clone / evaluation /valid_score_in_200.json
chenyili818's picture
Add files using upload-large-folder tool
661c54a verified
{
"summary": {
"total_with_gt": 239,
"matched": 46,
"accuracy": 0.19246861924686193
},
"details": [
{
"id": 0,
"match": false,
"ground_truth": "apply HasDerivAt.sub",
"model_output": "apply HasDerivAt.sub\n · exact hasDerivAt_const t 1\n exact hasDerivAt_id' t"
},
{
"id": 1,
"match": false,
"ground_truth": "have : (fun (t : ℝ) => c⁻¹ * t) = (fun t => t * c⁻¹) := by ext t; ring",
"model_output": "apply HasDerivAt.const_mul' c⁻¹ (hasDerivAt_id' x)"
},
{
"id": 2,
"match": true,
"ground_truth": "rw [← EReal.coe_sub]",
"model_output": "rw [← EReal.coe_sub]"
},
{
"id": 3,
"match": false,
"ground_truth": "ext x",
"model_output": "exact convex_indicator_empty"
},
{
"id": 4,
"match": true,
"ground_truth": "exact ah",
"model_output": "exact ah"
},
{
"id": 5,
"match": false,
"ground_truth": "lift a to ℝ using ⟨ha1, ha2⟩\n lift b to ℝ using ⟨hb1, hb2⟩\n rw [← EReal.coe_sub]\n apply bot_lt_iff_ne_bot.2\n let c := a - b\n suffices Real.toEReal c ≠ ⊥ by exact this\n simp",
"model_output": "lift a to ℝ using ⟨ha1, ha2⟩\n lift b to ℝ using ⟨hb1, hb2⟩\n exact bot_lt_iff_ne_bot.2 (sub_ne_bot_of_real ha1 hb1)"
},
{
"id": 6,
"match": false,
"ground_truth": "lift a to ℝ using ⟨ha1, ha2⟩",
"model_output": "have : b - b = 0 := by exact EReal.coe_sub_coe_eq_zero_iff.mpr rfl\n rw [this]; simp"
},
{
"id": 7,
"match": true,
"ground_truth": "apply hasDerivAt_mul_const c⁻¹",
"model_output": "apply hasDerivAt_mul_const"
},
{
"id": 8,
"match": false,
"ground_truth": "by\n use Aφ (A := A) (x := x) H\n exact ⟨Aφ_mono (A := A) (x := x) H, α_subseq_converge (Aφ_sub H)⟩",
"model_output": "have := H"
},
{
"id": 9,
"match": false,
"ground_truth": "· rw [ha1];simp",
"model_output": "· rw [ha1]; simp"
},
{
"id": 10,
"match": false,
"ground_truth": "let g : EReal ≃o EReal := ⟨g', by simp [g'];apply add_le_add_right a⟩",
"model_output": "have : (g' (⨆ m ∈ s, f m)) = ⨆ m ∈ s, g' (f m) := by\n apply OrderIso.map_biSup g' s f\n exact ⟨fun x => x, fun x => x, fun x y => by simp⟩\n exact ⟨fun x => x, fun x => x, fun x y => by simp⟩\n exact ⟨fun x => x, fun x => x, fun x y => by simp⟩\n exact ⟨fun x => x, fun x => x, fun x y => by simp⟩"
},
{
"id": 11,
"match": false,
"ground_truth": "ext i j",
"model_output": "simp [g, h]"
},
{
"id": 12,
"match": false,
"ground_truth": "apply glt",
"model_output": "have : g = 1 := by\n simp at hg\n linarith [hg]"
},
{
"id": 13,
"match": true,
"ground_truth": "apply add_le_add_right a",
"model_output": "apply add_le_add_right a"
},
{
"id": 14,
"match": false,
"ground_truth": "left",
"model_output": "left; exact hdomsf"
},
{
"id": 15,
"match": false,
"ground_truth": "ext j",
"model_output": "simp [Matrix.mulVec]"
},
{
"id": 16,
"match": false,
"ground_truth": "intro i",
"model_output": "intro i j\n simp only [one_apply_eq, mul_apply]\n split_ifs with h\n · exact (hdiag i).choose_spec\n · exact False.elim (h (A i i))"
},
{
"id": 17,
"match": false,
"ground_truth": "· intro h; by_contra! hs\n obtain ⟨x, xs⟩:= Set.nonempty_def.1 hs\n have h1: s.convex_indicator x = 0 := by\n simp [convex_indicator]; exact xs\n have h2 := congrFun h x; simp [h1] at h2",
"model_output": "· intro h\n by_contra hs\n simp [convex_indicator] at h\n rw [h] at hs\n exact hs rfl"
},
{
"id": 18,
"match": false,
"ground_truth": "constructor",
"model_output": "constructor\n · intro h x hx\n simp at *\n exact ⟨hx.1, le_trans (h x.1 hx.1) hx.2⟩\n intro h x hx\n specialize h ⟨hx, le_refl (g x)⟩\n simp at h\n exact h.2"
},
{
"id": 19,
"match": false,
"ground_truth": "by_cases hA : A = 0",
"model_output": "intro x\n apply HasGradientAt.const_mul\n apply HasGradientAt.dotProduct\n · apply HasGradientAt.const_mul\n exact hasGradientAt_mulVec x\n · exact hasGradientAt_mulVec x"
},
{
"id": 20,
"match": false,
"ground_truth": "by norm_num",
"model_output": "norm_num [a]"
},
{
"id": 21,
"match": false,
"ground_truth": "by\n obtain hcon := subdifferential_subset f x₀\n apply hcon; exact first_order_optimality_condition f x₀ hx",
"model_output": "apply first_order_optimality_condition f x₀ hx"
},
{
"id": 22,
"match": true,
"ground_truth": "exact h",
"model_output": "exact h"
},
{
"id": 23,
"match": false,
"ground_truth": "by\n have : (fun x ↦ (inner (ℝ) x a : ℝ)) = fun x ↦ (inner (ℝ) a x : ℝ) := by\n ext y; exact real_inner_comm a y\n rw [this]; apply gradient_of_inner_const",
"model_output": "apply HasGradient_iff_Convergence_Point.mpr\n intro ε εpos\n use a\n intro y\n have : ⟪y, a⟫_ℝ - ⟪x, a⟫_ℝ = ⟪y - x, a⟫_ℝ := by rw [inner_sub_left]\n rw [this]\n apply real_inner_le_norm\n apply le_of_lt εpos"
},
{
"id": 24,
"match": false,
"ground_truth": "refine Eq.symm (CancelDenoms.inv_subst (hA j) ?_)\n refine prod_erase_mul univ (fun «x» ↦ A «x» «x») ?_\n exact mem_univ j",
"model_output": "refine (prod_erase_mul univ (fun i => A i i) (by exact mem_univ j)).symm"
},
{
"id": 25,
"match": false,
"ground_truth": "intro x y hy",
"model_output": "intro x y hy\n by_cases hx : x ∈ C\n · simp [hx] at hy; simp [hx]; exact eventually_of_forall (fun x' => hy.trans_le (if_le_right (by simp [hx])) )\n simp [hx] at hy; simp [hx]; exact eventually_of_forall (fun x' => hy.trans_le (if_le_right (by simp [hx])) )"
},
{
"id": 26,
"match": true,
"ground_truth": "simp [LowerSemicontinuousHull]",
"model_output": "simp [LowerSemicontinuousHull]"
},
{
"id": 27,
"match": false,
