Upload folder using huggingface_hub
#3
by
CreatorPhan
- opened
- adapter_model.bin +1 -1
- optimizer.pt +1 -1
- rng_state.pth +1 -1
- scheduler.pt +1 -1
- trainer_state.json +3 -1203
adapter_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 39409357
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8beb03e0dedfb5b2da0d68ebcc49dbb502cea67ba9c0d70bed474bdde253aa1d
|
| 3 |
size 39409357
|
optimizer.pt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 78844421
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:745db72555229d45c6a69054bcdee18c9e9f3193c81ae335546612e8aaa6d7c4
|
| 3 |
size 78844421
|
rng_state.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 14575
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6162bb9db25c89c41e126a7a00a5d0695219447bff9b18d08731531620758440
|
| 3 |
size 14575
|
scheduler.pt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 627
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:461382c4e71db35cef694681fd3a0c229adb91f6f9d1e458e9d3c9be9149f8c4
|
| 3 |
size 627
|
trainer_state.json
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
{
|
| 2 |
"best_metric": null,
|
| 3 |
"best_model_checkpoint": null,
|
| 4 |
-
"epoch":
|
| 5 |
"eval_steps": 500,
|
| 6 |
-
"global_step":
|
| 7 |
"is_hyper_param_search": false,
|
| 8 |
"is_local_process_zero": true,
|
| 9 |
"is_world_process_zero": true,
|
|
@@ -1207,1213 +1207,13 @@
|
|
| 1207 |
"learning_rate": 0.002642857142857143,
|
| 1208 |
"loss": 1.678,
|
| 1209 |
"step": 200
|
| 1210 |
-
},
|
| 1211 |
-
{
|
| 1212 |
-
"epoch": 5.74,
|
| 1213 |
-
"learning_rate": 0.0026410714285714284,
|
| 1214 |
-
"loss": 1.7613,
|
| 1215 |
-
"step": 201
|
| 1216 |
-
},
|
| 1217 |
-
{
|
| 1218 |
-
"epoch": 5.77,
|
| 1219 |
-
"learning_rate": 0.0026392857142857142,
|
| 1220 |
-
"loss": 1.7541,
|
| 1221 |
-
"step": 202
|
| 1222 |
-
},
|
| 1223 |
-
{
|
| 1224 |
-
"epoch": 5.8,
|
| 1225 |
-
"learning_rate": 0.0026375,
|
| 1226 |
-
"loss": 1.798,
|
| 1227 |
-
"step": 203
|
| 1228 |
-
},
|
| 1229 |
-
{
|
| 1230 |
-
"epoch": 5.83,
|
| 1231 |
-
"learning_rate": 0.002635714285714286,
|
| 1232 |
-
"loss": 1.821,
|
| 1233 |
-
"step": 204
|
| 1234 |
-
},
|
| 1235 |
-
{
|
| 1236 |
-
"epoch": 5.86,
|
| 1237 |
-
"learning_rate": 0.0026339285714285714,
|
| 1238 |
-
"loss": 1.8385,
|
| 1239 |
-
"step": 205
|
| 1240 |
-
},
|
| 1241 |
-
{
|
| 1242 |
-
"epoch": 5.89,
|
| 1243 |
-
"learning_rate": 0.002632142857142857,
|
| 1244 |
-
"loss": 1.8613,
|
| 1245 |
-
"step": 206
|
| 1246 |
-
},
|
| 1247 |
-
{
|
| 1248 |
-
"epoch": 5.91,
|
| 1249 |
-
"learning_rate": 0.002630357142857143,
|
| 1250 |
-
"loss": 1.902,
|
| 1251 |
-
"step": 207
|
| 1252 |
-
},
|
| 1253 |
-
{
|
| 1254 |
-
"epoch": 5.94,
|
| 1255 |
-
"learning_rate": 0.0026285714285714285,
|
| 1256 |
-
"loss": 2.0848,
|
| 1257 |
-
"step": 208
|
| 1258 |
-
},
|
| 1259 |
-
{
|
| 1260 |
-
"epoch": 5.97,
|
| 1261 |
-
"learning_rate": 0.0026267857142857143,
|
| 1262 |
-
"loss": 2.3277,
|
| 1263 |
-
"step": 209
|
| 1264 |
-
},
|
| 1265 |
-
{
|
| 1266 |
-
"epoch": 6.0,
|
| 1267 |
-
"learning_rate": 0.002625,
|
| 1268 |
-
"loss": 2.8535,
|
| 1269 |
-
"step": 210
|
| 1270 |
-
},
|
| 1271 |
-
{
|
| 1272 |
-
"epoch": 6.03,
|
| 1273 |
-
"learning_rate": 0.0026232142857142856,
|
| 1274 |
-
"loss": 6.2197,
|
| 1275 |
-
"step": 211
|
| 1276 |
-
},
|
| 1277 |
-
{
|
| 1278 |
-
"epoch": 6.06,
|
| 1279 |
-
"learning_rate": 0.0026214285714285714,
|
| 1280 |
-
"loss": 10.2288,
|
| 1281 |
-
"step": 212
|
| 1282 |
-
},
|
| 1283 |
-
{
|
| 1284 |
-
"epoch": 6.09,
|
| 1285 |
-
"learning_rate": 0.0026196428571428573,
|
| 1286 |
-
"loss": 12.5006,
|
| 1287 |
-
"step": 213
|
| 1288 |
-
},
|
| 1289 |
-
{
|
| 1290 |
-
"epoch": 6.11,
|
| 1291 |
-
"learning_rate": 0.002617857142857143,
|
| 1292 |
-
"loss": 10.5184,
|
| 1293 |
-
"step": 214
|
| 1294 |
-
},
|
| 1295 |
-
{
|
| 1296 |
-
"epoch": 6.14,
|
| 1297 |
-
"learning_rate": 0.0026160714285714285,
|
| 1298 |
-
"loss": 9.4834,
|
| 1299 |
-
"step": 215
|
| 1300 |
-
},
|
| 1301 |
-
{
|
| 1302 |
-
"epoch": 6.17,
|
| 1303 |
-
"learning_rate": 0.0026142857142857144,
|
| 1304 |
-
"loss": 16.0513,
|
| 1305 |
-
"step": 216
|
| 1306 |
-
},
|
| 1307 |
-
{
|
| 1308 |
-
"epoch": 6.2,
|
| 1309 |
-
"learning_rate": 0.0026125000000000002,
|
| 1310 |
-
"loss": 11.0576,
|
| 1311 |
-
"step": 217
|
| 1312 |
-
},
|
| 1313 |
-
{
|
| 1314 |
-
"epoch": 6.23,
|
| 1315 |
-
"learning_rate": 0.0026107142857142857,
|
| 1316 |
-
"loss": 15.3574,
