wli1995's picture
Upload folder using huggingface_hub
d56c551 verified
'''
Functions about lighting mesh(changing colors/texture of mesh).
1. add light to colors/texture (shade each vertex)
2. fit light according to colors/texture & image.
Preparation knowledge:
lighting: https://cs184.eecs.berkeley.edu/lecture/pipeline
spherical harmonics in human face: '3D Face Reconstruction from a Single Image Using a Single Reference Face Shape'
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
def get_normal(vertices, triangles):
''' calculate normal direction in each vertex
Args:
vertices: [nver, 3]
triangles: [ntri, 3]
Returns:
normal: [nver, 3]
'''
pt0 = vertices[triangles[:, 0], :] # [ntri, 3]
pt1 = vertices[triangles[:, 1], :] # [ntri, 3]
pt2 = vertices[triangles[:, 2], :] # [ntri, 3]
tri_normal = np.cross(pt0 - pt1, pt0 - pt2) # [ntri, 3]. normal of each triangle
normal = np.zeros_like(vertices) # [nver, 3]
for i in range(triangles.shape[0]):
normal[triangles[i, 0], :] = normal[triangles[i, 0], :] + tri_normal[i, :]
normal[triangles[i, 1], :] = normal[triangles[i, 1], :] + tri_normal[i, :]
normal[triangles[i, 2], :] = normal[triangles[i, 2], :] + tri_normal[i, :]
# normalize to unit length
mag = np.sum(normal**2, 1) # [nver]
zero_ind = (mag == 0)
mag[zero_ind] = 1;
normal[zero_ind, 0] = np.ones((np.sum(zero_ind)))
normal = normal/np.sqrt(mag[:,np.newaxis])
return normal
# TODO: test
def add_light_sh(vertices, triangles, colors, sh_coeff):
'''
In 3d face, usually assume:
1. The surface of face is Lambertian(reflect only the low frequencies of lighting)
2. Lighting can be an arbitrary combination of point sources
--> can be expressed in terms of spherical harmonics(omit the lighting coefficients)
I = albedo * (sh(n) x sh_coeff)
albedo: n x 1
sh_coeff: 9 x 1
Y(n) = (1, n_x, n_y, n_z, n_xn_y, n_xn_z, n_yn_z, n_x^2 - n_y^2, 3n_z^2 - 1)': n x 9
# Y(n) = (1, n_x, n_y, n_z)': n x 4
Args:
vertices: [nver, 3]
triangles: [ntri, 3]
colors: [nver, 3] albedo
sh_coeff: [9, 1] spherical harmonics coefficients
Returns:
lit_colors: [nver, 3]
'''
assert vertices.shape[0] == colors.shape[0]
nver = vertices.shape[0]
normal = get_normal(vertices, triangles) # [nver, 3]
sh = np.array((np.ones(nver), n[:,0], n[:,1], n[:,2], n[:,0]*n[:,1], n[:,0]*n[:,2], n[:,1]*n[:,2], n[:,0]**2 - n[:,1]**2, 3*(n[:,2]**2) - 1)) # [nver, 9]
ref = sh.dot(sh_coeff) #[nver, 1]
lit_colors = colors*ref
return lit_colors
def add_light(vertices, triangles, colors, light_positions = 0, light_intensities = 0):
''' Gouraud shading. add point lights.
In 3d face, usually assume:
1. The surface of face is Lambertian(reflect only the low frequencies of lighting)
2. Lighting can be an arbitrary combination of point sources
3. No specular (unless skin is oil, 23333)
Ref: https://cs184.eecs.berkeley.edu/lecture/pipeline
Args:
vertices: [nver, 3]
triangles: [ntri, 3]
light_positions: [nlight, 3]
light_intensities: [nlight, 3]
Returns:
lit_colors: [nver, 3]
'''
nver = vertices.shape[0]
normals = get_normal(vertices, triangles) # [nver, 3]
# ambient
# La = ka*Ia
# diffuse
# Ld = kd*(I/r^2)max(0, nxl)
direction_to_lights = vertices[np.newaxis, :, :] - light_positions[:, np.newaxis, :] # [nlight, nver, 3]
direction_to_lights_n = np.sqrt(np.sum(direction_to_lights**2, axis = 2)) # [nlight, nver]
direction_to_lights = direction_to_lights/direction_to_lights_n[:, :, np.newaxis]
normals_dot_lights = normals[np.newaxis, :, :]*direction_to_lights # [nlight, nver, 3]
normals_dot_lights = np.sum(normals_dot_lights, axis = 2) # [nlight, nver]
diffuse_output = colors[np.newaxis, :, :]*normals_dot_lights[:, :, np.newaxis]*light_intensities[:, np.newaxis, :]
diffuse_output = np.sum(diffuse_output, axis = 0) # [nver, 3]
# specular
# h = (v + l)/(|v + l|) bisector
# Ls = ks*(I/r^2)max(0, nxh)^p
# increasing p narrows the reflectionlob
lit_colors = diffuse_output # only diffuse part here.
