File size: 46,666 Bytes
5b60e22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
{
  "dataset_name": "Mu-Math",
  "group_index": 7,
  "source_file": "/hkfs/work/workspace/scratch/tum_fmp0582-dndworkspace/自己训练lora/prepare/data/math/Mu-Math.json",
  "selected_indices": [
    4,
    31,
    50,
    67,
    83,
    84,
    97,
    103,
    121,
    128,
    165,
    174,
    202,
    215,
    223,
    226,
    251,
    286,
    304,
    305,
    309,
    312,
    314,
    316,
    323,
    330,
    346,
    347,
    362,
    363,
    381,
    382,
    404,
    408,
    415,
    430,
    466,
    483,
    495,
    497,
    537,
    561,
    563,
    587,
    592,
    613,
    619,
    630,
    634,
    647,
    650,
    657,
    670,
    683,
    694,
    711,
    713,
    735,
    740,
    772,
    790,
    795,
    796,
    802,
    805,
    811,
    823,
    842,
    844,
    845,
    850,
    879,
    880,
    882,
    884,
    886,
    913,
    916,
    922,
    942,
    952,
    954,
    962,
    966,
    968,
    970,
    976,
    977,
    983,
    988,
    990,
    991,
    995,
    1002,
    1003,
    1033,
    1039,
    1043,
    1068,
    1081
  ],
  "total_records": 1084,
  "sample_count": 100,
  "generated_at": "2025-11-05T12:58:28Z",
  "seed": 4171135963,
  "samples": [
    {
      "prompt": "Given $f(x)=x^2+\\frac{ 16 }{ x^2 }$, find the intervals where $f$ increases and the intervals where $f$ is decreasing.",
      "response": "$f$ is increasing on the intervals: $(2,\\infty), (-2,0)$\n\n$f$ is decreasing on the intervals: $(-\\infty,-2), (0,2)$  ",
      "system": ""
    },
    {
      "prompt": "Compute the integral $-2 \\cdot \\int{x^{-4} \\cdot \\left(4+x^2\\right)^{\\frac{ 1 }{ 2 }} d x}$.",
      "response": "$-2 \\cdot \\int{x^{-4} \\cdot \\left(4+x^2\\right)^{\\frac{ 1 }{ 2 }} d x}$ =$C+\\frac{1}{6}\\cdot\\left(\\frac{4}{x^2}+1\\right)\\cdot\\sqrt{\\frac{4}{x^2}+1}$",
      "system": ""
    },
    {
      "prompt": "Find the points at which the following polar curve  $r=4 \\cdot \\cos\\left(\\theta\\right)$ has a horizontal or vertical tangent line.",
      "response": "This is the final answer to the problem:\n\nhorizontal tangents at: $\\boxed{(2, 2), (2, -2)}$\n\nvertical tangents at: $\\boxed{(4, 0), (0, 0)}$",
      "system": ""
    },
    {
      "prompt": "Solve the following equations: 1. $13 x+6=6$ 2. $\\frac{ x }{ -4 }+11=5$ 3. $-4.5 x+12.3=-23.7$ 4. $\\frac{ x }{ 5 }+4=4.3$ 5. $-\\frac{ x }{ 3 }+(-7.2)=-2.1$ 6. $5.4 x-8.3=14.38$ 7. $\\frac{ x }{ 3 }-14=-8$",
      "response": "The solutions to the given equations are: 1. $x=0$\n2. $x=24$\n3. $x=8$\n4. $x=\\frac{ 3 }{ 2 }$\n5. $x=\\frac{ -153 }{ 10 }$\n6. $x=\\frac{ 21 }{ 5 }$\n7. $x=18$",
      "system": ""
    },
    {
      "prompt": "Find the radius of convergence and sum of the series:  $\\frac{ 1 }{ 2 }+\\frac{ x }{ 1 \\cdot 3 }+\\frac{ x^2 }{ 1 \\cdot 2 \\cdot 4 }+\\cdots+\\frac{ x^n }{ \\left(n!\\right) \\cdot (n+2) }+\\cdots$ .",
      "response": "This is the final answer to the problem: 1. Radius of convergence:$R=\\infty$\n2. Sum: $f(x)=\\begin{cases}\\frac{1}{x^2}+\\frac{x\\cdot e^x-e^x}{x^2},&x\\ne0\\\\\\frac{1}{2},&x=0\\end{cases}$",
      "system": ""
    },
    {
      "prompt": "Compute the derivative of the function $y=\\arcsin\\left(\\sqrt{1-9 \\cdot x^2}\\right)$.",
      "response": "$y'$= $-\\frac{3\\cdot x}{\\sqrt{1-9\\cdot x^2}\\cdot|x|}$",
      "system": ""
    },
    {
      "prompt": "Determine a definite integral that represents the region enclosed by one petal of $r=\\cos\\left(3 \\cdot \\theta\\right)$ .",
      "response": "This is the final answer to the problem:$\\int_0^{\\frac{\\pi}{6}}\\cos\\left(3\\cdot\\theta\\right)^2d\\theta$ = $\\frac{\\pi}{12}$  ",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series of the function $u=\\left|\\sin\\left(\\frac{ x }{ 2 }\\right)\\right|$ in the interval $[-2 \\cdot \\pi,2 \\cdot \\pi]$.",
      "response": "The Fourier series is: $\\frac{2}{\\pi}+\\frac{4}{\\pi}\\cdot\\sum_{k=1}^\\infty\\left(\\frac{1}{\\left(1-4\\cdot k^2\\right)}\\cdot\\cos(k\\cdot x)\\right)$",
      "system": ""
    },
    {
      "prompt": "Determine a definite integral that represents the region common to $r=3 \\cdot \\cos\\left(\\theta\\right)$ and  $r=3 \\cdot \\sin\\left(\\theta\\right)$ .",
      "response": "This is the final answer to the problem:$9\\cdot\\int_0^{\\frac{\\pi}{4}}\\sin\\left(\\theta\\right)^2d\\theta$",
      "system": ""
    },
    {
      "prompt": "Let $f(x)=\\ln\\left(x^2+1\\right)$.\n\n1. Find the 4th order Taylor polynomial $P_{4}(x)$ of $f(x)$ about $a=0$.\n2. Compute $\\left|f(1)-P_{4}(1)\\right|$.\n3. Compute $\\left|f(0.1)-P_{4}(0.1)\\right|$.",
      "response": "This is the final answer to the problem: \n\n1. $x^2-\\frac{x^4}{2}$\n2. $0.1931$\n3. $0.0003\\cdot10^{-3}$",
      "system": ""
    },
    {
      "prompt": "Leaves of deciduous trees fall in an exponential rate during autumn. A large maple has 10,000 leaves and the wind starts blowing. If there are 8,000 leaves left after 3 hours, how many will be left after 4 hours.",
      "response": "There will be $7426$ leaves after 4 hours.",
      "system": ""
    },
    {
      "prompt": "Find the first derivative of the function: $y=(x+11)^5 \\cdot (3 \\cdot x-7)^4 \\cdot (x-12) \\cdot (x+4)$.",
      "response": "$y'$ =$\\left(\\frac{5}{x+11}+\\frac{12}{3\\cdot x-7}+\\frac{1}{x-12}+\\frac{1}{x+4}\\right)\\cdot(x+11)^5\\cdot(3\\cdot x-7)^4\\cdot(x-12)\\cdot(x+4)$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\cot(x)^4 d x}$.",