|
| 1317 |
-
"step": 218
|
| 1318 |
-
},
|
| 1319 |
-
{
|
| 1320 |
-
"epoch": 6.26,
|
| 1321 |
-
"learning_rate": 0.0026089285714285715,
|
| 1322 |
-
"loss": 15.5239,
|
| 1323 |
-
"step": 219
|
| 1324 |
-
},
|
| 1325 |
-
{
|
| 1326 |
-
"epoch": 6.29,
|
| 1327 |
-
"learning_rate": 0.0026071428571428574,
|
| 1328 |
-
"loss": 15.3973,
|
| 1329 |
-
"step": 220
|
| 1330 |
-
},
|
| 1331 |
-
{
|
| 1332 |
-
"epoch": 6.31,
|
| 1333 |
-
"learning_rate": 0.0026053571428571428,
|
| 1334 |
-
"loss": 12.059,
|
| 1335 |
-
"step": 221
|
| 1336 |
-
},
|
| 1337 |
-
{
|
| 1338 |
-
"epoch": 6.34,
|
| 1339 |
-
"learning_rate": 0.0026035714285714286,
|
| 1340 |
-
"loss": 10.8352,
|
| 1341 |
-
"step": 222
|
| 1342 |
-
},
|
| 1343 |
-
{
|
| 1344 |
-
"epoch": 6.37,
|
| 1345 |
-
"learning_rate": 0.0026017857142857145,
|
| 1346 |
-
"loss": 10.1507,
|
| 1347 |
-
"step": 223
|
| 1348 |
-
},
|
| 1349 |
-
{
|
| 1350 |
-
"epoch": 6.4,
|
| 1351 |
-
"learning_rate": 0.0026000000000000003,
|
| 1352 |
-
"loss": 10.651,
|
| 1353 |
-
"step": 224
|
| 1354 |
-
},
|
| 1355 |
-
{
|
| 1356 |
-
"epoch": 6.43,
|
| 1357 |
-
"learning_rate": 0.0025982142857142857,
|
| 1358 |
-
"loss": 9.8363,
|
| 1359 |
-
"step": 225
|
| 1360 |
-
},
|
| 1361 |
-
{
|
| 1362 |
-
"epoch": 6.46,
|
| 1363 |
-
"learning_rate": 0.0025964285714285716,
|
| 1364 |
-
"loss": 9.3673,
|
| 1365 |
-
"step": 226
|
| 1366 |
-
},
|
| 1367 |
-
{
|
| 1368 |
-
"epoch": 6.49,
|
| 1369 |
-
"learning_rate": 0.0025946428571428574,
|
| 1370 |
-
"loss": 9.5433,
|
| 1371 |
-
"step": 227
|
| 1372 |
-
},
|
| 1373 |
-
{
|
| 1374 |
-
"epoch": 6.51,
|
| 1375 |
-
"learning_rate": 0.002592857142857143,
|
| 1376 |
-
"loss": 9.9206,
|
| 1377 |
-
"step": 228
|
| 1378 |
-
},
|
| 1379 |
-
{
|
| 1380 |
-
"epoch": 6.54,
|
| 1381 |
-
"learning_rate": 0.0025910714285714287,
|
| 1382 |
-
"loss": 9.5516,
|
| 1383 |
-
"step": 229
|
| 1384 |
-
},
|
| 1385 |
-
{
|
| 1386 |
-
"epoch": 6.57,
|
| 1387 |
-
"learning_rate": 0.0025892857142857145,
|
| 1388 |
-
"loss": 9.2165,
|
| 1389 |
-
"step": 230
|
| 1390 |
-
},
|
| 1391 |
-
{
|
| 1392 |
-
"epoch": 6.6,
|
| 1393 |
-
"learning_rate": 0.0025875000000000004,
|
| 1394 |
-
"loss": 9.0825,
|
| 1395 |
-
"step": 231
|
| 1396 |
-
},
|
| 1397 |
-
{
|
| 1398 |
-
"epoch": 6.63,
|
| 1399 |
-
"learning_rate": 0.002585714285714286,
|
| 1400 |
-
"loss": 8.7437,
|
| 1401 |
-
"step": 232
|
| 1402 |
-
},
|
| 1403 |
-
{
|
| 1404 |
-
"epoch": 6.66,
|
| 1405 |
-
"learning_rate": 0.0025839285714285717,
|
| 1406 |
-
"loss": 8.6366,
|
| 1407 |
-
"step": 233
|
| 1408 |
-
},
|
| 1409 |
-
{
|
| 1410 |
-
"epoch": 6.69,
|
| 1411 |
-
"learning_rate": 0.0025821428571428575,
|
| 1412 |
-
"loss": 9.7431,
|
| 1413 |
-
"step": 234
|
| 1414 |
-
},
|
| 1415 |
-
{
|
| 1416 |
-
"epoch": 6.71,
|
| 1417 |
-
"learning_rate": 0.002580357142857143,
|
| 1418 |
-
"loss": 8.1876,
|
| 1419 |
-
"step": 235
|
| 1420 |
-
},
|
| 1421 |
-
{
|
| 1422 |
-
"epoch": 6.74,
|
| 1423 |
-
"learning_rate": 0.0025785714285714288,
|
| 1424 |
-
"loss": 8.4559,
|
| 1425 |
-
"step": 236
|
| 1426 |
-
},
|
| 1427 |
-
{
|
| 1428 |
-
"epoch": 6.77,
|
| 1429 |
-
"learning_rate": 0.002576785714285714,
|
| 1430 |
-
"loss": 8.0092,
|
| 1431 |
-
"step": 237
|
| 1432 |
-
},
|
| 1433 |
-
{
|
| 1434 |
-
"epoch": 6.8,
|
| 1435 |
-
"learning_rate": 0.002575,
|
| 1436 |
-
"loss": 8.028,
|
| 1437 |
-
"step": 238
|
| 1438 |
-
},
|
| 1439 |
-
{
|
| 1440 |
-
"epoch": 6.83,
|
| 1441 |
-
"learning_rate": 0.0025732142857142854,
|
| 1442 |
-
"loss": 7.8379,
|
| 1443 |
-
"step": 239
|
| 1444 |
-
},
|
| 1445 |
-
{
|
| 1446 |
-
"epoch": 6.86,
|
| 1447 |
-
"learning_rate": 0.0025714285714285713,
|
| 1448 |
-
"loss": 7.8127,
|
| 1449 |
-
"step": 240
|
| 1450 |
-
},
|
| 1451 |
-
{
|
| 1452 |
-
"epoch": 6.89,
|
| 1453 |
-
"learning_rate": 0.002569642857142857,
|
| 1454 |
-
"loss": 7.8252,
|
| 1455 |
-
"step": 241
|
| 1456 |
-
},
|
| 1457 |
-
{
|
| 1458 |
-
"epoch": 6.91,
|
| 1459 |
-
"learning_rate": 0.002567857142857143,
|
| 1460 |
-
"loss": 7.7094,
|
| 1461 |
-
"step": 242
|
| 1462 |
-
},
|
| 1463 |
-
{
|
| 1464 |
-
"epoch": 6.94,
|
| 1465 |
-
"learning_rate": 0.0025660714285714284,
|
| 1466 |
-
"loss": 7.7962,
|
| 1467 |
-
"step": 243
|
| 1468 |
-
},
|
| 1469 |
-
{
|
| 1470 |
-
"epoch": 6.97,
|
| 1471 |
-
"learning_rate": 0.0025642857142857143,
|
| 1472 |
-
"loss": 7.4966,
|
| 1473 |
-
"step": 244
|
| 1474 |
-
},
|
| 1475 |
-
{
|
| 1476 |
-
"epoch": 7.0,
|
| 1477 |
-
"learning_rate": 0.0025625,
