resmlp_comparison / visualize_micro_world.py
AmberLJC's picture
Upload visualize_micro_world.py with huggingface_hub
0d8aaba verified
"""
Micro-World Visualization: Understanding Residual Connections
This script creates intuitive visualizations explaining:
1. Signal flow through layers (forward pass)
2. Gradient flow through layers (backward pass)
3. The "gradient highway" effect of residual connections
4. Layer-by-layer transformation visualization
"""
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from matplotlib.patches import FancyArrowPatch, FancyBboxPatch
import json
import os
# Set seeds
torch.manual_seed(42)
np.random.seed(42)
# Load results from experiment
with open('results_fair.json', 'r') as f:
results = json.load(f)
os.makedirs('plots_micro', exist_ok=True)
# ============================================================
# VISUALIZATION 1: Signal Flow Diagram (Forward Pass)
# ============================================================
def plot_signal_flow():
"""Visualize how signal magnitude changes through layers"""
fig, axes = plt.subplots(1, 2, figsize=(14, 8))
plain_stds = results['plain_mlp']['activation_stds']
res_stds = results['res_mlp']['activation_stds']
# Normalize for visualization (input signal = 1.0)
input_std = 0.577 # std of U(-1,1)
plain_signal = [input_std] + plain_stds
res_signal = [input_std] + res_stds
layers = range(len(plain_signal))
# Left plot: PlainMLP signal decay
ax = axes[0]
ax.set_title('PlainMLP: Signal DIES\n(No Residual Connection)', fontsize=14, fontweight='bold', color='#c0392b')
# Draw signal as decreasing bars
colors_plain = plt.cm.Reds(np.linspace(0.3, 0.9, len(plain_signal)))
bars = ax.bar(layers, plain_signal, color=colors_plain, edgecolor='darkred', linewidth=1.5)
ax.set_xlabel('Layer (0=Input, 1-20=Hidden)', fontsize=12)
ax.set_ylabel('Signal Strength (Activation Std)', fontsize=12)
ax.set_ylim(0, 0.7)
# Add annotation
ax.annotate('Signal\ncollapses!', xy=(15, 0.02), fontsize=12, color='darkred',
ha='center', fontweight='bold')
ax.axhline(y=0.1, color='gray', linestyle='--', alpha=0.5, label='Healthy threshold')
# Right plot: ResMLP signal preservation
ax = axes[1]
ax.set_title('ResMLP: Signal PRESERVED\n(With Residual Connection)', fontsize=14, fontweight='bold', color='#2980b9')
colors_res = plt.cm.Blues(np.linspace(0.3, 0.9, len(res_signal)))
bars = ax.bar(layers, res_signal, color=colors_res, edgecolor='darkblue', linewidth=1.5)
ax.set_xlabel('Layer (0=Input, 1-20=Hidden)', fontsize=12)
ax.set_ylabel('Signal Strength (Activation Std)', fontsize=12)
ax.set_ylim(0, 0.7)
# Add annotation
ax.annotate('Signal stays\nhealthy!', xy=(15, 0.25), fontsize=12, color='darkblue',
ha='center', fontweight='bold')
ax.axhline(y=0.1, color='gray', linestyle='--', alpha=0.5, label='Healthy threshold')
plt.tight_layout()
plt.savefig('plots_micro/1_signal_flow.png', dpi=150, bbox_inches='tight')
plt.close()
print("[Plot 1] Signal flow visualization saved")
# ============================================================
# VISUALIZATION 2: Gradient Flow Diagram (Backward Pass)
# ============================================================
def plot_gradient_flow():
"""Visualize gradient magnitude through layers"""
