File size: 16,062 Bytes
f3dce3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Dict, Optional, Tuple
from torch.distributions import Normal, kl_divergence
class NeuralCorticalLevel(nn.Module):
"""
A cortical level with learnable neural network parameters.
Implements predictive coding with proper generative functions.
"""
def __init__(self, level_id: int, input_dim: int, output_dim: int, hidden_dim: int, name: str):
super().__init__()
self.level_id = level_id
self.name = name
self.input_dim = input_dim
self.output_dim = output_dim
# Encoder: bottom-up (error to expectation)
self.encoder = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.LayerNorm(hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.LayerNorm(hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, output_dim)
)
# Decoder: top-down (expectation to prediction)
self.decoder = nn.Sequential(
nn.Linear(output_dim, hidden_dim),
nn.LayerNorm(hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.LayerNorm(hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, input_dim)
)
# Precision (uncertainty) network
self.precision_net = nn.Sequential(
nn.Linear(output_dim, hidden_dim // 2),
nn.ReLU(),
nn.Linear(hidden_dim // 2, input_dim),
nn.Softplus() # Ensure positive precision
)
# Prior distribution parameters (learnable)
self.prior_mu = nn.Parameter(torch.zeros(output_dim))
self.prior_logvar = nn.Parameter(torch.zeros(output_dim))
# Current state
self.expectation = None
self.prediction = None
self.error = None
self.precision = None
def encode(self, input_data: torch.Tensor) -> torch.Tensor:
"""Bottom-up: encode input to expectation"""
return self.encoder(input_data)
def decode(self, expectation: torch.Tensor) -> torch.Tensor:
"""Top-down: decode expectation to prediction"""
return self.decoder(expectation)
def compute_precision(self, expectation: torch.Tensor) -> torch.Tensor:
"""Compute precision (inverse variance) from expectation"""
return self.precision_net(expectation) + 1e-6 # Add small epsilon for stability
def forward(self, input_data: torch.Tensor, top_down_prediction: Optional[torch.Tensor] = None):
"""
Forward pass through the cortical level.
Args:
input_data: Bottom-up input (from lower level or sensory)
top_down_prediction: Top-down prediction from higher level (optional)
"""
# Encode input to expectation
self.expectation = self.encode(input_data)
# Generate top-down prediction if not provided
if top_down_prediction is None:
self.prediction = self.decode(self.expectation)
else:
self.prediction = top_down_prediction
# Compute prediction error
self.error = input_data - self.prediction
# Compute precision
self.precision = self.compute_precision(self.expectation)
return self.expectation, self.error, self.precision
def get_prior_distribution(self):
"""Get prior distribution for KL divergence calculation"""
return Normal(self.prior_mu, torch.exp(0.5 * self.prior_logvar))
def get_posterior_distribution(self):
"""Get posterior distribution (approximated as Normal)"""
if self.expectation is None:
return None
# Approximate posterior as Normal with mean=expectation
# In full implementation, this would use learned variance
posterior_var = 1.0 / (self.precision.mean() + 1e-6)
return Normal(self.expectation, torch.sqrt(posterior_var))
class HierarchicalGenerativeModel(nn.Module):
"""
A hierarchy of NeuralCorticalLevel objects with proper message passing.
