clone / evaluation /valid_score_in_100.json
chenyili818's picture
Add files using upload-large-folder tool
661c54a verified
{
"summary": {
"total_with_gt": 239,
"matched": 28,
"accuracy": 0.11715481171548117
},
"details": [
{
"id": 0,
"match": false,
"ground_truth": "apply HasDerivAt.sub",
"model_output": "apply HasDerivAt.const_sub"
},
{
"id": 1,
"match": false,
"ground_truth": "have : (fun (t : ℝ) => c⁻¹ * t) = (fun t => t * c⁻¹) := by ext t; ring",
"model_output": "apply HasDerivAt.const_mul c⁻¹ (hasDerivAt_id x)"
},
{
"id": 2,
"match": false,
"ground_truth": "rw [← EReal.coe_sub]",
"model_output": "simp [coe_le_coe]"
},
{
"id": 3,
"match": false,
"ground_truth": "ext x",
"model_output": "exact convex_indicator_empty"
},
{
"id": 4,
"match": true,
"ground_truth": "exact ah",
"model_output": "exact ah"
},
{
"id": 5,
"match": false,
"ground_truth": "lift a to ℝ using ⟨ha1, ha2⟩\n lift b to ℝ using ⟨hb1, hb2⟩\n rw [← EReal.coe_sub]\n apply bot_lt_iff_ne_bot.2\n let c := a - b\n suffices Real.toEReal c ≠ ⊥ by exact this\n simp",
"model_output": "simp [ha1, ha2, hb1, hb2]"
},
{
"id": 6,
"match": false,
"ground_truth": "lift a to ℝ using ⟨ha1, ha2⟩",
"model_output": "have : a + (b - b) = a := by\n rw [EReal.sub_self hb2, EReal.add_top]"
},
{
"id": 7,
"match": false,
"ground_truth": "apply hasDerivAt_mul_const c⁻¹",
"model_output": "apply HasDerivAt.const_mul' (hasDerivAt_id' x) (c⁻¹)"
},
{
"id": 8,
"match": false,
"ground_truth": "by\n use Aφ (A := A) (x := x) H\n exact ⟨Aφ_mono (A := A) (x := x) H, α_subseq_converge (Aφ_sub H)⟩",
"model_output": "rw [← H]"
},
{
"id": 9,
"match": false,
"ground_truth": "· rw [ha1];simp",
"model_output": "· rw[ha1];simp"
},
{
"id": 10,
"match": false,
"ground_truth": "let g : EReal ≃o EReal := ⟨g', by simp [g'];apply add_le_add_right a⟩",
"model_output": "have : (⨆ m ∈ s, f m) + a = ⨆ m ∈ s, (f m + a) := by\n have : (⨆ m ∈ s, f m) = ⨆ m ∈ s, (g' (f m)) := by\n rw [g']; simp\n rw [this]; exact biSup_congr fun m => by simp [g']; simp [g']; simp [g']; simp [g']; simp [g']; simp [g']; simp [g']; simp [g']; simp [g']; simp [g']; simp [g']; simp"
},
{
"id": 11,
"match": false,
"ground_truth": "ext i j",
"model_output": "simp [g, h]"
},
{
"id": 12,
"match": false,
"ground_truth": "apply glt",
"model_output": "simp at hg"
},
{
"id": 13,
"match": false,
"ground_truth": "apply add_le_add_right a",
"model_output": "intro a b\n exact EReal.add_le_add_iff_right a b a"
},
{
"id": 14,
"match": false,
"ground_truth": "left",
"model_output": "left; exact hdomsf"
},
{
"id": 15,
"match": false,
"ground_truth": "ext j",
"model_output": "simp [Matrix.mulVec]"
},
{
"id": 16,
"match": false,
"ground_truth": "intro i",
"model_output": "intro i j"
},
{
"id": 17,
"match": false,
"ground_truth": "· intro h; by_contra! hs\n obtain ⟨x, xs⟩:= Set.nonempty_def.1 hs\n have h1: s.convex_indicator x = 0 := by\n simp [convex_indicator]; exact xs\n have h2 := congrFun h x; simp [h1] at h2",
"model_output": "· intro h\n by_contra h'\n push_neg at h'\n rw [convex_indicator, h] at h'\n exact h'"
},
{
"id": 18,
"match": false,
"ground_truth": "constructor",
"model_output": "constructor <;> intro h <;> intro x hx <;> simp at h hx ⊢ <;> exact h x hx.1 hx.2"
},
{
"id": 19,
"match": false,
"ground_truth": "by_cases hA : A = 0",
"model_output": "intro x"
},
{
"id": 20,
"match": false,
"ground_truth": "by norm_num",
"model_output": "have : a = 1 / 2 := by linarith\n rw [this]; norm_num"
},
{
"id": 21,
"match": false,
"ground_truth": "by\n obtain hcon := subdifferential_subset f x₀\n apply hcon; exact first_order_optimality_condition f x₀ hx",
"model_output": "rw [subdifferential, mem_setOf, mem_closure_iff_seq_limit]"
},
{
"id": 22,
"match": true,
"ground_truth": "exact h",
"model_output": "exact h"
},
{
"id": 23,
"match": false,
"ground_truth": "by\n have : (fun x ↦ (inner (ℝ) x a : ℝ)) = fun x ↦ (inner (ℝ) a x : ℝ) := by\n ext y; exact real_inner_comm a y\n rw [this]; apply gradient_of_inner_const",
"model_output": "rw [hasGradientAt_iff_hasFDerivAt, ← equiv_lemma_inner_right]"
},
{
"id": 24,
"match": false,
"ground_truth": "refine Eq.symm (CancelDenoms.inv_subst (hA j) ?_)\n refine prod_erase_mul univ (fun «x» ↦ A «x» «x») ?_\n exact mem_univ j",
"model_output": "rw [← Finset.prod_erase_mul (s := Finset.univ) (A := A) (h := h)]"
},
{
"id": 25,
"match": true,
"ground_truth": "intro x y hy",
"model_output": "intro x y hy"
},
{
"id": 26,
"match": false,
"ground_truth": "simp [LowerSemicontinuousHull]",
"model_output": "ext p"
},
{
"id": 27,
"match": true,
"ground_truth": "simp at hfy",
"model_output": "simp at hfy"
},
{
"id": 28,
"match": false,
"ground_truth": "rw [Fin.sum_univ_succ]",
"model_output": "have : ∀ i, (fun i ↦ f i.succ) i ≠ ⊥ := by\n intro i\n exact p i.succ"
},
{
"id": 29,
"match": false,
"ground_truth": "by_cases hx2 : f x = ⊥",
"model_output": "have hx2 : f x ≠ ⊥ := by\n by_contra h\n rw[h] at h\n simp at h\n exact not_top_of_ne_top (convex_conjugate_ne_top univ f x) h"
},
{
"id": 30,
"match": false,
"ground_truth": "rw [@mem_iInter]",
"model_output": "rw [intrinsicClosure_iInter] at hx"
},
{
"id": 31,
"match": false,
"ground_truth": "rcases h with ⟨δ, dpos, h⟩",
"model_output": "rcases h with ⟨ε', epos', h⟩\n use ε'\n constructor\n · linarith [epos']\n intro x' h'\n rw [Metric.mem_ball] at h'\n exact h h'"
},
{
"id": 32,
"match": false,
"ground_truth": "exact half_lt_self dpos",
"model_output": "linarith"
},
{
"id": 33,
"match": false,
"ground_truth": "apply pin",
"model_output": "exact pin"
},
{
"id": 34,
"match": false,
"ground_truth": "by_cases hf_pinf : f = ⊤",
"model_output": "rw [convex_conjugate]"
},
{
"id": 35,
"match": false,
"ground_truth": "by\n apply intrinsicInterior_subset.antisymm\n nth_rw 1 [intrinsicInterior]\n rw [intrinsicInterior, image_subset_iff]\n rw [affineSpan_intrinsicInterior hsc]\n rw [Function.Injective.preimage_image Subtype.val_injective]\n simp [intrinsicInterior]",
