File size: 36,114 Bytes
d382778 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 |
import torch
import torch.nn.functional as F
import math
class NoiseScheduleVP:
def __init__(
self,
schedule="discrete",
betas=None,
alphas_cumprod=None,
continuous_beta_0=0.1,
continuous_beta_1=20.0,
):
if schedule not in ["discrete", "linear", "cosine"]:
raise ValueError(
"Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
schedule
)
)
self.schedule = schedule
if schedule == "discrete":
if betas is not None:
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
else:
assert alphas_cumprod is not None
log_alphas = 0.5 * torch.log(alphas_cumprod)
self.total_N = len(log_alphas)
self.T = 1.0
self.t_array = torch.linspace(0.0, 1.0, self.total_N + 1)[1:].reshape((1, -1))
self.log_alpha_array = log_alphas.reshape(
(
1,
-1,
)
)
else:
self.total_N = 1000
self.beta_0 = continuous_beta_0
self.beta_1 = continuous_beta_1
self.cosine_s = 0.008
self.cosine_beta_max = 999.0
self.cosine_t_max = (
math.atan(self.cosine_beta_max * (1.0 + self.cosine_s) / math.pi)
* 2.0
* (1.0 + self.cosine_s)
/ math.pi
- self.cosine_s
)
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1.0 + self.cosine_s) * math.pi / 2.0))
self.schedule = schedule
if schedule == "cosine":
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
self.T = 0.9946
else:
self.T = 1.0
def marginal_log_mean_coeff(self, t):
"""
Compute log(alpha_t) of a given continuous-time label t in [0, T].
"""
if self.schedule == "discrete":
return interpolate_fn(
t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)
).reshape((-1))
elif self.schedule == "linear":
return -0.25 * t**2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
elif self.schedule == "cosine":
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1.0 + self.cosine_s) * math.pi / 2.0))
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
return log_alpha_t
def marginal_alpha(self, t):
"""
Compute alpha_t of a given continuous-time label t in [0, T].
"""
return torch.exp(self.marginal_log_mean_coeff(t))
def marginal_std(self, t):
"""
Compute sigma_t of a given continuous-time label t in [0, T].
"""
return torch.sqrt(1.0 - torch.exp(2.0 * self.marginal_log_mean_coeff(t)))
def marginal_lambda(self, t):
"""
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
"""
log_mean_coeff = self.marginal_log_mean_coeff(t)
log_std = 0.5 * torch.log(1.0 - torch.exp(2.0 * log_mean_coeff))
return log_mean_coeff - log_std
def inverse_lambda(self, lamb, return_scalar=False):
"""
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
"""
if self.schedule == "linear":
tmp = 2.0 * (self.beta_1 - self.beta_0) * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb))
Delta = self.beta_0**2 + tmp
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
elif self.schedule == "discrete":
# check if lamb is a scalar
if not isinstance(lamb, torch.Tensor):
lamb = torch.tensor(lamb)
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2.0 * lamb)
t = interpolate_fn(
log_alpha.reshape((-1, 1)),
torch.flip(self.log_alpha_array.to(lamb.device), [1]),
torch.flip(self.t_array.to(lamb.device), [1]),
)
if return_scalar:
return t.reshape((-1,)).item()
return t.reshape((-1,))
else:
log_alpha = -0.5 * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb))
t_fn = (
lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0))
* 2.0
* (1.0 + self.cosine_s)
/ math.pi
- self.cosine_s
)
t = t_fn(log_alpha)
return t
def model_wrapper(
model,
noise_schedule,
model_type="noise",
model_kwargs={},
guidance_type="uncond",
condition=None,
unconditional_condition=None,
guidance_scale=1.0,
classifier_fn=None,
classifier_kwargs={},
):
def get_model_input_time(t_continuous):
"""
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
For continuous-time DPMs, we just use `t_continuous`.