Level 0: Sensory (V1/A1) - 1M dim
Level 1: Perceptual (Object/Word recognition) - 100K dim
Level 2: Associative (Relations/Grammar) - 10K dim
Level 3: Prefrontal (Plans/Narratives) - 1K dim
Level 4: Meta-cortex (Strategy/Self-model) - 100 dim
"""
def __init__(self, use_cuda: bool = False, lightweight: bool = False):
super().__init__()
self.use_cuda = use_cuda and torch.cuda.is_available()
self.device = torch.device("cuda" if self.use_cuda else "cpu")
self.lightweight = lightweight
# Define dimensions for each level
if lightweight:
# Drastically reduced dimensions for lightweight mode (e.g. for testing/debugging)
dims = [
(1000, 512, "Sensory"), # Level 0: 1K -> 512
(512, 256, "Perceptual"), # Level 1: 512 -> 256
(256, 128, "Associative"), # Level 2: 256 -> 128
(128, 64, "Prefrontal"), # Level 3: 128 -> 64
(64, 10, "Meta") # Level 4: 64 -> 10
]
else:
# Original dimensions (potentially very large)
dims = [
(1000000, 100000, "Sensory"), # Level 0: 1M -> 100K
(100000, 10000, "Perceptual"), # Level 1: 100K -> 10K
(10000, 1000, "Associative"), # Level 2: 10K -> 1K
(1000, 100, "Prefrontal"), # Level 3: 1K -> 100
(100, 10, "Meta") # Level 4: 100 -> 10
]
# Create neural cortical levels
self.levels = nn.ModuleList()
for i, (input_dim, output_dim, name) in enumerate(dims):
hidden_dim = max(256, output_dim // 4) # Adaptive hidden dimension
level = NeuralCorticalLevel(
level_id=i,
input_dim=input_dim,
output_dim=output_dim,
hidden_dim=hidden_dim,
name=name
)
self.levels.append(level)
self.to(self.device)
def step(self, sensory_input: Optional[torch.Tensor] = None):
"""
A single cycle of predictive processing.
1. Top-down: Level L predicts Level L-1.
2. Bottom-up: Level L-1 sends error to Level L.
3. Local: Update expectations to minimize error.
"""
# Base dimension for level 0
base_dim = self.levels[0].input_dim
# Initialize sensory input if not provided
if sensory_input is None:
sensory_input = torch.zeros(base_dim, device=self.device)
else:
# Ensure it's on the right device and right size
if isinstance(sensory_input, np.ndarray):
sensory_input = torch.from_numpy(sensory_input).float()
sensory_input = sensory_input.to(self.device)
# Ensure 1D for consistent processing
if sensory_input.dim() > 1:
sensory_input = sensory_input.view(-1)
# Pad or truncate to match expected size
if sensory_input.size(0) < base_dim:
sensory_input = F.pad(sensory_input, (0, base_dim - sensory_input.size(0)))
elif sensory_input.size(0) > base_dim:
sensory_input = sensory_input[:base_dim]
# Bottom-up pass: encode from sensory to meta
current_input = sensory_input
expectations = []
for i, level in enumerate(self.levels):
# level(current_input) calls forward()
expectation, error, precision = level(current_input)
expectations.append(expectation)
current_input = expectation # Next level's input is this level's expectation
# Top-down pass: decode from meta to sensory
top_down_predictions = []
for i in range(len(self.levels) - 1, -1, -1):
level = self.levels[i]
# Each level i decodes its own expectation to predict its own input
# (which is the output/expectation of level i-1)
prediction = level.decode(expectations[i])
top_down_predictions.insert(0, prediction)
# Recompute with top-down predictions
for i, level in enumerate(self.levels):
if i == 0:
level_input = sensory_input
else:
level_input = expectations[i-1]
if i < len(top_down_predictions):
top_down = top_down_predictions[i]
# Resize top-down to match level input if needed
if top_down.size(0) != level_input.size(0):
# Robust resizing using interpolation
top_down = F.interpolate(
top_down.unsqueeze(0).unsqueeze(0),
size=level_input.size(0),
mode='linear',
align_corners=False
).view(-1)
level(level_input, top_down_prediction=top_down)
else:
level(level_input)
return expectations
def forward(self, sensory_input: Optional[torch.Tensor] = None):
"""Forward pass through the hierarchy"""
return self.step(sensory_input)
class FreeEnergyEngine:
"""
Optimization controller that minimizes Variational Free Energy across the hierarchy.
F = Complexity (KL divergence) - Accuracy (log likelihood)
"""
def __init__(self, model: HierarchicalGenerativeModel, learning_rate: float = 0.001):
self.model = model
self.learning_rate = learning_rate
self.optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
def calculate_free_energy(self, sensory_input: Optional[torch.Tensor] = None) -> float:
"""
Calculates total free energy across all levels as a float.
"""
with torch.no_grad():
fe_tensor = self._compute_free_energy_tensor(sensory_input)
return float(fe_tensor.item())
def _compute_free_energy_tensor(self, sensory_input: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Calculates total free energy across all levels, preserving the gradient graph.
