clone / evaluation /valid_score_ood_100.json
chenyili818's picture
Add files using upload-large-folder tool
661c54a verified
{
"summary": {
"total_with_gt": 273,
"matched": 38,
"accuracy": 0.1391941391941392
},
"details": [
{
"id": 0,
"match": false,
"ground_truth": "· exact mul_le_mul_of_nonneg_left hyu ha",
"model_output": "apply mul_le_mul_of_nonneg_left hyu ha"
},
{
"id": 1,
"match": false,
"ground_truth": "exact mul_le_mul_of_nonneg_left hyu ha",
"model_output": "apply mul_le_mul_of_nonneg_left hyu (by linarith) (by linarith) (by positivity)"
},
{
"id": 2,
"match": false,
"ground_truth": "· exact mul_le_mul_of_nonneg_left hyv hb",
"model_output": "apply mul_le_mul_of_nonneg hb hyv (by linarith) (by positivity)"
},
{
"id": 3,
"match": false,
"ground_truth": "exact mul_le_mul_of_nonneg_left hyv hb",
"model_output": "apply mul_le_mul_of_nonneg hb hyv (by linarith) (by positivity)"
},
{
"id": 4,
"match": false,
"ground_truth": "rw [lipschitzWith_iff_norm_sub_le] at *",
"model_output": "rw [lipschitzWith_iff_norm_sub_le] at hl ⊢\n intro x y\n apply hl\n simp [gradient]"
},
{
"id": 5,
"match": false,
"ground_truth": "by rw [grad_snd_eq h, grad_snd_eq h]",
"model_output": "simp [grad_snd]"
},
{
"id": 6,
"match": false,
"ground_truth": "rw [grad_snd_eq h, grad_snd_eq h]",
"model_output": "simp [grad_snd]"
},
{
"id": 7,
"match": false,
"ground_truth": "apply prox_well_define f hc lbdf x",
"model_output": "have : ∃ y, f y = inf (f '' univ) := by\n apply LowerSemicontinuous.exists_inf_of_bddBelow hc lbdf\n rcases this with ⟨y, hy⟩\n use y\n rw [hy]\n exact prox_set_eq_inf f x y"
},
{
"id": 8,
"match": false,
"ground_truth": "refine ⟨x₁, hx₁, x₂, hx₂, hx, ?_⟩",
"model_output": "refine ⟨x₁, hx₁, ?_⟩"
},
{
"id": 9,
"match": false,
"ground_truth": "exact LinearMap.mem_ker.mp (hker hx₂)",
"model_output": "have : x₂ ∈ LinearMap.ker T := hker hx₂\n exact this"
},
{
"id": 10,
"match": false,
"ground_truth": "simp [Orthonormal, Pairwise] at *",
"model_output": "rw [orthonormal_iff_ite] at hv ⊢\n constructor\n · intro i j hij\n by_cases h : i ∈ s\n · exact hv.1 i j hij\n simp [h]\n intro i\n by_cases h : i ∈ s\n · exact hv.2 i h\n simp [h]"
},
{
"id": 11,
"match": false,
"ground_truth": "by_cases hsf : ProperFunction s f",
"model_output": "rw [Function.closure_def]"
},
{
"id": 12,
"match": false,
"ground_truth": "· exact closure_is_closed_of_proper f hs",
"model_output": "· exact is_closed_of_closure f hs"
},
{
"id": 13,
"match": false,
"ground_truth": "exact closure_is_closed_of_proper f hs",
"model_output": "rw [Function.IsClosed]"
},
{
"id": 14,
"match": true,
"ground_truth": "apply IsClosed.prod hs isClosed_univ",
"model_output": "apply IsClosed.prod hs isClosed_univ"
},
{
"id": 15,
"match": false,
"ground_truth": "simp [w, l, g, AffineMap.decomp']",
"model_output": "rw [i.h]"
},
{
"id": 16,
"match": false,
"ground_truth": "rw [φ₁_equ fullrank₁ fullrank₂ n]",
"model_output": "simp [φ, φ₁]"
},
{
"id": 17,
"match": false,
"ground_truth": "exact EReal.coe_le_coe_iff.mp h",
"model_output": "exact EReal.coe_le_coe_iff.1 h"
},
{
"id": 18,
"match": false,
"ground_truth": "rw [← hT.span_range_w_eq_range]",
"model_output": "have h1 : r = finrank 𝕜 (range (T.toContinuousLinearMap)) := by\n rw [← hT.range_eq_range, hT.finrank_range_eq]"
},
{
"id": 19,
"match": false,
"ground_truth": "apply iff_iff_implies_and_implies.mpr",
"model_output": "rw [← convexHull_eq_self_of_closed hscl, ← convexHull_eq_self_of_closed htcl]"
},
{
"id": 20,
"match": false,
"ground_truth": "apply convex_conjugate_ge_bot_univ'",
"model_output": "apply lt_of_le_of_ne\n · apply convex_conjugate_ge_bot\n · intro h\n rw [h] at hs\n exact hs.1"
},
{
"id": 21,
"match": false,
"ground_truth": "exact HasGradientWithinAt.const_smul h c",
"model_output": "exact HasGradientAtFilter.const_smul h c"
},
{
"id": 22,
"match": true,
"ground_truth": "exact HasGradientAtFilter.const_add hf c",
"model_output": "exact HasGradientAtFilter.const_add hf c"
},
{
"id": 23,
"match": false,
"ground_truth": "exact HasGradientAtFilter.const_add hf c",
"model_output": "exact HasGradientAt.const_add hf c"
},
{
"id": 24,
"match": false,
"ground_truth": "exact HasGradientAtFilter.const_sub hf c",
"model_output": "exact HasGradientAt.const_sub hf c"
},
{
"id": 25,
"match": false,
"ground_truth": "apply convex_on_p_top\n ext x; exact h x",
"model_output": "apply convexOn_of_const h"
},
{
"id": 26,
"match": false,
"ground_truth": "apply monotone_gradient_convex'",
"model_output": "rw [ConvexOn]"
},
{
"id": 27,
"match": false,
"ground_truth": "exact (fun x _ => affine_sq_gradient x)",
"model_output": "intro x _"
},
{
"id": 28,
"match": false,
"ground_truth": "have h_zero_eq := (hS 0).mp h_zero_mem",
"model_output": "have h1 : c = (fun j : Fin m => (B.repr 0) (Fin.castAdd m j)) := by\n ext j; rw [hS]; simp [h_zero_mem]"
},
{
"id": 29,
"match": false,
"ground_truth": "have : (0 : 𝕜) < (1 : 𝕜) := one_pos",
"model_output": "apply hf' x y neq"
},
{
"id": 30,
"match": false,
"ground_truth": "rw [inner_add_left, real_inner_smul_left, real_inner_smul_left]",
"model_output": "rw [inner_add_left, ← smul_sub, inner_smul_left, inner_smul_left, ← smul_sub]"
},
{
"id": 31,
"match": false,
"ground_truth": "rw [← one_mul (-ε * ‖y - x‖), ← hab, add_mul]",
"model_output": "have : a * (f y - f x - inner ℝ u (y - x)) + b * (f y - f x - inner ℝ v (y - x)) ≥ -a * ε * ‖y - x‖ - b * ε * ‖y - x‖ := by\n apply add_le_add (mul_le_mul_of_nonneg_left hyu (by linarith)) (mul_le_mul_of_nonneg_left hyv (by linarith))"
},
{
"id": 32,
"match": false,
"ground_truth": "calc\n _ = ‖(gradient H z).2 - (gradient H z').2‖ := by rw [grad_snd_eq h, grad_snd_eq h]\n _ = ‖(gradient H z - gradient H z').2‖ := rfl\n _ ≤ ‖(gradient H z - gradient H z')‖ := snd_norm_le_prod_L2 _\n _ ≤ _ := hl z z'",
