File size: 46,666 Bytes
5b60e22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
{
"dataset_name": "Mu-Math",
"group_index": 7,
"source_file": "/hkfs/work/workspace/scratch/tum_fmp0582-dndworkspace/自己训练lora/prepare/data/math/Mu-Math.json",
"selected_indices": [
4,
31,
50,
67,
83,
84,
97,
103,
121,
128,
165,
174,
202,
215,
223,
226,
251,
286,
304,
305,
309,
312,
314,
316,
323,
330,
346,
347,
362,
363,
381,
382,
404,
408,
415,
430,
466,
483,
495,
497,
537,
561,
563,
587,
592,
613,
619,
630,
634,
647,
650,
657,
670,
683,
694,
711,
713,
735,
740,
772,
790,
795,
796,
802,
805,
811,
823,
842,
844,
845,
850,
879,
880,
882,
884,
886,
913,
916,
922,
942,
952,
954,
962,
966,
968,
970,
976,
977,
983,
988,
990,
991,
995,
1002,
1003,
1033,
1039,
1043,
1068,
1081
],
"total_records": 1084,
"sample_count": 100,
"generated_at": "2025-11-05T12:58:28Z",
"seed": 4171135963,
"samples": [
{
"prompt": "Given $f(x)=x^2+\\frac{ 16 }{ x^2 }$, find the intervals where $f$ increases and the intervals where $f$ is decreasing.",
"response": "$f$ is increasing on the intervals: $(2,\\infty), (-2,0)$\n\n$f$ is decreasing on the intervals: $(-\\infty,-2), (0,2)$ ",
"system": ""
},
{
"prompt": "Compute the integral $-2 \\cdot \\int{x^{-4} \\cdot \\left(4+x^2\\right)^{\\frac{ 1 }{ 2 }} d x}$.",
"response": "$-2 \\cdot \\int{x^{-4} \\cdot \\left(4+x^2\\right)^{\\frac{ 1 }{ 2 }} d x}$ =$C+\\frac{1}{6}\\cdot\\left(\\frac{4}{x^2}+1\\right)\\cdot\\sqrt{\\frac{4}{x^2}+1}$",
"system": ""
},
{
"prompt": "Find the points at which the following polar curve $r=4 \\cdot \\cos\\left(\\theta\\right)$ has a horizontal or vertical tangent line.",
"response": "This is the final answer to the problem:\n\nhorizontal tangents at: $\\boxed{(2, 2), (2, -2)}$\n\nvertical tangents at: $\\boxed{(4, 0), (0, 0)}$",
"system": ""
},
{
"prompt": "Solve the following equations: 1. $13 x+6=6$ 2. $\\frac{ x }{ -4 }+11=5$ 3. $-4.5 x+12.3=-23.7$ 4. $\\frac{ x }{ 5 }+4=4.3$ 5. $-\\frac{ x }{ 3 }+(-7.2)=-2.1$ 6. $5.4 x-8.3=14.38$ 7. $\\frac{ x }{ 3 }-14=-8$",
"response": "The solutions to the given equations are: 1. $x=0$\n2. $x=24$\n3. $x=8$\n4. $x=\\frac{ 3 }{ 2 }$\n5. $x=\\frac{ -153 }{ 10 }$\n6. $x=\\frac{ 21 }{ 5 }$\n7. $x=18$",
"system": ""
},
{
"prompt": "Find the radius of convergence and sum of the series: $\\frac{ 1 }{ 2 }+\\frac{ x }{ 1 \\cdot 3 }+\\frac{ x^2 }{ 1 \\cdot 2 \\cdot 4 }+\\cdots+\\frac{ x^n }{ \\left(n!\\right) \\cdot (n+2) }+\\cdots$ .",
"response": "This is the final answer to the problem: 1. Radius of convergence:$R=\\infty$\n2. Sum: $f(x)=\\begin{cases}\\frac{1}{x^2}+\\frac{x\\cdot e^x-e^x}{x^2},&x\\ne0\\\\\\frac{1}{2},&x=0\\end{cases}$",
"system": ""
},
{
"prompt": "Compute the derivative of the function $y=\\arcsin\\left(\\sqrt{1-9 \\cdot x^2}\\right)$.",
"response": "$y'$= $-\\frac{3\\cdot x}{\\sqrt{1-9\\cdot x^2}\\cdot|x|}$",
"system": ""
},
{
"prompt": "Determine a definite integral that represents the region enclosed by one petal of $r=\\cos\\left(3 \\cdot \\theta\\right)$ .",
"response": "This is the final answer to the problem:$\\int_0^{\\frac{\\pi}{6}}\\cos\\left(3\\cdot\\theta\\right)^2d\\theta$ = $\\frac{\\pi}{12}$ ",
"system": ""
},
{
"prompt": "Find the Fourier series of the function $u=\\left|\\sin\\left(\\frac{ x }{ 2 }\\right)\\right|$ in the interval $[-2 \\cdot \\pi,2 \\cdot \\pi]$.",
"response": "The Fourier series is: $\\frac{2}{\\pi}+\\frac{4}{\\pi}\\cdot\\sum_{k=1}^\\infty\\left(\\frac{1}{\\left(1-4\\cdot k^2\\right)}\\cdot\\cos(k\\cdot x)\\right)$",
"system": ""
},
{
"prompt": "Determine a definite integral that represents the region common to $r=3 \\cdot \\cos\\left(\\theta\\right)$ and $r=3 \\cdot \\sin\\left(\\theta\\right)$ .",
"response": "This is the final answer to the problem:$9\\cdot\\int_0^{\\frac{\\pi}{4}}\\sin\\left(\\theta\\right)^2d\\theta$",
"system": ""
},
{
"prompt": "Let $f(x)=\\ln\\left(x^2+1\\right)$.\n\n1. Find the 4th order Taylor polynomial $P_{4}(x)$ of $f(x)$ about $a=0$.\n2. Compute $\\left|f(1)-P_{4}(1)\\right|$.\n3. Compute $\\left|f(0.1)-P_{4}(0.1)\\right|$.",
"response": "This is the final answer to the problem: \n\n1. $x^2-\\frac{x^4}{2}$\n2. $0.1931$\n3. $0.0003\\cdot10^{-3}$",
"system": ""
},
{
"prompt": "Leaves of deciduous trees fall in an exponential rate during autumn. A large maple has 10,000 leaves and the wind starts blowing. If there are 8,000 leaves left after 3 hours, how many will be left after 4 hours.",
"response": "There will be $7426$ leaves after 4 hours.",
"system": ""
},
{
"prompt": "Find the first derivative of the function: $y=(x+11)^5 \\cdot (3 \\cdot x-7)^4 \\cdot (x-12) \\cdot (x+4)$.",
"response": "$y'$ =$\\left(\\frac{5}{x+11}+\\frac{12}{3\\cdot x-7}+\\frac{1}{x-12}+\\frac{1}{x+4}\\right)\\cdot(x+11)^5\\cdot(3\\cdot x-7)^4\\cdot(x-12)\\cdot(x+4)$",
"system": ""
},
{
"prompt": "Solve the integral: $\\int{\\cot(x)^4 d x}$.",
"response": "$\\int{\\cot(x)^4 d x}$ =$C+\\cot(x)-\\frac{1}{3}\\cdot\\left(\\cot(x)\\right)^3-\\arctan\\left(\\cot(x)\\right)$",
"system": ""
},
{
"prompt": "Find the derivative of $f(x)=\\frac{ \\left(\\left(\\tan(x)\\right)^2-1\\right) \\cdot \\left(\\left(\\tan(x)\\right)^4+10 \\cdot \\left(\\tan(x)\\right)^2+1\\right) }{ 3 \\cdot \\left(\\tan(x)\\right)^3 }$.",
