ZK-DeepSeek / inference /kernel.py
asd52403's picture
init commit
da67f74
from typing import Tuple
import math
import random
import torch
import ctypes
import triton
import triton.language as tl
from triton import Config
@triton.jit
def act_quant_kernel(x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr):
"""
Quantizes the input tensor `x_ptr` and stores the result in `y_ptr` and the scaling factor in `s_ptr`.
Args:
x_ptr (triton.Pointer): Pointer to the input tensor.
y_ptr (triton.Pointer): Pointer to the output tensor where quantized values will be stored.
s_ptr (triton.Pointer): Pointer to the output tensor where scaling factors will be stored.
BLOCK_SIZE (tl.constexpr): The size of the block to be processed by each program instance.
Returns:
None
"""
pid = tl.program_id(axis=0)
offs = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
x = tl.load(x_ptr + offs).to(tl.float32)
s = tl.max(tl.abs(x)) / 448.
y = x / s
y = y.to(y_ptr.dtype.element_ty)
tl.store(y_ptr + offs, y)
tl.store(s_ptr + pid, s)
# 把 张量 x 进行 量化
def act_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Quantizes the input tensor `x` using block-wise quantization.
Args:
x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`.
block_size (int, optional): The size of the blocks to be used for quantization. Default is 128.
Returns:
Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
- The quantized tensor with dtype `torch.float8_e4m3fn`.
- A tensor of scaling factors with dtype `torch.float32`.
"""
assert x.is_contiguous(), 'Input tensor must be contiguous'
assert x.size(-1) % block_size == 0, f'Last dimension size must be divisible by block_size (block_size={block_size})'
# 创建两个张量:一个形状与x 一致且dtype为FP8的张量y;一个是专门储存scale因子的张量s,依旧是每128维储存一个scale因子
# (按照上述代码来看,s的张量形状为(2, 3, 7168 // 128)=(2, 3, 56),数据类型为FP32)。
y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
s = x.new_empty(*x.size()[:-1], x.size(-1) // block_size, dtype=torch.float32)
# 之后的两行代码,便涉及到了Triton Kernel的调度计算。Triton是一个专门用于优化GPU计算的编程框架。内核调度(Kernel Scheduling)指的是
# 如何将计算任务分配给GPU上的计算单元(SMs-Streaming Multiprocessors)。内核(kernel)指的是要求在 GPU 上并行执行的那段代码(也可以说是计算任务)。
# 众所周知,GPU并不像CPU那样串行计算,而是同时运行多个计算块(blocks),每个 block又包含多个线程,它们并行执行任务,以提高计算效率。
# grid 决定多少个计算block被调度到 GPU 上。这里调用了triton.cdiv(x.numel(), meta['BLOCK_SIZE']) 来计算需要多少个 blocks。
# x.numel()是输入x张量里元素的个数,在本例中为2×3×7168个。 triton.cdiv()负责作向上取整的除法,以确保整个张量都能被块覆盖。
# meta['BLOCK_SIZE']=128 ,于是可知grid为(2×3×7168/128, )=(336, ) ,即最终会划分为336块blocks进行并行计算。
grid = lambda meta: (triton.cdiv(x.numel(), meta['BLOCK_SIZE']), )
act_quant_kernel[grid](x, y, s, BLOCK_SIZE=block_size)
return y, s
@triton.jit
def weight_dequant_kernel(x_ptr, s_ptr, y_ptr, M, N, BLOCK_SIZE: tl.constexpr):
"""
Dequantizes weights using the provided scaling factors and stores the result.
Args:
x_ptr (tl.pointer): Pointer to the quantized weights.
s_ptr (tl.pointer): Pointer to the scaling factors.
y_ptr (tl.pointer): Pointer to the output buffer for dequantized weights.
M (int): Number of rows in the weight matrix.
N (int): Number of columns in the weight matrix.
BLOCK_SIZE (tl.constexpr): Size of the block for tiling.