"model_output": "have h1 : ‖gradient H z - gradient H z'‖ ≤ l * ‖z - z'‖ := hl z z'"
},
{
"id": 33,
"match": false,
"ground_truth": "by\n intro k\n specialize ck k; rw [ck]\n apply div_pos\n · norm_num\n apply mul_pos\n · linarith [hγ]\n · apply alg.lpos",
"model_output": "intro k\n rw [ck k]\n apply div_pos\n · linarith\n · apply mul_pos\n · linarith\n · linarith [alg.lpos]"
},
{
"id": 34,
"match": false,
"ground_truth": "intro k\n specialize ck k; rw [ck]\n apply div_pos\n · norm_num\n apply mul_pos\n · linarith [hγ]\n · apply alg.lpos",
"model_output": "intro k\n rw [ck k]\n apply div_pos\n · linarith\n · apply mul_pos\n · linarith\n · linarith [alg.lpos]"
},
{
"id": 35,
"match": false,
"ground_truth": "by\n apply prox_well_define f hc lbdf x",
"model_output": "have : ∃ y, f y = inf (f '' univ) := by\n apply LowerSemicontinuous.exists_inf_of_bddBelow hc lbdf\n rcases this with ⟨y, hy⟩\n use y\n rw [hy]\n exact prox_set_eq_inf f x y"
},
{
"id": 36,
"match": false,
"ground_truth": "by\n unfold colSubmodule\n rw [finrank_span_eq_card]\n simp [h]",
"model_output": "have : Aᴴ * A = 1 := h\n have : Aᴴ = A† := by rfl\n rw [this, ← conjTranspose_mul, conjTranspose_conjTranspose] at h\n exact h"
},
{
"id": 37,
"match": false,
"ground_truth": "unfold colSubmodule\n rw [finrank_span_eq_card]\n simp [h]",
"model_output": "have : Aᴴ * A = 1 := h\n have : Aᴴ = A† := by rfl\n rw [this, ← conjTranspose_mul, conjTranspose_conjTranspose] at h\n exact h"
},
{
"id": 38,
"match": false,
"ground_truth": "let ⟨x₁, hx₁, x₂, hx₂, hx⟩ := exists_orthogonal_decompose s x\n refine ⟨x₁, hx₁, x₂, hx₂, hx, ?_⟩\n rw [hx, LinearMap.map_add]\n suffices T x₂ = 0 from by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]\n exact LinearMap.mem_ker.mp (hker hx₂)",
"model_output": "have : x = (LinearMap.ker T).lift (LinearMap.quotKerEquivKer T) x := by\n exact (LinearEquiv.symm_apply_eq (LinearMap.quotKerEquivKer T)).mp rfl\n rw [this]\n use (LinearMap.ker T).lift (LinearMap.quotKerEquivKer T) x\n constructor\n · exact Submodule.mem_span_of_mem (LinearMap.mem_ker.1 (hker (LinearMap.quotKerEquivKer T x)))"
},
{
"id": 39,
"match": false,
"ground_truth": "suffices T x₂ = 0 from by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]",
"model_output": "rw [LinearMap.map_add]"
},
{
"id": 40,
"match": false,
"ground_truth": "by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]",
"model_output": "rw [this, add_zero]"
},
{
"id": 41,
"match": false,
"ground_truth": "rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]",
"model_output": "rw [this, add_zero]"
},
{
"id": 42,
"match": false,
"ground_truth": "by\n simp [Orthonormal, Pairwise] at *\n aesop",
"model_output": "rw [orthonormal_iff_ite] at hv ⊢\n constructor\n · intro i j hij\n by_cases h : i ∈ s\n · exact hv.1 i j hij\n simp [h]\n intro i\n by_cases h : i ∈ s\n · exact hv.2 i h\n simp [h]"
},
{
"id": 43,
"match": false,
"ground_truth": "simp [Orthonormal, Pairwise] at *\n aesop",
"model_output": "rw [orthonormal_iff_ite] at hv ⊢\n constructor\n · intro i j hij\n by_cases h : i ∈ s\n · exact hv.1 i j hij\n simp [h]\n intro i\n by_cases h : i ∈ s\n · exact hv.2 i h\n simp [h]"
},
{
"id": 44,
"match": false,
"ground_truth": "by\n let s := Metric.ball x ε\n have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩\n exact gradient_continuous_of_contdiffat f h",
"model_output": "have : ContDiffOn ℝ 1 f (Metric.ball x ε) := hf\n have : ContDiffOn ℝ 0 f (Metric.ball x ε) := by\n apply ContDiffOn.zero_of_le\n linarith\n apply HasGradientAt.continuousAt\n apply HasGradientAt.continuousAt\n apply HasGradientAt.const_smul\n · apply HasGradientAt.const_add\n · apply HasGradientAt.const_mul\n · apply HasGradientAt.const_add\n · apply HasGradientAt.const_mul\n · apply HasGradientAt.const_add\n · apply Has"
},
{
"id": 45,
"match": false,
"ground_truth": "let s := Metric.ball x ε\n have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩\n exact gradient_continuous_of_contdiffat f h",
"model_output": "have : ContDiffOn ℝ 1 f (Metric.ball x ε) := hf\n have : ContDiffOn ℝ 0 f (Metric.ball x ε) := by\n apply ContDiffOn.zero_of_le\n linarith\n apply HasGradientAt.continuousAt\n apply HasGradientAt.continuousAt\n apply HasGradientAt.const_smul\n · apply HasGradientAt.const_add\n · apply HasGradientAt.const_mul\n · apply HasGradientAt.const_add\n · apply HasGradientAt.const_mul\n · apply HasGradientAt.const_add\n · apply Has"
},
{
"id": 46,
"match": false,
"ground_truth": "have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩",
"model_output": "have : ContDiffOn ℝ 1 f (Metric.ball x ε) := hf\n have : ContDiffOn ℝ 0 f (Metric.ball x ε) := by\n apply ContDiff.contDiffOn; apply ContDiff.continuous; apply ContDiff.contDiffAt\n apply HasGradientAt.contDiffAt; apply HasGradientAt.contDiffAt; apply HasGradientAt.contDiffAt\n apply HasGradientAt.contDiffAt; apply HasGradientAt.contDiffAt; apply HasGradientAt.contDiffAt\n apply HasGradientAt.contDiffAt; apply HasGradientAt.contDiffAt; apply Has"
},
{
"id": 47,
"match": false,
"ground_truth": "exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩",
"model_output": "constructor"
},
{
"id": 48,
"match": false,
"ground_truth": "exact gradient_continuous_of_contdiffat f h",
"model_output": "rw [contDiffAt_iff_contDiffAt_nhds] at h\n exact HasGradientAt.continuousAt h.hasGradientAt"
},
{
"id": 49,
"match": false,
"ground_truth": "by\n simp [Function.closure]\n intro h; exfalso\n obtain h1 := h.2; simp at h1",
"model_output": "rw [Function.closure_top]"
},
{
"id": 50,
"match": false,
"ground_truth": "simp [Function.closure]\n intro h; exfalso\n obtain h1 := h.2; simp at h1",
"model_output": "rw [Function.closure_top]"
},
{
"id": 51,
"match": true,
"ground_truth": "· simp [hf]; simp [Function.IsClosed]\n have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]\n rw [h1]\n apply IsClosed.prod hs isClosed_univ",