"response": "This is the final answer to the problem: $f'(x)=\\left(\\tan(x)\\right)^4+4\\cdot\\left(\\tan(x)\\right)^2+\\frac{4}{\\left(\\tan(x)\\right)^2}+\\frac{1}{\\left(\\tan(x)\\right)^4}+6$",
"system": ""
},
{
"prompt": "Find the Fourier integral of the function $q(x)=\\begin{cases} 0, & x<0 \\\\ \\pi \\cdot x, & 0 \\le x \\le 1 \\\\ 0, & x>1 \\end{cases}$.",
"response": "$q(x)$ = $\\int_0^\\infty\\left(\\frac{\\left(\\alpha\\cdot\\sin\\left(\\alpha\\right)+\\cos\\left(\\alpha\\right)-1\\right)\\cdot\\cos\\left(\\alpha\\cdot x\\right)+\\left(\\sin\\left(\\alpha\\right)-\\alpha\\cdot\\cos\\left(\\alpha\\right)\\right)\\cdot\\sin\\left(\\alpha\\cdot x\\right)}{\\alpha^2}\\right)d\\alpha$",
"system": ""
},
{
"prompt": "Solve the initial value problem (find function $f$) for $f'(x)=\\frac{ 2 }{ x^2 }-\\frac{ x^2 }{ 2 }$, $f(1)=0$.",
"response": "$f(x)=\\frac{13}{6}-\\frac{2}{x}-\\frac{1}{6}\\cdot x^3$",
"system": ""
},
{
"prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of the function $\\sqrt{x}$ with the center $a=9$.",
"response": "$\\sqrt{x}$ =$\\sum_{n=0}^\\infty\\left(3^{1-2\\cdot n}\\cdot C_n^{\\frac{1}{2}}\\cdot(x-9)^n\\right)$",
"system": ""
},
{
"prompt": "Solve the following equations: 1. $-10 c=-80$\n2. $n-(-6)=12$\n3. $-82+x=-20$\n4. $-\\frac{ r }{ 2 }=5$\n5. $r-3.4=7.1$\n6. $\\frac{ g }{ 2.5 }=1.8$\n7. $4.8 m=43.2$\n8. $\\frac{ 3 }{ 4 } t=\\frac{ 9 }{ 20 }$\n9. $3\\frac{2}{3}+m=5\\frac{1}{6}$",
"response": "The solutions to the given equations are: \n1. $c=8$\n2. $n=6$\n3. $x=62$\n4. $r=-10$\n5. $r=10.5$\n6. $g=\\frac{ 9 }{ 2 }$\n7. $m=9$\n8. $t=\\frac{3}{5}$\n9. $m=\\frac{3}{2}$",
"system": ""
},
{
"prompt": "The function $s(t)=2 \\cdot t^3-3 \\cdot t^2-12 \\cdot t+8$ represents the position of a particle traveling along a horizontal line.\n\n1. Find the velocity and acceleration functions.\n2. Determine the time intervals when the object is slowing down or speeding up.",
"response": "This is the final answer to the problem: 1. The velocity function $v(t)$ = $6\\cdot t^2-6\\cdot t-12$ and acceleration function $a(t)$ = $12\\cdot t-6$.\n\n2. The time intervals when the object speeds up $\\left(2,\\infty\\right), \\left(0,\\frac{1}{2}\\right)$ and slows down $\\left(\\frac{1}{2},2\\right)$.",
"system": ""
},
{
"prompt": "The function $s(t)=2 \\cdot t^3-3 \\cdot t^2-12 \\cdot t+8$ represents the position of a particle traveling along a horizontal line.\n\n1. Find the velocity and acceleration functions.\n2. Determine the time intervals when the object is slowing down or speeding up.",
"response": "This is the final answer to the problem: 1. The velocity function $v(t)$ = $6\\cdot t^2-6\\cdot t-12$ and acceleration function $a(t)$ = $12\\cdot t-6$.\n\n2. The time intervals when the object speeds up $\\left(2,\\infty\\right), \\left(0,\\frac{1}{2}\\right)$ and slows down $\\left(\\frac{1}{2},2\\right)$.",
"system": ""
},
{
"prompt": "Evaluate the integral: $I=\\int{\\left(x^3+3\\right) \\cdot \\cos(2 \\cdot x) d x}$.",
"response": "This is the final answer to the problem: $\\frac{1}{256}\\cdot\\left(384\\cdot\\sin(2\\cdot x)+128\\cdot x^3\\cdot\\sin(2\\cdot x)+192\\cdot x^2\\cdot\\cos(2\\cdot x)-96\\cdot\\cos(2\\cdot x)-256\\cdot C-192\\cdot x\\cdot\\sin(2\\cdot x)\\right)$",
"system": ""
},
{
"prompt": "A circle centered at $(-3,5)$ passes through the point $(5,-3)$. What is the equation of the circle in the general form?",
"response": "This is the final answer to the problem: $x^2+y^2+6\\cdot x-10\\cdot y-94=0$",
"system": ""
},
{
"prompt": "A circle centered at $(-3,5)$ passes through the point $(5,-3)$. What is the equation of the circle in the general form?",
"response": "This is the final answer to the problem: $x^2+y^2+6\\cdot x-10\\cdot y-94=0$",
"system": ""
},
{
"prompt": "Expand function $y=\\sin\\left(\\frac{ \\pi \\cdot x }{ 4 }\\right)$ in Taylor series at $x=2$, if $\\cos(x)=\\sum_{n=0}^\\infty\\left((-1)^n \\cdot \\frac{ x^{2 \\cdot n} }{ (2 \\cdot n)! }\\right)$.",
"response": "This is the final answer to the problem: $\\sum_{n=0}^\\infty\\left((-1)^n\\cdot\\frac{\\left(\\frac{\\pi}{4}\\cdot(x-2)\\right)^{2\\cdot n}}{(2\\cdot n)!}\\right)$",
"system": ""
},
{
"prompt": "Solve $\\left(\\sin(x)\\right)^2+\\left(\\cos(3 \\cdot x)\\right)^2=1$.",
"response": "This is the final answer to the problem: $x=\\frac{n\\cdot\\pi}{4}$",
"system": ""
},
{
"prompt": "Solve the following system of equations:\n\n$\\sin(x) \\cdot \\sin(y)=\\frac{ \\sqrt{3} }{ 4 }$ \n\n$\\cos(x) \\cdot \\cos(y)=\\frac{ \\sqrt{3} }{ 4 }$",
"response": "This is the final answer to the problem: $x=\\frac{\\pi}{6}+\\frac{\\pi}{2}\\cdot(2\\cdot n+k)$ and $y=\\frac{\\pi}{3}+\\frac{\\pi}{2}\\cdot(k-2\\cdot n)$ or $x=\\frac{\\pi}{3}+\\frac{\\pi}{2}\\cdot(2\\cdot n+k)$ and $y=\\frac{\\pi}{6}+\\frac{\\pi}{2}\\cdot(k-2\\cdot n)$, where $k$ and $n$ are integers ",
"system": ""
},
{
"prompt": "What are the points of inflection of the graph of $f(x)=\\frac{ x+1 }{ x^2+1 }$?",
"response": "This is the final answer to the problem: $x_1=1 \\land x_2=\\sqrt{3}-2 \\land x_3=-2-\\sqrt{3}$",
"system": ""
},
{
"prompt": "What are the points of inflection of the graph of $f(x)=\\frac{ x+1 }{ x^2+1 }$?",
"response": "This is the final answer to the problem: $x_1=1 \\land x_2=\\sqrt{3}-2 \\land x_3=-2-\\sqrt{3}$",
"system": ""
},
{