Returns:
None
"""
pid_m = tl.program_id(axis=0)
pid_n = tl.program_id(axis=1)
n = tl.cdiv(N, BLOCK_SIZE)
offs_m = pid_m * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
offs_n = pid_n * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
offs = offs_m[:, None] * N + offs_n[None, :]
mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
x = tl.load(x_ptr + offs, mask=mask).to(tl.float32)
s = tl.load(s_ptr + pid_m * n + pid_n)
y = x * s
tl.store(y_ptr + offs, y, mask=mask)
def weight_dequant(x: torch.Tensor, s: torch.Tensor, block_size: int = 128) -> torch.Tensor:
"""
Dequantizes the given weight tensor using the provided scale tensor.
Args:
x (torch.Tensor): The quantized weight tensor of shape (M, N).
s (torch.Tensor): The scale tensor of shape (M, N).
block_size (int, optional): The block size to use for dequantization. Defaults to 128.
Returns:
torch.Tensor: The dequantized weight tensor of the same shape as `x`.
Raises:
AssertionError: If `x` or `s` are not contiguous or if their dimensions are not 2.
"""
assert x.is_contiguous() and s.is_contiguous(), 'Input tensors must be contiguous'
assert x.dim() == 2 and s.dim() == 2, 'Input tensors must have 2 dimensions'
M, N = x.size()
y = torch.empty_like(x, dtype=torch.get_default_dtype())
grid = lambda meta: (triton.cdiv(M, meta['BLOCK_SIZE']), triton.cdiv(N, meta['BLOCK_SIZE']))
weight_dequant_kernel[grid](x, s, y, M, N, BLOCK_SIZE=block_size)
return y
fp8_gemm_configs = [
Config({'BLOCK_SIZE_M': block_m, 'BLOCK_SIZE_N': block_n, 'BLOCK_SIZE_K': 128}, num_stages=num_stages, num_warps=8)
for block_m in [16, 32, 64] for block_n in [32, 64, 128] for num_stages in [3, 4, 5, 6]
]
@triton.autotune(configs=fp8_gemm_configs, key=['N', 'K'])
@triton.jit
def fp8_gemm_kernel(a_ptr, b_ptr, c_ptr,
a_s_ptr, b_s_ptr,
M, N: tl.constexpr, K: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr):
"""
Performs a matrix multiplication operation on FP8 matrices with scaling factors.
Args:
a_ptr (tl.tensor): Pointer to the first input matrix A.
b_ptr (tl.tensor): Pointer to the second input matrix B.
c_ptr (tl.tensor): Pointer to the output matrix C.
a_s_ptr (tl.tensor): Pointer to the scaling factors for matrix A.
b_s_ptr (tl.tensor): Pointer to the scaling factors for matrix B.
M (int): Number of rows in matrix A and C.
N (tl.constexpr): Number of columns in matrix B and C.
K (tl.constexpr): Number of columns in matrix A and rows in matrix B.
BLOCK_SIZE_M (tl.constexpr): Block size for the M dimension.
BLOCK_SIZE_N (tl.constexpr): Block size for the N dimension.
BLOCK_SIZE_K (tl.constexpr): Block size for the K dimension.
Returns:
None
"""
pid_m = tl.program_id(axis=0)
pid_n = tl.program_id(axis=1)
k = tl.cdiv(K, BLOCK_SIZE_K)
offs_m = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
offs_n = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + offs_m[:, None] * K + offs_k[None, :]
b_ptrs = b_ptr + offs_n[None, :] * K + offs_k[:, None]
a_s_ptrs = a_s_ptr + offs_m * k
b_s_ptrs = b_s_ptr + (offs_n // BLOCK_SIZE_K) * k
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for i in range(k):
a = tl.load(a_ptrs, mask=offs_k[None, :] < K - i * BLOCK_SIZE_K, other=0.0)
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - i * BLOCK_SIZE_K, other=0.0)
a_s = tl.load(a_s_ptrs)
b_s = tl.load(b_s_ptrs)
accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :]
a_ptrs += BLOCK_SIZE_K
b_ptrs += BLOCK_SIZE_K
a_s_ptrs += 1
b_s_ptrs += 1
c = accumulator.to(c_ptr.dtype.element_ty)
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + offs_m[:, None] * N + offs_n[None, :]
mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
tl.store(c_ptrs, c, mask=mask)
# FP8通用矩阵乘法
def fp8_gemm(a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor):
"""
Perform a matrix multiplication using FP8 precision.
