|
|
import torch |
|
|
import numpy as np |
|
|
|
|
|
_EPS4 = np.finfo(float).eps * 4.0 |
|
|
|
|
|
_FLOAT_EPS = np.finfo(float).eps |
|
|
|
|
|
|
|
|
def qinv(q): |
|
|
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)' |
|
|
mask = torch.ones_like(q) |
|
|
mask[..., 1:] = -mask[..., 1:] |
|
|
return q * mask |
|
|
|
|
|
|
|
|
def qinv_np(q): |
|
|
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)' |
|
|
return qinv(torch.from_numpy(q).float()).numpy() |
|
|
|
|
|
|
|
|
def qnormalize(q): |
|
|
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)' |
|
|
return q / torch.norm(q, dim=-1, keepdim=True) |
|
|
|
|
|
|
|
|
def qmul(q, r): |
|
|
""" |
|
|
Multiply quaternion(s) q with quaternion(s) r. |
|
|
Expects two equally-sized tensors of shape (*, 4), where * denotes any number of dimensions. |
|
|
Returns q*r as a tensor of shape (*, 4). |
|
|
""" |
|
|
assert q.shape[-1] == 4 |
|
|
assert r.shape[-1] == 4 |
|
|
|
|
|
original_shape = q.shape |
|
|
|
|
|
|
|
|
terms = torch.bmm(r.view(-1, 4, 1), q.view(-1, 1, 4)) |
|
|
|
|
|
w = terms[:, 0, 0] - terms[:, 1, 1] - terms[:, 2, 2] - terms[:, 3, 3] |
|
|
x = terms[:, 0, 1] + terms[:, 1, 0] - terms[:, 2, 3] + terms[:, 3, 2] |
|
|
y = terms[:, 0, 2] + terms[:, 1, 3] + terms[:, 2, 0] - terms[:, 3, 1] |
|
|
z = terms[:, 0, 3] - terms[:, 1, 2] + terms[:, 2, 1] + terms[:, 3, 0] |
|
|
return torch.stack((w, x, y, z), dim=1).view(original_shape) |
|
|
|
|
|
|
|
|
def qrot(q, v): |
|
|
""" |
|
|
Rotate vector(s) v about the rotation described by quaternion(s) q. |
|
|
Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v, |
|
|
where * denotes any number of dimensions. |
|
|
Returns a tensor of shape (*, 3). |
|
|
""" |
|
|
assert q.shape[-1] == 4 |
|
|
assert v.shape[-1] == 3 |
|
|
assert q.shape[:-1] == v.shape[:-1] |
|
|
|
|
|
original_shape = list(v.shape) |
|
|
|
|
|
q = q.contiguous().view(-1, 4) |
|
|
v = v.contiguous().view(-1, 3) |
|
|
|
|
|
qvec = q[:, 1:] |
|
|
uv = torch.cross(qvec, v, dim=1) |
|
|
uuv = torch.cross(qvec, uv, dim=1) |
|
|
return (v + 2 * (q[:, :1] * uv + uuv)).view(original_shape) |
|
|
|
|
|
|
|
|
def qeuler(q, order, epsilon=0, deg=True): |
|
|
""" |
|
|
Convert quaternion(s) q to Euler angles. |
|
|
Expects a tensor of shape (*, 4), where * denotes any number of dimensions. |
|
|
Returns a tensor of shape (*, 3). |
|
|
""" |
|
|
assert q.shape[-1] == 4 |
|
|
|
|
|
original_shape = list(q.shape) |
|
|
original_shape[-1] = 3 |
|
|
q = q.view(-1, 4) |
|
|
|
|
|
q0 = q[:, 0] |
|
|
q1 = q[:, 1] |
|
|
q2 = q[:, 2] |
|
|
q3 = q[:, 3] |
|
|
|
|
|
if order == 'xyz': |
|
|
x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) |
|
|
y = torch.asin(torch.clamp(2 * (q1 * q3 + q0 * q2), -1 + epsilon, 1 - epsilon)) |
|
|
z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)) |
|
|
elif order == 'yzx': |
|
|
x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3)) |
|
|
y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3)) |
|
|
z = torch.asin(torch.clamp(2 * (q1 * q2 + q0 * q3), -1 + epsilon, 1 - epsilon)) |
|
|
elif order == 'zxy': |
|
|
x = torch.asin(torch.clamp(2 * (q0 * q1 + q2 * q3), -1 + epsilon, 1 - epsilon)) |
|
|
y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) |
|
|
z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q1 * q1 + q3 * q3)) |
|
|
elif order == 'xzy': |
|
|
x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3)) |
|
|
y = torch.atan2(2 * (q0 * q2 + q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3)) |
|
|
z = torch.asin(torch.clamp(2 * (q0 * q3 - q1 * q2), -1 + epsilon, 1 - epsilon)) |
|
|
elif order == 'yxz': |
|
|
x = torch.asin(torch.clamp(2 * (q0 * q1 - q2 * q3), -1 + epsilon, 1 - epsilon)) |
|
|
y = torch.atan2(2 * (q1 * q3 + q0 * q2), 1 - 2 * (q1 * q1 + q2 * q2)) |
|
|
z = torch.atan2(2 * (q1 * q2 + q0 * q3), 1 - 2 * (q1 * q1 + q3 * q3)) |
|
|
elif order == 'zyx': |
|
|
x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) |
|
|
y = torch.asin(torch.clamp(2 * (q0 * q2 - q1 * q3), -1 + epsilon, 1 - epsilon)) |
|
|
z = torch.atan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)) |
|
|
else: |
|
|
raise |
|
|
|
|
|
if deg: |
|
|
return torch.stack((x, y, z), dim=1).view(original_shape) * 180 / np.pi |
|
|
else: |
|
|
return torch.stack((x, y, z), dim=1).view(original_shape) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def qmul_np(q, r): |
|
|
q = torch.from_numpy(q).contiguous().float() |
|
|
r = torch.from_numpy(r).contiguous().float() |
|
|
return qmul(q, r).numpy() |
|
|
|
|
|
|
|
|
