yalhessi commited on
Commit
f3bb9c3
·
verified ·
1 Parent(s): 492228c

Training in progress, epoch 9, checkpoint

Browse files
checkpoint-140121/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/deepseek-coder-6.7b-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-140121/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "deepseek-ai/deepseek-coder-6.7b-base",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "q_proj",
27
+ "v_proj"
28
+ ],
29
+ "task_type": "CAUSAL_LM",
30
+ "use_dora": false,
31
+ "use_rslora": false
32
+ }
checkpoint-140121/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2426a7e9b6bb1acf26cdf612f585fbf892fb6486048a03c181e3b44333e73578
3
+ size 541459256
checkpoint-140121/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:539e8bcb7462e1bc2676747738b06f686bd73dd7f857c926dab34090e0235479
3
+ size 33662074
checkpoint-140121/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8223d90599de0f0ad2a2d5aaa5fb136fd30fdce3c1d8814d3f029f942d754557
3
+ size 15024
checkpoint-140121/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69a4ce072b685e48dbc440061a32e0a450473618fc6c7b52cf266ddbd8918dd9
3
+ size 15024
checkpoint-140121/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a84bdc2d053c5f7d5f2a77463cdead2098eb3bbeb409c9cd01802c08b1286b3
3
+ size 15024
checkpoint-140121/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6dff05bda9300fd8d41453f822b338daca4d4234839f83529ebab4fbe8cf0ef
3
+ size 15024
checkpoint-140121/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f672e73b9fb2b1c4c477bc3214ec174128d41605b5fe9ce6fc29dc1c3217090
3
+ size 1064
checkpoint-140121/trainer_state.json ADDED
@@ -0,0 +1,2345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 9.0,
5
+ "eval_steps": 3114,
6
+ "global_step": 140121,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03211510052026463,
13
+ "grad_norm": 1.1439628601074219,
14
+ "learning_rate": 0.0003989316376560259,
15
+ "loss": 0.639,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 0.06423020104052926,
20
+ "grad_norm": 1.0822333097457886,
21
+ "learning_rate": 0.00039786327531205173,
22
+ "loss": 0.4284,
23
+ "step": 1000
24
+ },
25
+ {
26
+ "epoch": 0.09634530156079389,
27
+ "grad_norm": 0.8050562143325806,
28
+ "learning_rate": 0.00039679277196137626,
29
+ "loss": 0.3927,
30
+ "step": 1500
31
+ },
32
+ {
33
+ "epoch": 0.12846040208105852,
34
+ "grad_norm": 0.669165849685669,
35
+ "learning_rate": 0.00039572440961740214,
36
+ "loss": 0.3689,
37
+ "step": 2000
38
+ },
39
+ {
40
+ "epoch": 0.16057550260132314,
41
+ "grad_norm": 1.5822824239730835,
42
+ "learning_rate": 0.0003946539062667266,
43
+ "loss": 0.3504,
44
+ "step": 2500
45
+ },
46
+ {
47
+ "epoch": 0.19269060312158778,
48
+ "grad_norm": 0.8457300066947937,
49
+ "learning_rate": 0.00039358340291605114,
50
+ "loss": 0.3446,
51
+ "step": 3000
52
+ },
53
+ {
54
+ "epoch": 0.2000128460402081,
55
+ "eval_loss": 0.1640966236591339,
56
+ "eval_runtime": 10.7566,
57
+ "eval_samples_per_second": 46.483,
58
+ "eval_steps_per_second": 5.857,
59
+ "step": 3114
60
+ },
61
+ {
62
+ "epoch": 0.2248057036418524,
63
+ "grad_norm": 0.8258726596832275,
64
+ "learning_rate": 0.00039251289956537567,
65
+ "loss": 0.3324,
66
+ "step": 3500
67
+ },
68
+ {
69
+ "epoch": 0.25692080416211704,
70
+ "grad_norm": 0.8330244421958923,
71
+ "learning_rate": 0.0003914445372214015,
72
+ "loss": 0.3278,
73
+ "step": 4000
74
+ },
75
+ {
76
+ "epoch": 0.28903590468238166,
77
+ "grad_norm": 1.5903249979019165,
78
+ "learning_rate": 0.000390374033870726,
79
+ "loss": 0.3235,
80
+ "step": 4500
81
+ },
82
+ {
83
+ "epoch": 0.3211510052026463,
84
+ "grad_norm": 1.216776728630066,
85
+ "learning_rate": 0.00038930353052005055,
86
+ "loss": 0.3113,
87
+ "step": 5000
88
+ },
89
+ {
90
+ "epoch": 0.3532661057229109,
91
+ "grad_norm": 0.974801778793335,
92
+ "learning_rate": 0.000388233027169375,
93
+ "loss": 0.309,
94
+ "step": 5500
95
+ },
96
+ {
97
+ "epoch": 0.38538120624317557,
98
+ "grad_norm": 0.7021324634552002,
99
+ "learning_rate": 0.00038716252381869955,
100
+ "loss": 0.305,
101
+ "step": 6000
102
+ },
103
+ {
104
+ "epoch": 0.4000256920804162,
105
+ "eval_loss": 0.14873231947422028,
106
+ "eval_runtime": 10.7638,
107
+ "eval_samples_per_second": 46.452,
108
+ "eval_steps_per_second": 5.853,
109
+ "step": 6228
110
+ },
111
+ {
112
+ "epoch": 0.4174963067634402,
113
+ "grad_norm": 0.8934990167617798,
114
+ "learning_rate": 0.0003860920204680241,
115
+ "loss": 0.3013,
116
+ "step": 6500
117
+ },
118
+ {
119
+ "epoch": 0.4496114072837048,
120
+ "grad_norm": 0.8211339712142944,
121
+ "learning_rate": 0.00038502365812404996,
122
+ "loss": 0.2955,
123
+ "step": 7000
124
+ },
125
+ {
126
+ "epoch": 0.4817265078039694,
127
+ "grad_norm": 1.5795360803604126,
128
+ "learning_rate": 0.0003839531547733745,
129
+ "loss": 0.295,
130
+ "step": 7500
131
+ },
132
+ {
133
+ "epoch": 0.5138416083242341,
134
+ "grad_norm": 0.8220022916793823,
135
+ "learning_rate": 0.000382882651422699,
136
+ "loss": 0.2887,
137
+ "step": 8000
138
+ },
139
+ {
140
+ "epoch": 0.5459567088444987,
141
+ "grad_norm": 0.8150618672370911,
142
+ "learning_rate": 0.00038181428907872484,
143
+ "loss": 0.2883,
144
+ "step": 8500
145
+ },
146
+ {
147
+ "epoch": 0.5780718093647633,
148
+ "grad_norm": 0.782720148563385,
149
+ "learning_rate": 0.00038074378572804937,
150
+ "loss": 0.2848,
151
+ "step": 9000
152
+ },
153
+ {
154
+ "epoch": 0.6000385381206244,
155
+ "eval_loss": 0.1397342085838318,
156
+ "eval_runtime": 10.7618,
157
+ "eval_samples_per_second": 46.461,
158
+ "eval_steps_per_second": 5.854,
159
+ "step": 9342
160
+ },
161
+ {
162
+ "epoch": 0.610186909885028,
163
+ "grad_norm": 1.1356905698776245,
164
+ "learning_rate": 0.0003796732823773739,
165
+ "loss": 0.2792,
166
+ "step": 9500
167
+ },
168
+ {
169
+ "epoch": 0.6423020104052926,
170
+ "grad_norm": 1.3606605529785156,
171
+ "learning_rate": 0.00037860277902669837,
172
+ "loss": 0.279,
173
+ "step": 10000
174
+ },
175
+ {
176
+ "epoch": 0.6744171109255572,
177
+ "grad_norm": 0.8823058009147644,
178
+ "learning_rate": 0.0003775322756760229,
179
+ "loss": 0.2795,
180
+ "step": 10500
181
+ },
182
+ {
183
+ "epoch": 0.7065322114458218,
184
+ "grad_norm": 0.6812245845794678,
185
+ "learning_rate": 0.00037646819534545143,
186
+ "loss": 0.2806,
187
+ "step": 11000
188
+ },
189
+ {
190
+ "epoch": 0.7386473119660865,
191
+ "grad_norm": 0.8636330366134644,
192
+ "learning_rate": 0.00037539769199477596,
193
+ "loss": 0.278,
194
+ "step": 11500
195
+ },
196
+ {
197
+ "epoch": 0.7707624124863511,
198
+ "grad_norm": 0.7633821368217468,
199
+ "learning_rate": 0.0003743271886441005,
200
+ "loss": 0.2755,
201
+ "step": 12000
202
+ },
203
+ {
204
+ "epoch": 0.8000513841608324,
205
+ "eval_loss": 0.1333352029323578,
206
+ "eval_runtime": 10.784,
207
+ "eval_samples_per_second": 46.365,
208
+ "eval_steps_per_second": 5.842,
209
+ "step": 12456
210
+ },
211
+ {
212
+ "epoch": 0.8028775130066157,
213
+ "grad_norm": 0.9501471519470215,
214
+ "learning_rate": 0.000373256685293425,
215
+ "loss": 0.2739,
216
+ "step": 12500
217
+ },
218
+ {
219
+ "epoch": 0.8349926135268804,
220
+ "grad_norm": 0.6604846119880676,
221
+ "learning_rate": 0.0003721861819427495,
222
+ "loss": 0.2709,
223
+ "step": 13000
224
+ },
225
+ {
226
+ "epoch": 0.8671077140471449,
227
+ "grad_norm": 0.743561863899231,
228
+ "learning_rate": 0.000371115678592074,
229
+ "loss": 0.2679,
230
+ "step": 13500
231
+ },
232
+ {
233
+ "epoch": 0.8992228145674096,
234
+ "grad_norm": 0.7072339057922363,
235
+ "learning_rate": 0.00037004517524139854,
236
+ "loss": 0.272,
237
+ "step": 14000
238
+ },
239
+ {
240
+ "epoch": 0.9313379150876743,
241
+ "grad_norm": 0.9728062152862549,
242
+ "learning_rate": 0.000368974671890723,
243
+ "loss": 0.2681,
244
+ "step": 14500
245
+ },
246
+ {
247
+ "epoch": 0.9634530156079388,
248
+ "grad_norm": 0.8511360287666321,
249
+ "learning_rate": 0.00036790416854004754,
250
+ "loss": 0.264,
251
+ "step": 15000