fig, axes = plt.subplots(1, 2, figsize=(14, 8))
plain_grads = results['plain_mlp']['gradient_norms']
res_grads = results['res_mlp']['gradient_norms']
layers = range(1, 21)
# Left: PlainMLP gradient vanishing
ax = axes[0]
ax.set_title('PlainMLP: Gradients VANISH\n(Backward Pass)', fontsize=14, fontweight='bold', color='#c0392b')
# Use log scale bar chart
colors = plt.cm.Reds(np.linspace(0.9, 0.3, 20))
ax.bar(layers, plain_grads, color=colors, edgecolor='darkred', linewidth=1)
ax.set_yscale('log')
ax.set_xlabel('Layer (1=First, 20=Last)', fontsize=12)
ax.set_ylabel('Gradient Magnitude (log scale)', fontsize=12)
ax.set_ylim(1e-20, 1e-1)
# Annotations
ax.annotate(f'Layer 20:\n{plain_grads[-1]:.1e}', xy=(20, plain_grads[-1]),
xytext=(17, 1e-4), fontsize=10, color='darkred',
arrowprops=dict(arrowstyle='->', color='darkred'))
ax.annotate(f'Layer 1:\n{plain_grads[0]:.1e}\n(DEAD!)', xy=(1, max(plain_grads[0], 1e-20)),
xytext=(4, 1e-15), fontsize=10, color='darkred', fontweight='bold',
arrowprops=dict(arrowstyle='->', color='darkred'))
# Right: ResMLP healthy gradients
ax = axes[1]
ax.set_title('ResMLP: Gradients FLOW\n(Backward Pass)', fontsize=14, fontweight='bold', color='#2980b9')
colors = plt.cm.Blues(np.linspace(0.9, 0.3, 20))
ax.bar(layers, res_grads, color=colors, edgecolor='darkblue', linewidth=1)
ax.set_yscale('log')
ax.set_xlabel('Layer (1=First, 20=Last)', fontsize=12)
ax.set_ylabel('Gradient Magnitude (log scale)', fontsize=12)
ax.set_ylim(1e-20, 1e-1)
# Annotations
ax.annotate(f'Layer 20:\n{res_grads[-1]:.1e}', xy=(20, res_grads[-1]),
xytext=(17, 1e-4), fontsize=10, color='darkblue',
arrowprops=dict(arrowstyle='->', color='darkblue'))
ax.annotate(f'Layer 1:\n{res_grads[0]:.1e}\n(Healthy!)', xy=(1, res_grads[0]),
xytext=(4, 1e-4), fontsize=10, color='darkblue', fontweight='bold',
arrowprops=dict(arrowstyle='->', color='darkblue'))
plt.tight_layout()
plt.savefig('plots_micro/2_gradient_flow.png', dpi=150, bbox_inches='tight')
plt.close()
print("[Plot 2] Gradient flow visualization saved")
# ============================================================
# VISUALIZATION 3: The Residual "Highway" Concept
# ============================================================
def plot_highway_concept():
"""Visual diagram showing the gradient highway concept"""
fig, axes = plt.subplots(2, 1, figsize=(14, 10))
# Top: PlainMLP - no highway
ax = axes[0]
ax.set_xlim(0, 12)
ax.set_ylim(0, 3)
ax.set_aspect('equal')
ax.axis('off')
ax.set_title('PlainMLP: Gradient Must Pass Through EVERY Layer\n(Like a winding mountain road)',
fontsize=14, fontweight='bold', color='#c0392b', pad=20)
# Draw layers as boxes
for i in range(6):
x = 1 + i * 1.8
box = FancyBboxPatch((x, 1), 1.2, 1, boxstyle="round,pad=0.05",
facecolor='#e74c3c', edgecolor='darkred', linewidth=2)
ax.add_patch(box)
ax.text(x + 0.6, 1.5, f'L{i+1}', ha='center', va='center', fontsize=11,
color='white', fontweight='bold')
# Draw arrows between layers (getting thinner = gradient vanishing)
if i < 5:
thickness = 3 * (0.5 ** i) # Exponential decay
alpha = max(0.2, 1 - i * 0.18)
ax.annotate('', xy=(x + 1.8, 1.5), xytext=(x + 1.2, 1.5),
arrowprops=dict(arrowstyle='->', color='darkred',