Args:
a (torch.Tensor): The first input matrix, must be contiguous.
a_s (torch.Tensor): The scaling factor for the first input matrix, must be contiguous.
b (torch.Tensor): The second input matrix, must be contiguous.
b_s (torch.Tensor): The scaling factor for the second input matrix, must be contiguous.
Returns:
torch.Tensor: The result of the matrix multiplication.
"""
assert a.is_contiguous() and b.is_contiguous(), 'Input tensors must be contiguous'
assert a_s.is_contiguous() and b_s.is_contiguous(), 'Scaling factor tensors must be contiguous'
K = a.size(-1)
M = a.numel() // K
N = b.size(0)
c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype())
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']), triton.cdiv(N, META['BLOCK_SIZE_N']))
fp8_gemm_kernel[grid](a, b, c, a_s, b_s, M, N, K)
return c
# 加载 CUDA 动态库
lib = ctypes.CDLL("./libint64gemm.so")
# 定义参数类型
lib.int64_64_bmm_broadcast_launcher.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # B
ctypes.c_void_p, # C
ctypes.c_void_p, # R
ctypes.c_longlong, ctypes.c_longlong, ctypes.c_longlong,
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.int64_32_bmm_broadcast_launcher.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # B
ctypes.c_void_p, # C
ctypes.c_void_p, # R
ctypes.c_longlong, ctypes.c_longlong, ctypes.c_longlong,
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.complex_int64_mul.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # B
ctypes.c_void_p, # C
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.rms_norm_32.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # W
ctypes.c_void_p, # rms
ctypes.c_void_p, # C
ctypes.c_int, ctypes.c_int
]
lib.rms_norm_64.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # W
ctypes.c_void_p, # rms
ctypes.c_void_p, # C
ctypes.c_int, ctypes.c_int
]
lib.einsum_bshd_hdc_bshc.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # B
ctypes.c_void_p, # C
ctypes.c_longlong,
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.einsum_bshc_btc_bsht.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # B
ctypes.c_void_p, # C
ctypes.c_longlong,
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.einsum_bsht_btc_bshc.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # B
ctypes.c_void_p, # C
ctypes.c_longlong,
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.einsum_bshc_hdc_bshd.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # B
ctypes.c_void_p, # C
ctypes.c_longlong,
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.softmax_q21.argtypes = [
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.softmax_q19.argtypes = [
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.softmax_init_q21.argtypes = [
ctypes.c_void_p
]
lib.softmax_init_q19.argtypes = [
ctypes.c_void_p
]
lib.silu_q25.argtypes = [
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.sigmoid_q25.argtypes = [
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.silu_init_q25.argtypes = [
ctypes.c_void_p
]
lib.silu_q23.argtypes = [
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.sigmoid_q23.argtypes = [
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.silu_init_q23.argtypes = [
ctypes.c_void_p
]
def int64_bmm_broadcast(A: torch.Tensor, B: torch.Tensor, a_rescale, b_rescale, c_rescale) -> tuple[torch.Tensor]:
"""
int64 批量矩阵乘法: (B, M, K) x (N, K) -> (B, M, N)
"""
global lib
assert A.dtype == torch.int64
# and B.dtype == torch.int64
assert A.is_cuda and B.is_cuda
Bdim, M, K = A.shape
N, K2 = B.shape
assert K2 == K
C = torch.empty((Bdim, M, N), dtype=torch.int64, device="cuda")
R = torch.empty((Bdim, M, N), dtype=torch.int64, device="cuda")
if B.dtype == torch.int64:
lib.int64_64_bmm_broadcast_launcher(
