File size: 11,143 Bytes
5d154e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
# K-Simplex Language Model Prototype
A geometric autoregressive language model using Cayley-Menger validated k-simplex channels. This architecture replaces traditional transformer embeddings with geometrically-constrained structures that maintain mathematical validity throughout training.
## Overview
This model explores whether **geometric inductive bias** can improve language modeling by representing each token position as a hierarchy of k-simplices (edge β triangle β tetrahedron β 5-cell) with learnable deformations validated by the Cayley-Menger determinant.
**Key Results:**
- Shakespeare corpus: **Val PPL 113.74** at epoch 8
- 100% geometric validity maintained throughout training
- Coherent dialogue generation with proper character attribution
- 54M parameters (due to 50k BPE vocabulary)
---
## Architecture
### Conceptual Foundation
Traditional transformers represent tokens as flat vectors. This architecture represents each token as a **stack of k-simplex structures** where:
| K-Level | Structure | Vertices | Distance Pairs | Geometric Meaning |
|---------|-----------|----------|----------------|-------------------|
| k=1 | Edge | 2 | 1 | 1D linear relationship |
| k=2 | Triangle | 3 | 3 | 2D planar structure |
| k=3 | Tetrahedron | 4 | 6 | 3D volumetric structure |
| k=4 | 5-cell | 5 | 10 | 4D hypervolume |
Each k-level captures progressively higher-dimensional geometric relationships, providing a structured representation space that traditional embeddings lack.
### Token Flow
```
Token ID
β
Embedding Layer (vocab_size Γ embed_dim)
β
Positional Encoding
β
βββββββββββββββββββββββββββββββββββββββββββ
β TokenToKChannels β
β Projects to [B, T, K, feat_dim] β
β Each position gets K simplex channels β
βββββββββββββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββββββββββββββββββββββ
β GeoBlock Γ num_blocks β
β βββββββββββββββββββββββββββββββββββ β
β β KChannelCrossAttention β β
β β K-levels attend to each other β β
β β (within each token position) β β
β βββββββββββββββββββββββββββββββββββ β
β βββββββββββββββββββββββββββββββββββ β
β β CausalSequenceAttention β β
β β Tokens attend causally β β
β β (across sequence, masked) β β
β βββββββββββββββββββββββββββββββββββ β
β βββββββββββββββββββββββββββββββββββ β
β β MLP β β
β βββββββββββββββββββββββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββ
β
LM Head β Logits [B, T, vocab_size]
```
---
## Geometric Formulas
### Cayley-Menger Determinant
For a k-simplex with vertices $v_0, v_1, \ldots, v_k$, the squared volume is computed via:
$$
\text{Vol}^2 = \frac{(-1)^{k+1}}{2^k (k!)^2} \det(CM)
$$
Where the Cayley-Menger matrix is:
$$
CM = \begin{pmatrix}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & d_{01}^2 & \cdots & d_{0k}^2 \\
1 & d_{01}^2 & 0 & \cdots & d_{1k}^2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & d_{0k}^2 & d_{1k}^2 & \cdots & 0
\end{pmatrix}
$$
**Validity Criterion:** $\text{Vol}^2 > 0$ indicates a non-degenerate simplex.
### Template Deformation
Each k-simplex starts from a regular (equilateral) template and learns deformations:
$$
v_i^{(\text{deformed})} = v_i^{(\text{template})} + \alpha \cdot \Delta v_i
$$
Where:
- $v_i^{(\text{template})}$ = vertices of regular k-simplex
- $\alpha$ = deformation scale (BASE_DEFORM = 0.05)
- $\Delta v_i$ = learned offset from neural network
### Geometric Gating
Features are gated by geometric validity:
$$
\text{output} = \text{features} \odot \text{gate}(\text{geo}) \odot \sigma(\text{Vol}^2 \cdot 10^6)
$$
Where:
- $\text{gate}(\text{geo}) = \sigma(W \cdot [d^2 \| \text{Vol}^2])$
- The sigmoid on VolΒ² acts as a soft validity mask
- Invalid simplices (VolΒ² < 0) have their features suppressed
### Loss Function
$$
\mathcal{L} = \mathcal{L}_{CE} + \lambda \cdot \mathcal{L}_{validity}
$$
Where:
- $\mathcal{L}_{CE}$ = Cross-entropy for next-token prediction
- $\mathcal{L}_{validity} = \text{mean}(\text{ReLU}(-\text{Vol}^2))$ penalizes collapsed simplices
- $\lambda = 0.1$ (validity weight)
---
## Safe Deformation Analysis
Extensive testing via the K-Simplex Geometric Explorer revealed critical stability zones:
### Stability Zones by K-Depth
| Configuration | Differentiation Zone | Collapse Threshold |
|---------------|---------------------|-------------------|
| k=1-4, edim=16 | 0.15 - 0.35 | ~0.50 |
| k=1-4, edim=32 | 0.15 - 0.50 | >2.0 |
| k=1-6, edim=16 | 0.35 - 0.45 | ~0.50 |
| k=1-6, edim=32 | 0.25 - 0.60 | >2.0 |
### Key Findings
1. **Deformation Scale Safety**: BASE_DEFORM=0.05 is extremely conservative. The geometry can safely handle 10-40Γ more deformation.