"prompt": "Sketch the curve: \n\n$y=5 \\cdot x^2-2 \\cdot x^4-3$. \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes (Leave blank if there are no vertical asymptotes)\n3. Horizontal asymptotes (Leave blank if there are no horizontal asymptotes)\n4. Slant asymptotes (Leave blank if there are no slant asymptotes)\n5. Intervals where the function is increasing (Leave blank if there are no such intervals)\n6. Intervals where the function is decreasing (Leave blank if there are no such intervals)\n7. Intervals where the function is concave up (Leave blank if there are no such intervals)\n8. Intervals where the function is concave down (Leave blank if there are no such intervals)\n9. Points of inflection (Leave blank if there are no points of inflection)",
"response": "This is the final answer to the problem: \n1. The domain (in interval notation): $(-1\\cdot\\infty,\\infty)$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(0,\\frac{\\sqrt{5}}{2}\\right), \\left(-\\infty,-\\frac{\\sqrt{5}}{2}\\right)$\n6. Intervals where the function is decreasing: $\\left(-\\frac{\\sqrt{5}}{2},0\\right), \\left(\\frac{\\sqrt{5}}{2},\\infty\\right)$\n7. Intervals where the function is concave up: $\\left(-\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}}\\right)$\n8. Intervals where the function is concave down: $\\left(-\\infty,-\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}}\\right), \\left(\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},\\infty\\right)$\n9. Points of inflection: $P\\left(-\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},-\\frac{91}{72}\\right), P\\left(\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},-\\frac{91}{72}\\right)$",
"system": ""
},
{
"prompt": "Sketch the curve: \n\n$y=5 \\cdot x^2-2 \\cdot x^4-3$. \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes (Leave blank if there are no vertical asymptotes)\n3. Horizontal asymptotes (Leave blank if there are no horizontal asymptotes)\n4. Slant asymptotes (Leave blank if there are no slant asymptotes)\n5. Intervals where the function is increasing (Leave blank if there are no such intervals)\n6. Intervals where the function is decreasing (Leave blank if there are no such intervals)\n7. Intervals where the function is concave up (Leave blank if there are no such intervals)\n8. Intervals where the function is concave down (Leave blank if there are no such intervals)\n9. Points of inflection (Leave blank if there are no points of inflection)",
"response": "This is the final answer to the problem: \n1. The domain (in interval notation): $(-1\\cdot\\infty,\\infty)$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(0,\\frac{\\sqrt{5}}{2}\\right), \\left(-\\infty,-\\frac{\\sqrt{5}}{2}\\right)$\n6. Intervals where the function is decreasing: $\\left(-\\frac{\\sqrt{5}}{2},0\\right), \\left(\\frac{\\sqrt{5}}{2},\\infty\\right)$\n7. Intervals where the function is concave up: $\\left(-\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}}\\right)$\n8. Intervals where the function is concave down: $\\left(-\\infty,-\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}}\\right), \\left(\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},\\infty\\right)$\n9. Points of inflection: $P\\left(-\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},-\\frac{91}{72}\\right), P\\left(\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},-\\frac{91}{72}\\right)$",
"system": ""
},
{
"prompt": "Find the Fourier series of the function $\\varphi(x)=2 \\cdot x$ in the interval $(0,4 \\cdot \\pi)$.",
"response": "The Fourier series is: $4\\cdot\\pi-8\\cdot\\sum_{n=1}^\\infty\\left(\\frac{\\sin\\left(\\frac{n\\cdot x}{2}\\right)}{n}\\right)$",
"system": ""
},
{
"prompt": "Find the Fourier series of the function $\\varphi(x)=2 \\cdot x$ in the interval $(0,4 \\cdot \\pi)$.",
"response": "The Fourier series is: $4\\cdot\\pi-8\\cdot\\sum_{n=1}^\\infty\\left(\\frac{\\sin\\left(\\frac{n\\cdot x}{2}\\right)}{n}\\right)$",
"system": ""
},
{
"prompt": "Using the series expansion for the function $(1+x)^m$ calculate approximately $\\sqrt[3]{29}$ with accuracy 0.0001.",
"response": "This is the final answer to the problem: $3.0723$",
"system": ""
},
{
"prompt": "Find the Taylor series for $f(x)=\\frac{ x }{ (2+x)^3 }$, centered at $x=-1$. Write out the sum of the first four non-zero terms, followed by dots.",
"response": "This is the final answer to the problem: $x\\cdot\\left(1-3\\cdot(x+1)+6\\cdot(x+1)^2-10\\cdot(x+1)^3+\\cdots\\right)$=\r\n= $-1 + 4 (x + 1) - 9 (x + 1)^2 + 16 (x + 1)^3$\r\n",
"system": ""
},
{
"prompt": "Write the Taylor series for the function $f(x)=x \\cdot \\cos(2 \\cdot x)$ at the point $x=\\frac{ \\pi }{ 2 }$ up to the third term (zero or non-zero).",
"response": "This is the final answer to the problem: $-\\frac{\\pi}{2}-\\left(x-\\frac{\\pi}{2}\\right)+\\pi\\cdot\\left(x-\\frac{\\pi}{2}\\right)^2$",
"system": ""
},
{
"prompt": "Find the moment of inertia of an isosceles triangle $I_{x}$ relative to its hypotenuse, if at each of its points the surface density is proportional to its distance to the hypotenuse.",
"response": "$I_{x}$ = $\\frac{k}{10}\\cdot a^5$",
"system": ""
},
{
"prompt": "Find the derivative of the function $y=\\arcsin\\left(\\frac{ 2 \\cdot x }{ 1+x^2 }\\right)$.",
"response": "$y'$=$\\frac{2\\cdot\\left(1-x^2\\right)}{\\left|1-x^2\\right|\\cdot\\left(1+x^2\\right)}$",
"system": ""
},
{
