|
|
.. _custom_metal_kernels: |
|
|
|
|
|
Custom Metal Kernels |
|
|
==================== |
|
|
|
|
|
MLX supports writing custom Metal kernels through the Python and C++ APIs. |
|
|
|
|
|
Simple Example |
|
|
-------------- |
|
|
|
|
|
.. currentmodule:: mlx.core |
|
|
|
|
|
Let's write a custom kernel that computes ``exp`` elementwise: |
|
|
|
|
|
.. code-block:: python |
|
|
|
|
|
source = """ |
|
|
uint elem = thread_position_in_grid.x; |
|
|
T tmp = inp[elem]; |
|
|
out[elem] = metal::exp(tmp); |
|
|
""" |
|
|
|
|
|
kernel = mx.fast.metal_kernel( |
|
|
name="myexp", |
|
|
input_names=["inp"], |
|
|
output_names=["out"], |
|
|
source=source, |
|
|
) |
|
|
|
|
|
def exp_elementwise(a: mx.array): |
|
|
outputs = kernel( |
|
|
inputs=[a], |
|
|
template=[("T", mx.float32)], |
|
|
grid=(a.size, 1, 1), |
|
|
threadgroup=(256, 1, 1), |
|
|
output_shapes=[a.shape], |
|
|
output_dtypes=[a.dtype], |
|
|
) |
|
|
return outputs[0] |
|
|
|
|
|
a = mx.random.normal(shape=(4, 16)).astype(mx.float16) |
|
|
b = exp_elementwise(a) |
|
|
assert mx.allclose(b, mx.exp(a)) |
|
|
|
|
|
Every time you make a kernel, a new Metal library is created and possibly |
|
|
JIT compiled. To reduce the overhead from that, build the kernel once with |
|
|
:func:`fast.metal_kernel` and then use it many times. |
|
|
|
|
|
.. note:: |
|
|
Only pass the body of the Metal kernel in ``source``. The function |
|
|
signature is generated automatically. |
|
|
|
|
|
The full function signature will be generated using: |
|
|
|
|
|
* The shapes/dtypes of ``inputs`` |
|
|
In the above, ``a`` is an ``mx.array`` of type ``mx.float16`` and we pass it with the key ``inp`` |
|
|
so we will add ``const device float16_t* inp`` to the signature. |
|
|
``inp_shape``, ``inp_strides`` and ``inp_ndim`` are also added for convenience if they are present |
|
|
in ``source``. |
|
|
* The list of ``output_dtypes`` |
|
|
In the above, ``out`` is an ``mx.array`` of type ``mx.float16`` |
|
|
so we add ``device float16_t* out``. |
|
|
* Template parameters passed using ``template`` |
|
|
In the above, ``template=[("T", mx.float32)]`` adds a template of ``template <typename T>`` to the function |
|
|
and instantiates the template with ``custom_kernel_myexp_float<float>``. |
|
|
Template parameters can be ``mx.core.Dtype``, ``int`` or ``bool``. |
|
|
* Metal attributes used in ``source`` such as ``[[thread_position_in_grid]]`` |
|
|
These will be added as function arguments. |
|
|
All the attributes defined in Table 5.8 of the `Metal Shading Language Specification <https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf>`_ are supported. |
|
|
|
|
|
Putting this all together, the generated function signature for ``myexp`` is as follows: |
|
|
|
|
|
.. code-block:: cpp |
|
|
|
|
|
template <typename T> |
|
|
[[kernel]] void custom_kernel_myexp_float( |
|
|
const device float16_t* inp [[buffer(0)]], |
|
|
device float16_t* out [[buffer(1)]], |
|
|
uint3 thread_position_in_grid [[thread_position_in_grid]]) { |
|
|
|
|
|
uint elem = thread_position_in_grid.x; |
|
|
T tmp = inp[elem]; |
|
|
out[elem] = metal::exp(tmp); |
|
|
|
|
|
} |
|
|
|
|
|