"""
if noise_schedule.schedule == "discrete":
return (t_continuous - 1.0 / noise_schedule.total_N) * 1000.0
else:
return t_continuous
def noise_pred_fn(x, t_continuous, cond=None):
if t_continuous.reshape((-1,)).shape[0] == 1:
t_continuous = t_continuous.expand((x.shape[0]))
t_input = get_model_input_time(t_continuous)
if cond is None:
output = model(x, t_input, None, **model_kwargs)
else:
output = model(x, t_input, cond, **model_kwargs)
if model_type == "noise":
return output
elif model_type == "x_start":
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
dims = x.dim()
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
elif model_type == "v":
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
dims = x.dim()
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
elif model_type == "score":
sigma_t = noise_schedule.marginal_std(t_continuous)
dims = x.dim()
return -expand_dims(sigma_t, dims) * output
def cond_grad_fn(x, t_input):
"""
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
"""
with torch.enable_grad():
x_in = x.detach().requires_grad_(True)
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
return torch.autograd.grad(log_prob.sum(), x_in)[0]
def model_fn(x, t_continuous):
"""
The noise predicition model function that is used for DPM-Solver.
"""
if t_continuous.reshape((-1,)).shape[0] == 1:
t_continuous = t_continuous.expand((x.shape[0]))
if guidance_type == "uncond":
return noise_pred_fn(x, t_continuous)
elif guidance_type == "classifier":
assert classifier_fn is not None
t_input = get_model_input_time(t_continuous)
cond_grad = cond_grad_fn(x, t_input)
sigma_t = noise_schedule.marginal_std(t_continuous)
noise = noise_pred_fn(x, t_continuous)
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
elif guidance_type == "classifier-free":
if guidance_scale == 1.0 or unconditional_condition is None:
return noise_pred_fn(x, t_continuous, cond=condition)
else:
x_in = torch.cat([x] * 2)
t_in = torch.cat([t_continuous] * 2)
c_in = torch.cat([unconditional_condition, condition])
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
return noise_uncond + guidance_scale * (noise - noise_uncond)
assert model_type in ["noise", "x_start", "v"]
assert guidance_type in ["uncond", "classifier", "classifier-free"]
return model_fn
class DPM_Solver:
def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.0):
"""Construct a DPM-Solver.
We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
Args:
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
``
def model_fn(x, t_continuous):
return noise
``
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
"""
self.model = model_fn
self.noise_schedule = noise_schedule
self.predict_x0 = predict_x0
self.thresholding = thresholding
self.max_val = max_val
def noise_prediction_fn(self, x, t):
"""
Return the noise prediction model.
"""
return self.model(x, t)
def data_prediction_fn(self, x, t):
"""
Return the data prediction model (with thresholding).
"""
noise = self.noise_prediction_fn(x, t)
dims = x.dim()
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
if self.thresholding:
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
x0 = torch.clamp(x0, -s, s) / s
return x0
def model_fn(self, x, t):
"""
Convert the model to the noise prediction model or the data prediction model.
"""
if self.predict_x0:
return self.data_prediction_fn(x, t)
else:
return self.noise_prediction_fn(x, t)
def get_time_steps(self, skip_type, t_T, t_0, N, device):
"""Compute the intermediate time steps for sampling.
Args:
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
- 'logSNR': uniform logSNR for the time steps.
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
t_T: A `float`. The starting time of the sampling (default is T).
t_0: A `float`. The ending time of the sampling (default is epsilon).
N: A `int`. The total number of the spacing of the time steps.
device: A torch device.
Returns:
A pytorch tensor of the time steps, with the shape (N + 1,).
"""
if skip_type == "logSNR":
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
return self.noise_schedule.inverse_lambda(logSNR_steps)
elif skip_type == "time_uniform":
return torch.linspace(t_T, t_0, N + 1).to(device)
elif skip_type == "time_quadratic":
t_order = 2
t = torch.linspace(t_T ** (1.0 / t_order), t_0 ** (1.0 / t_order), N + 1).pow(t_order).to(device)
return t
else:
raise ValueError(
"Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type)
)
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
"""
Get the order of each step for sampling by the singlestep DPM-Solver.
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
- If order == 1:
We take `steps` of DPM-Solver-1 (i.e. DDIM).