      "response": "$\\int{\\cot(x)^4 d x}$ =$C+\\cot(x)-\\frac{1}{3}\\cdot\\left(\\cot(x)\\right)^3-\\arctan\\left(\\cot(x)\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the derivative of $f(x)=\\frac{ \\left(\\left(\\tan(x)\\right)^2-1\\right) \\cdot \\left(\\left(\\tan(x)\\right)^4+10 \\cdot \\left(\\tan(x)\\right)^2+1\\right) }{ 3 \\cdot \\left(\\tan(x)\\right)^3 }$.",
      "response": "This is the final answer to the problem: $f'(x)=\\left(\\tan(x)\\right)^4+4\\cdot\\left(\\tan(x)\\right)^2+\\frac{4}{\\left(\\tan(x)\\right)^2}+\\frac{1}{\\left(\\tan(x)\\right)^4}+6$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier integral of the function $q(x)=\\begin{cases} 0, & x<0 \\\\ \\pi \\cdot x, & 0 \\le x \\le 1 \\\\ 0, & x>1 \\end{cases}$.",
      "response": "$q(x)$ = $\\int_0^\\infty\\left(\\frac{\\left(\\alpha\\cdot\\sin\\left(\\alpha\\right)+\\cos\\left(\\alpha\\right)-1\\right)\\cdot\\cos\\left(\\alpha\\cdot x\\right)+\\left(\\sin\\left(\\alpha\\right)-\\alpha\\cdot\\cos\\left(\\alpha\\right)\\right)\\cdot\\sin\\left(\\alpha\\cdot x\\right)}{\\alpha^2}\\right)d\\alpha$",
      "system": ""
    },
    {
      "prompt": "Solve the initial value problem (find function $f$) for  $f'(x)=\\frac{ 2 }{ x^2 }-\\frac{ x^2 }{ 2 }$,  $f(1)=0$.",
      "response": "$f(x)=\\frac{13}{6}-\\frac{2}{x}-\\frac{1}{6}\\cdot x^3$",
      "system": ""
    },
    {
      "prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of the function $\\sqrt{x}$ with the center $a=9$.",
      "response": "$\\sqrt{x}$ =$\\sum_{n=0}^\\infty\\left(3^{1-2\\cdot n}\\cdot C_n^{\\frac{1}{2}}\\cdot(x-9)^n\\right)$",
      "system": ""
    },
    {
      "prompt": "Solve the following equations: 1. $-10 c=-80$\n2. $n-(-6)=12$\n3. $-82+x=-20$\n4. $-\\frac{ r }{ 2 }=5$\n5. $r-3.4=7.1$\n6. $\\frac{ g }{ 2.5 }=1.8$\n7. $4.8 m=43.2$\n8. $\\frac{ 3 }{ 4 } t=\\frac{ 9 }{ 20 }$\n9. $3\\frac{2}{3}+m=5\\frac{1}{6}$",
      "response": "The solutions to the given equations are:  \n1. $c=8$\n2. $n=6$\n3. $x=62$\n4. $r=-10$\n5. $r=10.5$\n6. $g=\\frac{ 9 }{ 2 }$\n7. $m=9$\n8. $t=\\frac{3}{5}$\n9. $m=\\frac{3}{2}$",
      "system": ""
    },
    {
      "prompt": "The function $s(t)=2 \\cdot t^3-3 \\cdot t^2-12 \\cdot t+8$ represents the position of a particle traveling along a horizontal line.\n\n1. Find the velocity and acceleration functions.\n2. Determine the time intervals when the object is slowing down or speeding up.",
      "response": "This is the final answer to the problem: 1. The velocity function $v(t)$ = $6\\cdot t^2-6\\cdot t-12$ and acceleration function $a(t)$ = $12\\cdot t-6$.\n\n2. The time intervals when the object speeds up $\\left(2,\\infty\\right), \\left(0,\\frac{1}{2}\\right)$ and slows down $\\left(\\frac{1}{2},2\\right)$.",
      "system": ""
    },
    {
      "prompt": "The function $s(t)=2 \\cdot t^3-3 \\cdot t^2-12 \\cdot t+8$ represents the position of a particle traveling along a horizontal line.\n\n1. Find the velocity and acceleration functions.\n2. Determine the time intervals when the object is slowing down or speeding up.",
      "response": "This is the final answer to the problem: 1. The velocity function $v(t)$ = $6\\cdot t^2-6\\cdot t-12$ and acceleration function $a(t)$ = $12\\cdot t-6$.\n\n2. The time intervals when the object speeds up $\\left(2,\\infty\\right), \\left(0,\\frac{1}{2}\\right)$ and slows down $\\left(\\frac{1}{2},2\\right)$.",
      "system": ""
    },
    {
      "prompt": "Evaluate the integral: $I=\\int{\\left(x^3+3\\right) \\cdot \\cos(2 \\cdot x) d x}$.",
      "response": "This is the final answer to the problem: $\\frac{1}{256}\\cdot\\left(384\\cdot\\sin(2\\cdot x)+128\\cdot x^3\\cdot\\sin(2\\cdot x)+192\\cdot x^2\\cdot\\cos(2\\cdot x)-96\\cdot\\cos(2\\cdot x)-256\\cdot C-192\\cdot x\\cdot\\sin(2\\cdot x)\\right)$",
      "system": ""
    },
    {
      "prompt": "A circle centered at $(-3,5)$ passes through the point $(5,-3)$. What is the equation of the circle in the general form?",
      "response": "This is the final answer to the problem: $x^2+y^2+6\\cdot x-10\\cdot y-94=0$",
      "system": ""
    },
    {
      "prompt": "A circle centered at $(-3,5)$ passes through the point $(5,-3)$. What is the equation of the circle in the general form?",
      "response": "This is the final answer to the problem: $x^2+y^2+6\\cdot x-10\\cdot y-94=0$",
      "system": ""
    },
    {
      "prompt": "Expand function $y=\\sin\\left(\\frac{ \\pi \\cdot x }{ 4 }\\right)$ in Taylor series at $x=2$, if $\\cos(x)=\\sum_{n=0}^\\infty\\left((-1)^n \\cdot \\frac{ x^{2 \\cdot n} }{ (2 \\cdot n)! }\\right)$.",
      "response": "This is the final answer to the problem: $\\sum_{n=0}^\\infty\\left((-1)^n\\cdot\\frac{\\left(\\frac{\\pi}{4}\\cdot(x-2)\\right)^{2\\cdot n}}{(2\\cdot n)!}\\right)$",
      "system": ""
    },
    {
      "prompt": "Solve $\\left(\\sin(x)\\right)^2+\\left(\\cos(3 \\cdot x)\\right)^2=1$.",
      "response": "This is the final answer to the problem: $x=\\frac{n\\cdot\\pi}{4}$",
      "system": ""
    },
    {
      "prompt": "Solve the following system of equations:\n\n$\\sin(x) \\cdot \\sin(y)=\\frac{ \\sqrt{3} }{ 4 }$  \n\n$\\cos(x) \\cdot \\cos(y)=\\frac{ \\sqrt{3} }{ 4 }$",
      "response": "This is the final answer to the problem: $x=\\frac{\\pi}{6}+\\frac{\\pi}{2}\\cdot(2\\cdot n+k)$ and $y=\\frac{\\pi}{3}+\\frac{\\pi}{2}\\cdot(k-2\\cdot n)$ or $x=\\frac{\\pi}{3}+\\frac{\\pi}{2}\\cdot(2\\cdot n+k)$ and $y=\\frac{\\pi}{6}+\\frac{\\pi}{2}\\cdot(k-2\\cdot n)$, where $k$ and $n$ are integers ",
      "system": ""
    },
    {