"model_output": "have hsc' : Convex ℝ (intrinsicInterior ℝ s) := by\n apply Convex.intrinsicInterior\n exact hsc\n exact intrinsicInterior_intrinsicInterior hsc'"
},
{
"id": 36,
"match": false,
"ground_truth": "rw [← sub_add, norm_add_sq_real, real_inner_comm, inner_sub_right]",
"model_output": "rw [← norm_add_sq_real a (v - x)]"
},
{
"id": 37,
"match": false,
"ground_truth": "rw [EReal.coe_le_coe_iff] at hccleq",
"model_output": "simp at hccleq ⊢"
},
{
"id": 38,
"match": false,
"ground_truth": "intro z",
"model_output": "have : Convex ℝ (intrinsicClosure ℝ s) := by\n apply Convex.intrinsicClosure\n exact h\n apply intrinsicInterior_mono\n exact subset_intrinsicClosure"
},
{
"id": 39,
"match": false,
"ground_truth": "have : FiniteDimensional 𝕜 (Submodule.span 𝕜 (Set.range v)) := by\n apply FiniteDimensional.span_of_finite\n simp [Set.finite_range]",
"model_output": "have : Orthonormal 𝕜 v := hv"
},
{
"id": 40,
"match": false,
"ground_truth": "rw [h2]",
"model_output": "rw [h2] at h1 ⊢"
},
{
"id": 41,
"match": false,
"ground_truth": "apply banach_steinhaus",
"model_output": "rcases hy with ⟨hy1, hy2⟩\n use 1\n intro x\n have : ‖(innerSL ℝ) x‖ ≤ 1 := by\n rw [norm_innerSL]\n apply le_of_lt (hy1 x)\n exact this"
},
{
"id": 42,
"match": true,
"ground_truth": "intro h\n apply HasFDeriv_Convergence\n exact h",
"model_output": "intro h\n apply HasFDeriv_Convergence\n exact h"
},
{
"id": 43,
"match": false,
"ground_truth": "· apply Convergence_HasFDeriv",
"model_output": "intro h\n apply HasFDerivAt.mk\n intro ε εpos\n rcases h ε εpos with ⟨δ, δpos, hε⟩\n use δ\n constructor\n · exact δpos\n intro x' hx'\n rw [← norm_neg (x - x'), neg_sub] at hx'\n apply hε\n rw [neg_sub, norm_neg]\n exact hx'"
},
{
"id": 44,
"match": false,
"ground_truth": "by\n rw [←intrinsicInterior_affineSubspace_eq_self, ←nonempty_iff_ne_empty] at hn\n rw [←iIntersection_closure_eq_intrinsicInterior_closure' M.convex hC hn]\n rw [closure_affineSubspace_eq_self]",
"model_output": "have h1 : M ≤ affineSpan ℝ C := by\n rw [AffineSubspace.le_def]\n intro x hx\n rw [AffineSubspace.mem_coe, AffineSubspace.mem_affineSpan]\n exact subset_affineSpan ℝ (M ∩ C) ⟨hx.1, hx.2.1⟩\n have h2 : M ≤ closure (M ∩ C) := by\n rw [AffineSubspace.le_def]\n intro x hx\n rw [AffineSubspace.mem_coe, AffineSubspace.mem_affineSpan]\n exact subset"
},
{
"id": 45,
"match": false,
"ground_truth": "apply alg.ha 0",
"model_output": "apply alg.ha k"
},
{
"id": 46,
"match": true,
"ground_truth": "rw [h2]",
"model_output": "rw [h2]"
},
{
"id": 47,
"match": false,
"ground_truth": "rcases this with ⟨xn, hxn1, hxn2⟩",
"model_output": "rcases this with ⟨xn, ⟨n, hn1, hn2⟩, hxn⟩"
},
{
"id": 48,
"match": false,
"ground_truth": "have h2 := tendsto_add (A:=A) (B:=B)",
"model_output": "have h2 := tendsto_add (A := A) (B := B) hAa hBa"
},
{
"id": 49,
"match": false,
"ground_truth": "have : ‖a • b‖ ^ 2 ≤ (‖a‖ * ‖b‖) ^ 2 := by\n rw [mul_pow, WithLp.prod_norm_sq_eq_of_L2, WithLp.prod_norm_sq_eq_of_L2]\n simp only [WithLp.smul_fst, WithLp.smul_snd]\n rw [norm_smul, norm_smul, mul_add, mul_pow, mul_pow]",
"model_output": "rw [WithLp.prod_norm_eq_of_L2]"
},
{
"id": 50,
"match": false,
"ground_truth": "by_cases ht : i ∈ σ",
"model_output": "by_cases hi : i ∈ σ <;> simp [hi] <;> linarith [cpos i hi]"
},
{
"id": 51,
"match": false,
"ground_truth": "simp",
"model_output": "simp at hst hdti h ⊢"
},
{
"id": 52,
"match": true,
"ground_truth": "by rw [h y ys, hf]; exact hg y ys",
"model_output": "rw [h y ys, hf]"
},
{
"id": 53,
"match": false,
"ground_truth": "exact in_of_le_sinf_of_b_top hx",
"model_output": "rw [hbtop] at hab"
},
{
"id": 54,
"match": false,
"ground_truth": "intro hmin",
"model_output": "intro hmin\n have hsub : SubgradientAt f f' xm := by\n rw [subgradientAt_iff_hasGradientAt_of_convexOn hcon (mem_univ xm) hfc]\n exact hf xm\n exact subgradientAt_eq_zero hsub hmin"
},
{
"id": 55,
"match": false,
"ground_truth": "simp [hx2, hw.2]",
"model_output": "simp [hw.2]"
},
{
"id": 56,
"match": false,
"ground_truth": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]",
"model_output": "rw [smul_sub, smul_sub, ← sub_add, ← sub_add, absum1, sub_self, add_zero]"
},
{
"id": 57,
"match": false,
"ground_truth": "simp [ConvexCone.addPoint] at hx",
"model_output": "rw [Convex.toCone] at hx\n obtain ⟨c, hc, y, hy, hxy⟩ := hx\n use c, hc.1\n use y, hy.1\n rw [hxy]"
},
{
"id": 58,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x xs y ys\n apply Convex.exists_inner_prod_eq_sub' hs hf x xs y ys"
},
{
"id": 59,
"match": false,
"ground_truth": "simp",
"model_output": "simp [LT.lt.ne_top] at hx"
},
{
"id": 60,
"match": false,
"ground_truth": "by\n simp only [mem_setOf_eq]\n intro _ _ _ _ hp1 hp2 hp3\n rw [vsub_eq_sub, vadd_eq_add, map_add, map_smul, map_sub,\n hp1, hp2, hp3, sub_self, smul_zero, zero_add]",
"model_output": "intro c p₁ p₂ p₃ hp₁ hp₂ hp₃\n rw [Set.mem_setOf, map_vsub, smul_sub, vsub_eq_sub, map_sub, ← smul_sub, hp₁, hp₂, hp₃]\n simp [smul_sub, smul_add, smul_sub, smul_smul]"
},
{
"id": 61,
"match": false,
"ground_truth": "linarith",
"model_output": "linarith [ht]"
},
{
"id": 62,
"match": false,
"ground_truth": "simp [h]",
"model_output": "rw [LinearIsometryEquiv.symm_apply_apply]"
},
{
"id": 63,
"match": true,
"ground_truth": "simp [g]",
"model_output": "simp [g]"
},
{
"id": 64,
"match": false,
"ground_truth": "rw [Prod.tendsto_iff] at xntend",
"model_output": "have : ∀ n, f (xn n).1 ≤ (xn n).2 := by exact xncond"
},
{
"id": 65,
"match": false,
"ground_truth": "by_cases ha1 : a = 0",
"model_output": "rw [add_top_of_ne_bot (LT.lt.ne_top (hsf.uninfinity y hb))]"
},
{
"id": 66,
"match": false,
"ground_truth": "by_cases hb1 : b = 0",
"model_output": "apply le_trans (convex_epi_le_of_convexOn hf (by simp) (by simp) ha hb hab) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?"