"model_output": "· simp [hf]"
},
{
"id": 52,
"match": true,
"ground_truth": "simp [hf]; simp [Function.IsClosed]\n have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]\n rw [h1]\n apply IsClosed.prod hs isClosed_univ",
"model_output": "simp [hf]"
},
{
"id": 53,
"match": false,
"ground_truth": "have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]",
"model_output": "simp [Epi]"
},
{
"id": 54,
"match": false,
"ground_truth": "have h' : Epi ⊤ s = ∅ := by\n ext ⟨x, _⟩; simp [Function.Epi]",
"model_output": "simp [Epi]"
},
{
"id": 55,
"match": false,
"ground_truth": "by\n constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z; simp at hz\n linarith",
"model_output": "constructor\n · exact HasSubgradientAt_to_Banach_HasSubgradientAt\n exact Banach_HasSubgradientAt_to_HasSubgradientAt"
},
{
"id": 56,
"match": false,
"ground_truth": "constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z; simp at hz\n linarith",
"model_output": "constructor\n · exact HasSubgradientAt_to_Banach_HasSubgradientAt\n exact Banach_HasSubgradientAt_to_HasSubgradientAt"
},
{
"id": 57,
"match": false,
"ground_truth": "· intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith",
"model_output": "· intro h\n apply HasSubgradientAt.banach_hasSubgradientAt\n exact h"
},
{
"id": 58,
"match": false,
"ground_truth": "intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith",
"model_output": "intro h\n apply HasSubgradientAt_to_Banach_HasSubgradientAt\n exact h"
},
{
"id": 59,
"match": false,
"ground_truth": "· intro x hx\n simpa [w, l, g, AffineMap.decomp', ← EReal.coe_sub, ← EReal.coe_add] using i.hlw x hx",
"model_output": "· intro x _\n exact i.hg x"
},
{
"id": 60,
"match": false,
"ground_truth": "intro x hx\n simpa [w, l, g, AffineMap.decomp', ← EReal.coe_sub, ← EReal.coe_add] using i.hlw x hx",
"model_output": "intro x _"
},
{
"id": 61,
"match": false,
"ground_truth": "apply Filter.tendsto_iff_seq_tendsto.1 Seq_converge_zero₃",
"model_output": "have : (fun n => A₂ (x₂ (φ₁ n + 1) - x₂ (φ₁ n))) = (fun n => A₂ (x₂ (φ₁ n) + (1 : ℕ) - x₂ (φ₁ n))) := by\n ext n; rw [Nat.cast_add, Nat.cast_one, add_sub_assoc, add_sub_cancel_left]\n have h₁ : (fun n => A₂ (x₂ (φ₁ n) + (1 : ℕ) - x₂ (φ₁ n))) = (fun n => A₂ (1 : ℕ)) :="
},
{
"id": 62,
"match": false,
"ground_truth": "have : (fun n => (Int.toNat (φ₁ n))) = (fun n => (φ (n+1))) := by\n ext n; rw [φ₁_equ fullrank₁ fullrank₂ n]; simp",
"model_output": "apply strictMono_nat_of_lt_succ"
},
{
"id": 63,
"match": false,
"ground_truth": "suffices 0 ≤ (c - a - b).toEReal by exact this",
"model_output": "rw [← EReal.coe_sub] at h"
},
{
"id": 64,
"match": false,
"ground_truth": "have : a + b ≤ c := by exact EReal.coe_le_coe_iff.mp h",
"model_output": "rw [← EReal.coe_sub] at h"
},
{
"id": 65,
"match": false,
"ground_truth": "refine EReal.coe_nonneg.mpr ?intro.intro.a",
"model_output": "rw [← EReal.coe_sub] at this"
},
{
"id": 66,
"match": false,
"ground_truth": "by\n constructor\n · exact hs\n intro x hx y hy a b ha hb hab\n specialize hfun hx hy ha hb hab\n dsimp\n have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf\n simp at this;\n rw [← this]; exact hfun",
"model_output": "rw [StrongConvexOn]"
},
{
"id": 67,
"match": false,
"ground_truth": "constructor\n · exact hs\n intro x hx y hy a b ha hb hab\n specialize hfun hx hy ha hb hab\n dsimp\n have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf\n simp at this;\n rw [← this]; exact hfun",
"model_output": "rw [StrongConvexOn]"
},
{
"id": 68,
"match": false,
"ground_truth": "have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf",
"model_output": "linarith [hfun]"
},
{
"id": 69,
"match": false,
"ground_truth": "by\n rw [← hT.span_range_w_eq_range]\n simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]",
"model_output": "have h1 : r = finrank 𝕜 (range (T.toContinuousLinearMap)) := by\n rw [← hT.range_eq_range, hT.finrank_range_eq]"
},
{
"id": 70,
"match": false,
"ground_truth": "rw [← hT.span_range_w_eq_range]\n simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]",
"model_output": "have h1 : r = finrank 𝕜 (range (T.toContinuousLinearMap)) := by\n rw [← hT.range_eq_range, hT.finrank_range_eq]"
},
{
"id": 71,
"match": false,
"ground_truth": "simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]",
"model_output": "rw [hT.finrank_range_w]"
},
{
"id": 72,
"match": false,
"ground_truth": "· exact fun a ↦ set_inclusion_convex_support_eq s t htcv htcl a h",
"model_output": "· intro hzs\n rw [← mem_convex_iff_support_le] at hzs\n rw [← h z] at hzs\n exact mem_convex_iff_support_le.1 hzs z hzs"
},
{
"id": 73,
"match": false,
"ground_truth": "exact fun a ↦ set_inclusion_convex_support_eq s t htcv htcl a h",
"model_output": "intro hzs\n have hzst : z ∈ s.convex_support := by\n rw [h z]; exact mem_convex_support_of_mem htcv hscv htscl htcl hzs\n exact mem_of_mem_convex_support hzst htcl"
},
{
"id": 74,
"match": false,
"ground_truth": "exact fun a ↦ set_inclusion_convex_support_eq t s hscv hscl a (fun x => (h x).symm)",
"model_output": "intro hzt\n rw [← h z]\n apply convex_support_subset_convex_support hscv htcv htcl hz"
},
{
"id": 75,
"match": true,
"ground_truth": "by\n intro x _\n simp [convex_support]\n obtain := ConvexIndicator_is_proper_on_univ hs\n apply convex_conjugate_ge_bot_univ'",
"model_output": "intro x _"
},
{
"id": 76,
"match": true,
"ground_truth": "intro x _\n simp [convex_support]\n obtain := ConvexIndicator_is_proper_on_univ hs\n apply convex_conjugate_ge_bot_univ'",
"model_output": "intro x _"
},
{
"id": 77,
"match": false,
"ground_truth": "have convex_conjugate_at_zero :\n convex_conjugate univ (convex_indicator s) 0 ≤ 0 := by\n refine (conjugate_le_zero_iff s.convex_indicator).mpr ?_\n simp\n intro y\n simp [convex_indicator]\n split_ifs with hy <;> simp",