A.data_ptr(), B.data_ptr(), C.data_ptr(), R.data_ptr(),
a_rescale, b_rescale, c_rescale,
Bdim, M, K, N
)
elif B.dtype == torch.int32:
lib.int64_32_bmm_broadcast_launcher(
A.data_ptr(), B.data_ptr(), C.data_ptr(), R.data_ptr(),
a_rescale, b_rescale, c_rescale,
Bdim, M, K, N
)
else:
print(f'Unsupported B type: {B.dtype}')
return (C, R)
def complex_int64_mul_broadcast(A: torch.Tensor, B: torch.Tensor) -> torch.Tensor:
"""
int64 复数逐元素乘法
"""
global lib
# print(f'A type: {A.dtype}, B type: {B.dtype}')
assert A.dtype == torch.int64 and B.dtype == torch.int64
assert A.is_cuda and B.is_cuda
batch = A.shape[0]
seqLen = A.shape[1]
head = A.shape[2]
headDim = A.shape[3]
C = torch.zeros(A.shape, dtype=torch.int64, device=A.device)
lib.complex_int64_mul(
A.data_ptr(), B.data_ptr(), C.data_ptr(),
# high_rescale, row_rescale,
batch, seqLen, head, headDim)
return C
def einsum_bshd_hdc_bshc(A: torch.Tensor, B: torch.Tensor, rescale) -> torch.Tensor:
global lib
assert A.shape[2] == B.shape[0] and A.shape[3] == B.shape[1]
assert A.is_cuda and B.is_cuda
Batch = A.shape[0]
S = A.shape[1]
H = A.shape[2]
D = A.shape[3]
Cp = B.shape[2]
C = torch.zeros([Batch, S, H, Cp], dtype=torch.int64, device=A.device)
lib.einsum_bshd_hdc_bshc(A.data_ptr(), B.data_ptr(), C.data_ptr(),
# (1 << rescale), Batch, S, H, D, Cp)
rescale, Batch, S, H, D, Cp)
return C
def einsum_bshc_btc_bsht(A: torch.Tensor, B: torch.Tensor, rescale) -> torch.Tensor:
global lib
Bsz = A.shape[0]
S = A.shape[1]
H = A.shape[2]
Cdim = A.shape[3]
T = B.shape[1]
assert Bsz == B.shape[0] and Cdim == B.shape[2]
assert A.is_cuda and B.is_cuda
C = torch.zeros([Bsz, S, H, T], dtype=torch.int64, device=A.device)
lib.einsum_bshc_btc_bsht(A.data_ptr(), B.data_ptr(), C.data_ptr(),
# (1 << rescale), Bsz, S, H, T, Cdim)
rescale, Bsz, S, H, T, Cdim)
return C
def einsum_bsht_btc_bshc(A: torch.Tensor, B: torch.Tensor, rescale) -> torch.Tensor:
global lib
Bsz = A.shape[0]
S = A.shape[1]
H = A.shape[2]
T = A.shape[3]
Cdim = B.shape[2]
assert Bsz == B.shape[0] and T == B.shape[1]
assert A.is_cuda and B.is_cuda
C = torch.zeros([Bsz, S, H, Cdim], dtype=torch.int64, device=A.device)
lib.einsum_bsht_btc_bshc(A.data_ptr(), B.data_ptr(), C.data_ptr(),
# (1 << rescale), Bsz, S, H, T, Cdim)
rescale, Bsz, S, H, T, Cdim)
return C
def einsum_bshc_hdc_bshd(A: torch.Tensor, B: torch.Tensor, rescale) -> torch.Tensor:
global lib
Bsz = A.shape[0]
S = A.shape[1]
H = A.shape[2]
D = B.shape[1]
Cdim = A.shape[3]
assert H == B.shape[0] and Cdim == B.shape[2]
assert A.is_cuda and B.is_cuda
C = torch.zeros([Bsz, S, H, D], dtype=torch.int64, device=A.device)
lib.einsum_bshc_hdc_bshd(A.data_ptr(), B.data_ptr(), C.data_ptr(),
# (1 << rescale), Bsz, S, H, D, Cdim)
rescale, Bsz, S, H, D, Cdim)
return C
def int64_RMS0(A: torch.Tensor, eps: int, dim: int) -> torch.Tensor:
assert A.dtype == torch.int64
assert A.ndim == 1
N = A.shape[0]
# 初始化累加器
acc = eps
for i in range(0, N):
a = A[i].item()
acc += a * a
acc = acc // dim
res1 = math.isqrt(acc)
return res1
# x 的 scale 为 2 ** 31,范围为 0 - 2^31
# weight的scale 为 2 ** 21, 范围为 2^5 - 2^20
# rms 的 scale 为 2 ** 31
# 返回的结果 scale 为 2 ** 21,31 + 21 - 31 = 21
@triton.jit
def int64_rms_norm_kernel(
A_ptr, W_ptr, C_ptr, RMS_ptr,
N,
batch_stride_a, batch_stride_c,
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr
):
pid_m = tl.program_id(0)
for i in range(0, N):
a_ptrs = A_ptr + pid_m * batch_stride_a + i
w_ptrs = W_ptr + i
rms_ptrs = RMS_ptr + pid_m
a = tl.load(a_ptrs, mask=None)
w = tl.load(w_ptrs, mask=None)
rms = tl.load(rms_ptrs, mask=None)
res = a * w // rms
prod = a * w
tl.device_assert(prod > -2 ** 62 and prod < 2 ** 62, "Integer overflow risk!!!")