},
{
"id": 67,
"match": false,
"ground_truth": "congr",
"model_output": "congr! 2 with a"
},
{
"id": 68,
"match": false,
"ground_truth": "intro z",
"model_output": "intro y hy\n rw [gradient_eq_fderiv]"
},
{
"id": 69,
"match": false,
"ground_truth": "exact Batteries.compareOfLessAndEq_eq_lt.mp rfl",
"model_output": "simp"
},
{
"id": 70,
"match": false,
"ground_truth": "intro y",
"model_output": "intro x'\n rw [p.h]\n rw [p.h]\n apply p.h_sub_le_of_norm_sub_le\n apply p.h_sub_le_of_norm_sub_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le"
},
{
"id": 71,
"match": false,
"ground_truth": "have hb : b = 1 := by linarith",
"model_output": "rw [ha] at absum"
},
{
"id": 72,
"match": false,
"ground_truth": "intro x y r",
"model_output": "simp at h"
},
{
"id": 73,
"match": false,
"ground_truth": "rw [hab]",
"model_output": "rw [hab]; simp [gradient_add_const, gradient_inner_const]"
},
{
"id": 74,
"match": false,
"ground_truth": "obtain h := ConcaveOn.deriv_le_slope h1 hy' hx' xgt hdiff\n rw [slope_def_field, le_div_iff₀] at h\n repeat linarith",
"model_output": "apply ConcaveOn.deriv_le_slope h1 hy' hx' xgt hdiff"
},
{
"id": 75,
"match": false,
"ground_truth": "have ze : z ≠ 0 := by\n by_contra hz; simp [hz] at zin; simp [r] at zin",
"model_output": "by_cases h : z = 0"
},
{
"id": 76,
"match": false,
"ground_truth": "rw [← hEq]",
"model_output": "exact h x y r"
},
{
"id": 77,
"match": false,
"ground_truth": "have h1 : M -ᵥ M ⊆ Submodule.comap (LinearMap.inl R α β) v := by\n rintro p ⟨c, hc, d, hd, rfl⟩\n exact Submodule.subset_span ⟨⟨c, n0⟩, ⟨hc, hn0⟩, ⟨d, n0⟩, ⟨hd, hn0⟩, by simp⟩",
"model_output": "have : (m, n) = (m, n0) + (m0, n) - (m0, n0) := by simp [Prod.mk_sub_mk]"
},
{
"id": 78,
"match": false,
"ground_truth": "have h_nonempty : S.Nonempty := by\n obtain ⟨a, ha⟩ := @NormedSpace.sphere_nonempty_rclike 𝕜 _ V _ _ _ 1 zero_le_one\n use a",
"model_output": "have h_nonempty : S.Nonempty := by\n obtain ⟨v, hv⟩ := exists_ne (0 : V)\n use v\n simp [S] at hv\n exact ⟨hv.1, hv.2⟩"
},
{
"id": 79,
"match": false,
"ground_truth": "linarith",
"model_output": "linarith [hy.2]"
},
{
"id": 80,
"match": false,
"ground_truth": "apply DifferentiableAt.hasGradientAt",
"model_output": "apply HasGradientAt.const_add z.1 (hasGradientAt_fst h z.2) (z.2)"
},
{
"id": 81,
"match": false,
"ground_truth": "rcases lbdf with ⟨L, Lbound⟩",
"model_output": "have : S.Nonempty := by\n use x; simp [S]\n rw [eq]; use g x; simp [g]"
},
{
"id": 82,
"match": false,
"ground_truth": "simp",
"model_output": "simp [μpos]"
},
{
"id": 83,
"match": false,
"ground_truth": "norm_num",
"model_output": "linarith"
},
{
"id": 84,
"match": false,
"ground_truth": "intro x hx",
"model_output": "intro x hx\n have : x ∈ Icc 0 1 := by simp at hx; constructor <;> linarith\n exact (h1 x this)"
},
{
"id": 85,
"match": true,
"ground_truth": "intro x _",
"model_output": "intro x _"
},
{
"id": 86,
"match": false,
"ground_truth": "rw [mem_setOf]",
"model_output": "rw [f_subdiff_characterization]"
},
{
"id": 87,
"match": false,
"ground_truth": "have inequ₂'' : lim_inf (const_real_liminf (f y)) = f y := by\n apply liminf_const_eq\n rw[← inequ₂''];\n exact inequ₂' y nonempty lscf x_converge g_converge",
"model_output": "apply le_lim_inf_add_real_liminf_nonempty_nonempty lscf x_converge g_converge nonempty"
},
{
"id": 88,
"match": false,
"ground_truth": "refine norm_ne_zero_iff.mpr ?_",
"model_output": "apply norm_ne_zero_iff.mpr\n simp\n apply b.ne_zero i"
},
{
"id": 89,
"match": false,
"ground_truth": "rw [← hT.span_range_v_eq_orthogonal_ker,\n mem_span_range_iff_exists_fun] at hx₂",
"model_output": "have : x₂ ∈ (ker T) := by\n rw [ker, mem_setOf, LinearMap.mem_ker, map_add, hx₁, zero_add]\n exact hx₂"
},
{
"id": 90,
"match": false,
"ground_truth": "· simp [mem_closure_iff_seq_limit] at hx\n rcases hx with ⟨⟨w, hw⟩, hx2⟩\n use (fun n => (w n, ⊤))\n constructor\n · intro n\n simpa using hw.1 n\n rw [Prod.tendsto_iff]\n simp [hx2, hw.2]",
"model_output": "· rcases hx with ⟨hx1, hx2⟩\n use fun n => (x.1, (f x.1).toReal + 1/n)\n constructor\n · intro n\n constructor\n · exact mem_of_mem_nhds (mem_closure_iff_seq_limit.1 hx1)\n simp\n rw [Prod.tendsto_iff]\n constructor\n · exact hx1\n simp [hx2]"
},
{
"id": 91,
"match": false,
"ground_truth": "apply Finset.sum_eq_zero",
"model_output": "rw [Finset.sum_eq_zero]\n intro i hi\n rw [hx.1.2 i hi]\n simp"
},
{
"id": 92,
"match": false,
"ground_truth": "mul_inv_cancel₀ (by linarith),",
"model_output": "rw [mul_inv_cancel₀ (by linarith), mul_inv_cancel₀ (by linarith), mul_div_assoc]"
},
{
"id": 93,
"match": false,
"ground_truth": "by rw [one_smul]; rfl",
"model_output": "rw [one_smul, vadd_eq_add, add_comm]"
},
{
"id": 94,