"prompt": "Find the Fourier expansion of this function: $f(x)=x^2$ at $(-\\pi,\\pi)$.",
"response": "The Fourier series is: $f(x)=\\frac{\\pi^2}{3}+4\\cdot\\sum_{n=1}^\\infty\\left(\\frac{(-1)^{n}\\cdot\\cos(n\\cdot x)}{n^2}\\right)$",
"system": ""
},
{
"prompt": "Find the derivative of the function: $y=-4 \\cdot x^{\\sqrt{5 \\cdot x}}$.",
"response": "$\\frac{ d y }{d x}$ =$-\\left(\\frac{4\\cdot\\sqrt{5}}{\\sqrt{x}}+\\frac{2\\cdot\\sqrt{5}\\cdot\\ln(x)}{\\sqrt{x}}\\right)\\cdot x^{\\sqrt{5}\\cdot\\sqrt{x}}$",
"system": ""
},
{
"prompt": "Write the Taylor series for the function $f(x)=x \\cdot \\sin(2 \\cdot x)$ at the point $x=\\pi$ up to the third term (zero or non-zero).",
"response": "This is the final answer to the problem: $0+2\\cdot\\pi\\cdot(x-\\pi)+\\frac{4}{2}\\cdot(x-\\pi)^2$",
"system": ""
},
{
"prompt": "Find the arc length of the curve $x=\\frac{ 5 \\cdot y^2 }{ 6 }-\\frac{ \\ln(5 \\cdot y) }{ 2 }$ enclosed between $y=3$ and $y=5$.",
"response": "Arc Length: $-\\frac{\\operatorname{arsinh}\\left(\\frac{200y^{2} - 24}{12 \\sqrt{21}}\\right)}{10} + \\frac{\\sqrt{100y^{4} - 24y^{2} + 9}}{12} - \\frac{\\operatorname{arsinh}\\left(\\frac{3}{2 \\sqrt{21} \\, y^{2}} - \\frac{2}{\\sqrt{21}}\\right)}{4} \\approx \\boxed{13.23342845}$",
"system": ""
},
{
"prompt": "Sketch the curve: \n\n$y=3 \\cdot x^2-x^4-2$. \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes (Leave blank if there are no vertical asymptotes)\n3. Horizontal asymptotes (Leave blank if there are no horizontal asymptotes)\n4. Slant asymptotes (Leave blank if there are no slant asymptotes)\n5. Intervals where the function is increasing (Leave blank if there are no such intervals)\n6. Intervals where the function is decreasing (Leave blank if there are no such intervals)\n7. Intervals where the function is concave up (Leave blank if there are no such intervals)\n8. Intervals where the function is concave down (Leave blank if there are no such intervals)\n9. Points of inflection (Leave blank if there are no points of inflection)",
"response": "This is the final answer to the problem: \n1. The domain (in interval notation): $(-1\\cdot\\infty,\\infty)$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(0,\\frac{\\sqrt{3}}{\\sqrt{2}}\\right), \\left(-\\infty,-\\frac{\\sqrt{3}}{\\sqrt{2}}\\right)$\n6. Intervals where the function is decreasing: $\\left(-\\frac{\\sqrt{3}}{\\sqrt{2}},0\\right), \\left(\\frac{\\sqrt{3}}{\\sqrt{2}},\\infty\\right)$\n7. Intervals where the function is concave up: $\\left(-\\frac{1}{\\sqrt{2}},\\frac{1}{\\sqrt{2}}\\right)$\n8. Intervals where the function is concave down: $\\left(-\\infty,-\\frac{1}{\\sqrt{2}}\\right), \\left(\\frac{1}{\\sqrt{2}},\\infty\\right)$\n9. Points of inflection: $P\\left(-\\frac{1}{\\sqrt{2}},-\\frac{3}{4}\\right), P\\left(\\frac{1}{\\sqrt{2}},-\\frac{3}{4}\\right)$",
"system": ""
},
{
"prompt": "Sketch the curve: \n\n$y=3 \\cdot x^2-x^4-2$. \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes (Leave blank if there are no vertical asymptotes)\n3. Horizontal asymptotes (Leave blank if there are no horizontal asymptotes)\n4. Slant asymptotes (Leave blank if there are no slant asymptotes)\n5. Intervals where the function is increasing (Leave blank if there are no such intervals)\n6. Intervals where the function is decreasing (Leave blank if there are no such intervals)\n7. Intervals where the function is concave up (Leave blank if there are no such intervals)\n8. Intervals where the function is concave down (Leave blank if there are no such intervals)\n9. Points of inflection (Leave blank if there are no points of inflection)",
"response": "This is the final answer to the problem: \n1. The domain (in interval notation): $(-1\\cdot\\infty,\\infty)$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(0,\\frac{\\sqrt{3}}{\\sqrt{2}}\\right), \\left(-\\infty,-\\frac{\\sqrt{3}}{\\sqrt{2}}\\right)$\n6. Intervals where the function is decreasing: $\\left(-\\frac{\\sqrt{3}}{\\sqrt{2}},0\\right), \\left(\\frac{\\sqrt{3}}{\\sqrt{2}},\\infty\\right)$\n7. Intervals where the function is concave up: $\\left(-\\frac{1}{\\sqrt{2}},\\frac{1}{\\sqrt{2}}\\right)$\n8. Intervals where the function is concave down: $\\left(-\\infty,-\\frac{1}{\\sqrt{2}}\\right), \\left(\\frac{1}{\\sqrt{2}},\\infty\\right)$\n9. Points of inflection: $P\\left(-\\frac{1}{\\sqrt{2}},-\\frac{3}{4}\\right), P\\left(\\frac{1}{\\sqrt{2}},-\\frac{3}{4}\\right)$",
"system": ""
},
{
"prompt": "Find a “reasonable” upper-bound on the error in approximating $f(x)=x \\cdot \\ln(x)$ by its 3rd order Taylor polynomial $P_{3}(x)$ at $a=1$ valid for all values of $x$ such that $|x-1| \\le 0.7$.",
"response": "This is the final answer to the problem: $\\frac{2}{(0.3)^3}\\cdot\\frac{(0.7)^4}{4!}$",
"system": ""
},
{
"prompt": "Let $R$ be the region in the first quadrant enclosed by the graph of $g(x)=\\frac{ 12 }{ 1+x^2 }-2$.\n\n1. Write, but do not evaluate, an integral expression that gives the volume of the solid generated when $R$ is revolved about the $x$-axis.\n2. Write, but do not evaluate, an integral expression that gives the volume of the solid generated when $R$ is revolved about the $y$-axis.",
"response": "1. $\\int_0^{2.236}\\left(\\pi\\cdot\\left(\\frac{12}{1+x^2}-2\\right)^2\\right)dx$\n2. $\\int_0^{10}\\left(\\pi\\cdot\\left(\\frac{12}{y+2}-1\\right)\\right)dy$",
