File size: 45,605 Bytes
5b60e22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
{
  "dataset_name": "Mu-Math",
  "group_index": 2,
  "source_file": "/hkfs/work/workspace/scratch/tum_fmp0582-dndworkspace/自己训练lora/prepare/data/math/Mu-Math.json",
  "selected_indices": [
    5,
    10,
    30,
    32,
    36,
    45,
    68,
    78,
    79,
    95,
    119,
    127,
    132,
    156,
    180,
    195,
    197,
    219,
    234,
    248,
    261,
    265,
    267,
    269,
    289,
    302,
    320,
    321,
    326,
    333,
    337,
    339,
    344,
    349,
    369,
    376,
    377,
    378,
    384,
    400,
    402,
    414,
    425,
    433,
    440,
    445,
    447,
    453,
    455,
    472,
    487,
    491,
    519,
    531,
    540,
    542,
    598,
    610,
    618,
    673,
    674,
    700,
    701,
    703,
    705,
    712,
    725,
    744,
    748,
    749,
    750,
    752,
    774,
    784,
    809,
    825,
    829,
    831,
    835,
    836,
    847,
    860,
    878,
    887,
    889,
    892,
    894,
    904,
    929,
    943,
    956,
    965,
    982,
    997,
    1038,
    1040,
    1042,
    1045,
    1062,
    1067
  ],
  "total_records": 1084,
  "sample_count": 100,
  "generated_at": "2025-11-05T12:58:28Z",
  "seed": 4171135963,
  "samples": [
    {
      "prompt": "Given $f(x)=x^2+\\frac{ 16 }{ x^2 }$, find the intervals where $f$ increases and the intervals where $f$ is decreasing.",
      "response": "$f$ is increasing on the intervals: $(2,\\infty), (-2,0)$\n\n$f$ is decreasing on the intervals: $(-\\infty,-2), (0,2)$  ",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series of the periodic function $f(x)=x^2$ in the interval $-2 \\cdot \\pi \\le x<2 \\cdot \\pi$  if $f(x)=f(x+4 \\cdot \\pi)$.",
      "response": "The Fourier series is: $\\frac{4\\cdot\\pi^2}{3}+\\sum_{n=1}^\\infty\\left(\\frac{16\\cdot(-1)^n}{n^2}\\cdot\\cos\\left(\\frac{n\\cdot x}{2}\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $-2 \\cdot \\int{x^{-4} \\cdot \\left(4+x^2\\right)^{\\frac{ 1 }{ 2 }} d x}$.",
      "response": "$-2 \\cdot \\int{x^{-4} \\cdot \\left(4+x^2\\right)^{\\frac{ 1 }{ 2 }} d x}$ =$C+\\frac{1}{6}\\cdot\\left(\\frac{4}{x^2}+1\\right)\\cdot\\sqrt{\\frac{4}{x^2}+1}$",
      "system": ""
    },
    {
      "prompt": "Determine the intervals of upward concavity and downward concavity for the function $f(x)=e^x \\cdot \\left(x^2-1\\right)$.",
      "response": "1. Interval(s) of upward concavity: $\\left(\\frac{2\\cdot\\sqrt{3}-4}{2},\\infty\\right), \\left(-\\infty,-\\frac{4+2\\cdot\\sqrt{3}}{2}\\right)$\n2. Interval(s) of downward concavity: $\\left(-\\frac{4+2\\cdot\\sqrt{3}}{2},\\frac{2\\cdot\\sqrt{3}-4}{2}\\right)$",
      "system": ""
    },
    {
      "prompt": "Region $R$ is the region in the first quadrant bounded by the graphs of $y=2 \\cdot x$ and $y=x^2$.\n\n1. Write, but do not evaluate, an integral expression that gives the volume of the solid generated from revolving the region $R$ about the vertical line $x=3$.\n2. Write, but do not evaluate, an integral expression that gives the volume of the solid generated from revolving the region $R$ about the vertical line $x=-2$.",
      "response": "1. $V$ = $\\int_0^4\\pi\\cdot\\left(\\left(3-\\frac{1}{2}\\cdot y\\right)^2-\\left(3-\\sqrt{y}\\right)^2\\right)dy$\n2. $V$ = $\\int_0^4\\pi\\cdot\\left(\\left(-2-\\sqrt{y}\\right)^2-\\left(-2-\\frac{1}{2}\\cdot y\\right)^2\\right)dy$",
      "system": ""
    },
    {
      "prompt": "Solve the following equations: 1. $8.6=6 j+4 j$\n2. $12 z-(4 z+6)=82$\n3. $5.4 d-2.3 d+3 (d-4)=16.67$\n4. $2.6 f-1.3 (3 f-4)=6.5$\n5. $-5.3 m+(-3.9 m)-17=-94.28$\n6. $6 (3.5 y+4.2)-2.75 y=134.7$",
      "response": "The solutions to the given equations are: 1. $j=0.86$\n2. $z=11$\n3. $d=\\frac{ 47 }{ 10 }$\n4. $f=-1$\n5. $m=\\frac{ 42 }{ 5 }$\n6. $y=6$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=\\sqrt{\\frac{ 27-x^3 }{ 2 \\cdot x }}$.  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $(0,3]$\n2. Vertical asymptotes: $x=0$\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: None\n6. Intervals where the function is decreasing: $(0,3]$\n7. Intervals where the function is concave up: $\\left(0,\\frac{3}{\\sqrt[3]{4}}\\right)$\n8. Intervals where the function is concave down: $\\left(\\frac{3}{\\sqrt[3]{4}},3\\right)$\n9. Points of inflection: $P\\left(\\frac{3}{\\sqrt[3]{4}},2.3146\\right)$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\frac{ \\cos(x)^3 }{ \\sin(x)^9 } d x}$.",
      "response": "$\\int{\\frac{ \\cos(x)^3 }{ \\sin(x)^9 } d x}$ =$C-\\left(\\frac{1}{3}\\cdot\\left(\\cot(x)\\right)^6+\\frac{1}{4}\\cdot\\left(\\cot(x)\\right)^4+\\frac{1}{8}\\cdot\\left(\\cot(x)\\right)^8\\right)$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\frac{ \\cos(x)^3 }{ \\sin(x)^9 } d x}$.",
      "response": "$\\int{\\frac{ \\cos(x)^3 }{ \\sin(x)^9 } d x}$ =$C-\\left(\\frac{1}{3}\\cdot\\left(\\cot(x)\\right)^6+\\frac{1}{4}\\cdot\\left(\\cot(x)\\right)^4+\\frac{1}{8}\\cdot\\left(\\cot(x)\\right)^8\\right)$",
      "system": ""
    },
    {
      "prompt": "Consider the differential equation $\\frac{ d y }{d x}=\\frac{ 4+y }{ x }$. Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(3)=-3$.",
      "response": "$y$ = $\\frac{|x|}{3}-4$",
      "system": ""
    },
    {