"ground_truth": "simp at hfy",
"model_output": "have : f y = ⊤ := by\n by_contra hfy'\n exact (lt_of_le_of_ne hfy hfy').ne rfl"
},
{
"id": 28,
"match": false,
"ground_truth": "rw [Fin.sum_univ_succ]",
"model_output": "have : ∀ i, f i.succ ≠ ⊥ := fun i ↦ p i.succ"
},
{
"id": 29,
"match": true,
"ground_truth": "by_cases hx2 : f x = ⊥",
"model_output": "by_cases hx2 : f x = ⊥"
},
{
"id": 30,
"match": false,
"ground_truth": "rw [@mem_iInter]",
"model_output": "rw [mem_iInter] at hx ⊢\n intro i\n apply intrinsicClosure_mono (fun x a ↦ a i) hx"
},
{
"id": 31,
"match": false,
"ground_truth": "rcases h with ⟨δ, dpos, h⟩",
"model_output": "rcases h with ⟨δ, ⟨dpos, h⟩⟩\n use δ; constructor\n · exact dpos\n intro x'; simp at h\n rw [← dist_eq_norm]\n apply h; simp; exact le_of_eq rfl"
},
{
"id": 32,
"match": false,
"ground_truth": "exact half_lt_self dpos",
"model_output": "linarith [dpos]"
},
{
"id": 33,
"match": true,
"ground_truth": "apply pin",
"model_output": "apply pin"
},
{
"id": 34,
"match": false,
"ground_truth": "by_cases hf_pinf : f = ⊤",
"model_output": "apply convex_conjugate_is_convex"
},
{
"id": 35,
"match": false,
"ground_truth": "by\n apply intrinsicInterior_subset.antisymm\n nth_rw 1 [intrinsicInterior]\n rw [intrinsicInterior, image_subset_iff]\n rw [affineSpan_intrinsicInterior hsc]\n rw [Function.Injective.preimage_image Subtype.val_injective]\n simp [intrinsicInterior]",
"model_output": "have : intrinsicInterior ℝ (intrinsicInterior ℝ s) = intrinsicInterior ℝ (interior ℝ s) := by\n rw [intrinsicInterior_equiv s]"
},
{
"id": 36,
"match": false,
"ground_truth": "rw [← sub_add, norm_add_sq_real, real_inner_comm, inner_sub_right]",
"model_output": "rw [← add_sub, norm_add_sq_real, inner_sub_right, real_inner_comm, inner_sub_right]"
},
{
"id": 37,
"match": false,
"ground_truth": "rw [EReal.coe_le_coe_iff] at hccleq",
"model_output": "apply EReal.coe_le_coe_iff.mpr"
},
{
"id": 38,
"match": false,
"ground_truth": "intro z",
"model_output": "apply intrinsicInterior_sub_intrinsicClosure_intrinsicInterior ℝ h hn"
},
{
"id": 39,
"match": true,
"ground_truth": "have : FiniteDimensional 𝕜 (Submodule.span 𝕜 (Set.range v)) := by\n apply FiniteDimensional.span_of_finite\n simp [Set.finite_range]",
"model_output": "have : FiniteDimensional 𝕜 (Submodule.span 𝕜 (Set.range v)) := by\n apply FiniteDimensional.span_of_finite\n simp [Set.finite_range]"
},
{
"id": 40,
"match": false,
"ground_truth": "rw [h2]",
"model_output": "rw [h2] at h1 ⊢"
},
{
"id": 41,
"match": false,
"ground_truth": "apply banach_steinhaus",
"model_output": "have : ∀ x : s, ‖(innerSL ℝ) x‖ ≤ 1 := by\n intro x\n have : ‖(innerSL ℝ) x‖ ≤ ‖(innerSL ℝ)‖ * ‖x‖ := by\n apply ContinuousLinearMap.le_opNorm\n have : ‖x‖ ≤ 1 := by\n have : x.1 ∈ s.convex_support x := by\n rw [convex_support]\n exact (mem_setOf_eq (by simp)).mpr (lt_top_iff_ne_top.mp (hy x).2)\n rw [mem"
},
{
"id": 42,
"match": false,
"ground_truth": "intro h\n apply HasFDeriv_Convergence\n exact h",
"model_output": "intro h\n apply h.fderiv\n intro ε εpos\n specialize h ε εpos\n exact h"
},
{
"id": 43,
"match": false,
"ground_truth": "· apply Convergence_HasFDeriv",
"model_output": "intro h\n apply HasFDerivAt.mk\n intro ε εpos\n specialize h (ε / 2) (by positivity)\n rcases h with ⟨δ, ⟨δpos, h⟩⟩\n use δ; constructor\n · exact δpos\n intro x' x'eq\n specialize h x' (by rw [x'eq]; exact norm_nonneg (x - x))\n rw [mul_comm] at h; linarith [h]"
},
{
"id": 44,
"match": false,
"ground_truth": "by\n rw [←intrinsicInterior_affineSubspace_eq_self, ←nonempty_iff_ne_empty] at hn\n rw [←iIntersection_closure_eq_intrinsicInterior_closure' M.convex hC hn]\n rw [closure_affineSubspace_eq_self]",
"model_output": "have : (M : Set V) ∩ intrinsicInterior ℝ C = (M ∩ C) ∩ intrinsicInterior ℝ C := by\n rw [← Set.inter_assoc, Set.inter_eq_self_of_subset_left inter_subset_left]"
},
{
"id": 45,
"match": true,
"ground_truth": "apply alg.ha 0",
"model_output": "apply alg.ha 0"
},
{
"id": 46,
"match": true,
"ground_truth": "rw [h2]",
"model_output": "rw [h2]"
},
{
"id": 47,
"match": false,
"ground_truth": "rcases this with ⟨xn, hxn1, hxn2⟩",
"model_output": "rcases this with ⟨xn, ⟨n, ⟨hn, hxn⟩⟩, hlt⟩"
},
{
"id": 48,
"match": false,
"ground_truth": "have h2 := tendsto_add (A:=A) (B:=B)",
"model_output": "have h2 := lim_inf_def B hBa"
},
{
"id": 49,
"match": false,
"ground_truth": "have : ‖a • b‖ ^ 2 ≤ (‖a‖ * ‖b‖) ^ 2 := by\n rw [mul_pow, WithLp.prod_norm_sq_eq_of_L2, WithLp.prod_norm_sq_eq_of_L2]\n simp only [WithLp.smul_fst, WithLp.smul_snd]\n rw [norm_smul, norm_smul, mul_add, mul_pow, mul_pow]",
"model_output": "apply norm_smul_le"
},
{
"id": 50,
"match": false,
"ground_truth": "by_cases ht : i ∈ σ",
"model_output": "by_cases hi : i ∈ σ\n · rw [hi]; simp; exact cpos i hi\n · simp [hi]"
},
{
"id": 51,
"match": false,
"ground_truth": "simp",
"model_output": "simp at hst"
},
{
"id": 52,
"match": true,
"ground_truth": "by rw [h y ys, hf]; exact hg y ys",
"model_output": "rw [h y ys, hf]"
},
{
"id": 53,
"match": false,
"ground_truth": "exact in_of_le_sinf_of_b_top hx",
"model_output": "have : (x, ⊤) ∈ closure {p | p.1 ∈ s ∧ f p.1 ≤ p.2} := by\n have : (x, b) ∈ closure {p | p.1 ∈ s ∧ f p.1 ≤ p.2} := by\n rw [hbtop]; exact ha\n rwa [hbtop] at this"
},
{
"id": 54,
"match": false,
"ground_truth": "intro hmin",
"model_output": "intro hmin\n apply first_order_unconstrained hf hmin hfc\n simp [ConvexOn] at hcon\n apply hcon.1 xm (by simp)"
},
{
"id": 55,
