import torch import torch.nn.functional as F import math class NoiseScheduleVP: def __init__( self, schedule="discrete", betas=None, alphas_cumprod=None, continuous_beta_0=0.1, continuous_beta_1=20.0, ): if schedule not in ["discrete", "linear", "cosine"]: raise ValueError( "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format( schedule ) ) self.schedule = schedule if schedule == "discrete": if betas is not None: log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) else: assert alphas_cumprod is not None log_alphas = 0.5 * torch.log(alphas_cumprod) self.total_N = len(log_alphas) self.T = 1.0 self.t_array = torch.linspace(0.0, 1.0, self.total_N + 1)[1:].reshape((1, -1)) self.log_alpha_array = log_alphas.reshape( ( 1, -1, ) ) else: self.total_N = 1000 self.beta_0 = continuous_beta_0 self.beta_1 = continuous_beta_1 self.cosine_s = 0.008 self.cosine_beta_max = 999.0 self.cosine_t_max = ( math.atan(self.cosine_beta_max * (1.0 + self.cosine_s) / math.pi) * 2.0 * (1.0 + self.cosine_s) / math.pi - self.cosine_s ) self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1.0 + self.cosine_s) * math.pi / 2.0)) self.schedule = schedule if schedule == "cosine": # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T. # Note that T = 0.9946 may be not the optimal setting. However, we find it works well. self.T = 0.9946 else: self.T = 1.0 def marginal_log_mean_coeff(self, t): """ Compute log(alpha_t) of a given continuous-time label t in [0, T]. """ if self.schedule == "discrete": return interpolate_fn( t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device) ).reshape((-1)) elif self.schedule == "linear": return -0.25 * t**2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 elif self.schedule == "cosine": log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1.0 + self.cosine_s) * math.pi / 2.0)) log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 return log_alpha_t def marginal_alpha(self, t): """ Compute alpha_t of a given continuous-time label t in [0, T]. """ return torch.exp(self.marginal_log_mean_coeff(t)) def marginal_std(self, t): """ Compute sigma_t of a given continuous-time label t in [0, T]. """ return torch.sqrt(1.0 - torch.exp(2.0 * self.marginal_log_mean_coeff(t))) def marginal_lambda(self, t): """ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. """ log_mean_coeff = self.marginal_log_mean_coeff(t) log_std = 0.5 * torch.log(1.0 - torch.exp(2.0 * log_mean_coeff)) return log_mean_coeff - log_std def inverse_lambda(self, lamb, return_scalar=False): """ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. """ if self.schedule == "linear": tmp = 2.0 * (self.beta_1 - self.beta_0) * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb)) Delta = self.beta_0**2 + tmp return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) elif self.schedule == "discrete": # check if lamb is a scalar if not isinstance(lamb, torch.Tensor): lamb = torch.tensor(lamb) log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2.0 * lamb) t = interpolate_fn( log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]), ) if return_scalar: return t.reshape((-1,)).item() return t.reshape((-1,)) else: log_alpha = -0.5 * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb)) t_fn = ( lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2.0 * (1.0 + self.cosine_s) / math.pi - self.cosine_s ) t = t_fn(log_alpha) return t def model_wrapper( model, noise_schedule, model_type="noise", model_kwargs={}, guidance_type="uncond", condition=None, unconditional_condition=None, guidance_scale=1.0, classifier_fn=None, classifier_kwargs={}, ): def get_model_input_time(t_continuous): """ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. For continuous-time DPMs, we just use `t_continuous`. """ if noise_schedule.schedule == "discrete": return (t_continuous - 1.0 / noise_schedule.total_N) * 1000.0 else: return t_continuous def noise_pred_fn(x, t_continuous, cond=None): if t_continuous.reshape((-1,)).shape[0] == 1: t_continuous = t_continuous.expand((x.shape[0])) t_input = get_model_input_time(t_continuous) if cond is None: output = model(x, t_input, None, **model_kwargs) else: output = model(x, t_input, cond, **model_kwargs) if model_type == "noise": return output elif model_type == "x_start": alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) dims = x.dim() return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims) elif model_type == "v": alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) dims = x.dim() return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x elif model_type == "score": sigma_t = noise_schedule.marginal_std(t_continuous) dims = x.dim() return -expand_dims(sigma_t, dims) * output def