def qrot_np(q, v): |
|
|
q = torch.from_numpy(q).contiguous().float() |
|
|
v = torch.from_numpy(v).contiguous().float() |
|
|
return qrot(q, v).numpy() |
|
|
|
|
|
|
|
|
def qeuler_np(q, order, epsilon=0, use_gpu=False): |
|
|
if use_gpu: |
|
|
q = torch.from_numpy(q).cuda().float() |
|
|
return qeuler(q, order, epsilon).cpu().numpy() |
|
|
else: |
|
|
q = torch.from_numpy(q).contiguous().float() |
|
|
return qeuler(q, order, epsilon).numpy() |
|
|
|
|
|
|
|
|
def qfix(q): |
|
|
""" |
|
|
Enforce quaternion continuity across the time dimension by selecting |
|
|
the representation (q or -q) with minimal distance (or, equivalently, maximal dot product) |
|
|
between two consecutive frames. |
|
|
|
|
|
Expects a tensor of shape (L, J, 4), where L is the sequence length and J is the number of joints. |
|
|
Returns a tensor of the same shape. |
|
|
""" |
|
|
assert len(q.shape) == 3 |
|
|
assert q.shape[-1] == 4 |
|
|
|
|
|
result = q.copy() |
|
|
dot_products = np.sum(q[1:] * q[:-1], axis=2) |
|
|
mask = dot_products < 0 |
|
|
mask = (np.cumsum(mask, axis=0) % 2).astype(bool) |
|
|
result[1:][mask] *= -1 |
|
|
return result |
|
|
|
|
|
|
|
|
def euler2quat(e, order, deg=True): |
|
|
""" |
|
|
Convert Euler angles to quaternions. |
|
|
""" |
|
|
assert e.shape[-1] == 3 |
|
|
|
|
|
original_shape = list(e.shape) |
|
|
original_shape[-1] = 4 |
|
|
|
|
|
e = e.view(-1, 3) |
|
|
|
|
|
|
|
|
if deg: |
|
|
e = e * np.pi / 180. |
|
|
|
|
|
x = e[:, 0] |
|
|
y = e[:, 1] |
|
|
z = e[:, 2] |
|
|
|
|
|
rx = torch.stack((torch.cos(x / 2), torch.sin(x / 2), torch.zeros_like(x), torch.zeros_like(x)), dim=1) |
|
|
ry = torch.stack((torch.cos(y / 2), torch.zeros_like(y), torch.sin(y / 2), torch.zeros_like(y)), dim=1) |
|
|
rz = torch.stack((torch.cos(z / 2), torch.zeros_like(z), torch.zeros_like(z), torch.sin(z / 2)), dim=1) |
|
|
|
|
|
result = None |
|
|
for coord in order: |
|
|
if coord == 'x': |
|
|
r = rx |
|
|
elif coord == 'y': |
|
|
r = ry |
|
|
elif coord == 'z': |
|
|
r = rz |
|
|
else: |
|
|
raise |
|
|
if result is None: |
|
|
result = r |
|
|
else: |
|
|
result = qmul(result, r) |
|
|
|
|
|
|
|
|
if order in ['xyz', 'yzx', 'zxy']: |
|
|
result *= -1 |
|
|
|
|
|
return result.view(original_shape) |
|
|
|
|
|
|
|
|
def expmap_to_quaternion(e): |
|
|
""" |
|
|
Convert axis-angle rotations (aka exponential maps) to quaternions. |
|
|
Stable formula from "Practical Parameterization of Rotations Using the Exponential Map". |
|
|
Expects a tensor of shape (*, 3), where * denotes any number of dimensions. |
|
|
Returns a tensor of shape (*, 4). |
|
|
""" |
|
|
assert e.shape[-1] == 3 |
|
|
|
|
|
original_shape = list(e.shape) |
|
|
original_shape[-1] = 4 |
|
|
e = e.reshape(-1, 3) |
|
|
|
|
|
theta = np.linalg.norm(e, axis=1).reshape(-1, 1) |
|
|
w = np.cos(0.5 * theta).reshape(-1, 1) |
|
|
xyz = 0.5 * np.sinc(0.5 * theta / np.pi) * e |
|
|
return np.concatenate((w, xyz), axis=1).reshape(original_shape) |
|
|
|
|
|
|
|
|
def euler_to_quaternion(e, order): |
|
|
""" |
|
|
Convert Euler angles to quaternions. |
|
|
""" |
|
|
assert e.shape[-1] == 3 |
|
|
|
|
|
original_shape = list(e.shape) |
|
|
original_shape[-1] = 4 |
|
|
|
|
|
e = e.reshape(-1, 3) |
|
|
|
|
|
x = e[:, 0] |
|
|
y = e[:, 1] |
|
|
z = e[:, 2] |
|
|
|
|
|
rx = np.stack((np.cos(x / 2), np.sin(x / 2), np.zeros_like(x), np.zeros_like(x)), axis=1) |
|
|
ry = np.stack((np.cos(y / 2), np.zeros_like(y), np.sin(y / 2), np.zeros_like(y)), axis=1) |
|
|
rz = np.stack((np.cos(z / 2), np.zeros_like(z), np.zeros_like(z), np.sin(z / 2)), axis=1) |
|
|
|
|
|
result = None |
|
|
for coord in order: |
|
|
if coord == 'x': |
|
|
r = rx |
|
|
elif coord == 'y': |
|
|
r = ry |
|
|
elif coord == 'z': |
|
|
r = rz |
|
|
else: |
|
|
raise |
|
|
if result is None: |
|
|
result = r |
|
|
else: |
|
|
result = qmul_np(result, r) |
|
|
|
|
|
|
|
|
if order in ['xyz', 'yzx', 'zxy']: |
|
|
result *= -1 |
|
|
|
|
|
return result.reshape(original_shape) |
|
|
|
|
|
|
|
|
def quaternion_to_matrix(quaternions): |
|
|
""" |
|
|
Convert rotations given as quaternions to rotation matrices. |
|
|
Args: |
|
|
quaternions: quaternions with real part first, |
|
|
as tensor of shape (..., 4). |
|
|
Returns: |
|
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
|
""" |
|
|
r, i, j, k = torch.unbind(quaternions, -1) |
|
|
two_s = 2.0 / (quaternions * quaternions).sum(-1) |
|
|
|
|
|
o = torch.stack( |
|
|
( |
|
|
1 - two_s * (j * j + k * k), |
|
|
two_s * (i * j - k * r), |
|
|
two_s * (i * k + j * r), |