|
| 1478 |
-
"loss": 7.4851,
|
| 1479 |
-
"step": 245
|
| 1480 |
-
},
|
| 1481 |
-
{
|
| 1482 |
-
"epoch": 7.03,
|
| 1483 |
-
"learning_rate": 0.0025607142857142855,
|
| 1484 |
-
"loss": 7.5188,
|
| 1485 |
-
"step": 246
|
| 1486 |
-
},
|
| 1487 |
-
{
|
| 1488 |
-
"epoch": 7.06,
|
| 1489 |
-
"learning_rate": 0.0025589285714285714,
|
| 1490 |
-
"loss": 7.7866,
|
| 1491 |
-
"step": 247
|
| 1492 |
-
},
|
| 1493 |
-
{
|
| 1494 |
-
"epoch": 7.09,
|
| 1495 |
-
"learning_rate": 0.0025571428571428572,
|
| 1496 |
-
"loss": 7.5743,
|
| 1497 |
-
"step": 248
|
| 1498 |
-
},
|
| 1499 |
-
{
|
| 1500 |
-
"epoch": 7.11,
|
| 1501 |
-
"learning_rate": 0.0025553571428571426,
|
| 1502 |
-
"loss": 7.4608,
|
| 1503 |
-
"step": 249
|
| 1504 |
-
},
|
| 1505 |
-
{
|
| 1506 |
-
"epoch": 7.14,
|
| 1507 |
-
"learning_rate": 0.0025535714285714285,
|
| 1508 |
-
"loss": 7.4655,
|
| 1509 |
-
"step": 250
|
| 1510 |
-
},
|
| 1511 |
-
{
|
| 1512 |
-
"epoch": 7.17,
|
| 1513 |
-
"learning_rate": 0.0025517857142857143,
|
| 1514 |
-
"loss": 7.5474,
|
| 1515 |
-
"step": 251
|
| 1516 |
-
},
|
| 1517 |
-
{
|
| 1518 |
-
"epoch": 7.2,
|
| 1519 |
-
"learning_rate": 0.00255,
|
| 1520 |
-
"loss": 7.6983,
|
| 1521 |
-
"step": 252
|
| 1522 |
-
},
|
| 1523 |
-
{
|
| 1524 |
-
"epoch": 7.23,
|
| 1525 |
-
"learning_rate": 0.0025482142857142856,
|
| 1526 |
-
"loss": 7.4936,
|
| 1527 |
-
"step": 253
|
| 1528 |
-
},
|
| 1529 |
-
{
|
| 1530 |
-
"epoch": 7.26,
|
| 1531 |
-
"learning_rate": 0.0025464285714285714,
|
| 1532 |
-
"loss": 7.6966,
|
| 1533 |
-
"step": 254
|
| 1534 |
-
},
|
| 1535 |
-
{
|
| 1536 |
-
"epoch": 7.29,
|
| 1537 |
-
"learning_rate": 0.0025446428571428573,
|
| 1538 |
-
"loss": 7.4701,
|
| 1539 |
-
"step": 255
|
| 1540 |
-
},
|
| 1541 |
-
{
|
| 1542 |
-
"epoch": 7.31,
|
| 1543 |
-
"learning_rate": 0.0025428571428571427,
|
| 1544 |
-
"loss": 7.511,
|
| 1545 |
-
"step": 256
|
| 1546 |
-
},
|
| 1547 |
-
{
|
| 1548 |
-
"epoch": 7.34,
|
| 1549 |
-
"learning_rate": 0.0025410714285714286,
|
| 1550 |
-
"loss": 7.3709,
|
| 1551 |
-
"step": 257
|
| 1552 |
-
},
|
| 1553 |
-
{
|
| 1554 |
-
"epoch": 7.37,
|
| 1555 |
-
"learning_rate": 0.0025392857142857144,
|
| 1556 |
-
"loss": 7.4582,
|
| 1557 |
-
"step": 258
|
| 1558 |
-
},
|
| 1559 |
-
{
|
| 1560 |
-
"epoch": 7.4,
|
| 1561 |
-
"learning_rate": 0.0025375,
|
| 1562 |
-
"loss": 7.4263,
|
| 1563 |
-
"step": 259
|
| 1564 |
-
},
|
| 1565 |
-
{
|
| 1566 |
-
"epoch": 7.43,
|
| 1567 |
-
"learning_rate": 0.0025357142857142857,
|
| 1568 |
-
"loss": 7.3134,
|
| 1569 |
-
"step": 260
|
| 1570 |
-
},
|
| 1571 |
-
{
|
| 1572 |
-
"epoch": 7.46,
|
| 1573 |
-
"learning_rate": 0.0025339285714285715,
|
| 1574 |
-
"loss": 7.3849,
|
| 1575 |
-
"step": 261
|
| 1576 |
-
},
|
| 1577 |
-
{
|
| 1578 |
-
"epoch": 7.49,
|
| 1579 |
-
"learning_rate": 0.0025321428571428574,
|
| 1580 |
-
"loss": 7.292,
|
| 1581 |
-
"step": 262
|
| 1582 |
-
},
|
| 1583 |
-
{
|
| 1584 |
-
"epoch": 7.51,
|
| 1585 |
-
"learning_rate": 0.002530357142857143,
|
| 1586 |
-
"loss": 7.343,
|
| 1587 |
-
"step": 263
|
| 1588 |
-
},
|
| 1589 |
-
{
|
| 1590 |
-
"epoch": 7.54,
|
| 1591 |
-
"learning_rate": 0.0025285714285714286,
|
| 1592 |
-
"loss": 7.3166,
|
| 1593 |
-
"step": 264
|
| 1594 |
-
},
|
| 1595 |
-
{
|
| 1596 |
-
"epoch": 7.57,
|
| 1597 |
-
"learning_rate": 0.0025267857142857145,
|
| 1598 |
-
"loss": 7.2676,
|
| 1599 |
-
"step": 265
|
| 1600 |
-
},
|
| 1601 |
-
{
|
| 1602 |
-
"epoch": 7.6,
|
| 1603 |
-
"learning_rate": 0.002525,
|
| 1604 |
-
"loss": 7.2955,
|
| 1605 |
-
"step": 266
|
| 1606 |
-
},
|
| 1607 |
-
{
|
| 1608 |
-
"epoch": 7.63,
|
| 1609 |
-
"learning_rate": 0.0025232142857142857,
|
| 1610 |
-
"loss": 7.3386,
|
| 1611 |
-
"step": 267
|
| 1612 |
-
},
|
| 1613 |
-
{
|
| 1614 |
-
"epoch": 7.66,
|
| 1615 |
-
"learning_rate": 0.0025214285714285716,
|
| 1616 |
-
"loss": 7.2682,
|
| 1617 |
-
"step": 268
|
| 1618 |
-
},
|
| 1619 |
-
{
|
| 1620 |
-
"epoch": 7.69,
|
| 1621 |
-
"learning_rate": 0.0025196428571428574,
|
| 1622 |
-
"loss": 7.2359,
|
| 1623 |
-
"step": 269
|
| 1624 |
-
},
|
| 1625 |
-
{
|
| 1626 |
-
"epoch": 7.71,
|
| 1627 |
-
"learning_rate": 0.002517857142857143,
|
| 1628 |
-
"loss": 7.1849,
|
| 1629 |
-
"step": 270
|
| 1630 |
-
},
|
| 1631 |
-
{
|
| 1632 |
-
"epoch": 7.74,
|
| 1633 |
-
"learning_rate": 0.0025160714285714287,
|
| 1634 |
-
"loss": 7.2421,
|
| 1635 |
-
"step": 271
|
| 1636 |
-
},
|
| 1637 |
-
{
|
| 1638 |
-
"epoch": 7.77,
|
| 1639 |
-
"learning_rate": 0.0025142857142857146,
