File size: 46,435 Bytes
8ea0712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
{
  "dataset_name": "Mu-Math",
  "group_index": 6,
  "source_file": "/hkfs/work/workspace/scratch/tum_fmp0582-dndworkspace/自己训练lora/prepare/data/math/Mu-Math.json",
  "selected_indices": [
    2,
    8,
    15,
    46,
    82,
    92,
    101,
    102,
    105,
    112,
    135,
    157,
    158,
    162,
    176,
    207,
    211,
    214,
    222,
    224,
    225,
    229,
    241,
    252,
    254,
    257,
    263,
    272,
    354,
    360,
    367,
    370,
    372,
    423,
    426,
    434,
    446,
    448,
    459,
    485,
    489,
    509,
    520,
    532,
    533,
    538,
    541,
    544,
    546,
    560,
    562,
    564,
    570,
    585,
    602,
    612,
    625,
    628,
    636,
    648,
    652,
    667,
    671,
    677,
    716,
    720,
    728,
    730,
    738,
    746,
    753,
    758,
    761,
    775,
    778,
    779,
    804,
    830,
    856,
    862,
    877,
    890,
    893,
    899,
    908,
    909,
    914,
    918,
    932,
    958,
    984,
    993,
    1000,
    1006,
    1016,
    1023,
    1026,
    1032,
    1034,
    1048
  ],
  "total_records": 1084,
  "sample_count": 100,
  "generated_at": "2025-11-05T12:58:28Z",
  "seed": 4171135963,
  "samples": [
    {
      "prompt": "Evaluate the integral by choosing the order of integration: $\\int_{0}^1{\\int_{1}^2{\\left(\\frac{ y }{ x+y^2 }\\right) d y} d x}$.",
      "response": "$\\int_{0}^1{\\int_{1}^2{\\left(\\frac{ y }{ x+y^2 }\\right) d y} d x}$ =$\\ln\\left(\\frac{25\\cdot\\sqrt{5}}{32}\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series of the periodic function $f(x)=x^2$ in the interval $-2 \\cdot \\pi \\le x<2 \\cdot \\pi$  if $f(x)=f(x+4 \\cdot \\pi)$.",
      "response": "The Fourier series is: $\\frac{4\\cdot\\pi^2}{3}+\\sum_{n=1}^\\infty\\left(\\frac{16\\cdot(-1)^n}{n^2}\\cdot\\cos\\left(\\frac{n\\cdot x}{2}\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ 2 \\cdot x^3 }{ \\sqrt{x^2+16} } d x}$.",
      "response": "$\\int{\\frac{ 2 \\cdot x^3 }{ \\sqrt{x^2+16} } d x}$ =$C+128\\cdot\\left(\\frac{1}{3\\cdot\\left(\\cos\\left(\\arctan\\left(\\frac{x}{4}\\right)\\right)\\right)^3}-\\frac{1}{\\cos\\left(\\arctan\\left(\\frac{x}{4}\\right)\\right)}\\right)$",
      "system": ""
    },
    {
      "prompt": "Solve the following equations: 1. $8.6=6 j+4 j$\n2. $12 z-(4 z+6)=82$\n3. $5.4 d-2.3 d+3 (d-4)=16.67$\n4. $2.6 f-1.3 (3 f-4)=6.5$\n5. $-5.3 m+(-3.9 m)-17=-94.28$\n6. $6 (3.5 y+4.2)-2.75 y=134.7$",
      "response": "The solutions to the given equations are: 1. $j=0.86$\n2. $z=11$\n3. $d=\\frac{ 47 }{ 10 }$\n4. $f=-1$\n5. $m=\\frac{ 42 }{ 5 }$\n6. $y=6$",
      "system": ""
    },
    {
      "prompt": "Find the radius of convergence and sum of the series:  $\\frac{ 1 }{ 2 }+\\frac{ x }{ 1 \\cdot 3 }+\\frac{ x^2 }{ 1 \\cdot 2 \\cdot 4 }+\\cdots+\\frac{ x^n }{ \\left(n!\\right) \\cdot (n+2) }+\\cdots$ .",
      "response": "This is the final answer to the problem: 1. Radius of convergence:$R=\\infty$\n2. Sum: $f(x)=\\begin{cases}\\frac{1}{x^2}+\\frac{x\\cdot e^x-e^x}{x^2},&x\\ne0\\\\\\frac{1}{2},&x=0\\end{cases}$",
      "system": ""
    },
    {
      "prompt": "Consider the differential equation $\\frac{ d y }{d x}=\\frac{ 4+y }{ x }$. Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(3)=-3$.",
      "response": "$y$ = $\\frac{|x|}{3}-4$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series of the function $u=\\left|\\sin\\left(\\frac{ x }{ 2 }\\right)\\right|$ in the interval $[-2 \\cdot \\pi,2 \\cdot \\pi]$.",
      "response": "The Fourier series is: $\\frac{2}{\\pi}+\\frac{4}{\\pi}\\cdot\\sum_{k=1}^\\infty\\left(\\frac{1}{\\left(1-4\\cdot k^2\\right)}\\cdot\\cos(k\\cdot x)\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series of the function $u=\\left|\\sin\\left(\\frac{ x }{ 2 }\\right)\\right|$ in the interval $[-2 \\cdot \\pi,2 \\cdot \\pi]$.",
      "response": "The Fourier series is: $\\frac{2}{\\pi}+\\frac{4}{\\pi}\\cdot\\sum_{k=1}^\\infty\\left(\\frac{1}{\\left(1-4\\cdot k^2\\right)}\\cdot\\cos(k\\cdot x)\\right)$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\frac{ -9 \\cdot \\sqrt[3]{x} }{ 9 \\cdot \\sqrt[3]{x^2}+3 \\cdot \\sqrt{x} } d x}$.",
      "response": "$\\int{\\frac{ -9 \\cdot \\sqrt[3]{x} }{ 9 \\cdot \\sqrt[3]{x^2}+3 \\cdot \\sqrt{x} } d x}$ =$-\\left(C+\\frac{1}{3}\\cdot\\sqrt[6]{x}^2+\\frac{2}{27}\\cdot\\ln\\left(\\frac{1}{3}\\cdot\\left|1+3\\cdot\\sqrt[6]{x}\\right|\\right)+\\frac{3}{2}\\cdot\\sqrt[6]{x}^4-\\frac{2}{3}\\cdot\\sqrt[6]{x}^3-\\frac{2}{9}\\cdot\\sqrt[6]{x}\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier integral of the function $q(x)=\\begin{cases} 0, & x<0 \\\\ 2 \\cdot \\pi \\cdot x, & 0 \\le x \\le 1 \\\\ 0, & x>1 \\end{cases}$.",
      "response": "$q(x)$ = $\\int_0^\\infty\\left(\\frac{2\\cdot\\left(\\alpha\\cdot\\sin\\left(\\alpha\\right)+\\cos\\left(\\alpha\\right)-1\\right)\\cdot\\cos\\left(\\alpha\\cdot x\\right)+2\\cdot\\left(\\sin\\left(\\alpha\\right)-\\alpha\\cdot\\cos\\left(\\alpha\\right)\\right)\\cdot\\sin\\left(\\alpha\\cdot x\\right)}{\\alpha^2}\\right)d\\alpha$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ 10 \\cdot x-8 }{ \\sqrt{2 \\cdot x^2+4 \\cdot x+10} } d x}$.",