"model_output": "rcases hs with ⟨x, hx⟩\n use x\n rw [convex_conjugate_indicator_eq_indicator_convex_conjugate]\n simp [hx]"
},
{
"id": 78,
"match": false,
"ground_truth": "refine (conjugate_le_zero_iff s.convex_indicator).mpr ?_",
"model_output": "rw [convex_conjugate_indicator_eq_indicator_convex_conjugate hs]"
},
{
"id": 79,
"match": false,
"ground_truth": "exact lt_of_le_of_lt (convex_conjugate_at_zero) (zero_lt_top)",
"model_output": "apply lt_of_le_of_ne convex_conjugate_at_zero ?_"
},
{
"id": 80,
"match": false,
"ground_truth": "by\n exact HasGradientWithinAt.const_smul h c",
"model_output": "exact HasGradientAtFilter.const_smul h c"
},
{
"id": 81,
"match": true,
"ground_truth": "by\n exact HasGradientAtFilter.const_add hf c",
"model_output": "exact HasGradientAtFilter.const_add hf c"
},
{
"id": 82,
"match": false,
"ground_truth": "by\n exact HasGradientAtFilter.const_add hf c",
"model_output": "exact HasGradientAt.const_add hf c"
},
{
"id": 83,
"match": false,
"ground_truth": "by\n simp only [sub_eq_add_neg, gradient_add_const]",
"model_output": "rw [gradient_sub_const]"
},
{
"id": 84,
"match": false,
"ground_truth": "simp only [sub_eq_add_neg, gradient_add_const]",
"model_output": "rw [gradient_sub_const]"
},
{
"id": 85,
"match": false,
"ground_truth": "by\n exact HasGradientAtFilter.const_sub hf c",
"model_output": "exact HasGradientAt.const_sub hf c"
},
{
"id": 86,
"match": false,
"ground_truth": "by\n obtain h1 := h.2; simp at h1\n rcases h1 with ⟨x, hx⟩; use x; simp [hx]",
"model_output": "simp [dom]"
},
{
"id": 87,
"match": false,
"ground_truth": "obtain h1 := h.2; simp at h1\n rcases h1 with ⟨x, hx⟩; use x; simp [hx]",
"model_output": "simp [dom]"
},
{
"id": 88,
"match": false,
"ground_truth": "by\n apply convex_on_p_top\n ext x; exact h x",
"model_output": "apply convexOn_of_const h"
},
{
"id": 89,
"match": false,
"ground_truth": "by\n rw [sub_eq_add_neg u v, mulVec_add, mulVec_neg, sub_eq_add_neg]",
"model_output": "rw [Matrix.mulVec_sub]"
},
{
"id": 90,
"match": false,
"ground_truth": "rw [sub_eq_add_neg u v, mulVec_add, mulVec_neg, sub_eq_add_neg]",
"model_output": "rw [Matrix.mulVec_sub]"
},
{
"id": 91,
"match": false,
"ground_truth": "· exact (fun x _ => affine_sq_gradient x)",
"model_output": "intro x _"
},
{
"id": 92,
"match": true,
"ground_truth": "· intro x _ y _\n rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]\n rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]\n apply sq_nonneg",
"model_output": "intro x _ y _"
},
{
"id": 93,
"match": true,
"ground_truth": "intro x _ y _\n rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]\n rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]\n apply sq_nonneg",
"model_output": "intro x _ y _"
},
{
"id": 94,
"match": false,
"ground_truth": "rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]",
"model_output": "rw [← Matrix.mulVec_sub, ← Matrix.mulVec_sub, Matrix.mul_assoc, Matrix.mul_assoc, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix"
},
{
"id": 95,
"match": false,
"ground_truth": "rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]",
"model_output": "rw [← Matrix.mulVec_sub, transpose_mul_self_nonneg]"
},
{
"id": 96,
"match": false,
"ground_truth": "have h_zero_mem : (0 : E) ∈ S := S.zero_mem",
"model_output": "have h1 : ∀ (v : E), v ∈ S ↔ (B.repr v) (Fin.natAdd n) = c := by\n intro v\n have h1 := hS v\n simp at h1\n exact h1"
},
{
"id": 97,
"match": false,
"ground_truth": "have h_repr_zero : B.repr 0 = 0 := LinearEquiv.map_zero B.repr",
"model_output": "simp at h_zero_eq"
},
{
"id": 98,
"match": false,
"ground_truth": "simp only [map_zero, Finsupp.coe_zero, Pi.zero_apply] at h_zero_eq",
"model_output": "simp [h_repr_zero] at h_zero_eq"
},
{
"id": 99,
"match": false,
"ground_truth": "simp only [Matrix.mulVec_zero, add_zero] at h_zero_eq",
"model_output": "rw [Matrix.mulVec_zero, add_zero] at h_zero_eq"
},
{
"id": 100,
"match": false,
"ground_truth": "by\n unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]",
"model_output": "simp [sup_value]"
},
{
"id": 101,
"match": false,
"ground_truth": "unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]",
"model_output": "simp [sup_value]"
},
{
"id": 102,
"match": true,
"ground_truth": "by\n intro b; rw [polyhedra_iff_cone b]\n exact closed_conic σ b",
"model_output": "intro b"
},
{
"id": 103,
"match": true,
"ground_truth": "intro b; rw [polyhedra_iff_cone b]\n exact closed_conic σ b",
"model_output": "intro b"
},
{
"id": 104,
"match": true,
"ground_truth": "by\n rw [h]; apply (local_Minimum_TangentCone' loc hl hf)",
"model_output": "rw [h]"
},
{
"id": 105,
"match": true,
"ground_truth": "rw [h]; apply (local_Minimum_TangentCone' loc hl hf)",
"model_output": "rw [h]"
},
{
"id": 106,
"match": false,
"ground_truth": "apply (local_Minimum_TangentCone' loc hl hf)",
"model_output": "rw [← h]"
},
{
"id": 107,
"match": false,
"ground_truth": "by rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply]\n simp [A.symm_comp_self]"
},
{
"id": 108,
"match": false,
"ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply]\n simp [A.symm_comp_self]"
},
{
"id": 109,
"match": false,
"ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply]\n simp [A.symm_comp_self]"
},
{
"id": 110,
"match": false,
"ground_truth": "by rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp]\n simp [A.toContinuousLinearMap, A.symm_toContinuousLinearMap, A.toContinuousLinearEquiv]"
},
{
"id": 111,
"match": false,
"ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp]\n simp [A.toContinuousLinearMap, A.symm_toContinuousLinearMap, A.toContinuousLinearEquiv]"
},
{
"id": 112,
"match": false,
"ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp]\n simp [A.toContinuousLinearMap, A.symm_toContinuousLinearMap, A.toContinuousLinearEquiv]"
},
{
"id": 113,
"match": false,
"ground_truth": "by rw [← trace_transpose, ← trace_transpose_mul, transpose_mul]",