      "prompt": "What are the points of inflection of the graph of $f(x)=\\frac{ x+1 }{ x^2+1 }$?",
      "response": "This is the final answer to the problem: $x_1=1 \\land x_2=\\sqrt{3}-2 \\land x_3=-2-\\sqrt{3}$",
      "system": ""
    },
    {
      "prompt": "What are the points of inflection of the graph of $f(x)=\\frac{ x+1 }{ x^2+1 }$?",
      "response": "This is the final answer to the problem: $x_1=1 \\land x_2=\\sqrt{3}-2 \\land x_3=-2-\\sqrt{3}$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=5 \\cdot x^2-2 \\cdot x^4-3$.  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes  (Leave blank if there are no vertical asymptotes)\n3. Horizontal asymptotes  (Leave blank if there are no horizontal asymptotes)\n4. Slant asymptotes  (Leave blank if there are no slant asymptotes)\n5. Intervals where the function is increasing  (Leave blank if there are no such intervals)\n6. Intervals where the function is decreasing  (Leave blank if there are no such intervals)\n7. Intervals where the function is concave up  (Leave blank if there are no such intervals)\n8. Intervals where the function is concave down  (Leave blank if there are no such intervals)\n9. Points of inflection  (Leave blank if there are no points of inflection)",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $(-1\\cdot\\infty,\\infty)$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(0,\\frac{\\sqrt{5}}{2}\\right), \\left(-\\infty,-\\frac{\\sqrt{5}}{2}\\right)$\n6. Intervals where the function is decreasing: $\\left(-\\frac{\\sqrt{5}}{2},0\\right), \\left(\\frac{\\sqrt{5}}{2},\\infty\\right)$\n7. Intervals where the function is concave up: $\\left(-\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}}\\right)$\n8. Intervals where the function is concave down: $\\left(-\\infty,-\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}}\\right), \\left(\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},\\infty\\right)$\n9. Points of inflection: $P\\left(-\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},-\\frac{91}{72}\\right), P\\left(\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},-\\frac{91}{72}\\right)$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=5 \\cdot x^2-2 \\cdot x^4-3$.  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes  (Leave blank if there are no vertical asymptotes)\n3. Horizontal asymptotes  (Leave blank if there are no horizontal asymptotes)\n4. Slant asymptotes  (Leave blank if there are no slant asymptotes)\n5. Intervals where the function is increasing  (Leave blank if there are no such intervals)\n6. Intervals where the function is decreasing  (Leave blank if there are no such intervals)\n7. Intervals where the function is concave up  (Leave blank if there are no such intervals)\n8. Intervals where the function is concave down  (Leave blank if there are no such intervals)\n9. Points of inflection  (Leave blank if there are no points of inflection)",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $(-1\\cdot\\infty,\\infty)$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(0,\\frac{\\sqrt{5}}{2}\\right), \\left(-\\infty,-\\frac{\\sqrt{5}}{2}\\right)$\n6. Intervals where the function is decreasing: $\\left(-\\frac{\\sqrt{5}}{2},0\\right), \\left(\\frac{\\sqrt{5}}{2},\\infty\\right)$\n7. Intervals where the function is concave up: $\\left(-\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}}\\right)$\n8. Intervals where the function is concave down: $\\left(-\\infty,-\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}}\\right), \\left(\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},\\infty\\right)$\n9. Points of inflection: $P\\left(-\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},-\\frac{91}{72}\\right), P\\left(\\frac{\\sqrt{5}}{2\\cdot\\sqrt{3}},-\\frac{91}{72}\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series of the function $\\varphi(x)=2 \\cdot x$ in the interval $(0,4 \\cdot \\pi)$.",
      "response": "The Fourier series is: $4\\cdot\\pi-8\\cdot\\sum_{n=1}^\\infty\\left(\\frac{\\sin\\left(\\frac{n\\cdot x}{2}\\right)}{n}\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series of the function $\\varphi(x)=2 \\cdot x$ in the interval $(0,4 \\cdot \\pi)$.",
      "response": "The Fourier series is: $4\\cdot\\pi-8\\cdot\\sum_{n=1}^\\infty\\left(\\frac{\\sin\\left(\\frac{n\\cdot x}{2}\\right)}{n}\\right)$",
      "system": ""
    },
    {
      "prompt": "Using the series expansion for the function $(1+x)^m$ calculate approximately $\\sqrt[3]{29}$ with accuracy 0.0001.",
      "response": "This is the final answer to the problem: $3.0723$",
      "system": ""
    },
    {
      "prompt": "Find the Taylor series for $f(x)=\\frac{ x }{ (2+x)^3 }$, centered at $x=-1$. Write out the sum of the first four non-zero terms, followed by dots.",
      "response": "This is the final answer to the problem: $x\\cdot\\left(1-3\\cdot(x+1)+6\\cdot(x+1)^2-10\\cdot(x+1)^3+\\cdots\\right)$=\r\n= $-1 + 4 (x + 1) - 9 (x + 1)^2 + 16 (x + 1)^3$\r\n",
      "system": ""
    },
    {
      "prompt": "Write the Taylor series for the function $f(x)=x \\cdot \\cos(2 \\cdot x)$ at the point $x=\\frac{ \\pi }{ 2 }$ up to the third term (zero or non-zero).",
      "response": "This is the final answer to the problem: $-\\frac{\\pi}{2}-\\left(x-\\frac{\\pi}{2}\\right)+\\pi\\cdot\\left(x-\\frac{\\pi}{2}\\right)^2$",
      "system": ""
    },
    {
      "prompt": "Find the moment of inertia of an isosceles triangle $I_{x}$ relative to its hypotenuse, if at each of its points the surface density is proportional to its distance to the hypotenuse.",
