File size: 46,247 Bytes
1572520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
{
  "dataset_name": "Mu-Math",
  "group_index": 9,
  "source_file": "/hkfs/work/workspace/scratch/tum_fmp0582-dndworkspace/自己训练lora/prepare/data/math/Mu-Math.json",
  "selected_indices": [
    12,
    17,
    19,
    28,
    41,
    43,
    55,
    64,
    65,
    70,
    72,
    75,
    80,
    85,
    98,
    106,
    113,
    129,
    130,
    133,
    141,
    142,
    150,
    159,
    163,
    170,
    184,
    212,
    228,
    230,
    238,
    256,
    281,
    288,
    296,
    307,
    359,
    391,
    407,
    420,
    424,
    452,
    462,
    484,
    493,
    508,
    515,
    539,
    553,
    566,
    569,
    572,
    597,
    599,
    605,
    622,
    635,
    646,
    651,
    658,
    666,
    681,
    688,
    693,
    714,
    723,
    726,
    742,
    757,
    759,
    766,
    783,
    785,
    818,
    821,
    851,
    874,
    881,
    888,
    905,
    911,
    915,
    924,
    925,
    937,
    947,
    955,
    957,
    963,
    973,
    1004,
    1011,
    1019,
    1027,
    1044,
    1049,
    1054,
    1072,
    1074,
    1079
  ],
  "total_records": 1084,
  "sample_count": 100,
  "generated_at": "2025-11-05T12:58:28Z",
  "seed": 4171135963,
  "samples": [
    {
      "prompt": "Compute the integral: $\\int{\\frac{ 2 \\cdot x^3 }{ \\sqrt{x^2+16} } d x}$.",
      "response": "$\\int{\\frac{ 2 \\cdot x^3 }{ \\sqrt{x^2+16} } d x}$ =$C+128\\cdot\\left(\\frac{1}{3\\cdot\\left(\\cos\\left(\\arctan\\left(\\frac{x}{4}\\right)\\right)\\right)^3}-\\frac{1}{\\cos\\left(\\arctan\\left(\\frac{x}{4}\\right)\\right)}\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the derivative of the function $y=\\sqrt{\\frac{ x^5 \\cdot \\left(2 \\cdot x^6+3\\right) }{ \\sqrt[3]{1-2 \\cdot x} }}$ by taking the natural log of both sides of the equation.",
      "response": "Derivative: $y'=\\frac{-128\\cdot x^7+66\\cdot x^6-84\\cdot x+45}{-24\\cdot x^8+12\\cdot x^7-36\\cdot x^2+18\\cdot x}\\cdot\\sqrt{\\frac{x^5\\cdot\\left(2\\cdot x^6+3\\right)}{\\sqrt[3]{1-2\\cdot x}}}$",
      "system": ""
    },
    {
      "prompt": "Compute the derivative of the function $y=\\sqrt{\\frac{ x^5 \\cdot \\left(2 \\cdot x^6+3\\right) }{ \\sqrt[3]{1-2 \\cdot x} }}$ by taking the natural log of both sides of the equation.",
      "response": "Derivative: $y'=\\frac{-128\\cdot x^7+66\\cdot x^6-84\\cdot x+45}{-24\\cdot x^8+12\\cdot x^7-36\\cdot x^2+18\\cdot x}\\cdot\\sqrt{\\frac{x^5\\cdot\\left(2\\cdot x^6+3\\right)}{\\sqrt[3]{1-2\\cdot x}}}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $-2 \\cdot \\int{x^{-4} \\cdot \\left(4+x^2\\right)^{\\frac{ 1 }{ 2 }} d x}$.",
      "response": "$-2 \\cdot \\int{x^{-4} \\cdot \\left(4+x^2\\right)^{\\frac{ 1 }{ 2 }} d x}$ =$C+\\frac{1}{6}\\cdot\\left(\\frac{4}{x^2}+1\\right)\\cdot\\sqrt{\\frac{4}{x^2}+1}$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\left(\\frac{ x+4 }{ x-4 }\\right)^{\\frac{ 3 }{ 2 }} d x}$.",
      "response": "$\\int{\\left(\\frac{ x+4 }{ x-4 }\\right)^{\\frac{ 3 }{ 2 }} d x}$ =$C+\\sqrt{\\frac{x+4}{x-4}}\\cdot(x-20)-12\\cdot\\ln\\left(\\left|\\frac{\\sqrt{x-4}-\\sqrt{x+4}}{\\sqrt{x-4}+\\sqrt{x+4}}\\right|\\right)$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\left(\\frac{ x+4 }{ x-4 }\\right)^{\\frac{ 3 }{ 2 }} d x}$.",
      "response": "$\\int{\\left(\\frac{ x+4 }{ x-4 }\\right)^{\\frac{ 3 }{ 2 }} d x}$ =$C+\\sqrt{\\frac{x+4}{x-4}}\\cdot(x-20)-12\\cdot\\ln\\left(\\left|\\frac{\\sqrt{x-4}-\\sqrt{x+4}}{\\sqrt{x-4}+\\sqrt{x+4}}\\right|\\right)$",
      "system": ""
    },
    {
      "prompt": "Solve $3 \\cdot \\sin(x)+4 \\cdot \\cos(x)=5$.",
      "response": "This is the final answer to the problem: $x=-\\arcsin\\left(\\frac{4}{5}\\right)+\\frac{\\pi}{2}+2\\cdot\\pi\\cdot n$  ",
      "system": ""
    },
    {
      "prompt": "Solve the following equations: 1. $13 x+6=6$ 2. $\\frac{ x }{ -4 }+11=5$ 3. $-4.5 x+12.3=-23.7$ 4. $\\frac{ x }{ 5 }+4=4.3$ 5. $-\\frac{ x }{ 3 }+(-7.2)=-2.1$ 6. $5.4 x-8.3=14.38$ 7. $\\frac{ x }{ 3 }-14=-8$",
      "response": "The solutions to the given equations are: 1. $x=0$\n2. $x=24$\n3. $x=8$\n4. $x=\\frac{ 3 }{ 2 }$\n5. $x=\\frac{ -153 }{ 10 }$\n6. $x=\\frac{ 21 }{ 5 }$\n7. $x=18$",
      "system": ""
    },
    {
      "prompt": "Solve the following equations: 1. $13 x+6=6$ 2. $\\frac{ x }{ -4 }+11=5$ 3. $-4.5 x+12.3=-23.7$ 4. $\\frac{ x }{ 5 }+4=4.3$ 5. $-\\frac{ x }{ 3 }+(-7.2)=-2.1$ 6. $5.4 x-8.3=14.38$ 7. $\\frac{ x }{ 3 }-14=-8$",
      "response": "The solutions to the given equations are: 1. $x=0$\n2. $x=24$\n3. $x=8$\n4. $x=\\frac{ 3 }{ 2 }$\n5. $x=\\frac{ -153 }{ 10 }$\n6. $x=\\frac{ 21 }{ 5 }$\n7. $x=18$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=\\sqrt{\\frac{ 27-x^3 }{ 2 \\cdot x }}$.  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $(0,3]$\n2. Vertical asymptotes: $x=0$\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: None\n6. Intervals where the function is decreasing: $(0,3]$\n7. Intervals where the function is concave up: $\\left(0,\\frac{3}{\\sqrt[3]{4}}\\right)$\n8. Intervals where the function is concave down: $\\left(\\frac{3}{\\sqrt[3]{4}},3\\right)$\n9. Points of inflection: $P\\left(\\frac{3}{\\sqrt[3]{4}},2.3146\\right)$",
      "system": ""
    },
    {
      "prompt": "Determine the equation of the hyperbola using the information given: Endpoints of the conjugate axis located at $(3,2)$, $(3,4)$ and focus located at $(7,3)$.",
