| { | |
| "summary": { | |
| "total_with_gt": 273, | |
| "matched": 38, | |
| "accuracy": 0.1391941391941392 | |
| }, | |
| "details": [ | |
| { | |
| "id": 0, | |
| "match": false, | |
| "ground_truth": "· exact mul_le_mul_of_nonneg_left hyu ha", | |
| "model_output": "apply mul_le_mul_of_nonneg_left hyu ha" | |
| }, | |
| { | |
| "id": 1, | |
| "match": false, | |
| "ground_truth": "exact mul_le_mul_of_nonneg_left hyu ha", | |
| "model_output": "apply mul_le_mul_of_nonneg_left hyu (by linarith) (by linarith) (by positivity)" | |
| }, | |
| { | |
| "id": 2, | |
| "match": false, | |
| "ground_truth": "· exact mul_le_mul_of_nonneg_left hyv hb", | |
| "model_output": "apply mul_le_mul_of_nonneg hb hyv (by linarith) (by positivity)" | |
| }, | |
| { | |
| "id": 3, | |
| "match": false, | |
| "ground_truth": "exact mul_le_mul_of_nonneg_left hyv hb", | |
| "model_output": "apply mul_le_mul_of_nonneg hb hyv (by linarith) (by positivity)" | |
| }, | |
| { | |
| "id": 4, | |
| "match": false, | |
| "ground_truth": "rw [lipschitzWith_iff_norm_sub_le] at *", | |
| "model_output": "rw [lipschitzWith_iff_norm_sub_le] at hl ⊢\n intro x y\n apply hl\n simp [gradient]" | |
| }, | |
| { | |
| "id": 5, | |
| "match": false, | |
| "ground_truth": "by rw [grad_snd_eq h, grad_snd_eq h]", | |
| "model_output": "simp [grad_snd]" | |
| }, | |
| { | |
| "id": 6, | |
| "match": false, | |
| "ground_truth": "rw [grad_snd_eq h, grad_snd_eq h]", | |
| "model_output": "simp [grad_snd]" | |
| }, | |
| { | |
| "id": 7, | |
| "match": false, | |
| "ground_truth": "apply prox_well_define f hc lbdf x", | |
| "model_output": "have : ∃ y, f y = inf (f '' univ) := by\n apply LowerSemicontinuous.exists_inf_of_bddBelow hc lbdf\n rcases this with ⟨y, hy⟩\n use y\n rw [hy]\n exact prox_set_eq_inf f x y" | |
| }, | |
| { | |
| "id": 8, | |
| "match": false, | |
| "ground_truth": "refine ⟨x₁, hx₁, x₂, hx₂, hx, ?_⟩", | |
| "model_output": "refine ⟨x₁, hx₁, ?_⟩" | |
| }, | |
| { | |
| "id": 9, | |
| "match": false, | |
| "ground_truth": "exact LinearMap.mem_ker.mp (hker hx₂)", | |
| "model_output": "have : x₂ ∈ LinearMap.ker T := hker hx₂\n exact this" | |
| }, | |
| { | |
| "id": 10, | |
| "match": false, | |
| "ground_truth": "simp [Orthonormal, Pairwise] at *", | |
| "model_output": "rw [orthonormal_iff_ite] at hv ⊢\n constructor\n · intro i j hij\n by_cases h : i ∈ s\n · exact hv.1 i j hij\n simp [h]\n intro i\n by_cases h : i ∈ s\n · exact hv.2 i h\n simp [h]" | |
| }, | |
| { | |
| "id": 11, | |
| "match": false, | |
| "ground_truth": "by_cases hsf : ProperFunction s f", | |
| "model_output": "rw [Function.closure_def]" | |
| }, | |
| { | |
| "id": 12, | |
| "match": false, | |
| "ground_truth": "· exact closure_is_closed_of_proper f hs", | |
| "model_output": "· exact is_closed_of_closure f hs" | |
| }, | |
| { | |
| "id": 13, | |
| "match": false, | |
| "ground_truth": "exact closure_is_closed_of_proper f hs", | |
| "model_output": "rw [Function.IsClosed]" | |
| }, | |
| { | |
| "id": 14, | |
| "match": true, | |
| "ground_truth": "apply IsClosed.prod hs isClosed_univ", | |
| "model_output": "apply IsClosed.prod hs isClosed_univ" | |
| }, | |
| { | |
| "id": 15, | |
| "match": false, | |
| "ground_truth": "simp [w, l, g, AffineMap.decomp']", | |
| "model_output": "rw [i.h]" | |
| }, | |
| { | |
| "id": 16, | |
| "match": false, | |
| "ground_truth": "rw [φ₁_equ fullrank₁ fullrank₂ n]", | |
| "model_output": "simp [φ, φ₁]" | |
| }, | |
| { | |
| "id": 17, | |
| "match": false, | |
| "ground_truth": "exact EReal.coe_le_coe_iff.mp h", | |
| "model_output": "exact EReal.coe_le_coe_iff.1 h" | |
| }, | |
| { | |
| "id": 18, | |
| "match": false, | |
| "ground_truth": "rw [← hT.span_range_w_eq_range]", | |
| "model_output": "have h1 : r = finrank 𝕜 (range (T.toContinuousLinearMap)) := by\n rw [← hT.range_eq_range, hT.finrank_range_eq]" | |
| }, | |
| { | |
| "id": 19, | |
| "match": false, | |
| "ground_truth": "apply iff_iff_implies_and_implies.mpr", | |
| "model_output": "rw [← convexHull_eq_self_of_closed hscl, ← convexHull_eq_self_of_closed htcl]" | |
| }, | |
| { | |
| "id": 20, | |
| "match": false, | |
| "ground_truth": "apply convex_conjugate_ge_bot_univ'", | |
| "model_output": "apply lt_of_le_of_ne\n · apply convex_conjugate_ge_bot\n · intro h\n rw [h] at hs\n exact hs.1" | |
| }, | |
| { | |
| "id": 21, | |
| "match": false, | |
| "ground_truth": "exact HasGradientWithinAt.const_smul h c", | |
| "model_output": "exact HasGradientAtFilter.const_smul h c" | |
| }, | |
| { | |
| "id": 22, | |
| "match": true, | |
| "ground_truth": "exact HasGradientAtFilter.const_add hf c", | |
| "model_output": "exact HasGradientAtFilter.const_add hf c" | |
| }, | |
| { | |
| "id": 23, | |
| "match": false, | |
| "ground_truth": "exact HasGradientAtFilter.const_add hf c", | |
| "model_output": "exact HasGradientAt.const_add hf c" | |
| }, | |
| { | |
| "id": 24, | |
| "match": false, | |
| "ground_truth": "exact HasGradientAtFilter.const_sub hf c", | |
| "model_output": "exact HasGradientAt.const_sub hf c" | |
| }, | |
| { | |
| "id": 25, | |
| "match": false, | |
| "ground_truth": "apply convex_on_p_top\n ext x; exact h x", | |
| "model_output": "apply convexOn_of_const h" | |
| }, | |
| { | |
| "id": 26, | |
| "match": false, | |
| "ground_truth": "apply monotone_gradient_convex'", | |
| "model_output": "rw [ConvexOn]" | |
| }, | |
| { | |
| "id": 27, | |
| "match": false, | |
| "ground_truth": "exact (fun x _ => affine_sq_gradient x)", | |
| "model_output": "intro x _" | |
| }, | |
| { | |
| "id": 28, | |
| "match": false, | |
| "ground_truth": "have h_zero_eq := (hS 0).mp h_zero_mem", | |
| "model_output": "have h1 : c = (fun j : Fin m => (B.repr 0) (Fin.castAdd m j)) := by\n ext j; rw [hS]; simp [h_zero_mem]" | |
| }, | |
| { | |
| "id": 29, | |
| "match": false, | |
| "ground_truth": "have : (0 : 𝕜) < (1 : 𝕜) := one_pos", | |
| "model_output": "apply hf' x y neq" | |
| }, | |
| { | |
| "id": 30, | |
| "match": false, | |
| "ground_truth": "rw [inner_add_left, real_inner_smul_left, real_inner_smul_left]", | |
| "model_output": "rw [inner_add_left, ← smul_sub, inner_smul_left, inner_smul_left, ← smul_sub]" | |
| }, | |
| { | |
| "id": 31, | |
| "match": false, | |
| "ground_truth": "rw [← one_mul (-ε * ‖y - x‖), ← hab, add_mul]", | |
| "model_output": "have : a * (f y - f x - inner ℝ u (y - x)) + b * (f y - f x - inner ℝ v (y - x)) ≥ -a * ε * ‖y - x‖ - b * ε * ‖y - x‖ := by\n apply add_le_add (mul_le_mul_of_nonneg_left hyu (by linarith)) (mul_le_mul_of_nonneg_left hyv (by linarith))" | |
| }, | |
| { | |
| "id": 32, | |
| "match": false, | |
| "ground_truth": "calc\n _ = ‖(gradient H z).2 - (gradient H z').2‖ := by rw [grad_snd_eq h, grad_snd_eq h]\n _ = ‖(gradient H z - gradient H z').2‖ := rfl\n _ ≤ ‖(gradient H z - gradient H z')‖ := snd_norm_le_prod_L2 _\n _ ≤ _ := hl z z'", | |
| "model_output": "have h1 : ‖gradient H z - gradient H z'‖ ≤ l * ‖z - z'‖ := hl z z'" | |
| }, | |
| { | |
| "id": 33, | |
| "match": false, | |