      "response": "$I_{x}$ = $\\frac{k}{10}\\cdot a^5$",
      "system": ""
    },
    {
      "prompt": "Find the derivative of the function $y=\\arcsin\\left(\\frac{ 2 \\cdot x }{ 1+x^2 }\\right)$.",
      "response": "$y'$=$\\frac{2\\cdot\\left(1-x^2\\right)}{\\left|1-x^2\\right|\\cdot\\left(1+x^2\\right)}$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier expansion of this function: $f(x)=x^2$ at $(-\\pi,\\pi)$.",
      "response": "The Fourier series is: $f(x)=\\frac{\\pi^2}{3}+4\\cdot\\sum_{n=1}^\\infty\\left(\\frac{(-1)^{n}\\cdot\\cos(n\\cdot x)}{n^2}\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the derivative of the function: $y=-4 \\cdot x^{\\sqrt{5 \\cdot x}}$.",
      "response": "$\\frac{ d y }{d x}$ =$-\\left(\\frac{4\\cdot\\sqrt{5}}{\\sqrt{x}}+\\frac{2\\cdot\\sqrt{5}\\cdot\\ln(x)}{\\sqrt{x}}\\right)\\cdot x^{\\sqrt{5}\\cdot\\sqrt{x}}$",
      "system": ""
    },
    {
      "prompt": "Write the Taylor series for the function $f(x)=x \\cdot \\sin(2 \\cdot x)$ at the point $x=\\pi$ up to the third term (zero or non-zero).",
      "response": "This is the final answer to the problem: $0+2\\cdot\\pi\\cdot(x-\\pi)+\\frac{4}{2}\\cdot(x-\\pi)^2$",
      "system": ""
    },
    {
      "prompt": "Find the arc length of the curve $x=\\frac{ 5 \\cdot y^2 }{ 6 }-\\frac{ \\ln(5 \\cdot y) }{ 2 }$ enclosed between  $y=3$ and $y=5$.",
      "response": "Arc Length: $-\\frac{\\operatorname{arsinh}\\left(\\frac{200y^{2} - 24}{12 \\sqrt{21}}\\right)}{10} + \\frac{\\sqrt{100y^{4} - 24y^{2} + 9}}{12} - \\frac{\\operatorname{arsinh}\\left(\\frac{3}{2 \\sqrt{21} \\, y^{2}} - \\frac{2}{\\sqrt{21}}\\right)}{4} \\approx \\boxed{13.23342845}$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=3 \\cdot x^2-x^4-2$.  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes  (Leave blank if there are no vertical asymptotes)\n3. Horizontal asymptotes  (Leave blank if there are no horizontal asymptotes)\n4. Slant asymptotes  (Leave blank if there are no slant asymptotes)\n5. Intervals where the function is increasing  (Leave blank if there are no such intervals)\n6. Intervals where the function is decreasing  (Leave blank if there are no such intervals)\n7. Intervals where the function is concave up  (Leave blank if there are no such intervals)\n8. Intervals where the function is concave down  (Leave blank if there are no such intervals)\n9. Points of inflection  (Leave blank if there are no points of inflection)",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $(-1\\cdot\\infty,\\infty)$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(0,\\frac{\\sqrt{3}}{\\sqrt{2}}\\right), \\left(-\\infty,-\\frac{\\sqrt{3}}{\\sqrt{2}}\\right)$\n6. Intervals where the function is decreasing: $\\left(-\\frac{\\sqrt{3}}{\\sqrt{2}},0\\right), \\left(\\frac{\\sqrt{3}}{\\sqrt{2}},\\infty\\right)$\n7. Intervals where the function is concave up: $\\left(-\\frac{1}{\\sqrt{2}},\\frac{1}{\\sqrt{2}}\\right)$\n8. Intervals where the function is concave down: $\\left(-\\infty,-\\frac{1}{\\sqrt{2}}\\right), \\left(\\frac{1}{\\sqrt{2}},\\infty\\right)$\n9. Points of inflection: $P\\left(-\\frac{1}{\\sqrt{2}},-\\frac{3}{4}\\right), P\\left(\\frac{1}{\\sqrt{2}},-\\frac{3}{4}\\right)$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=3 \\cdot x^2-x^4-2$.  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes  (Leave blank if there are no vertical asymptotes)\n3. Horizontal asymptotes  (Leave blank if there are no horizontal asymptotes)\n4. Slant asymptotes  (Leave blank if there are no slant asymptotes)\n5. Intervals where the function is increasing  (Leave blank if there are no such intervals)\n6. Intervals where the function is decreasing  (Leave blank if there are no such intervals)\n7. Intervals where the function is concave up  (Leave blank if there are no such intervals)\n8. Intervals where the function is concave down  (Leave blank if there are no such intervals)\n9. Points of inflection  (Leave blank if there are no points of inflection)",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $(-1\\cdot\\infty,\\infty)$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(0,\\frac{\\sqrt{3}}{\\sqrt{2}}\\right), \\left(-\\infty,-\\frac{\\sqrt{3}}{\\sqrt{2}}\\right)$\n6. Intervals where the function is decreasing: $\\left(-\\frac{\\sqrt{3}}{\\sqrt{2}},0\\right), \\left(\\frac{\\sqrt{3}}{\\sqrt{2}},\\infty\\right)$\n7. Intervals where the function is concave up: $\\left(-\\frac{1}{\\sqrt{2}},\\frac{1}{\\sqrt{2}}\\right)$\n8. Intervals where the function is concave down: $\\left(-\\infty,-\\frac{1}{\\sqrt{2}}\\right), \\left(\\frac{1}{\\sqrt{2}},\\infty\\right)$\n9. Points of inflection: $P\\left(-\\frac{1}{\\sqrt{2}},-\\frac{3}{4}\\right), P\\left(\\frac{1}{\\sqrt{2}},-\\frac{3}{4}\\right)$",
      "system": ""
    },
    {
      "prompt": "Find a “reasonable” upper-bound on the error in approximating $f(x)=x \\cdot \\ln(x)$ by its 3rd order Taylor polynomial $P_{3}(x)$ at $a=1$ valid for all values of $x$ such that $|x-1| \\le 0.7$.",
      "response": "This is the final answer to the problem: $\\frac{2}{(0.3)^3}\\cdot\\frac{(0.7)^4}{4!}$",
      "system": ""
    },
    {
      "prompt": "Let $R$ be the region in the first quadrant enclosed by the graph of $g(x)=\\frac{ 12 }{ 1+x^2 }-2$.\n\n1. Write, but do not evaluate, an integral expression that gives the volume of the solid generated when $R$ is revolved about the $x$-axis.\n2. Write, but do not evaluate, an integral expression that gives the volume of the solid generated when $R$ is revolved about the $y$-axis.",