"system": ""
},
{
"prompt": "Compute the integral $\\int{\\frac{ x^3 }{ \\sqrt{4 \\cdot x^2+4 \\cdot x+5} } d x}$.",
"response": "$\\int{\\frac{ x^3 }{ \\sqrt{4 \\cdot x^2+4 \\cdot x+5} } d x}$ =$\\left(\\frac{1}{12}\\cdot x^2-\\frac{5}{48}\\cdot x-\\frac{5}{96}\\right)\\cdot\\sqrt{4\\cdot x^2+4\\cdot x+5}+\\frac{5}{16}\\cdot\\ln\\left(x+\\frac{1}{2}+\\sqrt{1+\\left(x+\\frac{1}{2}\\right)^2}\\right)+C$",
"system": ""
},
{
"prompt": "Sketch the curve: \n\n$y=2 \\cdot x \\cdot \\sqrt{3-x^2}$. \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
"response": "This is the final answer to the problem: \n1. The domain (in interval notation): $\\left[-1\\cdot3^{2^{-1}},3^{2^{-1}}\\right]$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(-\\sqrt{\\frac{3}{2}},\\sqrt{\\frac{3}{2}}\\right)$\n6. Intervals where the function is decreasing: $\\left(\\sqrt{\\frac{3}{2}},3^{2^{-1}}\\right), \\left(-3^{2^{-1}},-\\sqrt{\\frac{3}{2}}\\right)$\n7. Intervals where the function is concave up: $\\left(-3^{2^{-1}},0\\right)$\n8. Intervals where the function is concave down: $\\left(0,3^{2^{-1}}\\right)$\n9. Points of inflection: $P(0,0)$",
"system": ""
},
{
"prompt": "Find the antiderivative of $-\\frac{ 1 }{ x \\cdot \\sqrt{1-x^2} }$.",
"response": "$\\int{-\\frac{ 1 }{ x \\cdot \\sqrt{1-x^2} } d x}$ =$C+\\ln\\left(\\frac{1+\\sqrt{1-x^2}}{|x|}\\right)$",
"system": ""
},
{
"prompt": "For the curve $x=a\\left(t-\\sin(t)\\right)$, $y=a\\left(1-\\cos(t)\\right)$ determine the curvature. Use $a=10$.",
"response": "The curvature is:$\\frac{1}{40\\cdot\\left|\\sin\\left(\\frac{t}{2}\\right)\\right|}$",
"system": ""
},
{
"prompt": "Compute the integral: $\\int{\\frac{ x }{ \\left(x^2-4 \\cdot x+8\\right)^2 } d x}$.",
"response": "$\\int{\\frac{ x }{ \\left(x^2-4 \\cdot x+8\\right)^2 } d x}$ =$C+\\frac{x-2}{2\\cdot\\left(8+2\\cdot(x-2)^2\\right)}+\\frac{1}{8}\\cdot\\arctan\\left(\\frac{1}{2}\\cdot(x-2)\\right)-\\frac{1}{2\\cdot\\left(x^2-4\\cdot x+8\\right)}$",
"system": ""
},
{
"prompt": "On a cylinder 6 cm in diameter, a channel is cut out along the surface, having an equilateral triangle with a side of 1.5 cm in cross section. Compute the volume of the cut out material.",
"response": "$V$ =$\\frac{108\\cdot\\sqrt{3}-27}{32}\\cdot\\pi$",
"system": ""
},
{
"prompt": "Determine the Taylor series for $y=\\left(\\sin(x)\\right)^2$, centered at $x_{0}=\\frac{ \\pi }{ 2 }$. Write out the sum of the first three non-zero terms, followed by dots.",
"response": "This is the final answer to the problem: $1-\\frac{2}{2!}\\cdot\\left(x-\\frac{\\pi}{2}\\right)^2+\\frac{2^3}{4!}\\cdot\\left(x-\\frac{\\pi}{2}\\right)^4+\\cdots$",
"system": ""
},
{
"prompt": "Compute the integral: $\\int{\\frac{ \\sin(x)^4 }{ \\cos(x) } d x}$.",
"response": "$\\int{\\frac{ \\sin(x)^4 }{ \\cos(x) } d x}$ =$C-\\frac{1}{2}\\cdot\\ln\\left(\\left|\\frac{1-\\sin(x)}{1+\\sin(x)}\\right|\\right)-\\frac{1}{3}\\cdot\\left(\\sin(x)\\right)^3-\\sin(x)$",
"system": ""
},
{
"prompt": "Find the Fourier series of the function $f(x)=\\frac{ -1 }{ 2 } \\cdot x$ in the interval $[-2,2]$.",
"response": "The Fourier series is: $\\sum_{n=1}^\\infty\\left(\\frac{2\\cdot(-1)^n}{\\pi\\cdot n}\\cdot\\sin\\left(\\frac{\\pi\\cdot n\\cdot x}{2}\\right)\\right)$",
"system": ""
},
{
"prompt": "Compute the integral $\\int{\\left(2 \\cdot x^2+4 \\cdot x+5\\right) \\cdot \\sin(2 \\cdot x) d x}$.",
"response": "$\\int{\\left(2 \\cdot x^2+4 \\cdot x+5\\right) \\cdot \\sin(2 \\cdot x) d x}$ =$C+x\\cdot\\sin(2\\cdot x)+\\frac{1}{2}\\cdot\\cos(2\\cdot x)+\\sin(2\\cdot x)-\\frac{1}{2}\\cdot\\left(2\\cdot x^2+4\\cdot x+5\\right)\\cdot\\cos(2\\cdot x)$",
"system": ""
},
{
"prompt": "Find $\\frac{ d y }{d x}$, given $y=\\tan(2 \\cdot v)$ and $v=\\arctan(2 \\cdot x-1)$.",
"response": "This is the final answer to the problem: $\\frac{dy}{dx}=\\frac{2\\cdot x^2-2\\cdot x+1}{2\\cdot\\left(x-x^2\\right)^2}$",
"system": ""
},
{
"prompt": "A sky diver jumps from a reasonable height above the ground. The air resistance she experiences is proportional to her velocity, and the constant of proportionality is $0.24$. It can be shown that the downward velocity of the sky diver at time $t$ is given by\n\n$v(t)=180 \\cdot \\left(1-e^{-0.24 \\cdot t}\\right)$ \n\nwhere $t$ is measured in seconds and $v(t)$ is measured in feet per second\n\n\n\n1. Find the initial velocity of the sky diver\n\n2. Find the velocity after $4$ seconds (round your answer to one decimal place)\n\n3. The maximum velocity of a falling object with wind resistance is called its terminal velocity. Find the terminal velocity of this sky diver. (round your answer to the nearest whole number)",
"response": "1. $0$\n2. $111.1$\n3. $180$",
"system": ""
},
{
"prompt": "Find the derivative of $y=x \\cdot \\sin(x)+2 \\cdot x \\cdot \\cos(x)-2 \\cdot \\sin(x)+\\ln\\left(\\sin(x)\\right)+c^2$.",
"response": "This is the final answer to the problem: $y'=\\frac{\\left(\\sin(x)\\right)^2+x\\cdot\\sin(x)\\cdot\\cos(x)-2\\cdot x\\cdot\\left(\\sin(x)\\right)^2+\\cos(x)}{\\sin(x)}$",
"system": ""
},
{
"prompt": "Differentiate $\\sqrt{x \\cdot y}-x=y^5$.",
"response": "This is the final answer to the problem: $\\frac{dy}{dx}=\\frac{2\\cdot x^{\\frac{1}{2}}\\cdot y^{\\frac{1}{2}}-y}{x-10\\cdot x^{\\frac{1}{2}}\\cdot y^{\\frac{9}{2}}}$",
"system": ""
},
{