| "ground_truth": "by\n intro k\n specialize ck k; rw [ck]\n apply div_pos\n · norm_num\n apply mul_pos\n · linarith [hγ]\n · apply alg.lpos", | |
| "model_output": "intro k\n rw [ck k]\n apply div_pos\n · linarith\n · apply mul_pos\n · linarith\n · linarith [alg.lpos]" | |
| }, | |
| { | |
| "id": 34, | |
| "match": false, | |
| "ground_truth": "intro k\n specialize ck k; rw [ck]\n apply div_pos\n · norm_num\n apply mul_pos\n · linarith [hγ]\n · apply alg.lpos", | |
| "model_output": "intro k\n rw [ck k]\n apply div_pos\n · linarith\n · apply mul_pos\n · linarith\n · linarith [alg.lpos]" | |
| }, | |
| { | |
| "id": 35, | |
| "match": false, | |
| "ground_truth": "by\n apply prox_well_define f hc lbdf x", | |
| "model_output": "have : ∃ y, f y = inf (f '' univ) := by\n apply LowerSemicontinuous.exists_inf_of_bddBelow hc lbdf\n rcases this with ⟨y, hy⟩\n use y\n rw [hy]\n exact prox_set_eq_inf f x y" | |
| }, | |
| { | |
| "id": 36, | |
| "match": false, | |
| "ground_truth": "by\n unfold colSubmodule\n rw [finrank_span_eq_card]\n simp [h]", | |
| "model_output": "have : Aᴴ * A = 1 := h\n have : Aᴴ = A† := by rfl\n rw [this, ← conjTranspose_mul, conjTranspose_conjTranspose] at h\n exact h" | |
| }, | |
| { | |
| "id": 37, | |
| "match": false, | |
| "ground_truth": "unfold colSubmodule\n rw [finrank_span_eq_card]\n simp [h]", | |
| "model_output": "have : Aᴴ * A = 1 := h\n have : Aᴴ = A† := by rfl\n rw [this, ← conjTranspose_mul, conjTranspose_conjTranspose] at h\n exact h" | |
| }, | |
| { | |
| "id": 38, | |
| "match": false, | |
| "ground_truth": "let ⟨x₁, hx₁, x₂, hx₂, hx⟩ := exists_orthogonal_decompose s x\n refine ⟨x₁, hx₁, x₂, hx₂, hx, ?_⟩\n rw [hx, LinearMap.map_add]\n suffices T x₂ = 0 from by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]\n exact LinearMap.mem_ker.mp (hker hx₂)", | |
| "model_output": "have : x = (LinearMap.ker T).lift (LinearMap.quotKerEquivKer T) x := by\n exact (LinearEquiv.symm_apply_eq (LinearMap.quotKerEquivKer T)).mp rfl\n rw [this]\n use (LinearMap.ker T).lift (LinearMap.quotKerEquivKer T) x\n constructor\n · exact Submodule.mem_span_of_mem (LinearMap.mem_ker.1 (hker (LinearMap.quotKerEquivKer T x)))" | |
| }, | |
| { | |
| "id": 39, | |
| "match": false, | |
| "ground_truth": "suffices T x₂ = 0 from by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]", | |
| "model_output": "rw [LinearMap.map_add]" | |
| }, | |
| { | |
| "id": 40, | |
| "match": false, | |
| "ground_truth": "by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]", | |
| "model_output": "rw [this, add_zero]" | |
| }, | |
| { | |
| "id": 41, | |
| "match": false, | |
| "ground_truth": "rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]", | |
| "model_output": "rw [this, add_zero]" | |
| }, | |
| { | |
| "id": 42, | |
| "match": false, | |
| "ground_truth": "by\n simp [Orthonormal, Pairwise] at *\n aesop", | |
| "model_output": "rw [orthonormal_iff_ite] at hv ⊢\n constructor\n · intro i j hij\n by_cases h : i ∈ s\n · exact hv.1 i j hij\n simp [h]\n intro i\n by_cases h : i ∈ s\n · exact hv.2 i h\n simp [h]" | |
| }, | |
| { | |
| "id": 43, | |
| "match": false, | |
| "ground_truth": "simp [Orthonormal, Pairwise] at *\n aesop", | |
| "model_output": "rw [orthonormal_iff_ite] at hv ⊢\n constructor\n · intro i j hij\n by_cases h : i ∈ s\n · exact hv.1 i j hij\n simp [h]\n intro i\n by_cases h : i ∈ s\n · exact hv.2 i h\n simp [h]" | |
| }, | |
| { | |
| "id": 44, | |
| "match": false, | |
| "ground_truth": "by\n let s := Metric.ball x ε\n have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩\n exact gradient_continuous_of_contdiffat f h", | |
| "model_output": "have : ContDiffOn ℝ 1 f (Metric.ball x ε) := hf\n have : ContDiffOn ℝ 0 f (Metric.ball x ε) := by\n apply ContDiffOn.zero_of_le\n linarith\n apply HasGradientAt.continuousAt\n apply HasGradientAt.continuousAt\n apply HasGradientAt.const_smul\n · apply HasGradientAt.const_add\n · apply HasGradientAt.const_mul\n · apply HasGradientAt.const_add\n · apply HasGradientAt.const_mul\n · apply HasGradientAt.const_add\n · apply Has" | |
| }, | |
| { | |
| "id": 45, | |
| "match": false, | |
| "ground_truth": "let s := Metric.ball x ε\n have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩\n exact gradient_continuous_of_contdiffat f h", | |
| "model_output": "have : ContDiffOn ℝ 1 f (Metric.ball x ε) := hf\n have : ContDiffOn ℝ 0 f (Metric.ball x ε) := by\n apply ContDiffOn.zero_of_le\n linarith\n apply HasGradientAt.continuousAt\n apply HasGradientAt.continuousAt\n apply HasGradientAt.const_smul\n · apply HasGradientAt.const_add\n · apply HasGradientAt.const_mul\n · apply HasGradientAt.const_add\n · apply HasGradientAt.const_mul\n · apply HasGradientAt.const_add\n · apply Has" | |
| }, | |
| { | |
| "id": 46, | |
| "match": false, | |
| "ground_truth": "have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩", | |
| "model_output": "have : ContDiffOn ℝ 1 f (Metric.ball x ε) := hf\n have : ContDiffOn ℝ 0 f (Metric.ball x ε) := by\n apply ContDiff.contDiffOn; apply ContDiff.continuous; apply ContDiff.contDiffAt\n apply HasGradientAt.contDiffAt; apply HasGradientAt.contDiffAt; apply HasGradientAt.contDiffAt\n apply HasGradientAt.contDiffAt; apply HasGradientAt.contDiffAt; apply HasGradientAt.contDiffAt\n apply HasGradientAt.contDiffAt; apply HasGradientAt.contDiffAt; apply Has" | |
| }, | |
| { | |
| "id": 47, | |
| "match": false, | |
| "ground_truth": "exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩", | |
| "model_output": "constructor" | |
| }, | |
| { | |
| "id": 48, | |
| "match": false, | |
| "ground_truth": "exact gradient_continuous_of_contdiffat f h", | |
| "model_output": "rw [contDiffAt_iff_contDiffAt_nhds] at h\n exact HasGradientAt.continuousAt h.hasGradientAt" | |
| }, | |
| { | |
| "id": 49, | |
| "match": false, | |
| "ground_truth": "by\n simp [Function.closure]\n intro h; exfalso\n obtain h1 := h.2; simp at h1", | |
| "model_output": "rw [Function.closure_top]" | |
| }, | |
| { | |
| "id": 50, | |
| "match": false, | |
| "ground_truth": "simp [Function.closure]\n intro h; exfalso\n obtain h1 := h.2; simp at h1", | |
| "model_output": "rw [Function.closure_top]" | |
| }, | |
| { | |
| "id": 51, | |
| "match": true, | |
| "ground_truth": "· simp [hf]; simp [Function.IsClosed]\n have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]\n rw [h1]\n apply IsClosed.prod hs isClosed_univ", | |
| "model_output": "· simp [hf]" | |
| }, | |
| { | |
| "id": 52, | |
| "match": true, | |
| "ground_truth": "simp [hf]; simp [Function.IsClosed]\n have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]\n rw [h1]\n apply IsClosed.prod hs isClosed_univ", | |
| "model_output": "simp [hf]" | |
| }, | |
| { | |
| "id": 53, | |
| "match": false, | |
| "ground_truth": "have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]", | |
| "model_output": "simp [Epi]" | |
| }, | |
| { | |
| "id": 54, | |
| "match": false, | |
| "ground_truth": "have h' : Epi ⊤ s = ∅ := by\n ext ⟨x, _⟩; simp [Function.Epi]", | |
| "model_output": "simp [Epi]" | |
| }, | |
| { | |
| "id": 55, | |
| "match": false, | |