|
|
two_s * (i * j + k * r), |
|
|
1 - two_s * (i * i + k * k), |
|
|
two_s * (j * k - i * r), |
|
|
two_s * (i * k - j * r), |
|
|
two_s * (j * k + i * r), |
|
|
1 - two_s * (i * i + j * j), |
|
|
), |
|
|
-1, |
|
|
) |
|
|
return o.reshape(quaternions.shape[:-1] + (3, 3)) |
|
|
|
|
|
|
|
|
def quaternion_to_matrix_np(quaternions): |
|
|
q = torch.from_numpy(quaternions).contiguous().float() |
|
|
return quaternion_to_matrix(q).numpy() |
|
|
|
|
|
|
|
|
def quaternion_to_cont6d_np(quaternions): |
|
|
rotation_mat = quaternion_to_matrix_np(quaternions) |
|
|
cont_6d = np.concatenate([rotation_mat[..., 0], rotation_mat[..., 1]], axis=-1) |
|
|
return cont_6d |
|
|
|
|
|
|
|
|
def quaternion_to_cont6d(quaternions): |
|
|
rotation_mat = quaternion_to_matrix(quaternions) |
|
|
cont_6d = torch.cat([rotation_mat[..., 0], rotation_mat[..., 1]], dim=-1) |
|
|
return cont_6d |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix |
|
|
using Gram--Schmidt orthogonalization per Section B of [1]. |
|
|
Args: |
|
|
d6: 6D rotation representation, of size (*, 6) |
|
|
|
|
|
Returns: |
|
|
batch of rotation matrices of size (*, 3, 3) |
|
|
|
|
|
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. |
|
|
On the Continuity of Rotation Representations in Neural Networks. |
|
|
IEEE Conference on Computer Vision and Pattern Recognition, 2019. |
|
|
Retrieved from http://arxiv.org/abs/1812.07035 |
|
|
""" |
|
|
|
|
|
a1, a2 = d6[..., :3], d6[..., 3:] |
|
|
b1 = F.normalize(a1, dim=-1) |
|
|
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1 |
|
|
b2 = F.normalize(b2, dim=-1) |
|
|
b3 = torch.cross(b1, b2, dim=-1) |
|
|
return torch.stack((b1, b2, b3), dim=-2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def qpow(q0, t, dtype=torch.float): |
|
|
''' q0 : tensor of quaternions |
|
|
t: tensor of powers |
|
|
''' |
|
|
q0 = qnormalize(q0) |
|
|
theta0 = torch.acos(q0[..., 0]) |
|
|
|
|
|
|
|
|
mask = (theta0 <= 10e-10) * (theta0 >= -10e-10) |
|
|
theta0 = (1 - mask) * theta0 + mask * 10e-10 |
|
|
v0 = q0[..., 1:] / torch.sin(theta0).view(-1, 1) |
|
|
|
|
|
if isinstance(t, torch.Tensor): |
|
|
q = torch.zeros(t.shape + q0.shape) |
|
|
theta = t.view(-1, 1) * theta0.view(1, -1) |
|
|
else: |
|
|
q = torch.zeros(q0.shape) |
|
|
theta = t * theta0 |
|
|
|
|
|
q[..., 0] = torch.cos(theta) |
|
|
q[..., 1:] = v0 * torch.sin(theta).unsqueeze(-1) |
|
|
|
|
|
return q.to(dtype) |
|
|
|
|
|
|
|
|
def qslerp(q0, q1, t): |
|
|
''' |
|
|
q0: starting quaternion |
|
|
q1: ending quaternion |
|
|
t: array of points along the way |
|
|
|
|
|
Returns: |
|
|
Tensor of Slerps: t.shape + q0.shape |
|
|
''' |
|
|
|
|
|
q0 = qnormalize(q0) |
|
|
q1 = qnormalize(q1) |
|
|
q_ = qpow(qmul(q1, qinv(q0)), t) |
|
|
|
|
|
return qmul(q_, |
|
|
q0.contiguous().view(torch.Size([1] * len(t.shape)) + q0.shape).expand(t.shape + q0.shape).contiguous()) |
|
|
|
|
|
|
|
|
def qbetween(v0, v1): |
|
|
''' |
|
|
find the quaternion used to rotate v0 to v1 |
|
|
''' |
|
|
assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)' |
|
|
assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)' |
|
|
|
|
|
v = torch.cross(v0, v1) |
|
|
w = torch.sqrt((v0 ** 2).sum(dim=-1, keepdim=True) * (v1 ** 2).sum(dim=-1, keepdim=True)) + (v0 * v1).sum(dim=-1, |
|
|
keepdim=True) |
|
|
return qnormalize(torch.cat([w, v], dim=-1)) |
|
|
|
|
|
|
|
|
def qbetween_np(v0, v1): |
|
|
''' |
|
|
find the quaternion used to rotate v0 to v1 |
|
|
''' |
|
|
assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)' |
|
|
assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)' |
|
|
|
|
|
v0 = torch.from_numpy(v0).float() |
|
|
v1 = torch.from_numpy(v1).float() |
|
|
return qbetween(v0, v1).numpy() |
|
|
|
|
|
|
|
|
def lerp(p0, p1, t): |
|
|
if not isinstance(t, torch.Tensor): |
|
|
t = torch.Tensor([t]) |
|
|
|
|
|
new_shape = t.shape + p0.shape |
|
|
new_view_t = t.shape + torch.Size([1] * len(p0.shape)) |
|
|
new_view_p = torch.Size([1] * len(t.shape)) + p0.shape |
|
|
p0 = p0.view(new_view_p).expand(new_shape) |
|
|
p1 = p1.view(new_view_p).expand(new_shape) |
|
|
t = t.view(new_view_t).expand(new_shape) |
|
|
|
|
|
return p0 + t * (p1 - p0) |
|
|
|
|
|
joint_idx = (0,1,2,4,5,7,8,12,16,17,18,19,20,21,60,61,62,63,64,65,59,58,57,56,55, |
|
|
37,38,39,66,25,26,27,67,28,29,30,68,34,35,36,69,31,32,33,70, |
|
|
52,53,54,71,40,41,42,72,43,44,45,73,49,50,51,74,46,47,48,75, |
|
|
22,15, |
|
|
57,56, |
|
|
76,77,78,79,80,81,82,83,84,85, |
|
|
86,87,88,89, |
|
|
90,91,92,93,94, |
|
|