"prompt": "Let $Q$ be the region bounded by the graph of $x=\\frac{ 2 }{ 1-y }$, the line $x=-1$, and the line $y=\\frac{ 5 }{ 4 }$.\n\nWrite, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when $Q$ is revolved about the line $x=-1$.",
"response": "$V$ = $\\int_{\\frac{5}{4}}^3\\left(\\pi\\cdot\\left(\\frac{2}{1-y}+1\\right)^2\\right)dy$",
"system": ""
},
{
"prompt": "Find the Fourier series of the function $\\psi(x)=2 \\cdot e^{-2 \\cdot x}$ in the interval $(-\\pi,\\pi)$.",
"response": "The Fourier series is: $2\\cdot e^{-2\\cdot x}=\\frac{\\left(e^{2\\cdot\\pi}-e^{-2\\cdot\\pi}\\right)}{\\pi}\\cdot\\left(\\frac{1}{2}+\\sum_{n=1}^\\infty\\left(\\frac{2\\cdot(-1)^n\\cdot\\left(2\\cdot\\cos(n\\cdot x)+n\\cdot\\sin(n\\cdot x)\\right)}{4+n^2}\\right)\\right)$",
"system": ""
},
{
"prompt": "Evaluate $\\int\\int\\int_{E}{\\left(x^3+y^3+z^3\\right) d V}$, where $E$=$\\left\\{(x,y,z)|0 \\le x \\le 2,0 \\le y \\le 2 \\cdot x,0 \\le z \\le 4-x-y\\right\\}$.",
"response": "$I$ = $\\frac{112}{5}$",
"system": ""
},
{
"prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of function $\\sqrt{x^2+2}$ with the center $a=0$.",
"response": "$\\sqrt{x^2+2}$ =$\\sum_{n=0}^\\infty\\left(2^{\\frac{1}{2}-n}\\cdot C_{\\frac{1}{2}}^n\\cdot x^{2\\cdot n}\\right)$",
"system": ""
},
{
"prompt": "Compute the integral: $\\int{\\frac{ -12 }{ \\sin(6 \\cdot x)^6 } d x}$.",
"response": "$\\int{\\frac{ -12 }{ \\sin(6 \\cdot x)^6 } d x}$ =$C+2\\cdot\\cot(6\\cdot x)+\\frac{2}{5}\\cdot\\left(\\cot(6\\cdot x)\\right)^5+\\frac{4}{3}\\cdot\\left(\\cot(6\\cdot x)\\right)^3$",
"system": ""
},
{
"prompt": "Find the Fourier series expansion of the function $f(x)=\\begin{cases} -x, & -\\pi<x \\le 0 \\\\ \\frac{ x^2 }{ \\pi }, & 0<x \\le \\pi \\end{cases}$ with the period $2 \\cdot \\pi$ at interval $[-\\pi,\\pi]$.",
"response": "The Fourier series is: $f(x)=\\frac{5\\cdot\\pi}{12}+\\sum_{n=1}^\\infty\\left(\\frac{(-1)^n\\cdot3-1}{\\pi\\cdot n^2}\\cdot\\cos(n\\cdot x)+\\left(\\frac{2}{\\pi^2\\cdot n^3}\\cdot\\left((-1)^n-1\\right)\\right)\\cdot\\sin(n\\cdot x)\\right)$",
"system": ""
},
{
"prompt": "Consider the differential equation $\\frac{ d y }{d x}=e^y \\cdot (5 \\cdot x-1)$. Find $y=g(x)$, the particular solution to the differential equation for $-0.819 \\le x \\le 1.219$ that passes through the point $P(1,0)$.",
"response": "$y$ = $-\\ln\\left(-\\frac{5}{2}\\cdot x^2+x+\\frac{5}{2}\\right)$",
"system": ""
},
{
"prompt": "Given $g(x)=\\frac{ 1 }{ 3 } \\cdot (a+b) \\cdot x^3+\\frac{ 1 }{ 2 } \\cdot (a+b+c) \\cdot x^2-(a+b+c+d) \\cdot x+a \\cdot b \\cdot c \\cdot d$, simplify the derivative of $g(x)$ if $x^2+x=a+b$.",
"response": "This is the final answer to the problem: $g'(x)=(a+b)^2+c\\cdot x-(a+b+c+d)$",
"system": ""
},
{
"prompt": "Solve the integral: $\\int{\\frac{ 20 \\cdot \\cos(-10 \\cdot x)^3 }{ 21 \\cdot \\sin(-10 \\cdot x)^7 } d x}$.",
"response": "$\\int{\\frac{ 20 \\cdot \\cos(-10 \\cdot x)^3 }{ 21 \\cdot \\sin(-10 \\cdot x)^7 } d x}$ =$C+\\frac{1}{21}\\cdot\\left(\\frac{1}{2}\\cdot\\left(\\cot(10\\cdot x)\\right)^4+\\frac{1}{3}\\cdot\\left(\\cot(10\\cdot x)\\right)^6\\right)$",
"system": ""
},
{
"prompt": "Find the centers of symmetry of the curve of $f(x)=\\left(\\sin(x)\\right)^2$.",
"response": "This is the final answer to the problem: $\\left(k\\cdot\\pi+\\frac{\\pi}{4},\\frac{1}{2}\\right)$",
"system": ""
},
{
"prompt": "Find the centers of symmetry of the curve of $f(x)=\\left(\\sin(x)\\right)^2$.",
"response": "This is the final answer to the problem: $\\left(k\\cdot\\pi+\\frac{\\pi}{4},\\frac{1}{2}\\right)$",
"system": ""
},
{
"prompt": "Evaluate the integral: $I=\\int{3 \\cdot x \\cdot \\ln\\left(4+\\frac{ 1 }{ x }\\right) d x}$.",
"response": "This is the final answer to the problem: $\\left(\\frac{3}{2}\\cdot x^2\\cdot\\ln(4\\cdot x+1)-\\frac{3\\cdot x^2}{4}+\\frac{3\\cdot x}{8}-\\frac{3}{32}\\cdot\\ln\\left(x+\\frac{1}{4}\\right)\\right)-\\left(\\frac{3}{2}\\cdot x^2\\cdot\\ln(x)-\\left(C+\\frac{3}{4}\\cdot x^2\\right)\\right)$",
"system": ""
},
{
"prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of function $\\sqrt{x+2}$ with the center $a=0$.",
"response": "$\\sqrt{x+2}$ =$\\sum_{n=0}^\\infty\\left(2^{\\frac{1}{2}-n}\\cdot C_{\\frac{1}{2}}^n\\cdot x^n\\right)$",
"system": ""
},
{
"prompt": "Compute the integral: $\\int{\\frac{ -1 }{ 3 \\cdot \\sin\\left(\\frac{ x }{ 3 }\\right)^6 } d x}$.",
"response": "$\\int{\\frac{ -1 }{ 3 \\cdot \\sin\\left(\\frac{ x }{ 3 }\\right)^6 } d x}$ =$\\frac{\\cos\\left(\\frac{x}{3}\\right)}{5\\cdot\\sin\\left(\\frac{x}{3}\\right)^5}-\\frac{4}{15}\\cdot\\left(-\\frac{\\cos\\left(\\frac{x}{3}\\right)}{\\sin\\left(\\frac{x}{3}\\right)^3}-2\\cdot\\cot\\left(\\frac{x}{3}\\right)\\right)+C$",
"system": ""
},
{
"prompt": "Compute the integral: $\\int{\\frac{ -1 }{ 3 \\cdot \\sin\\left(\\frac{ x }{ 3 }\\right)^6 } d x}$.",
"response": "$\\int{\\frac{ -1 }{ 3 \\cdot \\sin\\left(\\frac{ x }{ 3 }\\right)^6 } d x}$ =$\\frac{\\cos\\left(\\frac{x}{3}\\right)}{5\\cdot\\sin\\left(\\frac{x}{3}\\right)^5}-\\frac{4}{15}\\cdot\\left(-\\frac{\\cos\\left(\\frac{x}{3}\\right)}{\\sin\\left(\\frac{x}{3}\\right)^3}-2\\cdot\\cot\\left(\\frac{x}{3}\\right)\\right)+C$",
"system": ""
},
{
"prompt": "Find the first derivative $y_{x}'$ of the function: $x=\\arcsin\\left(\\frac{ t }{ \\sqrt{2+2 \\cdot t^2} }\\right)$, $y=\\arccos\\left(\\frac{ 1 }{ \\sqrt{2+2 \\cdot t^2} }\\right)$, $t \\ge 0$.",