| "ground_truth": "by\n constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z; simp at hz\n linarith", | |
| "model_output": "constructor\n · exact HasSubgradientAt_to_Banach_HasSubgradientAt\n exact Banach_HasSubgradientAt_to_HasSubgradientAt" | |
| }, | |
| { | |
| "id": 56, | |
| "match": false, | |
| "ground_truth": "constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z; simp at hz\n linarith", | |
| "model_output": "constructor\n · exact HasSubgradientAt_to_Banach_HasSubgradientAt\n exact Banach_HasSubgradientAt_to_HasSubgradientAt" | |
| }, | |
| { | |
| "id": 57, | |
| "match": false, | |
| "ground_truth": "· intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith", | |
| "model_output": "· intro h\n apply HasSubgradientAt.banach_hasSubgradientAt\n exact h" | |
| }, | |
| { | |
| "id": 58, | |
| "match": false, | |
| "ground_truth": "intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith", | |
| "model_output": "intro h\n apply HasSubgradientAt_to_Banach_HasSubgradientAt\n exact h" | |
| }, | |
| { | |
| "id": 59, | |
| "match": false, | |
| "ground_truth": "· intro x hx\n simpa [w, l, g, AffineMap.decomp', ← EReal.coe_sub, ← EReal.coe_add] using i.hlw x hx", | |
| "model_output": "· intro x _\n exact i.hg x" | |
| }, | |
| { | |
| "id": 60, | |
| "match": false, | |
| "ground_truth": "intro x hx\n simpa [w, l, g, AffineMap.decomp', ← EReal.coe_sub, ← EReal.coe_add] using i.hlw x hx", | |
| "model_output": "intro x _" | |
| }, | |
| { | |
| "id": 61, | |
| "match": false, | |
| "ground_truth": "apply Filter.tendsto_iff_seq_tendsto.1 Seq_converge_zero₃", | |
| "model_output": "have : (fun n => A₂ (x₂ (φ₁ n + 1) - x₂ (φ₁ n))) = (fun n => A₂ (x₂ (φ₁ n) + (1 : ℕ) - x₂ (φ₁ n))) := by\n ext n; rw [Nat.cast_add, Nat.cast_one, add_sub_assoc, add_sub_cancel_left]\n have h₁ : (fun n => A₂ (x₂ (φ₁ n) + (1 : ℕ) - x₂ (φ₁ n))) = (fun n => A₂ (1 : ℕ)) :=" | |
| }, | |
| { | |
| "id": 62, | |
| "match": false, | |
| "ground_truth": "have : (fun n => (Int.toNat (φ₁ n))) = (fun n => (φ (n+1))) := by\n ext n; rw [φ₁_equ fullrank₁ fullrank₂ n]; simp", | |
| "model_output": "apply strictMono_nat_of_lt_succ" | |
| }, | |
| { | |
| "id": 63, | |
| "match": false, | |
| "ground_truth": "suffices 0 ≤ (c - a - b).toEReal by exact this", | |
| "model_output": "rw [← EReal.coe_sub] at h" | |
| }, | |
| { | |
| "id": 64, | |
| "match": false, | |
| "ground_truth": "have : a + b ≤ c := by exact EReal.coe_le_coe_iff.mp h", | |
| "model_output": "rw [← EReal.coe_sub] at h" | |
| }, | |
| { | |
| "id": 65, | |
| "match": false, | |
| "ground_truth": "refine EReal.coe_nonneg.mpr ?intro.intro.a", | |
| "model_output": "rw [← EReal.coe_sub] at this" | |
| }, | |
| { | |
| "id": 66, | |
| "match": false, | |
| "ground_truth": "by\n constructor\n · exact hs\n intro x hx y hy a b ha hb hab\n specialize hfun hx hy ha hb hab\n dsimp\n have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf\n simp at this;\n rw [← this]; exact hfun", | |
| "model_output": "rw [StrongConvexOn]" | |
| }, | |
| { | |
| "id": 67, | |
| "match": false, | |
| "ground_truth": "constructor\n · exact hs\n intro x hx y hy a b ha hb hab\n specialize hfun hx hy ha hb hab\n dsimp\n have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf\n simp at this;\n rw [← this]; exact hfun", | |
| "model_output": "rw [StrongConvexOn]" | |
| }, | |
| { | |
| "id": 68, | |
| "match": false, | |
| "ground_truth": "have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf", | |
| "model_output": "linarith [hfun]" | |
| }, | |
| { | |
| "id": 69, | |
| "match": false, | |
| "ground_truth": "by\n rw [← hT.span_range_w_eq_range]\n simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]", | |
| "model_output": "have h1 : r = finrank 𝕜 (range (T.toContinuousLinearMap)) := by\n rw [← hT.range_eq_range, hT.finrank_range_eq]" | |
| }, | |
| { | |
| "id": 70, | |
| "match": false, | |
| "ground_truth": "rw [← hT.span_range_w_eq_range]\n simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]", | |
| "model_output": "have h1 : r = finrank 𝕜 (range (T.toContinuousLinearMap)) := by\n rw [← hT.range_eq_range, hT.finrank_range_eq]" | |
| }, | |
| { | |
| "id": 71, | |
| "match": false, | |
| "ground_truth": "simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]", | |
| "model_output": "rw [hT.finrank_range_w]" | |
| }, | |
| { | |
| "id": 72, | |
| "match": false, | |
| "ground_truth": "· exact fun a ↦ set_inclusion_convex_support_eq s t htcv htcl a h", | |
| "model_output": "· intro hzs\n rw [← mem_convex_iff_support_le] at hzs\n rw [← h z] at hzs\n exact mem_convex_iff_support_le.1 hzs z hzs" | |
| }, | |
| { | |
| "id": 73, | |
| "match": false, | |
| "ground_truth": "exact fun a ↦ set_inclusion_convex_support_eq s t htcv htcl a h", | |
| "model_output": "intro hzs\n have hzst : z ∈ s.convex_support := by\n rw [h z]; exact mem_convex_support_of_mem htcv hscv htscl htcl hzs\n exact mem_of_mem_convex_support hzst htcl" | |
| }, | |
| { | |
| "id": 74, | |
| "match": false, | |
| "ground_truth": "exact fun a ↦ set_inclusion_convex_support_eq t s hscv hscl a (fun x => (h x).symm)", | |
| "model_output": "intro hzt\n rw [← h z]\n apply convex_support_subset_convex_support hscv htcv htcl hz" | |
| }, | |
| { | |
| "id": 75, | |
| "match": true, | |
| "ground_truth": "by\n intro x _\n simp [convex_support]\n obtain := ConvexIndicator_is_proper_on_univ hs\n apply convex_conjugate_ge_bot_univ'", | |
| "model_output": "intro x _" | |
| }, | |
| { | |
| "id": 76, | |
| "match": true, | |
| "ground_truth": "intro x _\n simp [convex_support]\n obtain := ConvexIndicator_is_proper_on_univ hs\n apply convex_conjugate_ge_bot_univ'", | |
| "model_output": "intro x _" | |
| }, | |
| { | |
| "id": 77, | |
| "match": false, | |
| "ground_truth": "have convex_conjugate_at_zero :\n convex_conjugate univ (convex_indicator s) 0 ≤ 0 := by\n refine (conjugate_le_zero_iff s.convex_indicator).mpr ?_\n simp\n intro y\n simp [convex_indicator]\n split_ifs with hy <;> simp", | |
| "model_output": "rcases hs with ⟨x, hx⟩\n use x\n rw [convex_conjugate_indicator_eq_indicator_convex_conjugate]\n simp [hx]" | |
| }, | |
| { | |
| "id": 78, | |
| "match": false, | |
| "ground_truth": "refine (conjugate_le_zero_iff s.convex_indicator).mpr ?_", | |
| "model_output": "rw [convex_conjugate_indicator_eq_indicator_convex_conjugate hs]" | |
| }, | |
| { | |
| "id": 79, | |
| "match": false, | |
| "ground_truth": "exact lt_of_le_of_lt (convex_conjugate_at_zero) (zero_lt_top)", | |
| "model_output": "apply lt_of_le_of_ne convex_conjugate_at_zero ?_" | |
| }, | |
| { | |
| "id": 80, | |
| "match": false, | |
| "ground_truth": "by\n exact HasGradientWithinAt.const_smul h c", | |
| "model_output": "exact HasGradientAtFilter.const_smul h c" | |
| }, | |
| { | |
| "id": 81, | |
| "match": true, | |
| "ground_truth": "by\n exact HasGradientAtFilter.const_add hf c", | |
| "model_output": "exact HasGradientAtFilter.const_add hf c" | |
| }, | |
| { | |
| "id": 82, | |
| "match": false, | |
| "ground_truth": "by\n exact HasGradientAtFilter.const_add hf c", | |