|
| 1640 |
-
"loss": 7.2341,
|
| 1641 |
-
"step": 272
|
| 1642 |
-
},
|
| 1643 |
-
{
|
| 1644 |
-
"epoch": 7.8,
|
| 1645 |
-
"learning_rate": 0.0025125,
|
| 1646 |
-
"loss": 7.2901,
|
| 1647 |
-
"step": 273
|
| 1648 |
-
},
|
| 1649 |
-
{
|
| 1650 |
-
"epoch": 7.83,
|
| 1651 |
-
"learning_rate": 0.002510714285714286,
|
| 1652 |
-
"loss": 7.1931,
|
| 1653 |
-
"step": 274
|
| 1654 |
-
},
|
| 1655 |
-
{
|
| 1656 |
-
"epoch": 7.86,
|
| 1657 |
-
"learning_rate": 0.0025089285714285717,
|
| 1658 |
-
"loss": 7.1907,
|
| 1659 |
-
"step": 275
|
| 1660 |
-
},
|
| 1661 |
-
{
|
| 1662 |
-
"epoch": 7.89,
|
| 1663 |
-
"learning_rate": 0.002507142857142857,
|
| 1664 |
-
"loss": 7.2369,
|
| 1665 |
-
"step": 276
|
| 1666 |
-
},
|
| 1667 |
-
{
|
| 1668 |
-
"epoch": 7.91,
|
| 1669 |
-
"learning_rate": 0.002505357142857143,
|
| 1670 |
-
"loss": 7.1764,
|
| 1671 |
-
"step": 277
|
| 1672 |
-
},
|
| 1673 |
-
{
|
| 1674 |
-
"epoch": 7.94,
|
| 1675 |
-
"learning_rate": 0.002503571428571429,
|
| 1676 |
-
"loss": 7.1928,
|
| 1677 |
-
"step": 278
|
| 1678 |
-
},
|
| 1679 |
-
{
|
| 1680 |
-
"epoch": 7.97,
|
| 1681 |
-
"learning_rate": 0.0025017857142857146,
|
| 1682 |
-
"loss": 7.2114,
|
| 1683 |
-
"step": 279
|
| 1684 |
-
},
|
| 1685 |
-
{
|
| 1686 |
-
"epoch": 8.0,
|
| 1687 |
-
"learning_rate": 0.0025,
|
| 1688 |
-
"loss": 7.2307,
|
| 1689 |
-
"step": 280
|
| 1690 |
-
},
|
| 1691 |
-
{
|
| 1692 |
-
"epoch": 8.03,
|
| 1693 |
-
"learning_rate": 0.002498214285714286,
|
| 1694 |
-
"loss": 7.2477,
|
| 1695 |
-
"step": 281
|
| 1696 |
-
},
|
| 1697 |
-
{
|
| 1698 |
-
"epoch": 8.06,
|
| 1699 |
-
"learning_rate": 0.0024964285714285718,
|
| 1700 |
-
"loss": 7.2069,
|
| 1701 |
-
"step": 282
|
| 1702 |
-
},
|
| 1703 |
-
{
|
| 1704 |
-
"epoch": 8.09,
|
| 1705 |
-
"learning_rate": 0.002494642857142857,
|
| 1706 |
-
"loss": 7.1484,
|
| 1707 |
-
"step": 283
|
| 1708 |
-
},
|
| 1709 |
-
{
|
| 1710 |
-
"epoch": 8.11,
|
| 1711 |
-
"learning_rate": 0.002492857142857143,
|
| 1712 |
-
"loss": 7.1076,
|
| 1713 |
-
"step": 284
|
| 1714 |
-
},
|
| 1715 |
-
{
|
| 1716 |
-
"epoch": 8.14,
|
| 1717 |
-
"learning_rate": 0.002491071428571429,
|
| 1718 |
-
"loss": 7.0819,
|
| 1719 |
-
"step": 285
|
| 1720 |
-
},
|
| 1721 |
-
{
|
| 1722 |
-
"epoch": 8.17,
|
| 1723 |
-
"learning_rate": 0.0024892857142857143,
|
| 1724 |
-
"loss": 7.0708,
|
| 1725 |
-
"step": 286
|
| 1726 |
-
},
|
| 1727 |
-
{
|
| 1728 |
-
"epoch": 8.2,
|
| 1729 |
-
"learning_rate": 0.0024875,
|
| 1730 |
-
"loss": 7.0763,
|
| 1731 |
-
"step": 287
|
| 1732 |
-
},
|
| 1733 |
-
{
|
| 1734 |
-
"epoch": 8.23,
|
| 1735 |
-
"learning_rate": 0.002485714285714286,
|
| 1736 |
-
"loss": 7.0792,
|
| 1737 |
-
"step": 288
|
| 1738 |
-
},
|
| 1739 |
-
{
|
| 1740 |
-
"epoch": 8.26,
|
| 1741 |
-
"learning_rate": 0.0024839285714285714,
|
| 1742 |
-
"loss": 7.1397,
|
| 1743 |
-
"step": 289
|
| 1744 |
-
},
|
| 1745 |
-
{
|
| 1746 |
-
"epoch": 8.29,
|
| 1747 |
-
"learning_rate": 0.0024821428571428572,
|
| 1748 |
-
"loss": 7.0893,
|
| 1749 |
-
"step": 290
|
| 1750 |
-
},
|
| 1751 |
-
{
|
| 1752 |
-
"epoch": 8.31,
|
| 1753 |
-
"learning_rate": 0.0024803571428571427,
|
| 1754 |
-
"loss": 7.1263,
|
| 1755 |
-
"step": 291
|
| 1756 |
-
},
|
| 1757 |
-
{
|
| 1758 |
-
"epoch": 8.34,
|
| 1759 |
-
"learning_rate": 0.0024785714285714285,
|
| 1760 |
-
"loss": 7.0226,
|
| 1761 |
-
"step": 292
|
| 1762 |
-
},
|
| 1763 |
-
{
|
| 1764 |
-
"epoch": 8.37,
|
| 1765 |
-
"learning_rate": 0.0024767857142857144,
|
| 1766 |
-
"loss": 7.1017,
|
| 1767 |
-
"step": 293
|
| 1768 |
-
},
|
| 1769 |
-
{
|
| 1770 |
-
"epoch": 8.4,
|
| 1771 |
-
"learning_rate": 0.0024749999999999998,
|
| 1772 |
-
"loss": 7.0161,
|
| 1773 |
-
"step": 294
|
| 1774 |
-
},
|
| 1775 |
-
{
|
| 1776 |
-
"epoch": 8.43,
|
| 1777 |
-
"learning_rate": 0.0024732142857142856,
|
| 1778 |
-
"loss": 7.117,
|
| 1779 |
-
"step": 295
|
| 1780 |
-
},
|
| 1781 |
-
{
|
| 1782 |
-
"epoch": 8.46,
|
| 1783 |
-
"learning_rate": 0.0024714285714285715,
|
| 1784 |
-
"loss": 7.0234,
|
| 1785 |
-
"step": 296
|
| 1786 |
-
},
|
| 1787 |
-
{
|
| 1788 |
-
"epoch": 8.49,
|
| 1789 |
-
"learning_rate": 0.002469642857142857,
|
| 1790 |
-
"loss": 7.0663,
|
| 1791 |
-
"step": 297
|
| 1792 |
-
},
|
| 1793 |
-
{
|
| 1794 |
-
"epoch": 8.51,
|
| 1795 |
-
"learning_rate": 0.0024678571428571427,
|
| 1796 |
-
"loss": 7.1604,
|
| 1797 |
-
"step": 298
|
| 1798 |
-
},
|
| 1799 |
-
{
|
| 1800 |
-
"epoch": 8.54,
|
| 1801 |
-
"learning_rate": 0.0024660714285714286,