      "response": "$\\int{\\frac{ 10 \\cdot x-8 }{ \\sqrt{2 \\cdot x^2+4 \\cdot x+10} } d x}$ =$\\frac{1}{\\sqrt{2}}\\cdot\\left(10\\cdot\\sqrt{x^2+2\\cdot x+5}-18\\cdot\\ln\\left(\\left|2+2\\cdot x+2\\cdot\\sqrt{x^2+2\\cdot x+5}\\right|\\right)\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\frac{ 1 }{ \\sin(8 \\cdot x)^5 } d x}$.",
      "response": "This is the final answer to the problem: $C+\\frac{1}{128}\\cdot\\left(2\\cdot\\left(\\tan(4\\cdot x)\\right)^2+6\\cdot\\ln\\left(\\left|\\tan(4\\cdot x)\\right|\\right)+\\frac{1}{4}\\cdot\\left(\\tan(4\\cdot x)\\right)^4-\\frac{2}{\\left(\\tan(4\\cdot x)\\right)^2}-\\frac{1}{4\\cdot\\left(\\tan(4\\cdot x)\\right)^4}\\right)$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\frac{ 1 }{ \\sin(8 \\cdot x)^5 } d x}$.",
      "response": "This is the final answer to the problem: $C+\\frac{1}{128}\\cdot\\left(2\\cdot\\left(\\tan(4\\cdot x)\\right)^2+6\\cdot\\ln\\left(\\left|\\tan(4\\cdot x)\\right|\\right)+\\frac{1}{4}\\cdot\\left(\\tan(4\\cdot x)\\right)^4-\\frac{2}{\\left(\\tan(4\\cdot x)\\right)^2}-\\frac{1}{4\\cdot\\left(\\tan(4\\cdot x)\\right)^4}\\right)$",
      "system": ""
    },
    {
      "prompt": "What is the general solution to the differential equation $\\frac{ d y }{d x}=-3 \\cdot y+12$ for $y>4$?",
      "response": "$y$ = $C\\cdot e^{-3\\cdot x}+4$",
      "system": ""
    },
    {
      "prompt": "Find the directional derivative of $f(x,y,z)=x^2+y \\cdot z$ at $P(1,-3,2)$ in the direction of increasing $t$ along the path\n\n$\\vec{r}(t)=t^2 \\cdot \\vec{i}+3 \\cdot t \\cdot \\vec{j}+\\left(1-t^3\\right) \\cdot \\vec{k}$.",
      "response": "$f_{u}(P)$=$\\frac{11}{\\sqrt{22}}$",
      "system": ""
    },
    {
      "prompt": "Use the method of Lagrange multipliers to maximize $U(x,y)=8 \\cdot x^{\\frac{ 4 }{ 5 }} \\cdot y^{\\frac{ 1 }{ 5 }}$; $4 \\cdot x+2 \\cdot y=12$.",
      "response": "Answer: maximum $16.715$ at $P(2.4,1.2)$",
      "system": ""
    },
    {
      "prompt": "Find $\\frac{ d y }{d x}$  for $y=x \\cdot \\arccsc(x)$.",
      "response": "$\\frac{ d y }{d x}$= $-\\frac{x}{|x|\\cdot\\sqrt{x^2-1}}+\\arccsc(x)$",
      "system": ""
    },
    {
      "prompt": "Find the derivative of $f(x)=\\frac{ \\left(\\left(\\tan(x)\\right)^2-1\\right) \\cdot \\left(\\left(\\tan(x)\\right)^4+10 \\cdot \\left(\\tan(x)\\right)^2+1\\right) }{ 3 \\cdot \\left(\\tan(x)\\right)^3 }$.",
      "response": "This is the final answer to the problem: $f'(x)=\\left(\\tan(x)\\right)^4+4\\cdot\\left(\\tan(x)\\right)^2+\\frac{4}{\\left(\\tan(x)\\right)^2}+\\frac{1}{\\left(\\tan(x)\\right)^4}+6$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier integral of the function $q(x)=\\begin{cases} 0, & x<0 \\\\ \\pi \\cdot x, & 0 \\le x \\le 1 \\\\ 0, & x>1 \\end{cases}$.",
      "response": "$q(x)$ = $\\int_0^\\infty\\left(\\frac{\\left(\\alpha\\cdot\\sin\\left(\\alpha\\right)+\\cos\\left(\\alpha\\right)-1\\right)\\cdot\\cos\\left(\\alpha\\cdot x\\right)+\\left(\\sin\\left(\\alpha\\right)-\\alpha\\cdot\\cos\\left(\\alpha\\right)\\right)\\cdot\\sin\\left(\\alpha\\cdot x\\right)}{\\alpha^2}\\right)d\\alpha$",
      "system": ""
    },
    {
      "prompt": "Solve the initial value problem (find function $f$) for  $f'(x)=\\frac{ 2 }{ x^2 }-\\frac{ x^2 }{ 2 }$,  $f(1)=0$.",
      "response": "$f(x)=\\frac{13}{6}-\\frac{2}{x}-\\frac{1}{6}\\cdot x^3$",
      "system": ""
    },
    {
      "prompt": "Solve the initial value problem (find function $f$) for  $f'(x)=\\frac{ 2 }{ x^2 }-\\frac{ x^2 }{ 2 }$,  $f(1)=0$.",
      "response": "$f(x)=\\frac{13}{6}-\\frac{2}{x}-\\frac{1}{6}\\cdot x^3$",
      "system": ""
    },
    {
      "prompt": "Compute the partial derivatives of the implicit function $z(x,y)$, given by the equation $-10 \\cdot x-9 \\cdot y+8 \\cdot z=4 \\cdot \\cos(-10 \\cdot x-9 \\cdot y+8 \\cdot z)$.\n\nSubmit as your final answer:\n\na. $\\frac{\\partial z}{\\partial x}$;\n\nb. $\\frac{\\partial z}{\\partial y}$.",
      "response": "This is the final answer to the problem:  \na. $\\frac{5}{4}$;\n\nb. $\\frac{9}{8}$.",
      "system": ""
    },
    {
      "prompt": "Given $y=x^6-\\frac{ 9 }{ 2 } \\cdot x^5+\\frac{ 15 }{ 2 } \\cdot x^4-5 \\cdot x^3+10$ find where the function is concave up, down, and point(s) of inflection.",
      "response": "Concave up:$(1,\\infty), (-\\infty,0)$Concave down:$(0,1)$Point(s) of Inflection:$P(1,9), P(0,10)$",
      "system": ""
    },
    {
      "prompt": "Find the derivative of $f(x)=\\frac{ 1 }{ 15 } \\cdot \\left(\\cos(x)\\right)^3 \\cdot \\left(\\left(\\cos(x)\\right)^2-5\\right)$.",
      "response": "This is the final answer to the problem: $f'(x)=-\\frac{\\left(\\cos(x)\\right)^2}{15}\\cdot\\left(3\\cdot\\sin(x)\\cdot\\left(\\left(\\cos(x)\\right)^2-5\\right)+\\cos(x)\\cdot\\sin(2\\cdot x)\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the derivative of $f(x)=\\frac{ 1 }{ 15 } \\cdot \\left(\\cos(x)\\right)^3 \\cdot \\left(\\left(\\cos(x)\\right)^2-5\\right)$.",
      "response": "This is the final answer to the problem: $f'(x)=-\\frac{\\left(\\cos(x)\\right)^2}{15}\\cdot\\left(3\\cdot\\sin(x)\\cdot\\left(\\left(\\cos(x)\\right)^2-5\\right)+\\cos(x)\\cdot\\sin(2\\cdot x)\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute $\\sqrt[4]{90}$ with accuracy $0.0001$.",
      "response": "This is the final answer to the problem: $3.0801$",
      "system": ""
    },
    {
      "prompt": "Find the local minimum and local maximum values of the function $f(x)=\\frac{ x^4 }{ 4 }-\\frac{ 11 }{ 3 } \\cdot x^3+15 \\cdot x^2+17$.",