| "model_output": "exact HasGradientAt.const_add hf c" | |
| }, | |
| { | |
| "id": 83, | |
| "match": false, | |
| "ground_truth": "by\n simp only [sub_eq_add_neg, gradient_add_const]", | |
| "model_output": "rw [gradient_sub_const]" | |
| }, | |
| { | |
| "id": 84, | |
| "match": false, | |
| "ground_truth": "simp only [sub_eq_add_neg, gradient_add_const]", | |
| "model_output": "rw [gradient_sub_const]" | |
| }, | |
| { | |
| "id": 85, | |
| "match": false, | |
| "ground_truth": "by\n exact HasGradientAtFilter.const_sub hf c", | |
| "model_output": "exact HasGradientAt.const_sub hf c" | |
| }, | |
| { | |
| "id": 86, | |
| "match": false, | |
| "ground_truth": "by\n obtain h1 := h.2; simp at h1\n rcases h1 with ⟨x, hx⟩; use x; simp [hx]", | |
| "model_output": "simp [dom]" | |
| }, | |
| { | |
| "id": 87, | |
| "match": false, | |
| "ground_truth": "obtain h1 := h.2; simp at h1\n rcases h1 with ⟨x, hx⟩; use x; simp [hx]", | |
| "model_output": "simp [dom]" | |
| }, | |
| { | |
| "id": 88, | |
| "match": false, | |
| "ground_truth": "by\n apply convex_on_p_top\n ext x; exact h x", | |
| "model_output": "apply convexOn_of_const h" | |
| }, | |
| { | |
| "id": 89, | |
| "match": false, | |
| "ground_truth": "by\n rw [sub_eq_add_neg u v, mulVec_add, mulVec_neg, sub_eq_add_neg]", | |
| "model_output": "rw [Matrix.mulVec_sub]" | |
| }, | |
| { | |
| "id": 90, | |
| "match": false, | |
| "ground_truth": "rw [sub_eq_add_neg u v, mulVec_add, mulVec_neg, sub_eq_add_neg]", | |
| "model_output": "rw [Matrix.mulVec_sub]" | |
| }, | |
| { | |
| "id": 91, | |
| "match": false, | |
| "ground_truth": "· exact (fun x _ => affine_sq_gradient x)", | |
| "model_output": "intro x _" | |
| }, | |
| { | |
| "id": 92, | |
| "match": true, | |
| "ground_truth": "· intro x _ y _\n rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]\n rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]\n apply sq_nonneg", | |
| "model_output": "intro x _ y _" | |
| }, | |
| { | |
| "id": 93, | |
| "match": true, | |
| "ground_truth": "intro x _ y _\n rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]\n rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]\n apply sq_nonneg", | |
| "model_output": "intro x _ y _" | |
| }, | |
| { | |
| "id": 94, | |
| "match": false, | |
| "ground_truth": "rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]", | |
| "model_output": "rw [← Matrix.mulVec_sub, ← Matrix.mulVec_sub, Matrix.mul_assoc, Matrix.mul_assoc, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix" | |
| }, | |
| { | |
| "id": 95, | |
| "match": false, | |
| "ground_truth": "rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]", | |
| "model_output": "rw [← Matrix.mulVec_sub, transpose_mul_self_nonneg]" | |
| }, | |
| { | |
| "id": 96, | |
| "match": false, | |
| "ground_truth": "have h_zero_mem : (0 : E) ∈ S := S.zero_mem", | |
| "model_output": "have h1 : ∀ (v : E), v ∈ S ↔ (B.repr v) (Fin.natAdd n) = c := by\n intro v\n have h1 := hS v\n simp at h1\n exact h1" | |
| }, | |
| { | |
| "id": 97, | |
| "match": false, | |
| "ground_truth": "have h_repr_zero : B.repr 0 = 0 := LinearEquiv.map_zero B.repr", | |
| "model_output": "simp at h_zero_eq" | |
| }, | |
| { | |
| "id": 98, | |
| "match": false, | |
| "ground_truth": "simp only [map_zero, Finsupp.coe_zero, Pi.zero_apply] at h_zero_eq", | |
| "model_output": "simp [h_repr_zero] at h_zero_eq" | |
| }, | |
| { | |
| "id": 99, | |
| "match": false, | |
| "ground_truth": "simp only [Matrix.mulVec_zero, add_zero] at h_zero_eq", | |
| "model_output": "rw [Matrix.mulVec_zero, add_zero] at h_zero_eq" | |
| }, | |
| { | |
| "id": 100, | |
| "match": false, | |
| "ground_truth": "by\n unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]", | |
| "model_output": "simp [sup_value]" | |
| }, | |
| { | |
| "id": 101, | |
| "match": false, | |
| "ground_truth": "unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]", | |
| "model_output": "simp [sup_value]" | |
| }, | |
| { | |
| "id": 102, | |
| "match": true, | |
| "ground_truth": "by\n intro b; rw [polyhedra_iff_cone b]\n exact closed_conic σ b", | |
| "model_output": "intro b" | |
| }, | |
| { | |
| "id": 103, | |
| "match": true, | |
| "ground_truth": "intro b; rw [polyhedra_iff_cone b]\n exact closed_conic σ b", | |
| "model_output": "intro b" | |
| }, | |
| { | |
| "id": 104, | |
| "match": true, | |
| "ground_truth": "by\n rw [h]; apply (local_Minimum_TangentCone' loc hl hf)", | |
| "model_output": "rw [h]" | |
| }, | |
| { | |
| "id": 105, | |
| "match": true, | |
| "ground_truth": "rw [h]; apply (local_Minimum_TangentCone' loc hl hf)", | |
| "model_output": "rw [h]" | |
| }, | |
| { | |
| "id": 106, | |
| "match": false, | |
| "ground_truth": "apply (local_Minimum_TangentCone' loc hl hf)", | |
| "model_output": "rw [← h]" | |
| }, | |
| { | |
| "id": 107, | |
| "match": false, | |
| "ground_truth": "by rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp", | |
| "model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply]\n simp [A.symm_comp_self]" | |
| }, | |
| { | |
| "id": 108, | |
| "match": false, | |
| "ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp", | |
| "model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply]\n simp [A.symm_comp_self]" | |
| }, | |
| { | |
| "id": 109, | |
| "match": false, | |
| "ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]", | |
| "model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply]\n simp [A.symm_comp_self]" | |
| }, | |
| { | |
| "id": 110, | |
| "match": false, | |
| "ground_truth": "by rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp", | |
| "model_output": "rw [← ContinuousLinearMap.adjoint_comp]\n simp [A.toContinuousLinearMap, A.symm_toContinuousLinearMap, A.toContinuousLinearEquiv]" | |
| }, | |
| { | |
| "id": 111, | |
| "match": false, | |
| "ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp", | |
| "model_output": "rw [← ContinuousLinearMap.adjoint_comp]\n simp [A.toContinuousLinearMap, A.symm_toContinuousLinearMap, A.toContinuousLinearEquiv]" | |
| }, | |
| { | |
| "id": 112, | |
| "match": false, | |
| "ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]", | |
| "model_output": "rw [← ContinuousLinearMap.adjoint_comp]\n simp [A.toContinuousLinearMap, A.symm_toContinuousLinearMap, A.toContinuousLinearEquiv]" | |
| }, | |
| { | |
| "id": 113, | |
| "match": false, | |
| "ground_truth": "by rw [← trace_transpose, ← trace_transpose_mul, transpose_mul]", | |
| "model_output": "rw [Matrix.trace_mul_comm]" | |
| }, | |
| { | |
| "id": 114, | |
| "match": false, | |
| "ground_truth": "rw [← trace_transpose, ← trace_transpose_mul, transpose_mul]", | |
| "model_output": "rw [Matrix.trace_mul_comm]" | |
| }, | |
| { | |
| "id": 115, | |
| "match": false, | |
| "ground_truth": "have : ConvexOn ℝ X fun _ ↦ (0: EReal) := by\n dsimp [ConvexOn]\n constructor\n exact hs\n intro x _ y _ a b _ _ _\n simp", | |
| "model_output": "apply ConvexOn.convex_indicator (convex_univ X) (convex_univ X) hs (by simp) (by simp)" | |
| }, | |
| { | |
| "id": 116, | |