"match": false,
"ground_truth": "intro b",
"model_output": "intro b hb"
},
{
"id": 95,
"match": false,
"ground_truth": "by linarith",
"model_output": "rw [← right] at hc\n exact mul_pos hc (by linarith)"
},
{
"id": 96,
"match": false,
"ground_truth": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]",
"model_output": "rw [smul_sub, smul_sub, ← sub_add, absum1, sub_add_comm, sub_add_comm, sub_add_comm]"
},
{
"id": 97,
"match": true,
"ground_truth": "· rw [intrinsicInterior_prod_eq_prod_intrinsicInterior]; exact mk_mem_prod (by simp) hx",
"model_output": "rw [intrinsicInterior_prod_eq_prod_intrinsicInterior]"
},
{
"id": 98,
"match": false,
"ground_truth": "rw [alg.γeq k, alg.teq k]",
"model_output": "rw [alg.teq k, alg.teq k, alg.teq k]"
},
{
"id": 99,
"match": true,
"ground_truth": "intro i _",
"model_output": "intro i _"
},
{
"id": 100,
"match": false,
"ground_truth": "rcases vt with ⟨c, d, ⟨a, ha⟩, ⟨vt1, vt2⟩⟩",
"model_output": "rcases vt with ⟨c, d, ⟨⟨a, ha⟩, ⟨cinf, cinf'⟩⟩⟩"
},
{
"id": 101,
"match": false,
"ground_truth": "exact hu.2.2 (mem_inter hu.2.1 hx)",
"model_output": "have : u ∩ s = s := by\n ext y\n constructor\n · intro hy\n exact ⟨hu.2.1 hy, hy.2⟩\n intro hy\n exact ⟨hu.2.1 hy, hy.2⟩\n exact this"
},
{
"id": 102,
"match": false,
"ground_truth": "have h1 :A x j + ε + ∑ x_1 with ¬x_1 = j, A x x_1 = ε + A x j + ∑ x_1\n with ¬x_1 = j, A x x_1 := by ring_nf",
"model_output": "rw [add_comm, add_assoc, add_comm (A x j), add_assoc, add_comm (A x j)]"
},
{
"id": 103,
"match": true,
"ground_truth": "intro x",
"model_output": "intro x"
},
{
"id": 104,
"match": false,
"ground_truth": "apply LinearMap.congr_fun\n ((LinearEquiv.symm_apply_eq (Module.dualProdDualEquivDual ℝ E ℝ)).1 (by rfl)) a",
"model_output": "simp [Module.dualProdDualEquivDual_apply_apply]"
},
{
"id": 105,
"match": false,
"ground_truth": "rw[Metric.isOpen_iff] at isopen",
"model_output": "rcases ht with ⟨ht1, ht2⟩\n have : ConvexOn ℝ (t ∩ s) f := by\n apply ConvexOn.inter hf (convex_of_convexOn_convex_subset hf ht2.1)\n apply lipschitzOnWith_of_lipschitzOnWith_of_subset\n · apply lipschitzOnWith_of_lipschitzOnWith_of_subset\n · apply lipschitzOnWith_of_lipschitzOnWith_of_subset\n · apply lipschitzOnWith_of_lipschitzOnWith_of_subset\n · apply lipsch"
},
{
"id": 106,
"match": false,
"ground_truth": "rw [deriv_of_const_mul_func (f u - f x)]",
"model_output": "have h1 : deriv φ (f u - f x) > 0 := by\n rw [deriv_sub_const]\n apply deriv_pos_of_deriv_pos_of_hasDerivAt\n · apply HasDerivAt.const_sub\n · apply hasDerivAt_inv\n · simp\n · apply HasDerivAt.const_sub\n · apply hasDerivAt_id'\n · simp"
},
{
"id": 107,
"match": false,
"ground_truth": "rcases exists_seq_tendsto_sInf hs hs' with ⟨fx, _, cfx, fxs⟩",
"model_output": "rcases hs with ⟨z, hz⟩\n use z\n intro x _\n exact le_csInf hs' hz x"
},
{
"id": 108,
"match": false,
"ground_truth": "induction n with",
"model_output": "have h₁ : Φ n ≤ C := Φ_le_C n\n have h₂ : Φ n ≥ 0 := Φ_nonneg n\n linarith [h₁, h₂]"
},
{
"id": 109,
"match": false,
"ground_truth": "simp at ht",
"model_output": "simp at ht [Icc]"
},
{
"id": 110,
"match": false,
"ground_truth": "· intro i; simp [c1];\n by_cases ht : i ∈ σ\n · simp [ht];\n specialize cpos i ht;\n exact cpos\n simp [ht]",
"model_output": "· intro i\n simp [c1]\n apply cpos i i.2"
},
{
"id": 111,
"match": false,
"ground_truth": "rw [subdiff_gradient g g' hg gradcon]",
"model_output": "rw [HasGradientAt_iff_Subdiff]"
},
{
"id": 112,
"match": false,
"ground_truth": "rw [div_mul_cancel₀ _ hne, abs_of_nonneg (by positivity), mul_comm] at hd",
"model_output": "rw [abs_of_nonneg (by positivity)] at hd\n rw [mul_div_assoc, div_mul_cancel₀ _ hne] at hd\n apply le_of_mul_le_mul_of_pos hd (by positivity) (by positivity) (by positivity)"
},
{
"id": 113,
"match": false,
"ground_truth": "simp [phi_add] at this",
"model_output": "rw [phi_add] at this"
},
{
"id": 114,
"match": false,
"ground_truth": "have h_eq : {z | f z ≤ α} = f ⁻¹' Iic α ∩ univ := by\n ext z\n simp [Set.mem_setOf_eq, Set.mem_preimage, Set.mem_Iic]",
"model_output": "simp at hu_eq"
},
{
"id": 115,
"match": false,
"ground_truth": "lift t to ℝ using ⟨LT.lt.ne_top fx_le_top, LT.lt.ne_bot fx_ge_bot⟩",
"model_output": "rw [← EReal.coe_toReal fx_ge_bot fx_le_top]"
},
{
"id": 116,
"match": false,
"ground_truth": "rcases zin with ⟨u,hux,hufx,hv⟩",
"model_output": "rcases zin with ⟨u, ⟨uconv, uconv2, uconv3⟩⟩"
},
{
"id": 117,
"match": false,
"ground_truth": "by linarith",
"model_output": "linarith [h.1]"
},
{
"id": 118,
"match": false,
"ground_truth": "apply convexHull_min (union_subset h1 h2) cone_conv_s_t.convex",
"model_output": "apply convexHull_min ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?"