"match": false,
"ground_truth": "simp [hx2, hw.2]",
"model_output": "simp [hx2]"
},
{
"id": 56,
"match": false,
"ground_truth": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]",
"model_output": "rw [smul_sub, smul_sub, add_sub, ← sub_sub, sub_eq_iff_eq_add]"
},
{
"id": 57,
"match": false,
"ground_truth": "simp [ConvexCone.addPoint] at hx",
"model_output": "rcases (Convex.mem_toCone hs).mp hx with ⟨c, hc, hcy⟩\n use c\n exact ⟨le_of_lt hc, hcy⟩"
},
{
"id": 58,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x hx y hy\n apply lagrange hs hf x hx y hy\n simp [Ioo]"
},
{
"id": 59,
"match": false,
"ground_truth": "simp",
"model_output": "simp at hx"
},
{
"id": 60,
"match": false,
"ground_truth": "by\n simp only [mem_setOf_eq]\n intro _ _ _ _ hp1 hp2 hp3\n rw [vsub_eq_sub, vadd_eq_add, map_add, map_smul, map_sub,\n hp1, hp2, hp3, sub_self, smul_zero, zero_add]",
"model_output": "intro c p₁ p₂ p₃ hp₁ hp₂ hp₃\n simp at hp₁ hp₂ hp₃ ⊢\n rw [map_vsub, smul_vsub_vadd_eq_vsub, ← map_smul, ← map_smul, hp₁, hp₂, hp₃]\n simp\n exact hp₃"
},
{
"id": 61,
"match": false,
"ground_truth": "linarith",
"model_output": "exact ht"
},
{
"id": 62,
"match": false,
"ground_truth": "simp [h]",
"model_output": "rw [LinearIsometryEquiv.symm_apply_apply] at h\n exact h"
},
{
"id": 63,
"match": true,
"ground_truth": "simp [g]",
"model_output": "simp [g]"
},
{
"id": 64,
"match": false,
"ground_truth": "rw [Prod.tendsto_iff] at xntend",
"model_output": "rcases underboundf with ⟨b, ubf⟩"
},
{
"id": 65,
"match": false,
"ground_truth": "by_cases ha1 : a = 0",
"model_output": "simp [coe_mul_top_of_pos ha, h1]"
},
{
"id": 66,
"match": true,
"ground_truth": "by_cases hb1 : b = 0",
"model_output": "by_cases hb1 : b = 0"
},
{
"id": 67,
"match": false,
"ground_truth": "congr",
"model_output": "congr!"
},
{
"id": 68,
"match": false,
"ground_truth": "intro z",
"model_output": "intro y hy\n have : HasFDerivAt f (gradient f y) y := by apply hasGradientAt_iff_hasFDerivAt.mp\n have : gradient f y = (toDual ℝ E) ((gradient f y): E →L[ℝ] ℝ) := by simp\n rw [this]\n exact HasFDerivAt.unique hu3 y hy"
},
{
"id": 69,
"match": false,
"ground_truth": "exact Batteries.compareOfLessAndEq_eq_lt.mp rfl",
"model_output": "exact bot_lt_one'"
},
{
"id": 70,
"match": false,
"ground_truth": "intro y",
"model_output": "intro x' xdiff"
},
{
"id": 71,
"match": false,
"ground_truth": "have hb : b = 1 := by linarith",
"model_output": "simp [ha] at absum ⊢"
},
{
"id": 72,
"match": false,
"ground_truth": "intro x y r",
"model_output": "intro x y r\n rw [← hEq]\n exact affine_map_representation A x y r"
},
{
"id": 73,
"match": true,
"ground_truth": "rw [hab]",
"model_output": "rw [hab]"
},
{
"id": 74,
"match": false,
"ground_truth": "obtain h := ConcaveOn.deriv_le_slope h1 hy' hx' xgt hdiff\n rw [slope_def_field, le_div_iff₀] at h\n repeat linarith",
"model_output": "apply ConcaveOn.deriv_le_slope h1 hy' hx' xgt hdiff"
},
{
"id": 75,
"match": false,
"ground_truth": "have ze : z ≠ 0 := by\n by_contra hz; simp [hz] at zin; simp [r] at zin",
"model_output": "by_cases z0 : z = 0"
},
{
"id": 76,
"match": false,
"ground_truth": "rw [← hEq]",
"model_output": "rw [← hEq]\n exact affine_map_representation A x y r"
},
{
"id": 77,
"match": false,
"ground_truth": "have h1 : M -ᵥ M ⊆ Submodule.comap (LinearMap.inl R α β) v := by\n rintro p ⟨c, hc, d, hd, rfl⟩\n exact Submodule.subset_span ⟨⟨c, n0⟩, ⟨hc, hn0⟩, ⟨d, n0⟩, ⟨hd, hn0⟩, by simp⟩",
"model_output": "have : (m, n) = (m, n0) + (m0, n) - (m0, n0) := by simp [Prod.mk_sub_mk, sub_eq_add_neg]"
},
{
"id": 78,
"match": false,
"ground_truth": "have h_nonempty : S.Nonempty := by\n obtain ⟨a, ha⟩ := @NormedSpace.sphere_nonempty_rclike 𝕜 _ V _ _ _ 1 zero_le_one\n use a",
"model_output": "have h_nonempty : S.Nonempty := by\n apply Set.nonempty_def.mp\n exact exists_ne 0"
},
{
"id": 79,
"match": false,
"ground_truth": "linarith",
"model_output": "linarith [hy.2]"
},
{
"id": 80,
"match": false,
"ground_truth": "apply DifferentiableAt.hasGradientAt",
"model_output": "apply DifferentiableAt.hasGradientAt\n have : DifferentiableAt ℝ (fun x => (x, z.2)) (z.1, z.2) := by\n apply DifferentiableAt.prodMk (differentiableAt_id') (differentiableAt_const)\n apply DifferentiableAt.comp (diff_from_l2 h) this\n simp [grad_fst]"
},
{
"id": 81,
"match": false,
"ground_truth": "rcases lbdf with ⟨L, Lbound⟩",
"model_output": "have eqImS : ImS = f '' univ := by\n simp [S]; rw [← image_univ, image_image, univ_inter, image_univ]"
},
{
"id": 82,
"match": false,
"ground_truth": "simp",
"model_output": "simp [μpos]"
},
{
"id": 83,
"match": true,
"ground_truth": "norm_num",
"model_output": "norm_num"
},
{
"id": 84,
"match": false,
"ground_truth": "intro x hx",
"model_output": "intro x hx\n have : x ∈ Icc 0 1 := by simp at hx; simp; constructor <;> linarith\n exact h1 x this"
},
{
"id": 85,
"match": false,
"ground_truth": "intro x _",
"model_output": "intro x _; exact (h1 x)"
},
{
"id": 86,
"match": false,
"ground_truth": "rw [mem_setOf]",
"model_output": "constructor <;> intro h"
},
{
"id": 87,
"match": false,
"ground_truth": "have inequ₂'' : lim_inf (const_real_liminf (f y)) = f y := by\n apply liminf_const_eq\n rw[← inequ₂''];\n exact inequ₂' y nonempty lscf x_converge g_converge",
"model_output": "apply ge_liminf_of_lowerSemicontinuous lscf x_converge g_converge y nonempty"
},
{
"id": 88,
"match": false,
"ground_truth": "refine norm_ne_zero_iff.mpr ?_",