"response": "$y_{x}'$ =$\\frac{t\\cdot\\sqrt{t^2+2}}{\\sqrt{2\\cdot t^2+1}}$",
"system": ""
},
{
"prompt": "Find the first derivative $y_{x}'$ of the function: $x=\\arcsin\\left(\\frac{ t }{ \\sqrt{2+2 \\cdot t^2} }\\right)$, $y=\\arccos\\left(\\frac{ 1 }{ \\sqrt{2+2 \\cdot t^2} }\\right)$, $t \\ge 0$.",
"response": "$y_{x}'$ =$\\frac{t\\cdot\\sqrt{t^2+2}}{\\sqrt{2\\cdot t^2+1}}$",
"system": ""
},
{
"prompt": "Find the Fourier series of the periodic function $f(x)=x^2$ in the interval $-\\pi \\le x<\\pi$ if $f(x)=f(x+2 \\cdot \\pi)$.",
"response": "The Fourier series is: $x^2=\\frac{\\pi^2}{3}-4\\cdot\\left(\\frac{\\cos(x)}{1^2}-\\frac{\\cos(2\\cdot x)}{2^2}+\\frac{\\cos(3\\cdot x)}{3^2}-\\cdots\\right)$",
"system": ""
},
{
"prompt": "Find the integral $\\int{\\frac{ 1 }{ \\sqrt[3]{\\left(\\sin(x)\\right)^{11} \\cdot \\cos(x)} } d x}$.",
"response": "$\\int{\\frac{ 1 }{ \\sqrt[3]{\\left(\\sin(x)\\right)^{11} \\cdot \\cos(x)} } d x}$ =$-\\frac{3\\cdot\\left(1+4\\cdot\\left(\\tan(x)\\right)^2\\right)}{8\\cdot\\left(\\tan(x)\\right)^2\\cdot\\sqrt[3]{\\left(\\tan(x)\\right)^2}}+C$",
"system": ""
},
{
"prompt": "Find the tangential and normal components of acceleration for $\\vec{r}(t)=\\left\\langle a \\cdot \\cos\\left(\\omega \\cdot t\\right),b \\cdot \\sin\\left(\\omega \\cdot t\\right) \\right\\rangle$ at $t=0$ with positive coefficients.",
"response": "This is the final answer to the problem:\n\n$a_{t}$: $0$ \n\n$a_{N}$: $\\omega^2\\cdot|a|$",
"system": ""
},
{
"prompt": "Find $\\frac{ d y }{d x}$ if $y=\\frac{ 5 \\cdot x^2-3 \\cdot x }{ \\left(3 \\cdot x^7+2 \\cdot x^6\\right)^4 }$.",
"response": "$\\frac{ d y }{d x}$ = $\\frac{-390\\cdot x^2+23\\cdot x+138}{x^{24}\\cdot(3\\cdot x+2)^5}$",
"system": ""
},
{
"prompt": "Evaluate the integral by choosing the order of integration: $\\int_{0}^1{\\int_{1}^2{\\left(\\frac{ x }{ x^2+y^2 }\\right) d y} d x}$.",
"response": "$\\int_{0}^1{\\int_{1}^2{\\left(\\frac{ x }{ x^2+y^2 }\\right) d y} d x}$ =$\\frac{2\\cdot\\pi+8\\cdot\\ln\\left(\\frac{5}{4}\\right)-4\\cdot\\ln(2)-8\\cdot\\arctan\\left(\\frac{1}{2}\\right)}{8}$",
"system": ""
},
{
"prompt": "Evaluate the integral by choosing the order of integration: $\\int_{0}^1{\\int_{1}^2{\\left(\\frac{ x }{ x^2+y^2 }\\right) d y} d x}$.",
"response": "$\\int_{0}^1{\\int_{1}^2{\\left(\\frac{ x }{ x^2+y^2 }\\right) d y} d x}$ =$\\frac{2\\cdot\\pi+8\\cdot\\ln\\left(\\frac{5}{4}\\right)-4\\cdot\\ln(2)-8\\cdot\\arctan\\left(\\frac{1}{2}\\right)}{8}$",
"system": ""
},
{
"prompt": "Determine a definite integral that represents the region enclosed by the inner loop of $r=3-4 \\cdot \\cos\\left(\\theta\\right)$ .",
"response": "This is the final answer to the problem:$\\int_0^{\\arccos\\left(\\frac{3}{4}\\right)}\\left(3-4\\cdot\\cos\\left(\\theta\\right)\\right)^2d\\theta$",
"system": ""
},
{
"prompt": "Expand the function: $y=\\ln\\left(x+\\sqrt{1+x^2}\\right)$ in a power series.",
"response": "This is the final answer to the problem: $x-\\frac{1}{2}\\cdot\\frac{x^3}{3}+\\frac{1\\cdot3}{4\\cdot2}\\cdot\\frac{x^5}{5}-\\frac{1\\cdot3\\cdot5}{2\\cdot4\\cdot6}\\cdot\\frac{x^7}{7}+\\cdots+\\frac{(2\\cdot n-1)!!}{(2\\cdot n)!!}\\cdot\\frac{x^{2\\cdot n+1}}{2\\cdot n+1}+\\cdots$",
"system": ""
},
{
"prompt": "Compute the integral $\\int{\\frac{ -2 }{ \\left(4+\\sqrt{x}\\right) \\cdot \\sqrt{x-x^2} } d x}$.",
"response": "$\\int{\\frac{ -2 }{ \\left(4+\\sqrt{x}\\right) \\cdot \\sqrt{x-x^2} } d x}$ = $C-\\frac{8}{\\sqrt{15}}\\cdot\\arctan\\left(\\frac{1}{\\sqrt{15}}\\cdot\\left(1+4\\cdot\\tan\\left(\\frac{1}{2}\\cdot\\arcsin\\left(\\sqrt{x}\\right)\\right)\\right)\\right)$",
"system": ""
},
{
"prompt": "Compute the integral $\\int{\\frac{ -2 }{ \\left(4+\\sqrt{x}\\right) \\cdot \\sqrt{x-x^2} } d x}$.",
"response": "$\\int{\\frac{ -2 }{ \\left(4+\\sqrt{x}\\right) \\cdot \\sqrt{x-x^2} } d x}$ = $C-\\frac{8}{\\sqrt{15}}\\cdot\\arctan\\left(\\frac{1}{\\sqrt{15}}\\cdot\\left(1+4\\cdot\\tan\\left(\\frac{1}{2}\\cdot\\arcsin\\left(\\sqrt{x}\\right)\\right)\\right)\\right)$",
"system": ""
},
{
"prompt": "Apply the gradient descent algorithm to the function $g(x,y)=\\left(x^2-1\\right) \\cdot \\left(x^2-3 \\cdot x+1\\right)+y^2$ with step size $\\frac{ 1 }{ 5 }$ and initial guess $p_{0}$=$\\left\\langle 0,0 \\right\\rangle$ for three steps (so steps $p_{1}$, $p_{2}$, and $p_{3}$).",
"response": "| $i$ | $1$ | $2$ | $3$ |\n| --- | --- | --- | --- |\n| $p_{i}$ | $\\left\\langle-\\frac{3}{5},0\\right\\rangle$ | $\\left\\langle-\\frac{237}{625},0\\right\\rangle$ | $\\left\\langle-\\frac{826\\ 113\\ 663}{1\\ 220\\ 703\\ 125},0\\right\\rangle$ |\n| $g\\left(p_{i}\\right)$ | $-\\frac{1264}{625}$ | $-\\frac{99667587}{1220703125}$ |$-\\frac{2760602760604515522296126283436630289590864}{2220446049250313080847263336181640625}$ |",
"system": ""
},
{
"prompt": "Apply the gradient descent algorithm to the function $g(x,y)=\\left(x^2-1\\right) \\cdot \\left(x^2-3 \\cdot x+1\\right)+y^2$ with step size $\\frac{ 1 }{ 5 }$ and initial guess $p_{0}$=$\\left\\langle 0,0 \\right\\rangle$ for three steps (so steps $p_{1}$, $p_{2}$, and $p_{3}$).",