      "response": "The equation is: $\\frac{(x-3)^2}{15}-\\frac{(y-3)^2}{1}=1$",
      "system": ""
    },
    {
      "prompt": "Determine the equation of the hyperbola using the information given: Endpoints of the conjugate axis located at $(3,2)$, $(3,4)$ and focus located at $(7,3)$.",
      "response": "The equation is: $\\frac{(x-3)^2}{15}-\\frac{(y-3)^2}{1}=1$",
      "system": ""
    },
    {
      "prompt": "Find the radius of convergence and sum of the series:  $\\frac{ 1 }{ 2 }+\\frac{ x }{ 1 \\cdot 3 }+\\frac{ x^2 }{ 1 \\cdot 2 \\cdot 4 }+\\cdots+\\frac{ x^n }{ \\left(n!\\right) \\cdot (n+2) }+\\cdots$ .",
      "response": "This is the final answer to the problem: 1. Radius of convergence:$R=\\infty$\n2. Sum: $f(x)=\\begin{cases}\\frac{1}{x^2}+\\frac{x\\cdot e^x-e^x}{x^2},&x\\ne0\\\\\\frac{1}{2},&x=0\\end{cases}$",
      "system": ""
    },
    {
      "prompt": "Compute the derivative of the function $y=\\arcsin\\left(\\sqrt{1-9 \\cdot x^2}\\right)$.",
      "response": "$y'$= $-\\frac{3\\cdot x}{\\sqrt{1-9\\cdot x^2}\\cdot|x|}$",
      "system": ""
    },
    {
      "prompt": "Determine a definite integral that represents the region enclosed by one petal of $r=\\cos\\left(3 \\cdot \\theta\\right)$ .",
      "response": "This is the final answer to the problem:$\\int_0^{\\frac{\\pi}{6}}\\cos\\left(3\\cdot\\theta\\right)^2d\\theta$ = $\\frac{\\pi}{12}$  ",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\frac{ -9 \\cdot \\sqrt[3]{x} }{ 9 \\cdot \\sqrt[3]{x^2}+3 \\cdot \\sqrt{x} } d x}$.",
      "response": "$\\int{\\frac{ -9 \\cdot \\sqrt[3]{x} }{ 9 \\cdot \\sqrt[3]{x^2}+3 \\cdot \\sqrt{x} } d x}$ =$-\\left(C+\\frac{1}{3}\\cdot\\sqrt[6]{x}^2+\\frac{2}{27}\\cdot\\ln\\left(\\frac{1}{3}\\cdot\\left|1+3\\cdot\\sqrt[6]{x}\\right|\\right)+\\frac{3}{2}\\cdot\\sqrt[6]{x}^4-\\frac{2}{3}\\cdot\\sqrt[6]{x}^3-\\frac{2}{9}\\cdot\\sqrt[6]{x}\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier integral of the function $q(x)=\\begin{cases} 0, & x<0 \\\\ 2 \\cdot \\pi \\cdot x, & 0 \\le x \\le 1 \\\\ 0, & x>1 \\end{cases}$.",
      "response": "$q(x)$ = $\\int_0^\\infty\\left(\\frac{2\\cdot\\left(\\alpha\\cdot\\sin\\left(\\alpha\\right)+\\cos\\left(\\alpha\\right)-1\\right)\\cdot\\cos\\left(\\alpha\\cdot x\\right)+2\\cdot\\left(\\sin\\left(\\alpha\\right)-\\alpha\\cdot\\cos\\left(\\alpha\\right)\\right)\\cdot\\sin\\left(\\alpha\\cdot x\\right)}{\\alpha^2}\\right)d\\alpha$",
      "system": ""
    },
    {
      "prompt": "Let $f(x)=\\ln\\left(x^2+1\\right)$.\n\n1. Find the 4th order Taylor polynomial $P_{4}(x)$ of $f(x)$ about $a=0$.\n2. Compute $\\left|f(1)-P_{4}(1)\\right|$.\n3. Compute $\\left|f(0.1)-P_{4}(0.1)\\right|$.",
      "response": "This is the final answer to the problem: \n\n1. $x^2-\\frac{x^4}{2}$\n2. $0.1931$\n3. $0.0003\\cdot10^{-3}$",
      "system": ""
    },
    {
      "prompt": "Let $f(x)=\\ln\\left(x^2+1\\right)$.\n\n1. Find the 4th order Taylor polynomial $P_{4}(x)$ of $f(x)$ about $a=0$.\n2. Compute $\\left|f(1)-P_{4}(1)\\right|$.\n3. Compute $\\left|f(0.1)-P_{4}(0.1)\\right|$.",
      "response": "This is the final answer to the problem: \n\n1. $x^2-\\frac{x^4}{2}$\n2. $0.1931$\n3. $0.0003\\cdot10^{-3}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ 10 \\cdot x-8 }{ \\sqrt{2 \\cdot x^2+4 \\cdot x+10} } d x}$.",
      "response": "$\\int{\\frac{ 10 \\cdot x-8 }{ \\sqrt{2 \\cdot x^2+4 \\cdot x+10} } d x}$ =$\\frac{1}{\\sqrt{2}}\\cdot\\left(10\\cdot\\sqrt{x^2+2\\cdot x+5}-18\\cdot\\ln\\left(\\left|2+2\\cdot x+2\\cdot\\sqrt{x^2+2\\cdot x+5}\\right|\\right)\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Determine the polar equation form of the orbit given the length of the major axis and eccentricity for the orbit of the comet or planet. Distance is given in astronomical units (AU):\n\nHalley’s Comet: length of major axis=$35.88$, eccentricity=$0.967$.",
      "response": "$r$  =  $\\frac{1.16450334}{1+0.967\\cdot\\cos(t)}$",
      "system": ""
    },
    {
      "prompt": "Determine the polar equation form of the orbit given the length of the major axis and eccentricity for the orbit of the comet or planet. Distance is given in astronomical units (AU):\n\nHalley’s Comet: length of major axis=$35.88$, eccentricity=$0.967$.",
      "response": "$r$  =  $\\frac{1.16450334}{1+0.967\\cdot\\cos(t)}$",
      "system": ""
    },
    {
      "prompt": "Let $R$ be the region in the first quadrant bounded by the graph of $y=3 \\cdot \\arctan(x)$ and the lines $x=\\pi$ and $y=1$.\n\nFind the volume of the solid generated when $R$ is revolved about the line $x=\\pi$.",
      "response": "The volume of the solid is $36.736$ units³.",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\frac{ 1 }{ \\sin(8 \\cdot x)^5 } d x}$.",
      "response": "This is the final answer to the problem: $C+\\frac{1}{128}\\cdot\\left(2\\cdot\\left(\\tan(4\\cdot x)\\right)^2+6\\cdot\\ln\\left(\\left|\\tan(4\\cdot x)\\right|\\right)+\\frac{1}{4}\\cdot\\left(\\tan(4\\cdot x)\\right)^4-\\frac{2}{\\left(\\tan(4\\cdot x)\\right)^2}-\\frac{1}{4\\cdot\\left(\\tan(4\\cdot x)\\right)^4}\\right)$",
      "system": ""
    },
    {
      "prompt": "What is the general solution to the differential equation $\\frac{ d y }{d x}=-3 \\cdot y+12$ for $y>4$?",
      "response": "$y$ = $C\\cdot e^{-3\\cdot x}+4$",
      "system": ""
    },
    {
