File size: 45,605 Bytes
5b60e22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
{
"dataset_name": "Mu-Math",
"group_index": 2,
"source_file": "/hkfs/work/workspace/scratch/tum_fmp0582-dndworkspace/自己训练lora/prepare/data/math/Mu-Math.json",
"selected_indices": [
5,
10,
30,
32,
36,
45,
68,
78,
79,
95,
119,
127,
132,
156,
180,
195,
197,
219,
234,
248,
261,
265,
267,
269,
289,
302,
320,
321,
326,
333,
337,
339,
344,
349,
369,
376,
377,
378,
384,
400,
402,
414,
425,
433,
440,
445,
447,
453,
455,
472,
487,
491,
519,
531,
540,
542,
598,
610,
618,
673,
674,
700,
701,
703,
705,
712,
725,
744,
748,
749,
750,
752,
774,
784,
809,
825,
829,
831,
835,
836,
847,
860,
878,
887,
889,
892,
894,
904,
929,
943,
956,
965,
982,
997,
1038,
1040,
1042,
1045,
1062,
1067
],
"total_records": 1084,
"sample_count": 100,
"generated_at": "2025-11-05T12:58:28Z",
"seed": 4171135963,
"samples": [
{
"prompt": "Given $f(x)=x^2+\\frac{ 16 }{ x^2 }$, find the intervals where $f$ increases and the intervals where $f$ is decreasing.",
"response": "$f$ is increasing on the intervals: $(2,\\infty), (-2,0)$\n\n$f$ is decreasing on the intervals: $(-\\infty,-2), (0,2)$ ",
"system": ""
},
{
"prompt": "Find the Fourier series of the periodic function $f(x)=x^2$ in the interval $-2 \\cdot \\pi \\le x<2 \\cdot \\pi$ if $f(x)=f(x+4 \\cdot \\pi)$.",
"response": "The Fourier series is: $\\frac{4\\cdot\\pi^2}{3}+\\sum_{n=1}^\\infty\\left(\\frac{16\\cdot(-1)^n}{n^2}\\cdot\\cos\\left(\\frac{n\\cdot x}{2}\\right)\\right)$",
"system": ""
},
{
"prompt": "Compute the integral $-2 \\cdot \\int{x^{-4} \\cdot \\left(4+x^2\\right)^{\\frac{ 1 }{ 2 }} d x}$.",
"response": "$-2 \\cdot \\int{x^{-4} \\cdot \\left(4+x^2\\right)^{\\frac{ 1 }{ 2 }} d x}$ =$C+\\frac{1}{6}\\cdot\\left(\\frac{4}{x^2}+1\\right)\\cdot\\sqrt{\\frac{4}{x^2}+1}$",
"system": ""
},
{
"prompt": "Determine the intervals of upward concavity and downward concavity for the function $f(x)=e^x \\cdot \\left(x^2-1\\right)$.",
"response": "1. Interval(s) of upward concavity: $\\left(\\frac{2\\cdot\\sqrt{3}-4}{2},\\infty\\right), \\left(-\\infty,-\\frac{4+2\\cdot\\sqrt{3}}{2}\\right)$\n2. Interval(s) of downward concavity: $\\left(-\\frac{4+2\\cdot\\sqrt{3}}{2},\\frac{2\\cdot\\sqrt{3}-4}{2}\\right)$",
"system": ""
},
{
"prompt": "Region $R$ is the region in the first quadrant bounded by the graphs of $y=2 \\cdot x$ and $y=x^2$.\n\n1. Write, but do not evaluate, an integral expression that gives the volume of the solid generated from revolving the region $R$ about the vertical line $x=3$.\n2. Write, but do not evaluate, an integral expression that gives the volume of the solid generated from revolving the region $R$ about the vertical line $x=-2$.",
"response": "1. $V$ = $\\int_0^4\\pi\\cdot\\left(\\left(3-\\frac{1}{2}\\cdot y\\right)^2-\\left(3-\\sqrt{y}\\right)^2\\right)dy$\n2. $V$ = $\\int_0^4\\pi\\cdot\\left(\\left(-2-\\sqrt{y}\\right)^2-\\left(-2-\\frac{1}{2}\\cdot y\\right)^2\\right)dy$",
"system": ""
},
{
"prompt": "Solve the following equations: 1. $8.6=6 j+4 j$\n2. $12 z-(4 z+6)=82$\n3. $5.4 d-2.3 d+3 (d-4)=16.67$\n4. $2.6 f-1.3 (3 f-4)=6.5$\n5. $-5.3 m+(-3.9 m)-17=-94.28$\n6. $6 (3.5 y+4.2)-2.75 y=134.7$",
"response": "The solutions to the given equations are: 1. $j=0.86$\n2. $z=11$\n3. $d=\\frac{ 47 }{ 10 }$\n4. $f=-1$\n5. $m=\\frac{ 42 }{ 5 }$\n6. $y=6$",
"system": ""
},
{
"prompt": "Sketch the curve: \n\n$y=\\sqrt{\\frac{ 27-x^3 }{ 2 \\cdot x }}$. \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
"response": "This is the final answer to the problem: \n1. The domain (in interval notation): $(0,3]$\n2. Vertical asymptotes: $x=0$\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: None\n6. Intervals where the function is decreasing: $(0,3]$\n7. Intervals where the function is concave up: $\\left(0,\\frac{3}{\\sqrt[3]{4}}\\right)$\n8. Intervals where the function is concave down: $\\left(\\frac{3}{\\sqrt[3]{4}},3\\right)$\n9. Points of inflection: $P\\left(\\frac{3}{\\sqrt[3]{4}},2.3146\\right)$",
"system": ""
},
{
"prompt": "Solve the integral: $\\int{\\frac{ \\cos(x)^3 }{ \\sin(x)^9 } d x}$.",
"response": "$\\int{\\frac{ \\cos(x)^3 }{ \\sin(x)^9 } d x}$ =$C-\\left(\\frac{1}{3}\\cdot\\left(\\cot(x)\\right)^6+\\frac{1}{4}\\cdot\\left(\\cot(x)\\right)^4+\\frac{1}{8}\\cdot\\left(\\cot(x)\\right)^8\\right)$",
"system": ""
},
{
"prompt": "Solve the integral: $\\int{\\frac{ \\cos(x)^3 }{ \\sin(x)^9 } d x}$.",
"response": "$\\int{\\frac{ \\cos(x)^3 }{ \\sin(x)^9 } d x}$ =$C-\\left(\\frac{1}{3}\\cdot\\left(\\cot(x)\\right)^6+\\frac{1}{4}\\cdot\\left(\\cot(x)\\right)^4+\\frac{1}{8}\\cdot\\left(\\cot(x)\\right)^8\\right)$",
"system": ""
},
{
"prompt": "Consider the differential equation $\\frac{ d y }{d x}=\\frac{ 4+y }{ x }$. Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(3)=-3$.",
"response": "$y$ = $\\frac{|x|}{3}-4$",
"system": ""
},
{
"prompt": "Calculate integral: $I=\\int{4 \\cdot \\cos\\left(3 \\cdot \\ln(2 \\cdot x)\\right) d x}$.",
"response": "This is the final answer to the problem: $\\frac{1}{10}\\cdot\\left(C+4\\cdot x\\cdot\\cos\\left(3\\cdot\\ln(2\\cdot x)\\right)+12\\cdot x\\cdot\\sin\\left(3\\cdot\\ln(2\\cdot x)\\right)\\right)$",