      "response": "The point(s) where the function has a local minimum:$P(6,89), P(0,17)$  \nThe point(s) where the function has a local maximum:$P\\left(5,\\frac{1079}{12}\\right)$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\tan(x)^4 d x}$.",
      "response": "$\\int{\\tan(x)^4 d x}$ = $C + x + 1/3 (sec^2(x) - 4) tan(x)$",
      "system": ""
    },
    {
      "prompt": "Solve $\\sin(x)+7 \\cdot \\cos(x)+7=0$.",
      "response": "This is the final answer to the problem: $x=2\\cdot\\pi\\cdot k-2\\cdot\\arctan(7) \\lor x=\\pi+2\\cdot\\pi\\cdot k$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=5 \\cdot x^2-2 \\cdot x^4-3$.  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes  (Leave blank if there are no vertical asymptotes)\n3. Horizontal asymptotes  (Leave blank if there are no horizontal asymptotes)\n4. Slant asymptotes  (Leave blank if there are no slant asymptotes)\n5. Intervals where the function is increasing  (Leave blank if there are no such intervals)\n6. Intervals where the function is decreasing  (Leave blank if there are no such intervals)\n7. Intervals where the function is concave up  (Leave blank if there are no such intervals)\n8. Intervals where the function is concave down  (Leave blank if there are no such intervals)\n9. Points of inflection  (Leave blank if there are no points of inflection)",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $(-1\\cdot\\infty,\\infty)$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(0,\\frac{\\sqrt{5}}{2}\\right), \\left(-\\infty,-\\frac{\\sqrt{5}}{2}\\right)$\n6. Intervals where the function is decreasing: $\\left(-\\frac{\\sqrt{5}}{2},0\\right), \\left(\\frac{\\sqrt{5}}{2},\\infty\\right)$\n7. Intervals where the function is concave up: $\\left(-\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}}\\right)$\n8. Intervals where the function is concave down: $\\left(-\\infty,-\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}}\\right), \\left(\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},\\infty\\right)$\n9. Points of inflection: $P\\left(-\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},-\\frac{91}{72}\\right), P\\left(\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},-\\frac{91}{72}\\right)$",
      "system": ""
    },
    {
      "prompt": "The velocity of a bullet from a rifle can be approximated by  $v(t)=6400 \\cdot t^2-6505 \\cdot t+2686$ where  $t$ is seconds after the shot and  $v$ is the velocity measured in feet per second. This equation only models the velocity for the first half- second after the shot:  $0 \\le t \\le 0.5$ What is the total distance the bullet travels in  $0.5$ sec?",
      "response": "The total distance is:$796.54166667$",
      "system": ""
    },
    {
      "prompt": "Find the gradient: $f(x,y)=\\frac{ \\sqrt{x}+y^2 }{ x \\cdot y }$.",
      "response": "$\\nabla f(x,y)$ =$\\left\\langle\\frac{1}{2\\cdot x\\cdot y\\cdot\\sqrt{x}}-\\frac{\\sqrt{x}+y^2}{y\\cdot x^2},\\frac{2}{x}-\\frac{\\sqrt{x}+y^2}{x\\cdot y^2}\\right\\rangle$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series of the periodic function $f(x)=\\frac{ x^2 }{ 2 }$ in the interval $-2 \\cdot \\pi \\le x<2 \\cdot \\pi$  if $f(x)=f(x+4 \\cdot \\pi)$.",
      "response": "The Fourier series is: $\\frac{2\\cdot\\pi^2}{3}+\\sum_{n=1}^\\infty\\left(\\frac{8\\cdot(-1)^n}{n^2}\\cdot\\cos\\left(\\frac{n\\cdot x}{2}\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute $\\int_{0}^{\\frac{ 1 }{ 3 }}{e^{-\\frac{ x^2 }{ 3 }} d x}$ with accuracy $0.00001$.",
      "response": "This is the final answer to the problem: $0.32926$",
      "system": ""
    },
    {
      "prompt": "Washington, D.C. is located at $39$ deg N and $77$ deg W. Assume the radius of Earth is $4000$ mi. Express the location of Washington, D.C. in spherical coordinates (use radians).",
      "response": "$P\\left(r,\\theta,\\varphi\\right)$ = $P(4000,-1.34,0.89)$",
      "system": ""
    },
    {
      "prompt": "Make full curve sketching of $y=\\ln\\left(\\left|\\frac{ 3 \\cdot x-2 }{ 3 \\cdot x+2 }\\right|\\right)$. Submit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
      "response": "This is the final answer to the problem:\n\n1. The domain (in interval notation) $\\left(-\\infty,-\\frac{2}{3}\\right)\\cup\\left(-\\frac{2}{3},\\frac{2}{3}\\right)\\cup\\left(\\frac{2}{3},\\infty\\right)$\n2. Vertical asymptotes $x=\\frac{2}{3}, x=-\\frac{2}{3}$\n3. Horizontal asymptotes $y=0$\n4. Slant asymptotes None\n5. Intervals where the function is increasing $\\left(\\frac{2}{3},\\infty\\right), \\left(-\\infty,-\\frac{2}{3}\\right)$\n6. Intervals where the function is decreasing $\\left(-\\frac{2}{3},\\frac{2}{3}\\right)$\n7. Intervals where the function is concave up $\\left(-\\frac{2}{3},0\\right), \\left(-\\infty,-\\frac{2}{3}\\right)$\n8. Intervals where the function is concave down $\\left(0,\\frac{2}{3}\\right) \\cup \\left(\\frac{2}{3}, \\infty\\right)$\n9. Points of inflection $P(0,0)$",
      "system": ""
    },
    {
      "prompt": "Evaluate $I=\\int{\\frac{ 1 }{ x^3+8 } d x}$.",
      "response": "This is the final answer to the problem: $I=\\frac{\\sqrt{3}}{12}\\cdot\\arctan\\left(\\frac{x-1}{\\sqrt{3}}\\right)+\\frac{1}{24}\\cdot\\ln\\left(\\frac{(x+2)^2}{x^2-2\\cdot x+4}\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Find the derivative of the function $y=\\frac{ 2 \\cdot \\csc(x)-7 \\cdot \\sin(x) }{ 4 \\cdot \\left(\\cos(x)\\right)^5 }-\\frac{ 3 }{ 5 } \\cdot \\cot(2 \\cdot x)$.",