template [[host_name("custom_kernel_myexp_float")]] [[kernel]] decltype(custom_kernel_myexp_float<float>) custom_kernel_myexp_float<float>; |
|
|
|
|
|
Note: ``grid`` and ``threadgroup`` are parameters to the Metal `dispatchThreads |
|
|
<https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/2866532-dispatchthreads>`_ |
|
|
function. This means we will launch ``mx.prod(grid)`` threads, subdivided into |
|
|
``threadgroup`` size threadgroups. For optimal performance, each thread group |
|
|
dimension should be less than or equal to the corresponding grid dimension. |
|
|
|
|
|
Passing ``verbose=True`` to :func:`ast.metal_kernel.__call__` will print the |
|
|
generated code for debugging purposes. |
|
|
|
|
|
Using Shape/Strides |
|
|
------------------- |
|
|
|
|
|
:func:`fast.metal_kernel` supports an argument ``ensure_row_contiguous`` which |
|
|
is ``True`` by default. This will copy the array inputs if needed |
|
|
before the kernel is launched to ensure that the memory layout is row |
|
|
contiguous. Generally this makes writing the kernel easier, since we don't |
|
|
have to worry about gaps or the ordering of the dims when indexing. |
|
|
|
|
|
If we want to avoid this copy, :func:`fast.metal_kernel` automatically passes |
|
|
``a_shape``, ``a_strides`` and ``a_ndim`` for each input array ``a`` if any are |
|
|
present in ``source``. We can then use MLX's built in indexing utils to fetch |
|
|
the right elements for each thread. |
|
|
|
|
|
Let's convert ``myexp`` above to support arbitrarily strided arrays without |
|
|
relying on a copy from ``ensure_row_contiguous``: |
|
|
|
|
|
.. code-block:: python |
|
|
|
|
|
source = """ |
|
|
uint elem = thread_position_in_grid.x; |
|
|
// Utils from `mlx/backend/metal/kernels/utils.h` are automatically included |
|
|
uint loc = elem_to_loc(elem, inp_shape, inp_strides, inp_ndim); |
|
|
T tmp = inp[loc]; |
|
|
// Output arrays are always row contiguous |
|
|
out[elem] = metal::exp(tmp); |
|
|
""" |
|
|
|
|
|
kernel = mx.fast.metal_kernel( |
|
|
name="myexp_strided", |
|
|
input_names=["inp"], |
|
|
output_names=["out"], |
|
|
source=source, |
|
|
ensure_row_contiguous=False, |
|
|
) |
|
|
|
|
|
def exp_elementwise(a: mx.array): |
|
|
outputs = kernel( |
|
|
inputs=[a], |
|
|
template=[("T", mx.float32)], |
|
|
grid=(a.size, 1, 1), |
|
|
threadgroup=(256, 1, 1), |
|
|
output_shapes=[a.shape], |
|
|
output_dtypes=[a.dtype], |
|
|
) |
|
|
return outputs[0] |
|
|
|
|
|
a = mx.random.normal(shape=(4, 16)).astype(mx.float16) |
|
|
|
|
|
a = a[::2] |
|
|
b = exp_elementwise(a) |
|
|
assert mx.allclose(b, mx.exp(a)) |
|
|
|
|
|
Complex Example |
|
|
----------------------------- |
|
|
|
|
|
Let's implement a more complex example: ``grid_sample`` in ``"bilinear"`` mode. |
|
|
|
|
|
We'll start with the following MLX implementation using standard ops: |
|
|
|
|
|
.. code-block:: python |
|
|
|
|
|
def grid_sample_ref(x, grid): |
|
|
N, H_in, W_in, _ = x.shape |
|
|
ix = ((grid[..., 0] + 1) * W_in - 1) / 2 |
|
|
iy = ((grid[..., 1] + 1) * H_in - 1) / 2 |
|
|
|
|
|
ix_nw = mx.floor(ix).astype(mx.int32) |
|
|
iy_nw = mx.floor(iy).astype(mx.int32) |
|
|
|
|
|