"model_output": "apply norm_ne_zero_iff.mpr\n exact Basis.ne_zero b i"
},
{
"id": 89,
"match": false,
"ground_truth": "rw [← hT.span_range_v_eq_orthogonal_ker,\n mem_span_range_iff_exists_fun] at hx₂",
"model_output": "have : x₂ ∈ range (toContinuousLinearMap T) := by\n rw [mem_orthogonal, mem_ker, mem_range, mem_range, mem_range, mem_range]\n exact ⟨x₂, x₂, x₂, x₂, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl⟩"
},
{
"id": 90,
"match": false,
"ground_truth": "· simp [mem_closure_iff_seq_limit] at hx\n rcases hx with ⟨⟨w, hw⟩, hx2⟩\n use (fun n => (w n, ⊤))\n constructor\n · intro n\n simpa using hw.1 n\n rw [Prod.tendsto_iff]\n simp [hx2, hw.2]",
"model_output": "· rcases hx with ⟨hx, hx2⟩\n use (fun n => (x.1, ⊤))\n constructor\n · intro n\n simpa [hx2] using hx\n · simp [hx2] at hx\n rw [mem_closure_iff_seq_limit] at hx\n rcases hx with ⟨w, hw, h2⟩\n use w\n constructor\n · exact fun n => hw n\n rw [Prod.tendsto_iff]\n exact ⟨hw, h2⟩"
},
{
"id": 91,
"match": false,
"ground_truth": "apply Finset.sum_eq_zero",
"model_output": "apply Finset.sum_eq_zero\n intro i _\n rw [hx.1.2 i i.2]"
},
{
"id": 92,
"match": false,
"ground_truth": "mul_inv_cancel₀ (by linarith),",
"model_output": "rw [← mul_assoc, ← mul_assoc, mul_inv_cancel₀, one_mul, mul_div_assoc, mul_one]"
},
{
"id": 93,
"match": true,
"ground_truth": "by rw [one_smul]; rfl",
"model_output": "rw [one_smul]"
},
{
"id": 94,
"match": false,
"ground_truth": "intro b",
"model_output": "intro b hb; specialize h 1 zero_lt_one; filter_upwards [h] with y hy; simp [sa] at hy; linarith [hy]"
},
{
"id": 95,
"match": false,
"ground_truth": "by linarith",
"model_output": "apply mul_pos hc (by linarith)"
},
{
"id": 96,
"match": true,
"ground_truth": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]",
"model_output": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]"
},
{
"id": 97,
"match": false,
"ground_truth": "· rw [intrinsicInterior_prod_eq_prod_intrinsicInterior]; exact mk_mem_prod (by simp) hx",
"model_output": "apply intrinsicInterior_prod_eq_prod_intrinsicInterior\n exact mk_mem_prod (by simp) hx"
},
{
"id": 98,
"match": false,
"ground_truth": "rw [alg.γeq k, alg.teq k]",
"model_output": "have : 0 < k + 2 := by linarith [k.zero_le]"
},
{
"id": 99,
"match": false,
"ground_truth": "intro i _",
"model_output": "intro i _; apply mul_nonneg (h1 i) (h32 i i.2)"
},
{
"id": 100,
"match": false,
"ground_truth": "rcases vt with ⟨c, d, ⟨a, ha⟩, ⟨vt1, vt2⟩⟩",
"model_output": "rcases vt with ⟨c, d, ⟨⟨a, ha⟩, ⟨ct, cv⟩⟩⟩⟩"
},
{
"id": 101,
"match": false,
"ground_truth": "exact hu.2.2 (mem_inter hu.2.1 hx)",
"model_output": "apply hu.2.1"
},
{
"id": 102,
"match": true,
"ground_truth": "have h1 :A x j + ε + ∑ x_1 with ¬x_1 = j, A x x_1 = ε + A x j + ∑ x_1\n with ¬x_1 = j, A x x_1 := by ring_nf",
"model_output": "have h1 :A x j + ε + ∑ x_1 with ¬x_1 = j, A x x_1 = ε + A x j + ∑ x_1\n with ¬x_1 = j, A x x_1 := by ring_nf"
},
{
"id": 103,
"match": false,
"ground_truth": "intro x",
"model_output": "intro v"
},
{
"id": 104,
"match": false,
"ground_truth": "apply LinearMap.congr_fun\n ((LinearEquiv.symm_apply_eq (Module.dualProdDualEquivDual ℝ E ℝ)).1 (by rfl)) a",
"model_output": "simp [φ]"
},
{
"id": 105,
"match": false,
"ground_truth": "rw[Metric.isOpen_iff] at isopen",
"model_output": "rcases ht with ⟨ht, ht_conv, ht_open, ht_bd⟩\n apply Lipschitz_of_Bounded hf ht_conv ht_open ht_bd x_pos"
},
{
"id": 106,
"match": false,
"ground_truth": "rw [deriv_of_const_mul_func (f u - f x)]",
"model_output": "have h1 : ‖u - x‖ + ‖f u - f x‖ < c := by\n rw [← add_halves c]\n apply add_lt_add\n · apply mem_ball_iff_norm.mp hu.1\n · simp at *\n rw [abs_eq_self.2] <;> linarith [hu.2.1, hu.2.2]"
},
{
"id": 107,
"match": false,
"ground_truth": "rcases exists_seq_tendsto_sInf hs hs' with ⟨fx, _, cfx, fxs⟩",
"model_output": "rcases hs with ⟨x, hx⟩\n rcases hs' with ⟨w, hw⟩\n use x\n intro x1 _\n by_contra h\n have : f x < f x1 := by exact Ne.lt_of_le' (id (Ne.symm h)) (le_of_lt h)\n have : f x ∉ f ⁻¹' Set.Iic y := by simp; exact this\n have : f x ∉ f ⁻¹' Set.Iic y := by simp; exact this\n contradiction"
},
{
"id": 108,
"match": false,
"ground_truth": "induction n with",
"model_output": "apply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply �"
},
{
"id": 109,
"match": false,
"ground_truth": "simp at ht",
"model_output": "simp at ht [Icc]"
},
{
"id": 110,
"match": false,
"ground_truth": "· intro i; simp [c1];\n by_cases ht : i ∈ σ\n · simp [ht];\n specialize cpos i ht;\n exact cpos\n simp [ht]",
"model_output": "· intro i\n simp [c1]\n apply cpos i i.2"
},
{
"id": 111,
"match": false,
"ground_truth": "rw [subdiff_gradient g g' hg gradcon]",
"model_output": "apply mem_of_hasGradientAt g' hg"
},
{
"id": 112,
"match": false,
"ground_truth": "rw [div_mul_cancel₀ _ hne, abs_of_nonneg (by positivity), mul_comm] at hd",
"model_output": "rw [abs_of_nonneg (by positivity)] at hd"
},
{
"id": 113,
"match": true,
"ground_truth": "simp [phi_add] at this",
"model_output": "simp [phi_add] at this"
},
{
"id": 114,
"match": false,
"ground_truth": "have h_eq : {z | f z ≤ α} = f ⁻¹' Iic α ∩ univ := by\n ext z\n simp [Set.mem_setOf_eq, Set.mem_preimage, Set.mem_Iic]",
"model_output": "simp at hu_eq"
},
{
"id": 115,
"match": false,
"ground_truth": "lift t to ℝ using ⟨LT.lt.ne_top fx_le_top, LT.lt.ne_bot fx_ge_bot⟩",
"model_output": "rw [ht] at fx_le_top fx_ge_bot ⊢\n exact EReal.coe_le_coe_iff fx_ge_bot fx_le_top"
},
{
"id": 116,
"match": false,
