cot(6\\cdot x)\\right)^3$",
"system": ""
},
{
"prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of the function $x^{\\frac{ 1 }{ 3 }}$ with the center $a=27$.",
"response": "$x^{\\frac{ 1 }{ 3 }}$ =$\\sum_{n=0}^\\infty\\left(3^{1-3\\cdot n}\\cdot C_n^{\\frac{1}{3}}\\cdot(x-27)^n\\right)$",
"system": ""
},
{
"prompt": "Evaluate the integral: $I=\\int{3 \\cdot x \\cdot \\ln\\left(4+\\frac{ 1 }{ x }\\right) d x}$.",
"response": "This is the final answer to the problem: $\\left(\\frac{3}{2}\\cdot x^2\\cdot\\ln(4\\cdot x+1)-\\frac{3\\cdot x^2}{4}+\\frac{3\\cdot x}{8}-\\frac{3}{32}\\cdot\\ln\\left(x+\\frac{1}{4}\\right)\\right)-\\left(\\frac{3}{2}\\cdot x^2\\cdot\\ln(x)-\\left(C+\\frac{3}{4}\\cdot x^2\\right)\\right)$",
"system": ""
},
{
"prompt": "Find the Fourier series of the function $\\psi(x)=e^{-x}$ in the interval $(-\\pi,\\pi)$.",
"response": "The Fourier series is: $e^{-x}=\\frac{e^\\pi-e^{-\\pi}}{2\\cdot\\pi}\\cdot\\left(\\frac{1}{2}+\\sum_{n=1}^\\infty\\left(\\frac{(-1)^n}{1+n^2}\\cdot\\left(\\cos(n\\cdot x)+n\\cdot\\sin(n\\cdot x)\\right)\\right)\\right)$",
"system": ""
},
{
"prompt": "Sketch the curve: \n\n$y=3 \\cdot x \\cdot \\sqrt{2-x^2}$. \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
"response": "This is the final answer to the problem: \n1. The domain (in interval notation): $\\left[-1\\cdot2^{2^{-1}},2^{2^{-1}}\\right]$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $(-1,1)$\n6. Intervals where the function is decreasing: $\\left(-2^{2^{-1}},-1\\right), \\left(1,2^{2^{-1}}\\right)$\n7. Intervals where the function is concave up: $\\left(-2^{2^{-1}},0\\right)$\n8. Intervals where the function is concave down: $\\left(0,2^{2^{-1}}\\right)$\n9. Points of inflection: $P(0,0)$",
"system": ""
},
{
"prompt": "Determine the Taylor series for $f(x)=\\frac{ 2 \\cdot x-1 }{ x^2-3 \\cdot x+2 }$, centered at $x_{0}=4$. Write out the sum of the first four non-zero terms, followed by dots.",
"response": "This is the final answer to the problem: $\\frac{7}{6}+\\left(\\frac{1}{3^2}-\\frac{3}{2^2}\\right)\\cdot(x-4)-\\left(\\frac{1}{3^3}-\\frac{3}{2^3}\\right)\\cdot(x-4)^2+\\left(\\frac{1}{3^4}-\\frac{3}{2^4}\\right)\\cdot(x-4)^3+\\cdots$",
"system": ""
},
{
"prompt": "Find the 3rd order Taylor polynomial $P_{3}(x)$ for the function $f(x)=\\arctan(x)$ in powers of $x-1$ and give the Lagrange form of the remainder.",
"response": "$P_{3}(x)$=$\\frac{ \\pi }{ 4 }+\\frac{ 1 }{ 2 } \\cdot (x-1)-\\frac{ 1 }{ 4 } \\cdot (x-1)^2+\\frac{ 1 }{ 12 } \\cdot (x-1)^3$ \n\n$R_{3}(x)$=$\\frac{ -\\frac{ 48 \\cdot c^3 }{ \\left(1+c^2\\right)^4 }+\\frac{ 24 \\cdot c }{ \\left(1+c^2\\right)^3 } }{ 4! } \\cdot (x-1)^4$",