95,96,97,98,99,100,101,102,103,104,105,106, |
|
|
107, |
|
|
108,109,110,111,112, |
|
|
113, |
|
|
114,115,116,117,118, |
|
|
119, |
|
|
120,121,122, |
|
|
123, |
|
|
124,125,126, |
|
|
127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143 |
|
|
) |
|
|
|
|
|
def face_z_transform(positions, global_orient, trans): |
|
|
''' |
|
|
positions: [num_frame, num_joints, 3] |
|
|
global_orient: [num_frame, 3] |
|
|
''' |
|
|
joints_name = \ |
|
|
('Pelvis', 'L_Hip', 'R_Hip', 'L_Knee', 'R_Knee', 'L_Ankle', 'R_Ankle', 'Neck', 'L_Shoulder', 'R_Shoulder', |
|
|
'L_Elbow', 'R_Elbow', 'L_Wrist', 'R_Wrist', 'L_Big_toe', 'L_Small_toe', 'L_Heel', 'R_Big_toe', 'R_Small_toe', |
|
|
'R_Heel', 'L_Ear', 'R_Ear', 'L_Eye', 'R_Eye', 'Nose', |
|
|
'L_Thumb_1', 'L_Thumb_2', 'L_Thumb_3', 'L_Thumb_4', 'L_Index_1', 'L_Index_2', 'L_Index_3', 'L_Index_4', |
|
|
'L_Middle_1', 'L_Middle_2', 'L_Middle_3', 'L_Middle_4', 'L_Ring_1', 'L_Ring_2', 'L_Ring_3', 'L_Ring_4', |
|
|
'L_Pinky_1', 'L_Pinky_2', 'L_Pinky_3', 'L_Pinky_4', |
|
|
'R_Thumb_1', 'R_Thumb_2', 'R_Thumb_3', 'R_Thumb_4', 'R_Index_1', 'R_Index_2', 'R_Index_3', 'R_Index_4', |
|
|
'R_Middle_1', 'R_Middle_2', 'R_Middle_3', 'R_Middle_4', 'R_Ring_1', 'R_Ring_2', 'R_Ring_3', 'R_Ring_4', |
|
|
'R_Pinky_1', 'R_Pinky_2', 'R_Pinky_3', 'R_Pinky_4', |
|
|
*['Face_' + str(i) for i in range(1, 73)] |
|
|
|
|
|
) |
|
|
root_pos_init = positions[0] |
|
|
|
|
|
assert root_pos_init.shape[0]==len(joints_name) |
|
|
'''All initially face Z+''' |
|
|
r_hip, l_hip, sdr_r, sdr_l = joints_name.index('R_Hip'), joints_name.index('L_Hip'), joints_name.index('R_Shoulder'), joints_name.index('L_Shoulder') |
|
|
across1 = root_pos_init[r_hip] - root_pos_init[l_hip] |
|
|
across2 = root_pos_init[sdr_r] - root_pos_init[sdr_l] |
|
|
across = across1 + across2 |
|
|
across = across / np.sqrt((across ** 2).sum(axis=-1))[..., np.newaxis] |
|
|
|
|
|
|
|
|
forward_init = np.cross(np.array([[0, 1, 0]]), across, axis=-1) |
|
|
forward_init = forward_init / np.sqrt((forward_init ** 2).sum(axis=-1))[..., np.newaxis] |
|
|
|
|
|
target = np.array([[0, 0, 1]]) |
|
|
root_quat_init = qbetween_np(forward_init, target) |
|
|
root_quat_init = np.ones(global_orient.shape[:-1] + (4,)) * root_quat_init |
|
|
root_quat_init = torch.tensor(root_quat_init, dtype=torch.float32).float().cuda() |
|
|
|
|
|
root_matrix_init = quaternion_to_matrix(root_quat_init) |
|
|
global_orient_matrix = axis_angle_to_matrix(global_orient) |
|
|
global_orient_matrix = torch.matmul(root_matrix_init, global_orient_matrix) |
|
|
global_orient = matrix_to_axis_angle(global_orient_matrix) |
|
|
|
|
|
trans = trans.cpu().numpy() |
|
|
'''Put on Floor''' |
|
|
floor_height = positions.min(axis=0).min(axis=0)[1] |
|
|
trans[:, 1] -= floor_height |
|
|
|
|
|
'''XZ at origin''' |
|
|
root_pos_init = positions[0] |
|
|
root_pose_init_xz = root_pos_init[0] * np.array([1, 0, 1]) |
|
|
trans = trans - root_pose_init_xz |
|
|
|
|
|
'''All initially face Z+''' |
|
|
trans = torch.from_numpy(trans).float().cuda() |
|
|
trans = qrot(root_quat_init, trans) |
|
|
|
|
|
return global_orient, trans |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import functools |
|
|
from typing import Optional |
|
|
|
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
|
|
|
""" |
|
|
The transformation matrices returned from the functions in this file assume |
|
|
the points on which the transformation will be applied are column vectors. |
|
|
i.e. the R matrix is structured as |
|
|
R = [ |
|
|
[Rxx, Rxy, Rxz], |
|
|
[Ryx, Ryy, Ryz], |
|
|
[Rzx, Rzy, Rzz], |
|
|
] # (3, 3) |
|
|
This matrix can be applied to column vectors by post multiplication |
|
|
by the points e.g. |
|
|
points = [[0], [1], [2]] # (3 x 1) xyz coordinates of a point |
|
|
transformed_points = R * points |
|
|
To apply the same matrix to points which are row vectors, the R matrix |
|
|
can be transposed and pre multiplied by the points: |
|
|
e.g. |
|
|
points = [[0, 1, 2]] # (1 x 3) xyz coordinates of a point |
|
|
transformed_points = points * R.transpose(1, 0) |
|
|
""" |
|
|
|
|
|
|
|
|
def quaternion_to_matrix(quaternions): |
|
|
""" |
|
|
Convert rotations given as quaternions to rotation matrices. |
|
|
Args: |
|
|
quaternions: quaternions with real part first, |
|
|
as tensor of shape (..., 4). |
|
|
Returns: |
|
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
|
""" |
|
|
r, i, j, k = torch.unbind(quaternions, -1) |
|
|
two_s = 2.0 / (quaternions * quaternions).sum(-1) |
|
|
|
|
|
o = torch.stack( |
|
|
( |
|
|