252
+ },
253
+ {
254
+ "epoch": 0.9955681161282035,
255
+ "grad_norm": 1.0181396007537842,
256
+ "learning_rate": 0.00036683366518937207,
257
+ "loss": 0.2646,
258
+ "step": 15500
259
+ },
260
+ {
261
+ "epoch": 1.0000642302010405,
262
+ "eval_loss": 0.13280069828033447,
263
+ "eval_runtime": 10.8292,
264
+ "eval_samples_per_second": 46.172,
265
+ "eval_steps_per_second": 5.818,
266
+ "step": 15570
267
+ },
268
+ {
269
+ "epoch": 1.0276832166484682,
270
+ "grad_norm": 0.8521600365638733,
271
+ "learning_rate": 0.0003657631618386966,
272
+ "loss": 0.2491,
273
+ "step": 16000
274
+ },
275
+ {
276
+ "epoch": 1.0597983171687329,
277
+ "grad_norm": 0.7927277088165283,
278
+ "learning_rate": 0.00036469265848802107,
279
+ "loss": 0.2486,
280
+ "step": 16500
281
+ },
282
+ {
283
+ "epoch": 1.0919134176889973,
284
+ "grad_norm": 0.9500927329063416,
285
+ "learning_rate": 0.0003636221551373456,
286
+ "loss": 0.2461,
287
+ "step": 17000
288
+ },
289
+ {
290
+ "epoch": 1.124028518209262,
291
+ "grad_norm": 1.1854805946350098,
292
+ "learning_rate": 0.0003625516517866701,
293
+ "loss": 0.2478,
294
+ "step": 17500
295
+ },
296
+ {
297
+ "epoch": 1.1561436187295266,
298
+ "grad_norm": 1.0004955530166626,
299
+ "learning_rate": 0.0003614811484359946,
300
+ "loss": 0.2485,
301
+ "step": 18000
302
+ },
303
+ {
304
+ "epoch": 1.1882587192497913,
305
+ "grad_norm": 0.7761235237121582,
306
+ "learning_rate": 0.0003604106450853191,
307
+ "loss": 0.2486,
308
+ "step": 18500
309
+ },
310
+ {
311
+ "epoch": 1.2000770762412487,
312
+ "eval_loss": 0.12181619554758072,
313
+ "eval_runtime": 10.792,
314
+ "eval_samples_per_second": 46.331,
315
+ "eval_steps_per_second": 5.838,
316
+ "step": 18684
317
+ },
318
+ {
319
+ "epoch": 1.2203738197700558,
320
+ "grad_norm": 1.0295982360839844,
321
+ "learning_rate": 0.00035934014173464365,
322
+ "loss": 0.247,
323
+ "step": 19000
324
+ },
325
+ {
326
+ "epoch": 1.2524889202903204,
327
+ "grad_norm": 1.0462840795516968,
328
+ "learning_rate": 0.0003582717793906695,
329
+ "loss": 0.2451,
330
+ "step": 19500
331
+ },
332
+ {
333
+ "epoch": 1.2846040208105851,
334
+ "grad_norm": 0.7392880320549011,
335
+ "learning_rate": 0.00035720341704669536,
336
+ "loss": 0.2465,
337
+ "step": 20000
338
+ },
339
+ {
340
+ "epoch": 1.3167191213308498,
341
+ "grad_norm": 0.9569768905639648,
342
+ "learning_rate": 0.0003561329136960199,
343
+ "loss": 0.2451,
344
+ "step": 20500
345
+ },
346
+ {
347
+ "epoch": 1.3488342218511145,
348
+ "grad_norm": 0.813721239566803,
349
+ "learning_rate": 0.00035506241034534436,
350
+ "loss": 0.2382,
351
+ "step": 21000
352
+ },
353
+ {
354
+ "epoch": 1.3809493223713791,
355
+ "grad_norm": 0.6308742761611938,
356
+ "learning_rate": 0.00035399190699466894,
357
+ "loss": 0.2438,
358
+ "step": 21500
359
+ },
360
+ {
361
+ "epoch": 1.4000899222814567,
362
+ "eval_loss": 0.12308382242918015,
363
+ "eval_runtime": 10.7957,
364
+ "eval_samples_per_second": 46.315,
365
+ "eval_steps_per_second": 5.836,
366
+ "step": 21798
367
+ },
368
+ {
369
+ "epoch": 1.4130644228916436,
370
+ "grad_norm": 1.429039478302002,
371
+ "learning_rate": 0.00035292140364399346,
372
+ "loss": 0.2407,
373
+ "step": 22000
374
+ },
375
+ {
376
+ "epoch": 1.4451795234119083,
377
+ "grad_norm": 0.6953487396240234,
378
+ "learning_rate": 0.00035185090029331794,
379
+ "loss": 0.2423,
380
+ "step": 22500
381
+ },
382
+ {
383
+ "epoch": 1.477294623932173,
384
+ "grad_norm": 0.7806856632232666,
385
+ "learning_rate": 0.00035078039694264246,
386
+ "loss": 0.2406,
387
+ "step": 23000
388
+ },
389
+ {
390
+ "epoch": 1.5094097244524374,
391
+ "grad_norm": 1.0611233711242676,
392
+ "learning_rate": 0.00034971203459866835,
393
+ "loss": 0.2389,
394
+ "step": 23500
395
+ },
396
+ {
397
+ "epoch": 1.541524824972702,
398
+ "grad_norm": 1.0411138534545898,
399
+ "learning_rate": 0.0003486415312479928,
400
+ "loss": 0.2405,
401
+ "step": 24000
402
+ },
403
+ {
404
+ "epoch": 1.5736399254929667,
405
+ "grad_norm": 0.906801700592041,
406
+ "learning_rate": 0.00034757102789731735,
407
+ "loss": 0.2413,
408
+ "step": 24500
409
+ },
410
+ {
411
+ "epoch": 1.6001027683216649,
412
+ "eval_loss": 0.11771170794963837,
413
+ "eval_runtime": 10.8091,
414
+ "eval_samples_per_second": 46.257,
415
+ "eval_steps_per_second": 5.828,
416
+ "step": 24912
417
+ },
418
+ {
419
+ "epoch": 1.6057550260132314,
420
+ "grad_norm": 0.9656944274902344,
421
+ "learning_rate": 0.0003465005245466419,
422
+ "loss": 0.2423,
423
+ "step": 25000
424
+ },
425
+ {
426
+ "epoch": 1.637870126533496,
427
+ "grad_norm": 1.330808162689209,
428
+ "learning_rate": 0.00034543002119596635,
429
+ "loss": 0.2422,
430
+ "step": 25500
431
+ },
432
+ {
433
+ "epoch": 1.6699852270537607,
434
+ "grad_norm": 0.8894997835159302,
435
+ "learning_rate": 0.0003443637998586936,
436
+ "loss": 0.2338,
437
+ "step": 26000
438
+ },
439
+ {
440
+ "epoch": 1.7021003275740254,
441
+ "grad_norm": 1.0210765600204468,
442
+ "learning_rate": 0.0003432932965080181,
443
+ "loss": 0.2368,
444
+ "step": 26500
445
+ },
446
+ {
447
+ "epoch": 1.73421542809429,
448
+ "grad_norm": 1.0259859561920166,
449
+ "learning_rate": 0.0003422227931573426,
450
+ "loss": 0.2365,
451
+ "step": 27000
452
+ },
453
+ {
454
+ "epoch": 1.7663305286145545,
455
+ "grad_norm": 0.8963735103607178,
456
+ "learning_rate": 0.0003411522898066671,
457
+ "loss": 0.2332,
458
+ "step": 27500
459
+ },
460
+ {
461
+ "epoch": 1.7984456291348192,
462
+ "grad_norm": 0.9903491735458374,
463
+ "learning_rate": 0.00034008178645599164,
464
+ "loss": 0.2375,
465
+ "step": 28000
466
+ },
467
+ {
468
+ "epoch": 1.8001156143618728,
469
+ "eval_loss": 0.11729346960783005,
470
+ "eval_runtime": 10.8087,
471
+ "eval_samples_per_second": 46.259,
472
+ "eval_steps_per_second": 5.829,
473
+ "step": 28026
474
+ },
475
+ {
476
+ "epoch": 1.8305607296550839,
477
+ "grad_norm": 0.7195676565170288,
478
+ "learning_rate": 0.0003390112831053161,
479
+ "loss": 0.2394,
480
+ "step": 28500
481
+ },
482
+ {
483
+ "epoch": 1.8626758301753483,
484
+ "grad_norm": 0.9430277943611145,
485
+ "learning_rate": 0.00033794077975464064,
486
+ "loss": 0.2336,
487
+ "step": 29000
488
+ },
489
+ {
490
+ "epoch": 1.894790930695613,
491
+ "grad_norm": 1.1380141973495483,
492
+ "learning_rate": 0.00033687027640396516,
493
+ "loss": 0.2371,
494
+ "step": 29500
495
+ },
496
+ {
497
+ "epoch": 1.9269060312158777,
498
+ "grad_norm": 0.7525237202644348,
499
+ "learning_rate": 0.0003357997730532897,
500
+ "loss": 0.2337,
501
+ "step": 30000
502
+ },
503
+ {
504
+ "epoch": 1.9590211317361423,
505
+ "grad_norm": 0.90290766954422,
506
+ "learning_rate": 0.00033472926970261416,
507
+ "loss": 0.2327,
508
+ "step": 30500
509
+ },
510
+ {
511
+ "epoch": 1.991136232256407,
512
+ "grad_norm": 0.8463317155838013,
513
+ "learning_rate": 0.00033366090735864005,
514
+ "loss": 0.2326,
515
+ "step": 31000
516
+ },
517
+ {
518
+ "epoch": 2.000128460402081,
519
+ "eval_loss": 0.11661120504140854,
520
+ "eval_runtime": 10.8451,
521
+ "eval_samples_per_second": 46.104,
522
+ "eval_steps_per_second": 5.809,
523
+ "step": 31140
524
+ },
525
+ {
526
+ "epoch": 2.0232513327766717,
527
+ "grad_norm": 1.0980778932571411,
528
+ "learning_rate": 0.0003325904040079646,
529
+ "loss": 0.2242,
530
+ "step": 31500
531
+ },
532
+ {
533
+ "epoch": 2.0553664332969364,
534
+ "grad_norm": 0.7541905045509338,
535
+ "learning_rate": 0.00033151990065728905,
536
+ "loss": 0.2168,
537
+ "step": 32000
538
+ },
539
+ {
540
+ "epoch": 2.087481533817201,
541
+ "grad_norm": 0.9497644901275635,
542
+ "learning_rate": 0.00033045153831331493,
543
+ "loss": 0.2158,
544
+ "step": 32500
545
+ },
546
+ {
547
+ "epoch": 2.1195966343374657,
548
+ "grad_norm": 0.8374313116073608,
549
+ "learning_rate": 0.00032938103496263946,
550
+ "loss": 0.2176,
551
+ "step": 33000
552
+ },
553
+ {
554
+ "epoch": 2.15171173485773,
555
+ "grad_norm": 0.9000691175460815,
556
+ "learning_rate": 0.00032831053161196393,
557
+ "loss": 0.2152,
558