      "prompt": "Calculate integral: $I=\\int{4 \\cdot \\cos\\left(3 \\cdot \\ln(2 \\cdot x)\\right) d x}$.",
      "response": "This is the final answer to the problem: $\\frac{1}{10}\\cdot\\left(C+4\\cdot x\\cdot\\cos\\left(3\\cdot\\ln(2\\cdot x)\\right)+12\\cdot x\\cdot\\sin\\left(3\\cdot\\ln(2\\cdot x)\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Calculate integral: $\\int_{\\frac{ 1 }{ 2 }}^{\\frac{ \\sqrt{3} }{ 2 }}{\\frac{ 1 }{ x \\cdot \\sqrt{9-9 \\cdot x^2} } d x}$.",
      "response": "$$\\int_{\\frac{ 1 }{ 2 }}^{\\frac{ \\sqrt{3} }{ 2 }}{\\frac{ 1 }{ x \\cdot \\sqrt{9-9 \\cdot x^2} } d x}=\\frac{1}{6}\\ln\\left(\\frac{7}{3}+\\frac{4}{\\sqrt{3}}\\right)$$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ 10 \\cdot x-8 }{ \\sqrt{2 \\cdot x^2+4 \\cdot x+10} } d x}$.",
      "response": "$\\int{\\frac{ 10 \\cdot x-8 }{ \\sqrt{2 \\cdot x^2+4 \\cdot x+10} } d x}$ =$\\frac{1}{\\sqrt{2}}\\cdot\\left(10\\cdot\\sqrt{x^2+2\\cdot x+5}-18\\cdot\\ln\\left(\\left|2+2\\cdot x+2\\cdot\\sqrt{x^2+2\\cdot x+5}\\right|\\right)\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\frac{ 1 }{ \\sin(8 \\cdot x)^5 } d x}$.",
      "response": "This is the final answer to the problem: $C+\\frac{1}{128}\\cdot\\left(2\\cdot\\left(\\tan(4\\cdot x)\\right)^2+6\\cdot\\ln\\left(\\left|\\tan(4\\cdot x)\\right|\\right)+\\frac{1}{4}\\cdot\\left(\\tan(4\\cdot x)\\right)^4-\\frac{2}{\\left(\\tan(4\\cdot x)\\right)^2}-\\frac{1}{4\\cdot\\left(\\tan(4\\cdot x)\\right)^4}\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\cos\\left(\\frac{ x }{ 2 }\\right)^4 d x}$.",
      "response": "$\\int{\\cos\\left(\\frac{ x }{ 2 }\\right)^4 d x}$ =$\\frac{\\sin\\left(\\frac{x}{2}\\right)\\cdot\\cos\\left(\\frac{x}{2}\\right)^3}{2}+\\frac{3}{4}\\cdot\\left(\\sin\\left(\\frac{x}{2}\\right)\\cdot\\cos\\left(\\frac{x}{2}\\right)+\\frac{x}{2}\\right)+C$",
      "system": ""
    },
    {
      "prompt": "$f(x)=\\frac{ 1 }{ 4 } \\cdot \\sqrt{x}+\\frac{ 1 }{ x }$, $x>0$. Determine:1. intervals where  $f$  is increasing\n2. intervals where  $f$ is decreasing\n3. local minima  of  $f$\n4. local maxima of  $f$\n5. intervals where  $f$ is concave up\n6. intervals where  $f$ is concave down\n7. the inflection points of  $f$",
      "response": "1. intervals where  $f$  is increasing :  $(4,\\infty)$\n2. intervals where  $f$  is decreasing:  $(0,4)$\n3. local minima of  $f$:  $4$\n4. local maxima of  $f$:  None\n5. intervals where  $f$ is concave up :  $\\left(0,8\\cdot\\sqrt[3]{2}\\right)$\n6. intervals where  $f$ is concave down:  $\\left(8\\cdot\\sqrt[3]{2},\\infty\\right)$\n7. the inflection points of  $f$:  $8\\cdot\\sqrt[3]{2}$",
      "system": ""
    },
    {
      "prompt": "Find the extrema of a function $y=\\frac{ 2 \\cdot x^4 }{ 4 }-\\frac{ x^3 }{ 3 }-\\frac{ 3 \\cdot x^2 }{ 2 }+2$. Then determine the largest and smallest value of the function when $-2 \\le x \\le 4$.",
      "response": "This is the final answer to the problem: \n\n1. Extrema points: $P\\left(\\frac{3}{2},\\frac{1}{32}\\right), P\\left(-1,\\frac{4}{3}\\right), P(0,2)$\n2. The largest value: $\\frac{254}{3}$\n3. The smallest value: $\\frac{1}{32}$",
      "system": ""
    },
    {
      "prompt": "Compute the partial derivatives of the implicit function $z(x,y)$, given by the equation $-x-6 \\cdot y+z=3 \\cdot \\cos(-x-6 \\cdot y+z)$.\n\nSubmit as your final answer:\n\na. $\\frac{\\partial z}{\\partial x}$;\n\nb. $\\frac{\\partial z}{\\partial y}$.",
      "response": "This is the final answer to the problem:  \na. $1$;\n\nb. $6$.",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\frac{ \\sqrt{x+10}+3 }{ (x+10)^2-\\sqrt{x+10} } d x}$.",
      "response": "$\\int{\\frac{ \\sqrt{x+10}+3 }{ (x+10)^2-\\sqrt{x+10} } d x}$ =$C+\\frac{8}{3}\\cdot\\ln\\left(\\left|\\sqrt{x+10}-1\\right|\\right)-\\frac{4}{3}\\cdot\\ln\\left(11+\\sqrt{x+10}+x\\right)-\\frac{4}{\\sqrt{3}}\\cdot\\arctan\\left(\\frac{1}{\\sqrt{3}}\\cdot\\left(1+2\\cdot\\sqrt{x+10}\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of the function $\\sqrt{x}$ with the center $a=9$.",
      "response": "$\\sqrt{x}$ =$\\sum_{n=0}^\\infty\\left(3^{1-2\\cdot n}\\cdot C_n^{\\frac{1}{2}}\\cdot(x-9)^n\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the local minimum and local maximum values of the function $f(x)=\\frac{ x^4 }{ 4 }-\\frac{ 11 }{ 3 } \\cdot x^3+15 \\cdot x^2+17$.",
      "response": "The point(s) where the function has a local minimum:$P(6,89), P(0,17)$  \nThe point(s) where the function has a local maximum:$P\\left(5,\\frac{1079}{12}\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\sin\\left(\\frac{ x }{ 2 }\\right)^5 d x}$.",
      "response": "$\\int{\\sin\\left(\\frac{ x }{ 2 }\\right)^5 d x}$ =$-\\frac{2\\cdot\\sin\\left(\\frac{x}{2}\\right)^4\\cdot\\cos\\left(\\frac{x}{2}\\right)}{5}+\\frac{4}{5}\\cdot\\left(-\\frac{2}{3}\\cdot\\sin\\left(\\frac{x}{2}\\right)^2\\cdot\\cos\\left(\\frac{x}{2}\\right)-\\frac{4}{3}\\cdot\\cos\\left(\\frac{x}{2}\\right)\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\sin\\left(\\frac{ x }{ 2 }\\right)^5 d x}$.",
      "response": "$\\int{\\sin\\left(\\frac{ x }{ 2 }\\right)^5 d x}$ =$-\\frac{2\\cdot\\sin\\left(\\frac{x}{2}\\right)^4\\cdot\\cos\\left(\\frac{x}{2}\\right)}{5}+\\frac{4}{5}\\cdot\\left(-\\frac{2}{3}\\cdot\\sin\\left(\\frac{x}{2}\\right)^2\\cdot\\cos\\left(\\frac{x}{2}\\right)-\\frac{4}{3}\\cdot\\cos\\left(\\frac{x}{2}\\right)\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of function $\\sqrt{2 \\cdot x-x^2}$ with the center $a=1$.",