      "prompt": "Make full curve sketching of $f(x)=\\frac{ 3 \\cdot x^3 }{ 3 \\cdot x^2-4 }$.  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptote(s)\n3. Horizontal asymptote(s)\n4. Slant asymptote(s)\n5. Interval(s) where the function is increasing\n6. Interval(s) where the function is decreasing\n7. Interval(s) where the function is concave up\n8. Interval(s) where the function is concave down\n9. Point(s) of inflection",
      "response": "This is the final answer to the problem:\n\n1. The domain (in interval notation) $\\left(-1\\cdot\\infty,-2\\cdot3^{-1\\cdot2^{-1}}\\right)\\cup\\left(-2\\cdot3^{-1\\cdot2^{-1}},2\\cdot3^{-1\\cdot2^{-1}}\\right)\\cup\\left(2\\cdot3^{-1\\cdot2^{-1}},\\infty\\right)$\n2. Vertical asymptote(s) $x=-\\frac{2}{\\sqrt{3}}, x=\\frac{2}{\\sqrt{3}}$\n3. Horizontal asymptote(s) None\n4. Slant asymptote(s) $y=x$\n5. Interval(s) where the function is increasing $(2,\\infty), (-\\infty,-2)$\n6. Interval(s) where the function is decreasing $\\left(0,\\frac{2}{\\sqrt{3}}\\right), \\left(-\\frac{2}{\\sqrt{3}},0\\right), \\left(-2,-\\frac{2}{\\sqrt{3}}\\right), \\left(\\frac{2}{\\sqrt{3}},2\\right)$\n7. Interval(s) where the function is concave up $\\left(\\frac{2}{\\sqrt{3}},\\infty\\right), \\left(-\\frac{2}{\\sqrt{3}},0\\right)$\n8. Interval(s) where the function is concave down $\\left(0,\\frac{2}{\\sqrt{3}}\\right), \\left(-\\infty,-\\frac{2}{\\sqrt{3}}\\right)$\n9. Point(s) of inflection $P(0,0)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{x^{-4} \\cdot \\left(3+x^2\\right)^{\\frac{ 1 }{ 2 }} d x}$.",
      "response": "$\\int{x^{-4} \\cdot \\left(3+x^2\\right)^{\\frac{ 1 }{ 2 }} d x}$ =$C-\\frac{1}{9}\\cdot\\left(1+\\frac{3}{x^2}\\right)\\cdot\\sqrt{1+\\frac{3}{x^2}}$",
      "system": ""
    },
    {
      "prompt": "Find the derivative of $f(x)=\\frac{ \\left(\\left(\\tan(x)\\right)^2-1\\right) \\cdot \\left(\\left(\\tan(x)\\right)^4+10 \\cdot \\left(\\tan(x)\\right)^2+1\\right) }{ 3 \\cdot \\left(\\tan(x)\\right)^3 }$.",
      "response": "This is the final answer to the problem: $f'(x)=\\left(\\tan(x)\\right)^4+4\\cdot\\left(\\tan(x)\\right)^2+\\frac{4}{\\left(\\tan(x)\\right)^2}+\\frac{1}{\\left(\\tan(x)\\right)^4}+6$",
      "system": ""
    },
    {
      "prompt": "Compute the partial derivatives of the implicit function $z(x,y)$, given by the equation $-10 \\cdot x-9 \\cdot y+8 \\cdot z=4 \\cdot \\cos(-10 \\cdot x-9 \\cdot y+8 \\cdot z)$.\n\nSubmit as your final answer:\n\na. $\\frac{\\partial z}{\\partial x}$;\n\nb. $\\frac{\\partial z}{\\partial y}$.",
      "response": "This is the final answer to the problem:  \na. $\\frac{5}{4}$;\n\nb. $\\frac{9}{8}$.",
      "system": ""
    },
    {
      "prompt": "Compute the partial derivatives of the implicit function $z(x,y)$, given by the equation $-10 \\cdot x-9 \\cdot y+8 \\cdot z=4 \\cdot \\cos(-10 \\cdot x-9 \\cdot y+8 \\cdot z)$.\n\nSubmit as your final answer:\n\na. $\\frac{\\partial z}{\\partial x}$;\n\nb. $\\frac{\\partial z}{\\partial y}$.",
      "response": "This is the final answer to the problem:  \na. $\\frac{5}{4}$;\n\nb. $\\frac{9}{8}$.",
      "system": ""
    },
    {
      "prompt": "An alternating current for outlets in a home has voltage given by the function  $V(t)=150 \\cdot \\cos(368 \\cdot t)$, where  $V$ is the voltage in volts at time  $t$ in seconds.\n\n1. Find the period of the function.\n2. Determine the number of periods that occur when $1$ sec. has passed.",
      "response": "This is the final answer to the problem: \n\n1. the period of the function: $\\frac{\\pi}{184}$\n2. the number of periods: $58.56901906$",
      "system": ""
    },
    {
      "prompt": "Compute $\\sqrt[4]{90}$ with accuracy $0.0001$.",
      "response": "This is the final answer to the problem: $3.0801$",
      "system": ""
    },
    {
      "prompt": "Solve $\\cos(2 \\cdot t)-5 \\cdot \\sin(t)-3=0$.",
      "response": "This is the final answer to the problem: $t=(-1)^{n+1}\\cdot\\frac{\\pi}{6}+n\\cdot\\pi$",
      "system": ""
    },
    {
      "prompt": "The region bounded by the arc of the curve $y=\\sqrt{2} \\cdot \\sin(2 \\cdot x)$, $0 \\le x \\le \\frac{ \\pi }{ 2 }$, is revolved around the X-axis. Compute the surface area of this solid of revolution.",
      "response": "Surface Area: $\\frac{\\pi}{4}\\cdot\\left(12\\cdot\\sqrt{2}+\\ln\\left(17+12\\cdot\\sqrt{2}\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Find the radius of convergence and sum of the series:  $\\frac{ 2 }{ 4 }+\\frac{ 2 \\cdot x }{ 1 \\cdot 5 }+\\frac{ 2 \\cdot (x)^2 }{ 1 \\cdot 2 \\cdot 6 }+\\cdots+\\frac{ 2 \\cdot (x)^n }{ \\left(n!\\right) \\cdot (n+4) }+\\cdots$ .",
      "response": "This is the final answer to the problem: 1. Radius of convergence:$R=\\infty$\n2. Sum: $f(x)=\\begin{cases}\\frac{12}{x^4}+\\frac{\\left(x\\cdot\\left(16\\cdot x\\cdot e^x-16\\cdot e^x\\right)-8\\cdot e^x\\cdot x^3\\right)\\cdot x^3+\\left(4\\cdot e^x+2\\cdot e^x\\cdot x^2+2\\cdot e^x\\cdot x^3-4\\cdot x\\cdot e^x\\right)\\cdot x^4}{x^8},&x\\ne0\\\\\\frac{1}{2},&x=0\\end{cases}$",
      "system": ""
    },
    {
      "prompt": "The function $s(t)=2 \\cdot t^3-3 \\cdot t^2-12 \\cdot t+8$ represents the position of a particle traveling along a horizontal line.\n\n1. Find the velocity and acceleration functions.\n2. Determine the time intervals when the object is slowing down or speeding up.",