+ "step": 33500
559
+ },
560
+ {
561
+ "epoch": 2.1838268353779946,
562
+ "grad_norm": 1.0209734439849854,
563
+ "learning_rate": 0.00032724002826128846,
564
+ "loss": 0.2178,
565
+ "step": 34000
566
+ },
567
+ {
568
+ "epoch": 2.2001413064422892,
569
+ "eval_loss": 0.11470586806535721,
570
+ "eval_runtime": 10.8026,
571
+ "eval_samples_per_second": 46.285,
572
+ "eval_steps_per_second": 5.832,
573
+ "step": 34254
574
+ },
575
+ {
576
+ "epoch": 2.2159419358982593,
577
+ "grad_norm": 1.1995940208435059,
578
+ "learning_rate": 0.000326169524910613,
579
+ "loss": 0.2205,
580
+ "step": 34500
581
+ },
582
+ {
583
+ "epoch": 2.248057036418524,
584
+ "grad_norm": 0.8117247223854065,
585
+ "learning_rate": 0.00032509902155993746,
586
+ "loss": 0.2231,
587
+ "step": 35000
588
+ },
589
+ {
590
+ "epoch": 2.2801721369387886,
591
+ "grad_norm": 0.9178829789161682,
592
+ "learning_rate": 0.000324028518209262,
593
+ "loss": 0.2178,
594
+ "step": 35500
595
+ },
596
+ {
597
+ "epoch": 2.3122872374590533,
598
+ "grad_norm": 0.9355435371398926,
599
+ "learning_rate": 0.00032295801485858656,
600
+ "loss": 0.214,
601
+ "step": 36000
602
+ },
603
+ {
604
+ "epoch": 2.344402337979318,
605
+ "grad_norm": 1.0787150859832764,
606
+ "learning_rate": 0.00032188751150791104,
607
+ "loss": 0.2173,
608
+ "step": 36500
609
+ },
610
+ {
611
+ "epoch": 2.3765174384995826,
612
+ "grad_norm": 1.3570172786712646,
613
+ "learning_rate": 0.00032081700815723556,
614
+ "loss": 0.2187,
615
+ "step": 37000
616
+ },
617
+ {
618
+ "epoch": 2.4001541524824974,
619
+ "eval_loss": 0.11260252445936203,
620
+ "eval_runtime": 10.8252,
621
+ "eval_samples_per_second": 46.188,
622
+ "eval_steps_per_second": 5.82,
623
+ "step": 37368
624
+ },
625
+ {
626
+ "epoch": 2.4086325390198473,
627
+ "grad_norm": 0.6619197726249695,
628
+ "learning_rate": 0.0003197465048065601,
629
+ "loss": 0.2184,
630
+ "step": 37500
631
+ },
632
+ {
633
+ "epoch": 2.4407476395401115,
634
+ "grad_norm": 1.013967514038086,
635
+ "learning_rate": 0.00031867600145588456,
636
+ "loss": 0.2188,
637
+ "step": 38000
638
+ },
639
+ {
640
+ "epoch": 2.472862740060376,
641
+ "grad_norm": 0.8766270279884338,
642
+ "learning_rate": 0.0003176054981052091,
643
+ "loss": 0.2125,
644
+ "step": 38500
645
+ },
646
+ {
647
+ "epoch": 2.504977840580641,
648
+ "grad_norm": 0.7047364711761475,
649
+ "learning_rate": 0.00031653713576123497,
650
+ "loss": 0.2154,
651
+ "step": 39000
652
+ },
653
+ {
654
+ "epoch": 2.5370929411009056,
655
+ "grad_norm": 1.071646809577942,
656
+ "learning_rate": 0.00031546663241055944,
657
+ "loss": 0.2155,
658
+ "step": 39500
659
+ },
660
+ {
661
+ "epoch": 2.5692080416211702,
662
+ "grad_norm": 0.9847589731216431,
663
+ "learning_rate": 0.00031439612905988397,
664
+ "loss": 0.2196,
665
+ "step": 40000
666
+ },
667
+ {
668
+ "epoch": 2.600166998522705,
669
+ "eval_loss": 0.11102238297462463,
670
+ "eval_runtime": 10.8205,
671
+ "eval_samples_per_second": 46.209,
672
+ "eval_steps_per_second": 5.822,
673
+ "step": 40482
674
+ },
675
+ {
676
+ "epoch": 2.601323142141435,
677
+ "grad_norm": 1.3853163719177246,
678
+ "learning_rate": 0.0003133256257092085,
679
+ "loss": 0.2179,
680
+ "step": 40500
681
+ },
682
+ {
683
+ "epoch": 2.6334382426616996,
684
+ "grad_norm": 1.4334129095077515,
685
+ "learning_rate": 0.0003122572633652343,
686
+ "loss": 0.2137,
687
+ "step": 41000
688
+ },
689
+ {
690
+ "epoch": 2.6655533431819642,
691
+ "grad_norm": 0.9303542971611023,
692
+ "learning_rate": 0.00031118676001455885,
693
+ "loss": 0.2148,
694
+ "step": 41500
695
+ },
696
+ {
697
+ "epoch": 2.697668443702229,
698
+ "grad_norm": 0.8372798562049866,
699
+ "learning_rate": 0.0003101162566638834,
700
+ "loss": 0.2126,
701
+ "step": 42000
702
+ },
703
+ {
704
+ "epoch": 2.729783544222493,
705
+ "grad_norm": 1.1056691408157349,
706
+ "learning_rate": 0.0003090457533132079,
707
+ "loss": 0.2118,
708
+ "step": 42500
709
+ },
710
+ {
711
+ "epoch": 2.7618986447427583,
712
+ "grad_norm": 0.878703773021698,
713
+ "learning_rate": 0.00030797739096923374,
714
+ "loss": 0.2137,
715
+ "step": 43000
716
+ },
717
+ {
718
+ "epoch": 2.7940137452630225,
719
+ "grad_norm": 0.8215634822845459,
720
+ "learning_rate": 0.00030690688761855826,
721
+ "loss": 0.2163,
722
+ "step": 43500
723
+ },
724
+ {
725
+ "epoch": 2.8001798445629134,
726
+ "eval_loss": 0.10930783301591873,
727
+ "eval_runtime": 10.8133,
728
+ "eval_samples_per_second": 46.239,
729
+ "eval_steps_per_second": 5.826,
730
+ "step": 43596
731
+ },
732
+ {
733
+ "epoch": 2.826128845783287,
734
+ "grad_norm": 1.5754073858261108,
735
+ "learning_rate": 0.0003058363842678828,
736
+ "loss": 0.2161,
737
+ "step": 44000
738
+ },
739
+ {
740
+ "epoch": 2.858243946303552,
741
+ "grad_norm": 0.8411650657653809,
742
+ "learning_rate": 0.00030476588091720726,
743
+ "loss": 0.2152,
744
+ "step": 44500
745
+ },
746
+ {
747
+ "epoch": 2.8903590468238165,
748
+ "grad_norm": 1.0584657192230225,
749
+ "learning_rate": 0.0003036953775665318,
750
+ "loss": 0.2176,
751
+ "step": 45000
752
+ },
753
+ {
754
+ "epoch": 2.922474147344081,
755
+ "grad_norm": 0.9761502742767334,
756
+ "learning_rate": 0.0003026248742158563,
757
+ "loss": 0.2137,
758
+ "step": 45500
759
+ },
760
+ {
761
+ "epoch": 2.954589247864346,
762
+ "grad_norm": 0.8748862147331238,
763
+ "learning_rate": 0.00030155651187188214,
764
+ "loss": 0.2134,
765
+ "step": 46000
766
+ },
767
+ {
768
+ "epoch": 2.9867043483846105,
769
+ "grad_norm": 1.2218540906906128,
770
+ "learning_rate": 0.00030048600852120667,
771
+ "loss": 0.2101,
772
+ "step": 46500
773
+ },
774
+ {
775
+ "epoch": 3.0001926906031215,
776
+ "eval_loss": 0.10787095874547958,
777
+ "eval_runtime": 10.8687,
778
+ "eval_samples_per_second": 46.004,
779
+ "eval_steps_per_second": 5.796,
780
+ "step": 46710
781
+ },
782
+ {
783
+ "epoch": 3.018819448904875,
784
+ "grad_norm": 2.2454357147216797,
785
+ "learning_rate": 0.00029941764617723255,
786
+ "loss": 0.2036,
787
+ "step": 47000
788
+ },
789
+ {
790
+ "epoch": 3.05093454942514,
791
+ "grad_norm": 1.0954365730285645,
792
+ "learning_rate": 0.000298347142826557,
793
+ "loss": 0.1953,
794
+ "step": 47500
795
+ },
796
+ {
797
+ "epoch": 3.0830496499454045,
798
+ "grad_norm": 1.1289081573486328,
799
+ "learning_rate": 0.00029727663947588155,
800
+ "loss": 0.1945,
801
+ "step": 48000
802
+ },
803
+ {
804
+ "epoch": 3.1151647504656688,
805
+ "grad_norm": 0.9463476538658142,
806
+ "learning_rate": 0.0002962061361252061,
807
+ "loss": 0.194,
808
+ "step": 48500
809
+ },
810
+ {
811
+ "epoch": 3.1472798509859334,
812
+ "grad_norm": 0.9091750979423523,
813
+ "learning_rate": 0.00029513563277453055,
814
+ "loss": 0.1947,
815
+ "step": 49000
816
+ },
817
+ {
818
+ "epoch": 3.179394951506198,
819
+ "grad_norm": 0.7108092904090881,
820
+ "learning_rate": 0.0002940651294238551,
821
+ "loss": 0.199,
822
+ "step": 49500
823
+ },
824
+ {
825
+ "epoch": 3.2002055366433297,
826
+ "eval_loss": 0.10728111118078232,
827
+ "eval_runtime": 10.8225,
828
+ "eval_samples_per_second": 46.2,
829
+ "eval_steps_per_second": 5.821,
830
+ "step": 49824
831
+ },
832
+ {
833
+ "epoch": 3.211510052026463,
834
+ "grad_norm": 1.0273375511169434,
835
+ "learning_rate": 0.0002929946260731796,
836
+ "loss": 0.1998,
837
+ "step": 50000
838
+ },
839
+ {
840
+ "epoch": 3.2436251525467275,
841
+ "grad_norm": 0.8365561962127686,
842
+ "learning_rate": 0.00029192412272250413,
843
+ "loss": 0.1972,
844
+ "step": 50500
845
+ },
846
+ {
847
+ "epoch": 3.275740253066992,
848
+ "grad_norm": 1.1676949262619019,
849
+ "learning_rate": 0.00029085361937182866,
850
+ "loss": 0.1964,
851
+ "step": 51000
852
+ },
853
+ {
854
+ "epoch": 3.307855353587257,
855
+ "grad_norm": 1.0615659952163696,
856
+ "learning_rate": 0.0002897831160211532,
857
+ "loss": 0.2019,
858
+ "step": 51500
859
+ },
860
+ {
861
+ "epoch": 3.3399704541075215,
862
+ "grad_norm": 1.3280376195907593,
863
+ "learning_rate": 0.000288714753677179,
864
+ "loss": 0.1946,
865
+ "step": 52000