      "response": "$\\sqrt{2 \\cdot x-x^2}$ =$\\sum_{n=0}^\\infty\\left((-1)^n\\cdot C_{\\frac{1}{2}}^n\\cdot(x-1)^{2\\cdot n}\\right)$",
      "system": ""
    },
    {
      "prompt": "The region bounded by the arc of the curve $y=\\sqrt{2} \\cdot \\sin(2 \\cdot x)$, $0 \\le x \\le \\frac{ \\pi }{ 2 }$, is revolved around the X-axis. Compute the surface area of this solid of revolution.",
      "response": "Surface Area: $\\frac{\\pi}{4}\\cdot\\left(12\\cdot\\sqrt{2}+\\ln\\left(17+12\\cdot\\sqrt{2}\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Find  $y'$ and  $y''$ for  $x^2+6 \\cdot x \\cdot y-2 \\cdot y^2=3$.",
      "response": "$y'$= $\\frac{x+3\\cdot y}{2\\cdot y-3\\cdot x}$;  \n\n$y''$= $\\frac{11\\cdot\\left(x^2+6\\cdot x\\cdot y-2\\cdot y^2\\right)}{(3\\cdot x-2\\cdot y)^3}$.",
      "system": ""
    },
    {
      "prompt": "Solve $\\left(\\sin(x)\\right)^2+\\left(\\cos(3 \\cdot x)\\right)^2=1$.",
      "response": "This is the final answer to the problem: $x=\\frac{n\\cdot\\pi}{4}$",
      "system": ""
    },
    {
      "prompt": "Solve $\\left(\\sin(x)\\right)^2+\\left(\\cos(3 \\cdot x)\\right)^2=1$.",
      "response": "This is the final answer to the problem: $x=\\frac{n\\cdot\\pi}{4}$",
      "system": ""
    },
    {
      "prompt": "Find the local extrema of the function $f(x)=2 \\cdot \\left(x^2\\right)^{\\frac{ 1 }{ 3 }}-x^2$ using the First Derivative Test.",
      "response": "Local maxima:$x=\\sqrt[4]{\\frac{8}{27}}, x=-\\sqrt[4]{\\frac{8}{27}}$\n\nLocal minima:$x=0$",
      "system": ""
    },
    {
      "prompt": "Find the derivative of the function $y=\\frac{ 3 \\cdot \\csc(x)-4 \\cdot \\sin(x) }{ 8 \\cdot \\left(\\cos(x)\\right)^5 }-\\frac{ 76 }{ 5 } \\cdot \\cot(3 \\cdot x)$.",
      "response": "$y'$=$\\frac{228}{5\\cdot\\left(\\sin(3\\cdot x)\\right)^2}+\\frac{16\\cdot\\left(\\cos(x)\\right)^6-5\\cdot\\left(\\cos(x)\\right)^4-3\\cdot\\left(\\cos(x)\\right)^6\\cdot\\left(\\csc(x)\\right)^2}{8\\cdot\\left(\\cos(x)\\right)^{10}}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ 1 }{ \\left(\\cos(5 \\cdot x)\\right)^3 } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ \\left(\\cos(5 \\cdot x)\\right)^3 } d x}$ =$C+\\frac{\\sin(5\\cdot x)}{10\\cdot\\left(\\cos(5\\cdot x)\\right)^2}+\\frac{1}{10}\\cdot\\ln\\left(\\left|\\tan\\left(\\left(\\frac{5}{2}\\right)\\cdot x+\\frac{\\pi}{4}\\right)\\right|\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ 1 }{ \\left(\\cos(5 \\cdot x)\\right)^3 } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ \\left(\\cos(5 \\cdot x)\\right)^3 } d x}$ =$C+\\frac{\\sin(5\\cdot x)}{10\\cdot\\left(\\cos(5\\cdot x)\\right)^2}+\\frac{1}{10}\\cdot\\ln\\left(\\left|\\tan\\left(\\left(\\frac{5}{2}\\right)\\cdot x+\\frac{\\pi}{4}\\right)\\right|\\right)$",
      "system": ""
    },
    {
      "prompt": "What are the points of inflection of the graph of $f(x)=\\frac{ x+1 }{ x^2+1 }$?",
      "response": "This is the final answer to the problem: $x_1=1 \\land x_2=\\sqrt{3}-2 \\land x_3=-2-\\sqrt{3}$",
      "system": ""
    },
    {
      "prompt": "Find the second derivative $\\frac{d ^2y}{ d x^2}$ of the function $x=5 \\cdot \\left(\\cos(t)\\right)^3$, $y=6 \\cdot \\left(\\sin(3 \\cdot t)\\right)^3$.",
      "response": "$\\frac{d ^2y}{ d x^2}$=$\\frac{-15\\cdot\\left(\\cos(t)\\right)^2\\cdot\\sin(t)\\cdot\\left(324\\cdot\\sin(3\\cdot t)-486\\cdot\\left(\\sin(3\\cdot t)\\right)^3\\right)-\\left(30\\cdot\\cos(t)-45\\cdot\\left(\\cos(t)\\right)^3\\right)\\cdot54\\cdot\\left(\\sin(3\\cdot t)\\right)^2\\cdot\\cos(3\\cdot t)}{\\left(-15\\cdot\\left(\\cos(t)\\right)^2\\cdot\\sin(t)\\right)^3}$",
      "system": ""
    },
    {
      "prompt": "Find the gradient: $f(x,y)=\\frac{ \\sqrt{x}+y^2 }{ x \\cdot y }$.",
      "response": "$\\nabla f(x,y)$ =$\\left\\langle\\frac{1}{2\\cdot x\\cdot y\\cdot\\sqrt{x}}-\\frac{\\sqrt{x}+y^2}{y\\cdot x^2},\\frac{2}{x}-\\frac{\\sqrt{x}+y^2}{x\\cdot y^2}\\right\\rangle$",
      "system": ""
    },
    {
      "prompt": "Use the method of Lagrange multipliers to find the maximum and minimum values of the function $f(x,y,z)=x^2+y^2+z^2$ subject to the constraints $x \\cdot y \\cdot z=4$.",
      "response": "Minimum: $6\\cdot\\sqrt[3]{2}$\n\nMaximum: None",
      "system": ""
    },
    {
      "prompt": "Use the method of Lagrange multipliers to find the maximum and minimum values of the function $f(x,y,z)=x^2+y^2+z^2$ subject to the constraints $x \\cdot y \\cdot z=4$.",
      "response": "Minimum: $6\\cdot\\sqrt[3]{2}$\n\nMaximum: None",
      "system": ""
    },
    {
      "prompt": "Use the method of Lagrange multipliers to find the maximum and minimum values of the function $f(x,y,z)=x^2+y^2+z^2$ subject to the constraints $x \\cdot y \\cdot z=4$.",
      "response": "Minimum: $6\\cdot\\sqrt[3]{2}$\n\nMaximum: None",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ 1 }{ 2 \\cdot \\sin\\left(\\frac{ x }{ 2 }\\right)^6 } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ 2 \\cdot \\sin\\left(\\frac{ x }{ 2 }\\right)^6 } d x}$ =$C-\\frac{1}{5}\\cdot\\left(\\cot\\left(\\frac{x}{2}\\right)\\right)^5-\\frac{2}{3}\\cdot\\left(\\cot\\left(\\frac{x}{2}\\right)\\right)^3-\\cot\\left(\\frac{x}{2}\\right)$",