| "match": false, | |
| "ground_truth": "have eq : EqOn (fun _ ↦ (0: EReal)) (Set.convex_indicator X) X := by\n dsimp[EqOn]\n intro x hx\n dsimp [Set.convex_indicator]\n rw [if_pos hx]", | |
| "model_output": "apply ConvexOn.convex_indicator this (fun x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _" | |
| }, | |
| { | |
| "id": 117, | |
| "match": false, | |
| "ground_truth": "by\n apply Subset.antisymm\n · exact iIntersection_closure_sub_closure_iIntersection'' h hinter\n exact closure_iIntersection_sub_iIntersection_closure'", | |
| "model_output": "rcases hinter with ⟨x, hx⟩\n rw [intrinsicClosure_iInter_eq_iInter_intrinsicClosure_of_forall_exists_intrinsicInterior h hx]" | |
| }, | |
| { | |
| "id": 118, | |
| "match": false, | |
| "ground_truth": "apply Subset.antisymm\n · exact iIntersection_closure_sub_closure_iIntersection'' h hinter\n exact closure_iIntersection_sub_iIntersection_closure'", | |
| "model_output": "rcases hinter with ⟨x, hx⟩\n rw [intrinsicClosure_iInter_eq_iInter_intrinsicClosure_of_forall_exists_intrinsicInterior h hx]" | |
| }, | |
| { | |
| "id": 119, | |
| "match": false, | |
| "ground_truth": "· exact iIntersection_closure_sub_closure_iIntersection'' h hinter", | |
| "model_output": "· apply iInter_intrinsicClosure_subset_intrinsicClosure_iInter\n exact h" | |
| }, | |
| { | |
| "id": 120, | |
| "match": false, | |
| "ground_truth": "exact iIntersection_closure_sub_closure_iIntersection'' h hinter", | |
| "model_output": "rcases hinter with ⟨x, hx⟩\n rw [intrinsicClosure_iInter_eq_iInter_intrinsicClosure_of_exists_intrinsicInterior h hx]\n apply iInter_mono\n intro i\n apply intrinsicClosure_mono\n exact subset_iInter (fun i => intrinsicInterior_subset) i" | |
| }, | |
| { | |
| "id": 121, | |
| "match": false, | |
| "ground_truth": "exact closure_iIntersection_sub_iIntersection_closure'", | |
| "model_output": "rw [intrinsicClosure_iInter_eq_iInter_intrinsicClosure_of_intrinsicInterior_nonempty]" | |
| }, | |
| { | |
| "id": 122, | |
| "match": false, | |
| "ground_truth": "have eqone : a + (1 - a) = 1 := add_sub_cancel a 1", | |
| "model_output": "have : a ∈ Set.Ioo 0 1 := ⟨lta, alt⟩\n have : ∃ c : E, c ∈ Set.Ioo 0 1 ∧ f c < min (f x) (f y) := by\n apply strict_inequ_of_strong_quasi hf' this\n obtain ⟨c, hc⟩ := this\n have : f c < min (f x) (f y) := hc.2\n have : f c < f x := by\n apply lt_of_lt_of_eq this (min_eq_left (hx trivial))\n have :" | |
| }, | |
| { | |
| "id": 123, | |
| "match": false, | |
| "ground_truth": "have lta' : 0 < 1 - a := sub_pos_of_lt alt", | |
| "model_output": "have : a + (1 - a) = 1 := by ring_nf" | |
| }, | |
| { | |
| "id": 124, | |
| "match": false, | |
| "ground_truth": "have h : f (a • x + (1 - a) • y) < f y := by\n apply Eq.trans_gt (max_eq_right (hx trivial))\n apply hf' neq lta lta' eqone", | |
| "model_output": "have : a + (1 - a) = 1 := by ring_nf" | |
| }, | |
| { | |
| "id": 125, | |
| "match": false, | |
| "ground_truth": "apply Eq.trans_gt (max_eq_right (hx trivial))", | |
| "model_output": "apply hf' (a • x + (1 - a) • y) y lta' lta (by linarith) (by linarith) (by linarith)" | |
| }, | |
| { | |
| "id": 126, | |
| "match": false, | |
| "ground_truth": "intro ε εpos", | |
| "model_output": "intro ε εpos\n rw [add_comm] at hab\n rw [add_comm] at hv\n rw [add_comm] at hu\n filter_upwards [hu ε εpos, hv ε εpos] with y hy hy'\n rw [add_comm] at hy'\n rw [add_comm] at hy\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add" | |
| }, | |
| { | |
| "id": 127, | |
| "match": false, | |
| "ground_truth": "rw [ge_iff_le] at *", | |
| "model_output": "apply add_le_add hyu hyv" | |
| }, | |
| { | |
| "id": 128, | |
| "match": false, | |
| "ground_truth": "apply add_le_add", | |
| "model_output": "apply add_le_add hyu hyv" | |
| }, | |
| { | |
| "id": 129, | |
| "match": false, | |
| "ground_truth": "apply div_pos", | |
| "model_output": "apply div_pos _ (mul_pos (by linarith) (alg.lpos))" | |
| }, | |
| { | |
| "id": 130, | |
| "match": false, | |
| "ground_truth": "apply mul_pos", | |
| "model_output": "apply mul_pos _ alg.lpos\n linarith [hγ]" | |
| }, | |
| { | |
| "id": 131, | |
| "match": true, | |
| "ground_truth": "· linarith [hγ]", | |
| "model_output": "linarith [hγ]" | |
| }, | |
| { | |
| "id": 132, | |
| "match": true, | |
| "ground_truth": "linarith [hγ]", | |
| "model_output": "linarith [hγ]" | |
| }, | |
| { | |
| "id": 133, | |
| "match": false, | |
| "ground_truth": "· apply alg.lpos", | |
| "model_output": "linarith [alg.lpos]" | |
| }, | |
| { | |
| "id": 134, | |
| "match": false, | |
| "ground_truth": "apply alg.lpos", | |
| "model_output": "linarith [alg.lpos]" | |
| }, | |
| { | |
| "id": 135, | |
| "match": false, | |
| "ground_truth": "rw [mem_nhds_iff]", | |
| "model_output": "exact Metric.ball_mem_nhds x he" | |
| }, | |
| { | |
| "id": 136, | |
| "match": false, | |
| "ground_truth": "simp [Function.Epi]", | |
| "model_output": "simp [Epi]" | |
| }, | |
| { | |
| "id": 137, | |
| "match": false, | |
| "ground_truth": "simp [Function.Epi]", | |
| "model_output": "simp [Epi]" | |
| }, | |
| { | |
| "id": 138, | |
| "match": false, | |
| "ground_truth": "exact isClosed_empty", | |
| "model_output": "simp" | |
| }, | |
| { | |
| "id": 139, | |
| "match": false, | |
| "ground_truth": "constructor", | |
| "model_output": "constructor\n · exact HasSubgradientAt_to_Banach_HasSubgradientAt\n exact Banach_HasSubgradientAt_to_HasSubgradientAt" | |
| }, | |
| { | |
| "id": 140, | |
| "match": true, | |
| "ground_truth": "by\n ext g; rw [h]", | |
| "model_output": "rw [h]" | |
| }, | |
| { | |
| "id": 141, | |
| "match": true, | |
| "ground_truth": "ext g; rw [h]", | |
| "model_output": "rw [h]" | |
| }, | |
| { | |
| "id": 142, | |
| "match": true, | |
| "ground_truth": "constructor", | |
| "model_output": "constructor" | |
| }, | |
| { | |
| "id": 143, | |
| "match": true, | |
| "ground_truth": "intro x _hx", | |
| "model_output": "intro x _" | |
| }, | |
| { | |
| "id": 144, | |
| "match": false, | |
| "ground_truth": "simp at this", | |
| "model_output": "rw [this]" | |
| }, | |
| { | |
| "id": 145, | |
| "match": false, | |
| "ground_truth": "· simp [StrictMono]", | |
| "model_output": "apply strictMono_add_const" | |
| }, | |
| { | |
| "id": 146, | |
| "match": false, | |
| "ground_truth": "simp [StrictMono]", | |
| "model_output": "apply strictMono_add_const" | |
| }, | |
| { | |
| "id": 147, | |
| "match": false, | |
| "ground_truth": "by_cases hc2 : c = ⊤", | |
| "model_output": "by_cases ha3 : a = ⊤" | |
| }, | |
| { | |
| "id": 148, | |
| "match": false, | |
| "ground_truth": "· rw [hc2]; simp", | |
| "model_output": "· rw [hc2]; simp; exact le_top" | |
| }, | |
| { | |
| "id": 149, | |
| "match": false, | |
| "ground_truth": "rw [hc2]; simp", | |
| "model_output": "rw [hc2] at h ⊢\n simp at h ⊢\n linarith" | |
| }, | |
| { | |
| "id": 150, | |
| "match": false, | |
| "ground_truth": "by exact this", | |
| "model_output": "rw [← EReal.coe_sub] at this" | |
| }, | |
| { | |
| "id": 151, | |
| "match": false, | |
| "ground_truth": "constructor", | |