866
+ },
867
+ {
868
+ "epoch": 3.372085554627786,
869
+ "grad_norm": 0.906033992767334,
870
+ "learning_rate": 0.00028764425032650354,
871
+ "loss": 0.2002,
872
+ "step": 52500
873
+ },
874
+ {
875
+ "epoch": 3.400218382683538,
876
+ "eval_loss": 0.10725516080856323,
877
+ "eval_runtime": 10.822,
878
+ "eval_samples_per_second": 46.202,
879
+ "eval_steps_per_second": 5.821,
880
+ "step": 52938
881
+ },
882
+ {
883
+ "epoch": 3.404200655148051,
884
+ "grad_norm": 0.9869097471237183,
885
+ "learning_rate": 0.00028657374697582807,
886
+ "loss": 0.2044,
887
+ "step": 53000
888
+ },
889
+ {
890
+ "epoch": 3.436315755668315,
891
+ "grad_norm": 0.7808071970939636,
892
+ "learning_rate": 0.0002855032436251526,
893
+ "loss": 0.2017,
894
+ "step": 53500
895
+ },
896
+ {
897
+ "epoch": 3.4684308561885797,
898
+ "grad_norm": 0.6805254817008972,
899
+ "learning_rate": 0.00028443274027447707,
900
+ "loss": 0.2008,
901
+ "step": 54000
902
+ },
903
+ {
904
+ "epoch": 3.5005459567088444,
905
+ "grad_norm": 1.552226185798645,
906
+ "learning_rate": 0.0002833622369238016,
907
+ "loss": 0.2015,
908
+ "step": 54500
909
+ },
910
+ {
911
+ "epoch": 3.532661057229109,
912
+ "grad_norm": 1.1280968189239502,
913
+ "learning_rate": 0.0002822917335731261,
914
+ "loss": 0.1992,
915
+ "step": 55000
916
+ },
917
+ {
918
+ "epoch": 3.5647761577493737,
919
+ "grad_norm": 0.9633870124816895,
920
+ "learning_rate": 0.0002812212302224506,
921
+ "loss": 0.2017,
922
+ "step": 55500
923
+ },
924
+ {
925
+ "epoch": 3.5968912582696384,
926
+ "grad_norm": 0.8904027342796326,
927
+ "learning_rate": 0.0002801528678784765,
928
+ "loss": 0.1985,
929
+ "step": 56000
930
+ },
931
+ {
932
+ "epoch": 3.6002312287237457,
933
+ "eval_loss": 0.10704278200864792,
934
+ "eval_runtime": 10.8243,
935
+ "eval_samples_per_second": 46.193,
936
+ "eval_steps_per_second": 5.82,
937
+ "step": 56052
938
+ },
939
+ {
940
+ "epoch": 3.629006358789903,
941
+ "grad_norm": 1.1297188997268677,
942
+ "learning_rate": 0.00027908450553450236,
943
+ "loss": 0.199,
944
+ "step": 56500
945
+ },
946
+ {
947
+ "epoch": 3.6611214593101677,
948
+ "grad_norm": 1.012528419494629,
949
+ "learning_rate": 0.00027801400218382683,
950
+ "loss": 0.1977,
951
+ "step": 57000
952
+ },
953
+ {
954
+ "epoch": 3.6932365598304324,
955
+ "grad_norm": 1.0145853757858276,
956
+ "learning_rate": 0.00027694349883315136,
957
+ "loss": 0.1952,
958
+ "step": 57500
959
+ },
960
+ {
961
+ "epoch": 3.7253516603506966,
962
+ "grad_norm": 0.6479370594024658,
963
+ "learning_rate": 0.0002758729954824759,
964
+ "loss": 0.1993,
965
+ "step": 58000
966
+ },
967
+ {
968
+ "epoch": 3.7574667608709618,
969
+ "grad_norm": 1.3706332445144653,
970
+ "learning_rate": 0.00027480249213180036,
971
+ "loss": 0.1928,
972
+ "step": 58500
973
+ },
974
+ {
975
+ "epoch": 3.789581861391226,
976
+ "grad_norm": 0.8537666201591492,
977
+ "learning_rate": 0.0002737319887811249,
978
+ "loss": 0.1966,
979
+ "step": 59000
980
+ },
981
+ {
982
+ "epoch": 3.800244074763954,
983
+ "eval_loss": 0.10166960954666138,
984
+ "eval_runtime": 10.8263,
985
+ "eval_samples_per_second": 46.184,
986
+ "eval_steps_per_second": 5.819,
987
+ "step": 59166
988
+ },
989
+ {
990
+ "epoch": 3.8216969619114907,
991
+ "grad_norm": 0.7821935415267944,
992
+ "learning_rate": 0.0002726614854304494,
993
+ "loss": 0.2005,
994
+ "step": 59500
995
+ },
996
+ {
997
+ "epoch": 3.8538120624317553,
998
+ "grad_norm": 1.01955246925354,
999
+ "learning_rate": 0.00027159312308647524,
1000
+ "loss": 0.193,
1001
+ "step": 60000
1002
+ },
1003
+ {
1004
+ "epoch": 3.88592716295202,
1005
+ "grad_norm": 0.9163061380386353,
1006
+ "learning_rate": 0.00027052261973579977,
1007
+ "loss": 0.1996,
1008
+ "step": 60500
1009
+ },
1010
+ {
1011
+ "epoch": 3.9180422634722847,
1012
+ "grad_norm": 0.8913554549217224,
1013
+ "learning_rate": 0.0002694521163851243,
1014
+ "loss": 0.1984,
1015
+ "step": 61000
1016
+ },
1017
+ {
1018
+ "epoch": 3.9501573639925494,
1019
+ "grad_norm": 1.0580236911773682,
1020
+ "learning_rate": 0.0002683816130344488,
1021
+ "loss": 0.2014,
1022
+ "step": 61500
1023
+ },
1024
+ {
1025
+ "epoch": 3.982272464512814,
1026
+ "grad_norm": 0.8770594596862793,
1027
+ "learning_rate": 0.0002673111096837733,
1028
+ "loss": 0.197,
1029
+ "step": 62000
1030
+ },
1031
+ {
1032
+ "epoch": 4.000256920804162,
1033
+ "eval_loss": 0.10333628952503204,
1034
+ "eval_runtime": 10.9136,
1035
+ "eval_samples_per_second": 45.815,
1036
+ "eval_steps_per_second": 5.773,
1037
+ "step": 62280
1038
+ },
1039
+ {
1040
+ "epoch": 4.014387565033078,
1041
+ "grad_norm": 1.0842561721801758,
1042
+ "learning_rate": 0.0002662406063330978,
1043
+ "loss": 0.1886,
1044
+ "step": 62500
1045
+ },
1046
+ {
1047
+ "epoch": 4.046502665553343,
1048
+ "grad_norm": 0.9012836217880249,
1049
+ "learning_rate": 0.00026517010298242235,
1050
+ "loss": 0.1803,
1051
+ "step": 63000
1052
+ },
1053
+ {
1054
+ "epoch": 4.078617766073608,
1055
+ "grad_norm": 1.4579031467437744,
1056
+ "learning_rate": 0.0002640995996317468,
1057
+ "loss": 0.1804,
1058
+ "step": 63500
1059
+ },
1060
+ {
1061
+ "epoch": 4.110732866593873,
1062
+ "grad_norm": 0.7582185864448547,
1063
+ "learning_rate": 0.0002630312372877727,
1064
+ "loss": 0.1841,
1065
+ "step": 64000
1066
+ },
1067
+ {
1068
+ "epoch": 4.142847967114137,
1069
+ "grad_norm": 0.7115941047668457,
1070
+ "learning_rate": 0.0002619628749437986,
1071
+ "loss": 0.1818,
1072
+ "step": 64500
1073
+ },
1074
+ {
1075
+ "epoch": 4.174963067634402,
1076
+ "grad_norm": 1.0647740364074707,
1077
+ "learning_rate": 0.0002608923715931231,
1078
+ "loss": 0.1819,
1079
+ "step": 65000
1080
+ },
1081
+ {
1082
+ "epoch": 4.20026976684437,
1083
+ "eval_loss": 0.10199917107820511,
1084
+ "eval_runtime": 10.8313,
1085
+ "eval_samples_per_second": 46.162,
1086
+ "eval_steps_per_second": 5.816,
1087
+ "step": 65394
1088
+ },
1089
+ {
1090
+ "epoch": 4.207078168154666,
1091
+ "grad_norm": 1.843522548675537,
1092
+ "learning_rate": 0.00025982186824244764,
1093
+ "loss": 0.1839,
1094
+ "step": 65500
1095
+ },
1096
+ {
1097
+ "epoch": 4.239193268674931,
1098
+ "grad_norm": 1.1782640218734741,
1099
+ "learning_rate": 0.0002587513648917721,
1100
+ "loss": 0.1819,
1101
+ "step": 66000
1102
+ },
1103
+ {
1104
+ "epoch": 4.271308369195196,
1105
+ "grad_norm": 0.9196457862854004,
1106
+ "learning_rate": 0.00025768086154109664,
1107
+ "loss": 0.1843,
1108
+ "step": 66500
1109
+ },
1110
+ {
1111
+ "epoch": 4.30342346971546,
1112
+ "grad_norm": 0.9364376664161682,
1113
+ "learning_rate": 0.00025661035819042117,
1114
+ "loss": 0.1839,
1115
+ "step": 67000
1116
+ },
1117
+ {
1118
+ "epoch": 4.335538570235725,
1119
+ "grad_norm": 1.1942273378372192,
1120
+ "learning_rate": 0.0002555398548397457,
1121
+ "loss": 0.1797,
1122
+ "step": 67500
1123
+ },
1124
+ {
1125
+ "epoch": 4.367653670755989,
1126
+ "grad_norm": 1.0615265369415283,
1127
+ "learning_rate": 0.0002544714924957715,
1128
+ "loss": 0.1868,
1129
+ "step": 68000
1130
+ },
1131
+ {
1132
+ "epoch": 4.399768771276254,
1133
+ "grad_norm": 0.9142521619796753,
1134
+ "learning_rate": 0.00025340098914509605,
1135
+ "loss": 0.1835,
1136
+ "step": 68500
1137
+ },
1138
+ {
1139
+ "epoch": 4.4002826128845784,
1140
+ "eval_loss": 0.09997352957725525,
1141
+ "eval_runtime": 10.8317,
1142
+ "eval_samples_per_second": 46.161,
1143
+ "eval_steps_per_second": 5.816,
1144
+ "step": 68508
1145
+ },
1146
+ {
1147
+ "epoch": 4.4318838717965185,
1148
+ "grad_norm": 0.9486224055290222,
1149
+ "learning_rate": 0.0002523304857944206,
1150
+ "loss": 0.182,
1151
+ "step": 69000
1152
+ },
1153
+ {
1154
+ "epoch": 4.463998972316784,
1155
+ "grad_norm": 0.9302485585212708,
1156
+ "learning_rate": 0.00025125998244374505,
1157
+ "loss": 0.1831,
1158
+ "step": 69500
1159
+ },
1160
+ {
1161
+ "epoch": 4.496114072837048,
1162
+ "grad_norm": 1.1721957921981812,
1163
+ "learning_rate": 0.0002501894790930696,
1164
+ "loss": 0.182,
1165
+ "step": 70000
1166
+ },
1167
+ {
1168