      "response": "This is the final answer to the problem: 1. The velocity function $v(t)$ = $6\\cdot t^2-6\\cdot t-12$ and acceleration function $a(t)$ = $12\\cdot t-6$.\n\n2. The time intervals when the object speeds up $\\left(2,\\infty\\right), \\left(0,\\frac{1}{2}\\right)$ and slows down $\\left(\\frac{1}{2},2\\right)$.",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=\\frac{ x^3 }{ 5 \\cdot (x+2)^2 }$.  \n\nProvide the following:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $(-1\\cdot\\infty,-2)\\cup(-2,\\infty)$\n2. Vertical asymptotes: $x=-2$\n3. Horizontal asymptotes: None\n4. Slant asymptotes: $y=\\frac{x}{5}-\\frac{4}{5}$\n5. Intervals where the function is increasing: $(0,\\infty), (-2,0), (-\\infty,-6)$\n6. Intervals where the function is decreasing: $(-6,-2)$\n7. Intervals where the function is concave up: $(0,\\infty)$\n8. Intervals where the function is concave down: $(-2,0), (-\\infty,-2)$\n9. Points of inflection: $P(0,0)$",
      "system": ""
    },
    {
      "prompt": "|$n$  \n\n$\\ln(n)$  \n\n|  |\n| 1 | 0.00 |\n| 2 | 0.69 |\n| 3 | 1.10 |\n| 4 | 1.39 |\n| 5 | 1.61 |\n| 6 | 1.79 |\n| 7 | 1.95 |\n| 8 | 2.08 |\n| 9 | 2.20 |\n| 10 | 2.30 |\n\n  \n  \nUsing the table above, estimate the logarithm.1. $\\ln(16)$\n2. $\\ln\\left(3^4\\right)$\n3. $\\ln(2.5)$\n4. $\\ln\\left(\\sqrt{630}\\right)$\n5. $\\ln(0.4)$",
      "response": "1. $\\ln(16)$≈$2.78$\n2. $\\ln\\left(3^4\\right)$≈$4.4$\n3. $\\ln(2.5)$≈$0.92$\n4. $\\ln\\left(\\sqrt{630}\\right)$≈$3.2228$\n5. $\\ln(0.4)$≈$-0.92$",
      "system": ""
    },
    {
      "prompt": "Using the series expansion for the function $(1+x)^m$ calculate approximately $\\sqrt[3]{29}$ with accuracy 0.0001.",
      "response": "This is the final answer to the problem: $3.0723$",
      "system": ""
    },
    {
      "prompt": "Compute $\\int_{0}^{\\frac{ 1 }{ 3 }}{e^{-\\frac{ x^2 }{ 3 }} d x}$ with accuracy $0.00001$.",
      "response": "This is the final answer to the problem: $0.32926$",
      "system": ""
    },
    {
      "prompt": "Washington, D.C. is located at $39$ deg N and $77$ deg W. Assume the radius of Earth is $4000$ mi. Express the location of Washington, D.C. in spherical coordinates (use radians).",
      "response": "$P\\left(r,\\theta,\\varphi\\right)$ = $P(4000,-1.34,0.89)$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{2 \\cdot \\tan(-10 \\cdot x)^4 d x}$.",
      "response": "$\\int{2 \\cdot \\tan(-10 \\cdot x)^4 d x}$ =$C+\\frac{1}{5}\\cdot\\left(\\frac{1}{3}\\cdot\\left(\\tan(10\\cdot x)\\right)^3+\\arctan\\left(\\tan(10\\cdot x)\\right)-\\tan(10\\cdot x)\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral using the Substitution Rule:\n\n$\\int{\\frac{ x^2+3 }{ \\sqrt{(2 \\cdot x-5)^3} } d x}$",
      "response": "This is the final answer to the problem: $C+\\frac{60\\cdot x+(2\\cdot x-5)^2-261}{12\\cdot\\sqrt{2\\cdot x-5}}$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=\\frac{ x^3 }{ 6 \\cdot (x+3)^2 }$.  \n\nProvide the following:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $(-1\\cdot\\infty,-3)\\cup(-3,\\infty)$\n2. Vertical asymptotes: $x=-3$\n3. Horizontal asymptotes: None\n4. Slant asymptotes: $y=\\frac{x}{6}-1$\n5. Intervals where the function is increasing: $(-3,0), (0,\\infty), (-\\infty,-9)$\n6. Intervals where the function is decreasing: $(-9,-3)$\n7. Intervals where the function is concave up: $(0,\\infty)$\n8. Intervals where the function is concave down: $(-3,0), (-\\infty,-3)$\n9. Points of inflection: $P(0,0)$",
      "system": ""
    },
    {
      "prompt": "Find the derivative of the function: $y=-4 \\cdot x^{\\sqrt{5 \\cdot x}}$.",
      "response": "$\\frac{ d y }{d x}$ =$-\\left(\\frac{4\\cdot\\sqrt{5}}{\\sqrt{x}}+\\frac{2\\cdot\\sqrt{5}\\cdot\\ln(x)}{\\sqrt{x}}\\right)\\cdot x^{\\sqrt{5}\\cdot\\sqrt{x}}$",
      "system": ""
    },
    {
      "prompt": "Given two functions $f(x)=\\sqrt{x^2-1}$ and $g(x)=\\sqrt{3-x}$\n\n1. compute $f\\left(g(x)\\right)$\n2. compute $\\frac{ f(x) }{ g(x) }$ and find the domain of the new function.",
      "response": "1. the new function $f\\left(g(x)\\right)$ is$f\\left(g(x)\\right)=\\sqrt{2-x}$\n2. the function $\\frac{ f(x) }{ g(x) }$ is $\\frac{\\sqrt{x^2-1}}{\\sqrt{3-x}}$, and the domain for the function is $1\\le x<3 \\lor x\\le-1$",
      "system": ""
    },
    {
      "prompt": "A town has an initial population of $80\\ 000$. It grows at a constant rate of $2200$ per year for $5$ years. The linear function that models the town’s population P as a function of the year is: $P(t)=80\\ 000+2200 \\cdot t$, where $t$ is the number of years since the model began. When will the population reach $120\\ 000$?",
      "response": "$t$: $\\frac{200}{11}$",
      "system": ""
    },
    {
      "prompt": "Find the arc length of the curve $x=\\frac{ 5 \\cdot y^2 }{ 6 }-\\frac{ \\ln(5 \\cdot y) }{ 2 }$ enclosed between  $y=3$ and $y=5$.",
      "response": "Arc Length: $-\\frac{\\operatorname{arsinh}\\left(\\frac{200y^{2} - 24}{12 \\sqrt{21}}\\right)}{10} + \\frac{\\sqrt{100y^{4} - 24y^{2} + 9}}{12} - \\frac{\\operatorname{arsinh}\\left(\\frac{3}{2 \\sqrt{21} \\, y^{2}} - \\frac{2}{\\sqrt{21}}\\right)}{4} \\approx \\boxed{13.23342845}$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series expansion for periodic (period $2$) $f(x)=x-1$ (at $(-1,1]$).",
      "response": "The Fourier series is: $f(x)\\approx\\sum_{n=1}^\\infty-\\frac{2\\cdot(-1)^n\\cdot\\sin(n\\cdot\\pi\\cdot x)}{\\pi\\cdot n}-1$",
      "system": ""
    },
    {