"system": ""
},
{
"prompt": "Calculate integral: $\\int_{\\frac{ 1 }{ 2 }}^{\\frac{ \\sqrt{3} }{ 2 }}{\\frac{ 1 }{ x \\cdot \\sqrt{9-9 \\cdot x^2} } d x}$.",
"response": "$$\\int_{\\frac{ 1 }{ 2 }}^{\\frac{ \\sqrt{3} }{ 2 }}{\\frac{ 1 }{ x \\cdot \\sqrt{9-9 \\cdot x^2} } d x}=\\frac{1}{6}\\ln\\left(\\frac{7}{3}+\\frac{4}{\\sqrt{3}}\\right)$$",
"system": ""
},
{
"prompt": "Compute the integral $\\int{\\frac{ 10 \\cdot x-8 }{ \\sqrt{2 \\cdot x^2+4 \\cdot x+10} } d x}$.",
"response": "$\\int{\\frac{ 10 \\cdot x-8 }{ \\sqrt{2 \\cdot x^2+4 \\cdot x+10} } d x}$ =$\\frac{1}{\\sqrt{2}}\\cdot\\left(10\\cdot\\sqrt{x^2+2\\cdot x+5}-18\\cdot\\ln\\left(\\left|2+2\\cdot x+2\\cdot\\sqrt{x^2+2\\cdot x+5}\\right|\\right)\\right)+C$",
"system": ""
},
{
"prompt": "Solve the integral: $\\int{\\frac{ 1 }{ \\sin(8 \\cdot x)^5 } d x}$.",
"response": "This is the final answer to the problem: $C+\\frac{1}{128}\\cdot\\left(2\\cdot\\left(\\tan(4\\cdot x)\\right)^2+6\\cdot\\ln\\left(\\left|\\tan(4\\cdot x)\\right|\\right)+\\frac{1}{4}\\cdot\\left(\\tan(4\\cdot x)\\right)^4-\\frac{2}{\\left(\\tan(4\\cdot x)\\right)^2}-\\frac{1}{4\\cdot\\left(\\tan(4\\cdot x)\\right)^4}\\right)$",
"system": ""
},
{
"prompt": "Compute the integral: $\\int{\\cos\\left(\\frac{ x }{ 2 }\\right)^4 d x}$.",
"response": "$\\int{\\cos\\left(\\frac{ x }{ 2 }\\right)^4 d x}$ =$\\frac{\\sin\\left(\\frac{x}{2}\\right)\\cdot\\cos\\left(\\frac{x}{2}\\right)^3}{2}+\\frac{3}{4}\\cdot\\left(\\sin\\left(\\frac{x}{2}\\right)\\cdot\\cos\\left(\\frac{x}{2}\\right)+\\frac{x}{2}\\right)+C$",
"system": ""
},
{
"prompt": "$f(x)=\\frac{ 1 }{ 4 } \\cdot \\sqrt{x}+\\frac{ 1 }{ x }$, $x>0$. Determine:1. intervals where $f$ is increasing\n2. intervals where $f$ is decreasing\n3. local minima of $f$\n4. local maxima of $f$\n5. intervals where $f$ is concave up\n6. intervals where $f$ is concave down\n7. the inflection points of $f$",
"response": "1. intervals where $f$ is increasing : $(4,\\infty)$\n2. intervals where $f$ is decreasing: $(0,4)$\n3. local minima of $f$: $4$\n4. local maxima of $f$: None\n5. intervals where $f$ is concave up : $\\left(0,8\\cdot\\sqrt[3]{2}\\right)$\n6. intervals where $f$ is concave down: $\\left(8\\cdot\\sqrt[3]{2},\\infty\\right)$\n7. the inflection points of $f$: $8\\cdot\\sqrt[3]{2}$",
"system": ""
},
{
"prompt": "Find the extrema of a function $y=\\frac{ 2 \\cdot x^4 }{ 4 }-\\frac{ x^3 }{ 3 }-\\frac{ 3 \\cdot x^2 }{ 2 }+2$. Then determine the largest and smallest value of the function when $-2 \\le x \\le 4$.",
"response": "This is the final answer to the problem: \n\n1. Extrema points: $P\\left(\\frac{3}{2},\\frac{1}{32}\\right), P\\left(-1,\\frac{4}{3}\\right), P(0,2)$\n2. The largest value: $\\frac{254}{3}$\n3. The smallest value: $\\frac{1}{32}$",
"system": ""
},
{
"prompt": "Compute the partial derivatives of the implicit function $z(x,y)$, given by the equation $-x-6 \\cdot y+z=3 \\cdot \\cos(-x-6 \\cdot y+z)$.\n\nSubmit as your final answer:\n\na. $\\frac{\\partial z}{\\partial x}$;\n\nb. $\\frac{\\partial z}{\\partial y}$.",
"response": "This is the final answer to the problem: \na. $1$;\n\nb. $6$.",
"system": ""
},
{
"prompt": "Solve the integral: $\\int{\\frac{ \\sqrt{x+10}+3 }{ (x+10)^2-\\sqrt{x+10} } d x}$.",
"response": "$\\int{\\frac{ \\sqrt{x+10}+3 }{ (x+10)^2-\\sqrt{x+10} } d x}$ =$C+\\frac{8}{3}\\cdot\\ln\\left(\\left|\\sqrt{x+10}-1\\right|\\right)-\\frac{4}{3}\\cdot\\ln\\left(11+\\sqrt{x+10}+x\\right)-\\frac{4}{\\sqrt{3}}\\cdot\\arctan\\left(\\frac{1}{\\sqrt{3}}\\cdot\\left(1+2\\cdot\\sqrt{x+10}\\right)\\right)$",
"system": ""
},
{
"prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of the function $\\sqrt{x}$ with the center $a=9$.",
"response": "$\\sqrt{x}$ =$\\sum_{n=0}^\\infty\\left(3^{1-2\\cdot n}\\cdot C_n^{\\frac{1}{2}}\\cdot(x-9)^n\\right)$",
"system": ""
},
{
"prompt": "Find the local minimum and local maximum values of the function $f(x)=\\frac{ x^4 }{ 4 }-\\frac{ 11 }{ 3 } \\cdot x^3+15 \\cdot x^2+17$.",
"response": "The point(s) where the function has a local minimum:$P(6,89), P(0,17)$ \nThe point(s) where the function has a local maximum:$P\\left(5,\\frac{1079}{12}\\right)$",
"system": ""
},
{
"prompt": "Compute the integral: $\\int{\\sin\\left(\\frac{ x }{ 2 }\\right)^5 d x}$.",
"response": "$\\int{\\sin\\left(\\frac{ x }{ 2 }\\right)^5 d x}$ =$-\\frac{2\\cdot\\sin\\left(\\frac{x}{2}\\right)^4\\cdot\\cos\\left(\\frac{x}{2}\\right)}{5}+\\frac{4}{5}\\cdot\\left(-\\frac{2}{3}\\cdot\\sin\\left(\\frac{x}{2}\\right)^2\\cdot\\cos\\left(\\frac{x}{2}\\right)-\\frac{4}{3}\\cdot\\cos\\left(\\frac{x}{2}\\right)\\right)+C$",
"system": ""
},
{
"prompt": "Compute the integral: $\\int{\\sin\\left(\\frac{ x }{ 2 }\\right)^5 d x}$.",
"response": "$\\int{\\sin\\left(\\frac{ x }{ 2 }\\right)^5 d x}$ =$-\\frac{2\\cdot\\sin\\left(\\frac{x}{2}\\right)^4\\cdot\\cos\\left(\\frac{x}{2}\\right)}{5}+\\frac{4}{5}\\cdot\\left(-\\frac{2}{3}\\cdot\\sin\\left(\\frac{x}{2}\\right)^2\\cdot\\cos\\left(\\frac{x}{2}\\right)-\\frac{4}{3}\\cdot\\cos\\left(\\frac{x}{2}\\right)\\right)+C$",