"model_output": "rw [Matrix.trace_mul_comm]"
},
{
"id": 114,
"match": false,
"ground_truth": "rw [← trace_transpose, ← trace_transpose_mul, transpose_mul]",
"model_output": "rw [Matrix.trace_mul_comm]"
},
{
"id": 115,
"match": false,
"ground_truth": "have : ConvexOn ℝ X fun _ ↦ (0: EReal) := by\n dsimp [ConvexOn]\n constructor\n exact hs\n intro x _ y _ a b _ _ _\n simp",
"model_output": "apply ConvexOn.convex_indicator (convex_univ X) (convex_univ X) hs (by simp) (by simp)"
},
{
"id": 116,
"match": false,
"ground_truth": "have eq : EqOn (fun _ ↦ (0: EReal)) (Set.convex_indicator X) X := by\n dsimp[EqOn]\n intro x hx\n dsimp [Set.convex_indicator]\n rw [if_pos hx]",
"model_output": "apply ConvexOn.convex_indicator this (fun x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _"
},
{
"id": 117,
"match": false,
"ground_truth": "by\n apply Subset.antisymm\n · exact iIntersection_closure_sub_closure_iIntersection'' h hinter\n exact closure_iIntersection_sub_iIntersection_closure'",
"model_output": "rcases hinter with ⟨x, hx⟩\n rw [intrinsicClosure_iInter_eq_iInter_intrinsicClosure_of_forall_exists_intrinsicInterior h hx]"
},
{
"id": 118,
"match": false,
"ground_truth": "apply Subset.antisymm\n · exact iIntersection_closure_sub_closure_iIntersection'' h hinter\n exact closure_iIntersection_sub_iIntersection_closure'",
"model_output": "rcases hinter with ⟨x, hx⟩\n rw [intrinsicClosure_iInter_eq_iInter_intrinsicClosure_of_forall_exists_intrinsicInterior h hx]"
},
{
"id": 119,
"match": false,
"ground_truth": "· exact iIntersection_closure_sub_closure_iIntersection'' h hinter",
"model_output": "· apply iInter_intrinsicClosure_subset_intrinsicClosure_iInter\n exact h"
},
{
"id": 120,
"match": false,
"ground_truth": "exact iIntersection_closure_sub_closure_iIntersection'' h hinter",
"model_output": "rcases hinter with ⟨x, hx⟩\n rw [intrinsicClosure_iInter_eq_iInter_intrinsicClosure_of_exists_intrinsicInterior h hx]\n apply iInter_mono\n intro i\n apply intrinsicClosure_mono\n exact subset_iInter (fun i => intrinsicInterior_subset) i"
},
{
"id": 121,
"match": false,
"ground_truth": "exact closure_iIntersection_sub_iIntersection_closure'",
"model_output": "rw [intrinsicClosure_iInter_eq_iInter_intrinsicClosure_of_intrinsicInterior_nonempty]"
},
{
"id": 122,
"match": false,
"ground_truth": "have eqone : a + (1 - a) = 1 := add_sub_cancel a 1",
"model_output": "have : a ∈ Set.Ioo 0 1 := ⟨lta, alt⟩\n have : ∃ c : E, c ∈ Set.Ioo 0 1 ∧ f c < min (f x) (f y) := by\n apply strict_inequ_of_strong_quasi hf' this\n obtain ⟨c, hc⟩ := this\n have : f c < min (f x) (f y) := hc.2\n have : f c < f x := by\n apply lt_of_lt_of_eq this (min_eq_left (hx trivial))\n have :"
},
{
"id": 123,
"match": false,
"ground_truth": "have lta' : 0 < 1 - a := sub_pos_of_lt alt",
"model_output": "have : a + (1 - a) = 1 := by ring_nf"
},
{
"id": 124,
"match": false,
"ground_truth": "have h : f (a • x + (1 - a) • y) < f y := by\n apply Eq.trans_gt (max_eq_right (hx trivial))\n apply hf' neq lta lta' eqone",
"model_output": "have : a + (1 - a) = 1 := by ring_nf"
},
{
"id": 125,
"match": false,
"ground_truth": "apply Eq.trans_gt (max_eq_right (hx trivial))",
"model_output": "apply hf' (a • x + (1 - a) • y) y lta' lta (by linarith) (by linarith) (by linarith)"
},
{
"id": 126,
"match": false,
"ground_truth": "intro ε εpos",
"model_output": "intro ε εpos\n rw [add_comm] at hab\n rw [add_comm] at hv\n rw [add_comm] at hu\n filter_upwards [hu ε εpos, hv ε εpos] with y hy hy'\n rw [add_comm] at hy'\n rw [add_comm] at hy\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add"
},
{
"id": 127,
"match": false,
"ground_truth": "rw [ge_iff_le] at *",
"model_output": "apply add_le_add hyu hyv"
},
{
"id": 128,
"match": false,
"ground_truth": "apply add_le_add",
"model_output": "apply add_le_add hyu hyv"
},
{
"id": 129,
"match": false,
"ground_truth": "apply div_pos",
"model_output": "apply div_pos _ (mul_pos (by linarith) (alg.lpos))"
},
{
"id": 130,
"match": false,
"ground_truth": "apply mul_pos",
"model_output": "apply mul_pos _ alg.lpos\n linarith [hγ]"
},
{
"id": 131,
"match": true,
"ground_truth": "· linarith [hγ]",
"model_output": "linarith [hγ]"
},
{
"id": 132,
"match": true,
"ground_truth": "linarith [hγ]",
"model_output": "linarith [hγ]"
},
{
"id": 133,
"match": false,
"ground_truth": "· apply alg.lpos",
"model_output": "linarith [alg.lpos]"
},
{
"id": 134,
"match": false,
"ground_truth": "apply alg.lpos",
"model_output": "linarith [alg.lpos]"
},
{
"id": 135,
"match": false,
"ground_truth": "rw [mem_nhds_iff]",
"model_output": "exact Metric.ball_mem_nhds x he"
},
{
"id": 136,
"match": false,
"ground_truth": "simp [Function.Epi]",
"model_output": "simp [Epi]"
},
{
"id": 137,
"match": false,
"ground_truth": "simp [Function.Epi]",
"model_output": "simp [Epi]"
},
{
"id": 138,
"match": false,
"ground_truth": "exact isClosed_empty",
"model_output": "simp"
},
{
"id": 139,
"match": false,
"ground_truth": "constructor",
"model_output": "constructor\n · exact HasSubgradientAt_to_Banach_HasSubgradientAt\n exact Banach_HasSubgradientAt_to_HasSubgradientAt"
},
{
"id": 140,
"match": true,
"ground_truth": "by\n ext g; rw [h]",
"model_output": "rw [h]"
},
{
"id": 141,
"match": true,
"ground_truth": "ext g; rw [h]",
"model_output": "rw [h]"
},
{
"id": 142,
"match": true,
"ground_truth": "constructor",
"model_output": "constructor"
},
{
"id": 143,
"match": true,
"ground_truth": "intro x _hx",
"model_output": "intro x _"
},
{
"id": 144,
"match": false,
"ground_truth": "simp at this",
"model_output": "rw [this]"
},
{
"id": 145,
"match": false,
"ground_truth": "· simp [StrictMono]",
"model_output": "apply strictMono_add_const"
},
{
"id": 146,
"match": false,
"ground_truth": "simp [StrictMono]",
"model_output": "apply strictMono_add_const"
},
{
"id": 147,