      "prompt": "Make full curve sketching of $y=2 \\cdot \\arcsin\\left(\\frac{ 1-7 \\cdot x^2 }{ 1+7 \\cdot x^2 }\\right)$. Submit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation) $(-1\\cdot\\infty,\\infty)$\n2. Vertical asymptotes $\\text{None}$\n3. Horizontal asymptotes $y=-\\pi$\n4. Slant asymptotes $\\text{None}$\n5. Intervals where the function is increasing $(-\\infty,0)$\n6. Intervals where the function is decreasing $(0,\\infty)$\n7. Intervals where the function is concave up $(0,\\infty), (-\\infty,0)$\n8. Intervals where the function is concave down $\\text{None}$\n9. Points of inflection $\\text{None}$",
      "system": ""
    },
    {
      "prompt": "Given that $\\frac{ 1 }{ 1-x }=\\sum_{n=0}^\\infty x^n$ , use term-by-term differentiation or integration to find power series for  function  $f(x)=\\ln(x)$  centered at $x=1$ .",
      "response": "$\\ln(x)$ =$\\sum_{n=0}^\\infty\\left((-1)^n\\cdot\\frac{(x-1)^{n+1}}{n+1}\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ \\tan(x) }{ \\sqrt{\\sin(x)^4+\\cos(x)^4} } d x}$.",
      "response": "$\\int{\\frac{ \\tan(x) }{ \\sqrt{\\sin(x)^4+\\cos(x)^4} } d x}$ =$\\frac{1}{2}\\cdot\\ln\\left(\\tan(x)^2+\\sqrt{\\tan(x)^4+1}\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Solve the following system of equations:\n\n$x+y=\\frac{ 2 \\cdot \\pi }{ 3 }$  \n\n$\\frac{ \\sin(x) }{ \\sin(y) }=2$",
      "response": "This is the final answer to the problem: $x=\\frac{\\pi}{2}+\\pi\\cdot k, y=\\frac{\\pi}{6}-\\pi\\cdot k$",
      "system": ""
    },
    {
      "prompt": "Solve the following system of equations:\n\n$x+y=\\frac{ 2 \\cdot \\pi }{ 3 }$  \n\n$\\frac{ \\sin(x) }{ \\sin(y) }=2$",
      "response": "This is the final answer to the problem: $x=\\frac{\\pi}{2}+\\pi\\cdot k, y=\\frac{\\pi}{6}-\\pi\\cdot k$",
      "system": ""
    },
    {
      "prompt": "A particle moves along the plane curve C described by $\\vec{r}(t)=t \\cdot \\vec{i}+t^2 \\cdot \\vec{j}$. Find the length of the curve over the interval $[0,2]$.",
      "response": "$s$ = $\\frac{4\\cdot\\sqrt{17}+\\ln\\left(4+\\sqrt{17}\\right)}{4}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ 1 }{ (x-3) \\cdot \\sqrt{10 \\cdot x-24-x^2} } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ (x-3) \\cdot \\sqrt{10 \\cdot x-24-x^2} } d x}$ =$-\\frac{2}{\\sqrt{3}}\\cdot\\arctan\\left(\\frac{\\sqrt{-x^2+10\\cdot x-24}}{\\sqrt{3}\\cdot x-4\\cdot\\sqrt{3}}\\right)+C$",
      "system": ""
    },
    {
      "prompt": "For the curve $x=a\\left(t-\\sin(t)\\right)$, $y=a\\left(1-\\cos(t)\\right)$ determine the curvature. Use $a=10$.",
      "response": "The curvature is:$\\frac{1}{40\\cdot\\left|\\sin\\left(\\frac{t}{2}\\right)\\right|}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ x }{ \\left(x^2-4 \\cdot x+8\\right)^2 } d x}$.",
      "response": "$\\int{\\frac{ x }{ \\left(x^2-4 \\cdot x+8\\right)^2 } d x}$ =$C+\\frac{x-2}{2\\cdot\\left(8+2\\cdot(x-2)^2\\right)}+\\frac{1}{8}\\cdot\\arctan\\left(\\frac{1}{2}\\cdot(x-2)\\right)-\\frac{1}{2\\cdot\\left(x^2-4\\cdot x+8\\right)}$",
      "system": ""
    },
    {
      "prompt": "On a cylinder 6 cm in diameter, a channel is cut out along the surface, having an equilateral triangle with a side of 1.5 cm in cross section. Compute the volume of the cut out material.",
      "response": "$V$ =$\\frac{108\\cdot\\sqrt{3}-27}{32}\\cdot\\pi$",
      "system": ""
    },
    {
      "prompt": "Determine the Taylor series for $y=\\left(\\sin(x)\\right)^2$, centered at $x_{0}=\\frac{ \\pi }{ 2 }$. Write out the sum of the first three non-zero terms, followed by dots.",
      "response": "This is the final answer to the problem: $1-\\frac{2}{2!}\\cdot\\left(x-\\frac{\\pi}{2}\\right)^2+\\frac{2^3}{4!}\\cdot\\left(x-\\frac{\\pi}{2}\\right)^4+\\cdots$",
      "system": ""
    },
    {
      "prompt": "Evaluate the function at the indicated values $f(-3)$, $f(2)$, $f(-a)$,$-f(a)$, and $f(a+h)$. \n\n$f(x)=|x-1|-|x+1|$",
      "response": "This is the final answer to the problem: $f(-3)$=$2$\n\n$f(2)$=$-2$  \n\n$f(-a)$=$|a+1|-|-a+1|$  \n\n$-f(a)$= $-|a-1|+|a+1|$  \n\n$f(a+h)$=$|a+h-1|-|a+h+1|$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series of the function $f(x)=\\frac{ -1 }{ 2 } \\cdot x$ in the interval $[-2,2]$.",
      "response": "The Fourier series is: $\\sum_{n=1}^\\infty\\left(\\frac{2\\cdot(-1)^n}{\\pi\\cdot n}\\cdot\\sin\\left(\\frac{\\pi\\cdot n\\cdot x}{2}\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the derivative $y=\\arctan\\left(\\frac{ 4-\\cos\\left(\\frac{ x }{ 2 }\\right) }{ 1+4 \\cdot \\cos\\left(\\frac{ x }{ 2 }\\right) }\\right)$.",
      "response": "$y'$= $\\frac{\\sin\\left(\\frac{x}{2}\\right)}{2+2\\cdot\\left(\\cos\\left(\\frac{x}{2}\\right)\\right)^2}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\left(2 \\cdot x^2+4 \\cdot x+5\\right) \\cdot \\sin(2 \\cdot x) d x}$.",
      "response": "$\\int{\\left(2 \\cdot x^2+4 \\cdot x+5\\right) \\cdot \\sin(2 \\cdot x) d x}$ =$C+x\\cdot\\sin(2\\cdot x)+\\frac{1}{2}\\cdot\\cos(2\\cdot x)+\\sin(2\\cdot x)-\\frac{1}{2}\\cdot\\left(2\\cdot x^2+4\\cdot x+5\\right)\\cdot\\cos(2\\cdot x)$",
      "system": ""
    },
    {