},
{
"id": 119,
"match": false,
"ground_truth": "have hΦ : ∃ r_Φ, range Φ ⊆ Metric.ball 0 r_Φ := by apply Φ_isBounded'",
"model_output": "rcases admm_kkt with ⟨_, h₁, h₂⟩\n use max (‖A₁‖ + ‖A₂‖) 1\n intro x\n rw [range_subset_iff]\n intro x\n rw [Function.comp_apply, Function.comp_apply]\n apply add_mem_ball_zero\n apply add_mem_ball_zero\n · apply h₁\n · apply h₂"
},
{
"id": 120,
"match": true,
"ground_truth": "· simp",
"model_output": "simp"
},
{
"id": 121,
"match": false,
"ground_truth": "have : Tendsto (fun n => ‖A₁ (e₁ n) + A₂ (e₂ n)‖ ^ 2) atTop (𝓝 0) := by\n apply Summable.tendsto_atTop_zero Summable₁\n apply square_converge_zero₁ this",
"model_output": "have h₁ : Tendsto (fun n => ‖A₁ (e₁ n) + A₂ (e₂ n)‖) atTop (𝓝 ‖A₁ (e₁) + A₂ (e₂)‖) := by\n apply Continuous.tendsto; apply Continuous.norm; apply Continuous.add\n · apply ContinuousLinearMap.continuous\n · apply ContinuousLinearMap.continuous\n have h₂ : ‖A₁ (e₁) + A₂ (e₂)‖ = 0 := by\n rw [e₁_converge_zero, e"
},
{
"id": 122,
"match": false,
"ground_truth": "rw[← EReal.coe_toReal (x := f x) hfx (LT.lt.ne_bot (hsf.uninfinity x hx))]",
"model_output": "rw [← EReal.coe_toReal (hsf.ne_bot_of_convex hf hfcl hs x hx) hfx]"
},
{
"id": 123,
"match": false,
"ground_truth": "by_cases u₁_eq_0 : u₁ = 0",
"model_output": "have : u₁ ∈ (span 𝕜 (Set.range hT.v))ᗮ := by\n rw [hu₁]; apply Finsupp.sum_mem_span; intro x _; apply smul_mem"
},
{
"id": 124,
"match": false,
"ground_truth": "apply mul_pos",
"model_output": "linarith [kpos]"
},
{
"id": 125,
"match": true,
"ground_truth": "exact this",
"model_output": "exact this"
},
{
"id": 126,
"match": false,
"ground_truth": "intro y",
"model_output": "intro y hy_neq\n simp [C, hy_neq]"
},
{
"id": 127,
"match": true,
"ground_truth": "calc\n _= inner ℝ (u (n) - (- A₁† y')) (x₁ (n) - x₁') := by simp\n _≥ (0 : ℝ) := by\n apply subgradientAt_mono\n · apply u_inthesubgradient\n · exact admm_kkt.h.subgrad₁",
"model_output": "apply subgradientAt_mono\n · apply u_inthesubgradient\n · exact admm_kkt.h.subgrad₁"
},
{
"id": 128,
"match": false,
"ground_truth": "simp [grad_fun_comp,grad_comp] at h",
"model_output": "simp [grad_fun_comp, grad_snd] at h ⊢"
},
{
"id": 129,
"match": true,
"ground_truth": "exact hu₂",
"model_output": "exact hu₂"
},
{
"id": 130,
"match": false,
"ground_truth": "apply Finset.card_eq_zero.2",
"model_output": "have h1 : ∀ i, ∑ j, A i j = 1 := h_row_eq\n have h2 : ∀ j, ∑ i, A i j = 1 := h_col_eq\n simp [h1, h2]"
},
{
"id": 131,
"match": true,
"ground_truth": "exact False.elim (by simp at this)",
"model_output": "simp at this"
},
{
"id": 132,
"match": false,
"ground_truth": "simp",
"model_output": "linarith [sq_nonneg b]"
},
{
"id": 133,
"match": false,
"ground_truth": "rw [← add_assoc, ← add_assoc]",
"model_output": "rw [add_add_add_comm, add_comm (a • i.1), add_comm (b • j.1)]"
},
{
"id": 134,
"match": false,
"ground_truth": "simp",
"model_output": "rw [Metric.mem_ball, dist_zero_right]"
},
{
"id": 135,
"match": false,
"ground_truth": "intro y yin z zin a b anneg bnneg absum1",
"model_output": "intro x1 hx1 y hy a b ha hb hab\n have h1 := hfun (by simp) (by simp) ha hb hab\n have h2 := hfun (by simp) (by simp) ha hb hab\n have h3 := hfun (by simp) (by simp) ha hb hab\n have h4 := hfun (by simp) (by simp) ha hb hab\n have h5 := hfun (by simp) (by simp) ha hb hab\n have h6 := hfun (by simp) (by simp) ha hb hab"
},
{
"id": 136,
"match": false,
"ground_truth": "gcongr",
"model_output": "apply mul_lt_mul_of_pos_left _ (by simp) (by positivity) (by positivity)"
},
{
"id": 137,
"match": false,
"ground_truth": "have hzd : ∀ n, d n = z n - loc := fun _ => eq_sub_of_add_eq' rfl",
"model_output": "have hz : ∀ n, z n ∈ s1 := by\n intro n\n simp [s1]; apply εball\n constructor\n · simp [Metric.mem_ball]; linarith [Real.dist_eq.1 (Metric.mem_ball.1 (ha n (le_of_lt (by linarith))))]\n · simp [s1]; apply ha n (le_of_lt (by linarith))"
},
{
"id": 138,
"match": false,
"ground_truth": "rfl",
"model_output": "have h1 : r1 = ‖A₂‖ := by apply norm_A₂\n have h2 : r2 = ‖A₁‖ := by apply norm_A₁\n rw[h1, h2]; exact Eq.symm (add_comm ‖A₁‖ ‖A₂‖)"
},
{
"id": 139,
"match": false,
"ground_truth": "rw [mul_one] at htp",
"model_output": "linarith [mul_one b] at htp"
},
{
"id": 140,
"match": false,
"ground_truth": "apply Continuous.tendsto",
"model_output": "apply Continuous.tendsto\n apply ContinuousLinearMap.continuous"
},
{
"id": 141,
"match": false,
"ground_truth": "by\n have h₁: Tendsto A₂ (𝓝 0) (𝓝 (A₂ 0)) := by\n apply Continuous.tendsto; apply ContinuousLinearMap.continuous\n simp at h₁; apply Filter.tendsto_iff_seq_tendsto.1 h₁; apply e₂_subseq_converge_zero",
"model_output": "have : (fun n => A₂ (e₂ (φ n))) = (fun n => (A₂ ∘ e₂) (φ n)) := by rfl\n rw[this]\n apply Filter.tendsto_iff_seq_tendsto.1 (A₂.continuous.tendsto 0)\n apply e₂_subseq_converge_zero fullrank₁ fullrank₂\n apply Filter.tendsto_iff_seq_tendsto.1 (φ_subseq_converge_zero fullrank₁ fullrank₂)\n apply Filter.tendsto_iff_seq_tendsto.1 (A₂.contin"
},
{
"id": 142,
"match": false,
"ground_truth": "apply A₁e₁_converge_zero",
"model_output": "have h₁ : Tendsto A₁ (𝓝 0) (𝓝 (A₁ 0)) := by\n apply Continuous.tendsto; apply ContinuousLinearMap.continuous\n simp at h₁; apply Filter.tendsto_iff_seq_tendsto.1 h₁; apply e₁_subseq_converge_zero\n apply Filter.tendsto_iff_seq_tendsto.1 h₁; apply e₁_subseq_converge_zero\n apply Filter.tendsto_iff_seq_tendsto.1 h₁; apply e₁_subseq_converge_zero\n apply Filter"
},
{
"id": 143,
"match": true,
"ground_truth": "intro j",
"model_output": "intro j"
},
{
"id": 144,
"match": false,