      "system": ""
    },
    {
      "prompt": "Given functions $p(x)=\\frac{ 1 }{ \\sqrt{x} }$ and $m(x)=x^2-4$,\nstate the domain of each of the following functions\nusing interval notation:\n\n1. $\\frac{ p(x) }{ m(x) }$\n2. $p\\left(m(x)\\right)$\n3. $m\\left(p(x)\\right)$",
      "response": "1. Domain of $\\frac{ p(x) }{ m(x) }$: $(0,2)\\cup(2,\\infty)$\n2. Domain of $p\\left(m(x)\\right)$: $(-\\infty,-2)\\cup(2,\\infty)$\n3. Domain of $m\\left(p(x)\\right)$: $(0,\\infty)$",
      "system": ""
    },
    {
      "prompt": "Given functions $p(x)=\\frac{ 1 }{ \\sqrt{x} }$ and $m(x)=x^2-4$,\nstate the domain of each of the following functions\nusing interval notation:\n\n1. $\\frac{ p(x) }{ m(x) }$\n2. $p\\left(m(x)\\right)$\n3. $m\\left(p(x)\\right)$",
      "response": "1. Domain of $\\frac{ p(x) }{ m(x) }$: $(0,2)\\cup(2,\\infty)$\n2. Domain of $p\\left(m(x)\\right)$: $(-\\infty,-2)\\cup(2,\\infty)$\n3. Domain of $m\\left(p(x)\\right)$: $(0,\\infty)$",
      "system": ""
    },
    {
      "prompt": "Write the Taylor series for the function $f(x)=x \\cdot \\cos(2 \\cdot x)$ at the point $x=\\frac{ \\pi }{ 2 }$ up to the third term (zero or non-zero).",
      "response": "This is the final answer to the problem: $-\\frac{\\pi}{2}-\\left(x-\\frac{\\pi}{2}\\right)+\\pi\\cdot\\left(x-\\frac{\\pi}{2}\\right)^2$",
      "system": ""
    },
    {
      "prompt": "Washington, D.C. is located at $39$ deg N and $77$ deg W. Assume the radius of Earth is $4000$ mi. Express the location of Washington, D.C. in spherical coordinates (use radians).",
      "response": "$P\\left(r,\\theta,\\varphi\\right)$ = $P(4000,-1.34,0.89)$",
      "system": ""
    },
    {
      "prompt": "Make full curve sketching of $y=\\ln\\left(\\left|\\frac{ 3 \\cdot x-2 }{ 3 \\cdot x+2 }\\right|\\right)$. Submit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
      "response": "This is the final answer to the problem:\n\n1. The domain (in interval notation) $\\left(-\\infty,-\\frac{2}{3}\\right)\\cup\\left(-\\frac{2}{3},\\frac{2}{3}\\right)\\cup\\left(\\frac{2}{3},\\infty\\right)$\n2. Vertical asymptotes $x=\\frac{2}{3}, x=-\\frac{2}{3}$\n3. Horizontal asymptotes $y=0$\n4. Slant asymptotes None\n5. Intervals where the function is increasing $\\left(\\frac{2}{3},\\infty\\right), \\left(-\\infty,-\\frac{2}{3}\\right)$\n6. Intervals where the function is decreasing $\\left(-\\frac{2}{3},\\frac{2}{3}\\right)$\n7. Intervals where the function is concave up $\\left(-\\frac{2}{3},0\\right), \\left(-\\infty,-\\frac{2}{3}\\right)$\n8. Intervals where the function is concave down $\\left(0,\\frac{2}{3}\\right) \\cup \\left(\\frac{2}{3}, \\infty\\right)$\n9. Points of inflection $P(0,0)$",
      "system": ""
    },
    {
      "prompt": "Evaluate the integral:  $\\int_{0}^{\\frac{ 1 }{ 2 }}{\\sqrt[5]{1+x^3} d x}$ with explicitly guaranteed accuracy of $\\frac{ 1 }{ 100 }$ using power series expansion.",
      "response": "This is the final answer to the problem: $0.503$",
      "system": ""
    },
    {
      "prompt": "Evaluate $I=\\int{\\frac{ 1 }{ x^3+8 } d x}$.",
      "response": "This is the final answer to the problem: $I=\\frac{\\sqrt{3}}{12}\\cdot\\arctan\\left(\\frac{x-1}{\\sqrt{3}}\\right)+\\frac{1}{24}\\cdot\\ln\\left(\\frac{(x+2)^2}{x^2-2\\cdot x+4}\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Evaluate $I=\\int{\\frac{ 1 }{ x^3+8 } d x}$.",
      "response": "This is the final answer to the problem: $I=\\frac{\\sqrt{3}}{12}\\cdot\\arctan\\left(\\frac{x-1}{\\sqrt{3}}\\right)+\\frac{1}{24}\\cdot\\ln\\left(\\frac{(x+2)^2}{x^2-2\\cdot x+4}\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{2 \\cdot \\tan(-10 \\cdot x)^4 d x}$.",
      "response": "$\\int{2 \\cdot \\tan(-10 \\cdot x)^4 d x}$ =$C+\\frac{1}{5}\\cdot\\left(\\frac{1}{3}\\cdot\\left(\\tan(10\\cdot x)\\right)^3+\\arctan\\left(\\tan(10\\cdot x)\\right)-\\tan(10\\cdot x)\\right)$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{2 \\cdot \\tan(-10 \\cdot x)^4 d x}$.",
      "response": "$\\int{2 \\cdot \\tan(-10 \\cdot x)^4 d x}$ =$C+\\frac{1}{5}\\cdot\\left(\\frac{1}{3}\\cdot\\left(\\tan(10\\cdot x)\\right)^3+\\arctan\\left(\\tan(10\\cdot x)\\right)-\\tan(10\\cdot x)\\right)$",
      "system": ""
    },
    {
      "prompt": "For the function  $f(x)=x^{11}-6 \\cdot x^{10}$, determine:\n\n1. Intervals where:\n1. $f$ is increasing\n2. $f$ is decreasing\n3. $f$ is concave up\n4. $f$ is concave down\n\n3. find:\n1. local minima\n2. local maxima\n3. the inflection points of $f$",
      "response": "This is the final answer to the problem:1. Intervals where:\n1. $f$ is increasing: $\\left(\\frac{60}{11},\\infty\\right), (-\\infty,0)$\n2. $f$ is decreasing: $\\left(0,\\frac{60}{11}\\right)$\n3. $f$ is concave up: $\\left(\\frac{54}{11},\\infty\\right)$\n4. $f$ is concave down: $\\left(0,\\frac{54}{11}\\right), (-\\infty,0)$\n\n3. find:\n1. local minima: $\\frac{60}{11}$\n2. local maxima: $0$\n3. the inflection points of $f$: $P\\left(\\frac{54}{11},-\\frac{2529990231179046912}{285311670611}\\right)$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=\\frac{ x^3 }{ 6 \\cdot (x+3)^2 }$.  \n\nProvide the following:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $(-1\\cdot\\infty,-3)\\cup(-3,\\infty)$\n2. Vertical asymptotes: $x=-3$\n3. Horizontal asymptotes: None\n4. Slant asymptotes: $y=\\frac{x}{6}-1$\n5. Intervals where the function is increasing: $(-3,0), (0,\\infty), (-\\infty,-9)$\n6. Intervals where the function is decreasing: $(-9,-3)$\n7. Intervals where the function is concave up: $(0,\\infty)$\n8. Intervals where the function is concave down: $(-3,0), (-\\infty,-3)$\n9. Points of inflection: $P(0,0)$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series expansion of the function $f(x)=\\frac{ x }{ 2 }$ with the period $4$ at interval $[-2,2]$.",