"system": ""
},
{
"prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of function $\\sqrt{2 \\cdot x-x^2}$ with the center $a=1$.",
"response": "$\\sqrt{2 \\cdot x-x^2}$ =$\\sum_{n=0}^\\infty\\left((-1)^n\\cdot C_{\\frac{1}{2}}^n\\cdot(x-1)^{2\\cdot n}\\right)$",
"system": ""
},
{
"prompt": "The region bounded by the arc of the curve $y=\\sqrt{2} \\cdot \\sin(2 \\cdot x)$, $0 \\le x \\le \\frac{ \\pi }{ 2 }$, is revolved around the X-axis. Compute the surface area of this solid of revolution.",
"response": "Surface Area: $\\frac{\\pi}{4}\\cdot\\left(12\\cdot\\sqrt{2}+\\ln\\left(17+12\\cdot\\sqrt{2}\\right)\\right)$",
"system": ""
},
{
"prompt": "Find $y'$ and $y''$ for $x^2+6 \\cdot x \\cdot y-2 \\cdot y^2=3$.",
"response": "$y'$= $\\frac{x+3\\cdot y}{2\\cdot y-3\\cdot x}$; \n\n$y''$= $\\frac{11\\cdot\\left(x^2+6\\cdot x\\cdot y-2\\cdot y^2\\right)}{(3\\cdot x-2\\cdot y)^3}$.",
"system": ""
},
{
"prompt": "Solve $\\left(\\sin(x)\\right)^2+\\left(\\cos(3 \\cdot x)\\right)^2=1$.",
"response": "This is the final answer to the problem: $x=\\frac{n\\cdot\\pi}{4}$",
"system": ""
},
{
"prompt": "Solve $\\left(\\sin(x)\\right)^2+\\left(\\cos(3 \\cdot x)\\right)^2=1$.",
"response": "This is the final answer to the problem: $x=\\frac{n\\cdot\\pi}{4}$",
"system": ""
},
{
"prompt": "Find the local extrema of the function $f(x)=2 \\cdot \\left(x^2\\right)^{\\frac{ 1 }{ 3 }}-x^2$ using the First Derivative Test.",
"response": "Local maxima:$x=\\sqrt[4]{\\frac{8}{27}}, x=-\\sqrt[4]{\\frac{8}{27}}$\n\nLocal minima:$x=0$",
"system": ""
},
{
"prompt": "Find the derivative of the function $y=\\frac{ 3 \\cdot \\csc(x)-4 \\cdot \\sin(x) }{ 8 \\cdot \\left(\\cos(x)\\right)^5 }-\\frac{ 76 }{ 5 } \\cdot \\cot(3 \\cdot x)$.",
"response": "$y'$=$\\frac{228}{5\\cdot\\left(\\sin(3\\cdot x)\\right)^2}+\\frac{16\\cdot\\left(\\cos(x)\\right)^6-5\\cdot\\left(\\cos(x)\\right)^4-3\\cdot\\left(\\cos(x)\\right)^6\\cdot\\left(\\csc(x)\\right)^2}{8\\cdot\\left(\\cos(x)\\right)^{10}}$",
"system": ""
},
{
"prompt": "Compute the integral $\\int{\\frac{ 1 }{ \\left(\\cos(5 \\cdot x)\\right)^3 } d x}$.",
"response": "$\\int{\\frac{ 1 }{ \\left(\\cos(5 \\cdot x)\\right)^3 } d x}$ =$C+\\frac{\\sin(5\\cdot x)}{10\\cdot\\left(\\cos(5\\cdot x)\\right)^2}+\\frac{1}{10}\\cdot\\ln\\left(\\left|\\tan\\left(\\left(\\frac{5}{2}\\right)\\cdot x+\\frac{\\pi}{4}\\right)\\right|\\right)$",
"system": ""
},
{
"prompt": "Compute the integral $\\int{\\frac{ 1 }{ \\left(\\cos(5 \\cdot x)\\right)^3 } d x}$.",
"response": "$\\int{\\frac{ 1 }{ \\left(\\cos(5 \\cdot x)\\right)^3 } d x}$ =$C+\\frac{\\sin(5\\cdot x)}{10\\cdot\\left(\\cos(5\\cdot x)\\right)^2}+\\frac{1}{10}\\cdot\\ln\\left(\\left|\\tan\\left(\\left(\\frac{5}{2}\\right)\\cdot x+\\frac{\\pi}{4}\\right)\\right|\\right)$",
"system": ""
},
{
"prompt": "What are the points of inflection of the graph of $f(x)=\\frac{ x+1 }{ x^2+1 }$?",
"response": "This is the final answer to the problem: $x_1=1 \\land x_2=\\sqrt{3}-2 \\land x_3=-2-\\sqrt{3}$",
"system": ""
},
{
"prompt": "Find the second derivative $\\frac{d ^2y}{ d x^2}$ of the function $x=5 \\cdot \\left(\\cos(t)\\right)^3$, $y=6 \\cdot \\left(\\sin(3 \\cdot t)\\right)^3$.",
"response": "$\\frac{d ^2y}{ d x^2}$=$\\frac{-15\\cdot\\left(\\cos(t)\\right)^2\\cdot\\sin(t)\\cdot\\left(324\\cdot\\sin(3\\cdot t)-486\\cdot\\left(\\sin(3\\cdot t)\\right)^3\\right)-\\left(30\\cdot\\cos(t)-45\\cdot\\left(\\cos(t)\\right)^3\\right)\\cdot54\\cdot\\left(\\sin(3\\cdot t)\\right)^2\\cdot\\cos(3\\cdot t)}{\\left(-15\\cdot\\left(\\cos(t)\\right)^2\\cdot\\sin(t)\\right)^3}$",
"system": ""
},
{
"prompt": "Find the gradient: $f(x,y)=\\frac{ \\sqrt{x}+y^2 }{ x \\cdot y }$.",
"response": "$\\nabla f(x,y)$ =$\\left\\langle\\frac{1}{2\\cdot x\\cdot y\\cdot\\sqrt{x}}-\\frac{\\sqrt{x}+y^2}{y\\cdot x^2},\\frac{2}{x}-\\frac{\\sqrt{x}+y^2}{x\\cdot y^2}\\right\\rangle$",
"system": ""
},
{
"prompt": "Use the method of Lagrange multipliers to find the maximum and minimum values of the function $f(x,y,z)=x^2+y^2+z^2$ subject to the constraints $x \\cdot y \\cdot z=4$.",
"response": "Minimum: $6\\cdot\\sqrt[3]{2}$\n\nMaximum: None",
"system": ""
},
{
"prompt": "Use the method of Lagrange multipliers to find the maximum and minimum values of the function $f(x,y,z)=x^2+y^2+z^2$ subject to the constraints $x \\cdot y \\cdot z=4$.",
"response": "Minimum: $6\\cdot\\sqrt[3]{2}$\n\nMaximum: None",
"system": ""
},
{
"prompt": "Use the method of Lagrange multipliers to find the maximum and minimum values of the function $f(x,y,z)=x^2+y^2+z^2$ subject to the constraints $x \\cdot y \\cdot z=4$.",
"response": "Minimum: $6\\cdot\\sqrt[3]{2}$\n\nMaximum: None",
"system": ""
},
{
"prompt": "Compute the integral: $\\int{\\frac{ 1 }{ 2 \\cdot \\sin\\left(\\frac{ x }{ 2 }\\right)^6 } d x}$.",
"response": "$\\int{\\frac{ 1 }{ 2 \\cdot \\sin\\left(\\frac{ x }{ 2 }\\right)^6 } d x}$ =$C-\\frac{1}{5}\\cdot\\left(\\cot\\left(\\frac{x}{2}\\right)\\right)^5-\\frac{2}{3}\\cdot\\left(\\cot\\left(\\frac{x}{2}\\right)\\right)^3-\\cot\\left(\\frac{x}{2}\\right)$",
"system": ""
},
{