"match": false,
"ground_truth": "by_cases hc2 : c = ⊤",
"model_output": "by_cases ha3 : a = ⊤"
},
{
"id": 148,
"match": false,
"ground_truth": "· rw [hc2]; simp",
"model_output": "· rw [hc2]; simp; exact le_top"
},
{
"id": 149,
"match": false,
"ground_truth": "rw [hc2]; simp",
"model_output": "rw [hc2] at h ⊢\n simp at h ⊢\n linarith"
},
{
"id": 150,
"match": false,
"ground_truth": "by exact this",
"model_output": "rw [← EReal.coe_sub] at this"
},
{
"id": 151,
"match": false,
"ground_truth": "constructor",
"model_output": "rw [StrongConvexOn]"
},
{
"id": 152,
"match": false,
"ground_truth": "rw [← this]",
"model_output": "rw [this] at hfun"
},
{
"id": 153,
"match": false,
"ground_truth": "constructor",
"model_output": "constructor <;> intro h <;> rw [h] <;> exact Eq.symm (convex_support_eq_convex_cl hscv)"
},
{
"id": 154,
"match": false,
"ground_truth": "simp [funext_iff]",
"model_output": "intro hst"
},
{
"id": 155,
"match": true,
"ground_truth": "constructor",
"model_output": "constructor"
},
{
"id": 156,
"match": false,
"ground_truth": "· apply convex_univ",
"model_output": "apply Convex.univ"
},
{
"id": 157,
"match": true,
"ground_truth": "apply convex_univ",
"model_output": "apply convex_univ"
},
{
"id": 158,
"match": true,
"ground_truth": "intro x _ y _",
"model_output": "intro x _ y _"
},
{
"id": 159,
"match": true,
"ground_truth": "apply sq_nonneg",
"model_output": "apply sq_nonneg"
},
{
"id": 160,
"match": false,
"ground_truth": "exact h_zero_eq.symm",
"model_output": "exact Eq.symm h_zero_eq"
},
{
"id": 161,
"match": false,
"ground_truth": "dsimp [ConvexOn]",
"model_output": "apply ConvexOn.const_zero"
},
{
"id": 162,
"match": true,
"ground_truth": "constructor",
"model_output": "constructor"
},
{
"id": 163,
"match": false,
"ground_truth": "dsimp[EqOn]",
"model_output": "intro x hx\n rw [convex_indicator_of_mem (hs x hx) (fun x _ => 0) (by simp)]"
},
{
"id": 164,
"match": false,
"ground_truth": "rw [if_pos hx]",
"model_output": "simp [hx]"
},
{
"id": 165,
"match": false,
"ground_truth": "by_contra neq",
"model_output": "have h1 : f x ≤ f y := by\n apply hx (mem_univ y)"
},
{
"id": 166,
"match": false,
"ground_truth": "intro u hu v hv a b ha hb hab",
"model_output": "rw [convex_iff_forall_pos]\n intro y1 hy1 y2 hy2 a b ha hb hab\n rw [f_subdiff_subset_iff_convex]\n intro z hz\n rw [f_subdiff_subset_iff_convex]\n intro w hw\n rw [f_subdiff_subset_iff_convex]\n intro u hu\n rw [f_subdiff_subset_iff_convex]\n intro v hv\n rw [f_subdiff_subset_iff_convex]\n intro p hp\n rw [f_subdiff_subset_iff_convex]\n intro q hq\n rw [f_sub"
},
{
"id": 167,
"match": false,
"ground_truth": "rw [has_f_subdiff_iff] at *",
"model_output": "rw [f_subdiff] at *"
},
{
"id": 168,
"match": false,
"ground_truth": "rw [finrank_span_eq_card]",
"model_output": "have : (Aᴴ * A).colVec = Aᴴ.colVec := by\n ext i\n rw [Matrix.mul_apply]\n exact Eq.symm (Matrix.mulVec_colVec Aᴴ A i)"
},
{
"id": 169,
"match": false,
"ground_truth": "rw [hx, LinearMap.map_add]",
"model_output": "rw [hx, LinearMap.map_add, norm_add_sq_real]"
},
{
"id": 170,
"match": false,
"ground_truth": "apply ContDiffOn.contDiffAt hf",
"model_output": "have : ContDiffOn ℝ 1 f (Metric.ball x ε) := hf\n have : ContDiffOn ℝ 1 f (Metric.ball x ε) := this\n have : ContDiffAt ℝ 1 f x := ContDiffOn.contDiffAt this (Metric.mem_ball_self he)\n exact this"
},
{
"id": 171,
"match": false,
"ground_truth": "simp [Function.closure]",
"model_output": "rw [Function.closure_top]"
},
{
"id": 172,
"match": false,
"ground_truth": "simp [Function.closure, hsf]",
"model_output": "simp [Function.IsClosed, Function.closure, hs]"
},
{
"id": 173,
"match": false,
"ground_truth": "by_cases hf : ∃ x ∈ s, f x = ⊥",
"model_output": "by_cases h : ∃ x ∈ s, f x = ⊥"
},
{
"id": 174,
"match": false,
"ground_truth": "simp [Function.IsClosed]",
"model_output": "rw [Function.IsClosed]"
},
{
"id": 175,
"match": false,
"ground_truth": "simp [Function.IsClosed]",
"model_output": "exact hs"
},
{
"id": 176,
"match": false,
"ground_truth": "apply StrictMono.tendsto_atTop",
"model_output": "apply Filter.tendsto_coe_nhds_infty"
},
{
"id": 177,
"match": false,
"ground_truth": "apply StrictMono.comp",
"model_output": "apply StrictMono.add_const"
},
{
"id": 178,
"match": false,
"ground_truth": "· apply hphi_StrictMono",
"model_output": "· apply strictMono_nat_of_lt_succ\n intro n\n apply φ_strict_mono' n"
},
{
"id": 179,
"match": false,
"ground_truth": "apply hphi_StrictMono",
"model_output": "apply StrictMono.addMonotone strictMono_id strictMono_const"
},
{
"id": 180,
"match": false,
"ground_truth": "lift a to ℝ using ⟨ha2, ha1⟩",
"model_output": "have hc2 : c ≠ ⊤ := by\n by_contra h\n rw [h] at hc1\n simp at hc1"
},
{
"id": 181,
"match": false,
"ground_truth": "lift c to ℝ using ⟨hc2, hc1⟩",
"model_output": "rw [← EReal.coe_add] at h\n rw [← EReal.coe_sub] at h\n rw [← EReal.coe_sub] at *\n rw [← EReal.coe_add]\n exact EReal.coe_le_coe_iff.mpr (le_add_of_nonneg_left (by simp) h)"
},
{
"id": 182,
"match": false,
"ground_truth": "intro x hx y hy a b ha hb hab",
"model_output": "intro x hx y hy a b ha hb hab\n have h1 : a * f x + b * f y - m / 2 * a * b * ‖x - y‖ ^ 2 = a • f x + b • f y - (a * b * (m / 2) * ‖x - y‖ ^ 2) := by\n rw [smul_eq_mul, smul_eq_mul, mul_assoc, mul_assoc, mul_comm b, mul_assoc]\n rw [h1]\n apply hfun hx hy ha hb hab"
},
{
"id": 183,
"match": false,
"ground_truth": "· exact fun h => (by rw [h])",
"model_output": "· intro h; rw [h]"
},
{
"id": 184,
"match": false,
"ground_truth": "exact fun h => (by rw [h])",
"model_output": "intro hst\n rw [hst]"
},
{
"id": 185,
"match": false,
"ground_truth": "simp [convex_support]",
"model_output": "rw [convex_support]"
},
{
"id": 186,
"match": false,
"ground_truth": "simp [convex_support]",