F = -log p(x|z) + KL(q(z|x) || p(z))
"""
# Ensure sensory input is correctly sized and on device
base_dim = self.model.levels[0].input_dim
if sensory_input is None:
sensory_input = torch.zeros(base_dim, device=self.model.device)
else:
if isinstance(sensory_input, np.ndarray):
sensory_input = torch.from_numpy(sensory_input).float()
sensory_input = sensory_input.to(self.model.device)
if sensory_input.dim() > 1:
sensory_input = sensory_input.view(-1)
if sensory_input.size(0) < base_dim:
sensory_input = F.pad(sensory_input, (0, base_dim - sensory_input.size(0)))
elif sensory_input.size(0) > base_dim:
sensory_input = sensory_input[:base_dim]
# Forward pass (builds the graph)
self.model.step(sensory_input)
total_f = torch.tensor(0.0, device=self.model.device)
for level in self.model.levels:
if level.error is not None and level.precision is not None:
# Accuracy term: precision-weighted squared error
accuracy_term = torch.sum(level.precision * (level.error ** 2))
# Complexity term: KL divergence from prior
prior_dist = level.get_prior_distribution()
posterior_dist = level.get_posterior_distribution()
if posterior_dist is not None:
# KL divergence is summed over the output dimension
kl_term = kl_divergence(posterior_dist, prior_dist).sum()
else:
kl_term = torch.tensor(0.0, device=self.model.device)
total_f = total_f + accuracy_term + kl_term
return total_f
def optimize(self, sensory_input: Optional[torch.Tensor] = None, iterations: int = 5):
"""
Optimize the model to minimize free energy.
"""
self.model.train()
for _ in range(iterations):
self.optimizer.zero_grad()
# Compute free energy tensor (maintaining gradients)
fe_tensor = self._compute_free_energy_tensor(sensory_input)
# Backward and optimize
fe_tensor.backward()
self.optimizer.step()
self.model.eval()
return self.calculate_free_energy(sensory_input)
class GlobalWorkspace:
"""
Simulates the 40Hz thalamocortical resonance for conscious access.
Broadcasts high-precision information across the hierarchy.
"""
def __init__(self, model: HierarchicalGenerativeModel):
self.model = model
self.frequency = 40.0 # Hz
self.synchrony = 0.0
self.broadcast_buffer = None
def broadcast(self):
"""
Synchronizes high-precision signals to the workspace.
Implements competitive selection based on precision.
"""
# Collect high-precision signals from all levels
signals = []
precisions = []
for level in self.model.levels:
if level.expectation is not None and level.precision is not None:
# Weight by precision (high precision = high confidence)
weighted_signal = level.expectation * level.precision.mean()
signals.append(weighted_signal)
precisions.append(level.precision.mean().item())
if signals:
# Competitive selection: signals with highest precision win
max_precision_idx = np.argmax(precisions)
self.broadcast_buffer = signals[max_precision_idx]
# Calculate synchrony (how aligned the signals are)
if len(signals) > 1:
# Compute cosine similarity between top signals
top_signals = sorted(zip(signals, precisions), key=lambda x: x[1], reverse=True)[:3]
if len(top_signals) > 1:
similarities = []
for i in range(len(top_signals) - 1):
s1 = top_signals[i][0]
s2 = top_signals[i+1][0]
# Normalize and compute cosine similarity
s1_norm = s1 / (s1.norm() + 1e-9)
s2_norm = s2 / (s2.norm() + 1e-9)
# Resize to same dimension if needed for dot product
if len(s1_norm) != len(s2_norm):
target_size = max(len(s1_norm), len(s2_norm))
s1_padded = F.pad(s1_norm, (0, target_size - len(s1_norm)))
s2_padded = F.pad(s2_norm, (0, target_size - len(s2_norm)))
sim = torch.dot(s1_padded, s2_padded).item()
else:
sim = torch.dot(s1_norm, s2_norm).item()
similarities.append(sim)
self.synchrony = np.mean(similarities) if similarities else 0.0
else:
self.synchrony = 1.0
else:
self.synchrony = 1.0
else:
self.broadcast_buffer = None
self.synchrony = 0.0
return self.broadcast_buffer, self.synchrony
|