- If order == 2:
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
- If order == 3:
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
============================================
Args:
order: A `int`. The max order for the solver (2 or 3).
steps: A `int`. The total number of function evaluations (NFE).
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
- 'logSNR': uniform logSNR for the time steps.
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
t_T: A `float`. The starting time of the sampling (default is T).
t_0: A `float`. The ending time of the sampling (default is epsilon).
device: A torch device.
Returns:
orders: A list of the solver order of each step.
"""
if order == 3:
K = steps // 3 + 1
if steps % 3 == 0:
orders = [
3,
] * (
K - 2
) + [2, 1]
elif steps % 3 == 1:
orders = [
3,
] * (
K - 1
) + [1]
else:
orders = [
3,
] * (
K - 1
) + [2]
elif order == 2:
if steps % 2 == 0:
K = steps // 2
orders = [
2,
] * K
else:
K = steps // 2 + 1
orders = [
2,
] * (
K - 1
) + [1]
elif order == 1:
K = 1
orders = [
1,
] * steps
else:
raise ValueError("'order' must be '1' or '2' or '3'.")
if skip_type == "logSNR":
# To reproduce the results in DPM-Solver paper
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
else:
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
torch.cumsum(
torch.tensor(
[
0,
]
+ orders
),
dim=0,
).to(device)
]
return timesteps_outer, orders
def denoise_to_zero_fn(self, x, s):
"""
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
"""
return self.data_prediction_fn(x, s)
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
"""
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
Args:
x: A pytorch tensor. The initial value at time `s`.
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
model_s: A pytorch tensor. The model function evaluated at time `s`.
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
return_intermediate: A `bool`. If true, also return the model value at time `s`.
Returns:
x_t: A pytorch tensor. The approximated solution at time `t`.
"""
ns = self.noise_schedule
dims = x.dim()
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
h = lambda_t - lambda_s
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
alpha_t = torch.exp(log_alpha_t)
if self.predict_x0:
phi_1 = torch.expm1(-h)
if model_s is None:
model_s = self.model_fn(x, s)
x_t = expand_dims(sigma_t / sigma_s, dims) * x - expand_dims(alpha_t * phi_1, dims) * model_s
if return_intermediate:
return x_t, {"model_s": model_s}
else:
return x_t
else:
phi_1 = torch.expm1(h)
if model_s is None:
model_s = self.model_fn(x, s)
x_t = (
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
- expand_dims(sigma_t * phi_1, dims) * model_s
)
if return_intermediate:
return x_t, {"model_s": model_s}
else:
return x_t
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
"""
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
Args:
x: A pytorch tensor. The initial value at time `s`.
model_prev_list: A list of pytorch tensor. The previous computed model values.
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
Returns:
x_t: A pytorch tensor. The approximated solution at time `t`.
"""
ns = self.noise_schedule
dims = x.dim()
model_prev_1, model_prev_0 = model_prev_list[-2:]
t_prev_1, t_prev_0 = t_prev_list[-2:]
lambda_prev_1, lambda_prev_0, lambda_t = (
ns.marginal_lambda(t_prev_1),
ns.marginal_lambda(t_prev_0),
ns.marginal_lambda(t),
)
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
alpha_t = torch.exp(log_alpha_t)
h_0 = lambda_prev_0 - lambda_prev_1
h = lambda_t - lambda_prev_0
r0 = h_0 / h
D1_0 = expand_dims(1.0 / r0, dims) * (model_prev_0 - model_prev_1)
if self.predict_x0:
if solver_type == "dpm_solver" or solver_type == "dpmsolver":
x_t = (
expand_dims(sigma_t / sigma_prev_0, dims) * x
- expand_dims(alpha_t * (torch.exp(-h) - 1.0), dims) * model_prev_0
- 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.0), dims) * D1_0
)
elif solver_type == "taylor":
x_t = (
expand_dims(sigma_t / sigma_prev_0, dims) * x
- expand_dims(alpha_t * (torch.exp(-h) - 1.0), dims) * model_prev_0
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0), dims) * D1_0
)
else:
if solver_type == "dpm_solver" or solver_type == "dpmsolver":
x_t = (
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- expand_dims(sigma_t * (torch.exp(h) - 1.0), dims) * model_prev_0
- 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.0), dims) * D1_0
)
elif solver_type == "taylor":
x_t = (
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- expand_dims(sigma_t * (torch.exp(h) - 1.0), dims) * model_prev_0
- expand_dims(sigma_t * ((torch.exp(h) - 1.0) / h - 1.0), dims) * D1_0
)
return x_t
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
"""
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
Args:
x: A pytorch tensor. The initial value at time `s`.