"model_output": "rcases hs with ⟨x, hx⟩\n use x\n constructor\n · simp\n rw [convex_support]\n exact lt_top_iff_ne_top.mpr (convex_conjugate_ne_top_of_ne_top x)"
},
{
"id": 187,
"match": false,
"ground_truth": "simp [convex_indicator]",
"model_output": "rw [convex_indicator]"
},
{
"id": 188,
"match": false,
"ground_truth": "split_ifs with hy <;> simp",
"model_output": "by_cases h : y ∈ s <;> simp [h] <;> simp [h] <;> linarith [hs]"
},
{
"id": 189,
"match": false,
"ground_truth": "rcases h1 with ⟨x, hx⟩",
"model_output": "rcases h1 with ⟨x, hx⟩\n use x\n exact hx"
},
{
"id": 190,
"match": false,
"ground_truth": "apply convex_on_p_top",
"model_output": "apply convexOn_of_const h"
},
{
"id": 191,
"match": false,
"ground_truth": "rw [polyhedra_iff_cone b]",
"model_output": "simp [IsClosed]"
},
{
"id": 192,
"match": false,
"ground_truth": "exact closed_conic σ b",
"model_output": "rw [cone_eq_iInter]\n apply isClosed_iInter\n intro i\n apply IsClosed.inter\n · apply isClosed_iInter\n intro j\n apply isClosed_iInter\n intro k\n apply isClosed_iInter\n intro x\n apply isClosed_iInter\n intro h\n apply isClosed_iInter\n intro h'\n apply isClosed_iInter\n intro h''\n apply isClosed_iInter\n intro h'''\n apply isClosed_iInter\n intro h''''\n apply isClosed_iInter\n intro h''''\n apply"
},
{
"id": 193,
"match": false,
"ground_truth": "intro x _ y _ a b _ _ _",
"model_output": "simp [add_comm]"
},
{
"id": 194,
"match": false,
"ground_truth": "dsimp [Set.convex_indicator]",
"model_output": "rw [convex_indicator_of_mem] <;> simp [hx]"
},
{
"id": 195,
"match": false,
"ground_truth": "apply ConvexOn.congr this eq",
"model_output": "rw [convex_indicator_eq_self] at eq"
},
{
"id": 196,
"match": false,
"ground_truth": "apply Subset.antisymm",
"model_output": "rcases hinter with ⟨x, hx⟩\n rw [intrinsicClosure_iInter_eq_iInter_intrinsicClosure_of_forall_exists_intrinsicInterior h hx]"
},
{
"id": 197,
"match": false,
"ground_truth": "apply hf' neq lta lta' eqone",
"model_output": "have : a • x + (1 - a) • y = a • x + (1 - a) • y := by simp only [add_smul, one_smul, add_sub, add_comm, add_sub_assoc]"
},
{
"id": 198,
"match": false,
"ground_truth": "simp only [isMinOn_iff] at hy",
"model_output": "have : f y ≤ f (a • x + (1 - a) • y) := by\n apply hy (a • x + (1 - a) • y) (by simp) (by simp) (by linarith) (by linarith) (by linarith)"
},
{
"id": 199,
"match": false,
"ground_truth": "apply not_le_of_gt h hy",
"model_output": "linarith [h, hy]"
},
{
"id": 200,
"match": false,
"ground_truth": "intro u",
"model_output": "rw [convex_iff_forall_pos]\n intro y1 hy1 y2 hy2 a b ha hb hab\n rw [f_subdiff_subset_iff_convex]\n intro z hz\n rw [f_subdiff_subset_iff_convex]\n intro w hw\n rw [f_subdiff_subset_iff_convex]\n intro u hu\n rw [f_subdiff_subset_iff_convex]\n intro v hv\n rw [f_subdiff_subset_iff_convex]\n intro p hp\n rw [f_subdiff_subset_iff_convex]\n intro q hq\n rw [f_sub"
},
{
"id": 201,
"match": false,
"ground_truth": "intro ε",
"model_output": "intro ε εpos\n rw [add_comm] at hab\n rw [add_comm] at hv\n rw [add_comm] at hu\n filter_upwards [hu ε εpos, hv ε εpos] with y hy hy'\n rw [add_comm] at hy'\n rw [add_comm] at hy\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add"
},
{
"id": 202,
"match": false,
"ground_truth": "intro z z'",
"model_output": "intro x y"
},
{
"id": 203,
"match": false,
"ground_truth": "intro z",
"model_output": "intro x y"
},
{
"id": 204,
"match": false,
"ground_truth": "intro k",
"model_output": "intro k\n rw [ck k]\n apply div_pos\n · linarith\n · apply mul_pos\n · linarith\n · linarith [alg.lpos]"
},
{
"id": 205,
"match": false,
"ground_truth": "rw [ck]",
"model_output": "rw [ck]; apply div_pos; constructor; linarith; linarith [alg.lpos]"
},
{
"id": 206,
"match": false,
"ground_truth": "· norm_num",
"model_output": "linarith [hγ]"
},
{
"id": 207,
"match": false,
"ground_truth": "norm_num",
"model_output": "linarith"
},
{
"id": 208,
"match": false,
"ground_truth": "simp [h]",
"model_output": "rw [← rowVec_transpose, ← colVec_transpose] at h"
},
{
"id": 209,
"match": false,
"ground_truth": "aesop",
"model_output": "constructor <;> intro a _ b _ hab <;> exact hv.1 a <;> exact hv.2 a b hab"
},
{
"id": 210,
"match": false,
"ground_truth": "intro h",
"model_output": "intro h\n exact ProperFunction.lowerSemicontinuousHull_eq_top h"
},
{
"id": 211,
"match": false,
"ground_truth": "exfalso",
"model_output": "simp [LowerSemicontinuousHull]"
},
{
"id": 212,
"match": false,
"ground_truth": "simp at h1",
"model_output": "rcases h1 with h1 | h1"
},
{
"id": 213,
"match": true,
"ground_truth": "simp [hf]",
"model_output": "simp [hf]"
},
{
"id": 214,
"match": false,
"ground_truth": "ext ⟨x, _⟩",
"model_output": "simp [epi, hf]"
},
{
"id": 215,
"match": false,
"ground_truth": "rw [h1]",
"model_output": "rw[h1]"
},
{
"id": 216,
"match": true,
"ground_truth": "simp [hf]",
"model_output": "simp [hf]"
},
{
"id": 217,
"match": false,
"ground_truth": "ext ⟨x, _⟩",
"model_output": "simp [ProperFunction] at hsf"
},
{
"id": 218,
"match": false,
"ground_truth": "rw [h']",
"model_output": "rw[h']; apply isClosed_empty"
},
{
"id": 219,
"match": false,
"ground_truth": "intro h z",
"model_output": "intro h\n apply HasSubgradientAt_to_Banach_HasSubgradientAt\n exact h"
},
{
"id": 220,
"match": false,
"ground_truth": "intro h",
"model_output": "intro h\n apply HasSubgradientAt_to_Banach_HasSubgradientAt\n exact h"
},
{
"id": 221,
"match": false,
"ground_truth": "simp",
"model_output": "simp [toDual_apply]"
},
{
"id": 222,
"match": false,
"ground_truth": "linarith",
"model_output": "exact hz"
},
{
"id": 223,
"match": false,
"ground_truth": "intro h z",
"model_output": "intro h\n rw [HasSubgradientAt] ; intro y\n rw [← ContinuousLinearMap.map_sub]; apply h y; simp"
},
{
"id": 224,
"match": false,
"ground_truth": "intro h",
"model_output": "intro h\n rw [HasSubgradientAt] ; intro y\n rw [← ContinuousLinearMap.map_sub]; apply h y; simp"