+ "epoch": 4.528229173357312,
1169
+ "grad_norm": 1.4238011837005615,
1170
+ "learning_rate": 0.0002491189757423941,
1171
+ "loss": 0.1825,
1172
+ "step": 70500
1173
+ },
1174
+ {
1175
+ "epoch": 4.560344273877577,
1176
+ "grad_norm": 1.231691598892212,
1177
+ "learning_rate": 0.0002480484723917186,
1178
+ "loss": 0.183,
1179
+ "step": 71000
1180
+ },
1181
+ {
1182
+ "epoch": 4.592459374397842,
1183
+ "grad_norm": 0.9989121556282043,
1184
+ "learning_rate": 0.0002469779690410431,
1185
+ "loss": 0.181,
1186
+ "step": 71500
1187
+ },
1188
+ {
1189
+ "epoch": 4.600295458924786,
1190
+ "eval_loss": 0.10318096727132797,
1191
+ "eval_runtime": 10.8502,
1192
+ "eval_samples_per_second": 46.082,
1193
+ "eval_steps_per_second": 5.806,
1194
+ "step": 71622
1195
+ },
1196
+ {
1197
+ "epoch": 4.624574474918107,
1198
+ "grad_norm": 0.6960537433624268,
1199
+ "learning_rate": 0.000245909606697069,
1200
+ "loss": 0.1861,
1201
+ "step": 72000
1202
+ },
1203
+ {
1204
+ "epoch": 4.656689575438371,
1205
+ "grad_norm": 0.7187835574150085,
1206
+ "learning_rate": 0.00024483910334639346,
1207
+ "loss": 0.1817,
1208
+ "step": 72500
1209
+ },
1210
+ {
1211
+ "epoch": 4.688804675958636,
1212
+ "grad_norm": 0.9882209300994873,
1213
+ "learning_rate": 0.000243768599995718,
1214
+ "loss": 0.1789,
1215
+ "step": 73000
1216
+ },
1217
+ {
1218
+ "epoch": 4.7209197764789,
1219
+ "grad_norm": 1.0102771520614624,
1220
+ "learning_rate": 0.00024269809664504251,
1221
+ "loss": 0.1825,
1222
+ "step": 73500
1223
+ },
1224
+ {
1225
+ "epoch": 4.753034876999165,
1226
+ "grad_norm": 0.8804493546485901,
1227
+ "learning_rate": 0.000241627593294367,
1228
+ "loss": 0.1807,
1229
+ "step": 74000
1230
+ },
1231
+ {
1232
+ "epoch": 4.7851499775194295,
1233
+ "grad_norm": 1.1270145177841187,
1234
+ "learning_rate": 0.00024055923095039287,
1235
+ "loss": 0.1808,
1236
+ "step": 74500
1237
+ },
1238
+ {
1239
+ "epoch": 4.800308304964995,
1240
+ "eval_loss": 0.09708624333143234,
1241
+ "eval_runtime": 10.8193,
1242
+ "eval_samples_per_second": 46.214,
1243
+ "eval_steps_per_second": 5.823,
1244
+ "step": 74736
1245
+ },
1246
+ {
1247
+ "epoch": 4.817265078039695,
1248
+ "grad_norm": 1.1008172035217285,
1249
+ "learning_rate": 0.0002394887275997174,
1250
+ "loss": 0.1807,
1251
+ "step": 75000
1252
+ },
1253
+ {
1254
+ "epoch": 4.849380178559959,
1255
+ "grad_norm": 1.1120028495788574,
1256
+ "learning_rate": 0.0002384182242490419,
1257
+ "loss": 0.1779,
1258
+ "step": 75500
1259
+ },
1260
+ {
1261
+ "epoch": 4.881495279080223,
1262
+ "grad_norm": 0.8730813264846802,
1263
+ "learning_rate": 0.00023734772089836642,
1264
+ "loss": 0.1818,
1265
+ "step": 76000
1266
+ },
1267
+ {
1268
+ "epoch": 4.913610379600488,
1269
+ "grad_norm": 0.6333782076835632,
1270
+ "learning_rate": 0.00023627721754769092,
1271
+ "loss": 0.1845,
1272
+ "step": 76500
1273
+ },
1274
+ {
1275
+ "epoch": 4.945725480120752,
1276
+ "grad_norm": 1.2107375860214233,
1277
+ "learning_rate": 0.00023520671419701542,
1278
+ "loss": 0.181,
1279
+ "step": 77000
1280
+ },
1281
+ {
1282
+ "epoch": 4.9778405806410175,
1283
+ "grad_norm": 0.9438495635986328,
1284
+ "learning_rate": 0.00023413621084633995,
1285
+ "loss": 0.1802,
1286
+ "step": 77500
1287
+ },
1288
+ {
1289
+ "epoch": 5.000321151005203,
1290
+ "eval_loss": 0.09600425511598587,
1291
+ "eval_runtime": 10.8573,
1292
+ "eval_samples_per_second": 46.052,
1293
+ "eval_steps_per_second": 5.803,
1294
+ "step": 77850
1295
+ },
1296
+ {
1297
+ "epoch": 5.009955681161282,
1298
+ "grad_norm": 0.9617595672607422,
1299
+ "learning_rate": 0.00023306570749566445,
1300
+ "loss": 0.1779,
1301
+ "step": 78000
1302
+ },
1303
+ {
1304
+ "epoch": 5.042070781681547,
1305
+ "grad_norm": 0.9408894777297974,
1306
+ "learning_rate": 0.0002319973451516903,
1307
+ "loss": 0.1647,
1308
+ "step": 78500
1309
+ },
1310
+ {
1311
+ "epoch": 5.074185882201811,
1312
+ "grad_norm": 1.2525585889816284,
1313
+ "learning_rate": 0.00023092898280771621,
1314
+ "loss": 0.163,
1315
+ "step": 79000
1316
+ },
1317
+ {
1318
+ "epoch": 5.106300982722076,
1319
+ "grad_norm": 1.5802356004714966,
1320
+ "learning_rate": 0.00022985847945704074,
1321
+ "loss": 0.1632,
1322
+ "step": 79500
1323
+ },
1324
+ {
1325
+ "epoch": 5.1384160832423404,
1326
+ "grad_norm": 0.9198274612426758,
1327
+ "learning_rate": 0.00022878797610636524,
1328
+ "loss": 0.1679,
1329
+ "step": 80000
1330
+ },
1331
+ {
1332
+ "epoch": 5.170531183762606,
1333
+ "grad_norm": 0.8385618329048157,
1334
+ "learning_rate": 0.00022771747275568974,
1335
+ "loss": 0.1663,
1336
+ "step": 80500
1337
+ },
1338
+ {
1339
+ "epoch": 5.20033399704541,
1340
+ "eval_loss": 0.0966901108622551,
1341
+ "eval_runtime": 10.8363,
1342
+ "eval_samples_per_second": 46.141,
1343
+ "eval_steps_per_second": 5.814,
1344
+ "step": 80964
1345
+ },
1346
+ {
1347
+ "epoch": 5.20264628428287,
1348
+ "grad_norm": 1.073923945426941,
1349
+ "learning_rate": 0.00022664696940501427,
1350
+ "loss": 0.1659,
1351
+ "step": 81000
1352
+ },
1353
+ {
1354
+ "epoch": 5.234761384803134,
1355
+ "grad_norm": 1.3618775606155396,
1356
+ "learning_rate": 0.00022557646605433877,
1357
+ "loss": 0.1659,
1358
+ "step": 81500
1359
+ },
1360
+ {
1361
+ "epoch": 5.266876485323399,
1362
+ "grad_norm": 1.0074559450149536,
1363
+ "learning_rate": 0.0002245059627036633,
1364
+ "loss": 0.1683,
1365
+ "step": 82000
1366
+ },
1367
+ {
1368
+ "epoch": 5.298991585843663,
1369
+ "grad_norm": 1.3093855381011963,
1370
+ "learning_rate": 0.0002234354593529878,
1371
+ "loss": 0.1684,
1372
+ "step": 82500
1373
+ },
1374
+ {
1375
+ "epoch": 5.3311066863639285,
1376
+ "grad_norm": 2.0346732139587402,
1377
+ "learning_rate": 0.00022236495600231232,
1378
+ "loss": 0.1634,
1379
+ "step": 83000
1380
+ },
1381
+ {
1382
+ "epoch": 5.363221786884193,
1383
+ "grad_norm": 0.8391578793525696,
1384
+ "learning_rate": 0.00022129659365833818,
1385
+ "loss": 0.1668,
1386
+ "step": 83500
1387
+ },
1388
+ {
1389
+ "epoch": 5.395336887404458,
1390
+ "grad_norm": 0.7007573246955872,
1391
+ "learning_rate": 0.00022022609030766268,
1392
+ "loss": 0.1687,
1393
+ "step": 84000
1394
+ },
1395
+ {
1396
+ "epoch": 5.400346843085619,
1397
+ "eval_loss": 0.0966021716594696,
1398
+ "eval_runtime": 10.8464,
1399
+ "eval_samples_per_second": 46.098,
1400
+ "eval_steps_per_second": 5.808,
1401
+ "step": 84078
1402
+ },
1403
+ {
1404
+ "epoch": 5.427451987924722,
1405
+ "grad_norm": 0.8743122220039368,
1406
+ "learning_rate": 0.0002191555869569872,
1407
+ "loss": 0.1682,
1408
+ "step": 84500
1409
+ },
1410
+ {
1411
+ "epoch": 5.459567088444987,
1412
+ "grad_norm": 1.229648470878601,
1413
+ "learning_rate": 0.0002180850836063117,
1414
+ "loss": 0.1697,
1415
+ "step": 85000
1416
+ },
1417
+ {
1418
+ "epoch": 5.491682188965251,
1419
+ "grad_norm": 0.8426073789596558,
1420
+ "learning_rate": 0.0002170145802556362,
1421
+ "loss": 0.1712,
1422
+ "step": 85500
1423
+ },
1424
+ {
1425
+ "epoch": 5.5237972894855165,
1426
+ "grad_norm": 0.845986008644104,
1427
+ "learning_rate": 0.00021594621791166209,
1428
+ "loss": 0.1656,
1429
+ "step": 86000
1430
+ },
1431
+ {
1432
+ "epoch": 5.555912390005781,
1433
+ "grad_norm": 1.0187242031097412,
1434
+ "learning_rate": 0.00021487571456098659,
1435
+ "loss": 0.1646,
1436
+ "step": 86500
1437
+ },
1438
+ {
1439
+ "epoch": 5.588027490526045,
1440
+ "grad_norm": 1.054763674736023,
1441
+ "learning_rate": 0.00021380521121031109,
1442
+ "loss": 0.1694,
1443
+ "step": 87000
1444
+ },
1445
+ {
1446
+ "epoch": 5.600359689125827,
1447
+ "eval_loss": 0.0958411917090416,
1448
+ "eval_runtime": 10.8294,
1449
+ "eval_samples_per_second": 46.171,
1450
+ "eval_steps_per_second": 5.818,
1451
+ "step": 87192
1452
+ },
1453
+ {
1454
+ "epoch": 5.62014259104631,
1455
+ "grad_norm": 1.2688727378845215,
1456
+ "learning_rate": 0.0002127347078596356,
1457
+ "loss": 0.1647,
1458
+ "step": 87500
1459
+ },
1460
+ {
1461
+ "epoch": 5.652257691566574,
1462
+ "grad_norm": 0.8814001083374023,
1463
+ "learning_rate": 0.0002116642045089601,