      "prompt": "A sky diver jumps from a reasonable height above the ground. The air resistance she experiences is proportional to her velocity, and the constant of proportionality is $0.24$. It can be shown that the downward velocity of the sky diver at time $t$ is given by\n\n$v(t)=180 \\cdot \\left(1-e^{-0.24 \\cdot t}\\right)$  \n\nwhere $t$ is measured in seconds and $v(t)$ is measured in feet per second\n\n\n\n1. Find the initial velocity of the sky diver\n\n2. Find the velocity after $4$ seconds (round your answer to one decimal place)\n\n3. The maximum velocity of a falling object with wind resistance is called its terminal velocity. Find the terminal velocity of this sky diver. (round your answer to the nearest whole number)",
      "response": "1. $0$\n2. $111.1$\n3. $180$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series expansion of the function $f(x)=\\begin{cases} x, & -\\pi \\le x<0 \\\\ \\pi, & 0 \\le x \\le \\pi \\end{cases}$ with the period $2 \\cdot \\pi$ at interval $[-\\pi,\\pi]$.",
      "response": "The Fourier series is: $f(x)=\\frac{\\pi}{4}+\\sum_{n=1}^\\infty\\left(\\frac{1+(-1)^{n+1}}{\\pi\\cdot n^2}\\cdot\\cos(n\\cdot x)+\\frac{(-1)^{n+1}\\cdot2+1}{n}\\cdot\\sin(n\\cdot x)\\right)$",
      "system": ""
    },
    {
      "prompt": "Given $y=3 \\cdot x^5+10 \\cdot x^4-20$ find where the function is concave up, down, and point(s) of inflection.",
      "response": "Concave up:$(0,\\infty), (-2,0)$Concave down:$(-\\infty,-2)$Point(s) of Inflection:$P(-2,44)$",
      "system": ""
    },
    {
      "prompt": "Differentiate $\\sqrt{x \\cdot y}-x=y^5$.",
      "response": "This is the final answer to the problem: $\\frac{dy}{dx}=\\frac{2\\cdot x^{\\frac{1}{2}}\\cdot y^{\\frac{1}{2}}-y}{x-10\\cdot x^{\\frac{1}{2}}\\cdot y^{\\frac{9}{2}}}$",
      "system": ""
    },
    {
      "prompt": "Calculate the second-order partial derivatives. (Treat $A$,$B$,$C$,$D$ as constants.)\n\n$f(x,y)=\\frac{ A \\cdot x+B \\cdot y }{ C \\cdot x+D \\cdot y }$.",
      "response": "$f_{xx}(x,y)$=$\\frac{2\\cdot C\\cdot(B\\cdot C-A\\cdot D)\\cdot y}{(C\\cdot x+D\\cdot y)^3}$$f_{xy}(x,y)$=$f_{yx}(x,y)$=$\\frac{-(B\\cdot C-A\\cdot D)\\cdot(C\\cdot x-D\\cdot y)}{(C\\cdot x+D\\cdot y)^3}$  \n\n$f_{yy}(x,y)$=$-2\\cdot D\\cdot\\frac{B\\cdot C\\cdot x-A\\cdot D\\cdot x}{(C\\cdot x+D\\cdot y)^3}$",
      "system": ""
    },
    {
      "prompt": "Calculate the second-order partial derivatives. (Treat $A$,$B$,$C$,$D$ as constants.)\n\n$f(x,y)=\\frac{ A \\cdot x+B \\cdot y }{ C \\cdot x+D \\cdot y }$.",
      "response": "$f_{xx}(x,y)$=$\\frac{2\\cdot C\\cdot(B\\cdot C-A\\cdot D)\\cdot y}{(C\\cdot x+D\\cdot y)^3}$$f_{xy}(x,y)$=$f_{yx}(x,y)$=$\\frac{-(B\\cdot C-A\\cdot D)\\cdot(C\\cdot x-D\\cdot y)}{(C\\cdot x+D\\cdot y)^3}$  \n\n$f_{yy}(x,y)$=$-2\\cdot D\\cdot\\frac{B\\cdot C\\cdot x-A\\cdot D\\cdot x}{(C\\cdot x+D\\cdot y)^3}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral $\\int{\\frac{ 2 \\cdot \\tan(x)+3 }{ \\sin(x)^2+2 \\cdot \\cos(x)^2 } d x}$.",
      "response": "$\\int{\\frac{ 2 \\cdot \\tan(x)+3 }{ \\sin(x)^2+2 \\cdot \\cos(x)^2 } d x}$ =$C+\\frac{3}{\\sqrt{2}}\\cdot\\arctan\\left(\\frac{1}{\\sqrt{2}}\\cdot\\tan(x)\\right)+\\ln\\left(2+\\left(\\tan(x)\\right)^2\\right)$",
      "system": ""
    },
    {
      "prompt": "For the function $y=(4-x)^3 \\cdot (x+1)^2$ specify the points where local maxima and minima of $y$ occur. Submit as your final answer:\n\n1. The point(s) where local maxima occur\n2. The point(s) where local minima occur",
      "response": "This is the final answer to the problem:  \n1. The point(s) where local maxima occur $P(1,108)$\n2. The point(s) where local minima occur $P(-1,0)$",
      "system": ""
    },
    {
      "prompt": "Given $y=3 \\cdot x^5+20 \\cdot x^4+40 \\cdot x^3+100$ find where the function is concave up, down, and point(s) of inflection.",
      "response": "Concave up:$(0,\\infty)$Concave down:$(-2,0), (-\\infty,-2)$Point(s) of Inflection:$P(0,100)$",
      "system": ""
    },
    {
      "prompt": "Find the Taylor series for $f(x)=\\ln\\left(\\sqrt{3} \\cdot x+\\sqrt{1+3 \\cdot x^2}\\right)$, centered at $x=0$. Write out the sum of the first four non-zero terms, followed by dots.",
      "response": "This is the final answer to the problem: $\\sqrt{3} x - (\\sqrt{3} x^3)/2 + (27 \\sqrt{3} x^5)/40 - (135 \\sqrt{3} x^7)/112 + O(x^9)$",
      "system": ""
    },
    {
      "prompt": "Given $g(x)=\\frac{ 1 }{ 3 } \\cdot (a+b) \\cdot x^3+\\frac{ 1 }{ 2 } \\cdot (a+b+c) \\cdot x^2-(a+b+c+d) \\cdot x+a \\cdot b \\cdot c \\cdot d$, simplify the derivative of $g(x)$ if $x^2+x=a+b$.",
      "response": "This is the final answer to the problem: $g'(x)=(a+b)^2+c\\cdot x-(a+b+c+d)$",
      "system": ""
    },
    {
      "prompt": "Evaluate the integral: $I=\\int{3 \\cdot x \\cdot \\ln\\left(4+\\frac{ 1 }{ x }\\right) d x}$.",
      "response": "This is the final answer to the problem: $\\left(\\frac{3}{2}\\cdot x^2\\cdot\\ln(4\\cdot x+1)-\\frac{3\\cdot x^2}{4}+\\frac{3\\cdot x}{8}-\\frac{3}{32}\\cdot\\ln\\left(x+\\frac{1}{4}\\right)\\right)-\\left(\\frac{3}{2}\\cdot x^2\\cdot\\ln(x)-\\left(C+\\frac{3}{4}\\cdot x^2\\right)\\right)$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\frac{ 1 }{ \\sin(x)^5 } d x}$.",
      "response": "This is the final answer to the problem: $C+\\frac{1}{16}\\cdot\\left(2\\cdot\\left(\\tan\\left(\\frac{x}{2}\\right)\\right)^2+6\\cdot\\ln\\left(\\left|\\tan\\left(\\frac{x}{2}\\right)\\right|\\right)+\\frac{1}{4}\\cdot\\left(\\tan\\left(\\frac{x}{2}\\right)\\right)^4-\\frac{2}{\\left(\\tan\\left(\\frac{x}{2}\\right)\\right)^2}-\\frac{1}{4\\cdot\\left(\\tan\\left(\\frac{x}{2}\\right)\\right)^4}\\right)$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ -1 }{ 3 \\cdot \\sin\\left(\\frac{ x }{ 3 }\\right)^6 } d x}$.",
