cranky-coder08's picture
Add files using upload-large-folder tool
ac2f8e9 verified
from sympy.core.numbers import Rational, I, oo
from sympy.core.relational import Eq
from sympy.core.symbol import symbols
from sympy.core.singleton import S
from sympy.matrices.dense import Matrix
from sympy.matrices.dense import randMatrix
from sympy.assumptions.ask import Q
from sympy.logic.boolalg import And
from sympy.abc import x, y, z
from sympy.assumptions.cnf import CNF, EncodedCNF
from sympy.functions.elementary.trigonometric import cos
from sympy.external import import_module
from sympy.logic.algorithms.lra_theory import LRASolver, UnhandledInput, LRARational, HANDLE_NEGATION
from sympy.core.random import random, choice, randint
from sympy.core.sympify import sympify
from sympy.ntheory.generate import randprime
from sympy.core.relational import StrictLessThan, StrictGreaterThan
import itertools
from sympy.testing.pytest import raises, XFAIL, skip
def make_random_problem(num_variables=2, num_constraints=2, sparsity=.1, rational=True,
disable_strict = False, disable_nonstrict=False, disable_equality=False):
def rand(sparsity=sparsity):
if random() < sparsity:
return sympify(0)
if rational:
int1, int2 = [randprime(0, 50) for _ in range(2)]
return Rational(int1, int2) * choice([-1, 1])
else:
return randint(1, 10) * choice([-1, 1])
variables = symbols('x1:%s' % (num_variables + 1))
constraints = []
for _ in range(num_constraints):
lhs, rhs = sum(rand() * x for x in variables), rand(sparsity=0) # sparsity=0 bc of bug with smtlib_code
options = []
if not disable_equality:
options += [Eq(lhs, rhs)]
if not disable_nonstrict:
options += [lhs <= rhs, lhs >= rhs]
if not disable_strict:
options += [lhs < rhs, lhs > rhs]
constraints.append(choice(options))
return constraints
def check_if_satisfiable_with_z3(constraints):
from sympy.external.importtools import import_module
from sympy.printing.smtlib import smtlib_code
from sympy.logic.boolalg import And
boolean_formula = And(*constraints)
z3 = import_module("z3")
if z3:
smtlib_string = smtlib_code(boolean_formula)
s = z3.Solver()
s.from_string(smtlib_string)
res = str(s.check())
if res == 'sat':
return True
elif res == 'unsat':
return False
else:
raise ValueError(f"z3 was not able to check the satisfiability of {boolean_formula}")
def find_rational_assignment(constr, assignment, iter=20):
eps = sympify(1)
for _ in range(iter):
assign = {key: val[0] + val[1]*eps for key, val in assignment.items()}
try:
for cons in constr:
assert cons.subs(assign) == True
return assign
except AssertionError:
eps = eps/2
return None
def boolean_formula_to_encoded_cnf(bf):
cnf = CNF.from_prop(bf)
enc = EncodedCNF()
enc.from_cnf(cnf)
return enc
def test_from_encoded_cnf():
s1, s2 = symbols("s1 s2")
# Test preprocessing
# Example is from section 3 of paper.
phi = (x >= 0) & ((x + y <= 2) | (x + 2 * y - z >= 6)) & (Eq(x + y, 2) | (x + 2 * y - z > 4))
enc = boolean_formula_to_encoded_cnf(phi)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
assert lra.A.shape == (2, 5)
assert str(lra.slack) == '[_s1, _s2]'
assert str(lra.nonslack) == '[x, y, z]'
assert lra.A == Matrix([[ 1, 1, 0, -1, 0],
[-1, -2, 1, 0, -1]])
assert {(str(b.var), b.bound, b.upper, b.equality, b.strict) for b in lra.enc_to_boundary.values()} == {('_s1', 2, None, True, False),
('_s1', 2, True, False, False),
('_s2', -4, True, False, True),
('_s2', -6, True, False, False),
('x', 0, False, False, False)}
def test_problem():
from sympy.logic.algorithms.lra_theory import LRASolver
from sympy.assumptions.cnf import CNF, EncodedCNF
cons = [-2 * x - 2 * y >= 7, -9 * y >= 7, -6 * y >= 5]
cnf = CNF().from_prop(And(*cons))
enc = EncodedCNF()
enc.from_cnf(cnf)
lra, _ = LRASolver.from_encoded_cnf(enc)
lra.assert_lit(1)
lra.assert_lit(2)
lra.assert_lit(3)
is_sat, assignment = lra.check()
assert is_sat is True
def test_random_problems():
z3 = import_module("z3")
if z3 is None:
skip("z3 is not installed")
special_cases = []; x1, x2, x3 = symbols("x1 x2 x3")
special_cases.append([x1 - 3 * x2 <= -5, 6 * x1 + 4 * x2 <= 0, -7 * x1 + 3 * x2 <= 3])
special_cases.append([-3 * x1 >= 3, Eq(4 * x1, -1)])
special_cases.append([-4 * x1 < 4, 6 * x1 <= -6])
special_cases.append([-3 * x2 >= 7, 6 * x1 <= -5, -3 * x2 <= -4])
special_cases.append([x + y >= 2, x + y <= 1])
special_cases.append([x >= 0, x + y <= 2, x + 2 * y - z >= 6]) # from paper example
special_cases.append([-2 * x1 - 2 * x2 >= 7, -9 * x1 >= 7, -6 * x1 >= 5])