"ground_truth": "rw[this]",
"model_output": "rw [this]"
},
{
"id": 145,
"match": false,
"ground_truth": "· simp; linarith [μpos]",
"model_output": "apply inv_nonneg.mpr μpos.le"
},
{
"id": 146,
"match": false,
"ground_truth": "ext x",
"model_output": "ext x\n rw [mul_div_assoc, div_mul_comm, mul_div_assoc, div_self, mul_one, mul_div_assoc]\n rw [mul_div_assoc, div_self, mul_one]\n ring_nf"
},
{
"id": 147,
"match": false,
"ground_truth": "have xBall_in_U : xBall ⊆ U := by\n apply l1Ball_sub_convexHull r_pos hn",
"model_output": "have xBall_in_U : xBall ⊆ U := by\n apply subset_interior_of_mem_nhds\n exact mem_nhdsWithin.mpr ⟨xBall, xBall_isopen, x_in_xBall⟩"
},
{
"id": 148,
"match": false,
"ground_truth": "rw [← zero_pow]",
"model_output": "have : Tendsto (fun n => ‖A₁ (e₁ (φ n)) + A₂ (e₂ (φ n))‖ ^ 2) atTop (𝓝 (‖A₁ (e₁ (φ)) + A₂ (e₂ (φ))‖ ^ 2)) := by\n apply Filter.tendsto_pow\n apply tendsto_norm_add_A₁e₁_A₂e₂_subseq_converge_zero fullrank₁ fullrank₂\n rw [this]\n apply Filter.tendsto_iff_seq_tendsto.1 (norm_subseq_converge_zero"
},
{
"id": 149,
"match": false,
"ground_truth": "apply mul_nonneg",
"model_output": "apply mul_nonneg\n · apply mul_nonneg\n · apply le_of_lt h1\n · apply le_of_lt h2\n · apply sq_nonneg"
},
{
"id": 150,
"match": false,
"ground_truth": "by simp at h; simpa [h]",
"model_output": "simp at h ⊢"
},
{
"id": 151,
"match": false,
"ground_truth": "rw [← mul_neg]",
"model_output": "rw [← neg_inj, neg_neg, ← mul_neg, neg_inj, neg_neg, neg_inj, neg_neg]"
},
{
"id": 152,
"match": true,
"ground_truth": "exact h",
"model_output": "exact h"
},
{
"id": 153,
"match": false,
"ground_truth": "by rw [z]; simp; left; rw [z]; simp",
"model_output": "rw [z]; simp; left; rw [z]; simp; left; rw [z]; simp; left; rw [z]; simp; left; simp [dk k]"
},
{
"id": 154,
"match": false,
"ground_truth": "· simp\n apply neg_le.mpr\n · have pos: - 0 ≤ ε * ‖y - x‖:=by\n simp\n rw [mul_comm]\n apply (mul_nonneg_iff_left_nonneg_of_pos εpos).mpr\n simp\n apply pos",
"model_output": "apply neg_mul_le_zero.mpr"
},
{
"id": 155,
"match": false,
"ground_truth": "rcases this with ⟨z_, _, α, ⟨monoa, conv⟩⟩",
"model_output": "rcases this with ⟨z_,_,α,⟨monotoneα,converge⟩⟩"
},
{
"id": 156,
"match": false,
"ground_truth": "intro n x",
"model_output": "intro n x\n apply ADMM_iter_process₂' n x\n apply ADMM_iter_process₁' n x\n apply ADMM_iter_process₂' n x\n apply ADMM_iter_process₁' n x\n apply ADMM_iter_process₂' n x\n apply ADMM_iter_process₁' n x\n apply ADMM_iter_process₂' n x\n apply ADMM_iter_process₁' n x\n apply ADMM_iter_process₂' n x\n apply ADMM_iter_process₁' n x\n apply ADMM_iter_process₂' n x\n apply AD"
},
{
"id": 157,
"match": false,
"ground_truth": "simp [coef.mem_support_toFun]; rfl",
"model_output": "simp [Finset.mem_filter, Ne]"
},
{
"id": 158,
"match": false,
"ground_truth": "simp only [Set.mem_union, Set.mem_iUnion, Set.mem_singleton_iff]",
"model_output": "by_cases h : i = n + 1"
},
{
"id": 159,
"match": false,
"ground_truth": "have h2 : ‖x + xx - xx‖ ≤ ‖x + xx‖ + ‖xx‖ := by apply norm_sub_le",
"model_output": "rw [add_sub, add_sub_assoc, add_sub_cancel, add_comm, add_sub, add_sub_assoc, add_sub_cancel] at h1"
},
{
"id": 160,
"match": true,
"ground_truth": "apply eq4 u v",
"model_output": "apply eq4 u v"
},
{
"id": 161,
"match": false,
"ground_truth": "have : IsClosed ((MM x).carrier ∩ (f.Epi univ)) := by\n rw [ht]; exact IsClosed.prod isClosed_singleton isClosed_Ici",
"model_output": "have h14 : (MM x).carrier ∩ intrinsicInterior (dom univ f) ≠ ∅ := by\n rw [intrinsicInterior_epi_eq_epi_intrinsicInterior hc hx]\n exact hi'"
},
{
"id": 162,
"match": false,
"ground_truth": "simp [z]",
"model_output": "rw [convex_iff_segment_subset] at hs\n apply hs x xin y yin\n simp; constructor\n · linarith\n · linarith\n · simp; linarith [absum1]"
},
{
"id": 163,
"match": false,
"ground_truth": "by\n apply Tendsto.norm\n apply Tendsto.sub_const\n apply Tendsto.add\n · apply Satisfying_equational_constraint1\n · apply Satisfying_equational_constraint2",
"model_output": "apply Filter.tendsto_iff_seq_tendsto.1\n (Continuous.tendsto (fun x => ‖A₁ x₁ + A₂ x₂ - b‖) (𝓝 (A₁ x₁ + A₂ x₂ - b)) _)\n (x₁_subseq_converge x₂_subseq_converge)"
},
{
"id": 164,
"match": false,
"ground_truth": "· have h0 : ∑ j, C x j = ∑ j, A x j := by\n dsimp [C]\n simp [h]\n rw [← h0]\n exact h_sum_lt",
"model_output": "have h1 : ∑ j, C x j = ∑ j, A x j := by\n have h2 : x ≠ i := h\n have h3 : ∑ j, C x j = ∑ j, A x j := by\n apply Finset.sum_congr\n · simp\n · intro y _\n exact hC_DoublySubStochastic.1 y x h3\n exact h3\n rw [h1] at h_sum_lt\n exact h_sum_lt"
},
{
"id": 165,
"match": false,
"ground_truth": "dsimp [ey_diff, t_Ax_Ax_n1, t_A_diff_x', A2_e2_n1, A2_e2_n]\n linarith [Φ_isdescending_inequ5 n]",
"model_output": "rw [ey_diff, t_Ax_Ax_n1, t_A_diff_x', A2_e2_n1, A2_e2_n]"
},
{
"id": 166,
"match": false,
"ground_truth": "intro n",
"model_output": "intro n\n apply ADMM_iter_process₁ n"
},
{
"id": 167,
"match": false,
"ground_truth": "· apply ContinuousOn.comp (g := f₁) (f := fun x ↦ x + x₀) (t := univ) hcon\n · apply ContinuousOn.add continuousOn_id continuousOn_const\n · simp",
"model_output": "· apply ContinuousOn.comp hcon (continuousOn_id.add continuousOn_const) fun x _ => x₀"
},
{
"id": 168,
"match": false,
"ground_truth": "simp only [one_div, mul_inv_rev, add_sub_cancel_right]",
"model_output": "rw [smul_smul, ← mul_assoc, mul_div_assoc, mul_div_assoc, mul_div_assoc, mul_div_assoc]\n simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp"
},
{
"id": 169,
"match": false,