1464
+ "loss": 0.1669,
1465
+ "step": 88000
1466
+ },
1467
+ {
1468
+ "epoch": 5.684372792086839,
1469
+ "grad_norm": 0.8970532417297363,
1470
+ "learning_rate": 0.00021059584216498597,
1471
+ "loss": 0.1672,
1472
+ "step": 88500
1473
+ },
1474
+ {
1475
+ "epoch": 5.716487892607104,
1476
+ "grad_norm": 0.7946087718009949,
1477
+ "learning_rate": 0.0002095253388143105,
1478
+ "loss": 0.1654,
1479
+ "step": 89000
1480
+ },
1481
+ {
1482
+ "epoch": 5.748602993127369,
1483
+ "grad_norm": 1.074342966079712,
1484
+ "learning_rate": 0.000208454835463635,
1485
+ "loss": 0.1694,
1486
+ "step": 89500
1487
+ },
1488
+ {
1489
+ "epoch": 5.780718093647633,
1490
+ "grad_norm": 1.6084967851638794,
1491
+ "learning_rate": 0.00020738433211295952,
1492
+ "loss": 0.1654,
1493
+ "step": 90000
1494
+ },
1495
+ {
1496
+ "epoch": 5.800372535166035,
1497
+ "eval_loss": 0.09327112138271332,
1498
+ "eval_runtime": 10.849,
1499
+ "eval_samples_per_second": 46.087,
1500
+ "eval_steps_per_second": 5.807,
1501
+ "step": 90306
1502
+ },
1503
+ {
1504
+ "epoch": 5.812833194167898,
1505
+ "grad_norm": 0.7998735308647156,
1506
+ "learning_rate": 0.00020631382876228402,
1507
+ "loss": 0.1638,
1508
+ "step": 90500
1509
+ },
1510
+ {
1511
+ "epoch": 5.844948294688162,
1512
+ "grad_norm": 0.9508408904075623,
1513
+ "learning_rate": 0.00020524760742501123,
1514
+ "loss": 0.1657,
1515
+ "step": 91000
1516
+ },
1517
+ {
1518
+ "epoch": 5.8770633952084275,
1519
+ "grad_norm": 1.108941912651062,
1520
+ "learning_rate": 0.00020417710407433576,
1521
+ "loss": 0.1712,
1522
+ "step": 91500
1523
+ },
1524
+ {
1525
+ "epoch": 5.909178495728692,
1526
+ "grad_norm": 0.7247051000595093,
1527
+ "learning_rate": 0.00020310660072366026,
1528
+ "loss": 0.1692,
1529
+ "step": 92000
1530
+ },
1531
+ {
1532
+ "epoch": 5.941293596248956,
1533
+ "grad_norm": 0.7697445154190063,
1534
+ "learning_rate": 0.00020203609737298476,
1535
+ "loss": 0.1704,
1536
+ "step": 92500
1537
+ },
1538
+ {
1539
+ "epoch": 5.973408696769221,
1540
+ "grad_norm": 0.8074194192886353,
1541
+ "learning_rate": 0.00020096559402230929,
1542
+ "loss": 0.167,
1543
+ "step": 93000
1544
+ },
1545
+ {
1546
+ "epoch": 6.000385381206243,
1547
+ "eval_loss": 0.09095225483179092,
1548
+ "eval_runtime": 10.9239,
1549
+ "eval_samples_per_second": 45.771,
1550
+ "eval_steps_per_second": 5.767,
1551
+ "step": 93420
1552
+ },
1553
+ {
1554
+ "epoch": 6.005523797289485,
1555
+ "grad_norm": 1.3462841510772705,
1556
+ "learning_rate": 0.0001998950906716338,
1557
+ "loss": 0.1639,
1558
+ "step": 93500
1559
+ },
1560
+ {
1561
+ "epoch": 6.03763889780975,
1562
+ "grad_norm": 1.676521897315979,
1563
+ "learning_rate": 0.0001988245873209583,
1564
+ "loss": 0.1496,
1565
+ "step": 94000
1566
+ },
1567
+ {
1568
+ "epoch": 6.069753998330015,
1569
+ "grad_norm": 1.4093695878982544,
1570
+ "learning_rate": 0.00019775408397028284,
1571
+ "loss": 0.1518,
1572
+ "step": 94500
1573
+ },
1574
+ {
1575
+ "epoch": 6.10186909885028,
1576
+ "grad_norm": 1.4253203868865967,
1577
+ "learning_rate": 0.00019668358061960734,
1578
+ "loss": 0.1491,
1579
+ "step": 95000
1580
+ },
1581
+ {
1582
+ "epoch": 6.133984199370544,
1583
+ "grad_norm": 1.3436193466186523,
1584
+ "learning_rate": 0.00019561307726893187,
1585
+ "loss": 0.15,
1586
+ "step": 95500
1587
+ },
1588
+ {
1589
+ "epoch": 6.166099299890809,
1590
+ "grad_norm": 0.9751285910606384,
1591
+ "learning_rate": 0.00019454257391825637,
1592
+ "loss": 0.1514,
1593
+ "step": 96000
1594
+ },
1595
+ {
1596
+ "epoch": 6.198214400411073,
1597
+ "grad_norm": 1.4429069757461548,
1598
+ "learning_rate": 0.00019347849358768493,
1599
+ "loss": 0.1528,
1600
+ "step": 96500
1601
+ },
1602
+ {
1603
+ "epoch": 6.200398227246451,
1604
+ "eval_loss": 0.09273770451545715,
1605
+ "eval_runtime": 10.8336,
1606
+ "eval_samples_per_second": 46.153,
1607
+ "eval_steps_per_second": 5.815,
1608
+ "step": 96534
1609
+ },
1610
+ {
1611
+ "epoch": 6.2303295009313375,
1612
+ "grad_norm": 1.2428455352783203,
1613
+ "learning_rate": 0.00019241013124371081,
1614
+ "loss": 0.1545,
1615
+ "step": 97000
1616
+ },
1617
+ {
1618
+ "epoch": 6.262444601451603,
1619
+ "grad_norm": 1.1435961723327637,
1620
+ "learning_rate": 0.00019133962789303531,
1621
+ "loss": 0.1511,
1622
+ "step": 97500
1623
+ },
1624
+ {
1625
+ "epoch": 6.294559701971867,
1626
+ "grad_norm": 0.7130327820777893,
1627
+ "learning_rate": 0.00019026912454235984,
1628
+ "loss": 0.1494,
1629
+ "step": 98000
1630
+ },
1631
+ {
1632
+ "epoch": 6.326674802492132,
1633
+ "grad_norm": 0.8791086673736572,
1634
+ "learning_rate": 0.00018919862119168434,
1635
+ "loss": 0.1534,
1636
+ "step": 98500
1637
+ },
1638
+ {
1639
+ "epoch": 6.358789903012396,
1640
+ "grad_norm": 0.9684843420982361,
1641
+ "learning_rate": 0.00018812811784100887,
1642
+ "loss": 0.1523,
1643
+ "step": 99000
1644
+ },
1645
+ {
1646
+ "epoch": 6.390905003532661,
1647
+ "grad_norm": 0.9359191060066223,
1648
+ "learning_rate": 0.00018705761449033337,
1649
+ "loss": 0.1534,
1650
+ "step": 99500
1651
+ },
1652
+ {
1653
+ "epoch": 6.4004110732866595,
1654
+ "eval_loss": 0.09336213767528534,
1655
+ "eval_runtime": 10.8428,
1656
+ "eval_samples_per_second": 46.113,
1657
+ "eval_steps_per_second": 5.81,
1658
+ "step": 99648
1659
+ },
1660
+ {
1661
+ "epoch": 6.423020104052926,
1662
+ "grad_norm": 1.1360000371932983,
1663
+ "learning_rate": 0.00018598711113965787,
1664
+ "loss": 0.1548,
1665
+ "step": 100000
1666
+ },
1667
+ {
1668
+ "epoch": 6.455135204573191,
1669
+ "grad_norm": 0.8199982047080994,
1670
+ "learning_rate": 0.0001849166077889824,
1671
+ "loss": 0.1555,
1672
+ "step": 100500
1673
+ },
1674
+ {
1675
+ "epoch": 6.487250305093455,
1676
+ "grad_norm": 0.9960173964500427,
1677
+ "learning_rate": 0.0001838461044383069,
1678
+ "loss": 0.1528,
1679
+ "step": 101000
1680
+ },
1681
+ {
1682
+ "epoch": 6.519365405613719,
1683
+ "grad_norm": 1.0655744075775146,
1684
+ "learning_rate": 0.00018277560108763142,
1685
+ "loss": 0.1503,
1686
+ "step": 101500
1687
+ },
1688
+ {
1689
+ "epoch": 6.551480506133984,
1690
+ "grad_norm": 1.0044993162155151,
1691
+ "learning_rate": 0.00018170509773695592,
1692
+ "loss": 0.1511,
1693
+ "step": 102000
1694
+ },
1695
+ {
1696
+ "epoch": 6.5835956066542485,
1697
+ "grad_norm": 1.2770586013793945,
1698
+ "learning_rate": 0.00018063459438628042,
1699
+ "loss": 0.1542,
1700
+ "step": 102500
1701
+ },
1702
+ {
1703
+ "epoch": 6.600423919326867,
1704
+ "eval_loss": 0.09247251600027084,
1705
+ "eval_runtime": 10.846,
1706
+ "eval_samples_per_second": 46.1,
1707
+ "eval_steps_per_second": 5.809,
1708
+ "step": 102762
1709
+ },
1710
+ {
1711
+ "epoch": 6.615710707174514,
1712
+ "grad_norm": 0.9124111533164978,
1713
+ "learning_rate": 0.00017956409103560495,
1714
+ "loss": 0.1511,
1715
+ "step": 103000
1716
+ },
1717
+ {
1718
+ "epoch": 6.647825807694778,
1719
+ "grad_norm": 0.8688704967498779,
1720
+ "learning_rate": 0.00017849358768492945,
1721
+ "loss": 0.156,
1722
+ "step": 103500
1723
+ },
1724
+ {
1725
+ "epoch": 6.679940908215043,
1726
+ "grad_norm": 1.0065816640853882,
1727
+ "learning_rate": 0.00017742308433425397,
1728
+ "loss": 0.1521,
1729
+ "step": 104000
1730
+ },
1731
+ {
1732
+ "epoch": 6.712056008735307,
1733
+ "grad_norm": 1.64698326587677,
1734
+ "learning_rate": 0.0001763525809835785,
1735
+ "loss": 0.1515,
1736
+ "step": 104500
1737
+ },
1738
+ {
1739
+ "epoch": 6.744171109255572,
1740
+ "grad_norm": 0.9489638209342957,
1741
+ "learning_rate": 0.000175282077632903,
1742
+ "loss": 0.1524,
1743
+ "step": 105000
1744
+ },
1745
+ {
1746
+ "epoch": 6.7762862097758365,
1747
+ "grad_norm": 0.7257040739059448,
1748
+ "learning_rate": 0.00017421157428222753,
1749
+ "loss": 0.1519,
1750
+ "step": 105500
1751
+ },
1752
+ {
1753
+ "epoch": 6.800436765367076,
1754
+ "eval_loss": 0.09205380082130432,
1755
+ "eval_runtime": 10.8415,
1756
+ "eval_samples_per_second": 46.119,
1757
+ "eval_steps_per_second": 5.811,
1758
+ "step": 105876
1759