"response": "| $i$ | $1$ | $2$ | $3$ |\n| --- | --- | --- | --- |\n| $p_{i}$ | $\\left\\langle-\\frac{3}{5},0\\right\\rangle$ | $\\left\\langle-\\frac{237}{625},0\\right\\rangle$ | $\\left\\langle-\\frac{826\\ 113\\ 663}{1\\ 220\\ 703\\ 125},0\\right\\rangle$ |\n| $g\\left(p_{i}\\right)$ | $-\\frac{1264}{625}$ | $-\\frac{99667587}{1220703125}$ |$-\\frac{2760602760604515522296126283436630289590864}{2220446049250313080847263336181640625}$ |",
"system": ""
},
{
"prompt": "Compute the integral $\\int{\\frac{ 1 }{ \\sqrt{4 \\cdot x^2+4 \\cdot x+3} } d x}$.",
"response": "$\\int{\\frac{ 1 }{ \\sqrt{4 \\cdot x^2+4 \\cdot x+3} } d x}$ =$\\frac{1}{2}\\cdot\\ln\\left(\\left|2\\cdot x+1+\\sqrt{4\\cdot x^2+4\\cdot x+3}\\right|\\right)+C$",
"system": ""
},
{
"prompt": "Evaluate the integral by interchanging the order of integration: $\\int_{1}^{27}{\\int_{1}^2{\\left(\\sqrt[3]{x}+\\sqrt[3]{y}\\right) d y} d x}$.",
"response": "$\\int_{1}^{27}{\\int_{1}^2{\\left(\\sqrt[3]{x}+\\sqrt[3]{y}\\right) d y} d x}$ =$39\\cdot\\sqrt[3]{2}+\\frac{81}{2}$",
"system": ""
},
{
"prompt": "Evaluate the integral by interchanging the order of integration: $\\int_{1}^{27}{\\int_{1}^2{\\left(\\sqrt[3]{x}+\\sqrt[3]{y}\\right) d y} d x}$.",
"response": "$\\int_{1}^{27}{\\int_{1}^2{\\left(\\sqrt[3]{x}+\\sqrt[3]{y}\\right) d y} d x}$ =$39\\cdot\\sqrt[3]{2}+\\frac{81}{2}$",
"system": ""
},
{
"prompt": "Evaluate the integral by interchanging the order of integration: $\\int_{1}^{27}{\\int_{1}^2{\\left(\\sqrt[3]{x}+\\sqrt[3]{y}\\right) d y} d x}$.",
"response": "$\\int_{1}^{27}{\\int_{1}^2{\\left(\\sqrt[3]{x}+\\sqrt[3]{y}\\right) d y} d x}$ =$39\\cdot\\sqrt[3]{2}+\\frac{81}{2}$",
"system": ""
},
{
"prompt": "Calculate the second-order partial derivatives. (Treat $A$,$B$,$C$,$D$ as constants.)\n\n$f(x,y,z)=\\arctan(x \\cdot y \\cdot z)$.",
"response": "$f_{xx}(x,y,z)$=$\\frac{-2\\cdot x\\cdot y^3\\cdot z^3}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$$f_{xy}(x,y,z)$=$f_{yx}(x,y,z)$=$\\frac{z-x^2\\cdot y^2\\cdot z^3}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$ \n\n$f_{yy}(x,y,z)$=$\\frac{-2\\cdot x^3\\cdot y\\cdot z^3}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$ \n\n$f_{yz}(x,y,z)$=$f_{zy}(x,y,z)$=$\\frac{x-x^3\\cdot y^2\\cdot z^2}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$ \n\n$f_{zz}(x,y,z)$=$\\frac{-2\\cdot x^3\\cdot y^3\\cdot z}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$ \n\n$f_{xz}(x,y,z)$=$f_{zx}(x,y,z)$=$\\frac{y-x^2\\cdot y^3\\cdot z^2}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$",
"system": ""
},
{
"prompt": "Find the area of a triangle bounded by the x-axis, the line $f(x)=12-\\frac{ 1 }{ 3 } \\cdot x$, and the line perpendicular to $f(x)$ that passes through the origin.",
"response": "The area of the triangle is $\\frac{972}{5}$",
"system": ""
},
{
"prompt": "Find the area of a triangle bounded by the x-axis, the line $f(x)=12-\\frac{ 1 }{ 3 } \\cdot x$, and the line perpendicular to $f(x)$ that passes through the origin.",
"response": "The area of the triangle is $\\frac{972}{5}$",
"system": ""
},
{
"prompt": "Use integration by substitution and/or by parts to compute the integral \n $\\int{x \\cdot \\ln(5+x) d x}$.",
"response": "This is the final answer to the problem:$D+5\\cdot(x+5)+\\left(\\frac{1}{2}\\cdot(x+5)^2-5\\cdot(x+5)\\right)\\cdot\\ln(x+5)-\\frac{1}{4}\\cdot(x+5)^2$",
"system": ""
},
{
"prompt": "Find the generalized center of mass between $y=b \\cdot \\sin(a \\cdot x)$, $x=0$, and $x=\\frac{ \\pi }{ a }$ . Then, use the Pappus theorem to find the volume of the solid generated when revolving around the $y$-axis.",
"response": "$(x,y)$ = $P\\left(\\frac{\\pi}{2\\cdot a},\\frac{\\pi\\cdot b}{8}\\right)$ \n\n$V$ = $\\frac{2\\cdot\\pi^2\\cdot b}{a^2}$",
"system": ""
},
{
"prompt": "Differentiate the function \n $f(x)=\\frac{ 5 \\cdot x^3-\\sqrt[3]{x}+6 \\cdot x+2 }{ \\sqrt{x} }$.",
"response": "$\\frac{ d }{d x}\\left(\\frac{ 5 \\cdot x^3-\\sqrt[3]{x}+6 \\cdot x+2 }{ \\sqrt{x} }\\right)$=$\\frac{18\\cdot x\\cdot\\sqrt[6]{x}+75\\cdot x^3\\cdot\\sqrt[6]{x}+\\sqrt{x}-6\\cdot\\sqrt[6]{x}}{6\\cdot x\\cdot x^{\\frac{2}{3}}}$",
"system": ""
},
{
"prompt": "Calculate the second-order partial derivatives. (Treat $A$,$B$,$C$,$D$ as constants.)\n\n$f(x,y,z)=\\sin\\left(x+z^y\\right)$.",
"response": "$f_{xx}(x,y,z)$=$-\\sin\\left(x+z^y\\right)$ \n\n$f_{xy}(x,y,z)$=$f_{yx}(x,y,z)$=$-z^y\\cdot\\ln(z)\\cdot\\sin\\left(x+z^y\\right)$ \n\n$f_{yy}(x,y,z)$=$-z^y\\cdot\\left(\\ln(z)\\right)^2\\cdot\\left(-\\cos\\left(x+z^y\\right)+z^y\\cdot\\sin\\left(x+z^y\\right)\\right)$ \n\n$f_{yz}(x,y,z)$=$f_{zy}(x,y,z)$=$z^{-1+y}\\cdot\\left(\\cos\\left(x+z^y\\right)\\cdot\\left(1+y\\cdot\\ln(z)\\right)-y\\cdot z^y\\cdot\\ln(z)\\cdot\\sin\\left(x+z^y\\right)\\right)$ \n\n$f_{zz}(x,y,z)$=$y\\cdot z^{-2+y}\\cdot\\left((-1+y)\\cdot\\cos\\left(x+z^y\\right)-y\\cdot z^y\\cdot\\sin\\left(x+z^y\\right)\\right)$ \n\n$f_{xz}(x,y,z)$=$f_{zx}(x,y,z)$=$-y\\cdot z^{-1+y}\\cdot\\sin\\left(x+z^y\\right)$",
"system": ""
},
{
"prompt": "Find the extrema of a function $y=\\frac{ x^4 }{ 4 }-\\frac{ 2 \\cdot x^3 }{ 3 }-\\frac{ x^2 }{ 2 }+2$. Then determine the largest and smallest value of the function when $-2 \\le x \\le 4$.",
"response": "This is the final answer to the problem: \n\n1. Extrema points: $P\\left(\\frac{2-2\\cdot\\sqrt{2}}{2},1.969\\right), P(0,2), P\\left(\\frac{2+2\\cdot\\sqrt{2}}{2},-1.8023\\right)$\n2. The largest value: $\\frac{46}{3}$\n3. The smallest value: $-1.8023$",
"system": ""
}
]
} |