"prompt": "Given functions $p(x)=\\frac{ 1 }{ \\sqrt{x} }$ and $m(x)=x^2-4$,\nstate the domain of each of the following functions\nusing interval notation:\n\n1. $\\frac{ p(x) }{ m(x) }$\n2. $p\\left(m(x)\\right)$\n3. $m\\left(p(x)\\right)$",
"response": "1. Domain of $\\frac{ p(x) }{ m(x) }$: $(0,2)\\cup(2,\\infty)$\n2. Domain of $p\\left(m(x)\\right)$: $(-\\infty,-2)\\cup(2,\\infty)$\n3. Domain of $m\\left(p(x)\\right)$: $(0,\\infty)$",
"system": ""
},
{
"prompt": "Given functions $p(x)=\\frac{ 1 }{ \\sqrt{x} }$ and $m(x)=x^2-4$,\nstate the domain of each of the following functions\nusing interval notation:\n\n1. $\\frac{ p(x) }{ m(x) }$\n2. $p\\left(m(x)\\right)$\n3. $m\\left(p(x)\\right)$",
"response": "1. Domain of $\\frac{ p(x) }{ m(x) }$: $(0,2)\\cup(2,\\infty)$\n2. Domain of $p\\left(m(x)\\right)$: $(-\\infty,-2)\\cup(2,\\infty)$\n3. Domain of $m\\left(p(x)\\right)$: $(0,\\infty)$",
"system": ""
},
{
"prompt": "Write the Taylor series for the function $f(x)=x \\cdot \\cos(2 \\cdot x)$ at the point $x=\\frac{ \\pi }{ 2 }$ up to the third term (zero or non-zero).",
"response": "This is the final answer to the problem: $-\\frac{\\pi}{2}-\\left(x-\\frac{\\pi}{2}\\right)+\\pi\\cdot\\left(x-\\frac{\\pi}{2}\\right)^2$",
"system": ""
},
{
"prompt": "Washington, D.C. is located at $39$ deg N and $77$ deg W. Assume the radius of Earth is $4000$ mi. Express the location of Washington, D.C. in spherical coordinates (use radians).",
"response": "$P\\left(r,\\theta,\\varphi\\right)$ = $P(4000,-1.34,0.89)$",
"system": ""
},
{
"prompt": "Make full curve sketching of $y=\\ln\\left(\\left|\\frac{ 3 \\cdot x-2 }{ 3 \\cdot x+2 }\\right|\\right)$. Submit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
"response": "This is the final answer to the problem:\n\n1. The domain (in interval notation) $\\left(-\\infty,-\\frac{2}{3}\\right)\\cup\\left(-\\frac{2}{3},\\frac{2}{3}\\right)\\cup\\left(\\frac{2}{3},\\infty\\right)$\n2. Vertical asymptotes $x=\\frac{2}{3}, x=-\\frac{2}{3}$\n3. Horizontal asymptotes $y=0$\n4. Slant asymptotes None\n5. Intervals where the function is increasing $\\left(\\frac{2}{3},\\infty\\right), \\left(-\\infty,-\\frac{2}{3}\\right)$\n6. Intervals where the function is decreasing $\\left(-\\frac{2}{3},\\frac{2}{3}\\right)$\n7. Intervals where the function is concave up $\\left(-\\frac{2}{3},0\\right), \\left(-\\infty,-\\frac{2}{3}\\right)$\n8. Intervals where the function is concave down $\\left(0,\\frac{2}{3}\\right) \\cup \\left(\\frac{2}{3}, \\infty\\right)$\n9. Points of inflection $P(0,0)$",
"system": ""
},
{
"prompt": "Evaluate the integral: $\\int_{0}^{\\frac{ 1 }{ 2 }}{\\sqrt[5]{1+x^3} d x}$ with explicitly guaranteed accuracy of $\\frac{ 1 }{ 100 }$ using power series expansion.",
"response": "This is the final answer to the problem: $0.503$",
"system": ""
},
{
"prompt": "Evaluate $I=\\int{\\frac{ 1 }{ x^3+8 } d x}$.",
"response": "This is the final answer to the problem: $I=\\frac{\\sqrt{3}}{12}\\cdot\\arctan\\left(\\frac{x-1}{\\sqrt{3}}\\right)+\\frac{1}{24}\\cdot\\ln\\left(\\frac{(x+2)^2}{x^2-2\\cdot x+4}\\right)+C$",
"system": ""
},
{
"prompt": "Evaluate $I=\\int{\\frac{ 1 }{ x^3+8 } d x}$.",
"response": "This is the final answer to the problem: $I=\\frac{\\sqrt{3}}{12}\\cdot\\arctan\\left(\\frac{x-1}{\\sqrt{3}}\\right)+\\frac{1}{24}\\cdot\\ln\\left(\\frac{(x+2)^2}{x^2-2\\cdot x+4}\\right)+C$",
"system": ""
},
{
"prompt": "Solve the integral: $\\int{2 \\cdot \\tan(-10 \\cdot x)^4 d x}$.",
"response": "$\\int{2 \\cdot \\tan(-10 \\cdot x)^4 d x}$ =$C+\\frac{1}{5}\\cdot\\left(\\frac{1}{3}\\cdot\\left(\\tan(10\\cdot x)\\right)^3+\\arctan\\left(\\tan(10\\cdot x)\\right)-\\tan(10\\cdot x)\\right)$",
"system": ""
},
{
"prompt": "Solve the integral: $\\int{2 \\cdot \\tan(-10 \\cdot x)^4 d x}$.",
"response": "$\\int{2 \\cdot \\tan(-10 \\cdot x)^4 d x}$ =$C+\\frac{1}{5}\\cdot\\left(\\frac{1}{3}\\cdot\\left(\\tan(10\\cdot x)\\right)^3+\\arctan\\left(\\tan(10\\cdot x)\\right)-\\tan(10\\cdot x)\\right)$",
"system": ""
},
{
"prompt": "For the function $f(x)=x^{11}-6 \\cdot x^{10}$, determine:\n\n1. Intervals where:\n1. $f$ is increasing\n2. $f$ is decreasing\n3. $f$ is concave up\n4. $f$ is concave down\n\n3. find:\n1. local minima\n2. local maxima\n3. the inflection points of $f$",
"response": "This is the final answer to the problem:1. Intervals where:\n1. $f$ is increasing: $\\left(\\frac{60}{11},\\infty\\right), (-\\infty,0)$\n2. $f$ is decreasing: $\\left(0,\\frac{60}{11}\\right)$\n3. $f$ is concave up: $\\left(\\frac{54}{11},\\infty\\right)$\n4. $f$ is concave down: $\\left(0,\\frac{54}{11}\\right), (-\\infty,0)$\n\n3. find:\n1. local minima: $\\frac{60}{11}$\n2. local maxima: $0$\n3. the inflection points of $f$: $P\\left(\\frac{54}{11},-\\frac{2529990231179046912}{285311670611}\\right)$",
"system": ""
},
{
"prompt": "Sketch the curve: \n\n$y=\\frac{ x^3 }{ 6 \\cdot (x+3)^2 }$. \n\nProvide the following:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