"ground_truth": "suffices 0 ≤ (a1 • tx + b1 • ty) by exact this",
"model_output": "intro i\n simp [tx, ty]\n apply add_nonneg\n · apply smul_nonneg\n · linarith [txcond i]\n · simp\n · apply smul_nonneg\n · linarith [bnng]\n · simp [tycond i]"
},
{
"id": 170,
"match": false,
"ground_truth": "by\n rw [sub_right_comm]",
"model_output": "rw [sub_right_comm, norm_sub_rev]"
},
{
"id": 171,
"match": false,
"ground_truth": "intro i hi",
"model_output": "intro x hx\n apply iSup₂_le\n intro y hy\n exact ht1 y hy"
},
{
"id": 172,
"match": false,
"ground_truth": "apply le_trans (Nat.le_add_left ax N)",
"model_output": "apply le_trans (Nat.le_add_left ax (φ n)) (hax (φ n) (hmφ n))"
},
{
"id": 173,
"match": false,
"ground_truth": "rw [hdomain]; trivial",
"model_output": "rw [hdomain]; simp [z]"
},
{
"id": 174,
"match": false,
"ground_truth": "rfl",
"model_output": "simp [xeq]"
},
{
"id": 175,
"match": false,
"ground_truth": "exact trivial",
"model_output": "simp [Finset.mem_erase] at *"
},
{
"id": 176,
"match": false,
"ground_truth": "simp",
"model_output": "apply sq_nonneg"
},
{
"id": 177,
"match": false,
"ground_truth": "intro _ epos",
"model_output": "intro ε εpos"
},
{
"id": 178,
"match": true,
"ground_truth": "intro n",
"model_output": "intro n"
},
{
"id": 179,
"match": false,
"ground_truth": "simp",
"model_output": "rw [abs_of_nonneg (by positivity), mul_pow, mul_pow, mul_assoc, mul_assoc, mul_assoc, mul_assoc]\n field_simp [hσ_zero, hu_zero]"
},
{
"id": 180,
"match": false,
"ground_truth": "· simp",
"model_output": "simp [Metric.tendsto_nhds]"
},
{
"id": 181,
"match": false,
"ground_truth": "simp at hu",
"model_output": "apply h_Ω1 u (hO1 hu.1) hu.2.1 hu.2.2"
},
{
"id": 182,
"match": false,
"ground_truth": "lift ⨆ u, Real.toEReal (inner ℝ u x) - f u to ℝ with c",
"model_output": "apply add_le_add supa supb"
},
{
"id": 183,
"match": false,
"ground_truth": "simp at vt1",
"model_output": "have vt2 : ∀ᶠ a : ℕ in atTop, ‖1 / c a‖ ≤ ‖v‖ + ε := by\n apply Filter.Eventually.mp (tendsto_one_div_atTop_nhds_zero_nat.eventually (gt_mem_nhds εpos)) _\n simp [Metric.mem_nhds_iff]"
},
{
"id": 184,
"match": false,
"ground_truth": "rw [pow_two]",
"model_output": "rw [mul_assoc, ← mul_div_assoc, mul_div_assoc, mul_div_assoc, mul_div_assoc, ← mul_div_assoc]\n simp; field_simp; linarith [alg.tpos]"
},
{
"id": 185,
"match": false,
"ground_truth": "rcases exist_open_sub_finite_cover with ⟨t, ht1, ht2, ht3⟩",
"model_output": "rcases exist_open_sub_finite_cover with ⟨b', h1, h2, h3⟩"
},
{
"id": 186,
"match": false,
"ground_truth": "intro b _",
"model_output": "intro b hb"
},
{
"id": 187,
"match": false,
"ground_truth": "ring",
"model_output": "rw [mul_assoc,mul_assoc,mul_comm,mul_assoc,mul_comm,mul_assoc,mul_comm,mul_assoc,mul_comm,mul_assoc,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,m"
},
{
"id": 188,
"match": true,
"ground_truth": "exact hcf",
"model_output": "exact hcf"
},
{
"id": 189,
"match": false,
"ground_truth": "ring_nf",
"model_output": "rw [add_comm, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub,"
},
{
"id": 190,
"match": false,
"ground_truth": "simp",
"model_output": "simp [affSpan_iff]"
},
{
"id": 191,
"match": false,
"ground_truth": "simp [FeasSet, FeasPoint] at xf",
"model_output": "rw [hab]"
},
{
"id": 192,
"match": false,
"ground_truth": "· simp [hx]",
"model_output": "· left; right; exact hx"
},
{
"id": 193,
"match": false,
"ground_truth": "have eq0 : inner ℝ (f' (z + d • (y - z)) - f' (x + c • (z - x))) (y - x) = (0 : ℝ) := by\n contrapose! eq3\n rw [mul_ne_zero_iff]\n constructor\n · rw [mul_ne_zero_iff]; constructor <;> linarith\n · exact eq3",
"model_output": "have : a • b • (y - x) = b • (y - x) := by\n rw [smul_comm, smul_comm b]\n exact smul_left_cancel₀ (by linarith) (by simp) (by simp)"
},
{
"id": 194,
"match": false,
"ground_truth": "by ring",
"model_output": "rw [one_div, mul_comm, mul_div_assoc, mul_div_assoc, mul_div_assoc, mul_div_assoc]"
},
{
"id": 195,
"match": false,
"ground_truth": "by\n rw[sign_mul_abs]\n field_simp [bi_pos i]",
"model_output": "rw [mul_div_assoc, div_self, mul_div_assoc, div_self, mul_div_assoc, div_self, mul_one]"
},
{
"id": 196,
"match": false,
"ground_truth": "have : (fun n => Φ (φ n)) = (fun n => (1 / (τ * ρ)) * ‖ey (φ n)‖^2 +\n ρ * ‖A₂ (e₂ (φ n))‖^2 +\n ((max (1-τ) (1-(1/τ)))*ρ) * ‖A₁ (e₁ (φ n)) + A₂ (e₂ (φ n))‖^2) := by\n funext n; rw [Φ, Ψ]",
"model_output": "have h_add'' := Filter.tendsto_add h_add' tendsto_const_nhds"
},
{
"id": 197,
"match": true,
"ground_truth": "· simp [V₂]",
"model_output": "· simp [V₂]"
},
{
"id": 198,
"match": false,
"ground_truth": "intro s",
"model_output": "intro s g hs hsum i"
},
{
"id": 199,
"match": false,
"ground_truth": "rw[zero_add]",
"model_output": "rw [zero_add]"
},
{
"id": 200,
"match": false,
"ground_truth": "linarith",
"model_output": "linarith [this, kleaw]"
},
{
"id": 201,
"match": false,
"ground_truth": "repeat apply mul_nonneg",
"model_output": "· apply mul_nonneg\n · apply mul_nonneg\n · linarith [inv_pos.mpr h1]\n · apply sq_nonneg\n · apply sq_nonneg"
},
{
"id": 202,
"match": false,
"ground_truth": "exact Eq.symm (Nat.add_sub_of_le kge)",
"model_output": "rw [add_comm, Nat.sub_add_cancel]"
},
{
"id": 203,
"match": true,
"ground_truth": "rw [Filter.tendsto_congr' this]",
"model_output": "rw [Filter.tendsto_congr' this]"
},
{
"id": 204,
"match": false,
"ground_truth": "intro c1",
"model_output": "intro c1 hc1\n apply Eventually.mp (tendsto_zero_iff_norm_tendsto_zero.mp (t5)) hc1"
},
{
"id": 205,
"match": false,
"ground_truth": "exact min_le_right δ₀ δ₂",