},
{
"id": 225,
"match": false,
"ground_truth": "simp at hz",
"model_output": "simp [toDual_apply] at hz"
},
{
"id": 226,
"match": false,
"ground_truth": "linarith",
"model_output": "exact hz"
},
{
"id": 227,
"match": false,
"ground_truth": "ext g",
"model_output": "rw [h]"
},
{
"id": 228,
"match": true,
"ground_truth": "rw [h]",
"model_output": "rw [h]"
},
{
"id": 229,
"match": false,
"ground_truth": "simp",
"model_output": "constructor"
},
{
"id": 230,
"match": false,
"ground_truth": "intro x hx",
"model_output": "intro x _"
},
{
"id": 231,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x _"
},
{
"id": 232,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x _"
},
{
"id": 233,
"match": false,
"ground_truth": "ext n",
"model_output": "ext n\n simp [φ, φ₁]\n congr! 1\n exact Nat.add_sub_cancel' (n + 1)"
},
{
"id": 234,
"match": false,
"ground_truth": "simp",
"model_output": "apply Nat.toNat_of_nonneg"
},
{
"id": 235,
"match": true,
"ground_truth": "rw [this]",
"model_output": "rw [this]"
},
{
"id": 236,
"match": false,
"ground_truth": "rw [hc2]",
"model_output": "rw [hc2] at h ⊢\n simp at h ⊢\n linarith"
},
{
"id": 237,
"match": false,
"ground_truth": "simp",
"model_output": "simp [hc2] at h"
},
{
"id": 238,
"match": false,
"ground_truth": "exact this",
"model_output": "rw [← EReal.coe_sub] at this"
},
{
"id": 239,
"match": false,
"ground_truth": "linarith",
"model_output": "linarith [this]"
},
{
"id": 240,
"match": true,
"ground_truth": "· exact hs",
"model_output": "· exact hs"
},
{
"id": 241,
"match": false,
"ground_truth": "exact hs",
"model_output": "apply hs"
},
{
"id": 242,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x hx y hy a b ha hb hab\n have h1 : a * f x + b * f y - m / 2 * a * b * ‖x - y‖ ^ 2 = a • f x + b • f y - (a * b * (m / 2) * ‖x - y‖ ^ 2) := by\n rw [smul_eq_mul, smul_eq_mul, mul_assoc, mul_assoc, mul_comm b, mul_assoc]\n rw [h1]\n apply hfun hx hy ha hb hab"
},
{
"id": 243,
"match": false,
"ground_truth": "dsimp",
"model_output": "simp [hab] at hfun ⊢"
},
{
"id": 244,
"match": true,
"ground_truth": "ring_nf",
"model_output": "ring_nf"
},
{
"id": 245,
"match": true,
"ground_truth": "exact hfun",
"model_output": "exact hfun"
},
{
"id": 246,
"match": true,
"ground_truth": "by rw [h]",
"model_output": "rw [h]"
},
{
"id": 247,
"match": true,
"ground_truth": "rw [h]",
"model_output": "rw [h]"
},
{
"id": 248,
"match": false,
"ground_truth": "intro h",
"model_output": "intro hst\n have hssub : s ⊆ t := by\n rw [← bi_convex_support_eq_convex_convex_closed hscl hscv]\n rw [← bi_convex_support_eq_convex_convex_closed htcl htcv]\n exact fun x _ => (congrFun hst x).ge\n have htsub : t ⊆ s := by\n rw [← bi_convex_support_eq_convex_convex_closed htcl htcv]\n rw [← bi_convex_support_eq_convex_convex_closed hscl hscv]\n exact"
},
{
"id": 249,
"match": false,
"ground_truth": "ext z",
"model_output": "rw [← convex_hull_eq_self_of_closed hscl, ← convex_hull_eq_self_of_closed htcl]"
},
{
"id": 250,
"match": true,
"ground_truth": "intro x _",
"model_output": "intro x _"
},
{
"id": 251,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x _"
},
{
"id": 252,
"match": false,
"ground_truth": "right",
"model_output": "right; rcases hs with ⟨x, hx⟩\n use x; constructor\n · trivial\n rw [convex_support, convex_conjugate]\n apply convex_indicator_univ_convex_conjugate_eq_indicator_univ_convex_conjugate\n exact hs.convex_indicator_univ_convex_conjugate_eq_indicator_univ_convex_conjugate hs"
},
{
"id": 253,
"match": false,
"ground_truth": "simp",
"model_output": "intro y\n rw [inner_zero_left, EReal.coe_zero]\n apply le_convex_indicator_of_mem\n exact hs"
},
{
"id": 254,
"match": false,
"ground_truth": "intro y",
"model_output": "intro y\n rw [convex_indicator]\n by_cases h : y ∈ s\n · simp [h]\n · simp [h]"
},
{
"id": 255,
"match": false,
"ground_truth": "simp",
"model_output": "linarith"
},
{
"id": 256,
"match": false,
"ground_truth": "simp at h1",
"model_output": "rcases h1 with h1 | h1"
},
{
"id": 257,
"match": false,
"ground_truth": "simp [hx]",
"model_output": "simp [dom]"
},
{
"id": 258,
"match": true,
"ground_truth": "ext x",
"model_output": "ext x"
},
{
"id": 259,
"match": true,
"ground_truth": "exact h x",
"model_output": "exact h x"
},
{
"id": 260,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x _ y _"
},
{
"id": 261,
"match": false,
"ground_truth": "simp [hp]",
"model_output": "rw [hp]"
},
{
"id": 262,
"match": true,
"ground_truth": "intro b",
"model_output": "intro b"
},
{
"id": 263,
"match": false,
"ground_truth": "by rfl",
"model_output": "constructor\n · intro h\n exact IsLinear_to_linear f h\n intro h\n exact linear_to_IsLinear f h"
},
{
"id": 264,
"match": false,
"ground_truth": "rfl",
"model_output": "constructor\n · intro h\n exact IsLinear_to_linear f h\n intro h\n exact linear_to_IsLinear f h"
},
{
"id": 265,
"match": true,
"ground_truth": "rw [h]",
"model_output": "rw [h]"
},
{
"id": 266,
"match": false,
"ground_truth": "simp",
"model_output": "rw [ContinuousLinearMap.adjoint_comp]\n simp [A.toContinuousLinearMap, A.symm_toContinuousLinearMap]"
},
{
"id": 267,
"match": false,
"ground_truth": "simp",
"model_output": "rw [ContinuousLinearMap.adjoint_comp]\n rw [ContinuousLinearMap.adjoint_coe]\n rw [ContinuousLinearMap.adjoint_coe]\n simp\n exact A.toContinuousLinearEquiv.symm_apply_apply x"
},
{
"id": 268,
"match": false,
"ground_truth": "exact hs",
"model_output": "apply hs"
},
{
"id": 269,
"match": false,
"ground_truth": "intro x",
"model_output": "simp [add_comm]"
},
{
"id": 270,
"match": false,
"ground_truth": "simp",
"model_output": "simp [add_zero, smul_zero]"
},
{
"id": 271,
"match": false,
"ground_truth": "intro x hx",
"model_output": "intro x _"
},
{
"id": 272,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x _"
}
]
}