model_prev_list: A list of pytorch tensor. The previous computed model values.
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
Returns:
x_t: A pytorch tensor. The approximated solution at time `t`.
"""
ns = self.noise_schedule
dims = x.dim()
model_prev_2, model_prev_1, model_prev_0 = model_prev_list
t_prev_2, t_prev_1, t_prev_0 = t_prev_list
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = (
ns.marginal_lambda(t_prev_2),
ns.marginal_lambda(t_prev_1),
ns.marginal_lambda(t_prev_0),
ns.marginal_lambda(t),
)
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
alpha_t = torch.exp(log_alpha_t)
h_1 = lambda_prev_1 - lambda_prev_2
h_0 = lambda_prev_0 - lambda_prev_1
h = lambda_t - lambda_prev_0
r0, r1 = h_0 / h, h_1 / h
D1_0 = expand_dims(1.0 / r0, dims) * (model_prev_0 - model_prev_1)
D1_1 = expand_dims(1.0 / r1, dims) * (model_prev_1 - model_prev_2)
D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
D2 = expand_dims(1.0 / (r0 + r1), dims) * (D1_0 - D1_1)
if self.predict_x0:
x_t = (
expand_dims(sigma_t / sigma_prev_0, dims) * x
- expand_dims(alpha_t * (torch.exp(-h) - 1.0), dims) * model_prev_0
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0), dims) * D1
- expand_dims(alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5), dims) * D2
)
else:
x_t = (
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- expand_dims(sigma_t * (torch.exp(h) - 1.0), dims) * model_prev_0
- expand_dims(sigma_t * ((torch.exp(h) - 1.0) / h - 1.0), dims) * D1
- expand_dims(sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5), dims) * D2
)
return x_t
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type="dpm_solver"):
"""
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
Args:
x: A pytorch tensor. The initial value at time `s`.
model_prev_list: A list of pytorch tensor. The previous computed model values.
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
Returns:
x_t: A pytorch tensor. The approximated solution at time `t`.
"""
if order == 1:
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
elif order == 2:
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
elif order == 3:
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
else:
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
def dpm_solver_adaptive(
self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type="dpm_solver"
):
"""
The adaptive step size solver based on singlestep DPM-Solver.
Args:
x: A pytorch tensor. The initial value at time `t_T`.
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
t_T: A `float`. The starting time of the sampling (default is T).
t_0: A `float`. The ending time of the sampling (default is epsilon).
h_init: A `float`. The initial step size (for logSNR).
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
Returns:
x_0: A pytorch tensor. The approximated solution at time `t_0`.