lw=thickness, alpha=alpha))
# Add gradient flow label
ax.text(0.3, 1.5, 'Gradient\n→', fontsize=10, ha='center', va='center', color='darkred')
ax.text(11.5, 1.5, '→ Loss', fontsize=10, ha='center', va='center', color='darkred')
# Add "vanishing" annotation
ax.annotate('Gradient shrinks\nat each layer!', xy=(8, 0.5), fontsize=11,
color='darkred', style='italic')
# Bottom: ResMLP - with highway
ax = axes[1]
ax.set_xlim(0, 12)
ax.set_ylim(0, 3.5)
ax.set_aspect('equal')
ax.axis('off')
ax.set_title('ResMLP: Gradient Has a Direct HIGHWAY\n(Skip connections = express lane)',
fontsize=14, fontweight='bold', color='#2980b9', pad=20)
# Draw the highway (skip connection) at top
ax.plot([1, 11], [2.8, 2.8], color='#27ae60', linewidth=6, alpha=0.8)
ax.annotate('', xy=(11, 2.8), xytext=(10.5, 2.8),
arrowprops=dict(arrowstyle='->', color='#27ae60', lw=3))
ax.text(6, 3.2, '✓ GRADIENT HIGHWAY (Identity Path)', ha='center', fontsize=12,
color='#27ae60', fontweight='bold')
# Draw layers as boxes
for i in range(6):
x = 1 + i * 1.8
box = FancyBboxPatch((x, 1), 1.2, 1, boxstyle="round,pad=0.05",
facecolor='#3498db', edgecolor='darkblue', linewidth=2)
ax.add_patch(box)
ax.text(x + 0.6, 1.5, f'L{i+1}', ha='center', va='center', fontsize=11,
color='white', fontweight='bold')
# Draw arrows between layers (constant thickness = gradient preserved)
if i < 5:
ax.annotate('', xy=(x + 1.8, 1.5), xytext=(x + 1.2, 1.5),
arrowprops=dict(arrowstyle='->', color='darkblue', lw=2))
# Draw skip connections going up to highway
ax.plot([x + 0.6, x + 0.6], [2, 2.8], color='#27ae60', linewidth=2, alpha=0.5)
ax.text(0.3, 1.5, 'Gradient\n→', fontsize=10, ha='center', va='center', color='darkblue')
ax.text(11.5, 1.5, '→ Loss', fontsize=10, ha='center', va='center', color='darkblue')
# Add explanation
ax.annotate('Gradient flows on highway\neven if layers block it!', xy=(8, 0.3),
fontsize=11, color='#27ae60', style='italic')
plt.tight_layout()
plt.savefig('plots_micro/3_highway_concept.png', dpi=150, bbox_inches='tight')
plt.close()
print("[Plot 3] Highway concept visualization saved")
# ============================================================
# VISUALIZATION 4: Mathematical View - Chain Rule
# ============================================================
def plot_chain_rule():
"""Visualize the chain rule multiplication effect"""
fig, axes = plt.subplots(1, 2, figsize=(14, 7))
# Simulate gradient flow
num_layers = 20
# PlainMLP: gradient = product of layer gradients (each < 1)
plain_layer_grad = 0.7 # Each layer shrinks gradient by 0.7x
plain_cumulative = [1.0]
for i in range(num_layers):
plain_cumulative.append(plain_cumulative[-1] * plain_layer_grad)
# ResMLP: gradient = 1 + small_contribution (always >= 1 path)
res_layer_contrib = 0.05 # Small contribution from each layer
res_cumulative = [1.0]
for i in range(num_layers):
# The "1" from identity ensures gradient doesn't vanish
res_cumulative.append(res_cumulative[-1] * (1.0 + res_layer_contrib * (0.9 ** i)))
layers = range(num_layers + 1)
# Left: Show the multiplication effect
ax = axes[0]
ax.semilogy(layers, plain_cumulative, 'o-', color='#e74c3c', linewidth=2,
markersize=8, label='PlainMLP: 0.7 × 0.7 × 0.7 × ...')