      "response": "The Fourier series is: $f(x)=\\sum_{n=1}^\\infty\\left(\\frac{(-1)^{n+1}\\cdot2}{\\pi\\cdot n}\\cdot\\sin\\left(\\frac{\\pi\\cdot n\\cdot x}{2}\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ 6 \\cdot x^3-7 \\cdot x^2+3 \\cdot x-1 }{ 2 \\cdot x-3 \\cdot x^2 } d x}$.",
      "response": "Answer is:$-x^2+x-\\frac{1}{3}\\cdot\\ln\\left(\\left|x-\\frac{2}{3}\\right|\\right)+\\frac{1}{2}\\cdot\\ln\\left(\\left|1-\\frac{2}{3\\cdot x}\\right|\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Calculate $\\sqrt[3]{30}$ with estimate error $0.001$, using series expansion.",
      "response": "This is the final answer to the problem: $\\frac{755}{243}$",
      "system": ""
    },
    {
      "prompt": "The unit price of an item affects its supply and demand. That is, if the unit price goes up, the demand for the item will usually decrease. For example, a local newspaper currently has $$84,000$$ subscribers at a quarterly charge of $$30\\space \\text{USD}$$. Market research has suggested that if the owners raise the price to $$34\\space \\text{USD}$$, they would lose $$9,000$$ subscribers. Assuming that subscriptions are linearly related to the price, what price should the newspaper charge for a quarterly subscription to maximize their revenue?",
      "response": "This is the final answer to the problem: $\\frac{101}{3}$",
      "system": ""
    },
    {
      "prompt": "The unit price of an item affects its supply and demand. That is, if the unit price goes up, the demand for the item will usually decrease. For example, a local newspaper currently has $$84,000$$ subscribers at a quarterly charge of $$30\\space \\text{USD}$$. Market research has suggested that if the owners raise the price to $$34\\space \\text{USD}$$, they would lose $$9,000$$ subscribers. Assuming that subscriptions are linearly related to the price, what price should the newspaper charge for a quarterly subscription to maximize their revenue?",
      "response": "This is the final answer to the problem: $\\frac{101}{3}$",
      "system": ""
    },
    {
      "prompt": "Solve the following system of equations:\n\n$x+y=\\frac{ 2 \\cdot \\pi }{ 3 }$  \n\n$\\frac{ \\sin(x) }{ \\sin(y) }=2$",
      "response": "This is the final answer to the problem: $x=\\frac{\\pi}{2}+\\pi\\cdot k, y=\\frac{\\pi}{6}-\\pi\\cdot k$",
      "system": ""
    },
    {
      "prompt": "A certain bacterium grows in culture in a circular region. The radius of the circle, measured in centimeters, is given by $r(t)=6-\\frac{ 5 }{ t^2+1 }$, where $t$ is time measured in hours since a circle of a $1$-cm radius of the bacterium was put into the culture.\n\n1. Express the area of the bacteria, $A(t)$, as a function of time.\n2. Find the exact and approximate area of the bacterial culture in $3$ hours.\n3. Express the circumference of the bacteria, $C(t)$, as a function of time.\n4. Find the exact and approximate circumference of the bacteria in $3$ hours.",
      "response": "This is the final answer to the problem:\n\n1. $A(t)$ = $\\pi\\cdot\\left(6-\\frac{5}{t^2+1}\\right)^2$square centimeters\n2. The exact area of the bacterial culture in $3$ hours = $\\frac{121}{4}\\cdot\\pi$ square centimeters. The approximate area of the bacterial culture in $3$ hours = $95.03317777$ square centimeters.\n3. $C(t)$ = $2\\cdot\\pi\\cdot\\left(6-\\frac{5}{t^2+1}\\right)$centimeters\n4. The exact circumference of the bacteria in $3$ hours = $11\\cdot\\pi$ centimeters. The approximate circumference of the bacteria in $3$ hours = $34.55751919$ centimeters.",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=2 \\cdot x \\cdot \\sqrt{3-x^2}$.  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $\\left[-1\\cdot3^{2^{-1}},3^{2^{-1}}\\right]$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(-\\sqrt{\\frac{3}{2}},\\sqrt{\\frac{3}{2}}\\right)$\n6. Intervals where the function is decreasing: $\\left(\\sqrt{\\frac{3}{2}},3^{2^{-1}}\\right), \\left(-3^{2^{-1}},-\\sqrt{\\frac{3}{2}}\\right)$\n7. Intervals where the function is concave up: $\\left(-3^{2^{-1}},0\\right)$\n8. Intervals where the function is concave down: $\\left(0,3^{2^{-1}}\\right)$\n9. Points of inflection: $P(0,0)$",
      "system": ""
    },
    {
      "prompt": "An airplane’s Mach number $M$ is the ratio of its speed to the speed of sound. When a plane is flying at a constant altitude, then its Mach angle is given by $\\mu=2 \\cdot \\arcsin\\left(\\frac{ 1 }{ M }\\right)$. Find the Mach angles for the following Mach numbers.\n\n1. $M=1.4$\n2. $M=2.8$\n3. $M=4.3$",
      "response": "This is the final answer to the problem: \n\n1. $1.59120591$\n2. $0.73041444$\n3. $0.46941423$",
      "system": ""
    },
    {