c_ptrs = C_ptr + pid_m * batch_stride_c + i
tl.store(c_ptrs, res, mask=None)
rms = torch.empty((500, ), dtype=torch.int64, device='cpu')
rms_gpu = torch.empty((500, ), dtype=torch.int64, device='cuda')
def RMS_Norm_int64(A: torch.Tensor, W: torch.Tensor, eps, dim) -> torch.Tensor:
global lib
global rms
global rms_gpu
assert A.dtype == torch.int64
assert A.is_cuda and W.is_cuda
assert A.ndim == 2
M, N = A.shape
for i in range(M):
rms[i] = int64_RMS0(A[i], eps, dim)
rms_gpu.copy_(rms)
C = torch.empty((M, N), dtype=torch.int64, device=A.device)
if W.dtype == torch.int32:
lib.rms_norm_32(A.data_ptr(), W.data_ptr(), rms_gpu.data_ptr(), C.data_ptr(), M, N)
else:
lib.rms_norm_64(A.data_ptr(), W.data_ptr(), rms_gpu.data_ptr(), C.data_ptr(), M, N)
return (C, rms)
def saveTensor(fileName, t):
with open(fileName, "w", encoding="utf-8") as f:
# for row in tensor:
# vs = [str(v.item()) for v in row]
# ss = ' '.join(vs) + '\n'
# f.write(ss)
t = t.detach()
if t.device.type != "cpu":
t = t.cpu()
t = t.contiguous()
with open(fileName, "wb") as f:
# .numpy() -> bytes(C-order)
f.write(t.numpy().tobytes(order="C"))
EXP2_FRAC_LUT_Q21 = None
# LOG_TABLE_SIZE = 10
LOG_TABLE_SIZE = 8
def softmax_init_q21():
global lib
global EXP2_FRAC_LUT_Q21
EXP2_FRAC_LUT0 = torch.zeros((2 ** LOG_TABLE_SIZE, ), dtype=torch.int64, device="cpu")
lib.softmax_init_q21(EXP2_FRAC_LUT0.data_ptr())
# print(EXP2_FRAC_LUT0[619])
EXP2_FRAC_LUT_Q21 = EXP2_FRAC_LUT0.cuda()
EXP2_FRAC_LUT_Q19 = None
def softmax_init_q19():
global lib
global EXP2_FRAC_LUT_Q19
EXP2_FRAC_LUT0 = torch.zeros((2 ** LOG_TABLE_SIZE, ), dtype=torch.int64, device="cpu")
lib.softmax_init_q19(EXP2_FRAC_LUT0.data_ptr())
# print(EXP2_FRAC_LUT0[619])
EXP2_FRAC_LUT_Q19 = EXP2_FRAC_LUT0.cuda()
# saveTensor(f'zkdata/softmax_q19_table.bin', EXP2_FRAC_LUT0.cpu())
def softmax_q21(R: torch.Tensor, C: torch.Tensor):
global lib
global EXP2_FRAC_LUT_Q21
assert R.is_cuda and C.is_cuda
# print(EXP2_FRAC_LUT_Q21)
Bsz = R.shape[0]
S = R.shape[1]
H = R.shape[2]
T = R.shape[3]
lib.softmax_q21(R.data_ptr(), C.data_ptr(), EXP2_FRAC_LUT_Q21.data_ptr(), Bsz, S, H, T)
def softmax_q19(R: torch.Tensor, C: torch.Tensor):
global lib
global EXP2_FRAC_LUT_Q19
assert R.is_cuda and C.is_cuda
# print(EXP2_FRAC_LUT_Q19)
Bsz = R.shape[0]
S = R.shape[1]
H = R.shape[2]
T = R.shape[3]
lib.softmax_q19(R.data_ptr(), C.data_ptr(), EXP2_FRAC_LUT_Q19.data_ptr(), Bsz, S, H, T)
# start of silu_q25 ---------------------------------
EXP2_FRAC_LUT_Q25 = None