cond_grad_fn(x, t_input): """ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). """ with torch.enable_grad(): x_in = x.detach().requires_grad_(True) log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) return torch.autograd.grad(log_prob.sum(), x_in)[0] def model_fn(x, t_continuous): """ The noise predicition model function that is used for DPM-Solver. """ if t_continuous.reshape((-1,)).shape[0] == 1: t_continuous = t_continuous.expand((x.shape[0])) if guidance_type == "uncond": return noise_pred_fn(x, t_continuous) elif guidance_type == "classifier": assert classifier_fn is not None t_input = get_model_input_time(t_continuous) cond_grad = cond_grad_fn(x, t_input) sigma_t = noise_schedule.marginal_std(t_continuous) noise = noise_pred_fn(x, t_continuous) return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad elif guidance_type == "classifier-free": if guidance_scale == 1.0 or unconditional_condition is None: return noise_pred_fn(x, t_continuous, cond=condition) else: x_in = torch.cat([x] * 2) t_in = torch.cat([t_continuous] * 2) c_in = torch.cat([unconditional_condition, condition]) noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) return noise_uncond + guidance_scale * (noise - noise_uncond) assert model_type in ["noise", "x_start", "v"] assert guidance_type in ["uncond", "classifier", "classifier-free"] return model_fn class DPM_Solver: def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.0): """Construct a DPM-Solver. We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0"). If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver). If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++). In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True. The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales. Args: model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]): `` def model_fn(x, t_continuous): return noise `` noise_schedule: A noise schedule object, such as NoiseScheduleVP. predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model. thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1]. max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding. [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b. """ self.model = model_fn self.noise_schedule = noise_schedule self.predict_x0 = predict_x0 self.thresholding = thresholding self.max_val = max_val def noise_prediction_fn(self, x, t): """ Return the noise prediction model. """ return self.model(x, t) def data_prediction_fn(self, x, t): """ Return the data prediction model (with thresholding). """ noise = self.noise_prediction_fn(x, t) dims = x.dim() alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims) if self.thresholding: p = 0.995 # A hyperparameter in the paper of "Imagen" [1]. s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims) x0 = torch.clamp(x0, -s, s) / s return x0 def model_fn(self, x, t): """ Convert the model to the noise prediction model or the data prediction model. """ if self.predict_x0: return self.data_prediction_fn(x, t) else: return self.noise_prediction_fn(x, t) def get_time_steps(self, skip_type, t_T, t_0, N, device): """Compute the intermediate time steps for sampling. Args: skip_type: A `str`. The type for the spacing of the time steps. We support three types: - 'logSNR': uniform logSNR for the time steps. - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.) - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.) t_T: A `float`. The starting time of the sampling (default is T). t_0: A `float`. The ending time of the sampling (default is epsilon). N: A `int`. The total number of the spacing of the time steps. device: A torch device. Returns: A pytorch tensor of the time steps, with the shape (N + 1,). """ if skip_type == "logSNR": lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device) return self.noise_schedule.inverse_lambda(logSNR_steps) elif skip_type == "time_uniform": return torch.linspace(t_T, t_0, N + 1).to(device) elif skip_type == "time_quadratic": t_order = 2 t = torch.linspace(t_T ** (1.0 / t_order), t_0 ** (1.0 / t_order), N + 1).pow(t_order).to(device) return t else: raise ValueError( "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type) ) def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device): """ Get the order of each step for sampling by the singlestep DPM-Solver. We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast". Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is: - If order == 1: We take `steps` of DPM-Solver-1 (i.e. DDIM). - If order == 2: - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling. - If steps % 2 == 0, we use K steps of DPM-Solver-2. - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1. - If order == 3: - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling. - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1. - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1. - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2. ============================================ Args: order: A `int`. The max order for the solver (2 or 3). steps: A `int`. The total number of function evaluations (NFE). skip_type: A `str`. The type for the spacing of the time steps. We support three types: - 'logSNR': uniform logSNR for the time steps. - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.) - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.) t_T: A `float`. The starting time of the sampling (default is T). t_0: A `float`. The ending time of the sampling (default is epsilon). device: A torch device. Returns: orders: A list of the solver order of each step. """ if order == 3: K = steps // 3 + 1 if steps % 3 == 0: orders = [ 3, ] * ( K - 2 ) + [2, 1] elif steps % 3 == 1: orders = [ 3, ] * ( K - 1 ) + [1] else: orders = [ 3, ] * ( K - 1 ) + [2] elif order == 2: if steps % 2 == 0: K = steps // 2 orders = [ 2, ] * K else: K = steps // 2 + 1 orders = [ 2, ] * ( K - 1 ) + [1] elif order == 1: K = 1 orders = [ 1, ] * steps else: raise ValueError("'order' must be '1' or '2' or '3'.") if skip_type == "logSNR": # To reproduce the results in DPM-Solver paper timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device) else: timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[ torch.cumsum( torch.tensor( [ 0, ] + orders ), dim=0, ).to(device) ] return timesteps_outer, orders def denoise_to_zero_fn(self, x, s): """ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. """ return self.data_prediction_fn(x, s) def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False): """ DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`. Args: x: A pytorch tensor. The initial value at time `s`. s: A pytorch tensor. The starting time, with the shape (x.shape[0],). t: A pytorch tensor. The ending time, with the shape (x.shape[0],). model_s: A pytorch tensor. The model function evaluated at time `s`. If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. return_intermediate: A `bool`. If true, also return the model value at time `s`. Returns: x_t: A pytorch tensor. The approximated solution at time `t`. """ ns = self.noise_schedule dims = x.dim() lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) h = lambda_t - lambda_s log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t) sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t) alpha_t = torch.exp(log_alpha_t) if self.predict_x0: phi_1 = torch.expm1(-h) if model_s is None: model_s = self.model_fn(x, s) x_t = expand_dims(sigma_t / sigma_s, dims) * x - expand_dims(alpha_t * phi_1, dims) * model_s if return_intermediate: return x_t, {"model_s": model_s} else: return x_t else: phi_1 = torch.expm1(h) if model_s is None: model_s = self.model_fn(x, s) x_t = ( expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x - expand_dims(sigma_t * phi_1, dims) * model_s ) if return_intermediate: return x_t, {"model_s": model_s} else: return x_t def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"): """ Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`. Args: x: A pytorch tensor. The initial value at time `s`. model_prev_list: A list of pytorch tensor. The previous computed model values. t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],) t: A pytorch tensor. The ending time, with the shape (x.shape[0],). solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. The type slightly impacts the performance. We recommend to use 'dpm_solver' type. Returns: x_t: A pytorch tensor. The approximated solution at time `t`. """ ns = self.noise_schedule dims = x.dim() model_prev_1, model_prev_0 = model_prev_list[-2:] t_prev_1, t_prev_0 = t_prev_list[-2:] lambda_prev_1, lambda_prev_0, lambda_t = ( ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t), ) log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) alpha_t = torch.exp(log_alpha_t) h_0 = lambda_prev_0 - lambda_prev_1 h = lambda_t - lambda_prev_0 r0 = h_0 / h D1_0 = expand_dims(1.0 / r0, dims) * (model_prev_0 - model_prev_1) if self.predict_x0: if solver_type == "dpm_solver" or solver_type == "dpmsolver": x_t = ( expand_dims(sigma_t / sigma_prev_0, dims) * x - expand_dims(alpha_t * (torch.exp(-h) - 1.0), dims) * model_prev_0 - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.0), dims) * D1_0 ) elif solver_type == "taylor": x_t = ( expand_dims(sigma_t / sigma_prev_0, dims) * x - expand_dims(alpha_t * (torch.exp(-h) - 1.0), dims) * model_prev_0 + expand_dims(alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0), dims) * D1_0 ) else: if solver_type == "dpm_solver" or solver_type == "dpmsolver": x_t = ( expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x - expand_dims(sigma_t * (torch.exp(h) - 1.0), dims) * model_prev_0 - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.0), dims) * D1_0 ) elif solver_type == "taylor": x_t = ( expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x - expand_dims(sigma_t * (torch.exp(h) - 1.0), dims) * model_prev_0 - expand_dims(sigma_t * ((torch.exp(h) - 1.0) / h - 1.0), dims) * D1_0 ) return x_t def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"): """ Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`. Args: x: A pytorch tensor. The initial value at time `s`. model_prev_list: A list of pytorch tensor. The previous computed model values. t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],) t: A pytorch tensor. The ending time, with the shape (x.shape[0],). solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. The type slightly impacts the performance. We recommend to use 'dpm_solver' type. Returns: x_t: A pytorch tensor. The approximated solution at time `t`. """ ns = self.noise_schedule dims = x.dim() model_prev_2, model_prev_1, model_prev_0 = model_prev_list t_prev_2, t_prev_1, t_prev_0 = t_prev_list lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ( ns.marginal_lambda(t_prev_2), ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t), ) log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) alpha_t = torch.exp(log_alpha_t) h_1 = lambda_prev_1 - lambda_prev_2 h_0 = lambda_prev_0 - lambda_prev_1 h = lambda_t - lambda_prev_0 r0, r1 = h_0 / h, h_1 / h D1_0 = expand_dims(1.0 / r0, dims) * (model_prev_0 - model_prev_1) D1_1 = expand_dims(1.0 / r1, dims) * (model_prev_1 - model_prev_2) D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1) D2 = expand_dims(1.0 / (r0 + r1), dims) * (D1_0 - D1_1) if self.predict_x0: x_t = ( expand_dims(sigma_t / sigma_prev_0, dims) * x - expand_dims(alpha_t * (torch.exp(-h) - 1.0), dims) * model_prev_0 + expand_dims(alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0), dims) * D1 - expand_dims(alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5), dims) * D2 ) else: x_t = ( expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x - expand_dims(sigma_t * (torch.exp(h) - 1.0), dims) * model_prev_0 - expand_dims(sigma_t * ((torch.exp(h) - 1.0) / h - 1.0), dims) * D1 - expand_dims(sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5), dims) * D2 ) return x_t def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type="dpm_solver"): """ Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`. Args: x: A pytorch tensor. The initial value at time `s`. model_prev_list: A list of pytorch tensor. The previous computed model values. t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],) t: A pytorch tensor. The ending time, with the shape (x.shape[0],). order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3. solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. The type slightly impacts the performance. We recommend to use 'dpm_solver' type. Returns: x_t: A pytorch tensor. The approximated solution at time `t`. """ if order == 1: return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1]) elif order == 2: return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type) elif order == 3: return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type) else: raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order)) def dpm_solver_adaptive( self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type="dpm_solver" ): """ The adaptive step size solver based on singlestep DPM-Solver. Args: x: A pytorch tensor. The initial value at time `t_T`. order: A `int`. The (higher) order of the solver. We only support order == 2 or 3. t_T: A `float`. The starting time of the sampling (default is T). t_0: A `float`. The ending time of the sampling (default is epsilon). h_init: A `float`. The initial step size (for logSNR). atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1]. rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05. theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1]. t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the current time and `t_0` is less than `t_err`. The default setting is 1e-5. solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. The type slightly impacts the performance. We recommend to use 'dpm_solver' type. Returns: x_0: A pytorch tensor. The approximated solution at time `t_0`. [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021. """ ns = self.noise_schedule s = t_T * torch.ones((x.shape[0],)).to(x) lambda_s = ns.marginal_lambda(s) lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x)) h = h_init * torch.ones_like(s).to(x) x_prev = x nfe = 0 if order == 2: r1 = 0.5 lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True) higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update( x, s, t, r1=r1, solver_type=solver_type, **kwargs ) elif order == 3: r1, r2 = 1.0 / 3.0, 2.0 / 3.0 lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update( x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type ) higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update( x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs ) else: raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order)) while torch.abs((s - t_0)).mean() > t_err: t = ns.inverse_lambda(lambda_s + h) x_lower, lower_noise_kwargs = lower_update(x, s, t) x_higher = higher_update(x, s, t, **lower_noise_kwargs) delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev))) norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True)) E = norm_fn((x_higher - x_lower) / delta).max() if torch.all(E <= 1.0): x = x_higher s = t x_prev = x_lower lambda_s = ns.marginal_lambda(s) h = torch.min(theta * h * torch.float_power(E, -1.0 / order).float(), lambda_0 - lambda_s) nfe += order print("adaptive solver nfe", nfe) return x def sample( self, x, steps=20, t_start=None, t_end=None, order=3, skip_type="time_uniform", method="singlestep", lower_order_final=True, denoise_to_zero=False, solver_type="dpm_solver", atol=0.0078, rtol=0.05, flags=None, ): device = x.device with torch.no_grad(): if flags.learn: load_from = f"{flags.log_path}/NFE-{steps}-256LSUN-dpmsolver++-{order}-decode/best.pt" timesteps = torch.load(load_from)['best_t_steps'].to(x.device) if flags: length = timesteps.shape[0] // 2 timesteps2 = timesteps[length:] timesteps = timesteps[:length] else: timesteps2 = timesteps else: t_0 = 1.0 / self.noise_schedule.total_N if t_end is None else t_end t_T = self.noise_schedule.T if t_start is None else t_start timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) timesteps2 = timesteps assert timesteps.shape[0] - 1 == steps def one_step(t1, t2, t_prev_list, model_prev_list, step, x_next, order, first=True): x_next = self.multistep_dpm_solver_update(x_next, model_prev_list, t_prev_list, t1, step, solver_type="dpmsolver") model_x_next = self.model_fn(x_next, t2) update_lists(t_prev_list, model_prev_list, t1, model_x_next, order, first=first) return x_next def update_lists(t_list, model_list, t_, model_x, order, first=False): if first: t_list.append(t_) model_list.append(model_x) return for m in range(order - 1): t_list[m] = t_list[m + 1] model_list[m] = model_list[m + 1] t_list[-1] = t_ model_list[-1] = model_x timesteps1 = timesteps step = 0 vec_t1 = timesteps1[0].expand((x.shape[0])) vec_t2 = timesteps2[0].expand((x.shape[0])) t_prev_list = [vec_t1] model_prev_list = [self.model_fn(x, vec_t2)] for step in range(1, order): vec_t1 = timesteps1[step].expand(x.shape[0]) vec_t2 = timesteps2[step].expand(x.shape[0]) x = one_step(vec_t1, vec_t2, t_prev_list, model_prev_list, step, x, order, first=True) for step in range(order, steps + 1): step_order = min(order, steps + 1 - step) vec_t1 = timesteps1[step].expand(x.shape[0]) vec_t2 = timesteps2[step].expand(x.shape[0]) x = one_step(vec_t1, vec_t2, t_prev_list, model_prev_list, step_order, x, order, first=False) return x ############################################################# # other utility functions ############################################################# def interpolate_fn(x, xp, yp): """ A piecewise linear function y = f(x), using xp and yp as keypoints. We implement f(x) in a differentiable way (i.e. applicable for autograd). The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) Args: x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. yp: PyTorch tensor with shape [C, K]. Returns: The function values f(x), with shape [N, C]. """ N, K = x.shape[0], xp.shape[1] all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) sorted_all_x, x_indices = torch.sort(all_x, dim=2) x_idx = torch.argmin(x_indices, dim=2) cand_start_idx = x_idx - 1 start_idx = torch.where( torch.eq(x_idx, 0), torch.tensor(1, device=x.device), torch.where( torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, ), ) end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) start_idx2 = torch.where( torch.eq(x_idx, 0), torch.tensor(0, device=x.device), torch.where( torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, ), ) y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) return cand def expand_dims(v, dims): """ Expand the tensor `v` to the dim `dims`. Args: `v`: a PyTorch tensor with shape [N]. `dim`: a `int`. Returns: a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. """ return v[(...,) + (None,) * (dims - 1)]