"system": ""
},
{
"prompt": "Find the area of the surface formed by rotating the arc of the circle $x^2+y^2=1$ between the points $(1,0)$ and $(0,1)$ in the first quadrant, around the line $x+y=1$.",
"response": "This is the final answer to the problem: $\\frac{4\\cdot\\pi-\\pi^2}{\\sqrt{2}}$",
"system": ""
},
{
"prompt": "Expand the function: $y=\\ln\\left(x+\\sqrt{1+x^2}\\right)$ in a power series.",
"response": "This is the final answer to the problem: $x-\\frac{1}{2}\\cdot\\frac{x^3}{3}+\\frac{1\\cdot3}{4\\cdot2}\\cdot\\frac{x^5}{5}-\\frac{1\\cdot3\\cdot5}{2\\cdot4\\cdot6}\\cdot\\frac{x^7}{7}+\\cdots+\\frac{(2\\cdot n-1)!!}{(2\\cdot n)!!}\\cdot\\frac{x^{2\\cdot n+1}}{2\\cdot n+1}+\\cdots$",
"system": ""
},
{
"prompt": "Apply the gradient descent algorithm to the function $g(x,y)=\\left(x^2-1\\right) \\cdot \\left(x^2-3 \\cdot x+1\\right)+y^2$ with step size $\\frac{ 1 }{ 5 }$ and initial guess $p_{0}$=$\\left\\langle 0,0 \\right\\rangle$ for three steps (so steps $p_{1}$, $p_{2}$, and $p_{3}$).",
"response": "| $i$ | $1$ | $2$ | $3$ |\n| --- | --- | --- | --- |\n| $p_{i}$ | $\\left\\langle-\\frac{3}{5},0\\right\\rangle$ | $\\left\\langle-\\frac{237}{625},0\\right\\rangle$ | $\\left\\langle-\\frac{826\\ 113\\ 663}{1\\ 220\\ 703\\ 125},0\\right\\rangle$ |\n| $g\\left(p_{i}\\right)$ | $-\\frac{1264}{625}$ | $-\\frac{99667587}{1220703125}$ |$-\\frac{2760602760604515522296126283436630289590864}{2220446049250313080847263336181640625}$ |",
"system": ""
},
{
"prompt": "Find the Fourier integral of the function $q(x)=\\begin{cases} 0, & x<0 \\\\ \\pi \\cdot x, & 0 \\le x \\le 2 \\\\ 0, & x>2 \\end{cases}$.",
"response": "$q(x)$ = $\\int_0^\\infty\\left(\\frac{\\left(2\\cdot\\alpha\\cdot\\sin\\left(2\\cdot\\alpha\\right)+\\cos\\left(2\\cdot\\alpha\\right)-1\\right)\\cdot\\cos\\left(\\alpha\\cdot x\\right)+\\left(\\sin\\left(2\\cdot\\alpha\\right)-2\\cdot\\alpha\\cdot\\cos\\left(2\\cdot\\alpha\\right)\\right)\\cdot\\sin\\left(\\alpha\\cdot x\\right)}{\\alpha^2}\\right)d\\alpha$",
"system": ""
},
{
"prompt": "Find the derivative of $y=\\sin(2 \\cdot x) \\cdot \\cos(3 \\cdot x)-\\frac{ \\ln(x-1) }{ \\ln(x+1) }+c$",
"response": "This is the final answer to the problem: $y'=2\\cdot\\cos(5\\cdot x)-\\sin(3\\cdot x)\\cdot\\sin(2\\cdot x)-\\frac{(x+1)\\cdot\\ln(x+1)-(x-1)\\cdot\\ln(x-1)}{(x-1)\\cdot(x+1)\\cdot\\left(\\ln(x+1)\\right)^2}$",
"system": ""
},
{
"prompt": "Find the derivative of $y=\\sin(2 \\cdot x) \\cdot \\cos(3 \\cdot x)-\\frac{ \\ln(x-1) }{ \\ln(x+1) }+c$",
"response": "This is the final answer to the problem: $y'=2\\cdot\\cos(5\\cdot x)-\\sin(3\\cdot x)\\cdot\\sin(2\\cdot x)-\\frac{(x+1)\\cdot\\ln(x+1)-(x-1)\\cdot\\ln(x-1)}{(x-1)\\cdot(x+1)\\cdot\\left(\\ln(x+1)\\right)^2}$",