def silu_init_q25():
global lib
global EXP2_FRAC_LUT_Q25
EXP2_FRAC_LUT0 = torch.zeros((2 ** LOG_TABLE_SIZE, ), dtype=torch.int64, device="cpu")
lib.silu_init_q25(EXP2_FRAC_LUT0.data_ptr())
# print(EXP2_FRAC_LUT0[619])
EXP2_FRAC_LUT_Q25 = EXP2_FRAC_LUT0.cuda()
def silu_q25(R: torch.Tensor, C: torch.Tensor):
global lib
global EXP2_FRAC_LUT_Q25
# print(EXP2_FRAC_LUT_Q25)
Bsz = R.shape[0]
S = R.shape[1]
Dim = R.shape[2]
lib.silu_q25(R.data_ptr(), C.data_ptr(), EXP2_FRAC_LUT_Q25.data_ptr(), Bsz, S, Dim)
def sigmoid_q25(R: torch.Tensor, C: torch.Tensor):
global lib
global EXP2_FRAC_LUT_Q25
Bsz = R.shape[0]
S = R.shape[1]
Dim = R.shape[2]
lib.sigmoid_q25(R.data_ptr(), C.data_ptr(), EXP2_FRAC_LUT_Q25.data_ptr(), Bsz, S, Dim)
# end of silu_q25 ---------------------------------
# start of silu_q23 ---------------------------------
EXP2_FRAC_LUT_Q23 = None
def silu_init_q23():
global lib
global EXP2_FRAC_LUT_Q23
EXP2_FRAC_LUT0 = torch.zeros((2 ** LOG_TABLE_SIZE, ), dtype=torch.int64, device="cpu")
lib.silu_init_q23(EXP2_FRAC_LUT0.data_ptr())
# print(EXP2_FRAC_LUT0[619])
EXP2_FRAC_LUT_Q23 = EXP2_FRAC_LUT0.cuda()
# saveTensor(f'zkdata/silu_q23_table.bin', EXP2_FRAC_LUT0.cpu())
def silu_q23(R: torch.Tensor, C: torch.Tensor):
global lib
global EXP2_FRAC_LUT_Q23
# print(EXP2_FRAC_LUT_Q23)
Bsz = R.shape[0]
S = R.shape[1]
Dim = R.shape[2]
lib.silu_q23(R.data_ptr(), C.data_ptr(), EXP2_FRAC_LUT_Q23.data_ptr(), Bsz, S, Dim)
def sigmoid_q23(R: torch.Tensor, C: torch.Tensor):
global lib
global EXP2_FRAC_LUT_Q23
Bsz = R.shape[0]
S = R.shape[1]
Dim = R.shape[2]
lib.sigmoid_q23(R.data_ptr(), C.data_ptr(), EXP2_FRAC_LUT_Q23.data_ptr(), Bsz, S, Dim)
# end of silu_q23 ---------------------------------
if __name__ == "__main__":
softmax_init_q21()
torch.manual_seed(0)
device = "cuda"
Bsz = 1
S = 1
H = 2
T = 10
A = torch.rand([Bsz, S, H, T], dtype=torch.bfloat16, device=device)
a = (A.to(torch.float32) * (2 ** 21)).to(torch.int64)
# a = (A * (2 ** 21)).to(torch.int64)
print('A: ' + str(A))
print('a: ' + str(a))
c = torch.zeros([Bsz, S, H, T], dtype=torch.int64, device=device)
softmax_q21(a, c)
r0 = A.softmax(dim=-1, dtype=torch.float32).type_as(A)
print('r0: ' + str(r0))
r1 = (c.to(torch.float32) * (2 ** -21)).to(torch.bfloat16)
print('r1: ' + str(r1))
R0 = (r0.to(torch.float32) * (2 ** 21)).to(torch.int64)
# R0 = (r0 * (2 ** 21)).to(torch.int64)
print('R0: ' + str(R0))
print('R1: ' + str(c))