"response": "This is the final answer to the problem: \n1. The domain (in interval notation): $(-1\\cdot\\infty,-3)\\cup(-3,\\infty)$\n2. Vertical asymptotes: $x=-3$\n3. Horizontal asymptotes: None\n4. Slant asymptotes: $y=\\frac{x}{6}-1$\n5. Intervals where the function is increasing: $(-3,0), (0,\\infty), (-\\infty,-9)$\n6. Intervals where the function is decreasing: $(-9,-3)$\n7. Intervals where the function is concave up: $(0,\\infty)$\n8. Intervals where the function is concave down: $(-3,0), (-\\infty,-3)$\n9. Points of inflection: $P(0,0)$",
"system": ""
},
{
"prompt": "Find the Fourier series expansion of the function $f(x)=\\frac{ x }{ 2 }$ with the period $4$ at interval $[-2,2]$.",
"response": "The Fourier series is: $f(x)=\\sum_{n=1}^\\infty\\left(\\frac{(-1)^{n+1}\\cdot2}{\\pi\\cdot n}\\cdot\\sin\\left(\\frac{\\pi\\cdot n\\cdot x}{2}\\right)\\right)$",
"system": ""
},
{
"prompt": "Compute the integral $\\int{\\frac{ 6 \\cdot x^3-7 \\cdot x^2+3 \\cdot x-1 }{ 2 \\cdot x-3 \\cdot x^2 } d x}$.",
"response": "Answer is:$-x^2+x-\\frac{1}{3}\\cdot\\ln\\left(\\left|x-\\frac{2}{3}\\right|\\right)+\\frac{1}{2}\\cdot\\ln\\left(\\left|1-\\frac{2}{3\\cdot x}\\right|\\right)+C$",
"system": ""
},
{
"prompt": "Calculate $\\sqrt[3]{30}$ with estimate error $0.001$, using series expansion.",
"response": "This is the final answer to the problem: $\\frac{755}{243}$",
"system": ""
},
{
"prompt": "The unit price of an item affects its supply and demand. That is, if the unit price goes up, the demand for the item will usually decrease. For example, a local newspaper currently has $$84,000$$ subscribers at a quarterly charge of $$30\\space \\text{USD}$$. Market research has suggested that if the owners raise the price to $$34\\space \\text{USD}$$, they would lose $$9,000$$ subscribers. Assuming that subscriptions are linearly related to the price, what price should the newspaper charge for a quarterly subscription to maximize their revenue?",
"response": "This is the final answer to the problem: $\\frac{101}{3}$",
"system": ""
},
{
"prompt": "The unit price of an item affects its supply and demand. That is, if the unit price goes up, the demand for the item will usually decrease. For example, a local newspaper currently has $$84,000$$ subscribers at a quarterly charge of $$30\\space \\text{USD}$$. Market research has suggested that if the owners raise the price to $$34\\space \\text{USD}$$, they would lose $$9,000$$ subscribers. Assuming that subscriptions are linearly related to the price, what price should the newspaper charge for a quarterly subscription to maximize their revenue?",
"response": "This is the final answer to the problem: $\\frac{101}{3}$",
"system": ""
},
{
"prompt": "Solve the following system of equations:\n\n$x+y=\\frac{ 2 \\cdot \\pi }{ 3 }$ \n\n$\\frac{ \\sin(x) }{ \\sin(y) }=2$",
"response": "This is the final answer to the problem: $x=\\frac{\\pi}{2}+\\pi\\cdot k, y=\\frac{\\pi}{6}-\\pi\\cdot k$",
"system": ""
},
{
"prompt": "A certain bacterium grows in culture in a circular region. The radius of the circle, measured in centimeters, is given by $r(t)=6-\\frac{ 5 }{ t^2+1 }$, where $t$ is time measured in hours since a circle of a $1$-cm radius of the bacterium was put into the culture.\n\n1. Express the area of the bacteria, $A(t)$, as a function of time.\n2. Find the exact and approximate area of the bacterial culture in $3$ hours.\n3. Express the circumference of the bacteria, $C(t)$, as a function of time.\n4. Find the exact and approximate circumference of the bacteria in $3$ hours.",
"response": "This is the final answer to the problem:\n\n1. $A(t)$ = $\\pi\\cdot\\left(6-\\frac{5}{t^2+1}\\right)^2$square centimeters\n2. The exact area of the bacterial culture in $3$ hours = $\\frac{121}{4}\\cdot\\pi$ square centimeters. The approximate area of the bacterial culture in $3$ hours = $95.03317777$ square centimeters.\n3. $C(t)$ = $2\\cdot\\pi\\cdot\\left(6-\\frac{5}{t^2+1}\\right)$centimeters\n4. The exact circumference of the bacteria in $3$ hours = $11\\cdot\\pi$ centimeters. The approximate circumference of the bacteria in $3$ hours = $34.55751919$ centimeters.",
"system": ""
},
{
"prompt": "Sketch the curve: \n\n$y=2 \\cdot x \\cdot \\sqrt{3-x^2}$. \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
"response": "This is the final answer to the problem: \n1. The domain (in interval notation): $\\left[-1\\cdot3^{2^{-1}},3^{2^{-1}}\\right]$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(-\\sqrt{\\frac{3}{2}},\\sqrt{\\frac{3}{2}}\\right)$\n6. Intervals where the function is decreasing: $\\left(\\sqrt{\\frac{3}{2}},3^{2^{-1}}\\right), \\left(-3^{2^{-1}},-\\sqrt{\\frac{3}{2}}\\right)$\n7. Intervals where the function is concave up: $\\left(-3^{2^{-1}},0\\right)$\n8. Intervals where the function is concave down: $\\left(0,3^{2^{-1}}\\right)$\n9. Points of inflection: $P(0,0)$",
"system": ""
},
{
"prompt": "An airplane’s Mach number $M$ is the ratio of its speed to the speed of sound. When a plane is flying at a constant altitude, then its Mach angle is given by $\\mu=2 \\cdot \\arcsin\\left(\\frac{ 1 }{ M }\\right)$. Find the Mach angles for the following Mach numbers.\n\n1. $M=1.4$\n2. $M=2.8$\n3. $M=4.3$",