"ground_truth": "rcases zin with ⟨u,hux,hufx,hv⟩",
"model_output": "rcases zin with ⟨u,ux,hf,hv⟩"
},
{
"id": 117,
"match": false,
"ground_truth": "by linarith",
"model_output": "apply h.1"
},
{
"id": 118,
"match": true,
"ground_truth": "apply convexHull_min (union_subset h1 h2) cone_conv_s_t.convex",
"model_output": "apply convexHull_min (union_subset h1 h2) cone_conv_s_t.convex"
},
{
"id": 119,
"match": false,
"ground_truth": "have hΦ : ∃ r_Φ, range Φ ⊆ Metric.ball 0 r_Φ := by apply Φ_isBounded'",
"model_output": "apply A₁e₁_A₂e₂_isBounded'"
},
{
"id": 120,
"match": true,
"ground_truth": "· simp",
"model_output": "· simp"
},
{
"id": 121,
"match": false,
"ground_truth": "have : Tendsto (fun n => ‖A₁ (e₁ n) + A₂ (e₂ n)‖ ^ 2) atTop (𝓝 0) := by\n apply Summable.tendsto_atTop_zero Summable₁\n apply square_converge_zero₁ this",
"model_output": "apply Satisfying_equational_constraint1\n · apply Satisfying_equational_constraint1\n · apply Satisfying_equational_constraint2\n · apply Satisfying_equational_constraint3\n · apply Satisfying_equational_constraint4\n · apply Satisfying_equational_constraint5\n · apply Satisfying_equational_constraint6\n · apply Satisfying_equational_constraint7\n · apply Satisfying_equational_constraint8\n · apply Satisfying_equational_constraint9\n · apply Satisfying_equational_constraint10\n · apply Satisfying_equational"
},
{
"id": 122,
"match": false,
"ground_truth": "rw[← EReal.coe_toReal (x := f x) hfx (LT.lt.ne_bot (hsf.uninfinity x hx))]",
"model_output": "have h1 : (-(φ l.1).1 x + t) / u l.1 ≤ f x := by\n have h2 : (-(φ l.1).1 x + t) / u l.1 ≤ (f x).toReal := by\n rw [← EReal.coe_toReal hfx]\n apply (div_le_iff₀ (EReal.coe_lt_top (f x)).ne (EReal.coe_lt_top (f x)).ne_top) |>.mpr\n rw [← EReal.coe_sub, ← EReal.coe_mul]"
},
{
"id": 123,
"match": false,
"ground_truth": "by_cases u₁_eq_0 : u₁ = 0",
"model_output": "have : u₁ = ∑ x ∈ coef.support, coef x • hT.v x := by exact hu₁"
},
{
"id": 124,
"match": false,
"ground_truth": "apply mul_pos",
"model_output": "· linarith [kpos]"
},
{
"id": 125,
"match": true,
"ground_truth": "exact this",
"model_output": "exact this"
},
{
"id": 126,
"match": false,
"ground_truth": "intro y",
"model_output": "intro y hy_ne"
},
{
"id": 127,
"match": true,
"ground_truth": "calc\n _= inner ℝ (u (n) - (- A₁† y')) (x₁ (n) - x₁') := by simp\n _≥ (0 : ℝ) := by\n apply subgradientAt_mono\n · apply u_inthesubgradient\n · exact admm_kkt.h.subgrad₁",
"model_output": "apply subgradientAt_mono\n · apply u_inthesubgradient\n · exact admm_kkt.h.subgrad₁"
},
{
"id": 128,
"match": false,
"ground_truth": "simp [grad_fun_comp,grad_comp] at h",
"model_output": "simp [grad_fun_comp, grad_comp, fderiv_prod_const, sub_add_sub_comm, sub_sub_sub_eq_add_sub] at h"
},
{
"id": 129,
"match": true,
"ground_truth": "exact hu₂",
"model_output": "exact hu₂"
},
{
"id": 130,
"match": false,
"ground_truth": "apply Finset.card_eq_zero.2",
"model_output": "have h1 : {i | ∑ j, A i j < 1} = ∅ := by\n ext i\n simp\n intro hlt\n have h1 : ∑ j, A i j = 1 := h_row_eq i\n linarith [h1]"
},
{
"id": 131,
"match": false,
"ground_truth": "exact False.elim (by simp at this)",
"model_output": "have : r = 0 := by omega"
},
{
"id": 132,
"match": false,
"ground_truth": "simp",
"model_output": "linarith [sq_nonneg b]"
},
{
"id": 133,
"match": false,
"ground_truth": "rw [← add_assoc, ← add_assoc]",
"model_output": "rw [add_assoc, add_comm (b • j.1), ← add_assoc]"
},
{
"id": 134,
"match": false,
"ground_truth": "simp",
"model_output": "simp [Metric.ball] at *"
},
{
"id": 135,
"match": false,
"ground_truth": "intro y yin z zin a b anneg bnneg absum1",
"model_output": "intro x1 _ y1 _ a b ha hb hab\n specialize hfun (by simp) (by simp) ha hb hab\n rw [add_div, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub]\n simp; rw [← add_sub, sub_add, sub_add, sub_add, sub_add, sub_add, sub_add]\n simp; rw [← add_sub, sub_add, sub_add, sub_add, sub_add, sub_add]\n simp; rw [← add_sub, sub_add, sub_add, sub_add, sub_add]\n simp;"
},
{
"id": 136,
"match": false,
"ground_truth": "gcongr",
"model_output": "apply mul_lt_mul_of_pos_left _ hc'\n[ASSISTANT]\napply lt_of_lt_of_le zin antil"
},
{
"id": 137,
"match": false,
"ground_truth": "have hzd : ∀ n, d n = z n - loc := fun _ => eq_sub_of_add_eq' rfl",
"model_output": "have h1 : ∀ n, z n ∈ s1 := by\n intro n\n simp [z]\n apply mem_inter (Metric.ball_mem_nhds _ (by positivity))\n apply ha n (by simp)"
},
{
"id": 138,
"match": true,
"ground_truth": "rfl",
"model_output": "rfl"
},
{
"id": 139,
"match": false,
"ground_truth": "rw [mul_one] at htp",
"model_output": "simp at htp"
},
{
"id": 140,
"match": false,
"ground_truth": "apply Continuous.tendsto",
"model_output": "apply Continuous.tendsto\n apply ContinuousLinearMap.continuous"
},
{
"id": 141,
"match": false,
"ground_truth": "by\n have h₁: Tendsto A₂ (𝓝 0) (𝓝 (A₂ 0)) := by\n apply Continuous.tendsto; apply ContinuousLinearMap.continuous\n simp at h₁; apply Filter.tendsto_iff_seq_tendsto.1 h₁; apply e₂_subseq_converge_zero",
"model_output": "apply Filter.tendsto_iff_seq_tendsto.1 (A₂e₂_subseq_converge_zero fullrank₁ fullrank₂)"
},
{
"id": 142,
"match": false,
"ground_truth": "apply A₁e₁_converge_zero",
"model_output": "apply Satisfying_equational_constraint1\n · apply A₁e₁_converge_zero\n · apply A₂e₂_converge_zero\n · apply A₁e₁_converge_zero\n · apply A₂e₂_converge_zero\n · apply fullrank₁\n · apply fullrank₂\n · apply admm_kkt₁\n · apply admm_kkt₂\n · apply admm_kkt₃\n · apply admm_kkt₄\n · apply admm_kkt₅\n · apply admm_kkt₆"