      "response": "$y'$=$\\frac{6}{5\\cdot\\left(\\sin(2\\cdot x)\\right)^2}+\\frac{28\\cdot\\left(\\cos(x)\\right)^6-25\\cdot\\left(\\cos(x)\\right)^4-2\\cdot\\left(\\cos(x)\\right)^6\\cdot\\left(\\csc(x)\\right)^2}{4\\cdot\\left(\\cos(x)\\right)^{10}}$",
      "system": ""
    },
    {
      "prompt": "Calculate integral: $\\int{\\frac{ M \\cdot x+N }{ \\left(x^2+p \\cdot x+q\\right)^m } d x}$. $\\left(M=4\\right)$, $\\left(N=5\\right)$, $\\left(p=2\\right)$, $\\left(q=9\\right)$, $\\left(m=2\\right)$.",
      "response": "$\\int{\\frac{ M \\cdot x+N }{ \\left(x^2+p \\cdot x+q\\right)^m } d x}$ =$C+\\frac{x+1}{128+16\\cdot(x+1)^2}+\\frac{\\sqrt{2}}{64}\\cdot\\arctan\\left(\\frac{1}{2\\cdot\\sqrt{2}}\\cdot(x+1)\\right)-\\frac{2}{8+(x+1)^2}$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=\\frac{ x^3 }{ 6 \\cdot (x+3)^2 }$.  \n\nProvide the following:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $(-1\\cdot\\infty,-3)\\cup(-3,\\infty)$\n2. Vertical asymptotes: $x=-3$\n3. Horizontal asymptotes: None\n4. Slant asymptotes: $y=\\frac{x}{6}-1$\n5. Intervals where the function is increasing: $(-3,0), (0,\\infty), (-\\infty,-9)$\n6. Intervals where the function is decreasing: $(-9,-3)$\n7. Intervals where the function is concave up: $(0,\\infty)$\n8. Intervals where the function is concave down: $(-3,0), (-\\infty,-3)$\n9. Points of inflection: $P(0,0)$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series expansion of the function $f(x)=\\frac{ x }{ 2 }$ with the period $4$ at interval $[-2,2]$.",
      "response": "The Fourier series is: $f(x)=\\sum_{n=1}^\\infty\\left(\\frac{(-1)^{n+1}\\cdot2}{\\pi\\cdot n}\\cdot\\sin\\left(\\frac{\\pi\\cdot n\\cdot x}{2}\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Given two functions $f(x)=\\sqrt{x^2-1}$ and $g(x)=\\sqrt{3-x}$\n\n1. compute $f\\left(g(x)\\right)$\n2. compute $\\frac{ f(x) }{ g(x) }$ and find the domain of the new function.",
      "response": "1. the new function $f\\left(g(x)\\right)$ is$f\\left(g(x)\\right)=\\sqrt{2-x}$\n2. the function $\\frac{ f(x) }{ g(x) }$ is $\\frac{\\sqrt{x^2-1}}{\\sqrt{3-x}}$, and the domain for the function is $1\\le x<3 \\lor x\\le-1$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ x+2 }{ \\sqrt{6+10 \\cdot x+25 \\cdot x^2} } d x}$.",
      "response": "$\\int{\\frac{ x+2 }{ \\sqrt{6+10 \\cdot x+25 \\cdot x^2} } d x}$ =$\\frac{1}{25}\\cdot\\sqrt{6+10\\cdot x+25\\cdot x^2}+\\frac{9}{25}\\cdot\\ln\\left(1+5\\cdot x+\\sqrt{1+(5\\cdot x+1)^2}\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ \\sqrt{1+x^2} }{ x } d x}$.",
      "response": "$\\int{\\frac{ \\sqrt{1+x^2} }{ x } d x}$ =$\\sqrt{x^2+1}+\\frac{1}{2}\\cdot\\ln\\left(\\left|\\frac{\\sqrt{x^2+1}-1}{\\sqrt{x^2+1}+1}\\right|\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ \\sqrt{1+x^2} }{ x } d x}$.",
      "response": "$\\int{\\frac{ \\sqrt{1+x^2} }{ x } d x}$ =$\\sqrt{x^2+1}+\\frac{1}{2}\\cdot\\ln\\left(\\left|\\frac{\\sqrt{x^2+1}-1}{\\sqrt{x^2+1}+1}\\right|\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Find the arc length of the curve $x=\\frac{ 5 \\cdot y^2 }{ 6 }-\\frac{ \\ln(5 \\cdot y) }{ 2 }$ enclosed between  $y=3$ and $y=5$.",
      "response": "Arc Length: $-\\frac{\\operatorname{arsinh}\\left(\\frac{200y^{2} - 24}{12 \\sqrt{21}}\\right)}{10} + \\frac{\\sqrt{100y^{4} - 24y^{2} + 9}}{12} - \\frac{\\operatorname{arsinh}\\left(\\frac{3}{2 \\sqrt{21} \\, y^{2}} - \\frac{2}{\\sqrt{21}}\\right)}{4} \\approx \\boxed{13.23342845}$",
      "system": ""
    },
    {
      "prompt": "The unit price of an item affects its supply and demand. That is, if the unit price goes up, the demand for the item will usually decrease. For example, a local newspaper currently has $$84,000$$ subscribers at a quarterly charge of $$30\\space \\text{USD}$$. Market research has suggested that if the owners raise the price to $$34\\space \\text{USD}$$, they would lose $$9,000$$ subscribers. Assuming that subscriptions are linearly related to the price, what price should the newspaper charge for a quarterly subscription to maximize their revenue?",
      "response": "This is the final answer to the problem: $\\frac{101}{3}$",
      "system": ""
    },
    {
      "prompt": "The surface of a large cup is formed by revolving the graph of the function $y=0.25 \\cdot x^{1.6}$ from $x=0$ to $x=5$ about the $y$-axis (measured in centimeters). Find the curvature $\\kappa$ of the generating curve as a function of $x$.",
      "response": "$\\kappa$=$\\frac{30}{x^{\\frac{2}{5}}\\cdot\\left(25+4\\cdot x^{\\frac{6}{5}}\\right)^{\\frac{3}{2}}}$",
      "system": ""
    },
    {
      "prompt": "The surface of a large cup is formed by revolving the graph of the function $y=0.25 \\cdot x^{1.6}$ from $x=0$ to $x=5$ about the $y$-axis (measured in centimeters). Find the curvature $\\kappa$ of the generating curve as a function of $x$.",
