File size: 5,312 Bytes
a6dd040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright (c) Chris Choy (chrischoy@ai.stanford.edu).
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
# of the Software, and to permit persons to whom the Software is furnished to do
# so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Please cite "4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural
# Networks", CVPR'19 (https://arxiv.org/abs/1904.08755) if you use any part
# of the code.
import unittest
import torch
import torch.nn as nn

import MinkowskiEngine as ME
from MinkowskiEngine import (
    SparseTensor,
    MinkowskiConvolution,
    MinkowskiConvolutionTranspose,
    MinkowskiBatchNorm,
    MinkowskiReLU,
)
from MinkowskiOps import (
    MinkowskiToSparseTensor,
    to_sparse,
    dense_coordinates,
    MinkowskiToDenseTensor,
)


class TestDense(unittest.TestCase):
    def test(self):
        print(f"{self.__class__.__name__}: test_dense")
        in_channels, out_channels, D = 2, 3, 2
        coords1 = torch.IntTensor([[0, 0], [0, 1], [1, 1]])
        feats1 = torch.DoubleTensor([[1, 2], [3, 4], [5, 6]])

        coords2 = torch.IntTensor([[1, 1], [1, 2], [2, 1]])
        feats2 = torch.DoubleTensor([[7, 8], [9, 10], [11, 12]])
        coords, feats = ME.utils.sparse_collate([coords1, coords2], [feats1, feats2])
        input = SparseTensor(feats, coords)
        input.requires_grad_()
        dinput, min_coord, tensor_stride = input.dense()
        self.assertTrue(dinput[0, 0, 0, 1] == 3)
        self.assertTrue(dinput[0, 1, 0, 1] == 4)
        self.assertTrue(dinput[0, 0, 1, 1] == 5)
        self.assertTrue(dinput[0, 1, 1, 1] == 6)

        self.assertTrue(dinput[1, 0, 1, 1] == 7)
        self.assertTrue(dinput[1, 1, 1, 1] == 8)
        self.assertTrue(dinput[1, 0, 2, 1] == 11)
        self.assertTrue(dinput[1, 1, 2, 1] == 12)

        # Initialize context
        conv = MinkowskiConvolution(
            in_channels, out_channels, kernel_size=3, stride=2, bias=True, dimension=D,
        )
        conv = conv.double()
        output = conv(input)
        print(input.C, output.C)

        # Convert to a dense tensor
        dense_output, min_coord, tensor_stride = output.dense()
        print(dense_output.shape)
        print(dense_output)
        print(min_coord)
        print(tensor_stride)

        dense_output, min_coord, tensor_stride = output.dense(
            min_coordinate=torch.IntTensor([-2, -2])
        )

        print(dense_output)
        print(min_coord)
        print(tensor_stride)

        print(feats.grad)

        loss = dense_output.sum()
        loss.backward()

        print(feats.grad)

    def test_empty(self):
        x = torch.zeros(4, 1, 34, 34)
        to_dense = ME.MinkowskiToDenseTensor(x.shape)

        # Convert to sparse data
        sparse_data = ME.to_sparse(x)
        dense_data = to_dense(sparse_data)

        self.assertEqual(dense_data.shape, x.shape)


class TestDenseToSparse(unittest.TestCase):
    def test(self):
        dense_tensor = torch.rand(3, 4, 5, 6)
        sparse_tensor = to_sparse(dense_tensor)
        self.assertEqual(len(sparse_tensor), 3 * 5 * 6)
        self.assertEqual(sparse_tensor.F.size(1), 4)

    def test_format(self):
        dense_tensor = torch.rand(3, 4, 5, 6)
        sparse_tensor = to_sparse(dense_tensor, format="BXXC")
        self.assertEqual(len(sparse_tensor), 3 * 4 * 5)
        self.assertEqual(sparse_tensor.F.size(1), 6)

    def test_network(self):
        dense_tensor = torch.rand(3, 4, 11, 11, 11, 11)  # BxCxD1xD2x....xDN
        dense_tensor.requires_grad = True

        # Since the shape is fixed, cache the coordinates for faster inference
        coordinates = dense_coordinates(dense_tensor.shape)

        network = nn.Sequential(
            # Add layers that can be applied on a regular pytorch tensor
            nn.ReLU(),
            MinkowskiToSparseTensor(remove_zeros=False, coordinates=coordinates),
            MinkowskiConvolution(4, 5, stride=2, kernel_size=3, dimension=4),
            MinkowskiBatchNorm(5),
            MinkowskiReLU(),
            MinkowskiConvolutionTranspose(5, 6, stride=2, kernel_size=3, dimension=4),
            MinkowskiToDenseTensor(
                dense_tensor.shape
            ),  # must have the same tensor stride.
        )

        for i in range(5):
            print(f"Iteration: {i}")
            output = network(dense_tensor)
            output.sum().backward()

        assert dense_tensor.grad is not None