      "response": "$\\int{\\frac{ -1 }{ 3 \\cdot \\sin\\left(\\frac{ x }{ 3 }\\right)^6 } d x}$ =$\\frac{\\cos\\left(\\frac{x}{3}\\right)}{5\\cdot\\sin\\left(\\frac{x}{3}\\right)^5}-\\frac{4}{15}\\cdot\\left(-\\frac{\\cos\\left(\\frac{x}{3}\\right)}{\\sin\\left(\\frac{x}{3}\\right)^3}-2\\cdot\\cot\\left(\\frac{x}{3}\\right)\\right)+C$",
      "system": ""
    },
    {
      "prompt": "Compute the derivative of the complex function $p=u^v$ given  $u=3 \\cdot \\ln(x-2 \\cdot y)$ and  $v=e^{\\frac{ x }{ y }}$.",
      "response": "$\\frac{\\partial p}{\\partial x} = (3 \\ln(x - 2y))^{e^{\\frac{x}{y}}} \\left[ \\frac{e^{\\frac{x}{y}}}{y} \\ln(3 \\ln(x - 2y)) + \\frac{e^{\\frac{x}{y}}}{(x - 2y) \\ln(x - 2y)} \\right]$\n\n$\\frac{\\partial p}{\\partial y} = (3 \\ln(x - 2y))^{e^{\\frac{x}{y}}} \\left[ -\\frac{x e^{\\frac{x}{y}}}{y^2} \\ln(3 \\ln(x - 2y)) - \\frac{2e^{\\frac{x}{y}}}{(x - 2y) \\ln(x - 2y)} \\right]$\n",
      "system": ""
    },
    {
      "prompt": "For the curve $x=a\\left(t-\\sin(t)\\right)$, $y=a\\left(1-\\cos(t)\\right)$ determine the curvature. Use $a=12$.",
      "response": "The curvature is:$\\frac{1}{48\\cdot\\left|\\sin\\left(\\frac{t}{2}\\right)\\right|}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ 10 }{ \\sin(4 \\cdot x)^6 } d x}$.",
      "response": "$\\int{\\frac{ 10 }{ \\sin(4 \\cdot x)^6 } d x}$ =$C-\\frac{1}{2}\\cdot\\left(\\cot(4\\cdot x)\\right)^5-\\frac{5}{2}\\cdot\\cot(4\\cdot x)-\\frac{5}{3}\\cdot\\left(\\cot(4\\cdot x)\\right)^3$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier series of the periodic function $f(x)=x^2$ in the interval $-\\pi \\le x<\\pi$  if $f(x)=f(x+2 \\cdot \\pi)$.",
      "response": "The Fourier series is: $x^2=\\frac{\\pi^2}{3}-4\\cdot\\left(\\frac{\\cos(x)}{1^2}-\\frac{\\cos(2\\cdot x)}{2^2}+\\frac{\\cos(3\\cdot x)}{3^2}-\\cdots\\right)$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=3 \\cdot x \\cdot \\sqrt{2-x^2}$.  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $\\left[-1\\cdot2^{2^{-1}},2^{2^{-1}}\\right]$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $(-1,1)$\n6. Intervals where the function is decreasing: $\\left(-2^{2^{-1}},-1\\right), \\left(1,2^{2^{-1}}\\right)$\n7. Intervals where the function is concave up: $\\left(-2^{2^{-1}},0\\right)$\n8. Intervals where the function is concave down: $\\left(0,2^{2^{-1}}\\right)$\n9. Points of inflection: $P(0,0)$",
      "system": ""
    },
    {
      "prompt": "Sketch the curve:  \n\n$y=3 \\cdot x \\cdot \\sqrt{2-x^2}$.  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptotes\n3. Horizontal asymptotes\n4. Slant asymptotes\n5. Intervals where the function is increasing\n6. Intervals where the function is decreasing\n7. Intervals where the function is concave up\n8. Intervals where the function is concave down\n9. Points of inflection",
      "response": "This is the final answer to the problem:  \n1. The domain (in interval notation): $\\left[-1\\cdot2^{2^{-1}},2^{2^{-1}}\\right]$\n2. Vertical asymptotes: None\n3. Horizontal asymptotes: None\n4. Slant asymptotes: None\n5. Intervals where the function is increasing: $(-1,1)$\n6. Intervals where the function is decreasing: $\\left(-2^{2^{-1}},-1\\right), \\left(1,2^{2^{-1}}\\right)$\n7. Intervals where the function is concave up: $\\left(-2^{2^{-1}},0\\right)$\n8. Intervals where the function is concave down: $\\left(0,2^{2^{-1}}\\right)$\n9. Points of inflection: $P(0,0)$",
      "system": ""
    },
    {
      "prompt": "Find the 3rd order Taylor polynomial $P_{3}(x)$ for the function $f(x)=\\arctan(x)$ in powers of $x-1$ and give the Lagrange form of the remainder.",
      "response": "$P_{3}(x)$=$\\frac{ \\pi }{ 4 }+\\frac{ 1 }{ 2 } \\cdot (x-1)-\\frac{ 1 }{ 4 } \\cdot (x-1)^2+\\frac{ 1 }{ 12 } \\cdot (x-1)^3$  \n\n$R_{3}(x)$=$\\frac{ -\\frac{ 48 \\cdot c^3 }{ \\left(1+c^2\\right)^4 }+\\frac{ 24 \\cdot c }{ \\left(1+c^2\\right)^3 } }{ 4! } \\cdot (x-1)^4$",
      "system": ""
    },
    {
      "prompt": "Make full curve sketching of $f(x)=\\frac{ 3 \\cdot x^3 }{ 2 \\cdot x^2-3 }$.  \n\nSubmit as your final answer:\n\n1. The domain (in interval notation)\n2. Vertical asymptote(s)\n3. Horizontal asymptote(s)\n4. Slant asymptote(s)\n5. Interval(s) where the function is increasing\n6. Interval(s) where the function is decreasing\n7. Interval(s) where the function is concave up\n8. Interval(s) where the function is concave down\n9. Point(s) of inflection",
      "response": "This is the final answer to the problem:\n\n1. The domain (in interval notation) $\\left(-1\\cdot\\infty,-1\\cdot3^{2^{-1}}\\cdot2^{-1\\cdot2^{-1}}\\right)\\cup\\left(-1\\cdot3^{2^{-1}}\\cdot2^{-1\\cdot2^{-1}},3^{2^{-1}}\\cdot2^{-1\\cdot2^{-1}}\\right)\\cup\\left(3^{2^{-1}}\\cdot2^{-1\\cdot2^{-1}},\\infty\\right)$\n2. Vertical asymptote(s) $x=\\frac{\\sqrt{3}}{\\sqrt{2}}, x=-\\frac{\\sqrt{3}}{\\sqrt{2}}$\n3. Horizontal asymptote(s) None\n4. Slant asymptote(s) $y=\\frac{3}{2}\\cdot x$\n5. Interval(s) where the function is increasing $\\left(\\frac{3}{\\sqrt{2}},\\infty\\right), \\left(-\\infty,-\\frac{3}{\\sqrt{2}}\\right)$\n6. Interval(s) where the function is decreasing $\\left(-\\frac{3}{\\sqrt{2}},-\\frac{\\sqrt{3}}{\\sqrt{2}}\\right), \\left(\\frac{\\sqrt{3}}{\\sqrt{2}},\\frac{3}{\\sqrt{2}}\\right), \\left(0,\\frac{\\sqrt{3}}{\\sqrt{2}}\\right), \\left(-\\frac{\\sqrt{3}}{\\sqrt{2}},0\\right)$\n7. Interval(s) where the function is concave up $\\left(-\\frac{\\sqrt{3}}{\\sqrt{2}},0\\right), \\left(\\frac{\\sqrt{3}}{\\sqrt{2}},\\infty\\right)$\n8. Interval(s) where the function is concave down $\\left(0,\\frac{\\sqrt{3}}{\\sqrt{2}}\\right), \\left(-\\infty,-\\frac{\\sqrt{3}}{\\sqrt{2}}\\right)$\n9. Point(s) of inflection $P(0,0)$",