},
{
"id": 143,
"match": false,
"ground_truth": "intro j",
"model_output": "intro j\n have h4 : ∑ i, A i j ≤ 1 := hA_col_sum j\n have h5 : ∑ i, A i j ≥ 1 := by\n by_contra hlt\n push_neg at hlt\n have h6 : ∑ i, A i j < 1 := by linarith [hlt]\n have h7 : j ∈ Finset.univ.filter fun j => ∑ i, A i j < 1 := by\n simp; exact h6\n have h8 : Finset.card {j | ∑"
},
{
"id": 144,
"match": false,
"ground_truth": "rw[this]",
"model_output": "rw [← this]"
},
{
"id": 145,
"match": false,
"ground_truth": "· simp; linarith [μpos]",
"model_output": "apply inv_nonneg.mpr; linarith [μpos]"
},
{
"id": 146,
"match": false,
"ground_truth": "ext x",
"model_output": "ext x\n simp only [c]\n rw [add_sub_right_comm, add_sub_right_comm A₁ x (A₂ x₂ n.natPred)]\n ring_nf"
},
{
"id": 147,
"match": false,
"ground_truth": "have xBall_in_U : xBall ⊆ U := by\n apply l1Ball_sub_convexHull r_pos hn",
"model_output": "have x_in_t : x ∈ t := by\n simp[t];apply mem_inter x_in_xBall hr₀.1"
},
{
"id": 148,
"match": false,
"ground_truth": "rw [← zero_pow]",
"model_output": "apply squeeze_zero_norm\n · have : ∀ n, ‖A₁ (e₁ (φ n)) + A₂ (e₂ (φ n))‖ ^ 2 ≤ 2 * (‖A₁ (e₁ (φ n))‖ ^ 2 + ‖A₂ (e₂ (φ n))‖ ^ 2) := by\n intro n; apply pow_two_nonneg (‖A₁ (e₁ (φ n)) + A₂ (e₂ (φ n))‖)\n · apply A₁e₁_A₂e₂_converge_zero₂\n · apply"
},
{
"id": 149,
"match": false,
"ground_truth": "apply mul_nonneg",
"model_output": "apply mul_nonneg\n · apply mul_nonneg\n · apply le_of_lt h1\n · apply le_of_lt admm.hrho\n · apply pow_two_nonneg"
},
{
"id": 150,
"match": true,
"ground_truth": "by simp at h; simpa [h]",
"model_output": "simp at h"
},
{
"id": 151,
"match": false,
"ground_truth": "rw [← mul_neg]",
"model_output": "rw [← mul_neg,neg_sub,← map_neg (A₂ (e₂ (n+1)))]"
},
{
"id": 152,
"match": true,
"ground_truth": "exact h",
"model_output": "exact h"
},
{
"id": 153,
"match": false,
"ground_truth": "by rw [z]; simp; left; rw [z]; simp",
"model_output": "rw [z] ; simp ; left ; rfl"
},
{
"id": 154,
"match": true,
"ground_truth": "· simp\n apply neg_le.mpr\n · have pos: - 0 ≤ ε * ‖y - x‖:=by\n simp\n rw [mul_comm]\n apply (mul_nonneg_iff_left_nonneg_of_pos εpos).mpr\n simp\n apply pos",
"model_output": "apply neg_le.mpr"
},
{
"id": 155,
"match": false,
"ground_truth": "rcases this with ⟨z_, _, α, ⟨monoa, conv⟩⟩",
"model_output": "rcases this with ⟨z_, α, ⟨monoa, conv⟩⟩"
},
{
"id": 156,
"match": false,
"ground_truth": "intro n x",
"model_output": "apply ADMM_iter_process₁'_eq3_3'"
},
{
"id": 157,
"match": true,
"ground_truth": "simp [coef.mem_support_toFun]; rfl",
"model_output": "simp [coef.mem_support_toFun]"
},
{
"id": 158,
"match": false,
"ground_truth": "simp only [Set.mem_union, Set.mem_iUnion, Set.mem_singleton_iff]",
"model_output": "by_cases h1 : i = n + 1"
},
{
"id": 159,
"match": false,
"ground_truth": "have h2 : ‖x + xx - xx‖ ≤ ‖x + xx‖ + ‖xx‖ := by apply norm_sub_le",
"model_output": "have h2: ‖x + xx - xx‖ ≤ ‖x + xx‖ + ‖xx‖ := by apply norm_sub_le"
},
{
"id": 160,
"match": true,
"ground_truth": "apply eq4 u v",
"model_output": "apply eq4 u v"
},
{
"id": 161,
"match": false,
"ground_truth": "have : IsClosed ((MM x).carrier ∩ (f.Epi univ)) := by\n rw [ht]; exact IsClosed.prod isClosed_singleton isClosed_Ici",
"model_output": "have h2 : (MM x).carrier ∩ (f.Epi univ) = (MM x).carrier ∩ (f.Epi univ) := rfl"
},
{
"id": 162,
"match": false,
"ground_truth": "simp [z]",
"model_output": "apply Convex.add_smul_sub_mem hs xin yin a b absum1"
},
{
"id": 163,
"match": false,
"ground_truth": "by\n apply Tendsto.norm\n apply Tendsto.sub_const\n apply Tendsto.add\n · apply Satisfying_equational_constraint1\n · apply Satisfying_equational_constraint2",
"model_output": "apply Tendsto.norm\n apply Satisfying_equational_constraint2\n apply Satisfying_equational_constraint1\n apply Satisfying_equational_constraint3\n apply Satisfying_equational_constraint4\n apply Satisfying_equational_constraint5\n apply Satisfying_equational_constraint6\n apply Satisfying_equational_constraint7\n apply Satisfying_equational_constraint8\n apply Satisfying_equational_constraint9\n apply Satisfying_equational_constraint10\n apply Satisfying_equational_constraint11\n apply Satisfying_equational_constraint12"
},
{
"id": 164,
"match": false,
"ground_truth": "· have h0 : ∑ j, C x j = ∑ j, A x j := by\n dsimp [C]\n simp [h]\n rw [← h0]\n exact h_sum_lt",
"model_output": "have h0 : ∑ j, C x j = ∑ j, A x j := dsimp [C]\n simp [h]"
},
{
"id": 165,
"match": false,
"ground_truth": "dsimp [ey_diff, t_Ax_Ax_n1, t_A_diff_x', A2_e2_n1, A2_e2_n]\n linarith [Φ_isdescending_inequ5 n]",
"model_output": "apply le_trans [ey_diff_le] [t_Ax_Ax_n1_le]"
},
{
"id": 166,
"match": false,
"ground_truth": "intro n",
"model_output": "intro n\n apply ADMM_iter_process₁'_eq2_3'"
},
{
"id": 167,
"match": true,
"ground_truth": "· apply ContinuousOn.comp (g := f₁) (f := fun x ↦ x + x₀) (t := univ) hcon\n · apply ContinuousOn.add continuousOn_id continuousOn_const\n · simp",
"model_output": "· apply ContinuousOn.comp (g := f₁) (f := fun x ↦ x + x₀) (t := univ) hcon\n · apply ContinuousOn.add continuousOn_id continuousOn_const\n · simp"
},
{
"id": 168,
"match": false,
"ground_truth": "simp only [one_div, mul_inv_rev, add_sub_cancel_right]",
"model_output": "rw [smul_smul, one_div, inv_eq_one_div, div_mul_cancel₀, add_comm, add_sub, sub_self, add_zero]"
},
{
"id": 169,