      "response": "1. $\\int_0^{2.236}\\left(\\pi\\cdot\\left(\\frac{12}{1+x^2}-2\\right)^2\\right)dx$\n2. $\\int_0^{10}\\left(\\pi\\cdot\\left(\\frac{12}{y+2}-1\\right)\\right)dy$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ x^3 }{ \\sqrt{4 \\cdot x^2+4 \\cdot x+5} } d x}$.",
      "response": "$\\int{\\frac{ x^3 }{ \\sqrt{4 \\cdot x^2+4 \\cdot x+5} } d x}$ =$\\left(\\frac{1}{12}\\cdot x^2-\\frac{5}{48}\\cdot x-\\frac{5}{96}\\right)\\cdot\\sqrt{4\\cdot x^2+4\\cdot x+5}+\\frac{5}{16}\\cdot\\ln\\left(x+\\frac{1}{2}+\\sqrt{1+\\left(x+\\frac{1}{2}\\right)^2}\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=2 \\cdot x \\cdot \\sqrt{3-x^2}$.  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $\\left[-1\\cdot3^{2^{-1}},3^{2^{-1}}\\right]$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $\\left(-\\sqrt{\\frac{3}{2}},\\sqrt{\\frac{3}{2}}\\right)$\n6. Intervals where the function is decreasing: $\\left(\\sqrt{\\frac{3}{2}},3^{2^{-1}}\\right), \\left(-3^{2^{-1}},-\\sqrt{\\frac{3}{2}}\\right)$\n7. Intervals where the function is concave up: $\\left(-3^{2^{-1}},0\\right)$\n8. Intervals where the function is concave down: $\\left(0,3^{2^{-1}}\\right)$\n9. Points of inflection: $P(0,0)$",
      "system": ""
    },
    {
      "prompt": "Find the antiderivative of $-\\frac{ 1 }{ x \\cdot \\sqrt{1-x^2} }$.",
      "response": "$\\int{-\\frac{ 1 }{ x \\cdot \\sqrt{1-x^2} } d x}$ =$C+\\ln\\left(\\frac{1+\\sqrt{1-x^2}}{|x|}\\right)$",
      "system": ""
    },
    {
      "prompt": "For the curve $x=a\\left(t-\\sin(t)\\right)$, $y=a\\left(1-\\cos(t)\\right)$ determine the curvature. Use $a=10$.",
      "response": "The curvature is:$\\frac{1}{40\\cdot\\left|\\sin\\left(\\frac{t}{2}\\right)\\right|}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ x }{ \\left(x^2-4 \\cdot x+8\\right)^2 } d x}$.",
      "response": "$\\int{\\frac{ x }{ \\left(x^2-4 \\cdot x+8\\right)^2 } d x}$ =$C+\\frac{x-2}{2\\cdot\\left(8+2\\cdot(x-2)^2\\right)}+\\frac{1}{8}\\cdot\\arctan\\left(\\frac{1}{2}\\cdot(x-2)\\right)-\\frac{1}{2\\cdot\\left(x^2-4\\cdot x+8\\right)}$",
      "system": ""
    },
    {
      "prompt": "On a cylinder 6 cm in diameter, a channel is cut out along the surface, having an equilateral triangle with a side of 1.5 cm in cross section. Compute the volume of the cut out material.",
      "response": "$V$ =$\\frac{108\\cdot\\sqrt{3}-27}{32}\\cdot\\pi$",
      "system": ""
    },
    {
      "prompt": "Determine the Taylor series for $y=\\left(\\sin(x)\\right)^2$, centered at $x_{0}=\\frac{ \\pi }{ 2 }$. Write out the sum of the first three non-zero terms, followed by dots.",
      "response": "This is the final answer to the problem: $1-\\frac{2}{2!}\\cdot\\left(x-\\frac{\\pi}{2}\\right)^2+\\frac{2^3}{4!}\\cdot\\left(x-\\frac{\\pi}{2}\\right)^4+\\cdots$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ \\sin(x)^4 }{ \\cos(x) } d x}$.",
      "response": "$\\int{\\frac{ \\sin(x)^4 }{ \\cos(x) } d x}$ =$C-\\frac{1}{2}\\cdot\\ln\\left(\\left|\\frac{1-\\sin(x)}{1+\\sin(x)}\\right|\\right)-\\frac{1}{3}\\cdot\\left(\\sin(x)\\right)^3-\\sin(x)$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series of the function $f(x)=\\frac{ -1 }{ 2 } \\cdot x$ in the interval $[-2,2]$.",
      "response": "The Fourier series is: $\\sum_{n=1}^\\infty\\left(\\frac{2\\cdot(-1)^n}{\\pi\\cdot n}\\cdot\\sin\\left(\\frac{\\pi\\cdot n\\cdot x}{2}\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\left(2 \\cdot x^2+4 \\cdot x+5\\right) \\cdot \\sin(2 \\cdot x) d x}$.",
      "response": "$\\int{\\left(2 \\cdot x^2+4 \\cdot x+5\\right) \\cdot \\sin(2 \\cdot x) d x}$ =$C+x\\cdot\\sin(2\\cdot x)+\\frac{1}{2}\\cdot\\cos(2\\cdot x)+\\sin(2\\cdot x)-\\frac{1}{2}\\cdot\\left(2\\cdot x^2+4\\cdot x+5\\right)\\cdot\\cos(2\\cdot x)$",
      "system": ""
    },
    {
      "prompt": "Find $\\frac{ d y }{d x}$, given $y=\\tan(2 \\cdot v)$ and $v=\\arctan(2 \\cdot x-1)$.",
      "response": "This is the final answer to the problem: $\\frac{dy}{dx}=\\frac{2\\cdot x^2-2\\cdot x+1}{2\\cdot\\left(x-x^2\\right)^2}$",
      "system": ""
    },
    {
      "prompt": "A sky diver jumps from a reasonable height above the ground. The air resistance she experiences is proportional to her velocity, and the constant of proportionality is $0.24$. It can be shown that the downward velocity of the sky diver at time $t$ is given by\n\n$v(t)=180 \\cdot \\left(1-e^{-0.24 \\cdot t}\\right)$  \n\nwhere $t$ is measured in seconds and $v(t)$ is measured in feet per second\n\n\n\n1. Find the initial velocity of the sky diver\n\n2. Find the velocity after $4$ seconds (round your answer to one decimal place)\n\n3. The maximum velocity of a falling object with wind resistance is called its terminal velocity. Find the terminal velocity of this sky diver. (round your answer to the nearest whole number)",
      "response": "1. $0$\n2. $111.1$\n3. $180$",
      "system": ""
    },
    {
      "prompt": "Find the derivative of $y=x \\cdot \\sin(x)+2 \\cdot x \\cdot \\cos(x)-2 \\cdot \\sin(x)+\\ln\\left(\\sin(x)\\right)+c^2$.",
      "response": "This is the final answer to the problem: $y'=\\frac{\\left(\\sin(x)\\right)^2+x\\cdot\\sin(x)\\cdot\\cos(x)-2\\cdot x\\cdot\\left(\\sin(x)\\right)^2+\\cos(x)}{\\sin(x)}$",
      "system": ""
    },
    {
      "prompt": "Differentiate $\\sqrt{x \\cdot y}-x=y^5$.",
      "response": "This is the final answer to the problem: $\\frac{dy}{dx}=\\frac{2\\cdot x^{\\frac{1}{2}}\\cdot y^{\\frac{1}{2}}-y}{x-10\\cdot x^{\\frac{1}{2}}\\cdot y^{\\frac{9}{2}}}$",
      "system": ""
    },
    {