|
| 1802 |
-
"loss": 7.0543,
|
| 1803 |
-
"step": 299
|
| 1804 |
-
},
|
| 1805 |
-
{
|
| 1806 |
-
"epoch": 8.57,
|
| 1807 |
-
"learning_rate": 0.0024642857142857144,
|
| 1808 |
-
"loss": 7.0131,
|
| 1809 |
-
"step": 300
|
| 1810 |
-
},
|
| 1811 |
-
{
|
| 1812 |
-
"epoch": 8.6,
|
| 1813 |
-
"learning_rate": 0.0024625,
|
| 1814 |
-
"loss": 7.0294,
|
| 1815 |
-
"step": 301
|
| 1816 |
-
},
|
| 1817 |
-
{
|
| 1818 |
-
"epoch": 8.63,
|
| 1819 |
-
"learning_rate": 0.0024607142857142857,
|
| 1820 |
-
"loss": 7.0273,
|
| 1821 |
-
"step": 302
|
| 1822 |
-
},
|
| 1823 |
-
{
|
| 1824 |
-
"epoch": 8.66,
|
| 1825 |
-
"learning_rate": 0.0024589285714285715,
|
| 1826 |
-
"loss": 7.0074,
|
| 1827 |
-
"step": 303
|
| 1828 |
-
},
|
| 1829 |
-
{
|
| 1830 |
-
"epoch": 8.69,
|
| 1831 |
-
"learning_rate": 0.002457142857142857,
|
| 1832 |
-
"loss": 6.9747,
|
| 1833 |
-
"step": 304
|
| 1834 |
-
},
|
| 1835 |
-
{
|
| 1836 |
-
"epoch": 8.71,
|
| 1837 |
-
"learning_rate": 0.002455357142857143,
|
| 1838 |
-
"loss": 7.0617,
|
| 1839 |
-
"step": 305
|
| 1840 |
-
},
|
| 1841 |
-
{
|
| 1842 |
-
"epoch": 8.74,
|
| 1843 |
-
"learning_rate": 0.0024535714285714287,
|
| 1844 |
-
"loss": 7.0907,
|
| 1845 |
-
"step": 306
|
| 1846 |
-
},
|
| 1847 |
-
{
|
| 1848 |
-
"epoch": 8.77,
|
| 1849 |
-
"learning_rate": 0.002451785714285714,
|
| 1850 |
-
"loss": 7.0037,
|
| 1851 |
-
"step": 307
|
| 1852 |
-
},
|
| 1853 |
-
{
|
| 1854 |
-
"epoch": 8.8,
|
| 1855 |
-
"learning_rate": 0.00245,
|
| 1856 |
-
"loss": 6.969,
|
| 1857 |
-
"step": 308
|
| 1858 |
-
},
|
| 1859 |
-
{
|
| 1860 |
-
"epoch": 8.83,
|
| 1861 |
-
"learning_rate": 0.0024482142857142858,
|
| 1862 |
-
"loss": 7.0575,
|
| 1863 |
-
"step": 309
|
| 1864 |
-
},
|
| 1865 |
-
{
|
| 1866 |
-
"epoch": 8.86,
|
| 1867 |
-
"learning_rate": 0.0024464285714285716,
|
| 1868 |
-
"loss": 6.9494,
|
| 1869 |
-
"step": 310
|
| 1870 |
-
},
|
| 1871 |
-
{
|
| 1872 |
-
"epoch": 8.89,
|
| 1873 |
-
"learning_rate": 0.002444642857142857,
|
| 1874 |
-
"loss": 6.969,
|
| 1875 |
-
"step": 311
|
| 1876 |
-
},
|
| 1877 |
-
{
|
| 1878 |
-
"epoch": 8.91,
|
| 1879 |
-
"learning_rate": 0.002442857142857143,
|
| 1880 |
-
"loss": 6.8827,
|
| 1881 |
-
"step": 312
|
| 1882 |
-
},
|
| 1883 |
-
{
|
| 1884 |
-
"epoch": 8.94,
|
| 1885 |
-
"learning_rate": 0.0024410714285714287,
|
| 1886 |
-
"loss": 6.9058,
|
| 1887 |
-
"step": 313
|
| 1888 |
-
},
|
| 1889 |
-
{
|
| 1890 |
-
"epoch": 8.97,
|
| 1891 |
-
"learning_rate": 0.002439285714285714,
|
| 1892 |
-
"loss": 6.8808,
|
| 1893 |
-
"step": 314
|
| 1894 |
-
},
|
| 1895 |
-
{
|
| 1896 |
-
"epoch": 9.0,
|
| 1897 |
-
"learning_rate": 0.0024375,
|
| 1898 |
-
"loss": 6.9516,
|
| 1899 |
-
"step": 315
|
| 1900 |
-
},
|
| 1901 |
-
{
|
| 1902 |
-
"epoch": 9.03,
|
| 1903 |
-
"learning_rate": 0.002435714285714286,
|
| 1904 |
-
"loss": 6.9132,
|
| 1905 |
-
"step": 316
|
| 1906 |
-
},
|
| 1907 |
-
{
|
| 1908 |
-
"epoch": 9.06,
|
| 1909 |
-
"learning_rate": 0.0024339285714285717,
|
| 1910 |
-
"loss": 6.9058,
|
| 1911 |
-
"step": 317
|
| 1912 |
-
},
|
| 1913 |
-
{
|
| 1914 |
-
"epoch": 9.09,
|
| 1915 |
-
"learning_rate": 0.002432142857142857,
|
| 1916 |
-
"loss": 6.9332,
|
| 1917 |
-
"step": 318
|
| 1918 |
-
},
|
| 1919 |
-
{
|
| 1920 |
-
"epoch": 9.11,
|
| 1921 |
-
"learning_rate": 0.002430357142857143,
|
| 1922 |
-
"loss": 6.9757,
|
| 1923 |
-
"step": 319
|
| 1924 |
-
},
|
| 1925 |
-
{
|
| 1926 |
-
"epoch": 9.14,
|
| 1927 |
-
"learning_rate": 0.002428571428571429,
|
| 1928 |
-
"loss": 6.8261,
|
| 1929 |
-
"step": 320
|
| 1930 |
-
},
|
| 1931 |
-
{
|
| 1932 |
-
"epoch": 9.17,
|
| 1933 |
-
"learning_rate": 0.0024267857142857142,
|
| 1934 |
-
"loss": 6.8571,
|
| 1935 |
-
"step": 321
|
| 1936 |
-
},
|
| 1937 |
-
{
|
| 1938 |
-
"epoch": 9.2,
|
| 1939 |
-
"learning_rate": 0.002425,
|
| 1940 |
-
"loss": 6.8435,
|
| 1941 |
-
"step": 322
|
| 1942 |
-
},
|
| 1943 |
-
{
|
| 1944 |
-
"epoch": 9.23,
|
| 1945 |
-
"learning_rate": 0.002423214285714286,
|
| 1946 |
-
"loss": 6.9033,
|
| 1947 |
-
"step": 323
|
| 1948 |
-
},
|
| 1949 |
-
{
|
| 1950 |
-
"epoch": 9.26,
|
| 1951 |
-
"learning_rate": 0.0024214285714285713,
|
| 1952 |
-
"loss": 6.8042,
|
| 1953 |
-
"step": 324
|
| 1954 |
-
},
|
| 1955 |
-
{
|
| 1956 |
-
"epoch": 9.29,
|
| 1957 |
-
"learning_rate": 0.002419642857142857,
|
| 1958 |
-
"loss": 6.8732,
|
| 1959 |
-
"step": 325
|
| 1960 |
-
},
|
| 1961 |
-
{
|
| 1962 |
-
"epoch": 9.31,
|
| 1963 |
-
"learning_rate": 0.002417857142857143,