"match": false,
"ground_truth": "suffices 0 ≤ (a1 • tx + b1 • ty) by exact this",
"model_output": "intro i\n simp\n apply add_nonneg\n · apply mul_nonneg\n · linarith [anng]\n · apply txcond i\n · apply mul_nonneg\n · linarith [bnng]\n · apply tycond i"
},
{
"id": 170,
"match": false,
"ground_truth": "by\n rw [sub_right_comm]",
"model_output": "rw [sub_right_comm, norm_sub_rev]"
},
{
"id": 171,
"match": false,
"ground_truth": "intro i hi",
"model_output": "intro i hi\n apply iSup₂_le\n intro y hy\n apply ht1 y hy\n exact hi"
},
{
"id": 172,
"match": false,
"ground_truth": "apply le_trans (Nat.le_add_left ax N)",
"model_output": "apply le_trans _ (hax _ (Nat.le_add_left ax (φ n)))"
},
{
"id": 173,
"match": false,
"ground_truth": "rw [hdomain]; trivial",
"model_output": "rw [hdomain]; simp [z]"
},
{
"id": 174,
"match": false,
"ground_truth": "rfl",
"model_output": "simp [xsub']"
},
{
"id": 175,
"match": true,
"ground_truth": "exact trivial",
"model_output": "exact trivial"
},
{
"id": 176,
"match": false,
"ground_truth": "simp",
"model_output": "apply pow_two_nonneg"
},
{
"id": 177,
"match": false,
"ground_truth": "intro _ epos",
"model_output": "intro _ _"
},
{
"id": 178,
"match": true,
"ground_truth": "intro n",
"model_output": "intro n"
},
{
"id": 179,
"match": false,
"ground_truth": "simp",
"model_output": "rw [abs_of_nonneg, one_mul, mul_assoc, mul_assoc, mul_comm, mul_comm ‖⟪T e, T u⟫_𝕜‖ ^ 2]"
},
{
"id": 180,
"match": false,
"ground_truth": "· simp",
"model_output": "apply tendsto_const_nhds"
},
{
"id": 181,
"match": false,
"ground_truth": "simp at hu",
"model_output": "apply h_Ω1 u (hO1 hu.1) (hu.2.1) (hu.2.2)"
},
{
"id": 182,
"match": false,
"ground_truth": "lift ⨆ u, Real.toEReal (inner ℝ u x) - f u to ℝ with c",
"model_output": "lift ⨆ u, Real.toEReal (inner ℝ u x) - f u to ℝ with c₁\n lift ⨆ u, Real.toEReal (inner ℝ u y) - f u to ℝ with c₂\n rw [← EReal.coe_add, ← EReal.coe_add, ← EReal.coe_mul, ← EReal.coe_mul]\n apply EReal.coe_le_coe_iff.mpr\n apply add_le_add\n · exact supa\n · exact supb"
},
{
"id": 183,
"match": false,
"ground_truth": "simp at vt1",
"model_output": "have : ∀ᶠ (a : ℕ) in atTop, ‖1 / c a‖ ≤ ‖c a‖⁻¹ := by\n apply Filter.Eventually.mp (tendsto_one_div_atTop_nhds_zero_nat.eventually hcp)\n apply Filter.Eventually.of_forall; intro a ha; simp at ha; simp; exact ha.1"
},
{
"id": 184,
"match": false,
"ground_truth": "rw [pow_two]",
"model_output": "rw [← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc]\n rw [← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc]\n rw [← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc]\n rw [← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc]\n rw [← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc]\n rw [← mul_assoc, ← mul_assoc"
},
{
"id": 185,
"match": false,
"ground_truth": "rcases exist_open_sub_finite_cover with ⟨t, ht1, ht2, ht3⟩",
"model_output": "rcases exist_open_sub_finite_cover with ⟨b', _, b'finite, subb'⟩"
},
{
"id": 186,
"match": true,
"ground_truth": "intro b _",
"model_output": "intro b _"
},
{
"id": 187,
"match": false,
"ground_truth": "ring",
"model_output": "rw [← mul_add,← mul_assoc,mul_comm _ (1 - τ),mul_assoc,mul_comm _ (1 - τ)]"
},
{
"id": 188,
"match": true,
"ground_truth": "exact hcf",
"model_output": "exact hcf"
},
{
"id": 189,
"match": true,
"ground_truth": "ring_nf",
"model_output": "ring_nf"
},
{
"id": 190,
"match": false,
"ground_truth": "simp",
"model_output": "simp [affSpan_iff]"
},
{
"id": 191,
"match": false,
"ground_truth": "simp [FeasSet, FeasPoint] at xf",
"model_output": "rw [hab]"
},
{
"id": 192,
"match": false,
"ground_truth": "· simp [hx]",
"model_output": "· rw [hx]; simp [ha.ne']"
},
{
"id": 193,
"match": false,
"ground_truth": "have eq0 : inner ℝ (f' (z + d • (y - z)) - f' (x + c • (z - x))) (y - x) = (0 : ℝ) := by\n contrapose! eq3\n rw [mul_ne_zero_iff]\n constructor\n · rw [mul_ne_zero_iff]; constructor <;> linarith\n · exact eq3",
"model_output": "have : a * b * ⟪f' (z + d • (y - z)) - f' (x + c • (z - x)), y - x⟫_ℝ = a * b * (0 : ℝ) := by\n rw [← e2, ← e1, ← this1, ← this2, inner_sub_left, ← sub_sub, sub_self, inner_zero_right]"
},
{
"id": 194,
"match": false,
"ground_truth": "by ring",
"model_output": "rw [one_div_mul_cancel]"
},
{
"id": 195,
"match": false,
"ground_truth": "by\n rw[sign_mul_abs]\n field_simp [bi_pos i]",
"model_output": "have : ‖(b).equivFun (x₀ - x) i‖ ≠ 0 := by\n exact norm_ne_zero_iff.mpr (b.equivFun_apply_ne_zero i)"
},
{
"id": 196,
"match": false,
"ground_truth": "have : (fun n => Φ (φ n)) = (fun n => (1 / (τ * ρ)) * ‖ey (φ n)‖^2 +\n ρ * ‖A₂ (e₂ (φ n))‖^2 +\n ((max (1-τ) (1-(1/τ)))*ρ) * ‖A₁ (e₁ (φ n)) + A₂ (e₂ (φ n))‖^2) := by\n funext n; rw [Φ, Ψ]",
"model_output": "apply h_add'"
},
{
"id": 197,
"match": true,
"ground_truth": "· simp [V₂]",
"model_output": "· simp [V₂]"
},
{
"id": 198,
"match": false,
"ground_truth": "intro s",
"model_output": "intro s g cond sumeq i"
},
{
"id": 199,
"match": true,
"ground_truth": "rw[zero_add]",
"model_output": "rw[zero_add]"
},
{
"id": 200,
"match": false,
"ground_truth": "linarith",
"model_output": "linarith [kleaw, this]"
},
{
"id": 201,
"match": false,
"ground_truth": "repeat apply mul_nonneg",
"model_output": "· apply mul_nonneg\n · apply mul_nonneg\n · apply inv_nonneg_of_nonneg\n apply le_of_lt admm.hrho\n · apply pow_two_nonneg\n · apply pow_two_nonneg"
},
{
"id": 202,
"match": false,
"ground_truth": "exact Eq.symm (Nat.add_sub_of_le kge)",