      "prompt": "An airplane’s Mach number $M$ is the ratio of its speed to the speed of sound. When a plane is flying at a constant altitude, then its Mach angle is given by $\\mu=2 \\cdot \\arcsin\\left(\\frac{ 1 }{ M }\\right)$. Find the Mach angles for the following Mach numbers.\n\n1. $M=1.4$\n2. $M=2.8$\n3. $M=4.3$",
      "response": "This is the final answer to the problem: \n\n1. $1.59120591$\n2. $0.73041444$\n3. $0.46941423$",
      "system": ""
    },
    {
      "prompt": "Find the radius of convergence and sum of the series:  $\\frac{ 1 }{ 4 }+\\frac{ x }{ 1 \\cdot 5 }+\\frac{ x^2 }{ 1 \\cdot 2 \\cdot 6 }+\\cdots+\\frac{ x^n }{ \\left(n!\\right) \\cdot (n+4) }+\\cdots$ .",
      "response": "This is the final answer to the problem: 1. Radius of convergence:$R=\\infty$\n2. Sum: $f(x)=\\begin{cases}\\frac{6 - 6 \\cdot e^x + 6 \\cdot e^x \\cdot x - 3 \\cdot e^x \\cdot x^2 + e^x \\cdot x^3}{x^4},&x\\ne0\\\\\\frac{1}{4},&x=0\\end{cases}$",
      "system": ""
    },
    {
      "prompt": "Find the radius of convergence and sum of the series:  $\\frac{ 1 }{ 4 }+\\frac{ x }{ 1 \\cdot 5 }+\\frac{ x^2 }{ 1 \\cdot 2 \\cdot 6 }+\\cdots+\\frac{ x^n }{ \\left(n!\\right) \\cdot (n+4) }+\\cdots$ .",
      "response": "This is the final answer to the problem: 1. Radius of convergence:$R=\\infty$\n2. Sum: $f(x)=\\begin{cases}\\frac{6 - 6 \\cdot e^x + 6 \\cdot e^x \\cdot x - 3 \\cdot e^x \\cdot x^2 + e^x \\cdot x^3}{x^4},&x\\ne0\\\\\\frac{1}{4},&x=0\\end{cases}$",
      "system": ""
    },
    {
      "prompt": "Find the radius of convergence and sum of the series:  $\\frac{ 1 }{ 4 }+\\frac{ x }{ 1 \\cdot 5 }+\\frac{ x^2 }{ 1 \\cdot 2 \\cdot 6 }+\\cdots+\\frac{ x^n }{ \\left(n!\\right) \\cdot (n+4) }+\\cdots$ .",
      "response": "This is the final answer to the problem: 1. Radius of convergence:$R=\\infty$\n2. Sum: $f(x)=\\begin{cases}\\frac{6 - 6 \\cdot e^x + 6 \\cdot e^x \\cdot x - 3 \\cdot e^x \\cdot x^2 + e^x \\cdot x^3}{x^4},&x\\ne0\\\\\\frac{1}{4},&x=0\\end{cases}$",
      "system": ""
    },
    {
      "prompt": "Find the tangential and normal components of acceleration if $\\vec{r}(t)=\\left\\langle 6 \\cdot t,3 \\cdot t^2,2 \\cdot t^3 \\right\\rangle$",
      "response": "$a_{T}$ =$\\frac{12\\cdot t^3+6\\cdot t}{\\sqrt{t^4+t^2+1}}$ ; $a_{N}$ = $\\frac{6\\cdot\\sqrt{t^4+4\\cdot t^2+1}}{\\sqrt{t^4+t^2+1}}$",
      "system": ""
    },
    {
      "prompt": "A sky diver jumps from a reasonable height above the ground. The air resistance she experiences is proportional to her velocity, and the constant of proportionality is $0.24$. It can be shown that the downward velocity of the sky diver at time $t$ is given by\n\n$v(t)=180 \\cdot \\left(1-e^{-0.24 \\cdot t}\\right)$  \n\nwhere $t$ is measured in seconds and $v(t)$ is measured in feet per second\n\n\n\n1. Find the initial velocity of the sky diver\n\n2. Find the velocity after $4$ seconds (round your answer to one decimal place)\n\n3. The maximum velocity of a falling object with wind resistance is called its terminal velocity. Find the terminal velocity of this sky diver. (round your answer to the nearest whole number)",
      "response": "1. $0$\n2. $111.1$\n3. $180$",
      "system": ""
    },
    {
      "prompt": "Given $y=3 \\cdot x^5+10 \\cdot x^4-20$ find where the function is concave up, down, and point(s) of inflection.",
      "response": "Concave up:$(0,\\infty), (-2,0)$Concave down:$(-\\infty,-2)$Point(s) of Inflection:$P(-2,44)$",
      "system": ""
    },
    {
      "prompt": "Find the derivative of the function: $y=-3 \\cdot x^{\\sqrt[3]{2 \\cdot x}}$.",
      "response": "$\\frac{ d y }{d x}$ =$-\\left(\\frac{3\\cdot\\sqrt[3]{2}}{x^{\\frac{2}{3}}}+\\frac{\\sqrt[3]{2}\\cdot\\ln(x)}{x^{\\frac{2}{3}}}\\right)\\cdot x^{\\sqrt[3]{2}\\cdot\\sqrt[3]{x}}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ 1 }{ \\left(\\cos(2 \\cdot x)\\right)^3 } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ \\left(\\cos(2 \\cdot x)\\right)^3 } d x}$ =$C+\\frac{\\sin(2\\cdot x)}{4\\cdot\\left(\\cos(2\\cdot x)\\right)^2}+\\frac{1}{4}\\cdot\\ln\\left(\\left|\\tan\\left(\\frac{1}{2}\\cdot\\left(2\\cdot x+\\frac{\\pi}{2}\\right)\\right)\\right|\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ 1 }{ \\left(\\cos(2 \\cdot x)\\right)^3 } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ \\left(\\cos(2 \\cdot x)\\right)^3 } d x}$ =$C+\\frac{\\sin(2\\cdot x)}{4\\cdot\\left(\\cos(2\\cdot x)\\right)^2}+\\frac{1}{4}\\cdot\\ln\\left(\\left|\\tan\\left(\\frac{1}{2}\\cdot\\left(2\\cdot x+\\frac{\\pi}{2}\\right)\\right)\\right|\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ 1 }{ \\left(\\cos(2 \\cdot x)\\right)^3 } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ \\left(\\cos(2 \\cdot x)\\right)^3 } d x}$ =$C+\\frac{\\sin(2\\cdot x)}{4\\cdot\\left(\\cos(2\\cdot x)\\right)^2}+\\frac{1}{4}\\cdot\\ln\\left(\\left|\\tan\\left(\\frac{1}{2}\\cdot\\left(2\\cdot x+\\frac{\\pi}{2}\\right)\\right)\\right|\\right)$",
      "system": ""
    },
    {
      "prompt": "Let $R$ be the region bounded by the graphs of $y=\\frac{ 1 }{ x+2 }$ and $y=-\\frac{ 1 }{ 2 } \\cdot x+3$.\n\nFind the volume of the solid generated when $R$ is rotated about the vertical line $x=-3$.",
      "response": "The volume of the solid is $292.097$ units³.",
      "system": ""
    },
    {