ix_ne = ix_nw + 1 |
|
|
iy_ne = iy_nw |
|
|
|
|
|
ix_sw = ix_nw |
|
|
iy_sw = iy_nw + 1 |
|
|
|
|
|
ix_se = ix_nw + 1 |
|
|
iy_se = iy_nw + 1 |
|
|
|
|
|
nw = (ix_se - ix) * (iy_se - iy) |
|
|
ne = (ix - ix_sw) * (iy_sw - iy) |
|
|
sw = (ix_ne - ix) * (iy - iy_ne) |
|
|
se = (ix - ix_nw) * (iy - iy_nw) |
|
|
|
|
|
I_nw = x[mx.arange(N)[:, None, None], iy_nw, ix_nw, :] |
|
|
I_ne = x[mx.arange(N)[:, None, None], iy_ne, ix_ne, :] |
|
|
I_sw = x[mx.arange(N)[:, None, None], iy_sw, ix_sw, :] |
|
|
I_se = x[mx.arange(N)[:, None, None], iy_se, ix_se, :] |
|
|
|
|
|
mask_nw = (iy_nw >= 0) & (iy_nw <= H_in - 1) & (ix_nw >= 0) & (ix_nw <= W_in - 1) |
|
|
mask_ne = (iy_ne >= 0) & (iy_ne <= H_in - 1) & (ix_ne >= 0) & (ix_ne <= W_in - 1) |
|
|
mask_sw = (iy_sw >= 0) & (iy_sw <= H_in - 1) & (ix_sw >= 0) & (ix_sw <= W_in - 1) |
|
|
mask_se = (iy_se >= 0) & (iy_se <= H_in - 1) & (ix_se >= 0) & (ix_se <= W_in - 1) |
|
|
|
|
|
I_nw *= mask_nw[..., None] |
|
|
I_ne *= mask_ne[..., None] |
|
|
I_sw *= mask_sw[..., None] |
|
|
I_se *= mask_se[..., None] |
|
|
|
|
|
output = nw[..., None] * I_nw + ne[..., None] * I_ne + sw[..., None] * I_sw + se[..., None] * I_se |
|
|
|
|
|
return output |
|
|
|
|
|
Now let's use :func:`custom_function` together with :func:`fast.metal_kernel` |
|
|
to write a fast GPU kernel for both the forward and backward passes. |
|
|
|
|
|
First we'll implement the forward pass as a fused kernel: |
|
|
|
|
|
.. code-block:: python |
|
|
|
|
|
source = """ |
|
|
uint elem = thread_position_in_grid.x; |
|
|
int H = x_shape[1]; |
|
|
int W = x_shape[2]; |
|
|
int C = x_shape[3]; |
|
|
int gH = grid_shape[1]; |
|
|
int gW = grid_shape[2]; |
|
|
|
|
|
int w_stride = C; |
|
|
int h_stride = W * w_stride; |
|
|
int b_stride = H * h_stride; |
|
|
|
|
|
uint grid_idx = elem / C * 2; |
|
|
float ix = ((grid[grid_idx] + 1) * W - 1) / 2; |
|
|
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2; |
|
|
|
|
|
int ix_nw = floor(ix); |
|
|
int iy_nw = floor(iy); |
|
|
|
|
|
int ix_ne = ix_nw + 1; |
|
|
int iy_ne = iy_nw; |
|
|
|
|
|
int ix_sw = ix_nw; |
|
|
int iy_sw = iy_nw + 1; |
|
|
|
|
|
int ix_se = ix_nw + 1; |
|
|
int iy_se = iy_nw + 1; |
|
|
|
|
|
T nw = (ix_se - ix) * (iy_se - iy); |
|
|
T ne = (ix - ix_sw) * (iy_sw - iy); |
|
|
T sw = (ix_ne - ix) * (iy - iy_ne); |
|
|
T se = (ix - ix_nw) * (iy - iy_nw); |
|
|
|
|
|
int batch_idx = elem / C / gH / gW * b_stride; |
|
|
int channel_idx = elem % C; |
|
|
int base_idx = batch_idx + channel_idx; |
|
|
|
|
|
T I_nw = x[base_idx + iy_nw * h_stride + ix_nw * w_stride]; |
|
|
T I_ne = x[base_idx + iy_ne * h_stride + ix_ne * w_stride]; |
|
|
T I_sw = x[base_idx + iy_sw * h_stride + ix_sw * w_stride]; |
|
|
T I_se = x[base_idx + iy_se * h_stride + ix_se * w_stride]; |
|
|
|
|
|
I_nw = iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1 ? I_nw : 0; |
|
|
I_ne = iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1 ? I_ne : 0; |
|
|
I_sw = iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1 ? I_sw : 0; |
|
|
I_se = iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1 ? I_se : 0; |
|
|
|
|
|
out[elem] = nw * I_nw + ne * I_ne + sw * I_sw + se * I_se; |