      "system": ""
    },
    {
      "prompt": "Evaluate the integral by choosing the order of integration: $\\int_{0}^1{\\int_{1}^2{\\left(\\frac{ x }{ x^2+y^2 }\\right) d y} d x}$.",
      "response": "$\\int_{0}^1{\\int_{1}^2{\\left(\\frac{ x }{ x^2+y^2 }\\right) d y} d x}$ =$\\frac{2\\cdot\\pi+8\\cdot\\ln\\left(\\frac{5}{4}\\right)-4\\cdot\\ln(2)-8\\cdot\\arctan\\left(\\frac{1}{2}\\right)}{8}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ 1 }{ \\sin(x)^6 } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ \\sin(x)^6 } d x}$ =$-\\frac{\\cos(x)}{5\\cdot\\sin(x)^5}+\\frac{4}{5}\\cdot\\left(-\\frac{\\cos(x)}{3\\cdot\\sin(x)^3}-\\frac{2}{3}\\cdot\\cot(x)\\right)$",
      "system": ""
    },
    {
      "prompt": "Determine a definite integral that represents the region  enclosed by the inner loop of $r=3-4 \\cdot \\cos\\left(\\theta\\right)$ .",
      "response": "This is the final answer to the problem:$\\int_0^{\\arccos\\left(\\frac{3}{4}\\right)}\\left(3-4\\cdot\\cos\\left(\\theta\\right)\\right)^2d\\theta$",
      "system": ""
    },
    {
      "prompt": "Find the second derivative $\\frac{d ^2y}{ d x^2}$ of the function $x=\\left(4 \\cdot \\sin(t)\\right)^3$, $y=2 \\cdot \\sin(2 \\cdot t)$.",
      "response": "$\\frac{d ^2y}{ d x^2}$=$\\frac{\\left(2304\\cdot\\left(\\sin(t)\\right)^3-1536\\cdot\\sin(t)\\right)\\cdot\\cos(2\\cdot t)-1536\\cdot\\left(\\sin(t)\\right)^2\\cdot\\cos(t)\\cdot\\sin(2\\cdot t)}{7077888\\cdot\\left(\\cos(t)\\right)^3\\cdot\\left(\\sin(t)\\right)^6}$",
      "system": ""
    },
    {
      "prompt": "Find the Fourier integral of the function $q(x)=\\begin{cases} 0, & x<0 \\\\ \\pi \\cdot x, & 0 \\le x \\le 2 \\\\ 0, & x>2 \\end{cases}$.",
      "response": "$q(x)$ = $\\int_0^\\infty\\left(\\frac{\\left(2\\cdot\\alpha\\cdot\\sin\\left(2\\cdot\\alpha\\right)+\\cos\\left(2\\cdot\\alpha\\right)-1\\right)\\cdot\\cos\\left(\\alpha\\cdot x\\right)+\\left(\\sin\\left(2\\cdot\\alpha\\right)-2\\cdot\\alpha\\cdot\\cos\\left(2\\cdot\\alpha\\right)\\right)\\cdot\\sin\\left(\\alpha\\cdot x\\right)}{\\alpha^2}\\right)d\\alpha$",
      "system": ""
    },
    {
      "prompt": "Given $x^3-2 \\cdot x^2 \\cdot y^2+5 \\cdot x+y-5=0$, evaluate $\\frac{d ^2y}{ d x^2}$ at $x=1$.",
      "response": "This is the final answer to the problem: $\\frac{d^2y}{dx^2}=-\\frac{238}{27}$ or $\\frac{d^2y}{dx^2}=-\\frac{319}{27}$",
      "system": ""
    },
    {
      "prompt": "Compute the integral: $\\int{\\frac{ 1 }{ (x+4) \\cdot \\sqrt{x^2+2 \\cdot x+5} } d x}$.",
      "response": "$\\int{\\frac{ 1 }{ (x+4) \\cdot \\sqrt{x^2+2 \\cdot x+5} } d x}$ =$C+\\frac{1}{\\sqrt{13}}\\cdot\\ln\\left(\\sqrt{13}-4-x-\\sqrt{x^2+2\\cdot x+5}\\right)-\\frac{1}{\\sqrt{13}}\\cdot\\ln\\left(4+\\sqrt{13}+x+\\sqrt{x^2+2\\cdot x+5}\\right)$",
      "system": ""
    },
    {
      "prompt": "Determine the interval(s) on which $f(x)=x^3 \\cdot e^{-x}$ is decreasing.",
      "response": "The function is decreasing on the interval(s) $(3,\\infty)$.",
      "system": ""
    },
    {
      "prompt": "Find the dimensions of the box whose length is twice as long as the width, whose height is $2$ inches greater than the width, and whose volume is $192$ cubic inches.",
      "response": "The dimensions of the box are $6, 4, 8$",
      "system": ""
    },
    {
      "prompt": "Use the second derivative test to identify any critical points of the function $f(x,y)=x^2 \\cdot y^2$,  and determine whether each critical point is a maximum, minimum, saddle point, or none of these.",
      "response": "Maximum:NoneMinimum: $P(0,0)$  \n\nSaddle point: None\n\nThe second derivative test is inconclusive at: None",
      "system": ""
    },
    {
      "prompt": "Find the equation of the tangent line to the curve: $r=3+\\cos(2 \\cdot t)$, $t=\\frac{ 3 \\cdot \\pi }{ 4 }$.",
      "response": "$y$  =  $\\frac{1}{5}\\cdot\\left(x+\\frac{3}{\\sqrt{2}}\\right)+\\frac{3}{\\sqrt{2}}$",
      "system": ""
    },
    {
      "prompt": "Find $\\frac{d ^3}{ d x^3}f(x)$, given $f(x)=\\ln\\left(\\frac{ x+7 }{ x-7 }\\right)$.",
      "response": "This is the final answer to the problem: $\\frac{d^3}{dx^3}f(x)=-\\frac{84\\cdot x^2+1372}{\\left(x^2-49\\right)^3}$",
      "system": ""
    },
    {
      "prompt": "Find $\\frac{d ^3}{ d x^3}f(x)$, given $f(x)=\\ln\\left(\\frac{ x+7 }{ x-7 }\\right)$.",
      "response": "This is the final answer to the problem: $\\frac{d^3}{dx^3}f(x)=-\\frac{84\\cdot x^2+1372}{\\left(x^2-49\\right)^3}$",
      "system": ""
    },
    {
      "prompt": "Solve the integral: $\\int{\\frac{ -\\sqrt[3]{2 \\cdot x} }{ \\sqrt[3]{(2 \\cdot x)^2}-\\sqrt{2 \\cdot x} } d x}$.",
      "response": "$\\int{\\frac{ -\\sqrt[3]{2 \\cdot x} }{ \\sqrt[3]{(2 \\cdot x)^2}-\\sqrt{2 \\cdot x} } d x}$ =$C-3\\cdot\\left(\\frac{1}{2}\\cdot\\sqrt[6]{2\\cdot x}^2+\\frac{1}{3}\\cdot\\sqrt[6]{2\\cdot x}^3+\\frac{1}{4}\\cdot\\sqrt[6]{2\\cdot x}^4+\\sqrt[6]{2\\cdot x}+\\ln\\left(\\left|\\sqrt[6]{2\\cdot x}-1\\right|\\right)\\right)$",
      "system": ""
    }
  ]
}