1 - two_s * (j * j + k * k), |
|
|
two_s * (i * j - k * r), |
|
|
two_s * (i * k + j * r), |
|
|
two_s * (i * j + k * r), |
|
|
1 - two_s * (i * i + k * k), |
|
|
two_s * (j * k - i * r), |
|
|
two_s * (i * k - j * r), |
|
|
two_s * (j * k + i * r), |
|
|
1 - two_s * (i * i + j * j), |
|
|
), |
|
|
-1, |
|
|
) |
|
|
return o.reshape(quaternions.shape[:-1] + (3, 3)) |
|
|
|
|
|
|
|
|
def _copysign(a, b): |
|
|
""" |
|
|
Return a tensor where each element has the absolute value taken from the, |
|
|
corresponding element of a, with sign taken from the corresponding |
|
|
element of b. This is like the standard copysign floating-point operation, |
|
|
but is not careful about negative 0 and NaN. |
|
|
Args: |
|
|
a: source tensor. |
|
|
b: tensor whose signs will be used, of the same shape as a. |
|
|
Returns: |
|
|
Tensor of the same shape as a with the signs of b. |
|
|
""" |
|
|
signs_differ = (a < 0) != (b < 0) |
|
|
return torch.where(signs_differ, -a, a) |
|
|
|
|
|
|
|
|
def _sqrt_positive_part(x): |
|
|
""" |
|
|
Returns torch.sqrt(torch.max(0, x)) |
|
|
but with a zero subgradient where x is 0. |
|
|
""" |
|
|
ret = torch.zeros_like(x) |
|
|
positive_mask = x > 0 |
|
|
ret[positive_mask] = torch.sqrt(x[positive_mask]) |
|
|
return ret |
|
|
|
|
|
|
|
|
def matrix_to_quaternion(matrix): |
|
|
""" |
|
|
Convert rotations given as rotation matrices to quaternions. |
|
|
Args: |
|
|
matrix: Rotation matrices as tensor of shape (..., 3, 3). |
|
|
Returns: |
|
|
quaternions with real part first, as tensor of shape (..., 4). |
|
|
""" |
|
|
if matrix.size(-1) != 3 or matrix.size(-2) != 3: |
|
|
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.") |
|
|
m00 = matrix[..., 0, 0] |
|
|
m11 = matrix[..., 1, 1] |
|
|
m22 = matrix[..., 2, 2] |
|
|
o0 = 0.5 * _sqrt_positive_part(1 + m00 + m11 + m22) |
|
|
x = 0.5 * _sqrt_positive_part(1 + m00 - m11 - m22) |
|
|
y = 0.5 * _sqrt_positive_part(1 - m00 + m11 - m22) |
|
|
z = 0.5 * _sqrt_positive_part(1 - m00 - m11 + m22) |
|
|
o1 = _copysign(x, matrix[..., 2, 1] - matrix[..., 1, 2]) |
|
|
o2 = _copysign(y, matrix[..., 0, 2] - matrix[..., 2, 0]) |
|
|
o3 = _copysign(z, matrix[..., 1, 0] - matrix[..., 0, 1]) |
|
|
return torch.stack((o0, o1, o2, o3), -1) |
|
|
|
|
|
|
|
|
def _axis_angle_rotation(axis: str, angle): |
|
|
""" |
|
|
Return the rotation matrices for one of the rotations about an axis |
|
|
of which Euler angles describe, for each value of the angle given. |
|
|
Args: |
|
|
axis: Axis label "X" or "Y or "Z". |
|
|
angle: any shape tensor of Euler angles in radians |
|
|
Returns: |
|
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
|
""" |
|
|
|
|
|
cos = torch.cos(angle) |
|
|
sin = torch.sin(angle) |
|
|
one = torch.ones_like(angle) |
|
|
zero = torch.zeros_like(angle) |
|
|
|
|
|
if axis == "X": |
|
|
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) |
|
|
if axis == "Y": |
|
|
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) |
|
|
if axis == "Z": |
|
|
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) |
|
|
|
|
|
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3)) |
|
|
|
|
|
|
|
|
def euler_angles_to_matrix(euler_angles, convention: str): |
|
|
""" |
|
|
Convert rotations given as Euler angles in radians to rotation matrices. |
|
|
Args: |
|
|
euler_angles: Euler angles in radians as tensor of shape (..., 3). |
|
|
convention: Convention string of three uppercase letters from |
|
|
{"X", "Y", and "Z"}. |
|
|
Returns: |
|
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
|
""" |
|
|
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3: |
|
|
raise ValueError("Invalid input euler angles.") |
|
|
if len(convention) != 3: |
|
|
raise ValueError("Convention must have 3 letters.") |
|
|
if convention[1] in (convention[0], convention[2]): |
|
|
raise ValueError(f"Invalid convention {convention}.") |
|
|
for letter in convention: |
|
|
if letter not in ("X", "Y", "Z"): |
|
|
raise ValueError(f"Invalid letter {letter} in convention string.") |
|
|
matrices = map(_axis_angle_rotation, convention, torch.unbind(euler_angles, -1)) |
|
|
return functools.reduce(torch.matmul, matrices) |
|
|
|
|
|
|
|
|
def _angle_from_tan( |
|
|
axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool |
|
|
): |
|
|
""" |
|
|
Extract the first or third Euler angle from the two members of |
|
|
the matrix which are positive constant times its sine and cosine. |
|
|
Args: |
|
|
axis: Axis label "X" or "Y or "Z" for the angle we are finding. |
|
|