|
|
""" |
|
|
|
|
|
kernel = mx.fast.metal_kernel( |
|
|
name="grid_sample", |
|
|
input_names=["x", "grid"], |
|
|
output_names=["out"], |
|
|
source=source, |
|
|
) |
|
|
|
|
|
@mx.custom_function |
|
|
def grid_sample(x, grid): |
|
|
|
|
|
assert x.ndim == 4, "`x` must be 4D." |
|
|
assert grid.ndim == 4, "`grid` must be 4D." |
|
|
|
|
|
B, _, _, C = x.shape |
|
|
_, gN, gM, D = grid.shape |
|
|
out_shape = (B, gN, gM, C) |
|
|
|
|
|
assert D == 2, "Last dim of `grid` must be size 2." |
|
|
|
|
|
outputs = kernel( |
|
|
inputs=[x, grid], |
|
|
template=[("T", x.dtype)], |
|
|
output_shapes=[out_shape], |
|
|
output_dtypes=[x.dtype], |
|
|
grid=(np.prod(out_shape), 1, 1), |
|
|
threadgroup=(256, 1, 1), |
|
|
) |
|
|
return outputs[0] |
|
|
|
|
|
For a reasonably sized input such as: |
|
|
|
|
|
.. code-block:: python |
|
|
|
|
|
x.shape = (8, 1024, 1024, 64) |
|
|
grid.shape = (8, 256, 256, 2) |
|
|
|
|
|
On an M1 Max, we see a big performance improvement: |
|
|
|
|
|
``55.7ms -> 6.7ms => 8x speed up`` |
|
|
|
|
|
Grid Sample VJP |
|
|
--------------- |
|
|
|
|
|
Since we decorated ``grid_sample`` with :func:`custom_function`, we can now |
|
|
define its custom vjp transform so MLX can differentiate it. |
|
|
|
|
|
The backwards pass requires atomically updating ``x_grad``/``grid_grad`` and so |
|
|
requires a few extra :func:`fast.metal_kernel` features: |
|
|
|
|
|
* ``init_value=0`` |
|
|
Initialize all of the kernel's outputs to this value before it runs. This allows us to update only part of the output arrays with the kernel. |
|
|
|
|
|
* ``atomic_outputs=True`` |
|
|
Designate all of the kernel outputs as ``atomic`` in the function signature. |
|
|
This means we can use Metal's ``atomic`` features to simultaneously update the ``x_grad`` and ``grid_grad`` arrays from multiple threadgroups. |
|
|
See section 6.15 of the `Metal Shading Language Specification <https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf>`_ for more details. |
|
|
|
|
|
We can then implement the backwards pass as follows: |
|
|
|
|
|
.. code-block:: python |
|
|
|
|
|
source = """ |
|
|
uint elem = thread_position_in_grid.x; |
|
|
int H = x_shape[1]; |
|
|
int W = x_shape[2]; |
|
|
int C = x_shape[3]; |
|
|
// Pad C to the nearest larger simdgroup size multiple |
|
|
int C_padded = ceildiv(C, threads_per_simdgroup) * threads_per_simdgroup; |
|
|
|
|
|
int gH = grid_shape[1]; |
|
|
int gW = grid_shape[2]; |
|
|
|
|
|
int w_stride = C; |
|
|
int h_stride = W * w_stride; |
|
|
int b_stride = H * h_stride; |
|
|
|
|
|
uint grid_idx = elem / C_padded * 2; |
|
|
float ix = ((grid[grid_idx] + 1) * W - 1) / 2; |
|
|
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2; |
|
|
|
|
|
int ix_nw = floor(ix); |
|
|
int iy_nw = floor(iy); |
|
|
|
|
|
int ix_ne = ix_nw + 1; |
|
|
int iy_ne = iy_nw; |
|
|
|
|
|
int ix_sw = ix_nw; |
|
|
int iy_sw = iy_nw + 1; |
|
|
|
|
|
int ix_se = ix_nw + 1; |
|
|
int iy_se = iy_nw + 1; |
|
|
|
|
|
T nw = (ix_se - ix) * (iy_se - iy); |
|
|
T ne = (ix - ix_sw) * (iy_sw - iy); |
|
|
T sw = (ix_ne - ix) * (iy - iy_ne); |
|
|
T se = (ix - ix_nw) * (iy - iy_nw); |
|
|
|
|
|