"response": "This is the final answer to the problem: \n\n1. $1.59120591$\n2. $0.73041444$\n3. $0.46941423$",
"system": ""
},
{
"prompt": "An airplane’s Mach number $M$ is the ratio of its speed to the speed of sound. When a plane is flying at a constant altitude, then its Mach angle is given by $\\mu=2 \\cdot \\arcsin\\left(\\frac{ 1 }{ M }\\right)$. Find the Mach angles for the following Mach numbers.\n\n1. $M=1.4$\n2. $M=2.8$\n3. $M=4.3$",
"response": "This is the final answer to the problem: \n\n1. $1.59120591$\n2. $0.73041444$\n3. $0.46941423$",
"system": ""
},
{
"prompt": "Find the radius of convergence and sum of the series: $\\frac{ 1 }{ 4 }+\\frac{ x }{ 1 \\cdot 5 }+\\frac{ x^2 }{ 1 \\cdot 2 \\cdot 6 }+\\cdots+\\frac{ x^n }{ \\left(n!\\right) \\cdot (n+4) }+\\cdots$ .",
"response": "This is the final answer to the problem: 1. Radius of convergence:$R=\\infty$\n2. Sum: $f(x)=\\begin{cases}\\frac{6 - 6 \\cdot e^x + 6 \\cdot e^x \\cdot x - 3 \\cdot e^x \\cdot x^2 + e^x \\cdot x^3}{x^4},&x\\ne0\\\\\\frac{1}{4},&x=0\\end{cases}$",
"system": ""
},
{
"prompt": "Find the radius of convergence and sum of the series: $\\frac{ 1 }{ 4 }+\\frac{ x }{ 1 \\cdot 5 }+\\frac{ x^2 }{ 1 \\cdot 2 \\cdot 6 }+\\cdots+\\frac{ x^n }{ \\left(n!\\right) \\cdot (n+4) }+\\cdots$ .",
"response": "This is the final answer to the problem: 1. Radius of convergence:$R=\\infty$\n2. Sum: $f(x)=\\begin{cases}\\frac{6 - 6 \\cdot e^x + 6 \\cdot e^x \\cdot x - 3 \\cdot e^x \\cdot x^2 + e^x \\cdot x^3}{x^4},&x\\ne0\\\\\\frac{1}{4},&x=0\\end{cases}$",
"system": ""
},
{
"prompt": "Find the radius of convergence and sum of the series: $\\frac{ 1 }{ 4 }+\\frac{ x }{ 1 \\cdot 5 }+\\frac{ x^2 }{ 1 \\cdot 2 \\cdot 6 }+\\cdots+\\frac{ x^n }{ \\left(n!\\right) \\cdot (n+4) }+\\cdots$ .",
"response": "This is the final answer to the problem: 1. Radius of convergence:$R=\\infty$\n2. Sum: $f(x)=\\begin{cases}\\frac{6 - 6 \\cdot e^x + 6 \\cdot e^x \\cdot x - 3 \\cdot e^x \\cdot x^2 + e^x \\cdot x^3}{x^4},&x\\ne0\\\\\\frac{1}{4},&x=0\\end{cases}$",
"system": ""
},
{
"prompt": "Find the tangential and normal components of acceleration if $\\vec{r}(t)=\\left\\langle 6 \\cdot t,3 \\cdot t^2,2 \\cdot t^3 \\right\\rangle$",
"response": "$a_{T}$ =$\\frac{12\\cdot t^3+6\\cdot t}{\\sqrt{t^4+t^2+1}}$ ; $a_{N}$ = $\\frac{6\\cdot\\sqrt{t^4+4\\cdot t^2+1}}{\\sqrt{t^4+t^2+1}}$",
"system": ""
},
{
"prompt": "A sky diver jumps from a reasonable height above the ground. The air resistance she experiences is proportional to her velocity, and the constant of proportionality is $0.24$. It can be shown that the downward velocity of the sky diver at time $t$ is given by\n\n$v(t)=180 \\cdot \\left(1-e^{-0.24 \\cdot t}\\right)$ \n\nwhere $t$ is measured in seconds and $v(t)$ is measured in feet per second\n\n\n\n1. Find the initial velocity of the sky diver\n\n2. Find the velocity after $4$ seconds (round your answer to one decimal place)\n\n3. The maximum velocity of a falling object with wind resistance is called its terminal velocity. Find the terminal velocity of this sky diver. (round your answer to the nearest whole number)",
"response": "1. $0$\n2. $111.1$\n3. $180$",
"system": ""
},
{
"prompt": "Given $y=3 \\cdot x^5+10 \\cdot x^4-20$ find where the function is concave up, down, and point(s) of inflection.",
"response": "Concave up:$(0,\\infty), (-2,0)$Concave down:$(-\\infty,-2)$Point(s) of Inflection:$P(-2,44)$",
"system": ""
},
{
"prompt": "Find the derivative of the function: $y=-3 \\cdot x^{\\sqrt[3]{2 \\cdot x}}$.",
"response": "$\\frac{ d y }{d x}$ =$-\\left(\\frac{3\\cdot\\sqrt[3]{2}}{x^{\\frac{2}{3}}}+\\frac{\\sqrt[3]{2}\\cdot\\ln(x)}{x^{\\frac{2}{3}}}\\right)\\cdot x^{\\sqrt[3]{2}\\cdot\\sqrt[3]{x}}$",
"system": ""
},
{
"prompt": "Compute the integral $\\int{\\frac{ 1 }{ \\left(\\cos(2 \\cdot x)\\right)^3 } d x}$.",
"response": "$\\int{\\frac{ 1 }{ \\left(\\cos(2 \\cdot x)\\right)^3 } d x}$ =$C+\\frac{\\sin(2\\cdot x)}{4\\cdot\\left(\\cos(2\\cdot x)\\right)^2}+\\frac{1}{4}\\cdot\\ln\\left(\\left|\\tan\\left(\\frac{1}{2}\\cdot\\left(2\\cdot x+\\frac{\\pi}{2}\\right)\\right)\\right|\\right)$",
"system": ""
},
{
"prompt": "Compute the integral $\\int{\\frac{ 1 }{ \\left(\\cos(2 \\cdot x)\\right)^3 } d x}$.",
"response": "$\\int{\\frac{ 1 }{ \\left(\\cos(2 \\cdot x)\\right)^3 } d x}$ =$C+\\frac{\\sin(2\\cdot x)}{4\\cdot\\left(\\cos(2\\cdot x)\\right)^2}+\\frac{1}{4}\\cdot\\ln\\left(\\left|\\tan\\left(\\frac{1}{2}\\cdot\\left(2\\cdot x+\\frac{\\pi}{2}\\right)\\right)\\right|\\right)$",
"system": ""
},
{
"prompt": "Compute the integral $\\int{\\frac{ 1 }{ \\left(\\cos(2 \\cdot x)\\right)^3 } d x}$.",
"response": "$\\int{\\frac{ 1 }{ \\left(\\cos(2 \\cdot x)\\right)^3 } d x}$ =$C+\\frac{\\sin(2\\cdot x)}{4\\cdot\\left(\\cos(2\\cdot x)\\right)^2}+\\frac{1}{4}\\cdot\\ln\\left(\\left|\\tan\\left(\\frac{1}{2}\\cdot\\left(2\\cdot x+\\frac{\\pi}{2}\\right)\\right)\\right|\\right)$",
"system": ""
},
{
"prompt": "Let $R$ be the region bounded by the graphs of $y=\\frac{ 1 }{ x+2 }$ and $y=-\\frac{ 1 }{ 2 } \\cdot x+3$.\n\nFind the volume of the solid generated when $R$ is rotated about the vertical line $x=-3$.",