special_cases.append([2 * x1 > -3, -9 * x1 < -6, 9 * x1 <= 6])
special_cases.append([-2*x1 < -4, 9*x1 > -9])
special_cases.append([-6*x1 >= -1, -8*x1 + x2 >= 5, -8*x1 + 7*x2 < 4, x1 > 7])
special_cases.append([Eq(x1, 2), Eq(5*x1, -2), Eq(-7*x2, -6), Eq(9*x1 + 10*x2, 9)])
special_cases.append([Eq(3*x1, 6), Eq(x1 - 8*x2, -9), Eq(-7*x1 + 5*x2, 3), Eq(3*x2, 7)])
special_cases.append([-4*x1 < 4, 6*x1 <= -6])
special_cases.append([-3*x1 + 8*x2 >= -8, -10*x2 > 9, 8*x1 - 4*x2 < 8, 10*x1 - 9*x2 >= -9])
special_cases.append([x1 + 5*x2 >= -6, 9*x1 - 3*x2 >= -9, 6*x1 + 6*x2 < -10, -3*x1 + 3*x2 < -7])
special_cases.append([-9*x1 < 7, -5*x1 - 7*x2 < -1, 3*x1 + 7*x2 > 1, -6*x1 - 6*x2 > 9])
special_cases.append([9*x1 - 6*x2 >= -7, 9*x1 + 4*x2 < -8, -7*x2 <= 1, 10*x2 <= -7])
feasible_count = 0
for i in range(50):
if i % 8 == 0:
constraints = make_random_problem(num_variables=1, num_constraints=2, rational=False)
elif i % 8 == 1:
constraints = make_random_problem(num_variables=2, num_constraints=4, rational=False, disable_equality=True,
disable_nonstrict=True)
elif i % 8 == 2:
constraints = make_random_problem(num_variables=2, num_constraints=4, rational=False, disable_strict=True)
elif i % 8 == 3:
constraints = make_random_problem(num_variables=3, num_constraints=12, rational=False)
else:
constraints = make_random_problem(num_variables=3, num_constraints=6, rational=False)
if i < len(special_cases):
constraints = special_cases[i]
if False in constraints or True in constraints:
continue
phi = And(*constraints)
if phi == False:
continue
cnf = CNF.from_prop(phi); enc = EncodedCNF()
enc.from_cnf(cnf)
assert all(0 not in clause for clause in enc.data)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
s_subs = lra.s_subs
lra.run_checks = True
s_subs_rev = {value: key for key, value in s_subs.items()}
lits = {lit for clause in enc.data for lit in clause}
bounds = [(lra.enc_to_boundary[l], l) for l in lits if l in lra.enc_to_boundary]
bounds = sorted(bounds, key=lambda x: (str(x[0].var), x[0].bound, str(x[0].upper))) # to remove nondeterminism
for b, l in bounds:
if lra.result and lra.result[0] == False:
break
lra.assert_lit(l)
feasible = lra.check()
if feasible[0] == True:
feasible_count += 1
assert check_if_satisfiable_with_z3(constraints) is True
cons_funcs = [cons.func for cons in constraints]
assignment = feasible[1]
assignment = {key.var : value for key, value in assignment.items()}
if not (StrictLessThan in cons_funcs or StrictGreaterThan in cons_funcs):
assignment = {key: value[0] for key, value in assignment.items()}
for cons in constraints:
assert cons.subs(assignment) == True
else:
rat_assignment = find_rational_assignment(constraints, assignment)
assert rat_assignment is not None
else:
assert check_if_satisfiable_with_z3(constraints) is False
conflict = feasible[1]
assert len(conflict) >= 2
conflict = {lra.enc_to_boundary[-l].get_inequality() for l in conflict}
conflict = {clause.subs(s_subs_rev) for clause in conflict}
assert check_if_satisfiable_with_z3(conflict) is False
# check that conflict clause is probably minimal
for subset in itertools.combinations(conflict, len(conflict)-1):
assert check_if_satisfiable_with_z3(subset) is True
@XFAIL
def test_pos_neg_zero():
bf = Q.positive(x) & Q.negative(x) & Q.zero(y)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for lit in enc.encoding.values():
if lra.assert_lit(lit) is not None:
break
assert len(lra.enc_to_boundary) == 3
assert lra.check()[0] == False
bf = Q.positive(x) & Q.lt(x, -1)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for lit in enc.encoding.values():
if lra.assert_lit(lit) is not None:
break
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == False
bf = Q.positive(x) & Q.zero(x)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for lit in enc.encoding.values():
if lra.assert_lit(lit) is not None:
break
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == False
bf = Q.positive(x) & Q.zero(y)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for lit in enc.encoding.values():
if lra.assert_lit(lit) is not None:
break
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == True
@XFAIL
def test_pos_neg_infinite():
bf = Q.positive_infinite(x) & Q.lt(x, 10000000) & Q.positive_infinite(y)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for lit in enc.encoding.values():
if lra.assert_lit(lit) is not None:
break
assert len(lra.enc_to_boundary) == 3
