import torch import torch.nn.functional as F import math class NoiseScheduleVP: def __init__( self, schedule="discrete", betas=None, alphas_cumprod=None, continuous_beta_0=0.1, continuous_beta_1=20.0, ): if schedule not in ["discrete", "linear", "cosine"]: raise ValueError( "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format( schedule ) ) self.schedule = schedule if schedule == "discrete": if betas is not None: log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) else: assert alphas_cumprod is not None log_alphas = 0.5 * torch.log(alphas_cumprod) self.total_N = len(log_alphas) self.T = 1.0 self.t_array = torch.linspace(0.0, 1.0, self.total_N + 1)[1:].reshape((1, -1)) self.log_alpha_array = log_alphas.reshape( ( 1, -1, ) ) else: self.total_N = 1000 self.beta_0 = continuous_beta_0 self.beta_1 = continuous_beta_1 self.cosine_s = 0.008 self.cosine_beta_max = 999.0 self.cosine_t_max = ( math.atan(self.cosine_beta_max * (1.0 + self.cosine_s) / math.pi) * 2.0 * (1.0 + self.cosine_s) / math.pi - self.cosine_s ) self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1.0 + self.cosine_s) * math.pi / 2.0)) self.schedule = schedule if schedule == "cosine": # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T. # Note that T = 0.9946 may be not the optimal setting. However, we find it works well. self.T = 0.9946 else: self.T = 1.0 def marginal_log_mean_coeff(self, t): """ Compute log(alpha_t) of a given continuous-time label t in [0, T]. """ if self.schedule == "discrete": return interpolate_fn( t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device) ).reshape((-1)) elif self.schedule == "linear": return -0.25 * t**2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 elif self.schedule == "cosine": log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1.0 + self.cosine_s) * math.pi / 2.0)) log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 return log_alpha_t def marginal_alpha(self, t): """ Compute alpha_t of a given continuous-time label t in [0, T]. """ return torch.exp(self.marginal_log_mean_coeff(t)) def marginal_std(self, t): """ Compute sigma_t of a given continuous-time label t in [0, T]. """ return torch.sqrt(1.0 - torch.exp(2.0 * self.marginal_log_mean_coeff(t))) def marginal_lambda(self, t): """ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. """ log_mean_coeff = self.marginal_log_mean_coeff(t) log_std = 0.5 * torch.log(1.0 - torch.exp(2.0 * log_mean_coeff)) return log_mean_coeff - log_std def inverse_lambda(self, lamb): """ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. """ if self.schedule == "linear": tmp = 2.0 * (self.beta_1 - self.beta_0) * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb)) Delta = self.beta_0**2 + tmp return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) elif self.schedule == "discrete": log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2.0 * lamb) t = interpolate_fn( log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]), ) return t.reshape((-1,)) else: log_alpha = -0.5 * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb)) t_fn = ( lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2.0 * (1.0 + self.cosine_s) / math.pi - self.cosine_s ) t = t_fn(log_alpha) return t def model_wrapper( model, noise_schedule, model_type="noise", model_kwargs={}, guidance_type="uncond", condition=None, unconditional_condition=None, guidance_scale=1.0, classifier_fn=None, classifier_kwargs={}, ): def get_model_input_time(t_continuous): """ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. For continuous-time DPMs, we just use `t_continuous`. """ if noise_schedule.schedule == "discrete": return (t_continuous - 1.0 / noise_schedule.total_N) * 1000.0 else: return t_continuous def noise_pred_fn(x, t_continuous, cond=None): if t_continuous.reshape((-1,)).shape[0] == 1: t_continuous = t_continuous.expand((x.shape[0])) t_input = get_model_input_time(t_continuous) if cond is None: output = model(x, t_input, None, **model_kwargs) else: output = model(x, t_input, cond, **model_kwargs) if model_type == "noise": return output elif model_type == "x_start": alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) dims = x.dim() return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims) elif model_type == "v": alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) dims = x.dim() return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x elif model_type == "score": sigma_t = noise_schedule.marginal_std(t_continuous) dims = x.dim() return -expand_dims(sigma_t, dims) * output def cond_grad_fn(x, t_input): """ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). """ with torch.enable_grad(): x_in = x.detach().requires_grad_(True) log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) return torch.autograd.grad(log_prob.sum(), x_in)[0] def model_fn(x, t_continuous): """ The noise predicition model function that is used for DPM-Solver. """ if t_continuous.reshape((-1,)).shape[0] == 1: t_continuous = t_continuous.expand((x.shape[0])) if guidance_type == "uncond": return noise_pred_fn(x, t_continuous) elif guidance_type == "classifier": assert classifier_fn is not None t_input = get_model_input_time(t_continuous) cond_grad = cond_grad_fn(x, t_input) sigma_t = noise_schedule.marginal_std(t_continuous) noise = noise_pred_fn(x, t_continuous) return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad elif guidance_type == "classifier-free": if guidance_scale == 1.0 or unconditional_condition is None: return noise_pred_fn(x, t_continuous, cond=condition) else: x_in = torch.cat([x] * 2) t_in = torch.cat([t_continuous] * 2) c_in = torch.cat([unconditional_condition, condition]) noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) return noise_uncond + guidance_scale * (noise - noise_uncond) assert model_type in ["noise", "x_start", "v"] assert guidance_type in ["uncond", "classifier", "classifier-free"] return model_fn class UniPC: def __init__(self, model_fn, noise_schedule, predict_x0=True, thresholding=False, max_val=1.0, variant="bh1"): """Construct a UniPC. We support both data_prediction and noise_prediction. """ self.model = model_fn self.noise_schedule = noise_schedule self.variant = variant self.predict_x0 = predict_x0 self.thresholding = thresholding self.max_val = max_val def dynamic_thresholding_fn(self, x0, t=None): """ The dynamic thresholding method. """ dims = x0.dim() p = self.dynamic_thresholding_ratio s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims) x0 = torch.clamp(x0, -s, s) / s return x0 def noise_prediction_fn(self, x, t): """ Return the noise prediction model. """ return self.model(x, t) def data_prediction_fn(self, x, t): """ Return the data prediction model (with thresholding). """ noise = self.noise_prediction_fn(x, t) dims = x.dim() alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims) if self.thresholding: p = 0.995 # A hyperparameter in the paper of "Imagen" [1]. s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims) x0 = torch.clamp(x0, -s, s) / s return x0 def model_fn(self, x, t): """ Convert the model to the noise prediction model or the data prediction model. """ if self.predict_x0: return self.data_prediction_fn(x, t) else: return self.noise_prediction_fn(x, t) def get_time_steps(self, skip_type, t_T, t_0, N, device): """Compute the intermediate time steps for sampling.""" if skip_type == "logSNR": lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device) return self.noise_schedule.inverse_lambda(logSNR_steps) elif skip_type == "time_uniform": return torch.linspace(t_T, t_0, N + 1).to(device) elif skip_type == "time_quadratic": t_order = 2 t = torch.linspace(t_T ** (1.0 / t_order), t_0 ** (1.0 / t_order), N + 1).pow(t_order).to(device) return t else: raise ValueError( "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type) ) def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, t2, order, **kwargs): if len(t.shape) == 0: t = t.view(-1) if "bh" in self.variant: return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, t2, order, **kwargs) def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, t2, order, x_t=None, use_corrector=True): # print(f'using unified predictor-corrector with order {order} (solver type: B(h))') ns = self.noise_schedule assert order <= len(model_prev_list) dims = x.dim() # first compute rks t_prev_0 = t_prev_list[-1] lambda_prev_0 = ns.marginal_lambda(t_prev_0) lambda_t = ns.marginal_lambda(t) model_prev_0 = model_prev_list[-1] sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) alpha_t = torch.exp(log_alpha_t) h = lambda_t - lambda_prev_0 rks = [] D1s = [] for i in range(1, order): t_prev_i = t_prev_list[-(i + 1)] model_prev_i = model_prev_list[-(i + 1)] lambda_prev_i = ns.marginal_lambda(t_prev_i) rk = ((lambda_prev_i - lambda_prev_0) / h)[0] rks.append(rk) D1s.append((model_prev_i - model_prev_0) / rk) rks.append(1.0) rks = torch.tensor(rks, device=x.device) R = [] b = [] hh = -h[0] if self.predict_x0 else h[0] h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1 h_phi_k = h_phi_1 / hh - 1 factorial_i = 1 if self.variant == "bh1": B_h = hh elif self.variant == "bh2": B_h = torch.expm1(hh) else: raise NotImplementedError() for i in range(1, order + 1): R.append(torch.pow(rks, i - 1)) b.append(h_phi_k * factorial_i / B_h) factorial_i *= i + 1 h_phi_k = h_phi_k / hh - 1 / factorial_i R = torch.stack(R) b = torch.tensor(b, device=x.device) # now predictor use_predictor = len(D1s) > 0 and x_t is None if len(D1s) > 0: D1s = torch.stack(D1s, dim=1) # (B, K) if x_t is None: # for order 2, we use a simplified version if order == 2: rhos_p = torch.tensor([0.5], device=b.device) else: rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]) else: D1s = None if use_corrector: # print('using corrector') # for order 1, we use a simplified version if order == 1: rhos_c = torch.tensor([0.5], device=b.device) else: rhos_c = torch.linalg.solve(R, b) model_t = None if self.predict_x0: x_t_ = expand_dims(sigma_t / sigma_prev_0, dims) * x - expand_dims(alpha_t * h_phi_1, dims) * model_prev_0 if x_t is None: if use_predictor: pred_res = torch.einsum("k,bkchw->bchw", rhos_p, D1s) else: pred_res = 0 x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res if use_corrector: model_t = self.model_fn(x_t, t2) if D1s is not None: corr_res = torch.einsum("k,bkchw->bchw", rhos_c[:-1], D1s) else: corr_res = 0 D1_t = model_t - model_prev_0 x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t) else: x_t_ = ( expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x - expand_dims(sigma_t * h_phi_1, dims) * model_prev_0 ) if x_t is None: if use_predictor: pred_res = torch.einsum("k,bkchw->bchw", rhos_p, D1s) else: pred_res = 0 x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res if use_corrector: model_t = self.model_fn(x_t, t2) if D1s is not None: corr_res = torch.einsum("k,bkchw->bchw", rhos_c[:-1], D1s) else: corr_res = 0 D1_t = model_t - model_prev_0 x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t) return x_t, model_t def sample( self, x, steps=20, t_start=None, t_end=None, order=3, skip_type="time_uniform", method="singlestep", lower_order_final=True, denoise_to_zero=False, solver_type="dpm_solver", atol=0.0078, rtol=0.05, corrector=False, flags=None, ): device = x.device assert steps >= order with torch.no_grad(): if flags.learn: load_from = f"{flags.log_path}/NFE-{steps}-256LSUN-uni_pc-{order}-decode/best.pt" timesteps = torch.load(load_from)['best_t_steps'].to(x.device) if flags.vs: length = timesteps.shape[0] // 2 timesteps2 = timesteps[length:] timesteps = timesteps[:length] else: timesteps2 = timesteps else: t_0 = 1.0 / self.noise_schedule.total_N if t_end is None else t_end t_T = self.noise_schedule.T if t_start is None else t_start timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) timesteps2 = timesteps assert timesteps.shape[0] - 1 == steps def one_step(t1, t2, t_prev_list, model_prev_list, step, x_next, order, first=True, use_corrector=True): x_next, model_x_next = self.multistep_uni_pc_update(x_next, model_prev_list, t_prev_list, t1, t2, step, use_corrector=use_corrector) if model_x_next is None: model_x_next = self.model_fn(x_next, t2) update_lists(t_prev_list, model_prev_list, t1, model_x_next, order, first=first) return x_next def update_lists(t_list, model_list, t_, model_x, order, first=False): if first: t_list.append(t_) model_list.append(model_x) return for m in range(order - 1): t_list[m] = t_list[m + 1] model_list[m] = model_list[m + 1] t_list[-1] = t_ model_list[-1] = model_x timesteps1 = timesteps step = 0 vec_t1 = timesteps1[0].expand((x.shape[0])) # bs vec_t2 = timesteps2[0].expand((x.shape[0])) # bs t_prev_list = [vec_t1] model_prev_list = [self.model_fn(x, vec_t2)] for step in range(1, order): vec_t1 = timesteps1[step].expand((x.shape[0])) vec_t2 = timesteps2[step].expand((x.shape[0])) x = one_step(vec_t1, vec_t2, t_prev_list, model_prev_list, step, x, order, first=True) for step in range(order, steps + 1): step_order = min(order, steps + 1 - step) vec_t1 = timesteps1[step].expand((x.shape[0])) vec_t2 = timesteps2[step].expand((x.shape[0])) use_corrector = True if step == steps: use_corrector = False x = one_step(vec_t1, vec_t2, t_prev_list, model_prev_list, step_order, x, order, first=False, use_corrector=use_corrector) return x ############################################################# # other utility functions ############################################################# def interpolate_fn(x, xp, yp): """ A piecewise linear function y = f(x), using xp and yp as keypoints. We implement f(x) in a differentiable way (i.e. applicable for autograd). The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) Args: x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. yp: PyTorch tensor with shape [C, K]. Returns: The function values f(x), with shape [N, C]. """ N, K = x.shape[0], xp.shape[1] all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) sorted_all_x, x_indices = torch.sort(all_x, dim=2) x_idx = torch.argmin(x_indices, dim=2) cand_start_idx = x_idx - 1 start_idx = torch.where( torch.eq(x_idx, 0), torch.tensor(1, device=x.device), torch.where( torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, ), ) end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) start_idx2 = torch.where( torch.eq(x_idx, 0), torch.tensor(0, device=x.device), torch.where( torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, ), ) y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) return cand def expand_dims(v, dims): """ Expand the tensor `v` to the dim `dims`. Args: `v`: a PyTorch tensor with shape [N]. `dim`: a `int`. Returns: a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. """ return v[(...,) + (None,) * (dims - 1)]