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
"""
ns = self.noise_schedule
s = t_T * torch.ones((x.shape[0],)).to(x)
lambda_s = ns.marginal_lambda(s)
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
h = h_init * torch.ones_like(s).to(x)
x_prev = x
nfe = 0
if order == 2:
r1 = 0.5
lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(
x, s, t, r1=r1, solver_type=solver_type, **kwargs
)
elif order == 3:
r1, r2 = 1.0 / 3.0, 2.0 / 3.0
lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(
x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type
)
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(
x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs
)
else:
raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
while torch.abs((s - t_0)).mean() > t_err:
t = ns.inverse_lambda(lambda_s + h)
x_lower, lower_noise_kwargs = lower_update(x, s, t)
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
E = norm_fn((x_higher - x_lower) / delta).max()
if torch.all(E <= 1.0):
x = x_higher
s = t
x_prev = x_lower
lambda_s = ns.marginal_lambda(s)
h = torch.min(theta * h * torch.float_power(E, -1.0 / order).float(), lambda_0 - lambda_s)
nfe += order
print("adaptive solver nfe", nfe)
return x
def sample(
self,
x,
steps=20,
t_start=None,
t_end=None,
order=3,
skip_type="time_uniform",
method="singlestep",
lower_order_final=True,
denoise_to_zero=False,
solver_type="dpm_solver",
atol=0.0078,
rtol=0.05,
flags=None,
):
device = x.device
with torch.no_grad():
if flags.learn:
load_from = f"{flags.log_path}/NFE-{steps}-256LSUN-dpmsolver++-{order}-decode/best.pt"
timesteps = torch.load(load_from)['best_t_steps'].to(x.device)
if flags:
length = timesteps.shape[0] // 2
timesteps2 = timesteps[length:]
timesteps = timesteps[:length]
else:
timesteps2 = timesteps
else:
t_0 = 1.0 / self.noise_schedule.total_N if t_end is None else t_end
t_T = self.noise_schedule.T if t_start is None else t_start
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
timesteps2 = timesteps
assert timesteps.shape[0] - 1 == steps
def one_step(t1, t2, t_prev_list, model_prev_list, step, x_next, order, first=True):
x_next = self.multistep_dpm_solver_update(x_next, model_prev_list, t_prev_list, t1, step, solver_type="dpmsolver")
model_x_next = self.model_fn(x_next, t2)
update_lists(t_prev_list, model_prev_list, t1, model_x_next, order, first=first)
return x_next
def update_lists(t_list, model_list, t_, model_x, order, first=False):
if first:
t_list.append(t_)
model_list.append(model_x)
return
for m in range(order - 1):
t_list[m] = t_list[m + 1]
model_list[m] = model_list[m + 1]
t_list[-1] = t_
model_list[-1] = model_x
timesteps1 = timesteps
step = 0
vec_t1 = timesteps1[0].expand((x.shape[0]))
vec_t2 = timesteps2[0].expand((x.shape[0]))
t_prev_list = [vec_t1]
model_prev_list = [self.model_fn(x, vec_t2)]
for step in range(1, order):
vec_t1 = timesteps1[step].expand(x.shape[0])
vec_t2 = timesteps2[step].expand(x.shape[0])
x = one_step(vec_t1, vec_t2, t_prev_list, model_prev_list, step, x, order, first=True)
for step in range(order, steps + 1):
step_order = min(order, steps + 1 - step)
vec_t1 = timesteps1[step].expand(x.shape[0])
vec_t2 = timesteps2[step].expand(x.shape[0])
x = one_step(vec_t1, vec_t2, t_prev_list, model_prev_list, step_order, x, order, first=False)
return x
#############################################################
# other utility functions
#############################################################
def interpolate_fn(x, xp, yp):
"""
A piecewise linear function y = f(x), using xp and yp as keypoints.
We implement f(x) in a differentiable way (i.e. applicable for autograd).
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
Args:
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
yp: PyTorch tensor with shape [C, K].
Returns:
The function values f(x), with shape [N, C].
"""
N, K = x.shape[0], xp.shape[1]
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
x_idx = torch.argmin(x_indices, dim=2)
cand_start_idx = x_idx - 1
start_idx = torch.where(
torch.eq(x_idx, 0),
torch.tensor(1, device=x.device),
torch.where(
torch.eq(x_idx, K),
torch.tensor(K - 2, device=x.device),
cand_start_idx,
),
)
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
start_idx2 = torch.where(
torch.eq(x_idx, 0),
torch.tensor(0, device=x.device),
torch.where(
torch.eq(x_idx, K),
torch.tensor(K - 2, device=x.device),
cand_start_idx,
),
)
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
return cand
def expand_dims(v, dims):
"""
Expand the tensor `v` to the dim `dims`.
Args:
`v`: a PyTorch tensor with shape [N].
`dim`: a `int`.
Returns:
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
"""
return v[(...,) + (None,) * (dims - 1)]
|