|
| 1964 |
-
"loss": 6.752,
|
| 1965 |
-
"step": 326
|
| 1966 |
-
},
|
| 1967 |
-
{
|
| 1968 |
-
"epoch": 9.34,
|
| 1969 |
-
"learning_rate": 0.002416071428571429,
|
| 1970 |
-
"loss": 6.8016,
|
| 1971 |
-
"step": 327
|
| 1972 |
-
},
|
| 1973 |
-
{
|
| 1974 |
-
"epoch": 9.37,
|
| 1975 |
-
"learning_rate": 0.0024142857142857143,
|
| 1976 |
-
"loss": 6.8879,
|
| 1977 |
-
"step": 328
|
| 1978 |
-
},
|
| 1979 |
-
{
|
| 1980 |
-
"epoch": 9.4,
|
| 1981 |
-
"learning_rate": 0.0024125,
|
| 1982 |
-
"loss": 6.7643,
|
| 1983 |
-
"step": 329
|
| 1984 |
-
},
|
| 1985 |
-
{
|
| 1986 |
-
"epoch": 9.43,
|
| 1987 |
-
"learning_rate": 0.002410714285714286,
|
| 1988 |
-
"loss": 6.7084,
|
| 1989 |
-
"step": 330
|
| 1990 |
-
},
|
| 1991 |
-
{
|
| 1992 |
-
"epoch": 9.46,
|
| 1993 |
-
"learning_rate": 0.0024089285714285714,
|
| 1994 |
-
"loss": 6.8049,
|
| 1995 |
-
"step": 331
|
| 1996 |
-
},
|
| 1997 |
-
{
|
| 1998 |
-
"epoch": 9.49,
|
| 1999 |
-
"learning_rate": 0.0024071428571428573,
|
| 2000 |
-
"loss": 6.7925,
|
| 2001 |
-
"step": 332
|
| 2002 |
-
},
|
| 2003 |
-
{
|
| 2004 |
-
"epoch": 9.51,
|
| 2005 |
-
"learning_rate": 0.002405357142857143,
|
| 2006 |
-
"loss": 6.7289,
|
| 2007 |
-
"step": 333
|
| 2008 |
-
},
|
| 2009 |
-
{
|
| 2010 |
-
"epoch": 9.54,
|
| 2011 |
-
"learning_rate": 0.0024035714285714285,
|
| 2012 |
-
"loss": 6.7439,
|
| 2013 |
-
"step": 334
|
| 2014 |
-
},
|
| 2015 |
-
{
|
| 2016 |
-
"epoch": 9.57,
|
| 2017 |
-
"learning_rate": 0.0024017857142857144,
|
| 2018 |
-
"loss": 6.7119,
|
| 2019 |
-
"step": 335
|
| 2020 |
-
},
|
| 2021 |
-
{
|
| 2022 |
-
"epoch": 9.6,
|
| 2023 |
-
"learning_rate": 0.0024000000000000002,
|
| 2024 |
-
"loss": 6.7251,
|
| 2025 |
-
"step": 336
|
| 2026 |
-
},
|
| 2027 |
-
{
|
| 2028 |
-
"epoch": 9.63,
|
| 2029 |
-
"learning_rate": 0.002398214285714286,
|
| 2030 |
-
"loss": 6.6659,
|
| 2031 |
-
"step": 337
|
| 2032 |
-
},
|
| 2033 |
-
{
|
| 2034 |
-
"epoch": 9.66,
|
| 2035 |
-
"learning_rate": 0.0023964285714285715,
|
| 2036 |
-
"loss": 6.7422,
|
| 2037 |
-
"step": 338
|
| 2038 |
-
},
|
| 2039 |
-
{
|
| 2040 |
-
"epoch": 9.69,
|
| 2041 |
-
"learning_rate": 0.0023946428571428573,
|
| 2042 |
-
"loss": 6.7852,
|
| 2043 |
-
"step": 339
|
| 2044 |
-
},
|
| 2045 |
-
{
|
| 2046 |
-
"epoch": 9.71,
|
| 2047 |
-
"learning_rate": 0.002392857142857143,
|
| 2048 |
-
"loss": 6.6828,
|
| 2049 |
-
"step": 340
|
| 2050 |
-
},
|
| 2051 |
-
{
|
| 2052 |
-
"epoch": 9.74,
|
| 2053 |
-
"learning_rate": 0.0023910714285714286,
|
| 2054 |
-
"loss": 6.686,
|
| 2055 |
-
"step": 341
|
| 2056 |
-
},
|
| 2057 |
-
{
|
| 2058 |
-
"epoch": 9.77,
|
| 2059 |
-
"learning_rate": 0.002389285714285714,
|
| 2060 |
-
"loss": 6.7326,
|
| 2061 |
-
"step": 342
|
| 2062 |
-
},
|
| 2063 |
-
{
|
| 2064 |
-
"epoch": 9.8,
|
| 2065 |
-
"learning_rate": 0.0023875,
|
| 2066 |
-
"loss": 6.5601,
|
| 2067 |
-
"step": 343
|
| 2068 |
-
},
|
| 2069 |
-
{
|
| 2070 |
-
"epoch": 9.83,
|
| 2071 |
-
"learning_rate": 0.0023857142857142857,
|
| 2072 |
-
"loss": 6.6646,
|
| 2073 |
-
"step": 344
|
| 2074 |
-
},
|
| 2075 |
-
{
|
| 2076 |
-
"epoch": 9.86,
|
| 2077 |
-
"learning_rate": 0.002383928571428571,
|
| 2078 |
-
"loss": 6.5673,
|
| 2079 |
-
"step": 345
|
| 2080 |
-
},
|
| 2081 |
-
{
|
| 2082 |
-
"epoch": 9.89,
|
| 2083 |
-
"learning_rate": 0.002382142857142857,
|
| 2084 |
-
"loss": 6.6227,
|
| 2085 |
-
"step": 346
|
| 2086 |
-
},
|
| 2087 |
-
{
|
| 2088 |
-
"epoch": 9.91,
|
| 2089 |
-
"learning_rate": 0.002380357142857143,
|
| 2090 |
-
"loss": 6.5526,
|
| 2091 |
-
"step": 347
|
| 2092 |
-
},
|
| 2093 |
-
{
|
| 2094 |
-
"epoch": 9.94,
|
| 2095 |
-
"learning_rate": 0.0023785714285714287,
|
| 2096 |
-
"loss": 6.6842,
|
| 2097 |
-
"step": 348
|
| 2098 |
-
},
|
| 2099 |
-
{
|
| 2100 |
-
"epoch": 9.97,
|
| 2101 |
-
"learning_rate": 0.002376785714285714,
|
| 2102 |
-
"loss": 6.6211,
|
| 2103 |
-
"step": 349
|
| 2104 |
-
},
|
| 2105 |
-
{
|
| 2106 |
-
"epoch": 10.0,
|
| 2107 |
-
"learning_rate": 0.002375,
|
| 2108 |
-
"loss": 6.6952,
|
| 2109 |
-
"step": 350
|
| 2110 |
-
},
|
| 2111 |
-
{
|
| 2112 |
-
"epoch": 10.03,
|
| 2113 |
-
"learning_rate": 0.002373214285714286,
|
| 2114 |
-
"loss": 6.5324,
|
| 2115 |
-
"step": 351
|
| 2116 |
-
},
|
| 2117 |
-
{
|
| 2118 |
-
"epoch": 10.06,
|
| 2119 |
-
"learning_rate": 0.002371428571428571,
|
| 2120 |
-
"loss": 6.5792,
|
| 2121 |
-
"step": 352
|
| 2122 |
-
},
|
| 2123 |
-
{
|
| 2124 |
-
"epoch": 10.09,
|
| 2125 |
-
"learning_rate": 0.002369642857142857,