      "response": "$\\kappa$=$\\frac{30}{x^{\\frac{2}{5}}\\cdot\\left(25+4\\cdot x^{\\frac{6}{5}}\\right)^{\\frac{3}{2}}}$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=3 \\cdot x^2-x^4-2$.  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes  (Leave blank if there are no vertical asymptotes)\n3. Horizontal asymptotes  (Leave blank if there are no horizontal asymptotes)\n4. Slant asymptotes  (Leave blank if there are no slant asymptotes)\n5. Intervals where the function is increasing  (Leave blank if there are no such intervals)\n6. Intervals where the function is decreasing  (Leave blank if there are no such intervals)\n7. Intervals where the function is concave up  (Leave blank if there are no such intervals)\n8. Intervals where the function is concave down  (Leave blank if there are no such intervals)\n9. Points of inflection  (Leave blank if there are no points of inflection)",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $(-1\\cdot\\infty,\\infty)$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(0,\\frac{\\sqrt{3}}{\\sqrt{2}}\\right), \\left(-\\infty,-\\frac{\\sqrt{3}}{\\sqrt{2}}\\right)$\n6. Intervals where the function is decreasing: $\\left(-\\frac{\\sqrt{3}}{\\sqrt{2}},0\\right), \\left(\\frac{\\sqrt{3}}{\\sqrt{2}},\\infty\\right)$\n7. Intervals where the function is concave up: $\\left(-\\frac{1}{\\sqrt{2}},\\frac{1}{\\sqrt{2}}\\right)$\n8. Intervals where the function is concave down: $\\left(-\\infty,-\\frac{1}{\\sqrt{2}}\\right), \\left(\\frac{1}{\\sqrt{2}},\\infty\\right)$\n9. Points of inflection: $P\\left(-\\frac{1}{\\sqrt{2}},-\\frac{3}{4}\\right), P\\left(\\frac{1}{\\sqrt{2}},-\\frac{3}{4}\\right)$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=3 \\cdot x^2-x^4-2$.  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes  (Leave blank if there are no vertical asymptotes)\n3. Horizontal asymptotes  (Leave blank if there are no horizontal asymptotes)\n4. Slant asymptotes  (Leave blank if there are no slant asymptotes)\n5. Intervals where the function is increasing  (Leave blank if there are no such intervals)\n6. Intervals where the function is decreasing  (Leave blank if there are no such intervals)\n7. Intervals where the function is concave up  (Leave blank if there are no such intervals)\n8. Intervals where the function is concave down  (Leave blank if there are no such intervals)\n9. Points of inflection  (Leave blank if there are no points of inflection)",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $(-1\\cdot\\infty,\\infty)$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(0,\\frac{\\sqrt{3}}{\\sqrt{2}}\\right), \\left(-\\infty,-\\frac{\\sqrt{3}}{\\sqrt{2}}\\right)$\n6. Intervals where the function is decreasing: $\\left(-\\frac{\\sqrt{3}}{\\sqrt{2}},0\\right), \\left(\\frac{\\sqrt{3}}{\\sqrt{2}},\\infty\\right)$\n7. Intervals where the function is concave up: $\\left(-\\frac{1}{\\sqrt{2}},\\frac{1}{\\sqrt{2}}\\right)$\n8. Intervals where the function is concave down: $\\left(-\\infty,-\\frac{1}{\\sqrt{2}}\\right), \\left(\\frac{1}{\\sqrt{2}},\\infty\\right)$\n9. Points of inflection: $P\\left(-\\frac{1}{\\sqrt{2}},-\\frac{3}{4}\\right), P\\left(\\frac{1}{\\sqrt{2}},-\\frac{3}{4}\\right)$",
      "system": ""
    },
    {
      "prompt": "Make full curve sketching of $y=2 \\cdot \\arcsin\\left(\\frac{ 1-7 \\cdot x^2 }{ 1+7 \\cdot x^2 }\\right)$. Submit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation) $(-1\\cdot\\infty,\\infty)$\n2. Vertical asymptotes $\\text{None}$\n3. Horizontal asymptotes $y=-\\pi$\n4. Slant asymptotes $\\text{None}$\n5. Intervals where the function is increasing $(-\\infty,0)$\n6. Intervals where the function is decreasing $(0,\\infty)$\n7. Intervals where the function is concave up $(0,\\infty), (-\\infty,0)$\n8. Intervals where the function is concave down $\\text{None}$\n9. Points of inflection $\\text{None}$",
      "system": ""
    },
    {
      "prompt": "Given that $\\frac{ 1 }{ 1-x }=\\sum_{n=0}^\\infty x^n$ , use term-by-term differentiation or integration to find power series for  function  $f(x)=\\ln(x)$  centered at $x=1$ .",
      "response": "$\\ln(x)$ =$\\sum_{n=0}^\\infty\\left((-1)^n\\cdot\\frac{(x-1)^{n+1}}{n+1}\\right)$",
      "system": ""
    },
    {
      "prompt": "Find a “reasonable” upper-bound on the error in approximating $f(x)=x \\cdot \\ln(x)$ by its 3rd order Taylor polynomial $P_{3}(x)$ at $a=1$ valid for all values of $x$ such that $|x-1| \\le 0.7$.",
      "response": "This is the final answer to the problem: $\\frac{2}{(0.3)^3}\\cdot\\frac{(0.7)^4}{4!}$",
      "system": ""
    },
    {
      "prompt": "A projectile is shot in the air from ground level with an initial velocity of $500$ m/sec at an angle of $60$ with the horizontal. What is the maximum range? Round your answer to one decimal digit.",
      "response": "Answer: $22092.5$ m",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ x^3 }{ \\sqrt{4 \\cdot x^2+4 \\cdot x+5} } d x}$.",
      "response": "$\\int{\\frac{ x^3 }{ \\sqrt{4 \\cdot x^2+4 \\cdot x+5} } d x}$ =$\\left(\\frac{1}{12}\\cdot x^2-\\frac{5}{48}\\cdot x-\\frac{5}{96}\\right)\\cdot\\sqrt{4\\cdot x^2+4\\cdot x+5}+\\frac{5}{16}\\cdot\\ln\\left(x+\\frac{1}{2}+\\sqrt{1+\\left(x+\\frac{1}{2}\\right)^2}\\right)+C$",
      "system": ""
    },
    {
      "prompt": "The function $s(t)=\\frac{ t }{ 1+t^2 }$ represents the position of a particle traveling along a horizontal line.\n\n1. Find the velocity and acceleration functions.\n2. Determine the time intervals when the object is slowing down or speeding up.",
      "response": "This is the final answer to the problem: 1. The velocity function $v(t)$ = $\\frac{1-t^2}{\\left(1+t^2\\right)^2}$ and acceleration function $a(t)$ = $\\frac{2\\cdot t\\cdot\\left(t^2-3\\right)}{\\left(1+t^2\\right)^3}$.\n2. The time intervals when the object speeds up $\\left(1,\\sqrt{3}\\right)$ and slows down $\\left(\\sqrt{3},\\infty\\right), (0,1)$.",