other_axis: Axis label "X" or "Y or "Z" for the middle axis in the |
|
|
convention. |
|
|
data: Rotation matrices as tensor of shape (..., 3, 3). |
|
|
horizontal: Whether we are looking for the angle for the third axis, |
|
|
which means the relevant entries are in the same row of the |
|
|
rotation matrix. If not, they are in the same column. |
|
|
tait_bryan: Whether the first and third axes in the convention differ. |
|
|
Returns: |
|
|
Euler Angles in radians for each matrix in data as a tensor |
|
|
of shape (...). |
|
|
""" |
|
|
|
|
|
i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis] |
|
|
if horizontal: |
|
|
i2, i1 = i1, i2 |
|
|
even = (axis + other_axis) in ["XY", "YZ", "ZX"] |
|
|
if horizontal == even: |
|
|
return torch.atan2(data[..., i1], data[..., i2]) |
|
|
if tait_bryan: |
|
|
return torch.atan2(-data[..., i2], data[..., i1]) |
|
|
return torch.atan2(data[..., i2], -data[..., i1]) |
|
|
|
|
|
|
|
|
def _index_from_letter(letter: str): |
|
|
if letter == "X": |
|
|
return 0 |
|
|
if letter == "Y": |
|
|
return 1 |
|
|
if letter == "Z": |
|
|
return 2 |
|
|
|
|
|
|
|
|
def matrix_to_euler_angles(matrix, convention: str): |
|
|
""" |
|
|
Convert rotations given as rotation matrices to Euler angles in radians. |
|
|
Args: |
|
|
matrix: Rotation matrices as tensor of shape (..., 3, 3). |
|
|
convention: Convention string of three uppercase letters. |
|
|
Returns: |
|
|
Euler angles in radians as tensor of shape (..., 3). |
|
|
""" |
|
|
if len(convention) != 3: |
|
|
raise ValueError("Convention must have 3 letters.") |
|
|
if convention[1] in (convention[0], convention[2]): |
|
|
raise ValueError(f"Invalid convention {convention}.") |
|
|
for letter in convention: |
|
|
if letter not in ("X", "Y", "Z"): |
|
|
raise ValueError(f"Invalid letter {letter} in convention string.") |
|
|
if matrix.size(-1) != 3 or matrix.size(-2) != 3: |
|
|
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.") |
|
|
i0 = _index_from_letter(convention[0]) |
|
|
i2 = _index_from_letter(convention[2]) |
|
|
tait_bryan = i0 != i2 |
|
|
if tait_bryan: |
|
|
central_angle = torch.asin( |
|
|
matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0) |
|
|
) |
|
|
else: |
|
|
central_angle = torch.acos(matrix[..., i0, i0]) |
|
|
|
|
|
o = ( |
|
|
_angle_from_tan( |
|
|
convention[0], convention[1], matrix[..., i2], False, tait_bryan |
|
|
), |
|
|
central_angle, |
|
|
_angle_from_tan( |
|
|
convention[2], convention[1], matrix[..., i0, :], True, tait_bryan |
|
|
), |
|
|
) |
|
|
return torch.stack(o, -1) |
|
|
|
|
|
|
|
|
def random_quaternions( |
|
|
n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False |
|
|
): |
|
|
""" |
|
|
Generate random quaternions representing rotations, |
|
|
i.e. versors with nonnegative real part. |
|
|
Args: |
|
|
n: Number of quaternions in a batch to return. |
|
|
dtype: Type to return. |
|
|
device: Desired device of returned tensor. Default: |
|
|
uses the current device for the default tensor type. |
|
|
requires_grad: Whether the resulting tensor should have the gradient |
|
|
flag set. |
|
|
Returns: |
|
|
Quaternions as tensor of shape (N, 4). |
|
|
""" |
|
|
o = torch.randn((n, 4), dtype=dtype, device=device, requires_grad=requires_grad) |
|
|
s = (o * o).sum(1) |
|
|
o = o / _copysign(torch.sqrt(s), o[:, 0])[:, None] |
|
|
return o |
|
|
|
|
|
|
|
|
def random_rotations( |
|
|
n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False |
|
|
): |
|
|
""" |
|
|
Generate random rotations as 3x3 rotation matrices. |
|
|
Args: |
|
|
n: Number of rotation matrices in a batch to return. |
|
|
dtype: Type to return. |
|
|
device: Device of returned tensor. Default: if None, |
|
|
uses the current device for the default tensor type. |
|
|
requires_grad: Whether the resulting tensor should have the gradient |
|
|
flag set. |
|
|
Returns: |
|
|
Rotation matrices as tensor of shape (n, 3, 3). |
|
|
""" |
|
|
quaternions = random_quaternions( |
|
|
n, dtype=dtype, device=device, requires_grad=requires_grad |
|
|
) |
|
|
return quaternion_to_matrix(quaternions) |
|
|
|
|
|
|
|
|
def random_rotation( |
|
|
dtype: Optional[torch.dtype] = None, device=None, requires_grad=False |
|
|
): |
|
|
""" |
|
|
Generate a single random 3x3 rotation matrix. |
|
|
Args: |
|
|
dtype: Type to return |
|
|
device: Device of returned tensor. Default: if None, |
|
|
uses the current device for the default tensor type |
|
|
requires_grad: Whether the resulting tensor should have the gradient |
|
|
flag set |
|
|
Returns: |