      "prompt": "Let $Q$ be the region bounded by the graph of $x=\\frac{ 2 }{ 1-y }$, the line $x=-1$, and the line $y=\\frac{ 5 }{ 4 }$.\n\nWrite, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when $Q$ is revolved about the line $x=-1$.",
      "response": "$V$ = $\\int_{\\frac{5}{4}}^3\\left(\\pi\\cdot\\left(\\frac{2}{1-y}+1\\right)^2\\right)dy$",
      "system": ""
    },
    {
      "prompt": "Given $y=3 \\cdot x^5+20 \\cdot x^4+40 \\cdot x^3+100$ find where the function is concave up, down, and point(s) of inflection.",
      "response": "Concave up:$(0,\\infty)$Concave down:$(-2,0), (-\\infty,-2)$Point(s) of Inflection:$P(0,100)$",
      "system": ""
    },
    {
      "prompt": "Consider the differential equation $\\frac{ d y }{d x}=e^y \\cdot (5 \\cdot x-1)$. Find $y=g(x)$, the particular solution to the differential equation for $-0.819 \\le x \\le 1.219$ that passes through the point $P(1,0)$.",
      "response": "$y$ = $-\\ln\\left(-\\frac{5}{2}\\cdot x^2+x+\\frac{5}{2}\\right)$",
      "system": ""
    },
    {
      "prompt": "A projectile is shot in the air from ground level with an initial velocity of $500$ m/sec at an angle of $60$ deg with the horizontal. At what time is the maximum range of the projectile attained? ",
      "response": "$t$ = $88.37$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier integral of the function $q(x)=\\begin{cases} 0, & x<0 \\\\ 5 \\cdot \\pi \\cdot x, & 0 \\le x \\le 4 \\\\ 0, & x>4 \\end{cases}$.",
      "response": "$q(t)$ = $\\int_0^\\infty\\frac{\\left(5\\cdot\\left(4\\cdot\\sin\\left(4\\cdot\\alpha\\right)\\cdot\\alpha+\\cos\\left(4\\cdot\\alpha\\right)-1\\right)\\cdot\\cos\\left(\\alpha\\cdot t\\right)+5\\cdot\\left(\\sin\\left(4\\cdot\\alpha\\right)-4\\cdot\\alpha\\cdot\\cos\\left(4\\cdot\\alpha\\right)\\right)\\cdot\\sin\\left(\\alpha\\cdot t\\right)\\right)}{\\alpha^2}d \\alpha$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier integral of the function $q(x)=\\begin{cases} 0, & x<0 \\\\ 5 \\cdot \\pi \\cdot x, & 0 \\le x \\le 4 \\\\ 0, & x>4 \\end{cases}$.",
      "response": "$q(t)$ = $\\int_0^\\infty\\frac{\\left(5\\cdot\\left(4\\cdot\\sin\\left(4\\cdot\\alpha\\right)\\cdot\\alpha+\\cos\\left(4\\cdot\\alpha\\right)-1\\right)\\cdot\\cos\\left(\\alpha\\cdot t\\right)+5\\cdot\\left(\\sin\\left(4\\cdot\\alpha\\right)-4\\cdot\\alpha\\cdot\\cos\\left(4\\cdot\\alpha\\right)\\right)\\cdot\\sin\\left(\\alpha\\cdot t\\right)\\right)}{\\alpha^2}d \\alpha$",
      "system": ""
    },
    {
      "prompt": "For the function $\\varphi(x)=(10-x) \\cdot \\sqrt{x^2+8}$ specify the points where local maxima and minima of $\\varphi(x)$ occur. Submit as your final answer:\n\n1. The point(s) where local maxima occur\n2. The point(s) where local minima occur",
      "response": "This is the final answer to the problem:  \n\n1. The point(s) where local maxima occur $P\\left(4,12\\cdot\\sqrt{6}\\right)$\n2. The point(s) where local minima occur $P(1,27)$",
      "system": ""
    },
    {
      "prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of the function $x^{\\frac{ 1 }{ 3 }}$ with the center $a=27$.",
      "response": "$x^{\\frac{ 1 }{ 3 }}$ =$\\sum_{n=0}^\\infty\\left(3^{1-3\\cdot n}\\cdot C_n^{\\frac{1}{3}}\\cdot(x-27)^n\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the centers of symmetry of the curve of $f(x)=\\left(\\sin(x)\\right)^2$.",
      "response": "This is the final answer to the problem: $\\left(k\\cdot\\pi+\\frac{\\pi}{4},\\frac{1}{2}\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the local minimum and local maximum values of the function $f(x)=\\frac{ 3 }{ 4 } \\cdot x^4-10 \\cdot x^3+24 \\cdot x^2-4$.",
      "response": "The point(s) where the function has a local minimum:$P(8,-516), P(0,-4)$  \nThe point(s) where the function has a local maximum:$P(2,24)$",
      "system": ""
    },
    {
      "prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of function $\\sqrt{x+2}$ with the center $a=0$.",
      "response": "$\\sqrt{x+2}$ =$\\sum_{n=0}^\\infty\\left(2^{\\frac{1}{2}-n}\\cdot C_{\\frac{1}{2}}^n\\cdot x^n\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the first derivative $y_{x}'$ of the function: $x=\\arcsin\\left(\\frac{ t }{ \\sqrt{2+2 \\cdot t^2} }\\right)$, $y=\\arccos\\left(\\frac{ 1 }{ \\sqrt{2+2 \\cdot t^2} }\\right)$, $t \\ge 0$.",
      "response": "$y_{x}'$ =$\\frac{t\\cdot\\sqrt{t^2+2}}{\\sqrt{2\\cdot t^2+1}}$",
      "system": ""
    },
    {
      "prompt": "Compute the derivative of the complex function $p=u^v$ given  $u=3 \\cdot \\ln(x-2 \\cdot y)$ and  $v=e^{\\frac{ x }{ y }}$.",
      "response": "$\\frac{\\partial p}{\\partial x} = (3 \\ln(x - 2y))^{e^{\\frac{x}{y}}} \\left[ \\frac{e^{\\frac{x}{y}}}{y} \\ln(3 \\ln(x - 2y)) + \\frac{e^{\\frac{x}{y}}}{(x - 2y) \\ln(x - 2y)} \\right]$\n\n$\\frac{\\partial p}{\\partial y} = (3 \\ln(x - 2y))^{e^{\\frac{x}{y}}} \\left[ -\\frac{x e^{\\frac{x}{y}}}{y^2} \\ln(3 \\ln(x - 2y)) - \\frac{2e^{\\frac{x}{y}}}{(x - 2y) \\ln(x - 2y)} \\right]$\n",
      "system": ""
    },
    {
      "prompt": "Find points on a coordinate plane that satisfy the following equation:\n\n$10 \\cdot x^2+29 \\cdot y^2+34 \\cdot x \\cdot y+8 \\cdot x+14 \\cdot y+2=0$",
      "response": "This is the final answer to the problem: $(3,-2)$",
      "system": ""
    },
    {