"response": "The volume of the solid is $292.097$ units³.",
"system": ""
},
{
"prompt": "Let $Q$ be the region bounded by the graph of $x=\\frac{ 2 }{ 1-y }$, the line $x=-1$, and the line $y=\\frac{ 5 }{ 4 }$.\n\nWrite, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when $Q$ is revolved about the line $x=-1$.",
"response": "$V$ = $\\int_{\\frac{5}{4}}^3\\left(\\pi\\cdot\\left(\\frac{2}{1-y}+1\\right)^2\\right)dy$",
"system": ""
},
{
"prompt": "Given $y=3 \\cdot x^5+20 \\cdot x^4+40 \\cdot x^3+100$ find where the function is concave up, down, and point(s) of inflection.",
"response": "Concave up:$(0,\\infty)$Concave down:$(-2,0), (-\\infty,-2)$Point(s) of Inflection:$P(0,100)$",
"system": ""
},
{
"prompt": "Consider the differential equation $\\frac{ d y }{d x}=e^y \\cdot (5 \\cdot x-1)$. Find $y=g(x)$, the particular solution to the differential equation for $-0.819 \\le x \\le 1.219$ that passes through the point $P(1,0)$.",
"response": "$y$ = $-\\ln\\left(-\\frac{5}{2}\\cdot x^2+x+\\frac{5}{2}\\right)$",
"system": ""
},
{
"prompt": "A projectile is shot in the air from ground level with an initial velocity of $500$ m/sec at an angle of $60$ deg with the horizontal. At what time is the maximum range of the projectile attained? ",
"response": "$t$ = $88.37$",
"system": ""
},
{
"prompt": "Find the Fourier integral of the function $q(x)=\\begin{cases} 0, & x<0 \\\\ 5 \\cdot \\pi \\cdot x, & 0 \\le x \\le 4 \\\\ 0, & x>4 \\end{cases}$.",
"response": "$q(t)$ = $\\int_0^\\infty\\frac{\\left(5\\cdot\\left(4\\cdot\\sin\\left(4\\cdot\\alpha\\right)\\cdot\\alpha+\\cos\\left(4\\cdot\\alpha\\right)-1\\right)\\cdot\\cos\\left(\\alpha\\cdot t\\right)+5\\cdot\\left(\\sin\\left(4\\cdot\\alpha\\right)-4\\cdot\\alpha\\cdot\\cos\\left(4\\cdot\\alpha\\right)\\right)\\cdot\\sin\\left(\\alpha\\cdot t\\right)\\right)}{\\alpha^2}d \\alpha$",
"system": ""
},
{
"prompt": "Find the Fourier integral of the function $q(x)=\\begin{cases} 0, & x<0 \\\\ 5 \\cdot \\pi \\cdot x, & 0 \\le x \\le 4 \\\\ 0, & x>4 \\end{cases}$.",
"response": "$q(t)$ = $\\int_0^\\infty\\frac{\\left(5\\cdot\\left(4\\cdot\\sin\\left(4\\cdot\\alpha\\right)\\cdot\\alpha+\\cos\\left(4\\cdot\\alpha\\right)-1\\right)\\cdot\\cos\\left(\\alpha\\cdot t\\right)+5\\cdot\\left(\\sin\\left(4\\cdot\\alpha\\right)-4\\cdot\\alpha\\cdot\\cos\\left(4\\cdot\\alpha\\right)\\right)\\cdot\\sin\\left(\\alpha\\cdot t\\right)\\right)}{\\alpha^2}d \\alpha$",
"system": ""
},
{
"prompt": "For the function $\\varphi(x)=(10-x) \\cdot \\sqrt{x^2+8}$ specify the points where local maxima and minima of $\\varphi(x)$ occur. Submit as your final answer:\n\n1. The point(s) where local maxima occur\n2. The point(s) where local minima occur",
"response": "This is the final answer to the problem: \n\n1. The point(s) where local maxima occur $P\\left(4,12\\cdot\\sqrt{6}\\right)$\n2. The point(s) where local minima occur $P(1,27)$",
"system": ""
},
{
"prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of the function $x^{\\frac{ 1 }{ 3 }}$ with the center $a=27$.",
"response": "$x^{\\frac{ 1 }{ 3 }}$ =$\\sum_{n=0}^\\infty\\left(3^{1-3\\cdot n}\\cdot C_n^{\\frac{1}{3}}\\cdot(x-27)^n\\right)$",
"system": ""
},
{
"prompt": "Find the centers of symmetry of the curve of $f(x)=\\left(\\sin(x)\\right)^2$.",
"response": "This is the final answer to the problem: $\\left(k\\cdot\\pi+\\frac{\\pi}{4},\\frac{1}{2}\\right)$",
"system": ""
},
{
"prompt": "Find the local minimum and local maximum values of the function $f(x)=\\frac{ 3 }{ 4 } \\cdot x^4-10 \\cdot x^3+24 \\cdot x^2-4$.",
"response": "The point(s) where the function has a local minimum:$P(8,-516), P(0,-4)$ \nThe point(s) where the function has a local maximum:$P(2,24)$",
"system": ""
},
{
"prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of function $\\sqrt{x+2}$ with the center $a=0$.",
"response": "$\\sqrt{x+2}$ =$\\sum_{n=0}^\\infty\\left(2^{\\frac{1}{2}-n}\\cdot C_{\\frac{1}{2}}^n\\cdot x^n\\right)$",
"system": ""
},
{
"prompt": "Find the first derivative $y_{x}'$ of the function: $x=\\arcsin\\left(\\frac{ t }{ \\sqrt{2+2 \\cdot t^2} }\\right)$, $y=\\arccos\\left(\\frac{ 1 }{ \\sqrt{2+2 \\cdot t^2} }\\right)$, $t \\ge 0$.",
"response": "$y_{x}'$ =$\\frac{t\\cdot\\sqrt{t^2+2}}{\\sqrt{2\\cdot t^2+1}}$",
"system": ""
},
{
"prompt": "Compute the derivative of the complex function $p=u^v$ given $u=3 \\cdot \\ln(x-2 \\cdot y)$ and $v=e^{\\frac{ x }{ y }}$.",
"response": "$\\frac{\\partial p}{\\partial x} = (3 \\ln(x - 2y))^{e^{\\frac{x}{y}}} \\left[ \\frac{e^{\\frac{x}{y}}}{y} \\ln(3 \\ln(x - 2y)) + \\frac{e^{\\frac{x}{y}}}{(x - 2y) \\ln(x - 2y)} \\right]$\n\n$\\frac{\\partial p}{\\partial y} = (3 \\ln(x - 2y))^{e^{\\frac{x}{y}}} \\left[ -\\frac{x e^{\\frac{x}{y}}}{y^2} \\ln(3 \\ln(x - 2y)) - \\frac{2e^{\\frac{x}{y}}}{(x - 2y) \\ln(x - 2y)} \\right]$\n",
"system": ""
},
{
"prompt": "Find points on a coordinate plane that satisfy the following equation:\n\n$10 \\cdot x^2+29 \\cdot y^2+34 \\cdot x \\cdot y+8 \\cdot x+14 \\cdot y+2=0$",
"response": "This is the final answer to the problem: $(3,-2)$",
"system": ""
},
{