      "system": ""
    },
    {
      "prompt": "Find the antiderivative of $-\\frac{ 1 }{ x \\cdot \\sqrt{1-x^2} }$.",
      "response": "$\\int{-\\frac{ 1 }{ x \\cdot \\sqrt{1-x^2} } d x}$ =$C+\\ln\\left(\\frac{1+\\sqrt{1-x^2}}{|x|}\\right)$",
      "system": ""
    },
    {
      "prompt": "The electrical resistance  $R$ produced by wiring resistors  $R_{1}$ and  $R_{2}$ in parallel can be calculated from the formula  $\\frac{ 1 }{ R }=\\frac{ 1 }{ R_{1} }+\\frac{ 1 }{ R_{2} }$. If  $R_{1}$ and  $R_{2}$ are measured to be $7$ ohm and $6$ ohm respectively, and if these measurements are accurate to within $0.05$ ohm, estimate the maximum possible error in computing $R$.",
      "response": "Maximum possible error:$0.02514793$",
      "system": ""
    },
    {
      "prompt": "On a cylinder 6 cm in diameter, a channel is cut out along the surface, having an equilateral triangle with a side of 1.5 cm in cross section. Compute the volume of the cut out material.",
      "response": "$V$ =$\\frac{108\\cdot\\sqrt{3}-27}{32}\\cdot\\pi$",
      "system": ""
    },
    {
      "prompt": "Solve $\\sin(x)+\\cos(x)-2 \\cdot \\sqrt{2} \\cdot \\sin(x) \\cdot \\cos(x)=0$.",
      "response": "This is the final answer to the problem: $x=(-1)^{n+1}\\cdot\\frac{\\pi}{6}-\\frac{\\pi}{4}+\\pi\\cdot n, x=\\frac{\\pi}{4}+2\\cdot\\pi\\cdot k$",
      "system": ""
    },
    {
      "prompt": "Evaluate the function at the indicated values $f(-3)$, $f(2)$, $f(-a)$,$-f(a)$, and $f(a+h)$. \n\n$f(x)=|x-1|-|x+1|$",
      "response": "This is the final answer to the problem: $f(-3)$=$2$\n\n$f(2)$=$-2$  \n\n$f(-a)$=$|a+1|-|-a+1|$  \n\n$-f(a)$= $-|a-1|+|a+1|$  \n\n$f(a+h)$=$|a+h-1|-|a+h+1|$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ \\sin(x)^4 }{ \\cos(x) } d x}$.",
      "response": "$\\int{\\frac{ \\sin(x)^4 }{ \\cos(x) } d x}$ =$C-\\frac{1}{2}\\cdot\\ln\\left(\\left|\\frac{1-\\sin(x)}{1+\\sin(x)}\\right|\\right)-\\frac{1}{3}\\cdot\\left(\\sin(x)\\right)^3-\\sin(x)$",
      "system": ""
    },
    {
      "prompt": "Write the Taylor series for the function $f(x)=-2 \\cdot x \\cdot \\sin(x)$ at the point $x=\\pi$ up to the third term (zero or non-zero).",
      "response": "This is the final answer to the problem: $2\\cdot\\pi\\cdot(x-\\pi)+2\\cdot(x-\\pi)^2$",
      "system": ""
    },
    {
      "prompt": "Let $z=e^{1-x \\cdot y}$, $x=t^{\\frac{ 1 }{ 3 }}$, $y=t^3$. Find $\\frac{ d z }{d t}$.",
      "response": "$\\frac{ d z }{d t}$ =$\\frac{-(10\\cdot e)}{3}\\cdot e^{-t^3\\cdot\\sqrt[3]{t}}\\cdot t^2\\cdot\\sqrt[3]{t}$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series expansion of the function $f(x)=\\begin{cases} x, & -\\pi \\le x<0 \\\\ \\pi, & 0 \\le x \\le \\pi \\end{cases}$ with the period $2 \\cdot \\pi$ at interval $[-\\pi,\\pi]$.",
      "response": "The Fourier series is: $f(x)=\\frac{\\pi}{4}+\\sum_{n=1}^\\infty\\left(\\frac{1+(-1)^{n+1}}{\\pi\\cdot n^2}\\cdot\\cos(n\\cdot x)+\\frac{(-1)^{n+1}\\cdot2+1}{n}\\cdot\\sin(n\\cdot x)\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ -3 }{ e^{4 \\cdot x}+\\sqrt{1+e^{8 \\cdot x}} } d x}$.",
      "response": "$\\int{\\frac{ -3 }{ e^{4 \\cdot x}+\\sqrt{1+e^{8 \\cdot x}} } d x}$ =$C-\\frac{1}{4}\\cdot\\left(\\frac{3}{e^{4\\cdot x}+\\sqrt{1+e^{8\\cdot x}}}+3\\cdot\\ln\\left(\\frac{e^{4\\cdot x}+\\sqrt{1+e^{8\\cdot x}}-1}{1+e^{4\\cdot x}+\\sqrt{1+e^{8\\cdot x}}}\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ -3 }{ e^{4 \\cdot x}+\\sqrt{1+e^{8 \\cdot x}} } d x}$.",
      "response": "$\\int{\\frac{ -3 }{ e^{4 \\cdot x}+\\sqrt{1+e^{8 \\cdot x}} } d x}$ =$C-\\frac{1}{4}\\cdot\\left(\\frac{3}{e^{4\\cdot x}+\\sqrt{1+e^{8\\cdot x}}}+3\\cdot\\ln\\left(\\frac{e^{4\\cdot x}+\\sqrt{1+e^{8\\cdot x}}-1}{1+e^{4\\cdot x}+\\sqrt{1+e^{8\\cdot x}}}\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the Taylor series of the given function $f(x)=\\cos(x)$  centered at the indicated point: $a=\\frac{ \\pi }{ 2 }$ .",
      "response": "$\\cos(x)$ =$\\sum_{n=0}^\\infty\\left((-1)^{n+1}\\cdot\\frac{\\left(x-\\frac{\\pi}{2}\\right)^{2\\cdot n+1}}{(2\\cdot n+1)!}\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the derivative of the function: $y=-3 \\cdot x^{\\sqrt[3]{2 \\cdot x}}$.",
      "response": "$\\frac{ d y }{d x}$ =$-\\left(\\frac{3\\cdot\\sqrt[3]{2}}{x^{\\frac{2}{3}}}+\\frac{\\sqrt[3]{2}\\cdot\\ln(x)}{x^{\\frac{2}{3}}}\\right)\\cdot x^{\\sqrt[3]{2}\\cdot\\sqrt[3]{x}}$",
      "system": ""
    },
    {
      "prompt": "Let $R$ be the region bounded by the graphs of $y=\\frac{ 1 }{ x+2 }$ and $y=-\\frac{ 1 }{ 2 } \\cdot x+3$.\n\nFind the volume of the solid generated when $R$ is rotated about the vertical line $x=-3$.",
      "response": "The volume of the solid is $292.097$ units³.",
      "system": ""
    },
    {
      "prompt": "Calculate the second-order partial derivatives. (Treat $A$,$B$,$C$,$D$ as constants.)\n\n$f(x,y)=\\frac{ A \\cdot x+B \\cdot y }{ C \\cdot x+D \\cdot y }$.",
      "response": "$f_{xx}(x,y)$=$\\frac{2\\cdot C\\cdot(B\\cdot C-A\\cdot D)\\cdot y}{(C\\cdot x+D\\cdot y)^3}$$f_{xy}(x,y)$=$f_{yx}(x,y)$=$\\frac{-(B\\cdot C-A\\cdot D)\\cdot(C\\cdot x-D\\cdot y)}{(C\\cdot x+D\\cdot y)^3}$  \n\n$f_{yy}(x,y)$=$-2\\cdot D\\cdot\\frac{B\\cdot C\\cdot x-A\\cdot D\\cdot x}{(C\\cdot x+D\\cdot y)^3}$",
      "system": ""
    },
    {
      "prompt": "Find zeros of $f(x)=\\sin(x)+\\sin(2 \\cdot x)+2 \\cdot \\sin(x) \\cdot \\sin(2 \\cdot x)-2 \\cdot \\cos(x)-\\cos(2 \\cdot x)$.",