2. **Embedding Dimension as Stability Buffer**:
```
edim / k_max = stability_ratio
ratio β₯ 8Γ β Very stable, deform up to 2.0
ratio β₯ 4Γ β Comfortable margin
ratio β₯ 2Γ β Tight but functional
```
3. **VolΒ² Behavior Under Deformation**:
- Low deform (0-0.15): Clear k-level hierarchy, VolΒ² decreases exponentially with k
- Medium deform (0.15-0.35): **Optimal zone** - distinct geometric signatures per k
- High deform (>0.5): Noise dominates, k-levels converge, geometric meaning lost
4. **VolΒ² Scaling**:
```
k=1: VolΒ² ~ 1e+0 (edge length squared)
k=2: VolΒ² ~ 1e-1 (triangle area squared)
k=3: VolΒ² ~ 1e-2 (tetrahedron volume squared)
k=4: VolΒ² ~ 1e-3 (5-cell hypervolume squared)
```
Exponential decay is expected and healthy.
### Recommended Production Settings
```python
# Conservative (proven)
BASE_DEFORM = 0.05
edim = 16
depth = 4 # k=1,2,3,4
# Aggressive (tested safe)
BASE_DEFORM = 0.15
edim = 32
depth = 4
# Experimental
BASE_DEFORM = learnable_per_k # Allow network to find optimal
edim = 2 * depth # Minimum viable
```
---
## Training Configuration
### Model Hyperparameters
```python
config = {
"vocab_size": 50257, # GPT-2 BPE tokenizer
"max_seq_len": 256,
"embed_dim": 384,
"depth": 4, # k=1,2,3,4
"edim": 16, # Vertex coordinate dimension
"feat_dim": 96, # Features per vertex
"hidden": 384,
"num_heads": 8,
"num_blocks": 8,
"dropout": 0.1,
}
```
### Training Hyperparameters
```python
training = {
"batch_size": 48,
"seq_len": 256,
"lr": 3e-4,
"weight_decay": 0.1,
"num_epochs": 50,
"grad_clip": 1.0,
"ce_weight": 1.0,
"validity_weight": 0.1,
"scheduler": "CosineAnnealingLR",
"stride": 128, # Non-overlapping sequences
}
```
---
## Results
### Training Progression
| Epoch | Train PPL | Val PPL | Status |
|-------|-----------|---------|--------|
| 1 | 492 | 299 | Learning |
| 5 | 77 | 132 | Improving |
| 8 | 44 | **114** | **Best** |
| 15 | 15 | 145 | Overfitting |
### Geometric Health
Throughout training:
- **Validity**: 100% at all k-levels
- **VolΒ² k=1**: ~0.92 (stable)
- **VolΒ² k=2**: ~0.16 (stable)
- **VolΒ² k=3**: ~0.03 (stable)
- **VolΒ² k=4**: ~0.001 (stable)
### Generation Quality
**Epoch 1:**
```
ROMEO: , If, and a head I am IAB, What,
```
**Epoch 15+:**
```
ROMEO: if thou swear'st the Duke of love of it.
MERCUTIO: Why, is it good.
ROMEO: And for the jest love that.
```
The model learns:
- Character names and dialogue structure
- Turn-taking conventions
- Shakespearean vocabulary and cadence
- Coherent multi-turn exchanges
---
## Geometric Dimensions Output
Each k-level contributes to the final representation:
| K | Geo Dim | Components | Info Content |
|---|---------|------------|--------------|
| 1 | 2 | 1 dΒ² + 1 volΒ² | Edge metric |
| 2 | 4 | 3 dΒ² + 1 volΒ² | Triangle shape |
| 3 | 7 | 6 dΒ² + 1 volΒ² | Tetrahedron form |
| 4 | 11 | 10 dΒ² + 1 volΒ² | 5-cell structure |
| **Total** | **24** | | Pure geometry |
With feat_dim=96: Output = 96 + 24 = 120 dims per k-level, Γ4 k-levels = 480 total geometric dims per token.
---
## File Structure
```
AbstractPhil/ksimplex-llm-prototype/
βββ README.md # This file
βββ trainer.py # Training script
βββ inference.py # Generation script
βββ config.json # Model configuration
βββ checkpoints/
β βββ checkpoint_epoch_001.pt
β βββ checkpoint_epoch_008.pt # Best val PPL
β βββ checkpoint_latest.pt
βββ samples/
βββ samples_epoch_*.json # Generated text samples
```
---
## Usage
### Inference
```python
from inference import load_model, generate
model, tokenizer = load_model("AbstractPhil/ksimplex-llm-prototype")
text = generate(
model,
tokenizer,
prompt="ROMEO: ",
max_tokens=100,
temperature=0.8,
top_k=50
)
print(text)
```
### Training
```bash
python trainer.py \
--data shakespeare.txt \
--epochs 50 \
--batch_size 48 \
--lr 3e-4
```
---
## Future Directions
### Planned Experiments
1. **Learnable Deformation Scale**: Per-k learnable Ξ± parameter
2. **Volume Consistency Loss**: Maintain k-level differentiation
```python
coherence_loss = -torch.std(torch.log(vol2_stack + 1e-10))
```
3. **K-Depth Ablation**: Test k=1,2,3 only (remove k=4 noise floor)
4. **VolΒ² Normalization**: Scale by k to equalize magnitudes
5. **Larger Data**: WikiText-103, OpenWebText
### Theoretical Questions
- Does the geometric structure provide better length generalization?
- Can we interpret k-level activations semantically?
- Does geometric validity correlate with generation quality?
- Can we prune k-levels without performance loss?
---
## Citation
```bibtex
@misc{ksimplex-llm-2026,
author = {AbstractPhil},
title = {K-Simplex Language Model: Geometric Autoregression with Cayley-Menger Validation},
year = {2026},
publisher = {HuggingFace},
url = {https://huggingface.co/AbstractPhil/ksimplex-llm-prototype}
}
```
---
## License
MIT License - Free to use, modify, and distribute.
---
## Acknowledgments
Built on the foundation of geometric deep learning research exploring k-simplex structures, pentachoron navigation, and Cayley-Menger determinant validation for neural network regularization.
*"The geometry is the representation."* |