"model_output": "apply min_le_right δ₀ δ₂"
},
{
"id": 206,
"match": false,
"ground_truth": "simp",
"model_output": "rw [alg.step₁ k, alg.step₁ k]"
},
{
"id": 207,
"match": false,
"ground_truth": "simp",
"model_output": "simp [hσ_pos'.1]"
},
{
"id": 208,
"match": false,
"ground_truth": "rw[← mul_div]",
"model_output": "ring_nf"
},
{
"id": 209,
"match": false,
"ground_truth": "simp",
"model_output": "apply Nat.zero_le"
},
{
"id": 210,
"match": false,
"ground_truth": "intro c",
"model_output": "intro c hc"
},
{
"id": 211,
"match": false,
"ground_truth": "intro i",
"model_output": "intro b hb"
},
{
"id": 212,
"match": false,
"ground_truth": "dsimp [M]",
"model_output": "rw [M]"
},
{
"id": 213,
"match": false,
"ground_truth": "intro v",
"model_output": "intro v\n simp [ContinuousLinearMap.coe_toLinearMap]"
},
{
"id": 214,
"match": false,
"ground_truth": "by exact this",
"model_output": "simp [u, v]"
},
{
"id": 215,
"match": true,
"ground_truth": "apply lt_min δ₀pos (lt_min δ₄pos δ₅pos)",
"model_output": "apply lt_min δ₀pos (lt_min δ₄pos δ₅pos)"
},
{
"id": 216,
"match": false,
"ground_truth": "apply εpos",
"model_output": "linarith [εpos]"
},
{
"id": 217,
"match": false,
"ground_truth": "linarith [eq1]",
"model_output": "linarith [alg.γbound k]"
},
{
"id": 218,
"match": false,
"ground_truth": "· apply Finset.sum_pos\n · intro i _; apply (alg.ha i)\n · simp",
"model_output": "apply Finset.sum_pos\n · intro i _; apply (alg.ha i)\n · simp [alg.ha]"
},
{
"id": 219,
"match": false,
"ground_truth": "linarith [a1leab]",
"model_output": "linarith [monoa (by linarith [Nat.lt_of_add_one_le a1leab])]"
},
{
"id": 220,
"match": false,
"ground_truth": "rw [←sub_add,norm_add_sq_real,←sub_add,norm_add_sq_real] at ieq",
"model_output": "rw [← add_assoc] at ieq"
},
{
"id": 221,
"match": false,
"ground_truth": "simp at din",
"model_output": "constructor <;> linarith [din.1, din.2]"
},
{
"id": 222,
"match": false,
"ground_truth": "have : (alg.x (α q -1),alg.y (α q -1)) ∈ Metric.closedBall (0 : WithLp 2 (E × F)) C1 := by\n apply mem_closedBall_iff_norm.mpr; simp\n apply inin (alg.x (α q -1),alg.y (α q -1))\n exact mem_image_of_mem alg.z trivial",
"model_output": "apply sq (alg.z (α q - 1)) _"
},
{
"id": 223,
"match": false,
"ground_truth": "by\n rw [WithLp.prod_norm_eq_of_L2]; simp\n exact (Real.le_sqrt (norm_nonneg _) (Left.add_nonneg (sq_nonneg _) (sq_nonneg _))).mpr\n (le_add_of_nonneg_right (sq_nonneg _))",
"model_output": "apply norm_fst_le_prod"
},
{
"id": 224,
"match": false,
"ground_truth": "intro a t hat IH w hw_pos' hw_sum' hmem'",
"model_output": "intro a s _ h1 h2 h3 h4 h5\n have h1' : a ∉ s := by assumption\n have h2' : ∀ i ∈ s, 0 ≤ w i := by\n intro i hi\n apply h2\n simp\n exact hi\n have h3' : ∑ i ∈ s, w i = 1 := by\n apply h3\n simp\n have h4' : ∀ i ∈ s, i ∈ (convexHull ℝ) ↑u' := by\n intro i hi\n apply h4"
},
{
"id": 225,
"match": false,
"ground_truth": "by\n apply add_lt_add\n · apply ha₁ b hba₁\n · apply ha₂ b hba₂",
"model_output": "apply add_lt_add (ha₁ b hba₁) (ha₂ b hba₂)"
},
{
"id": 226,
"match": false,
"ground_truth": "exact inv_sub_inv l' h₁",
"model_output": "rw [inv_sub_inv l' h₁]"
},
{
"id": 227,
"match": true,
"ground_truth": "apply hpos'",
"model_output": "apply hpos'"
},
{
"id": 228,
"match": false,
"ground_truth": "apply Set.add_subset_add_right",
"model_output": "apply add_subset_add_right\n (subset_iUnion₂_of_subset i₀ (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset\n (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset\n (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset\n (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset\n (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset"
},
{
"id": 229,
"match": false,
"ground_truth": "rw [y1, y2]",
"model_output": "rw [y1, y2] at h5"
},
{
"id": 230,
"match": true,
"ground_truth": "linarith [hγ]",
"model_output": "linarith [hγ]"
},
{
"id": 231,
"match": true,
"ground_truth": "apply norm_sub_le",
"model_output": "apply norm_sub_le"
},
{
"id": 232,
"match": false,
"ground_truth": "have h1 := hk (fun q ↦ alg.x (α q) - alg.x (α q - 1)) diflte1 (ε / (γ * l) / 3) (by positivity)",
"model_output": "apply Eventually.mp (diflte1 ε epos) (1 / (γ * l)) (by positivity)"
},
{
"id": 233,
"match": false,
"ground_truth": "intro n",
"model_output": "intro n\n apply And.intro\n · exact (allh' (n + 1) (Nn n)).1\n apply Filter.tendsto_iff_seq_tendsto.2\n intro k\n apply (allh' (n + 1) (Nn n)).2.2\n apply Filter.tendsto_iff_seq_tendsto.1 (vnkt (n + 1))\n apply Filter.tendsto_iff_seq_tendsto.1 (vnkt n)\n apply Filter.tendsto_iff_seq_tendsto.1 (xnkt (n + 1"
},
{
"id": 234,
"match": false,
"ground_truth": "by\n apply zp5",
"model_output": "rw [zp5]"
},
{
"id": 235,
"match": false,
"ground_truth": "by\n apply Simplifying₂\n apply h₁\n apply norm_nonneg",
"model_output": "rw [mul_assoc, mul_assoc, mul_comm, mul_assoc, mul_comm, mul_assoc, mul_comm, mul_comm]"
},
{
"id": 236,
"match": false,
"ground_truth": "refine LICQ_injM z m Z Ax ?_ mlen ?_ eq2 eq1 ⟨heq1, heq2⟩",
"model_output": "have : Zᵀ *ᵥ z = 0 := heq2\n have : Zᵀ *ᵥ z = 0 := this\n have : Zᵀ *ᵥ z = 0 := this\n have : Zᵀ *ᵥ z = 0 := this\n have : Zᵀ *ᵥ z = 0 := this\n have : Zᵀ *ᵥ z = 0 := this\n have : Zᵀ *ᵥ z = 0 := this\n have : Zᵀ *ᵥ z = 0 := this\n have : Zᵀ *ᵥ z = 0 := this"
},
{
"id": 237,
"match": false,
"ground_truth": "apply le_trans",
"model_output": "apply le_trans Nge (by linarith)"
},
{
"id": 238,
"match": false,
"ground_truth": "apply mul_eq_mul_left_iff.mpr",
"model_output": "rw [norm_smul, norm_div, norm_one, one_mul]"
}
]
}