|
| 2126 |
-
"loss": 6.5276,
|
| 2127 |
-
"step": 353
|
| 2128 |
-
},
|
| 2129 |
-
{
|
| 2130 |
-
"epoch": 10.11,
|
| 2131 |
-
"learning_rate": 0.002367857142857143,
|
| 2132 |
-
"loss": 6.5634,
|
| 2133 |
-
"step": 354
|
| 2134 |
-
},
|
| 2135 |
-
{
|
| 2136 |
-
"epoch": 10.14,
|
| 2137 |
-
"learning_rate": 0.0023660714285714288,
|
| 2138 |
-
"loss": 6.5385,
|
| 2139 |
-
"step": 355
|
| 2140 |
-
},
|
| 2141 |
-
{
|
| 2142 |
-
"epoch": 10.17,
|
| 2143 |
-
"learning_rate": 0.002364285714285714,
|
| 2144 |
-
"loss": 6.4516,
|
| 2145 |
-
"step": 356
|
| 2146 |
-
},
|
| 2147 |
-
{
|
| 2148 |
-
"epoch": 10.2,
|
| 2149 |
-
"learning_rate": 0.0023625,
|
| 2150 |
-
"loss": 6.5641,
|
| 2151 |
-
"step": 357
|
| 2152 |
-
},
|
| 2153 |
-
{
|
| 2154 |
-
"epoch": 10.23,
|
| 2155 |
-
"learning_rate": 0.002360714285714286,
|
| 2156 |
-
"loss": 6.5001,
|
| 2157 |
-
"step": 358
|
| 2158 |
-
},
|
| 2159 |
-
{
|
| 2160 |
-
"epoch": 10.26,
|
| 2161 |
-
"learning_rate": 0.0023589285714285713,
|
| 2162 |
-
"loss": 6.4846,
|
| 2163 |
-
"step": 359
|
| 2164 |
-
},
|
| 2165 |
-
{
|
| 2166 |
-
"epoch": 10.29,
|
| 2167 |
-
"learning_rate": 0.002357142857142857,
|
| 2168 |
-
"loss": 6.4638,
|
| 2169 |
-
"step": 360
|
| 2170 |
-
},
|
| 2171 |
-
{
|
| 2172 |
-
"epoch": 10.31,
|
| 2173 |
-
"learning_rate": 0.002355357142857143,
|
| 2174 |
-
"loss": 6.5217,
|
| 2175 |
-
"step": 361
|
| 2176 |
-
},
|
| 2177 |
-
{
|
| 2178 |
-
"epoch": 10.34,
|
| 2179 |
-
"learning_rate": 0.0023535714285714284,
|
| 2180 |
-
"loss": 6.5444,
|
| 2181 |
-
"step": 362
|
| 2182 |
-
},
|
| 2183 |
-
{
|
| 2184 |
-
"epoch": 10.37,
|
| 2185 |
-
"learning_rate": 0.0023517857142857142,
|
| 2186 |
-
"loss": 6.496,
|
| 2187 |
-
"step": 363
|
| 2188 |
-
},
|
| 2189 |
-
{
|
| 2190 |
-
"epoch": 10.4,
|
| 2191 |
-
"learning_rate": 0.00235,
|
| 2192 |
-
"loss": 6.5345,
|
| 2193 |
-
"step": 364
|
| 2194 |
-
},
|
| 2195 |
-
{
|
| 2196 |
-
"epoch": 10.43,
|
| 2197 |
-
"learning_rate": 0.002348214285714286,
|
| 2198 |
-
"loss": 6.4732,
|
| 2199 |
-
"step": 365
|
| 2200 |
-
},
|
| 2201 |
-
{
|
| 2202 |
-
"epoch": 10.46,
|
| 2203 |
-
"learning_rate": 0.0023464285714285714,
|
| 2204 |
-
"loss": 6.4765,
|
| 2205 |
-
"step": 366
|
| 2206 |
-
},
|
| 2207 |
-
{
|
| 2208 |
-
"epoch": 10.49,
|
| 2209 |
-
"learning_rate": 0.002344642857142857,
|
| 2210 |
-
"loss": 6.3881,
|
| 2211 |
-
"step": 367
|
| 2212 |
-
},
|
| 2213 |
-
{
|
| 2214 |
-
"epoch": 10.51,
|
| 2215 |
-
"learning_rate": 0.002342857142857143,
|
| 2216 |
-
"loss": 6.4908,
|
| 2217 |
-
"step": 368
|
| 2218 |
-
},
|
| 2219 |
-
{
|
| 2220 |
-
"epoch": 10.54,
|
| 2221 |
-
"learning_rate": 0.0023410714285714285,
|
| 2222 |
-
"loss": 6.4593,
|
| 2223 |
-
"step": 369
|
| 2224 |
-
},
|
| 2225 |
-
{
|
| 2226 |
-
"epoch": 10.57,
|
| 2227 |
-
"learning_rate": 0.0023392857142857143,
|
| 2228 |
-
"loss": 6.5006,
|
| 2229 |
-
"step": 370
|
| 2230 |
-
},
|
| 2231 |
-
{
|
| 2232 |
-
"epoch": 10.6,
|
| 2233 |
-
"learning_rate": 0.0023375,
|
| 2234 |
-
"loss": 6.4495,
|
| 2235 |
-
"step": 371
|
| 2236 |
-
},
|
| 2237 |
-
{
|
| 2238 |
-
"epoch": 10.63,
|
| 2239 |
-
"learning_rate": 0.0023357142857142856,
|
| 2240 |
-
"loss": 6.3569,
|
| 2241 |
-
"step": 372
|
| 2242 |
-
},
|
| 2243 |
-
{
|
| 2244 |
-
"epoch": 10.66,
|
| 2245 |
-
"learning_rate": 0.0023339285714285714,
|
| 2246 |
-
"loss": 6.3592,
|
| 2247 |
-
"step": 373
|
| 2248 |
-
},
|
| 2249 |
-
{
|
| 2250 |
-
"epoch": 10.69,
|
| 2251 |
-
"learning_rate": 0.0023321428571428573,
|
| 2252 |
-
"loss": 6.3258,
|
| 2253 |
-
"step": 374
|
| 2254 |
-
},
|
| 2255 |
-
{
|
| 2256 |
-
"epoch": 10.71,
|
| 2257 |
-
"learning_rate": 0.002330357142857143,
|
| 2258 |
-
"loss": 6.3216,
|
| 2259 |
-
"step": 375
|
| 2260 |
-
},
|
| 2261 |
-
{
|
| 2262 |
-
"epoch": 10.74,
|
| 2263 |
-
"learning_rate": 0.0023285714285714285,
|
| 2264 |
-
"loss": 6.4878,
|
| 2265 |
-
"step": 376
|
| 2266 |
-
},
|
| 2267 |
-
{
|
| 2268 |
-
"epoch": 10.77,
|
| 2269 |
-
"learning_rate": 0.0023267857142857144,
|
| 2270 |
-
"loss": 6.3412,
|
| 2271 |
-
"step": 377
|
| 2272 |
-
},
|
| 2273 |
-
{
|
| 2274 |
-
"epoch": 10.8,
|
| 2275 |
-
"learning_rate": 0.0023250000000000002,
|
| 2276 |
-
"loss": 6.3925,
|
| 2277 |
-
"step": 378
|
| 2278 |
-
},
|
| 2279 |
-
{
|
| 2280 |
-
"epoch": 10.83,
|
| 2281 |
-
"learning_rate": 0.0023232142857142857,
|
| 2282 |
-
"loss": 6.275,
|
| 2283 |
-
"step": 379
|
| 2284 |
-
},
|
| 2285 |
-
{
|
| 2286 |
-
"epoch": 10.86,
|
| 2287 |
-
