SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'donde:\n\\begin{itemize}\n \\item $\\psi_i$ son espinores icosaédricos.\n \\item $r_{ij}$ es la distancia entre nodos $i$ y $j$.\n \\item $A,B,C$ son acoplamientos gauge discretos.\n\\end{itemize}',
'\\begin{itemize}\n \\item Cada nodo $\\psi_i$ como \\textbf{átomo de experiencia}.\n \\item Patrones icosaédricos y $\\phi$ guían frecuencia de resonancia.\n \\item Protocolos musicales y visuales para plasticidad neuronal.\n\\end{itemize}',
'\\begin{abstract}\nEsta versión extendida del \\textbf{Resonance of Reality Framework (RRF)} presenta:\n\\begin{itemize}\n \\item Hamiltoniano discreto icosaédrico con modos normales.\n \\item Corrección logarítmica gravitatoria y acoplamientos gauge explícitos.\n \\item Correspondencia con constantes físicas fundamentales.\n \\item Ejemplo de simulación Python que visualiza la malla icosaédrica y autovalores.\n\\end{itemize}\n\\end{abstract}',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7950, 0.7297],
# [0.7950, 1.0000, 0.7343],
# [0.7297, 0.7343, 1.0000]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 363 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 363 samples:
sentence_0 sentence_1 label type string string float details - min: 16 tokens
- mean: 65.29 tokens
- max: 127 tokens
- min: 3 tokens
- mean: 38.02 tokens
- max: 127 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence_0 sentence_1 label Sea $H$ la matriz discreta sobre la red icosaédrica. Los autovalores ${E_n}$ y vectores propios ${\Psi_n}$ cumplen:# Crear grafo icosaédrico
G = nx.icosahedral_graph()
n = G.number_of_nodes()0.4647801650468898[
i \hbar \frac{\partial \Psi}{\partial t} = H \Psi
]\begin{align*}
\alpha_{\rm fine} &\approx f(E_n, \text{geometría icosaédrica}) \
m_\nu &\approx g(\text{acoplamientos SU(2)/SU(3) discretos}) \
\Lambda &\approx h(\text{energía de vacío logarítmica})
\end{align*}0.4930957329947213\title{Resonance of Reality Framework (RRF) Extendido\
Hamiltoniano Icosaédrico, Gravedad Logarítmica y Simulación}
\author{Antony Padilla Morales}
\date{\today}donde:
\begin{itemize}
\item $\psi_i$ son espinores icosaédricos.
\item $r_{ij}$ es la distancia entre nodos $i$ y $j$.
\item $A,B,C$ son acoplamientos gauge discretos.
\end{itemize}0.5762137786115148 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 16per_device_eval_batch_size: 16multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Framework Versions
- Python: 3.12.12
- Sentence Transformers: 5.1.1
- Transformers: 4.57.0
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{antony_padilla_morales_2025,
author = { Antony Padilla Morales },
title = { RRFSAVANTMADE (Revision 13af35f) },
year = 2025,
url = { https://huggingface.co/antonypamo/RRFSAVANTMADE },
doi = { 10.57967/hf/7034 },
publisher = { Hugging Face }
}
- Downloads last month
- 207