+ },
1760
+ {
1761
+ "epoch": 6.808401310296102,
1762
+ "grad_norm": 0.6803815960884094,
1763
+ "learning_rate": 0.00017314107093155203,
1764
+ "loss": 0.155,
1765
+ "step": 106000
1766
+ },
1767
+ {
1768
+ "epoch": 6.840516410816366,
1769
+ "grad_norm": 1.0201648473739624,
1770
+ "learning_rate": 0.00017207270858757788,
1771
+ "loss": 0.1522,
1772
+ "step": 106500
1773
+ },
1774
+ {
1775
+ "epoch": 6.87263151133663,
1776
+ "grad_norm": 0.6421472430229187,
1777
+ "learning_rate": 0.00017100434624360374,
1778
+ "loss": 0.1546,
1779
+ "step": 107000
1780
+ },
1781
+ {
1782
+ "epoch": 6.904746611856895,
1783
+ "grad_norm": 1.1395517587661743,
1784
+ "learning_rate": 0.00016993384289292827,
1785
+ "loss": 0.1505,
1786
+ "step": 107500
1787
+ },
1788
+ {
1789
+ "epoch": 6.936861712377159,
1790
+ "grad_norm": 0.7539229989051819,
1791
+ "learning_rate": 0.00016886333954225277,
1792
+ "loss": 0.1493,
1793
+ "step": 108000
1794
+ },
1795
+ {
1796
+ "epoch": 6.9689768128974245,
1797
+ "grad_norm": 0.7081524133682251,
1798
+ "learning_rate": 0.0001677928361915773,
1799
+ "loss": 0.1546,
1800
+ "step": 108500
1801
+ },
1802
+ {
1803
+ "epoch": 7.000449611407284,
1804
+ "eval_loss": 0.08875618875026703,
1805
+ "eval_runtime": 10.8827,
1806
+ "eval_samples_per_second": 45.944,
1807
+ "eval_steps_per_second": 5.789,
1808
+ "step": 108990
1809
+ },
1810
+ {
1811
+ "epoch": 7.001091913417689,
1812
+ "grad_norm": 0.7849060893058777,
1813
+ "learning_rate": 0.0001667223328409018,
1814
+ "loss": 0.1514,
1815
+ "step": 109000
1816
+ },
1817
+ {
1818
+ "epoch": 7.033207013937954,
1819
+ "grad_norm": 1.137452244758606,
1820
+ "learning_rate": 0.00016565182949022632,
1821
+ "loss": 0.1326,
1822
+ "step": 109500
1823
+ },
1824
+ {
1825
+ "epoch": 7.065322114458218,
1826
+ "grad_norm": 1.1734918355941772,
1827
+ "learning_rate": 0.00016458132613955082,
1828
+ "loss": 0.1359,
1829
+ "step": 110000
1830
+ },
1831
+ {
1832
+ "epoch": 7.097437214978483,
1833
+ "grad_norm": 0.7949861884117126,
1834
+ "learning_rate": 0.00016351082278887532,
1835
+ "loss": 0.1368,
1836
+ "step": 110500
1837
+ },
1838
+ {
1839
+ "epoch": 7.1295523154987475,
1840
+ "grad_norm": 0.8079173564910889,
1841
+ "learning_rate": 0.0001624424604449012,
1842
+ "loss": 0.1377,
1843
+ "step": 111000
1844
+ },
1845
+ {
1846
+ "epoch": 7.161667416019013,
1847
+ "grad_norm": 1.0784578323364258,
1848
+ "learning_rate": 0.00016137195709422573,
1849
+ "loss": 0.1375,
1850
+ "step": 111500
1851
+ },
1852
+ {
1853
+ "epoch": 7.193782516539277,
1854
+ "grad_norm": 1.7232319116592407,
1855
+ "learning_rate": 0.00016030145374355023,
1856
+ "loss": 0.139,
1857
+ "step": 112000
1858
+ },
1859
+ {
1860
+ "epoch": 7.200462457447491,
1861
+ "eval_loss": 0.09257567673921585,
1862
+ "eval_runtime": 10.8542,
1863
+ "eval_samples_per_second": 46.065,
1864
+ "eval_steps_per_second": 5.804,
1865
+ "step": 112104
1866
+ },
1867
+ {
1868
+ "epoch": 7.225897617059541,
1869
+ "grad_norm": 0.768081784248352,
1870
+ "learning_rate": 0.00015923095039287476,
1871
+ "loss": 0.1347,
1872
+ "step": 112500
1873
+ },
1874
+ {
1875
+ "epoch": 7.258012717579806,
1876
+ "grad_norm": 1.6621108055114746,
1877
+ "learning_rate": 0.00015816044704219926,
1878
+ "loss": 0.1373,
1879
+ "step": 113000
1880
+ },
1881
+ {
1882
+ "epoch": 7.29012781810007,
1883
+ "grad_norm": 1.2326443195343018,
1884
+ "learning_rate": 0.00015708994369152376,
1885
+ "loss": 0.1363,
1886
+ "step": 113500
1887
+ },
1888
+ {
1889
+ "epoch": 7.3222429186203355,
1890
+ "grad_norm": 0.5258485078811646,
1891
+ "learning_rate": 0.00015601944034084828,
1892
+ "loss": 0.1387,
1893
+ "step": 114000
1894
+ },
1895
+ {
1896
+ "epoch": 7.3543580191406,
1897
+ "grad_norm": 0.8436623215675354,
1898
+ "learning_rate": 0.0001549532190035755,
1899
+ "loss": 0.1348,
1900
+ "step": 114500
1901
+ },
1902
+ {
1903
+ "epoch": 7.386473119660865,
1904
+ "grad_norm": 0.6861766576766968,
1905
+ "learning_rate": 0.0001538827156529,
1906
+ "loss": 0.1365,
1907
+ "step": 115000
1908
+ },
1909
+ {
1910
+ "epoch": 7.4004753034877,
1911
+ "eval_loss": 0.08821524679660797,
1912
+ "eval_runtime": 10.8457,
1913
+ "eval_samples_per_second": 46.101,
1914
+ "eval_steps_per_second": 5.809,
1915
+ "step": 115218
1916
+ },
1917
+ {
1918
+ "epoch": 7.418588220181129,
1919
+ "grad_norm": 1.1178549528121948,
1920
+ "learning_rate": 0.00015281221230222452,
1921
+ "loss": 0.1393,
1922
+ "step": 115500
1923
+ },
1924
+ {
1925
+ "epoch": 7.450703320701394,
1926
+ "grad_norm": 0.9193400144577026,
1927
+ "learning_rate": 0.00015174170895154902,
1928
+ "loss": 0.137,
1929
+ "step": 116000
1930
+ },
1931
+ {
1932
+ "epoch": 7.482818421221658,
1933
+ "grad_norm": 1.235520601272583,
1934
+ "learning_rate": 0.00015067120560087352,
1935
+ "loss": 0.1407,
1936
+ "step": 116500
1937
+ },
1938
+ {
1939
+ "epoch": 7.5149335217419235,
1940
+ "grad_norm": 0.8899208903312683,
1941
+ "learning_rate": 0.00014960070225019805,
1942
+ "loss": 0.137,
1943
+ "step": 117000
1944
+ },
1945
+ {
1946
+ "epoch": 7.547048622262188,
1947
+ "grad_norm": 0.931509792804718,
1948
+ "learning_rate": 0.00014853019889952255,
1949
+ "loss": 0.1361,
1950
+ "step": 117500
1951
+ },
1952
+ {
1953
+ "epoch": 7.579163722782452,
1954
+ "grad_norm": 0.7725268602371216,
1955
+ "learning_rate": 0.00014745969554884707,
1956
+ "loss": 0.1387,
1957
+ "step": 118000
1958
+ },
1959
+ {
1960
+ "epoch": 7.600488149527908,
1961
+ "eval_loss": 0.0873921662569046,
1962
+ "eval_runtime": 10.8135,
1963
+ "eval_samples_per_second": 46.238,
1964
+ "eval_steps_per_second": 5.826,
1965
+ "step": 118332
1966
+ },
1967
+ {
1968
+ "epoch": 7.611278823302717,
1969
+ "grad_norm": 0.884363055229187,
1970
+ "learning_rate": 0.00014638919219817157,
1971
+ "loss": 0.1398,
1972
+ "step": 118500
1973
+ },
1974
+ {
1975
+ "epoch": 7.643393923822981,
1976
+ "grad_norm": 1.2647264003753662,
1977
+ "learning_rate": 0.0001453186888474961,
1978
+ "loss": 0.1381,
1979
+ "step": 119000
1980
+ },
1981
+ {
1982
+ "epoch": 7.6755090243432464,
1983
+ "grad_norm": 0.920505940914154,
1984
+ "learning_rate": 0.00014425032650352198,
1985
+ "loss": 0.1374,
1986
+ "step": 119500
1987
+ },
1988
+ {
1989
+ "epoch": 7.707624124863511,
1990
+ "grad_norm": 0.8580414056777954,
1991
+ "learning_rate": 0.00014317982315284648,
1992
+ "loss": 0.1367,
1993
+ "step": 120000
1994
+ },
1995
+ {
1996
+ "epoch": 7.739739225383776,
1997
+ "grad_norm": 0.6036571264266968,
1998
+ "learning_rate": 0.00014211146080887234,
1999
+ "loss": 0.1354,
2000
+ "step": 120500
2001
+ },
2002
+ {
2003
+ "epoch": 7.77185432590404,
2004
+ "grad_norm": 2.026247501373291,
2005
+ "learning_rate": 0.00014104095745819686,
2006
+ "loss": 0.1366,
2007
+ "step": 121000
2008
+ },
2009
+ {
2010
+ "epoch": 7.800500995568116,
2011
+ "eval_loss": 0.08479217439889908,
2012
+ "eval_runtime": 10.8274,
2013
+ "eval_samples_per_second": 46.179,
2014
+ "eval_steps_per_second": 5.819,
2015
+ "step": 121446
2016
+ },
2017
+ {
2018
+ "epoch": 7.803969426424304,
2019
+ "grad_norm": 0.5891489386558533,
2020
+ "learning_rate": 0.00013997259511422272,
2021
+ "loss": 0.1371,
2022
+ "step": 121500
2023
+ },
2024
+ {
2025
+ "epoch": 7.836084526944569,
2026
+ "grad_norm": 1.0805268287658691,
2027
+ "learning_rate": 0.00013890209176354722,
2028
+ "loss": 0.1365,
2029
+ "step": 122000
2030
+ },
2031
+ {
2032
+ "epoch": 7.868199627464834,
2033
+ "grad_norm": 1.196164608001709,
2034
+ "learning_rate": 0.00013783158841287175,
2035
+ "loss": 0.1386,
2036
+ "step": 122500
2037
+ },
2038
+ {
2039
+ "epoch": 7.900314727985099,
2040
+ "grad_norm": 1.0710468292236328,
2041
+ "learning_rate": 0.00013676108506219625,
2042
+ "loss": 0.1387,
2043
+ "step": 123000
2044
+ },
2045
+ {
2046
+ "epoch": 7.932429828505363,
2047
+ "grad_norm": 0.6442809700965881,
2048
+ "learning_rate": 0.00013569058171152075,
2049
+ "loss": 0.1374,
2050
+ "step": 123500
2051
+ },
2052
+ {
2053
+ "epoch": 7.964544929025628,
2054
+ "grad_norm": 1.2016128301620483,