"system": ""
},
{
"prompt": "Compute the integral: $\\int{\\frac{ 1 }{ (x+4) \\cdot \\sqrt{x^2+2 \\cdot x+5} } d x}$.",
"response": "$\\int{\\frac{ 1 }{ (x+4) \\cdot \\sqrt{x^2+2 \\cdot x+5} } d x}$ =$C+\\frac{1}{\\sqrt{13}}\\cdot\\ln\\left(\\sqrt{13}-4-x-\\sqrt{x^2+2\\cdot x+5}\\right)-\\frac{1}{\\sqrt{13}}\\cdot\\ln\\left(4+\\sqrt{13}+x+\\sqrt{x^2+2\\cdot x+5}\\right)$",
"system": ""
},
{
"prompt": "Consider points $A$$P(3,-1,2)$, $B$$P(2,1,5)$, and $C$$P(1,-2,-2)$.\n\n1. Find the area of parallelogram ABCD with adjacent sides $\\vec{AB}$ and $\\vec{AC}$.\n2. Find the area of triangle ABC.\n3. Find the distance from point $A$ to line BC.",
"response": "1. $A$=$5\\cdot\\sqrt{6}$\n2. $A$=$\\frac{5\\cdot\\sqrt{6}}{2}$\n3. $d$=$\\frac{5\\cdot\\sqrt{6}}{\\sqrt{59}}$",
"system": ""
},
{
"prompt": "Find the generalized center of mass between $y=b \\cdot \\sin(a \\cdot x)$, $x=0$, and $x=\\frac{ \\pi }{ a }$ . Then, use the Pappus theorem to find the volume of the solid generated when revolving around the $y$-axis.",
"response": "$(x,y)$ = $P\\left(\\frac{\\pi}{2\\cdot a},\\frac{\\pi\\cdot b}{8}\\right)$ \n\n$V$ = $\\frac{2\\cdot\\pi^2\\cdot b}{a^2}$",
"system": ""
},
{
"prompt": "Find the equation of the tangent line to the curve: $r=3+\\cos(2 \\cdot t)$, $t=\\frac{ 3 \\cdot \\pi }{ 4 }$.",
"response": "$y$ = $\\frac{1}{5}\\cdot\\left(x+\\frac{3}{\\sqrt{2}}\\right)+\\frac{3}{\\sqrt{2}}$",
"system": ""
},
{
"prompt": "Find and classify all critical points of the function $f(x,y)=x \\cdot y \\cdot (1-7 \\cdot x-9 \\cdot y)$.",
"response": "Points of local minima: None.\n\nPoints of local maxima: $P\\left(\\frac{1}{21},\\frac{1}{27}\\right)$.\n\nSaddle points: $P\\left(0,\\frac{1}{9}\\right), P\\left(\\frac{1}{7},0\\right), P(0,0)$.",
"system": ""
},
{
"prompt": "When hired at a new job selling electronics, you are given two pay options:\n\nOption A: Base salary of $20\\ 000$ USD a year with a commission of $12$ percent of your sales.\n\nOption B: Base salary of $26\\ 000$ USD a year with a commission of $3$ percent of your sales.\n\nHow much electronics would you need to sell for Option A to produce a larger income? Give your answer either exactly or rounded to two decimal places.",
"response": "This is the final answer to the problem: $66666.67$",
"system": ""
},
{
"prompt": "Find $\\frac{d ^3}{ d x^3}f(x)$, given $f(x)=\\ln\\left(\\frac{ x+7 }{ x-7 }\\right)$.",
"response": "This is the final answer to the problem: $\\frac{d^3}{dx^3}f(x)=-\\frac{84\\cdot x^2+1372}{\\left(x^2-49\\right)^3}$",
"system": ""
}
]
} |