ax.semilogy(layers, res_cumulative, 's-', color='#3498db', linewidth=2,
markersize=8, label='ResMLP: (1+ε) × (1+ε) × ...')
ax.set_xlabel('Layers Traversed (backward from loss)', fontsize=12)
ax.set_ylabel('Cumulative Gradient Scale (log)', fontsize=12)
ax.set_title('Chain Rule: Why Gradients Vanish\n(Multiplication Effect)', fontsize=14, fontweight='bold')
ax.legend(fontsize=11)
ax.grid(True, alpha=0.3)
ax.set_ylim(1e-8, 10)
# Add annotations
ax.annotate(f'After 20 layers:\n{plain_cumulative[-1]:.1e}',
xy=(20, plain_cumulative[-1]), xytext=(15, 1e-6),
fontsize=10, color='#c0392b',
arrowprops=dict(arrowstyle='->', color='#c0392b'))
ax.annotate(f'After 20 layers:\n{res_cumulative[-1]:.2f}',
xy=(20, res_cumulative[-1]), xytext=(15, 3),
fontsize=10, color='#2980b9',
arrowprops=dict(arrowstyle='->', color='#2980b9'))
# Right: Show the formula
ax = axes[1]
ax.axis('off')
ax.set_xlim(0, 10)
ax.set_ylim(0, 10)
ax.text(5, 9, 'The Math Behind It', fontsize=16, fontweight='bold',
ha='center', va='center')
# PlainMLP formula
ax.text(5, 7.5, 'PlainMLP Gradient:', fontsize=13, fontweight='bold',
ha='center', color='#c0392b')
ax.text(5, 6.5, r'$\frac{\partial L}{\partial x_1} = \frac{\partial L}{\partial x_{20}} \times \prod_{i=1}^{20} \frac{\partial x_{i+1}}{\partial x_i}$',
fontsize=14, ha='center', color='#c0392b')
ax.text(5, 5.5, '= (small) × (small) × ... × (small) = TINY!',
fontsize=11, ha='center', color='#c0392b', style='italic')
# ResMLP formula
ax.text(5, 4, 'ResMLP Gradient:', fontsize=13, fontweight='bold',
ha='center', color='#2980b9')
ax.text(5, 3, r'$\frac{\partial L}{\partial x_1} = \frac{\partial L}{\partial x_{20}} \times \prod_{i=1}^{20} (1 + \frac{\partial f_i}{\partial x_i})$',
fontsize=14, ha='center', color='#2980b9')
ax.text(5, 2, '= (1+ε) × (1+ε) × ... = PRESERVED!',
fontsize=11, ha='center', color='#2980b9', style='italic')
# Key insight
box = FancyBboxPatch((1, 0.3), 8, 1.2, boxstyle="round,pad=0.1",
facecolor='#f9e79f', edgecolor='#f39c12', linewidth=2)
ax.add_patch(box)
ax.text(5, 0.9, '💡 Key Insight: The "+x" in residual adds a "1" to each gradient term,\n'
'preventing the product from shrinking to zero!',
fontsize=11, ha='center', va='center', fontweight='bold')
plt.tight_layout()
plt.savefig('plots_micro/4_chain_rule.png', dpi=150, bbox_inches='tight')
plt.close()
print("[Plot 4] Chain rule visualization saved")
# ============================================================
# VISUALIZATION 5: Layer-by-Layer Transformation
# ============================================================
def plot_layer_transformation():
"""Show what happens to a single input vector through layers"""
# Create simple models for visualization
class PlainMLP(nn.Module):
def __init__(self, dim, num_layers):
super().__init__()
self.layers = nn.ModuleList()
for _ in range(num_layers):
layer = nn.Linear(dim, dim)
nn.init.kaiming_normal_(layer.weight)
layer.weight.data *= 1.0 / np.sqrt(num_layers)
nn.init.zeros_(layer.bias)
self.layers.append(layer)
self.activation = nn.ReLU()