int batch_idx = elem / C_padded / gH / gW * b_stride; |
|
|
int channel_idx = elem % C_padded; |
|
|
int base_idx = batch_idx + channel_idx; |
|
|
|
|
|
T gix = T(0); |
|
|
T giy = T(0); |
|
|
if (channel_idx < C) { |
|
|
int cot_index = elem / C_padded * C + channel_idx; |
|
|
T cot = cotangent[cot_index]; |
|
|
if (iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1) { |
|
|
int offset = base_idx + iy_nw * h_stride + ix_nw * w_stride; |
|
|
atomic_fetch_add_explicit(&x_grad[offset], nw * cot, memory_order_relaxed); |
|
|
|
|
|
T I_nw = x[offset]; |
|
|
gix -= I_nw * (iy_se - iy) * cot; |
|
|
giy -= I_nw * (ix_se - ix) * cot; |
|
|
} |
|
|
if (iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1) { |
|
|
int offset = base_idx + iy_ne * h_stride + ix_ne * w_stride; |
|
|
atomic_fetch_add_explicit(&x_grad[offset], ne * cot, memory_order_relaxed); |
|
|
|
|
|
T I_ne = x[offset]; |
|
|
gix += I_ne * (iy_sw - iy) * cot; |
|
|
giy -= I_ne * (ix - ix_sw) * cot; |
|
|
} |
|
|
if (iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1) { |
|
|
int offset = base_idx + iy_sw * h_stride + ix_sw * w_stride; |
|
|
atomic_fetch_add_explicit(&x_grad[offset], sw * cot, memory_order_relaxed); |
|
|
|
|
|
T I_sw = x[offset]; |
|
|
gix -= I_sw * (iy - iy_ne) * cot; |
|
|
giy += I_sw * (ix_ne - ix) * cot; |
|
|
} |
|
|
if (iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1) { |
|
|
int offset = base_idx + iy_se * h_stride + ix_se * w_stride; |
|
|
atomic_fetch_add_explicit(&x_grad[offset], se * cot, memory_order_relaxed); |
|
|
|
|
|
T I_se = x[offset]; |
|
|
gix += I_se * (iy - iy_nw) * cot; |
|
|
giy += I_se * (ix - ix_nw) * cot; |
|
|
} |
|
|
} |
|
|
|
|
|
T gix_mult = W / 2; |
|
|
T giy_mult = H / 2; |
|
|
|
|
|
// Reduce across each simdgroup first. |
|
|
// This is much faster than relying purely on atomics. |
|
|
gix = simd_sum(gix); |
|
|
giy = simd_sum(giy); |
|
|
|
|
|
if (thread_index_in_simdgroup == 0) { |
|
|
atomic_fetch_add_explicit(&grid_grad[grid_idx], gix * gix_mult, memory_order_relaxed); |
|
|
atomic_fetch_add_explicit(&grid_grad[grid_idx + 1], giy * giy_mult, memory_order_relaxed); |
|
|
} |
|
|
""" |
|
|
kernel = mx.fast.metal_kernel( |
|
|
name="grid_sample_grad", |
|
|
input_names=["x", "grid", "cotangent"], |
|
|
output_names=["x_grad", "grid_grad"], |
|
|
source=source, |
|
|
atomic_outputs=True, |
|
|
) |
|
|
|
|
|
@grid_sample.vjp |
|
|
def grid_sample_vjp(primals, cotangent, _): |
|
|
x, grid = primals |
|
|
B, _, _, C = x.shape |
|
|
_, gN, gM, D = grid.shape |
|
|
|
|
|
assert D == 2, "Last dim of `grid` must be size 2." |
|
|
|
|
|
|
|
|
|
|
|
simdgroup_size = 32 |
|
|
C_padded = (C + simdgroup_size - 1) // simdgroup_size * simdgroup_size |
|
|
grid_size = B * gN * gM * C_padded |
|
|
outputs = kernel( |
|
|
inputs=[x, grid, cotangent], |
|
|
template=[("T", x.dtype)], |
|
|
output_shapes=[x.shape, grid.shape], |
|
|
output_dtypes=[x.dtype, x.dtype], |
|
|
grid=(grid_size, 1, 1), |
|
|
threadgroup=(256, 1, 1), |
|
|
init_value=0, |
|
|
) |
|
|
return outputs[0], outputs[1] |
|
|
|
|
|
There's an even larger speed up for the vjp: |
|
|
|
|
|
``676.4ms -> 16.7ms => 40x speed up`` |
|
|
|