| "model_output": "rw [StrongConvexOn]" | |
| }, | |
| { | |
| "id": 152, | |
| "match": false, | |
| "ground_truth": "rw [← this]", | |
| "model_output": "rw [this] at hfun" | |
| }, | |
| { | |
| "id": 153, | |
| "match": false, | |
| "ground_truth": "constructor", | |
| "model_output": "constructor <;> intro h <;> rw [h] <;> exact Eq.symm (convex_support_eq_convex_cl hscv)" | |
| }, | |
| { | |
| "id": 154, | |
| "match": false, | |
| "ground_truth": "simp [funext_iff]", | |
| "model_output": "intro hst" | |
| }, | |
| { | |
| "id": 155, | |
| "match": true, | |
| "ground_truth": "constructor", | |
| "model_output": "constructor" | |
| }, | |
| { | |
| "id": 156, | |
| "match": false, | |
| "ground_truth": "· apply convex_univ", | |
| "model_output": "apply Convex.univ" | |
| }, | |
| { | |
| "id": 157, | |
| "match": true, | |
| "ground_truth": "apply convex_univ", | |
| "model_output": "apply convex_univ" | |
| }, | |
| { | |
| "id": 158, | |
| "match": true, | |
| "ground_truth": "intro x _ y _", | |
| "model_output": "intro x _ y _" | |
| }, | |
| { | |
| "id": 159, | |
| "match": true, | |
| "ground_truth": "apply sq_nonneg", | |
| "model_output": "apply sq_nonneg" | |
| }, | |
| { | |
| "id": 160, | |
| "match": false, | |
| "ground_truth": "exact h_zero_eq.symm", | |
| "model_output": "exact Eq.symm h_zero_eq" | |
| }, | |
| { | |
| "id": 161, | |
| "match": false, | |
| "ground_truth": "dsimp [ConvexOn]", | |
| "model_output": "apply ConvexOn.const_zero" | |
| }, | |
| { | |
| "id": 162, | |
| "match": true, | |
| "ground_truth": "constructor", | |
| "model_output": "constructor" | |
| }, | |
| { | |
| "id": 163, | |
| "match": false, | |
| "ground_truth": "dsimp[EqOn]", | |
| "model_output": "intro x hx\n rw [convex_indicator_of_mem (hs x hx) (fun x _ => 0) (by simp)]" | |
| }, | |
| { | |
| "id": 164, | |
| "match": false, | |
| "ground_truth": "rw [if_pos hx]", | |
| "model_output": "simp [hx]" | |
| }, | |
| { | |
| "id": 165, | |
| "match": false, | |
| "ground_truth": "by_contra neq", | |
| "model_output": "have h1 : f x ≤ f y := by\n apply hx (mem_univ y)" | |
| }, | |
| { | |
| "id": 166, | |
| "match": false, | |
| "ground_truth": "intro u hu v hv a b ha hb hab", | |
| "model_output": "rw [convex_iff_forall_pos]\n intro y1 hy1 y2 hy2 a b ha hb hab\n rw [f_subdiff_subset_iff_convex]\n intro z hz\n rw [f_subdiff_subset_iff_convex]\n intro w hw\n rw [f_subdiff_subset_iff_convex]\n intro u hu\n rw [f_subdiff_subset_iff_convex]\n intro v hv\n rw [f_subdiff_subset_iff_convex]\n intro p hp\n rw [f_subdiff_subset_iff_convex]\n intro q hq\n rw [f_sub" | |
| }, | |
| { | |
| "id": 167, | |
| "match": false, | |
| "ground_truth": "rw [has_f_subdiff_iff] at *", | |
| "model_output": "rw [f_subdiff] at *" | |
| }, | |
| { | |
| "id": 168, | |
| "match": false, | |
| "ground_truth": "rw [finrank_span_eq_card]", | |
| "model_output": "have : (Aᴴ * A).colVec = Aᴴ.colVec := by\n ext i\n rw [Matrix.mul_apply]\n exact Eq.symm (Matrix.mulVec_colVec Aᴴ A i)" | |
| }, | |
| { | |
| "id": 169, | |
| "match": false, | |
| "ground_truth": "rw [hx, LinearMap.map_add]", | |
| "model_output": "rw [hx, LinearMap.map_add, norm_add_sq_real]" | |
| }, | |
| { | |
| "id": 170, | |
| "match": false, | |
| "ground_truth": "apply ContDiffOn.contDiffAt hf", | |
| "model_output": "have : ContDiffOn ℝ 1 f (Metric.ball x ε) := hf\n have : ContDiffOn ℝ 1 f (Metric.ball x ε) := this\n have : ContDiffAt ℝ 1 f x := ContDiffOn.contDiffAt this (Metric.mem_ball_self he)\n exact this" | |
| }, | |
| { | |
| "id": 171, | |
| "match": false, | |
| "ground_truth": "simp [Function.closure]", | |
| "model_output": "rw [Function.closure_top]" | |
| }, | |
| { | |
| "id": 172, | |
| "match": false, | |
| "ground_truth": "simp [Function.closure, hsf]", | |
| "model_output": "simp [Function.IsClosed, Function.closure, hs]" | |
| }, | |
| { | |
| "id": 173, | |
| "match": false, | |
| "ground_truth": "by_cases hf : ∃ x ∈ s, f x = ⊥", | |
| "model_output": "by_cases h : ∃ x ∈ s, f x = ⊥" | |
| }, | |
| { | |
| "id": 174, | |
| "match": false, | |
| "ground_truth": "simp [Function.IsClosed]", | |
| "model_output": "rw [Function.IsClosed]" | |
| }, | |
| { | |
| "id": 175, | |
| "match": false, | |
| "ground_truth": "simp [Function.IsClosed]", | |
| "model_output": "exact hs" | |
| }, | |
| { | |
| "id": 176, | |
| "match": false, | |
| "ground_truth": "apply StrictMono.tendsto_atTop", | |
| "model_output": "apply Filter.tendsto_coe_nhds_infty" | |
| }, | |
| { | |
| "id": 177, | |
| "match": false, | |
| "ground_truth": "apply StrictMono.comp", | |
| "model_output": "apply StrictMono.add_const" | |
| }, | |
| { | |
| "id": 178, | |
| "match": false, | |
| "ground_truth": "· apply hphi_StrictMono", | |
| "model_output": "· apply strictMono_nat_of_lt_succ\n intro n\n apply φ_strict_mono' n" | |
| }, | |
| { | |
| "id": 179, | |
| "match": false, | |
| "ground_truth": "apply hphi_StrictMono", | |
| "model_output": "apply StrictMono.addMonotone strictMono_id strictMono_const" | |
| }, | |
| { | |
| "id": 180, | |
| "match": false, | |
| "ground_truth": "lift a to ℝ using ⟨ha2, ha1⟩", | |
| "model_output": "have hc2 : c ≠ ⊤ := by\n by_contra h\n rw [h] at hc1\n simp at hc1" | |
| }, | |
| { | |
| "id": 181, | |
| "match": false, | |
| "ground_truth": "lift c to ℝ using ⟨hc2, hc1⟩", | |
| "model_output": "rw [← EReal.coe_add] at h\n rw [← EReal.coe_sub] at h\n rw [← EReal.coe_sub] at *\n rw [← EReal.coe_add]\n exact EReal.coe_le_coe_iff.mpr (le_add_of_nonneg_left (by simp) h)" | |
| }, | |
| { | |
| "id": 182, | |
| "match": false, | |
| "ground_truth": "intro x hx y hy a b ha hb hab", | |
| "model_output": "intro x hx y hy a b ha hb hab\n have h1 : a * f x + b * f y - m / 2 * a * b * ‖x - y‖ ^ 2 = a • f x + b • f y - (a * b * (m / 2) * ‖x - y‖ ^ 2) := by\n rw [smul_eq_mul, smul_eq_mul, mul_assoc, mul_assoc, mul_comm b, mul_assoc]\n rw [h1]\n apply hfun hx hy ha hb hab" | |
| }, | |
| { | |
| "id": 183, | |
| "match": false, | |
| "ground_truth": "· exact fun h => (by rw [h])", | |
| "model_output": "· intro h; rw [h]" | |
| }, | |
| { | |
| "id": 184, | |
| "match": false, | |
| "ground_truth": "exact fun h => (by rw [h])", | |
| "model_output": "intro hst\n rw [hst]" | |
| }, | |
| { | |
| "id": 185, | |
| "match": false, | |
| "ground_truth": "simp [convex_support]", | |
| "model_output": "rw [convex_support]" | |
| }, | |
| { | |
| "id": 186, | |
| "match": false, | |
| "ground_truth": "simp [convex_support]", | |
| "model_output": "rcases hs with ⟨x, hx⟩\n use x\n constructor\n · simp\n rw [convex_support]\n exact lt_top_iff_ne_top.mpr (convex_conjugate_ne_top_of_ne_top x)" | |
| }, | |
| { | |
| "id": 187, | |
| "match": false, | |
| "ground_truth": "simp [convex_indicator]", | |
| "model_output": "rw [convex_indicator]" | |
| }, | |
| { | |
| "id": 188, | |
| "match": false, | |
| "ground_truth": "split_ifs with hy <;> simp", | |
| "model_output": "by_cases h : y ∈ s <;> simp [h] <;> simp [h] <;> linarith [hs]" | |
| }, | |
| { | |
| "id": 189, | |
| "match": false, | |