def forward_with_intermediates(self, x):
intermediates = [x.clone()]
for layer in self.layers:
x = self.activation(layer(x))
intermediates.append(x.clone())
return intermediates
class ResMLP(nn.Module):
def __init__(self, dim, num_layers):
super().__init__()
self.layers = nn.ModuleList()
for _ in range(num_layers):
layer = nn.Linear(dim, dim)
nn.init.kaiming_normal_(layer.weight)
layer.weight.data *= 1.0 / np.sqrt(num_layers)
nn.init.zeros_(layer.bias)
self.layers.append(layer)
self.activation = nn.ReLU()
def forward_with_intermediates(self, x):
intermediates = [x.clone()]
for layer in self.layers:
x = x + self.activation(layer(x))
intermediates.append(x.clone())
return intermediates
# Create models
dim = 64
num_layers = 20
plain = PlainMLP(dim, num_layers)
res = ResMLP(dim, num_layers)
# Single input vector
x = torch.randn(1, dim) * 0.5
# Get intermediates
plain_ints = plain.forward_with_intermediates(x)
res_ints = res.forward_with_intermediates(x)
# Extract norms and first 2 dimensions for visualization
plain_norms = [p.norm().item() for p in plain_ints]
res_norms = [r.norm().item() for r in res_ints]
plain_2d = [p[0, :2].detach().numpy() for p in plain_ints]
res_2d = [r[0, :2].detach().numpy() for r in res_ints]
fig, axes = plt.subplots(2, 2, figsize=(14, 12))
# Top left: Vector magnitude through layers
ax = axes[0, 0]
layers = range(len(plain_norms))
ax.plot(layers, plain_norms, 'o-', color='#e74c3c', linewidth=2, markersize=6, label='PlainMLP')
ax.plot(layers, res_norms, 's-', color='#3498db', linewidth=2, markersize=6, label='ResMLP')
ax.set_xlabel('Layer (0=Input)', fontsize=12)
ax.set_ylabel('Vector Magnitude (L2 norm)', fontsize=12)
ax.set_title('Signal Magnitude Through Network', fontsize=13, fontweight='bold')
ax.legend()
ax.grid(True, alpha=0.3)
# Top right: 2D trajectory visualization
ax = axes[0, 1]
# PlainMLP trajectory
plain_x = [p[0] for p in plain_2d]
plain_y = [p[1] for p in plain_2d]
ax.plot(plain_x, plain_y, 'o-', color='#e74c3c', linewidth=1.5, markersize=4,
alpha=0.7, label='PlainMLP path')
ax.scatter(plain_x[0], plain_y[0], s=100, color='#e74c3c', marker='*', zorder=5)
ax.scatter(plain_x[-1], plain_y[-1], s=100, color='#e74c3c', marker='X', zorder=5)
# ResMLP trajectory
res_x = [r[0] for r in res_2d]
res_y = [r[1] for r in res_2d]
ax.plot(res_x, res_y, 's-', color='#3498db', linewidth=1.5, markersize=4,
alpha=0.7, label='ResMLP path')
ax.scatter(res_x[0], res_y[0], s=100, color='#3498db', marker='*', zorder=5)
ax.scatter(res_x[-1], res_y[-1], s=100, color='#3498db', marker='X', zorder=5)
ax.set_xlabel('Dimension 1', fontsize=12)
ax.set_ylabel('Dimension 2', fontsize=12)
ax.set_title('2D Projection of Vector Path\n(★=start, ✕=end)', fontsize=13, fontweight='bold')
ax.legend()
ax.grid(True, alpha=0.3)
ax.axhline(y=0, color='gray', linestyle='-', alpha=0.3)
ax.axvline(x=0, color='gray', linestyle='-', alpha=0.3)
# Bottom left: PlainMLP heatmap of activations
ax = axes[1, 0]
plain_acts = np.array([p[0, :32].detach().numpy() for p in plain_ints]) # First 32 dims