      "prompt": "Let $Q$ be the region bounded by the graph of $x=\\frac{ 2 }{ 1-y }$, the line $x=-1$, and the line $y=\\frac{ 5 }{ 4 }$.\n\nWrite, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when $Q$ is revolved about the line $x=-1$.",
      "response": "$V$ = $\\int_{\\frac{5}{4}}^3\\left(\\pi\\cdot\\left(\\frac{2}{1-y}+1\\right)^2\\right)dy$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series of the function $\\psi(x)=2 \\cdot e^{-2 \\cdot x}$ in the interval $(-\\pi,\\pi)$.",
      "response": "The Fourier series is: $2\\cdot e^{-2\\cdot x}=\\frac{\\left(e^{2\\cdot\\pi}-e^{-2\\cdot\\pi}\\right)}{\\pi}\\cdot\\left(\\frac{1}{2}+\\sum_{n=1}^\\infty\\left(\\frac{2\\cdot(-1)^n\\cdot\\left(2\\cdot\\cos(n\\cdot x)+n\\cdot\\sin(n\\cdot x)\\right)}{4+n^2}\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Evaluate $\\int\\int\\int_{E}{\\left(x^3+y^3+z^3\\right) d V}$, where  $E$=$\\left\\{(x,y,z)|0 \\le x \\le 2,0 \\le y \\le 2 \\cdot x,0 \\le z \\le 4-x-y\\right\\}$.",
      "response": "$I$  =  $\\frac{112}{5}$",
      "system": ""
    },
    {
      "prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of function $\\sqrt{x^2+2}$ with the center $a=0$.",
      "response": "$\\sqrt{x^2+2}$ =$\\sum_{n=0}^\\infty\\left(2^{\\frac{1}{2}-n}\\cdot C_{\\frac{1}{2}}^n\\cdot x^{2\\cdot n}\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ -12 }{ \\sin(6 \\cdot x)^6 } d x}$.",
      "response": "$\\int{\\frac{ -12 }{ \\sin(6 \\cdot x)^6 } d x}$ =$C+2\\cdot\\cot(6\\cdot x)+\\frac{2}{5}\\cdot\\left(\\cot(6\\cdot x)\\right)^5+\\frac{4}{3}\\cdot\\left(\\cot(6\\cdot x)\\right)^3$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series expansion of the function $f(x)=\\begin{cases} -x, & -\\pi<x \\le 0 \\\\ \\frac{ x^2 }{ \\pi }, & 0<x \\le \\pi \\end{cases}$ with the period $2 \\cdot \\pi$ at interval $[-\\pi,\\pi]$.",
      "response": "The Fourier series is: $f(x)=\\frac{5\\cdot\\pi}{12}+\\sum_{n=1}^\\infty\\left(\\frac{(-1)^n\\cdot3-1}{\\pi\\cdot n^2}\\cdot\\cos(n\\cdot x)+\\left(\\frac{2}{\\pi^2\\cdot n^3}\\cdot\\left((-1)^n-1\\right)\\right)\\cdot\\sin(n\\cdot x)\\right)$",
      "system": ""
    },
    {
      "prompt": "Consider the differential equation $\\frac{ d y }{d x}=e^y \\cdot (5 \\cdot x-1)$. Find $y=g(x)$, the particular solution to the differential equation for $-0.819 \\le x \\le 1.219$ that passes through the point $P(1,0)$.",
      "response": "$y$ = $-\\ln\\left(-\\frac{5}{2}\\cdot x^2+x+\\frac{5}{2}\\right)$",
      "system": ""
    },
    {
      "prompt": "Given $g(x)=\\frac{ 1 }{ 3 } \\cdot (a+b) \\cdot x^3+\\frac{ 1 }{ 2 } \\cdot (a+b+c) \\cdot x^2-(a+b+c+d) \\cdot x+a \\cdot b \\cdot c \\cdot d$, simplify the derivative of $g(x)$ if $x^2+x=a+b$.",
      "response": "This is the final answer to the problem: $g'(x)=(a+b)^2+c\\cdot x-(a+b+c+d)$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\frac{ 20 \\cdot \\cos(-10 \\cdot x)^3 }{ 21 \\cdot \\sin(-10 \\cdot x)^7 } d x}$.",
      "response": "$\\int{\\frac{ 20 \\cdot \\cos(-10 \\cdot x)^3 }{ 21 \\cdot \\sin(-10 \\cdot x)^7 } d x}$ =$C+\\frac{1}{21}\\cdot\\left(\\frac{1}{2}\\cdot\\left(\\cot(10\\cdot x)\\right)^4+\\frac{1}{3}\\cdot\\left(\\cot(10\\cdot x)\\right)^6\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the centers of symmetry of the curve of $f(x)=\\left(\\sin(x)\\right)^2$.",
      "response": "This is the final answer to the problem: $\\left(k\\cdot\\pi+\\frac{\\pi}{4},\\frac{1}{2}\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the centers of symmetry of the curve of $f(x)=\\left(\\sin(x)\\right)^2$.",
      "response": "This is the final answer to the problem: $\\left(k\\cdot\\pi+\\frac{\\pi}{4},\\frac{1}{2}\\right)$",
      "system": ""
    },
    {
      "prompt": "Evaluate the integral: $I=\\int{3 \\cdot x \\cdot \\ln\\left(4+\\frac{ 1 }{ x }\\right) d x}$.",
      "response": "This is the final answer to the problem: $\\left(\\frac{3}{2}\\cdot x^2\\cdot\\ln(4\\cdot x+1)-\\frac{3\\cdot x^2}{4}+\\frac{3\\cdot x}{8}-\\frac{3}{32}\\cdot\\ln\\left(x+\\frac{1}{4}\\right)\\right)-\\left(\\frac{3}{2}\\cdot x^2\\cdot\\ln(x)-\\left(C+\\frac{3}{4}\\cdot x^2\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Use the substitution $(b+x)^r=(b+a)^r \\cdot \\left(1+\\frac{ x-a }{ b+a }\\right)^r$ in the binomial expansion to find the Taylor series of function $\\sqrt{x+2}$ with the center $a=0$.",
      "response": "$\\sqrt{x+2}$ =$\\sum_{n=0}^\\infty\\left(2^{\\frac{1}{2}-n}\\cdot C_{\\frac{1}{2}}^n\\cdot x^n\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ -1 }{ 3 \\cdot \\sin\\left(\\frac{ x }{ 3 }\\right)^6 } d x}$.",
      "response": "$\\int{\\frac{ -1 }{ 3 \\cdot \\sin\\left(\\frac{ x }{ 3 }\\right)^6 } d x}$ =$\\frac{\\cos\\left(\\frac{x}{3}\\right)}{5\\cdot\\sin\\left(\\frac{x}{3}\\right)^5}-\\frac{4}{15}\\cdot\\left(-\\frac{\\cos\\left(\\frac{x}{3}\\right)}{\\sin\\left(\\frac{x}{3}\\right)^3}-2\\cdot\\cot\\left(\\frac{x}{3}\\right)\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ -1 }{ 3 \\cdot \\sin\\left(\\frac{ x }{ 3 }\\right)^6 } d x}$.",
      "response": "$\\int{\\frac{ -1 }{ 3 \\cdot \\sin\\left(\\frac{ x }{ 3 }\\right)^6 } d x}$ =$\\frac{\\cos\\left(\\frac{x}{3}\\right)}{5\\cdot\\sin\\left(\\frac{x}{3}\\right)^5}-\\frac{4}{15}\\cdot\\left(-\\frac{\\cos\\left(\\frac{x}{3}\\right)}{\\sin\\left(\\frac{x}{3}\\right)^3}-2\\cdot\\cot\\left(\\frac{x}{3}\\right)\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Find the first derivative $y_{x}'$ of the function: $x=\\arcsin\\left(\\frac{ t }{ \\sqrt{2+2 \\cdot t^2} }\\right)$, $y=\\arccos\\left(\\frac{ 1 }{ \\sqrt{2+2 \\cdot t^2} }\\right)$, $t \\ge 0$.",
