MahaTTSv2 / T2S /stft.py
rasenganai
init
41bc8a8
# import torch
# import numpy as np
# import torch.nn.functional as F
# from torch.autograd import Variable
# from scipy.signal import get_window
# from librosa.util import pad_center, tiny
# from utilities import window_sumsquare
# class STFT(torch.nn.Module):
# """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
# def __init__(self, filter_length=800, hop_length=200, win_length=800,
# window='hann'):
# super(STFT, self).__init__()
# self.filter_length = filter_length
# self.hop_length = hop_length
# self.win_length = win_length
# self.window = window
# self.forward_transform = None
# scale = self.filter_length / self.hop_length
# fourier_basis = np.fft.fft(np.eye(self.filter_length))
# cutoff = int((self.filter_length / 2 + 1))
# fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
# np.imag(fourier_basis[:cutoff, :])])
# forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
# inverse_basis = torch.FloatTensor(
# np.linalg.pinv(scale * fourier_basis).T[:, None, :])
# if window is not None:
# assert(filter_length >= win_length)
# # get window and zero center pad it to filter_length
# fft_window = get_window(window, win_length, fftbins=True)
# fft_window = pad_center(fft_window, size = filter_length)
# fft_window = torch.from_numpy(fft_window).float()
# # window the bases
# forward_basis *= fft_window
# inverse_basis *= fft_window
# self.register_buffer('forward_basis', forward_basis.float())
# self.register_buffer('inverse_basis', inverse_basis.float())
# def transform(self, input_data):
# num_batches = input_data.size(0)
# num_samples = input_data.size(1)
# self.num_samples = num_samples
# # similar to librosa, reflect-pad the input
# input_data = input_data.view(num_batches, 1, num_samples)
# input_data = F.pad(
# input_data.unsqueeze(1),
# (int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
# mode='reflect')
# input_data = input_data.squeeze(1)
# forward_transform = F.conv1d(
# input_data,
# Variable(self.forward_basis, requires_grad=False),
# stride=self.hop_length,
# padding=0)
# cutoff = int((self.filter_length / 2) + 1)
# real_part = forward_transform[:, :cutoff, :]
# imag_part = forward_transform[:, cutoff:, :]
# magnitude = torch.sqrt(real_part**2 + imag_part**2)
# phase = torch.autograd.Variable(
# torch.atan2(imag_part.data, real_part.data))
# return magnitude, phase
# def inverse(self, magnitude, phase):
# recombine_magnitude_phase = torch.cat(
# [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)
# inverse_transform = F.conv_transpose1d(
# recombine_magnitude_phase,
# Variable(self.inverse_basis, requires_grad=False),
# stride=self.hop_length,
# padding=0)
# if self.window is not None:
# window_sum = window_sumsquare(
# self.window, magnitude.size(-1), hop_length=self.hop_length,
# win_length=self.win_length, n_fft=self.filter_length,
# dtype=np.float32)
# # remove modulation effects
# approx_nonzero_indices = torch.from_numpy(
# np.where(window_sum > tiny(window_sum))[0])
# window_sum = torch.autograd.Variable(
# torch.from_numpy(window_sum), requires_grad=False)
# window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum
# inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]
# # scale by hop ratio
# inverse_transform *= float(self.filter_length) / self.hop_length
# inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
# inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]
# return inverse_transform
# def forward(self, input_data):
# self.magnitude, self.phase = self.transform(input_data)
# reconstruction = self.inverse(self.magnitude, self.phase)
# return reconstruction