lit_colors = np.minimum(np.maximum(lit_colors, 0), 1)
return lit_colors
## TODO. estimate light(sh coeff)
## -------------------------------- estimate. can not use now.
def fit_light(image, vertices, colors, triangles, vis_ind, lamb = 10, max_iter = 3):
[h, w, c] = image.shape
# surface normal
norm = get_normal(vertices, triangles)
nver = vertices.shape[1]
# vertices --> corresponding image pixel
pt2d = vertices[:2, :]
pt2d[0,:] = np.minimum(np.maximum(pt2d[0,:], 0), w - 1)
pt2d[1,:] = np.minimum(np.maximum(pt2d[1,:], 0), h - 1)
pt2d = np.round(pt2d).astype(np.int32) # 2 x nver
image_pixel = image[pt2d[1,:], pt2d[0,:], :] # nver x 3
image_pixel = image_pixel.T # 3 x nver
# vertices --> corresponding mean texture pixel with illumination
# Spherical Harmonic Basis
harmonic_dim = 9
nx = norm[0,:];
ny = norm[1,:];
nz = norm[2,:];
harmonic = np.zeros((nver, harmonic_dim))
pi = np.pi
harmonic[:,0] = np.sqrt(1/(4*pi)) * np.ones((nver,));
harmonic[:,1] = np.sqrt(3/(4*pi)) * nx;
harmonic[:,2] = np.sqrt(3/(4*pi)) * ny;
harmonic[:,3] = np.sqrt(3/(4*pi)) * nz;
harmonic[:,4] = 1/2. * np.sqrt(3/(4*pi)) * (2*nz**2 - nx**2 - ny**2);
harmonic[:,5] = 3 * np.sqrt(5/(12*pi)) * (ny*nz);
harmonic[:,6] = 3 * np.sqrt(5/(12*pi)) * (nx*nz);
harmonic[:,7] = 3 * np.sqrt(5/(12*pi)) * (nx*ny);
harmonic[:,8] = 3/2. * np.sqrt(5/(12*pi)) * (nx*nx - ny*ny);
'''
I' = sum(albedo * lj * hj) j = 0:9 (albedo = tex)
set A = albedo*h (n x 9)
alpha = lj (9 x 1)
Y = I (n x 1)
Y' = A.dot(alpha)
opt function:
||Y - A*alpha|| + lambda*(alpha'*alpha)
result:
A'*(Y - A*alpha) + lambda*alpha = 0
==>
(A'*A*alpha - lambda)*alpha = A'*Y
left: 9 x 9
right: 9 x 1
'''
n_vis_ind = len(vis_ind)
n = n_vis_ind*c
Y = np.zeros((n, 1))
A = np.zeros((n, 9))
light = np.zeros((3, 1))
for k in range(c):
Y[k*n_vis_ind:(k+1)*n_vis_ind, :] = image_pixel[k, vis_ind][:, np.newaxis]
A[k*n_vis_ind:(k+1)*n_vis_ind, :] = texture[k, vis_ind][:, np.newaxis] * harmonic[vis_ind, :]
Ac = texture[k, vis_ind][:, np.newaxis]
Yc = image_pixel[k, vis_ind][:, np.newaxis]
light[k] = (Ac.T.dot(Yc))/(Ac.T.dot(Ac))
for i in range(max_iter):
Yc = Y.copy()
for k in range(c):
Yc[k*n_vis_ind:(k+1)*n_vis_ind, :] /= light[k]
# update alpha
equation_left = np.dot(A.T, A) + lamb*np.eye(harmonic_dim); # why + ?
equation_right = np.dot(A.T, Yc)
alpha = np.dot(np.linalg.inv(equation_left), equation_right)
# update light
for k in range(c):
Ac = A[k*n_vis_ind:(k+1)*n_vis_ind, :].dot(alpha)
Yc = Y[k*n_vis_ind:(k+1)*n_vis_ind, :]
light[k] = (Ac.T.dot(Yc))/(Ac.T.dot(Ac))
appearance = np.zeros_like(texture)
for k in range(c):
tmp = np.dot(harmonic*texture[k, :][:, np.newaxis], alpha*light[k])
appearance[k,:] = tmp.T
appearance = np.minimum(np.maximum(appearance, 0), 1)
return appearance