im = ax.imshow(plain_acts.T, aspect='auto', cmap='Reds', interpolation='nearest')
ax.set_xlabel('Layer', fontsize=12)
ax.set_ylabel('Dimension (first 32)', fontsize=12)
ax.set_title('PlainMLP: Activations Die Out', fontsize=13, fontweight='bold', color='#c0392b')
plt.colorbar(im, ax=ax, label='Activation Value')
# Bottom right: ResMLP heatmap of activations
ax = axes[1, 1]
res_acts = np.array([r[0, :32].detach().numpy() for r in res_ints]) # First 32 dims
im = ax.imshow(res_acts.T, aspect='auto', cmap='Blues', interpolation='nearest')
ax.set_xlabel('Layer', fontsize=12)
ax.set_ylabel('Dimension (first 32)', fontsize=12)
ax.set_title('ResMLP: Activations Stay Alive', fontsize=13, fontweight='bold', color='#2980b9')
plt.colorbar(im, ax=ax, label='Activation Value')
plt.tight_layout()
plt.savefig('plots_micro/5_layer_transformation.png', dpi=150, bbox_inches='tight')
plt.close()
print("[Plot 5] Layer transformation visualization saved")
# ============================================================
# VISUALIZATION 6: Before/After Training Comparison
# ============================================================
def plot_learning_comparison():
"""Show what each model learned (or didn't learn)"""
fig, axes = plt.subplots(2, 2, figsize=(14, 12))
plain_losses = results['plain_mlp']['loss_history']
res_losses = results['res_mlp']['loss_history']
# Top left: Loss curves with annotations
ax = axes[0, 0]
steps = range(len(plain_losses))
ax.plot(steps, plain_losses, color='#e74c3c', linewidth=2, label='PlainMLP')
ax.plot(steps, res_losses, color='#3498db', linewidth=2, label='ResMLP')
ax.set_xlabel('Training Steps', fontsize=12)
ax.set_ylabel('MSE Loss', fontsize=12)
ax.set_title('Learning Progress', fontsize=13, fontweight='bold')
ax.set_yscale('log')
ax.legend()
ax.grid(True, alpha=0.3)
# Add phase annotations
ax.axvspan(0, 50, alpha=0.1, color='gray')
ax.text(25, 5, 'Early\nTraining', ha='center', fontsize=9, color='gray')
ax.axvspan(450, 500, alpha=0.1, color='green')
ax.text(475, 5, 'Final', ha='center', fontsize=9, color='gray')
# Top right: Loss reduction bar chart
ax = axes[0, 1]
plain_initial = plain_losses[0]
plain_final = plain_losses[-1]
res_initial = res_losses[0]
res_final = res_losses[-1]
plain_reduction = (1 - plain_final / plain_initial) * 100
res_reduction = (1 - res_final / res_initial) * 100
bars = ax.bar(['PlainMLP', 'ResMLP'], [plain_reduction, res_reduction],
color=['#e74c3c', '#3498db'], edgecolor='black', linewidth=2)
ax.set_ylabel('Loss Reduction (%)', fontsize=12)
ax.set_title('How Much Did Each Model Learn?', fontsize=13, fontweight='bold')
ax.set_ylim(0, 110)
# Add value labels
ax.text(0, plain_reduction + 3, f'{plain_reduction:.1f}%', ha='center', fontsize=14, fontweight='bold')
ax.text(1, res_reduction + 3, f'{res_reduction:.1f}%', ha='center', fontsize=14, fontweight='bold')
# Add verdict
ax.text(0, plain_reduction/2, 'FAILED\nTO LEARN', ha='center', va='center',
fontsize=11, color='white', fontweight='bold')
ax.text(1, res_reduction/2, 'LEARNED\nSUCCESSFULLY', ha='center', va='center',