|
|
Rotation matrix as tensor of shape (3, 3). |
|
|
""" |
|
|
return random_rotations(1, dtype, device, requires_grad)[0] |
|
|
|
|
|
|
|
|
def standardize_quaternion(quaternions): |
|
|
""" |
|
|
Convert a unit quaternion to a standard form: one in which the real |
|
|
part is non negative. |
|
|
Args: |
|
|
quaternions: Quaternions with real part first, |
|
|
as tensor of shape (..., 4). |
|
|
Returns: |
|
|
Standardized quaternions as tensor of shape (..., 4). |
|
|
""" |
|
|
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions) |
|
|
|
|
|
|
|
|
def quaternion_raw_multiply(a, b): |
|
|
""" |
|
|
Multiply two quaternions. |
|
|
Usual torch rules for broadcasting apply. |
|
|
Args: |
|
|
a: Quaternions as tensor of shape (..., 4), real part first. |
|
|
b: Quaternions as tensor of shape (..., 4), real part first. |
|
|
Returns: |
|
|
The product of a and b, a tensor of quaternions shape (..., 4). |
|
|
""" |
|
|
aw, ax, ay, az = torch.unbind(a, -1) |
|
|
bw, bx, by, bz = torch.unbind(b, -1) |
|
|
ow = aw * bw - ax * bx - ay * by - az * bz |
|
|
ox = aw * bx + ax * bw + ay * bz - az * by |
|
|
oy = aw * by - ax * bz + ay * bw + az * bx |
|
|
oz = aw * bz + ax * by - ay * bx + az * bw |
|
|
return torch.stack((ow, ox, oy, oz), -1) |
|
|
|
|
|
|
|
|
def quaternion_multiply(a, b): |
|
|
""" |
|
|
Multiply two quaternions representing rotations, returning the quaternion |
|
|
representing their composition, i.e. the versor with nonnegative real part. |
|
|
Usual torch rules for broadcasting apply. |
|
|
Args: |
|
|
a: Quaternions as tensor of shape (..., 4), real part first. |
|
|
b: Quaternions as tensor of shape (..., 4), real part first. |
|
|
Returns: |
|
|
The product of a and b, a tensor of quaternions of shape (..., 4). |
|
|
""" |
|
|
ab = quaternion_raw_multiply(a, b) |
|
|
return standardize_quaternion(ab) |
|
|
|
|
|
|
|
|
def quaternion_invert(quaternion): |
|
|
""" |
|
|
Given a quaternion representing rotation, get the quaternion representing |
|
|
its inverse. |
|
|
Args: |
|
|
quaternion: Quaternions as tensor of shape (..., 4), with real part |
|
|
first, which must be versors (unit quaternions). |
|
|
Returns: |
|
|
The inverse, a tensor of quaternions of shape (..., 4). |
|
|
""" |
|
|
|
|
|
return quaternion * quaternion.new_tensor([1, -1, -1, -1]) |
|
|
|
|
|
|
|
|
def quaternion_apply(quaternion, point): |
|
|
""" |
|
|
Apply the rotation given by a quaternion to a 3D point. |
|
|
Usual torch rules for broadcasting apply. |
|
|
Args: |
|
|
quaternion: Tensor of quaternions, real part first, of shape (..., 4). |
|
|
point: Tensor of 3D points of shape (..., 3). |
|
|
Returns: |
|
|
Tensor of rotated points of shape (..., 3). |
|
|
""" |
|
|
if point.size(-1) != 3: |
|
|
raise ValueError(f"Points are not in 3D, f{point.shape}.") |
|
|
real_parts = point.new_zeros(point.shape[:-1] + (1,)) |
|
|
point_as_quaternion = torch.cat((real_parts, point), -1) |
|
|
out = quaternion_raw_multiply( |
|
|
quaternion_raw_multiply(quaternion, point_as_quaternion), |
|
|
quaternion_invert(quaternion), |
|
|
) |
|
|
return out[..., 1:] |
|
|
|
|
|
|
|
|
def axis_angle_to_matrix(axis_angle): |
|
|
""" |
|
|
Convert rotations given as axis/angle to rotation matrices. |
|
|
Args: |
|
|
axis_angle: Rotations given as a vector in axis angle form, |
|
|
as a tensor of shape (..., 3), where the magnitude is |
|
|
the angle turned anticlockwise in radians around the |
|
|
vector's direction. |
|
|
Returns: |
|
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
|
""" |
|
|
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) |
|
|
|
|
|
|
|
|
def matrix_to_axis_angle(matrix): |
|
|
""" |
|
|
Convert rotations given as rotation matrices to axis/angle. |
|
|
Args: |
|
|
matrix: Rotation matrices as tensor of shape (..., 3, 3). |
|
|
Returns: |
|
|
Rotations given as a vector in axis angle form, as a tensor |
|
|
of shape (..., 3), where the magnitude is the angle |
|
|
turned anticlockwise in radians around the vector's |
|
|
direction. |
|
|
""" |
|
|
return quaternion_to_axis_angle(matrix_to_quaternion(matrix)) |
|
|
|
|
|
|
|
|
def axis_angle_to_quaternion(axis_angle): |
|
|
""" |
|
|
Convert rotations given as axis/angle to quaternions. |
|
|
Args: |
|
|
axis_angle: Rotations given as a vector in axis angle form, |
|
|
as a tensor of shape (..., 3), where the magnitude is |
|
|
the angle turned anticlockwise in radians around the |
|
|
vector's direction. |
|
|
Returns: |
|
|
quaternions with real part first, as tensor of shape (..., 4). |