      "response": "$y_{x}'$ =$\\frac{t\\cdot\\sqrt{t^2+2}}{\\sqrt{2\\cdot t^2+1}}$",
      "system": ""
    },
    {
      "prompt": "Find the first derivative $y_{x}'$ of the function: $x=\\arcsin\\left(\\frac{ t }{ \\sqrt{2+2 \\cdot t^2} }\\right)$, $y=\\arccos\\left(\\frac{ 1 }{ \\sqrt{2+2 \\cdot t^2} }\\right)$, $t \\ge 0$.",
      "response": "$y_{x}'$ =$\\frac{t\\cdot\\sqrt{t^2+2}}{\\sqrt{2\\cdot t^2+1}}$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series of the periodic function $f(x)=x^2$ in the interval $-\\pi \\le x<\\pi$  if $f(x)=f(x+2 \\cdot \\pi)$.",
      "response": "The Fourier series is: $x^2=\\frac{\\pi^2}{3}-4\\cdot\\left(\\frac{\\cos(x)}{1^2}-\\frac{\\cos(2\\cdot x)}{2^2}+\\frac{\\cos(3\\cdot x)}{3^2}-\\cdots\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the integral $\\int{\\frac{ 1 }{ \\sqrt[3]{\\left(\\sin(x)\\right)^{11} \\cdot \\cos(x)} } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ \\sqrt[3]{\\left(\\sin(x)\\right)^{11} \\cdot \\cos(x)} } d x}$ =$-\\frac{3\\cdot\\left(1+4\\cdot\\left(\\tan(x)\\right)^2\\right)}{8\\cdot\\left(\\tan(x)\\right)^2\\cdot\\sqrt[3]{\\left(\\tan(x)\\right)^2}}+C$",
      "system": ""
    },
    {
      "prompt": "Find the tangential and normal components of acceleration for $\\vec{r}(t)=\\left\\langle a \\cdot \\cos\\left(\\omega \\cdot t\\right),b \\cdot \\sin\\left(\\omega \\cdot t\\right) \\right\\rangle$ at $t=0$ with positive coefficients.",
      "response": "This is the final answer to the problem:\n\n$a_{t}$: $0$  \n\n$a_{N}$: $\\omega^2\\cdot|a|$",
      "system": ""
    },
    {
      "prompt": "Find $\\frac{ d y }{d x}$ if $y=\\frac{ 5 \\cdot x^2-3 \\cdot x }{ \\left(3 \\cdot x^7+2 \\cdot x^6\\right)^4 }$.",
      "response": "$\\frac{ d y }{d x}$ = $\\frac{-390\\cdot x^2+23\\cdot x+138}{x^{24}\\cdot(3\\cdot x+2)^5}$",
      "system": ""
    },
    {
      "prompt": "Evaluate the integral by choosing the order of integration: $\\int_{0}^1{\\int_{1}^2{\\left(\\frac{ x }{ x^2+y^2 }\\right) d y} d x}$.",
      "response": "$\\int_{0}^1{\\int_{1}^2{\\left(\\frac{ x }{ x^2+y^2 }\\right) d y} d x}$ =$\\frac{2\\cdot\\pi+8\\cdot\\ln\\left(\\frac{5}{4}\\right)-4\\cdot\\ln(2)-8\\cdot\\arctan\\left(\\frac{1}{2}\\right)}{8}$",
      "system": ""
    },
    {
      "prompt": "Evaluate the integral by choosing the order of integration: $\\int_{0}^1{\\int_{1}^2{\\left(\\frac{ x }{ x^2+y^2 }\\right) d y} d x}$.",
      "response": "$\\int_{0}^1{\\int_{1}^2{\\left(\\frac{ x }{ x^2+y^2 }\\right) d y} d x}$ =$\\frac{2\\cdot\\pi+8\\cdot\\ln\\left(\\frac{5}{4}\\right)-4\\cdot\\ln(2)-8\\cdot\\arctan\\left(\\frac{1}{2}\\right)}{8}$",
      "system": ""
    },
    {
      "prompt": "Determine a definite integral that represents the region  enclosed by the inner loop of $r=3-4 \\cdot \\cos\\left(\\theta\\right)$ .",
      "response": "This is the final answer to the problem:$\\int_0^{\\arccos\\left(\\frac{3}{4}\\right)}\\left(3-4\\cdot\\cos\\left(\\theta\\right)\\right)^2d\\theta$",
      "system": ""
    },
    {
      "prompt": "Expand the function:  $y=\\ln\\left(x+\\sqrt{1+x^2}\\right)$  in a power series.",
      "response": "This is the final answer to the problem: $x-\\frac{1}{2}\\cdot\\frac{x^3}{3}+\\frac{1\\cdot3}{4\\cdot2}\\cdot\\frac{x^5}{5}-\\frac{1\\cdot3\\cdot5}{2\\cdot4\\cdot6}\\cdot\\frac{x^7}{7}+\\cdots+\\frac{(2\\cdot n-1)!!}{(2\\cdot n)!!}\\cdot\\frac{x^{2\\cdot n+1}}{2\\cdot n+1}+\\cdots$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ -2 }{ \\left(4+\\sqrt{x}\\right) \\cdot \\sqrt{x-x^2} } d x}$.",
      "response": "$\\int{\\frac{ -2 }{ \\left(4+\\sqrt{x}\\right) \\cdot \\sqrt{x-x^2} } d x}$ = $C-\\frac{8}{\\sqrt{15}}\\cdot\\arctan\\left(\\frac{1}{\\sqrt{15}}\\cdot\\left(1+4\\cdot\\tan\\left(\\frac{1}{2}\\cdot\\arcsin\\left(\\sqrt{x}\\right)\\right)\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ -2 }{ \\left(4+\\sqrt{x}\\right) \\cdot \\sqrt{x-x^2} } d x}$.",
      "response": "$\\int{\\frac{ -2 }{ \\left(4+\\sqrt{x}\\right) \\cdot \\sqrt{x-x^2} } d x}$ = $C-\\frac{8}{\\sqrt{15}}\\cdot\\arctan\\left(\\frac{1}{\\sqrt{15}}\\cdot\\left(1+4\\cdot\\tan\\left(\\frac{1}{2}\\cdot\\arcsin\\left(\\sqrt{x}\\right)\\right)\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Apply the gradient descent algorithm to the function $g(x,y)=\\left(x^2-1\\right) \\cdot \\left(x^2-3 \\cdot x+1\\right)+y^2$ with step size $\\frac{ 1 }{ 5 }$ and initial guess $p_{0}$=$\\left\\langle 0,0 \\right\\rangle$ for three steps (so steps $p_{1}$, $p_{2}$, and $p_{3}$).",
      "response": "| $i$ | $1$ | $2$ | $3$ |\n| --- | --- | --- | --- |\n| $p_{i}$ | $\\left\\langle-\\frac{3}{5},0\\right\\rangle$ | $\\left\\langle-\\frac{237}{625},0\\right\\rangle$ | $\\left\\langle-\\frac{826\\ 113\\ 663}{1\\ 220\\ 703\\ 125},0\\right\\rangle$ |\n| $g\\left(p_{i}\\right)$ | $-\\frac{1264}{625}$ | $-\\frac{99667587}{1220703125}$ |$-\\frac{2760602760604515522296126283436630289590864}{2220446049250313080847263336181640625}$ |",
      "system": ""
    },
    {
      "prompt": "Apply the gradient descent algorithm to the function $g(x,y)=\\left(x^2-1\\right) \\cdot \\left(x^2-3 \\cdot x+1\\right)+y^2$ with step size $\\frac{ 1 }{ 5 }$ and initial guess $p_{0}$=$\\left\\langle 0,0 \\right\\rangle$ for three steps (so steps $p_{1}$, $p_{2}$, and $p_{3}$).",