fontsize=11, color='white', fontweight='bold')
# Bottom: Gradient comparison at different training stages
ax = axes[1, 0]
plain_grads = results['plain_mlp']['gradient_norms']
res_grads = results['res_mlp']['gradient_norms']
layers = range(1, 21)
width = 0.35
ax.bar([l - width/2 for l in layers], plain_grads, width, label='PlainMLP',
color='#e74c3c', alpha=0.8)
ax.bar([l + width/2 for l in layers], res_grads, width, label='ResMLP',
color='#3498db', alpha=0.8)
ax.set_xlabel('Layer', fontsize=12)
ax.set_ylabel('Gradient Magnitude', fontsize=12)
ax.set_title('Final Gradient Distribution by Layer', fontsize=13, fontweight='bold')
ax.set_yscale('log')
ax.legend()
ax.grid(True, alpha=0.3, axis='y')
# Bottom right: Summary diagram
ax = axes[1, 1]
ax.axis('off')
ax.set_xlim(0, 10)
ax.set_ylim(0, 10)
ax.text(5, 9.5, '📊 Summary: Why Residuals Work', fontsize=16, fontweight='bold', ha='center')
# PlainMLP box
box1 = FancyBboxPatch((0.5, 5), 4, 3.5, boxstyle="round,pad=0.1",
facecolor='#fadbd8', edgecolor='#c0392b', linewidth=2)
ax.add_patch(box1)
ax.text(2.5, 8, 'PlainMLP ❌', fontsize=13, fontweight='bold', ha='center', color='#c0392b')
ax.text(2.5, 7, f'• Loss: {plain_final:.3f}', fontsize=11, ha='center')
ax.text(2.5, 6.3, f'• Gradient L1: {plain_grads[0]:.1e}', fontsize=11, ha='center')
ax.text(2.5, 5.6, '• Status: UNTRAINABLE', fontsize=11, ha='center', color='#c0392b')
# ResMLP box
box2 = FancyBboxPatch((5.5, 5), 4, 3.5, boxstyle="round,pad=0.1",
facecolor='#d4e6f1', edgecolor='#2980b9', linewidth=2)
ax.add_patch(box2)
ax.text(7.5, 8, 'ResMLP ✓', fontsize=13, fontweight='bold', ha='center', color='#2980b9')
ax.text(7.5, 7, f'• Loss: {res_final:.3f}', fontsize=11, ha='center')
ax.text(7.5, 6.3, f'• Gradient L1: {res_grads[0]:.1e}', fontsize=11, ha='center')
ax.text(7.5, 5.6, '• Status: TRAINED', fontsize=11, ha='center', color='#2980b9')
# Key insight box
box3 = FancyBboxPatch((1, 0.5), 8, 3.5, boxstyle="round,pad=0.1",
facecolor='#fef9e7', edgecolor='#f39c12', linewidth=2)
ax.add_patch(box3)
ax.text(5, 3.5, '💡 The Residual Connection:', fontsize=13, fontweight='bold', ha='center')
ax.text(5, 2.6, '1. Creates a "gradient highway" for backpropagation', fontsize=11, ha='center')
ax.text(5, 1.9, '2. Preserves signal magnitude through forward pass', fontsize=11, ha='center')
ax.text(5, 1.2, '3. Allows training of very deep networks', fontsize=11, ha='center')
plt.tight_layout()
plt.savefig('plots_micro/6_learning_comparison.png', dpi=150, bbox_inches='tight')
plt.close()
print("[Plot 6] Learning comparison visualization saved")
# ============================================================
# MAIN
# ============================================================
if __name__ == "__main__":
print("=" * 60)
print("Creating Micro-World Visualizations")
print("=" * 60)
plot_signal_flow()
plot_gradient_flow()
plot_highway_concept()
plot_chain_rule()
plot_layer_transformation()
plot_learning_comparison()
print("\n" + "=" * 60)
print("All visualizations saved to plots_micro/")
print("=" * 60)