"learning_rate": 0.0023214285714285715,
|
| 2288 |
-
"loss": 6.3575,
|
| 2289 |
-
"step": 380
|
| 2290 |
-
},
|
| 2291 |
-
{
|
| 2292 |
-
"epoch": 10.89,
|
| 2293 |
-
"learning_rate": 0.0023196428571428574,
|
| 2294 |
-
"loss": 6.3259,
|
| 2295 |
-
"step": 381
|
| 2296 |
-
},
|
| 2297 |
-
{
|
| 2298 |
-
"epoch": 10.91,
|
| 2299 |
-
"learning_rate": 0.002317857142857143,
|
| 2300 |
-
"loss": 6.315,
|
| 2301 |
-
"step": 382
|
| 2302 |
-
},
|
| 2303 |
-
{
|
| 2304 |
-
"epoch": 10.94,
|
| 2305 |
-
"learning_rate": 0.0023160714285714286,
|
| 2306 |
-
"loss": 6.277,
|
| 2307 |
-
"step": 383
|
| 2308 |
-
},
|
| 2309 |
-
{
|
| 2310 |
-
"epoch": 10.97,
|
| 2311 |
-
"learning_rate": 0.0023142857142857145,
|
| 2312 |
-
"loss": 6.3259,
|
| 2313 |
-
"step": 384
|
| 2314 |
-
},
|
| 2315 |
-
{
|
| 2316 |
-
"epoch": 11.0,
|
| 2317 |
-
"learning_rate": 0.0023125000000000003,
|
| 2318 |
-
"loss": 6.3747,
|
| 2319 |
-
"step": 385
|
| 2320 |
-
},
|
| 2321 |
-
{
|
| 2322 |
-
"epoch": 11.03,
|
| 2323 |
-
"learning_rate": 0.0023107142857142857,
|
| 2324 |
-
"loss": 6.3646,
|
| 2325 |
-
"step": 386
|
| 2326 |
-
},
|
| 2327 |
-
{
|
| 2328 |
-
"epoch": 11.06,
|
| 2329 |
-
"learning_rate": 0.0023089285714285716,
|
| 2330 |
-
"loss": 6.3687,
|
| 2331 |
-
"step": 387
|
| 2332 |
-
},
|
| 2333 |
-
{
|
| 2334 |
-
"epoch": 11.09,
|
| 2335 |
-
"learning_rate": 0.0023071428571428574,
|
| 2336 |
-
"loss": 6.3374,
|
| 2337 |
-
"step": 388
|
| 2338 |
-
},
|
| 2339 |
-
{
|
| 2340 |
-
"epoch": 11.11,
|
| 2341 |
-
"learning_rate": 0.002305357142857143,
|
| 2342 |
-
"loss": 6.3129,
|
| 2343 |
-
"step": 389
|
| 2344 |
-
},
|
| 2345 |
-
{
|
| 2346 |
-
"epoch": 11.14,
|
| 2347 |
-
"learning_rate": 0.0023035714285714287,
|
| 2348 |
-
"loss": 6.3425,
|
| 2349 |
-
"step": 390
|
| 2350 |
-
},
|
| 2351 |
-
{
|
| 2352 |
-
"epoch": 11.17,
|
| 2353 |
-
"learning_rate": 0.0023017857142857145,
|
| 2354 |
-
"loss": 6.2122,
|
| 2355 |
-
"step": 391
|
| 2356 |
-
},
|
| 2357 |
-
{
|
| 2358 |
-
"epoch": 11.2,
|
| 2359 |
-
"learning_rate": 0.0023000000000000004,
|
| 2360 |
-
"loss": 6.2768,
|
| 2361 |
-
"step": 392
|
| 2362 |
-
},
|
| 2363 |
-
{
|
| 2364 |
-
"epoch": 11.23,
|
| 2365 |
-
"learning_rate": 0.002298214285714286,
|
| 2366 |
-
"loss": 6.2853,
|
| 2367 |
-
"step": 393
|
| 2368 |
-
},
|
| 2369 |
-
{
|
| 2370 |
-
"epoch": 11.26,
|
| 2371 |
-
"learning_rate": 0.0022964285714285712,
|
| 2372 |
-
"loss": 6.3215,
|
| 2373 |
-
"step": 394
|
| 2374 |
-
},
|
| 2375 |
-
{
|
| 2376 |
-
"epoch": 11.29,
|
| 2377 |
-
"learning_rate": 0.002294642857142857,
|
| 2378 |
-
"loss": 6.3244,
|
| 2379 |
-
"step": 395
|
| 2380 |
-
},
|
| 2381 |
-
{
|
| 2382 |
-
"epoch": 11.31,
|
| 2383 |
-
"learning_rate": 0.002292857142857143,
|
| 2384 |
-
"loss": 6.2399,
|
| 2385 |
-
"step": 396
|
| 2386 |
-
},
|
| 2387 |
-
{
|
| 2388 |
-
"epoch": 11.34,
|
| 2389 |
-
"learning_rate": 0.0022910714285714283,
|
| 2390 |
-
"loss": 6.2457,
|
| 2391 |
-
"step": 397
|
| 2392 |
-
},
|
| 2393 |
-
{
|
| 2394 |
-
"epoch": 11.37,
|
| 2395 |
-
"learning_rate": 0.002289285714285714,
|
| 2396 |
-
"loss": 6.2018,
|
| 2397 |
-
"step": 398
|
| 2398 |
-
},
|
| 2399 |
-
{
|
| 2400 |
-
"epoch": 11.4,
|
| 2401 |
-
"learning_rate": 0.0022875,
|
| 2402 |
-
"loss": 6.2101,
|
| 2403 |
-
"step": 399
|
| 2404 |
-
},
|
| 2405 |
-
{
|
| 2406 |
-
"epoch": 11.43,
|
| 2407 |
-
"learning_rate": 0.0022857142857142855,
|
| 2408 |
-
"loss": 6.2257,
|
| 2409 |
-
"step": 400
|
| 2410 |
}
|
| 2411 |
],
|
| 2412 |
"logging_steps": 1,
|
| 2413 |
"max_steps": 1680,
|
| 2414 |
"num_train_epochs": 48,
|
| 2415 |
"save_steps": 100,
|
| 2416 |
-
"total_flos":
|
| 2417 |
"trial_name": null,
|
| 2418 |
"trial_params": null
|
| 2419 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"best_metric": null,
|
| 3 |
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 5.714285714285714,
|
| 5 |
"eval_steps": 500,
|
| 6 |
+
"global_step": 200,
|
| 7 |
"is_hyper_param_search": false,
|
| 8 |
"is_local_process_zero": true,
|
| 9 |
"is_world_process_zero": true,
|
|
|
|
| 1207 |
"learning_rate": 0.002642857142857143,
|
| 1208 |
"loss": 1.678,
|
| 1209 |
"step": 200
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1210 |
}
|
| 1211 |
],
|
| 1212 |
"logging_steps": 1,
|
| 1213 |
"max_steps": 1680,
|
| 1214 |
"num_train_epochs": 48,
|
| 1215 |
"save_steps": 100,
|
| 1216 |
+
"total_flos": 1.1559978611371008e+17,
|
| 1217 |
"trial_name": null,
|
| 1218 |
"trial_params": null
|
| 1219 |
}
|