      "prompt": "Find points on a coordinate plane that satisfy the following equation:\n\n$10 \\cdot x^2+29 \\cdot y^2+34 \\cdot x \\cdot y+8 \\cdot x+14 \\cdot y+2=0$",
      "response": "This is the final answer to the problem: $(3,-2)$",
      "system": ""
    },
    {
      "prompt": "For the curve $x=a\\left(t-\\sin(t)\\right)$, $y=a\\left(1-\\cos(t)\\right)$ determine the curvature. Use $a=12$.",
      "response": "The curvature is:$\\frac{1}{48\\cdot\\left|\\sin\\left(\\frac{t}{2}\\right)\\right|}$",
      "system": ""
    },
    {
      "prompt": "Determine the Taylor series for $f(x)=\\frac{ 2 \\cdot x-1 }{ x^2-3 \\cdot x+2 }$, centered at $x_{0}=4$. Write out the sum of the first four non-zero terms, followed by dots.",
      "response": "This is the final answer to the problem: $\\frac{7}{6}+\\left(\\frac{1}{3^2}-\\frac{3}{2^2}\\right)\\cdot(x-4)-\\left(\\frac{1}{3^3}-\\frac{3}{2^3}\\right)\\cdot(x-4)^2+\\left(\\frac{1}{3^4}-\\frac{3}{2^4}\\right)\\cdot(x-4)^3+\\cdots$",
      "system": ""
    },
    {
      "prompt": "Find $\\frac{ d y }{d x}$ if $y=\\frac{ 5 \\cdot x^2-3 \\cdot x }{ \\left(3 \\cdot x^7+2 \\cdot x^6\\right)^4 }$.",
      "response": "$\\frac{ d y }{d x}$ = $\\frac{-390\\cdot x^2+23\\cdot x+138}{x^{24}\\cdot(3\\cdot x+2)^5}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ 1 }{ \\sin(x)^6 } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ \\sin(x)^6 } d x}$ =$-\\frac{\\cos(x)}{5\\cdot\\sin(x)^5}+\\frac{4}{5}\\cdot\\left(-\\frac{\\cos(x)}{3\\cdot\\sin(x)^3}-\\frac{2}{3}\\cdot\\cot(x)\\right)$",
      "system": ""
    },
    {
      "prompt": "Expand the function:  $y=\\ln\\left(x+\\sqrt{1+x^2}\\right)$  in a power series.",
      "response": "This is the final answer to the problem: $x-\\frac{1}{2}\\cdot\\frac{x^3}{3}+\\frac{1\\cdot3}{4\\cdot2}\\cdot\\frac{x^5}{5}-\\frac{1\\cdot3\\cdot5}{2\\cdot4\\cdot6}\\cdot\\frac{x^7}{7}+\\cdots+\\frac{(2\\cdot n-1)!!}{(2\\cdot n)!!}\\cdot\\frac{x^{2\\cdot n+1}}{2\\cdot n+1}+\\cdots$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ 1 }{ \\sqrt{4 \\cdot x^2+4 \\cdot x+3} } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ \\sqrt{4 \\cdot x^2+4 \\cdot x+3} } d x}$ =$\\frac{1}{2}\\cdot\\ln\\left(\\left|2\\cdot x+1+\\sqrt{4\\cdot x^2+4\\cdot x+3}\\right|\\right)+C$",
      "system": ""
    },
    {
      "prompt": "For the function: $f(x)=x^3+x^4$  determine\n\n1. intervals where $f$  is increasing or decreasing,\n2. local minima and maxima of $f$  ,\n3. intervals where $f$  is concave up and concave down, and\n4. the inflection points of $f$ .",
      "response": "1. Increasing over $\\left( -\\frac{3}{4}, 0 \\right) \\cup (0, \\infty)$ ; decreasing over $\\left(-\\infty,-\\frac{3}{4}\\right)$\n2. Local maxima at  None ; local minima at  $x=-\\frac{3}{4}$\n3. Concave up for $x>0, x<-\\frac{1}{2}$ ; concave down for $-\\frac{1}{2}<x<0$\n4. Inflection points at  $P\\left(-\\frac{1}{2},-\\frac{1}{16}\\right); P(0,0)$",
      "system": ""
    },
    {
      "prompt": "Find the generalized center of mass between $y=b \\cdot \\sin(a \\cdot x)$, $x=0$, and  $x=\\frac{ \\pi }{ a }$ . Then, use the Pappus theorem to find the volume of the solid generated when revolving around the $y$-axis.",
      "response": "$(x,y)$  =  $P\\left(\\frac{\\pi}{2\\cdot a},\\frac{\\pi\\cdot b}{8}\\right)$  \n\n$V$  =  $\\frac{2\\cdot\\pi^2\\cdot b}{a^2}$",
      "system": ""
    },
    {
      "prompt": "Differentiate the function \n $f(x)=\\frac{ 5 \\cdot x^3-\\sqrt[3]{x}+6 \\cdot x+2 }{ \\sqrt{x} }$.",
      "response": "$\\frac{ d }{d x}\\left(\\frac{ 5 \\cdot x^3-\\sqrt[3]{x}+6 \\cdot x+2 }{ \\sqrt{x} }\\right)$=$\\frac{18\\cdot x\\cdot\\sqrt[6]{x}+75\\cdot x^3\\cdot\\sqrt[6]{x}+\\sqrt{x}-6\\cdot\\sqrt[6]{x}}{6\\cdot x\\cdot x^{\\frac{2}{3}}}$",
      "system": ""
    },
    {
      "prompt": "Differentiate the function \n $f(x)=\\frac{ 5 \\cdot x^3-\\sqrt[3]{x}+6 \\cdot x+2 }{ \\sqrt{x} }$.",
      "response": "$\\frac{ d }{d x}\\left(\\frac{ 5 \\cdot x^3-\\sqrt[3]{x}+6 \\cdot x+2 }{ \\sqrt{x} }\\right)$=$\\frac{18\\cdot x\\cdot\\sqrt[6]{x}+75\\cdot x^3\\cdot\\sqrt[6]{x}+\\sqrt{x}-6\\cdot\\sqrt[6]{x}}{6\\cdot x\\cdot x^{\\frac{2}{3}}}$",
      "system": ""
    },
    {
      "prompt": "Find the dimensions of the box whose length is twice as long as the width, whose height is $2$ inches greater than the width, and whose volume is $192$ cubic inches.",
      "response": "The dimensions of the box are $6, 4, 8$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{x \\cdot \\arctan(2 \\cdot x)^2 d x}$.",
      "response": "$\\int{x \\cdot \\arctan(2 \\cdot x)^2 d x}$ =$\\frac{1}{16}\\cdot\\left(2\\cdot\\left(\\arctan(2\\cdot x)\\right)^2+2\\cdot\\ln\\left(4\\cdot x^2+1\\right)+8\\cdot x^2\\cdot\\left(\\arctan(2\\cdot x)\\right)^2-8\\cdot x\\cdot\\arctan(2\\cdot x)\\right)+C$",
      "system": ""
    },
    {
      "prompt": "When hired at a new job selling electronics, you are given two pay options:\n\nOption A: Base salary of $20\\ 000$ USD a year with a commission of $12$ percent of your sales.\n\nOption B: Base salary of $26\\ 000$ USD a year with a commission of $3$ percent of your sales.\n\nHow much electronics would you need to sell for Option A to produce a larger income? Give your answer either exactly or rounded to two decimal places.",
      "response": "This is the final answer to the problem: $66666.67$",
      "system": ""
    }
  ]
}