2055
+ "learning_rate": 0.00013462007836084527,
2056
+ "loss": 0.1382,
2057
+ "step": 124000
2058
+ },
2059
+ {
2060
+ "epoch": 7.996660029545892,
2061
+ "grad_norm": 1.0018885135650635,
2062
+ "learning_rate": 0.00013354957501016977,
2063
+ "loss": 0.1361,
2064
+ "step": 124500
2065
+ },
2066
+ {
2067
+ "epoch": 8.000513841608324,
2068
+ "eval_loss": 0.08666615188121796,
2069
+ "eval_runtime": 10.8777,
2070
+ "eval_samples_per_second": 45.965,
2071
+ "eval_steps_per_second": 5.792,
2072
+ "step": 124560
2073
+ },
2074
+ {
2075
+ "epoch": 8.028775130066157,
2076
+ "grad_norm": 0.950286865234375,
2077
+ "learning_rate": 0.0001324790716594943,
2078
+ "loss": 0.12,
2079
+ "step": 125000
2080
+ },
2081
+ {
2082
+ "epoch": 8.060890230586422,
2083
+ "grad_norm": 0.6005535125732422,
2084
+ "learning_rate": 0.00013141070931552016,
2085
+ "loss": 0.1186,
2086
+ "step": 125500
2087
+ },
2088
+ {
2089
+ "epoch": 8.093005331106687,
2090
+ "grad_norm": 0.8377195000648499,
2091
+ "learning_rate": 0.00013034020596484468,
2092
+ "loss": 0.1223,
2093
+ "step": 126000
2094
+ },
2095
+ {
2096
+ "epoch": 8.125120431626952,
2097
+ "grad_norm": 1.1217572689056396,
2098
+ "learning_rate": 0.0001292697026141692,
2099
+ "loss": 0.1201,
2100
+ "step": 126500
2101
+ },
2102
+ {
2103
+ "epoch": 8.157235532147215,
2104
+ "grad_norm": 1.7238047122955322,
2105
+ "learning_rate": 0.0001281991992634937,
2106
+ "loss": 0.1214,
2107
+ "step": 127000
2108
+ },
2109
+ {
2110
+ "epoch": 8.18935063266748,
2111
+ "grad_norm": 1.5249451398849487,
2112
+ "learning_rate": 0.0001271286959128182,
2113
+ "loss": 0.1225,
2114
+ "step": 127500
2115
+ },
2116
+ {
2117
+ "epoch": 8.200526687648532,
2118
+ "eval_loss": 0.08865106105804443,
2119
+ "eval_runtime": 10.8261,
2120
+ "eval_samples_per_second": 46.185,
2121
+ "eval_steps_per_second": 5.819,
2122
+ "step": 127674
2123
+ },
2124
+ {
2125
+ "epoch": 8.221465733187745,
2126
+ "grad_norm": 1.126414179801941,
2127
+ "learning_rate": 0.00012605819256214274,
2128
+ "loss": 0.1229,
2129
+ "step": 128000
2130
+ },
2131
+ {
2132
+ "epoch": 8.253580833708009,
2133
+ "grad_norm": 1.8510679006576538,
2134
+ "learning_rate": 0.00012498768921146724,
2135
+ "loss": 0.1227,
2136
+ "step": 128500
2137
+ },
2138
+ {
2139
+ "epoch": 8.285695934228274,
2140
+ "grad_norm": 0.8210551738739014,
2141
+ "learning_rate": 0.00012391718586079176,
2142
+ "loss": 0.1236,
2143
+ "step": 129000
2144
+ },
2145
+ {
2146
+ "epoch": 8.317811034748539,
2147
+ "grad_norm": 1.0230821371078491,
2148
+ "learning_rate": 0.00012284882351681762,
2149
+ "loss": 0.1226,
2150
+ "step": 129500
2151
+ },
2152
+ {
2153
+ "epoch": 8.349926135268804,
2154
+ "grad_norm": 0.887445867061615,
2155
+ "learning_rate": 0.00012177832016614212,
2156
+ "loss": 0.1257,
2157
+ "step": 130000
2158
+ },
2159
+ {
2160
+ "epoch": 8.382041235789067,
2161
+ "grad_norm": 0.8764634728431702,
2162
+ "learning_rate": 0.00012070781681546663,
2163
+ "loss": 0.123,
2164
+ "step": 130500
2165
+ },
2166
+ {
2167
+ "epoch": 8.40053953368874,
2168
+ "eval_loss": 0.08668751269578934,
2169
+ "eval_runtime": 10.8335,
2170
+ "eval_samples_per_second": 46.153,
2171
+ "eval_steps_per_second": 5.815,
2172
+ "step": 130788
2173
+ },
2174
+ {
2175
+ "epoch": 8.414156336309333,
2176
+ "grad_norm": 1.483042597770691,
2177
+ "learning_rate": 0.00011963731346479115,
2178
+ "loss": 0.1243,
2179
+ "step": 131000
2180
+ },
2181
+ {
2182
+ "epoch": 8.446271436829598,
2183
+ "grad_norm": 1.0334933996200562,
2184
+ "learning_rate": 0.00011856681011411566,
2185
+ "loss": 0.123,
2186
+ "step": 131500
2187
+ },
2188
+ {
2189
+ "epoch": 8.478386537349863,
2190
+ "grad_norm": 0.7686107754707336,
2191
+ "learning_rate": 0.00011749844777014151,
2192
+ "loss": 0.1229,
2193
+ "step": 132000
2194
+ },
2195
+ {
2196
+ "epoch": 8.510501637870126,
2197
+ "grad_norm": 1.4142353534698486,
2198
+ "learning_rate": 0.00011643008542616738,
2199
+ "loss": 0.1201,
2200
+ "step": 132500
2201
+ },
2202
+ {
2203
+ "epoch": 8.542616738390391,
2204
+ "grad_norm": 0.8570358753204346,
2205
+ "learning_rate": 0.00011535958207549191,
2206
+ "loss": 0.1245,
2207
+ "step": 133000
2208
+ },
2209
+ {
2210
+ "epoch": 8.574731838910656,
2211
+ "grad_norm": 0.9113430380821228,
2212
+ "learning_rate": 0.00011428907872481642,
2213
+ "loss": 0.1254,
2214
+ "step": 133500
2215
+ },
2216
+ {
2217
+ "epoch": 8.60055237972895,
2218
+ "eval_loss": 0.08712950348854065,
2219
+ "eval_runtime": 10.8337,
2220
+ "eval_samples_per_second": 46.152,
2221
+ "eval_steps_per_second": 5.815,
2222
+ "step": 133902
2223
+ },
2224
+ {
2225
+ "epoch": 8.60684693943092,
2226
+ "grad_norm": 1.0578913688659668,
2227
+ "learning_rate": 0.00011321857537414094,
2228
+ "loss": 0.1244,
2229
+ "step": 134000
2230
+ },
2231
+ {
2232
+ "epoch": 8.638962039951185,
2233
+ "grad_norm": 0.8318167924880981,
2234
+ "learning_rate": 0.00011214807202346545,
2235
+ "loss": 0.122,
2236
+ "step": 134500
2237
+ },
2238
+ {
2239
+ "epoch": 8.67107714047145,
2240
+ "grad_norm": 1.0664008855819702,
2241
+ "learning_rate": 0.0001110797096794913,
2242
+ "loss": 0.1238,
2243
+ "step": 135000
2244
+ },
2245
+ {
2246
+ "epoch": 8.703192240991715,
2247
+ "grad_norm": 0.6879481077194214,
2248
+ "learning_rate": 0.00011000920632881582,
2249
+ "loss": 0.1219,
2250
+ "step": 135500
2251
+ },
2252
+ {
2253
+ "epoch": 8.735307341511978,
2254
+ "grad_norm": 0.6154463887214661,
2255
+ "learning_rate": 0.00010893870297814033,
2256
+ "loss": 0.1249,
2257
+ "step": 136000
2258
+ },
2259
+ {
2260
+ "epoch": 8.767422442032244,
2261
+ "grad_norm": 1.037608027458191,
2262
+ "learning_rate": 0.00010786819962746485,
2263
+ "loss": 0.1223,
2264
+ "step": 136500
2265
+ },
2266
+ {
2267
+ "epoch": 8.799537542552509,
2268
+ "grad_norm": 1.0678964853286743,
2269
+ "learning_rate": 0.00010679769627678935,
2270
+ "loss": 0.1259,
2271
+ "step": 137000
2272
+ },
2273
+ {
2274
+ "epoch": 8.800565225769157,
2275
+ "eval_loss": 0.0865495353937149,
2276
+ "eval_runtime": 10.8229,
2277
+ "eval_samples_per_second": 46.198,
2278
+ "eval_steps_per_second": 5.821,
2279
+ "step": 137016
2280
+ },
2281
+ {
2282
+ "epoch": 8.831652643072772,
2283
+ "grad_norm": 0.6752831935882568,
2284
+ "learning_rate": 0.00010572719292611386,
2285
+ "loss": 0.1215,
2286
+ "step": 137500
2287
+ },
2288
+ {
2289
+ "epoch": 8.863767743593037,
2290
+ "grad_norm": 1.0613418817520142,
2291
+ "learning_rate": 0.00010465668957543837,
2292
+ "loss": 0.1236,
2293
+ "step": 138000
2294
+ },
2295
+ {
2296
+ "epoch": 8.895882844113302,
2297
+ "grad_norm": 1.3254040479660034,
2298
+ "learning_rate": 0.00010358618622476289,
2299
+ "loss": 0.1201,
2300
+ "step": 138500
2301
+ },
2302
+ {
2303
+ "epoch": 8.927997944633567,
2304
+ "grad_norm": 0.9630472660064697,
2305
+ "learning_rate": 0.0001025156828740874,
2306
+ "loss": 0.1253,
2307
+ "step": 139000
2308
+ },
2309
+ {
2310
+ "epoch": 8.96011304515383,
2311
+ "grad_norm": 0.9609339833259583,
2312
+ "learning_rate": 0.00010144732053011325,
2313
+ "loss": 0.1244,
2314
+ "step": 139500
2315
+ },
2316
+ {
2317
+ "epoch": 8.992228145674096,
2318
+ "grad_norm": 1.1347200870513916,
2319
+ "learning_rate": 0.00010037681717943777,
2320
+ "loss": 0.1205,
2321
+ "step": 140000
2322
+ }
2323
+ ],
2324
+ "logging_steps": 500,
2325
+ "max_steps": 186828,
2326
+ "num_input_tokens_seen": 0,
2327
+ "num_train_epochs": 12,
2328
+ "save_steps": 500,
2329
+ "stateful_callbacks": {
2330
+ "TrainerControl": {
2331
+ "args": {
2332
+ "should_epoch_stop": false,
2333
+ "should_evaluate": false,
2334
+ "should_log": false,
2335
+ "should_save": true,
2336
+ "should_training_stop": false
2337
+ },
2338
+ "attributes": {}
2339
+ }
2340
+ },
2341
+ "total_flos": 4.9018973686801105e+19,
2342
+ "train_batch_size": 2,
2343
+ "trial_name": null,
2344
+ "trial_params": null
2345
+ }
checkpoint-140121/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18770cad77c61ad23c96d1c614b30fa0afc45e40d6ebf88c6c6e22257f3e29c0
3
+ size 5496