      "response": "This is the final answer to the problem: $x_1=-\\frac{\\pi}{2}+2\\cdot\\pi\\cdot n, x_2=-\\frac{2\\cdot\\pi}{3}+2\\cdot\\pi\\cdot n, x_3=\\frac{2\\cdot\\pi}{3}+2\\cdot\\pi\\cdot n, x_4=(-1)^n\\cdot\\frac{\\pi}{6}+\\pi\\cdot n$",
      "system": ""
    },
    {
      "prompt": "Let $Q$ be the region bounded by the graph of $x=\\frac{ 2 }{ 1-y }$, the line $x=-1$, and the line $y=\\frac{ 5 }{ 4 }$.\n\nWrite, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when $Q$ is revolved about the line $x=-1$.",
      "response": "$V$ = $\\int_{\\frac{5}{4}}^3\\left(\\pi\\cdot\\left(\\frac{2}{1-y}+1\\right)^2\\right)dy$",
      "system": ""
    },
    {
      "prompt": "Using the series expansion for the function $(1+x)^m$ calculate approximately $\\sqrt[3]{7}$ with accuracy 0.0001.",
      "response": "This is the final answer to the problem: $1.9129$",
      "system": ""
    },
    {
      "prompt": "Using the series expansion for the function $(1+x)^m$ calculate approximately $\\sqrt[3]{7}$ with accuracy 0.0001.",
      "response": "This is the final answer to the problem: $1.9129$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series expansion of the function $f(x)=\\begin{cases} -x, & -\\pi<x \\le 0 \\\\ \\frac{ x^2 }{ \\pi }, & 0<x \\le \\pi \\end{cases}$ with the period $2 \\cdot \\pi$ at interval $[-\\pi,\\pi]$.",
      "response": "The Fourier series is: $f(x)=\\frac{5\\cdot\\pi}{12}+\\sum_{n=1}^\\infty\\left(\\frac{(-1)^n\\cdot3-1}{\\pi\\cdot n^2}\\cdot\\cos(n\\cdot x)+\\left(\\frac{2}{\\pi^2\\cdot n^3}\\cdot\\left((-1)^n-1\\right)\\right)\\cdot\\sin(n\\cdot x)\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier integral of the function $q(x)=\\begin{cases} 0, & x<0 \\\\ 5 \\cdot \\pi \\cdot x, & 0 \\le x \\le 4 \\\\ 0, & x>4 \\end{cases}$.",
      "response": "$q(t)$ = $\\int_0^\\infty\\frac{\\left(5\\cdot\\left(4\\cdot\\sin\\left(4\\cdot\\alpha\\right)\\cdot\\alpha+\\cos\\left(4\\cdot\\alpha\\right)-1\\right)\\cdot\\cos\\left(\\alpha\\cdot t\\right)+5\\cdot\\left(\\sin\\left(4\\cdot\\alpha\\right)-4\\cdot\\alpha\\cdot\\cos\\left(4\\cdot\\alpha\\right)\\right)\\cdot\\sin\\left(\\alpha\\cdot t\\right)\\right)}{\\alpha^2}d \\alpha$",
      "system": ""
    },
    {
      "prompt": "Find the equations of the common tangent lines to the following ellipses:\n\n$\\frac{ x^2 }{ 6 }+y^2=1$  \n\n$\\frac{ x^2 }{ 4 }+\\frac{ y^2 }{ 9 }=1$",
      "response": "This is the final answer to the problem: $2\\cdot x+y-5=0 \\lor 2\\cdot x+y+5=0 \\lor 2\\cdot x-y-5=0 \\lor 2\\cdot x-y+5=0$",
      "system": ""
    },
    {
      "prompt": "Find the local minimum and local maximum values of the function $f(x)=\\frac{ 3 }{ 4 } \\cdot x^4-10 \\cdot x^3+24 \\cdot x^2-4$.",
      "response": "The point(s) where the function has a local minimum:$P(8,-516), P(0,-4)$  \nThe point(s) where the function has a local maximum:$P(2,24)$",
      "system": ""
    },
    {
      "prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of function $\\sqrt{x+2}$ with the center $a=0$.",
      "response": "$\\sqrt{x+2}$ =$\\sum_{n=0}^\\infty\\left(2^{\\frac{1}{2}-n}\\cdot C_{\\frac{1}{2}}^n\\cdot x^n\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the derivative of the complex function $p=u^v$ given  $u=3 \\cdot \\ln(x-2 \\cdot y)$ and  $v=e^{\\frac{ x }{ y }}$.",
      "response": "$\\frac{\\partial p}{\\partial x} = (3 \\ln(x - 2y))^{e^{\\frac{x}{y}}} \\left[ \\frac{e^{\\frac{x}{y}}}{y} \\ln(3 \\ln(x - 2y)) + \\frac{e^{\\frac{x}{y}}}{(x - 2y) \\ln(x - 2y)} \\right]$\n\n$\\frac{\\partial p}{\\partial y} = (3 \\ln(x - 2y))^{e^{\\frac{x}{y}}} \\left[ -\\frac{x e^{\\frac{x}{y}}}{y^2} \\ln(3 \\ln(x - 2y)) - \\frac{2e^{\\frac{x}{y}}}{(x - 2y) \\ln(x - 2y)} \\right]$\n",
      "system": ""
    },
    {
      "prompt": "Find points on a coordinate plane that satisfy the following equation:\n\n$10 \\cdot x^2+29 \\cdot y^2+34 \\cdot x \\cdot y+8 \\cdot x+14 \\cdot y+2=0$",
      "response": "This is the final answer to the problem: $(3,-2)$",
      "system": ""
    },
    {
      "prompt": "Find the radius of convergence and sum of the series:  $\\frac{ 3 }{ 2 }+\\frac{ 3 \\cdot x }{ 1 \\cdot 3 }+\\frac{ 3 \\cdot x^2 }{ 1 \\cdot 2 \\cdot 4 }+\\cdots+\\frac{ 3 \\cdot x^n }{ \\left(n!\\right) \\cdot (n+2) }+\\cdots$ .",
      "response": "This is the final answer to the problem: 1. Radius of convergence:$R=\\infty$\n2. Sum: $f(x)=\\begin{cases}\\frac{3}{x^2}+\\frac{3\\cdot x\\cdot e^x-3\\cdot e^x}{x^2},&x\\ne0\\\\\\frac{3}{2},&x=0\\end{cases}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ 10 }{ \\sin(4 \\cdot x)^6 } d x}$.",
      "response": "$\\int{\\frac{ 10 }{ \\sin(4 \\cdot x)^6 } d x}$ =$C-\\frac{1}{2}\\cdot\\left(\\cot(4\\cdot x)\\right)^5-\\frac{5}{2}\\cdot\\cot(4\\cdot x)-\\frac{5}{3}\\cdot\\left(\\cot(4\\cdot x)\\right)^3$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ 10 }{ \\sin(4 \\cdot x)^6 } d x}$.",
      "response": "$\\int{\\frac{ 10 }{ \\sin(4 \\cdot x)^6 } d x}$ =$C-\\frac{1}{2}\\cdot\\left(\\cot(4\\cdot x)\\right)^5-\\frac{5}{2}\\cdot\\cot(4\\cdot x)-\\frac{5}{3}\\cdot\\left(\\cot(4\\cdot x)\\right)^3$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series of the periodic function $f(x)=x^2$ in the interval $-\\pi \\le x<\\pi$  if $f(x)=f(x+2 \\cdot \\pi)$.",