      "response": "| $i$ | $1$ | $2$ | $3$ |\n| --- | --- | --- | --- |\n| $p_{i}$ | $\\left\\langle-\\frac{3}{5},0\\right\\rangle$ | $\\left\\langle-\\frac{237}{625},0\\right\\rangle$ | $\\left\\langle-\\frac{826\\ 113\\ 663}{1\\ 220\\ 703\\ 125},0\\right\\rangle$ |\n| $g\\left(p_{i}\\right)$ | $-\\frac{1264}{625}$ | $-\\frac{99667587}{1220703125}$ |$-\\frac{2760602760604515522296126283436630289590864}{2220446049250313080847263336181640625}$ |",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ 1 }{ \\sqrt{4 \\cdot x^2+4 \\cdot x+3} } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ \\sqrt{4 \\cdot x^2+4 \\cdot x+3} } d x}$ =$\\frac{1}{2}\\cdot\\ln\\left(\\left|2\\cdot x+1+\\sqrt{4\\cdot x^2+4\\cdot x+3}\\right|\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Evaluate the integral by interchanging the order of integration: $\\int_{1}^{27}{\\int_{1}^2{\\left(\\sqrt[3]{x}+\\sqrt[3]{y}\\right) d y} d x}$.",
      "response": "$\\int_{1}^{27}{\\int_{1}^2{\\left(\\sqrt[3]{x}+\\sqrt[3]{y}\\right) d y} d x}$ =$39\\cdot\\sqrt[3]{2}+\\frac{81}{2}$",
      "system": ""
    },
    {
      "prompt": "Evaluate the integral by interchanging the order of integration: $\\int_{1}^{27}{\\int_{1}^2{\\left(\\sqrt[3]{x}+\\sqrt[3]{y}\\right) d y} d x}$.",
      "response": "$\\int_{1}^{27}{\\int_{1}^2{\\left(\\sqrt[3]{x}+\\sqrt[3]{y}\\right) d y} d x}$ =$39\\cdot\\sqrt[3]{2}+\\frac{81}{2}$",
      "system": ""
    },
    {
      "prompt": "Evaluate the integral by interchanging the order of integration: $\\int_{1}^{27}{\\int_{1}^2{\\left(\\sqrt[3]{x}+\\sqrt[3]{y}\\right) d y} d x}$.",
      "response": "$\\int_{1}^{27}{\\int_{1}^2{\\left(\\sqrt[3]{x}+\\sqrt[3]{y}\\right) d y} d x}$ =$39\\cdot\\sqrt[3]{2}+\\frac{81}{2}$",
      "system": ""
    },
    {
      "prompt": "Calculate the second-order partial derivatives. (Treat $A$,$B$,$C$,$D$ as constants.)\n\n$f(x,y,z)=\\arctan(x \\cdot y \\cdot z)$.",
      "response": "$f_{xx}(x,y,z)$=$\\frac{-2\\cdot x\\cdot y^3\\cdot z^3}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$$f_{xy}(x,y,z)$=$f_{yx}(x,y,z)$=$\\frac{z-x^2\\cdot y^2\\cdot z^3}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$  \n\n$f_{yy}(x,y,z)$=$\\frac{-2\\cdot x^3\\cdot y\\cdot z^3}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$  \n\n$f_{yz}(x,y,z)$=$f_{zy}(x,y,z)$=$\\frac{x-x^3\\cdot y^2\\cdot z^2}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$  \n\n$f_{zz}(x,y,z)$=$\\frac{-2\\cdot x^3\\cdot y^3\\cdot z}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$  \n\n$f_{xz}(x,y,z)$=$f_{zx}(x,y,z)$=$\\frac{y-x^2\\cdot y^3\\cdot z^2}{\\left(1+x^2\\cdot y^2\\cdot z^2\\right)^2}$",
      "system": ""
    },
    {
      "prompt": "Find the area of a triangle bounded by the x-axis, the line $f(x)=12-\\frac{ 1 }{ 3 } \\cdot x$, and the line perpendicular to $f(x)$ that passes through the origin.",
      "response": "The area of the triangle is $\\frac{972}{5}$",
      "system": ""
    },
    {
      "prompt": "Find the area of a triangle bounded by the x-axis, the line $f(x)=12-\\frac{ 1 }{ 3 } \\cdot x$, and the line perpendicular to $f(x)$ that passes through the origin.",
      "response": "The area of the triangle is $\\frac{972}{5}$",
      "system": ""
    },
    {
      "prompt": "Use integration by substitution and/or by parts to compute the integral \n $\\int{x \\cdot \\ln(5+x) d x}$.",
      "response": "This is the final answer to the problem:$D+5\\cdot(x+5)+\\left(\\frac{1}{2}\\cdot(x+5)^2-5\\cdot(x+5)\\right)\\cdot\\ln(x+5)-\\frac{1}{4}\\cdot(x+5)^2$",
      "system": ""
    },
    {
      "prompt": "Find the generalized center of mass between $y=b \\cdot \\sin(a \\cdot x)$, $x=0$, and  $x=\\frac{ \\pi }{ a }$ . Then, use the Pappus theorem to find the volume of the solid generated when revolving around the $y$-axis.",
      "response": "$(x,y)$  =  $P\\left(\\frac{\\pi}{2\\cdot a},\\frac{\\pi\\cdot b}{8}\\right)$  \n\n$V$  =  $\\frac{2\\cdot\\pi^2\\cdot b}{a^2}$",
      "system": ""
    },
    {
      "prompt": "Differentiate the function \n $f(x)=\\frac{ 5 \\cdot x^3-\\sqrt[3]{x}+6 \\cdot x+2 }{ \\sqrt{x} }$.",
      "response": "$\\frac{ d }{d x}\\left(\\frac{ 5 \\cdot x^3-\\sqrt[3]{x}+6 \\cdot x+2 }{ \\sqrt{x} }\\right)$=$\\frac{18\\cdot x\\cdot\\sqrt[6]{x}+75\\cdot x^3\\cdot\\sqrt[6]{x}+\\sqrt{x}-6\\cdot\\sqrt[6]{x}}{6\\cdot x\\cdot x^{\\frac{2}{3}}}$",
      "system": ""
    },
    {
      "prompt": "Calculate the second-order partial derivatives. (Treat $A$,$B$,$C$,$D$ as constants.)\n\n$f(x,y,z)=\\sin\\left(x+z^y\\right)$.",
      "response": "$f_{xx}(x,y,z)$=$-\\sin\\left(x+z^y\\right)$ \n\n$f_{xy}(x,y,z)$=$f_{yx}(x,y,z)$=$-z^y\\cdot\\ln(z)\\cdot\\sin\\left(x+z^y\\right)$  \n\n$f_{yy}(x,y,z)$=$-z^y\\cdot\\left(\\ln(z)\\right)^2\\cdot\\left(-\\cos\\left(x+z^y\\right)+z^y\\cdot\\sin\\left(x+z^y\\right)\\right)$  \n\n$f_{yz}(x,y,z)$=$f_{zy}(x,y,z)$=$z^{-1+y}\\cdot\\left(\\cos\\left(x+z^y\\right)\\cdot\\left(1+y\\cdot\\ln(z)\\right)-y\\cdot z^y\\cdot\\ln(z)\\cdot\\sin\\left(x+z^y\\right)\\right)$  \n\n$f_{zz}(x,y,z)$=$y\\cdot z^{-2+y}\\cdot\\left((-1+y)\\cdot\\cos\\left(x+z^y\\right)-y\\cdot z^y\\cdot\\sin\\left(x+z^y\\right)\\right)$  \n\n$f_{xz}(x,y,z)$=$f_{zx}(x,y,z)$=$-y\\cdot z^{-1+y}\\cdot\\sin\\left(x+z^y\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the extrema of a function $y=\\frac{ x^4 }{ 4 }-\\frac{ 2 \\cdot x^3 }{ 3 }-\\frac{ x^2 }{ 2 }+2$. Then determine the largest and smallest value of the function when $-2 \\le x \\le 4$.",
      "response": "This is the final answer to the problem: \n\n1. Extrema points: $P\\left(\\frac{2-2\\cdot\\sqrt{2}}{2},1.969\\right), P(0,2), P\\left(\\frac{2+2\\cdot\\sqrt{2}}{2},-1.8023\\right)$\n2. The largest value: $\\frac{46}{3}$\n3. The smallest value: $-1.8023$",
      "system": ""
    }
  ]
}