"prompt": "Find points on a coordinate plane that satisfy the following equation:\n\n$10 \\cdot x^2+29 \\cdot y^2+34 \\cdot x \\cdot y+8 \\cdot x+14 \\cdot y+2=0$",
"response": "This is the final answer to the problem: $(3,-2)$",
"system": ""
},
{
"prompt": "For the curve $x=a\\left(t-\\sin(t)\\right)$, $y=a\\left(1-\\cos(t)\\right)$ determine the curvature. Use $a=12$.",
"response": "The curvature is:$\\frac{1}{48\\cdot\\left|\\sin\\left(\\frac{t}{2}\\right)\\right|}$",
"system": ""
},
{
"prompt": "Determine the Taylor series for $f(x)=\\frac{ 2 \\cdot x-1 }{ x^2-3 \\cdot x+2 }$, centered at $x_{0}=4$. Write out the sum of the first four non-zero terms, followed by dots.",
"response": "This is the final answer to the problem: $\\frac{7}{6}+\\left(\\frac{1}{3^2}-\\frac{3}{2^2}\\right)\\cdot(x-4)-\\left(\\frac{1}{3^3}-\\frac{3}{2^3}\\right)\\cdot(x-4)^2+\\left(\\frac{1}{3^4}-\\frac{3}{2^4}\\right)\\cdot(x-4)^3+\\cdots$",
"system": ""
},
{
"prompt": "Find $\\frac{ d y }{d x}$ if $y=\\frac{ 5 \\cdot x^2-3 \\cdot x }{ \\left(3 \\cdot x^7+2 \\cdot x^6\\right)^4 }$.",
"response": "$\\frac{ d y }{d x}$ = $\\frac{-390\\cdot x^2+23\\cdot x+138}{x^{24}\\cdot(3\\cdot x+2)^5}$",
"system": ""
},
{
"prompt": "Compute the integral: $\\int{\\frac{ 1 }{ \\sin(x)^6 } d x}$.",
"response": "$\\int{\\frac{ 1 }{ \\sin(x)^6 } d x}$ =$-\\frac{\\cos(x)}{5\\cdot\\sin(x)^5}+\\frac{4}{5}\\cdot\\left(-\\frac{\\cos(x)}{3\\cdot\\sin(x)^3}-\\frac{2}{3}\\cdot\\cot(x)\\right)$",
"system": ""
},
{
"prompt": "Expand the function: $y=\\ln\\left(x+\\sqrt{1+x^2}\\right)$ in a power series.",
"response": "This is the final answer to the problem: $x-\\frac{1}{2}\\cdot\\frac{x^3}{3}+\\frac{1\\cdot3}{4\\cdot2}\\cdot\\frac{x^5}{5}-\\frac{1\\cdot3\\cdot5}{2\\cdot4\\cdot6}\\cdot\\frac{x^7}{7}+\\cdots+\\frac{(2\\cdot n-1)!!}{(2\\cdot n)!!}\\cdot\\frac{x^{2\\cdot n+1}}{2\\cdot n+1}+\\cdots$",
"system": ""
},
{
"prompt": "Compute the integral $\\int{\\frac{ 1 }{ \\sqrt{4 \\cdot x^2+4 \\cdot x+3} } d x}$.",
"response": "$\\int{\\frac{ 1 }{ \\sqrt{4 \\cdot x^2+4 \\cdot x+3} } d x}$ =$\\frac{1}{2}\\cdot\\ln\\left(\\left|2\\cdot x+1+\\sqrt{4\\cdot x^2+4\\cdot x+3}\\right|\\right)+C$",
"system": ""
},
{
"prompt": "For the function: $f(x)=x^3+x^4$ determine\n\n1. intervals where $f$ is increasing or decreasing,\n2. local minima and maxima of $f$ ,\n3. intervals where $f$ is concave up and concave down, and\n4. the inflection points of $f$ .",
"response": "1. Increasing over $\\left( -\\frac{3}{4}, 0 \\right) \\cup (0, \\infty)$ ; decreasing over $\\left(-\\infty,-\\frac{3}{4}\\right)$\n2. Local maxima at None ; local minima at $x=-\\frac{3}{4}$\n3. Concave up for $x>0, x<-\\frac{1}{2}$ ; concave down for $-\\frac{1}{2}<x<0$\n4. Inflection points at $P\\left(-\\frac{1}{2},-\\frac{1}{16}\\right); P(0,0)$",
"system": ""
},
{
"prompt": "Find the generalized center of mass between $y=b \\cdot \\sin(a \\cdot x)$, $x=0$, and $x=\\frac{ \\pi }{ a }$ . Then, use the Pappus theorem to find the volume of the solid generated when revolving around the $y$-axis.",
"response": "$(x,y)$ = $P\\left(\\frac{\\pi}{2\\cdot a},\\frac{\\pi\\cdot b}{8}\\right)$ \n\n$V$ = $\\frac{2\\cdot\\pi^2\\cdot b}{a^2}$",
"system": ""
},
{
"prompt": "Differentiate the function \n $f(x)=\\frac{ 5 \\cdot x^3-\\sqrt[3]{x}+6 \\cdot x+2 }{ \\sqrt{x} }$.",
"response": "$\\frac{ d }{d x}\\left(\\frac{ 5 \\cdot x^3-\\sqrt[3]{x}+6 \\cdot x+2 }{ \\sqrt{x} }\\right)$=$\\frac{18\\cdot x\\cdot\\sqrt[6]{x}+75\\cdot x^3\\cdot\\sqrt[6]{x}+\\sqrt{x}-6\\cdot\\sqrt[6]{x}}{6\\cdot x\\cdot x^{\\frac{2}{3}}}$",
"system": ""
},
{
"prompt": "Differentiate the function \n $f(x)=\\frac{ 5 \\cdot x^3-\\sqrt[3]{x}+6 \\cdot x+2 }{ \\sqrt{x} }$.",
"response": "$\\frac{ d }{d x}\\left(\\frac{ 5 \\cdot x^3-\\sqrt[3]{x}+6 \\cdot x+2 }{ \\sqrt{x} }\\right)$=$\\frac{18\\cdot x\\cdot\\sqrt[6]{x}+75\\cdot x^3\\cdot\\sqrt[6]{x}+\\sqrt{x}-6\\cdot\\sqrt[6]{x}}{6\\cdot x\\cdot x^{\\frac{2}{3}}}$",
"system": ""
},
{
"prompt": "Find the dimensions of the box whose length is twice as long as the width, whose height is $2$ inches greater than the width, and whose volume is $192$ cubic inches.",
"response": "The dimensions of the box are $6, 4, 8$",
"system": ""
},
{
"prompt": "Compute the integral $\\int{x \\cdot \\arctan(2 \\cdot x)^2 d x}$.",
"response": "$\\int{x \\cdot \\arctan(2 \\cdot x)^2 d x}$ =$\\frac{1}{16}\\cdot\\left(2\\cdot\\left(\\arctan(2\\cdot x)\\right)^2+2\\cdot\\ln\\left(4\\cdot x^2+1\\right)+8\\cdot x^2\\cdot\\left(\\arctan(2\\cdot x)\\right)^2-8\\cdot x\\cdot\\arctan(2\\cdot x)\\right)+C$",
"system": ""
},
{
"prompt": "When hired at a new job selling electronics, you are given two pay options:\n\nOption A: Base salary of $20\\ 000$ USD a year with a commission of $12$ percent of your sales.\n\nOption B: Base salary of $26\\ 000$ USD a year with a commission of $3$ percent of your sales.\n\nHow much electronics would you need to sell for Option A to produce a larger income? Give your answer either exactly or rounded to two decimal places.",
"response": "This is the final answer to the problem: $66666.67$",
"system": ""
}
]
} |