| "ground_truth": "rcases h1 with ⟨x, hx⟩", | |
| "model_output": "rcases h1 with ⟨x, hx⟩\n use x\n exact hx" | |
| }, | |
| { | |
| "id": 190, | |
| "match": false, | |
| "ground_truth": "apply convex_on_p_top", | |
| "model_output": "apply convexOn_of_const h" | |
| }, | |
| { | |
| "id": 191, | |
| "match": false, | |
| "ground_truth": "rw [polyhedra_iff_cone b]", | |
| "model_output": "simp [IsClosed]" | |
| }, | |
| { | |
| "id": 192, | |
| "match": false, | |
| "ground_truth": "exact closed_conic σ b", | |
| "model_output": "rw [cone_eq_iInter]\n apply isClosed_iInter\n intro i\n apply IsClosed.inter\n · apply isClosed_iInter\n intro j\n apply isClosed_iInter\n intro k\n apply isClosed_iInter\n intro x\n apply isClosed_iInter\n intro h\n apply isClosed_iInter\n intro h'\n apply isClosed_iInter\n intro h''\n apply isClosed_iInter\n intro h'''\n apply isClosed_iInter\n intro h''''\n apply isClosed_iInter\n intro h''''\n apply" | |
| }, | |
| { | |
| "id": 193, | |
| "match": false, | |
| "ground_truth": "intro x _ y _ a b _ _ _", | |
| "model_output": "simp [add_comm]" | |
| }, | |
| { | |
| "id": 194, | |
| "match": false, | |
| "ground_truth": "dsimp [Set.convex_indicator]", | |
| "model_output": "rw [convex_indicator_of_mem] <;> simp [hx]" | |
| }, | |
| { | |
| "id": 195, | |
| "match": false, | |
| "ground_truth": "apply ConvexOn.congr this eq", | |
| "model_output": "rw [convex_indicator_eq_self] at eq" | |
| }, | |
| { | |
| "id": 196, | |
| "match": false, | |
| "ground_truth": "apply Subset.antisymm", | |
| "model_output": "rcases hinter with ⟨x, hx⟩\n rw [intrinsicClosure_iInter_eq_iInter_intrinsicClosure_of_forall_exists_intrinsicInterior h hx]" | |
| }, | |
| { | |
| "id": 197, | |
| "match": false, | |
| "ground_truth": "apply hf' neq lta lta' eqone", | |
| "model_output": "have : a • x + (1 - a) • y = a • x + (1 - a) • y := by simp only [add_smul, one_smul, add_sub, add_comm, add_sub_assoc]" | |
| }, | |
| { | |
| "id": 198, | |
| "match": false, | |
| "ground_truth": "simp only [isMinOn_iff] at hy", | |
| "model_output": "have : f y ≤ f (a • x + (1 - a) • y) := by\n apply hy (a • x + (1 - a) • y) (by simp) (by simp) (by linarith) (by linarith) (by linarith)" | |
| }, | |
| { | |
| "id": 199, | |
| "match": false, | |
| "ground_truth": "apply not_le_of_gt h hy", | |
| "model_output": "linarith [h, hy]" | |
| }, | |
| { | |
| "id": 200, | |
| "match": false, | |
| "ground_truth": "intro u", | |
| "model_output": "rw [convex_iff_forall_pos]\n intro y1 hy1 y2 hy2 a b ha hb hab\n rw [f_subdiff_subset_iff_convex]\n intro z hz\n rw [f_subdiff_subset_iff_convex]\n intro w hw\n rw [f_subdiff_subset_iff_convex]\n intro u hu\n rw [f_subdiff_subset_iff_convex]\n intro v hv\n rw [f_subdiff_subset_iff_convex]\n intro p hp\n rw [f_subdiff_subset_iff_convex]\n intro q hq\n rw [f_sub" | |
| }, | |
| { | |
| "id": 201, | |
| "match": false, | |
| "ground_truth": "intro ε", | |
| "model_output": "intro ε εpos\n rw [add_comm] at hab\n rw [add_comm] at hv\n rw [add_comm] at hu\n filter_upwards [hu ε εpos, hv ε εpos] with y hy hy'\n rw [add_comm] at hy'\n rw [add_comm] at hy\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add" | |
| }, | |
| { | |
| "id": 202, | |
| "match": false, | |
| "ground_truth": "intro z z'", | |
| "model_output": "intro x y" | |
| }, | |
| { | |
| "id": 203, | |
| "match": false, | |
| "ground_truth": "intro z", | |
| "model_output": "intro x y" | |
| }, | |
| { | |
| "id": 204, | |
| "match": false, | |
| "ground_truth": "intro k", | |
| "model_output": "intro k\n rw [ck k]\n apply div_pos\n · linarith\n · apply mul_pos\n · linarith\n · linarith [alg.lpos]" | |
| }, | |
| { | |
| "id": 205, | |
| "match": false, | |
| "ground_truth": "rw [ck]", | |
| "model_output": "rw [ck]; apply div_pos; constructor; linarith; linarith [alg.lpos]" | |
| }, | |
| { | |
| "id": 206, | |
| "match": false, | |
| "ground_truth": "· norm_num", | |
| "model_output": "linarith [hγ]" | |
| }, | |
| { | |
| "id": 207, | |
| "match": false, | |
| "ground_truth": "norm_num", | |
| "model_output": "linarith" | |
| }, | |
| { | |
| "id": 208, | |
| "match": false, | |
| "ground_truth": "simp [h]", | |
| "model_output": "rw [← rowVec_transpose, ← colVec_transpose] at h" | |
| }, | |
| { | |
| "id": 209, | |
| "match": false, | |
| "ground_truth": "aesop", | |
| "model_output": "constructor <;> intro a _ b _ hab <;> exact hv.1 a <;> exact hv.2 a b hab" | |
| }, | |
| { | |
| "id": 210, | |
| "match": false, | |
| "ground_truth": "intro h", | |
| "model_output": "intro h\n exact ProperFunction.lowerSemicontinuousHull_eq_top h" | |
| }, | |
| { | |
| "id": 211, | |
| "match": false, | |
| "ground_truth": "exfalso", | |
| "model_output": "simp [LowerSemicontinuousHull]" | |
| }, | |
| { | |
| "id": 212, | |
| "match": false, | |
| "ground_truth": "simp at h1", | |
| "model_output": "rcases h1 with h1 | h1" | |
| }, | |
| { | |
| "id": 213, | |
| "match": true, | |
| "ground_truth": "simp [hf]", | |
| "model_output": "simp [hf]" | |
| }, | |
| { | |
| "id": 214, | |
| "match": false, | |
| "ground_truth": "ext ⟨x, _⟩", | |
| "model_output": "simp [epi, hf]" | |
| }, | |
| { | |
| "id": 215, | |
| "match": false, | |
| "ground_truth": "rw [h1]", | |
| "model_output": "rw[h1]" | |
| }, | |
| { | |
| "id": 216, | |
| "match": true, | |
| "ground_truth": "simp [hf]", | |
| "model_output": "simp [hf]" | |
| }, | |
| { | |
| "id": 217, | |
| "match": false, | |
| "ground_truth": "ext ⟨x, _⟩", | |
| "model_output": "simp [ProperFunction] at hsf" | |
| }, | |
| { | |
| "id": 218, | |
| "match": false, | |
| "ground_truth": "rw [h']", | |
| "model_output": "rw[h']; apply isClosed_empty" | |
| }, | |
| { | |
| "id": 219, | |
| "match": false, | |
| "ground_truth": "intro h z", | |
| "model_output": "intro h\n apply HasSubgradientAt_to_Banach_HasSubgradientAt\n exact h" | |
| }, | |
| { | |
| "id": 220, | |
| "match": false, | |
| "ground_truth": "intro h", | |
| "model_output": "intro h\n apply HasSubgradientAt_to_Banach_HasSubgradientAt\n exact h" | |
| }, | |
| { | |
| "id": 221, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "simp [toDual_apply]" | |
| }, | |
| { | |
| "id": 222, | |
| "match": false, | |
| "ground_truth": "linarith", | |
| "model_output": "exact hz" | |
| }, | |
| { | |
| "id": 223, | |
| "match": false, | |
| "ground_truth": "intro h z", | |
| "model_output": "intro h\n rw [HasSubgradientAt] ; intro y\n rw [← ContinuousLinearMap.map_sub]; apply h y; simp" | |
| }, | |
| { | |
| "id": 224, | |
| "match": false, | |
| "ground_truth": "intro h", | |
| "model_output": "intro h\n rw [HasSubgradientAt] ; intro y\n rw [← ContinuousLinearMap.map_sub]; apply h y; simp" | |
| }, | |
| { | |
| "id": 225, | |
| "match": false, | |
| "ground_truth": "simp at hz", | |
| "model_output": "simp [toDual_apply] at hz" | |
| }, | |
| { | |
| "id": 226, | |
| "match": false, | |
| "ground_truth": "linarith", | |
| "model_output": "exact hz" | |
| }, | |
| { | |
| "id": 227, | |
| "match": false, | |
| "ground_truth": "ext g", | |