      "response": "The Fourier series is: $x^2=\\frac{\\pi^2}{3}-4\\cdot\\left(\\frac{\\cos(x)}{1^2}-\\frac{\\cos(2\\cdot x)}{2^2}+\\frac{\\cos(3\\cdot x)}{3^2}-\\cdots\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the integral $\\int{\\frac{ 1 }{ \\sqrt[3]{\\left(\\sin(x)\\right)^{11} \\cdot \\cos(x)} } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ \\sqrt[3]{\\left(\\sin(x)\\right)^{11} \\cdot \\cos(x)} } d x}$ =$-\\frac{3\\cdot\\left(1+4\\cdot\\left(\\tan(x)\\right)^2\\right)}{8\\cdot\\left(\\tan(x)\\right)^2\\cdot\\sqrt[3]{\\left(\\tan(x)\\right)^2}}+C$",
      "system": ""
    },
    {
      "prompt": "For the function $y=\\frac{ 2 \\cdot x+3 }{ 4 \\cdot x+5 }$ find the derivative $y^{(n)}$ .",
      "response": "The General Form of the Derivative of $y=\\frac{ 2 \\cdot x+3 }{ 4 \\cdot x+5 }$: $y^{(n)}=\\frac{1}{2}\\cdot(-1)^n\\cdot\\left(n!\\right)\\cdot4^n\\cdot(4\\cdot x+5)^{-(n+1)}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ 1 }{ \\sin(x)^6 } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ \\sin(x)^6 } d x}$ =$-\\frac{\\cos(x)}{5\\cdot\\sin(x)^5}+\\frac{4}{5}\\cdot\\left(-\\frac{\\cos(x)}{3\\cdot\\sin(x)^3}-\\frac{2}{3}\\cdot\\cot(x)\\right)$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=25 \\cdot x^2 \\cdot e^{\\frac{ 1 }{ 5 \\cdot x }}$  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
      "response": "1. The domain (in interval notation): $(-\\infty,0)\\cup(0,\\infty)$\n2. Vertical asymptotes: $x=0$\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(\\frac{1}{10},\\infty\\right)$\n6. Intervals where the function is decreasing $\\left(0,\\frac{1}{10}\\right), (-\\infty,0)$\n7. Intervals where the function is concave up: $(0,\\infty), (-\\infty,0)$\n8. Intervals where the function is concave down: None\n9. Points of inflection: None",
      "system": ""
    },
    {
      "prompt": "Calculate the second-order partial derivatives. (Treat $A$,$B$,$C$,$D$ as constants.)\n\n$f(x,y,z)=\\arctan(x \\cdot y \\cdot z)$.",
      "response": "$f_{xx}(x,y,z)$=$\\frac{-2\\cdot x\\cdot y^3\\cdot z^3}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$$f_{xy}(x,y,z)$=$f_{yx}(x,y,z)$=$\\frac{z-x^2\\cdot y^2\\cdot z^3}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$  \n\n$f_{yy}(x,y,z)$=$\\frac{-2\\cdot x^3\\cdot y\\cdot z^3}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$  \n\n$f_{yz}(x,y,z)$=$f_{zy}(x,y,z)$=$\\frac{x-x^3\\cdot y^2\\cdot z^2}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$  \n\n$f_{zz}(x,y,z)$=$\\frac{-2\\cdot x^3\\cdot y^3\\cdot z}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$  \n\n$f_{xz}(x,y,z)$=$f_{zx}(x,y,z)$=$\\frac{y-x^2\\cdot y^3\\cdot z^2}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$",
      "system": ""
    },
    {
      "prompt": "Find the area of a triangle bounded by the x-axis, the line $f(x)=12-\\frac{ 1 }{ 3 } \\cdot x$, and the line perpendicular to $f(x)$ that passes through the origin.",
      "response": "The area of the triangle is $\\frac{972}{5}$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier integral of the function $q(x)=\\begin{cases} 0, & x<0 \\\\ \\pi \\cdot x, & 0 \\le x \\le 2 \\\\ 0, & x>2 \\end{cases}$.",
      "response": "$q(x)$ = $\\int_0^\\infty\\left(\\frac{\\left(2\\cdot\\alpha\\cdot\\sin\\left(2\\cdot\\alpha\\right)+\\cos\\left(2\\cdot\\alpha\\right)-1\\right)\\cdot\\cos\\left(\\alpha\\cdot x\\right)+\\left(\\sin\\left(2\\cdot\\alpha\\right)-2\\cdot\\alpha\\cdot\\cos\\left(2\\cdot\\alpha\\right)\\right)\\cdot\\sin\\left(\\alpha\\cdot x\\right)}{\\alpha^2}\\right)d\\alpha$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ 1 }{ (x+4) \\cdot \\sqrt{x^2+2 \\cdot x+5} } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ (x+4) \\cdot \\sqrt{x^2+2 \\cdot x+5} } d x}$ =$C+\\frac{1}{\\sqrt{13}}\\cdot\\ln\\left(\\sqrt{13}-4-x-\\sqrt{x^2+2\\cdot x+5}\\right)-\\frac{1}{\\sqrt{13}}\\cdot\\ln\\left(4+\\sqrt{13}+x+\\sqrt{x^2+2\\cdot x+5}\\right)$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{22 \\cdot \\cot(-11 \\cdot x)^5 d x}$.",
      "response": "$\\int{22 \\cdot \\cot(-11 \\cdot x)^5 d x}$ =$C+\\frac{1}{2}\\cdot\\left(\\cot(11\\cdot x)\\right)^4+\\ln\\left(1+\\left(\\cot(11\\cdot x)\\right)^2\\right)-\\left(\\cot(11\\cdot x)\\right)^2$",
      "system": ""
    },
    {
      "prompt": "Determine the interval(s) on which $f(x)=x^3 \\cdot e^{-x}$ is decreasing.",
      "response": "The function is decreasing on the interval(s) $(3,\\infty)$.",
      "system": ""
    },
    {
      "prompt": "Use integration by substitution and/or by parts to compute the integral \n $\\int{x \\cdot \\ln(5+x) d x}$.",
      "response": "This is the final answer to the problem:$D+5\\cdot(x+5)+\\left(\\frac{1}{2}\\cdot(x+5)^2-5\\cdot(x+5)\\right)\\cdot\\ln(x+5)-\\frac{1}{4}\\cdot(x+5)^2$",
      "system": ""
    },
    {
      "prompt": "Use integration by substitution and/or by parts to compute the integral \n $\\int{x \\cdot \\ln(5+x) d x}$.",
      "response": "This is the final answer to the problem:$D+5\\cdot(x+5)+\\left(\\frac{1}{2}\\cdot(x+5)^2-5\\cdot(x+5)\\right)\\cdot\\ln(x+5)-\\frac{1}{4}\\cdot(x+5)^2$",
      "system": ""
    },
    {
      "prompt": "Use the second derivative test to identify any critical points of the function $f(x,y)=x^2 \\cdot y^2$,  and determine whether each critical point is a maximum, minimum, saddle point, or none of these.",
      "response": "Maximum:NoneMinimum: $P(0,0)$  \n\nSaddle point: None\n\nThe second derivative test is inconclusive at: None",
      "system": ""
    }
  ]
}