|
|
""" |
|
|
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) |
|
|
half_angles = 0.5 * angles |
|
|
eps = 1e-6 |
|
|
small_angles = angles.abs() < eps |
|
|
sin_half_angles_over_angles = torch.empty_like(angles) |
|
|
sin_half_angles_over_angles[~small_angles] = ( |
|
|
torch.sin(half_angles[~small_angles]) / angles[~small_angles] |
|
|
) |
|
|
|
|
|
|
|
|
sin_half_angles_over_angles[small_angles] = ( |
|
|
0.5 - (angles[small_angles] * angles[small_angles]) / 48 |
|
|
) |
|
|
quaternions = torch.cat( |
|
|
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 |
|
|
) |
|
|
return quaternions |
|
|
|
|
|
|
|
|
def quaternion_to_axis_angle(quaternions): |
|
|
""" |
|
|
Convert rotations given as quaternions to axis/angle. |
|
|
Args: |
|
|
quaternions: quaternions with real part first, |
|
|
as tensor of shape (..., 4). |
|
|
Returns: |
|
|
Rotations given as a vector in axis angle form, as a tensor |
|
|
of shape (..., 3), where the magnitude is the angle |
|
|
turned anticlockwise in radians around the vector's |
|
|
direction. |
|
|
""" |
|
|
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True) |
|
|
half_angles = torch.atan2(norms, quaternions[..., :1]) |
|
|
angles = 2 * half_angles |
|
|
eps = 1e-6 |
|
|
small_angles = angles.abs() < eps |
|
|
sin_half_angles_over_angles = torch.empty_like(angles) |
|
|
sin_half_angles_over_angles[~small_angles] = ( |
|
|
torch.sin(half_angles[~small_angles]) / angles[~small_angles] |
|
|
) |
|
|
|
|
|
|
|
|
sin_half_angles_over_angles[small_angles] = ( |
|
|
0.5 - (angles[small_angles] * angles[small_angles]) / 48 |
|
|
) |
|
|
return quaternions[..., 1:] / sin_half_angles_over_angles |
|
|
|
|
|
|
|
|
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix |
|
|
using Gram--Schmidt orthogonalisation per Section B of [1]. |
|
|
Args: |
|
|
d6: 6D rotation representation, of size (*, 6) |
|
|
Returns: |
|
|
batch of rotation matrices of size (*, 3, 3) |
|
|
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. |
|
|
On the Continuity of Rotation Representations in Neural Networks. |
|
|
IEEE Conference on Computer Vision and Pattern Recognition, 2019. |
|
|
Retrieved from http://arxiv.org/abs/1812.07035 |
|
|
""" |
|
|
|
|
|
a1, a2 = d6[..., :3], d6[..., 3:] |
|
|
b1 = F.normalize(a1, dim=-1) |
|
|
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1 |
|
|
b2 = F.normalize(b2, dim=-1) |
|
|
b3 = torch.cross(b1, b2, dim=-1) |
|
|
return torch.stack((b1, b2, b3), dim=-2) |
|
|
|
|
|
|
|
|
def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Converts rotation matrices to 6D rotation representation by Zhou et al. [1] |
|
|
by dropping the last row. Note that 6D representation is not unique. |
|
|
Args: |
|
|
matrix: batch of rotation matrices of size (*, 3, 3) |
|
|
Returns: |
|
|
6D rotation representation, of size (*, 6) |
|
|
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. |
|
|
On the Continuity of Rotation Representations in Neural Networks. |
|
|
IEEE Conference on Computer Vision and Pattern Recognition, 2019. |
|
|
Retrieved from http://arxiv.org/abs/1812.07035 |
|
|
""" |
|
|
return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6) |
|
|
|
|
|
|
|
|
def canonicalize_smplh(poses, trans=None): |
|
|
bs, nframes, njoints = poses.shape[:3] |
|
|
|
|
|
global_orient = poses[:, :, 0] |
|
|
|
|
|
|
|
|
rot2d = matrix_to_axis_angle(global_orient[:, 0]) |
|
|
|
|
|
rot2d = axis_angle_to_matrix(rot2d) |
|
|
|
|
|
|
|
|
global_orient = torch.einsum("ikj,imkl->imjl", rot2d, global_orient) |
|
|
|
|
|
|
|
|
xc = torch.cat((global_orient[:, :, None], poses[:, :, 1:]), dim=2) |
|
|
|
|
|
if trans is not None: |
|
|
vel = trans[:, 1:] - trans[:, :-1] |
|
|
|
|
|
vel = torch.einsum("ikj,ilk->ilj", rot2d, vel) |
|
|
trans = torch.cat((torch.zeros(bs, 1, 3, device=vel.device), |
|
|
torch.cumsum(vel, 1)), 1) |
|
|
return xc, trans |
|
|
else: |
|
|
return xc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def matrix_of_angles(cos, sin, inv=False, dim=2): |
|
|
assert dim in [2, 3] |
|
|
sin = -sin if inv else sin |
|
|
if dim == 2: |
|
|
row1 = torch.stack((cos, -sin), axis=-1) |
|
|
row2 = torch.stack((sin, cos), axis=-1) |
|
|
return torch.stack((row1, row2), axis=-2) |
|
|
elif dim == 3: |
|
|
row1 = torch.stack((cos, -sin, 0 * cos), axis=-1) |
|
|
row2 = torch.stack((sin, cos, 0 * cos), axis=-1) |
|
|
row3 = torch.stack((0 * sin, 0 * cos, 1 + 0 * cos), axis=-1) |
|
|
return torch.stack((row1, row2, row3), axis=-2) |
|
|
|
|
|
|