| "model_output": "rw [h]" | |
| }, | |
| { | |
| "id": 228, | |
| "match": true, | |
| "ground_truth": "rw [h]", | |
| "model_output": "rw [h]" | |
| }, | |
| { | |
| "id": 229, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "constructor" | |
| }, | |
| { | |
| "id": 230, | |
| "match": false, | |
| "ground_truth": "intro x hx", | |
| "model_output": "intro x _" | |
| }, | |
| { | |
| "id": 231, | |
| "match": false, | |
| "ground_truth": "intro x", | |
| "model_output": "intro x _" | |
| }, | |
| { | |
| "id": 232, | |
| "match": false, | |
| "ground_truth": "intro x", | |
| "model_output": "intro x _" | |
| }, | |
| { | |
| "id": 233, | |
| "match": false, | |
| "ground_truth": "ext n", | |
| "model_output": "ext n\n simp [φ, φ₁]\n congr! 1\n exact Nat.add_sub_cancel' (n + 1)" | |
| }, | |
| { | |
| "id": 234, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "apply Nat.toNat_of_nonneg" | |
| }, | |
| { | |
| "id": 235, | |
| "match": true, | |
| "ground_truth": "rw [this]", | |
| "model_output": "rw [this]" | |
| }, | |
| { | |
| "id": 236, | |
| "match": false, | |
| "ground_truth": "rw [hc2]", | |
| "model_output": "rw [hc2] at h ⊢\n simp at h ⊢\n linarith" | |
| }, | |
| { | |
| "id": 237, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "simp [hc2] at h" | |
| }, | |
| { | |
| "id": 238, | |
| "match": false, | |
| "ground_truth": "exact this", | |
| "model_output": "rw [← EReal.coe_sub] at this" | |
| }, | |
| { | |
| "id": 239, | |
| "match": false, | |
| "ground_truth": "linarith", | |
| "model_output": "linarith [this]" | |
| }, | |
| { | |
| "id": 240, | |
| "match": true, | |
| "ground_truth": "· exact hs", | |
| "model_output": "· exact hs" | |
| }, | |
| { | |
| "id": 241, | |
| "match": false, | |
| "ground_truth": "exact hs", | |
| "model_output": "apply hs" | |
| }, | |
| { | |
| "id": 242, | |
| "match": false, | |
| "ground_truth": "intro x", | |
| "model_output": "intro x hx y hy a b ha hb hab\n have h1 : a * f x + b * f y - m / 2 * a * b * ‖x - y‖ ^ 2 = a • f x + b • f y - (a * b * (m / 2) * ‖x - y‖ ^ 2) := by\n rw [smul_eq_mul, smul_eq_mul, mul_assoc, mul_assoc, mul_comm b, mul_assoc]\n rw [h1]\n apply hfun hx hy ha hb hab" | |
| }, | |
| { | |
| "id": 243, | |
| "match": false, | |
| "ground_truth": "dsimp", | |
| "model_output": "simp [hab] at hfun ⊢" | |
| }, | |
| { | |
| "id": 244, | |
| "match": true, | |
| "ground_truth": "ring_nf", | |
| "model_output": "ring_nf" | |
| }, | |
| { | |
| "id": 245, | |
| "match": true, | |
| "ground_truth": "exact hfun", | |
| "model_output": "exact hfun" | |
| }, | |
| { | |
| "id": 246, | |
| "match": true, | |
| "ground_truth": "by rw [h]", | |
| "model_output": "rw [h]" | |
| }, | |
| { | |
| "id": 247, | |
| "match": true, | |
| "ground_truth": "rw [h]", | |
| "model_output": "rw [h]" | |
| }, | |
| { | |
| "id": 248, | |
| "match": false, | |
| "ground_truth": "intro h", | |
| "model_output": "intro hst\n have hssub : s ⊆ t := by\n rw [← bi_convex_support_eq_convex_convex_closed hscl hscv]\n rw [← bi_convex_support_eq_convex_convex_closed htcl htcv]\n exact fun x _ => (congrFun hst x).ge\n have htsub : t ⊆ s := by\n rw [← bi_convex_support_eq_convex_convex_closed htcl htcv]\n rw [← bi_convex_support_eq_convex_convex_closed hscl hscv]\n exact" | |
| }, | |
| { | |
| "id": 249, | |
| "match": false, | |
| "ground_truth": "ext z", | |
| "model_output": "rw [← convex_hull_eq_self_of_closed hscl, ← convex_hull_eq_self_of_closed htcl]" | |
| }, | |
| { | |
| "id": 250, | |
| "match": true, | |
| "ground_truth": "intro x _", | |
| "model_output": "intro x _" | |
| }, | |
| { | |
| "id": 251, | |
| "match": false, | |
| "ground_truth": "intro x", | |
| "model_output": "intro x _" | |
| }, | |
| { | |
| "id": 252, | |
| "match": false, | |
| "ground_truth": "right", | |
| "model_output": "right; rcases hs with ⟨x, hx⟩\n use x; constructor\n · trivial\n rw [convex_support, convex_conjugate]\n apply convex_indicator_univ_convex_conjugate_eq_indicator_univ_convex_conjugate\n exact hs.convex_indicator_univ_convex_conjugate_eq_indicator_univ_convex_conjugate hs" | |
| }, | |
| { | |
| "id": 253, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "intro y\n rw [inner_zero_left, EReal.coe_zero]\n apply le_convex_indicator_of_mem\n exact hs" | |
| }, | |
| { | |
| "id": 254, | |
| "match": false, | |
| "ground_truth": "intro y", | |
| "model_output": "intro y\n rw [convex_indicator]\n by_cases h : y ∈ s\n · simp [h]\n · simp [h]" | |
| }, | |
| { | |
| "id": 255, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "linarith" | |
| }, | |
| { | |
| "id": 256, | |
| "match": false, | |
| "ground_truth": "simp at h1", | |
| "model_output": "rcases h1 with h1 | h1" | |
| }, | |
| { | |
| "id": 257, | |
| "match": false, | |
| "ground_truth": "simp [hx]", | |
| "model_output": "simp [dom]" | |
| }, | |
| { | |
| "id": 258, | |
| "match": true, | |
| "ground_truth": "ext x", | |
| "model_output": "ext x" | |
| }, | |
| { | |
| "id": 259, | |
| "match": true, | |
| "ground_truth": "exact h x", | |
| "model_output": "exact h x" | |
| }, | |
| { | |
| "id": 260, | |
| "match": false, | |
| "ground_truth": "intro x", | |
| "model_output": "intro x _ y _" | |
| }, | |
| { | |
| "id": 261, | |
| "match": false, | |
| "ground_truth": "simp [hp]", | |
| "model_output": "rw [hp]" | |
| }, | |
| { | |
| "id": 262, | |
| "match": true, | |
| "ground_truth": "intro b", | |
| "model_output": "intro b" | |
| }, | |
| { | |
| "id": 263, | |
| "match": false, | |
| "ground_truth": "by rfl", | |
| "model_output": "constructor\n · intro h\n exact IsLinear_to_linear f h\n intro h\n exact linear_to_IsLinear f h" | |
| }, | |
| { | |
| "id": 264, | |
| "match": false, | |
| "ground_truth": "rfl", | |
| "model_output": "constructor\n · intro h\n exact IsLinear_to_linear f h\n intro h\n exact linear_to_IsLinear f h" | |
| }, | |
| { | |
| "id": 265, | |
| "match": true, | |
| "ground_truth": "rw [h]", | |
| "model_output": "rw [h]" | |
| }, | |
| { | |
| "id": 266, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "rw [ContinuousLinearMap.adjoint_comp]\n simp [A.toContinuousLinearMap, A.symm_toContinuousLinearMap]" | |
| }, | |
| { | |
| "id": 267, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "rw [ContinuousLinearMap.adjoint_comp]\n rw [ContinuousLinearMap.adjoint_coe]\n rw [ContinuousLinearMap.adjoint_coe]\n simp\n exact A.toContinuousLinearEquiv.symm_apply_apply x" | |
| }, | |
| { | |
| "id": 268, | |
| "match": false, | |
| "ground_truth": "exact hs", | |
| "model_output": "apply hs" | |
| }, | |
| { | |
| "id": 269, | |
| "match": false, | |
| "ground_truth": "intro x", | |
| "model_output": "simp [add_comm]" | |
| }, | |
| { | |
| "id": 270, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "simp [add_zero, smul_zero]" | |
| }, | |
| { | |
| "id": 271, | |
| "match": false, | |
| "ground_truth": "intro x hx", | |
| "model_output": "intro x _" | |
| }, | |
| { | |
| "id": 272, | |
| "match": false, | |
| "ground_truth": "intro x", | |
| "model_output": "intro x _" | |
| } | |
| ] | |
| } |