"model_output": "rw [Nat.add_sub_of_le kge]"
},
{
"id": 203,
"match": false,
"ground_truth": "rw [Filter.tendsto_congr' this]",
"model_output": "apply Filter.Tendsto.congr' this"
},
{
"id": 204,
"match": false,
"ground_truth": "intro c1",
"model_output": "intro c1 hc1\n filter_upwards [t5] with n hn\n rw [inner_sub_left, inner_smul_right]\n apply le_of_lt\n apply mul_lt_mul_of_pos_right\n · exact hn\n · apply norm_pos_iff.mpr\n simp\n exact inv_ne_zero (ne_of_gt hc1)"
},
{
"id": 205,
"match": false,
"ground_truth": "exact min_le_right δ₀ δ₂",
"model_output": "apply min_le_right δ₀ δ₂"
},
{
"id": 206,
"match": false,
"ground_truth": "simp",
"model_output": "rw [abs_of_nonneg (alg.step₁ k)]"
},
{
"id": 207,
"match": false,
"ground_truth": "simp",
"model_output": "simp [h]"
},
{
"id": 208,
"match": false,
"ground_truth": "rw[← mul_div]",
"model_output": "ring_nf"
},
{
"id": 209,
"match": false,
"ground_truth": "simp",
"model_output": "apply Nat.zero_le i"
},
{
"id": 210,
"match": false,
"ground_truth": "intro c",
"model_output": "intro c cin"
},
{
"id": 211,
"match": false,
"ground_truth": "intro i",
"model_output": "intro i ieqN"
},
{
"id": 212,
"match": false,
"ground_truth": "dsimp [M]",
"model_output": "rw [M]"
},
{
"id": 213,
"match": false,
"ground_truth": "intro v",
"model_output": "simp [LinearMap.toContinuousLinearMap_apply]"
},
{
"id": 214,
"match": true,
"ground_truth": "by exact this",
"model_output": "exact this"
},
{
"id": 215,
"match": true,
"ground_truth": "apply lt_min δ₀pos (lt_min δ₄pos δ₅pos)",
"model_output": "apply lt_min δ₀pos (lt_min δ₄pos δ₅pos)"
},
{
"id": 216,
"match": false,
"ground_truth": "apply εpos",
"model_output": "· apply εpos"
},
{
"id": 217,
"match": true,
"ground_truth": "linarith [eq1]",
"model_output": "linarith [eq1]"
},
{
"id": 218,
"match": false,
"ground_truth": "· apply Finset.sum_pos\n · intro i _; apply (alg.ha i)\n · simp",
"model_output": "apply Finset.sum_pos\n · intro i _\n apply (alg.ha i)\n · simp"
},
{
"id": 219,
"match": true,
"ground_truth": "linarith [a1leab]",
"model_output": "linarith [a1leab]"
},
{
"id": 220,
"match": false,
"ground_truth": "rw [←sub_add,norm_add_sq_real,←sub_add,norm_add_sq_real] at ieq",
"model_output": "rw [add_div] at ieq"
},
{
"id": 221,
"match": false,
"ground_truth": "simp at din",
"model_output": "constructor <;> linarith [din.1, din.2]"
},
{
"id": 222,
"match": false,
"ground_truth": "have : (alg.x (α q -1),alg.y (α q -1)) ∈ Metric.closedBall (0 : WithLp 2 (E × F)) C1 := by\n apply mem_closedBall_iff_norm.mpr; simp\n apply inin (alg.x (α q -1),alg.y (α q -1))\n exact mem_image_of_mem alg.z trivial",
"model_output": "apply sq (alg.x (α q - 1), alg.y (α q - 1)) _"
},
{
"id": 223,
"match": false,
"ground_truth": "by\n rw [WithLp.prod_norm_eq_of_L2]; simp\n exact (Real.le_sqrt (norm_nonneg _) (Left.add_nonneg (sq_nonneg _) (sq_nonneg _))).mpr\n (le_add_of_nonneg_right (sq_nonneg _))",
"model_output": "apply prod_norm_ge_of_first\n apply norm_nonneg"
},
{
"id": 224,
"match": false,
"ground_truth": "intro a t hat IH w hw_pos' hw_sum' hmem'",
"model_output": "intro a s has IH w hw_nonneg hw_sum' hw_in_U'"
},
{
"id": 225,
"match": false,
"ground_truth": "by\n apply add_lt_add\n · apply ha₁ b hba₁\n · apply ha₂ b hba₂",
"model_output": "apply add_lt_add\n · apply ha₁ b (le_trans (le_max_left a₁ a₂) hba₁)\n · apply ha₂ b (le_trans (le_max_right a₁ a₂) hba₂)"
},
{
"id": 226,
"match": false,
"ground_truth": "exact inv_sub_inv l' h₁",
"model_output": "rw [inv_eq_one_div, inv_eq_one_div, one_div, one_div, sub_div, div_mul_eq_div_div]"
},
{
"id": 227,
"match": true,
"ground_truth": "apply hpos'",
"model_output": "apply hpos'"
},
{
"id": 228,
"match": false,
"ground_truth": "apply Set.add_subset_add_right",
"model_output": "apply add_subset_add_right\n · apply Finset.sum_subset\n intro i hi\n apply smul_subset_smul_left\n · apply intrinsicInterior_subset\n · simp [ι']\n · exact hi\n · exact subset_refl (l i₀ • intrinsicInterior ℝ (C i₀))"
},
{
"id": 229,
"match": true,
"ground_truth": "rw [y1, y2]",
"model_output": "rw [y1, y2]"
},
{
"id": 230,
"match": true,
"ground_truth": "linarith [hγ]",
"model_output": "linarith [hγ]"
},
{
"id": 231,
"match": false,
"ground_truth": "apply norm_sub_le",
"model_output": "apply norm_sub_norm_le"
},
{
"id": 232,
"match": false,
"ground_truth": "have h1 := hk (fun q ↦ alg.x (α q) - alg.x (α q - 1)) diflte1 (ε / (γ * l) / 3) (by positivity)",
"model_output": "have h1:= hk (fun q ↦ alg.x (α q) - alg.x (α q - 1)) diflte1 (ε / (γ * l) / 2) (by positivity)"
},
{
"id": 233,
"match": false,
"ground_truth": "intro n",
"model_output": "intro n\n specialize allh' (n + 1) (Nn n)\n simp at allh'\n exact allh'"
},
{
"id": 234,
"match": false,
"ground_truth": "by\n apply zp5",
"model_output": "exact zp5"
},
{
"id": 235,
"match": false,
"ground_truth": "by\n apply Simplifying₂\n apply h₁\n apply norm_nonneg",
"model_output": "rw [mul_div_assoc, mul_div_assoc, mul_div_assoc, mul_div_assoc, mul_div_assoc]"
},
{
"id": 236,
"match": false,
"ground_truth": "refine LICQ_injM z m Z Ax ?_ mlen ?_ eq2 eq1 ⟨heq1, heq2⟩",
"model_output": "have h1 : Ax *ᵥ z = 0 := heq1"
},
{
"id": 237,
"match": false,
"ground_truth": "apply le_trans",
"model_output": "apply le_trans Nge (Nat.cast_le.mpr (Nat.le_add_right N n))"
},
{
"id": 238,
"match": false,
"ground_truth": "apply mul_eq_mul_left_iff.mpr",
"model_output": "rw [mul_eq_mul_left_iff]"
}
]
}