assert lra.check()[0] == False
bf = Q.positive_infinite(x) & Q.gt(x, 10000000) & Q.positive_infinite(y)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for lit in enc.encoding.values():
if lra.assert_lit(lit) is not None:
break
assert len(lra.enc_to_boundary) == 3
assert lra.check()[0] == True
bf = Q.positive_infinite(x) & Q.negative_infinite(x)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for lit in enc.encoding.values():
if lra.assert_lit(lit) is not None:
break
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == False
def test_binrel_evaluation():
bf = Q.gt(3, 2)
enc = boolean_formula_to_encoded_cnf(bf)
lra, conflicts = LRASolver.from_encoded_cnf(enc, testing_mode=True)
assert len(lra.enc_to_boundary) == 0
assert conflicts == [[1]]
bf = Q.lt(3, 2)
enc = boolean_formula_to_encoded_cnf(bf)
lra, conflicts = LRASolver.from_encoded_cnf(enc, testing_mode=True)
assert len(lra.enc_to_boundary) == 0
assert conflicts == [[-1]]
def test_negation():
assert HANDLE_NEGATION is True
bf = Q.gt(x, 1) & ~Q.gt(x, 0)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for clause in enc.data:
for lit in clause:
lra.assert_lit(lit)
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == False
assert sorted(lra.check()[1]) in [[-1, 2], [-2, 1]]
bf = ~Q.gt(x, 1) & ~Q.lt(x, 0)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for clause in enc.data:
for lit in clause:
lra.assert_lit(lit)
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == True
bf = ~Q.gt(x, 0) & ~Q.lt(x, 1)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for clause in enc.data:
for lit in clause:
lra.assert_lit(lit)
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == False
bf = ~Q.gt(x, 0) & ~Q.le(x, 0)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for clause in enc.data:
for lit in clause:
lra.assert_lit(lit)
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == False
bf = ~Q.le(x+y, 2) & ~Q.ge(x-y, 2) & ~Q.ge(y, 0)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for clause in enc.data:
for lit in clause:
lra.assert_lit(lit)
assert len(lra.enc_to_boundary) == 3
assert lra.check()[0] == False
assert len(lra.check()[1]) == 3
assert all(i > 0 for i in lra.check()[1])
def test_unhandled_input():
nan = S.NaN
bf = Q.gt(3, nan) & Q.gt(x, nan)
enc = boolean_formula_to_encoded_cnf(bf)
raises(ValueError, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))
bf = Q.gt(3, I) & Q.gt(x, I)
enc = boolean_formula_to_encoded_cnf(bf)
raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))
bf = Q.gt(3, float("inf")) & Q.gt(x, float("inf"))
enc = boolean_formula_to_encoded_cnf(bf)
raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))
bf = Q.gt(3, oo) & Q.gt(x, oo)
enc = boolean_formula_to_encoded_cnf(bf)
raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))
# test non-linearity
bf = Q.gt(x**2 + x, 2)
enc = boolean_formula_to_encoded_cnf(bf)
raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))
bf = Q.gt(cos(x) + x, 2)
enc = boolean_formula_to_encoded_cnf(bf)
raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))
@XFAIL
def test_infinite_strict_inequalities():
# Extensive testing of the interaction between strict inequalities
# and constraints containing infinity is needed because
# the paper's rule for strict inequalities don't work when
# infinite numbers are allowed. Using the paper's rules you
# can end up with situations where oo + delta > oo is considered
# True when oo + delta should be equal to oo.
# See https://math.stackexchange.com/questions/4757069/can-this-method-of-converting-strict-inequalities-to-equisatisfiable-nonstrict-i
bf = (-x - y >= -float("inf")) & (x > 0) & (y >= float("inf"))
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for lit in sorted(enc.encoding.values()):
if lra.assert_lit(lit) is not None:
break
assert len(lra.enc_to_boundary) == 3
assert lra.check()[0] == True
def test_pivot():
for _ in range(10):
m = randMatrix(5)
rref = m.rref()
for _ in range(5):
i, j = randint(0, 4), randint(0, 4)
if m[i, j] != 0:
assert LRASolver._pivot(m, i, j).rref() == rref
def test_reset_bounds():
bf = Q.ge(x, 1) & Q.lt(x, 1)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for clause in enc.data:
for lit in clause:
lra.assert_lit(lit)
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == False
lra.reset_bounds()
assert lra.check()[0] == True
for var in lra.all_var:
assert var.upper == LRARational(float("inf"), 0)
assert var.upper_from_eq == False
assert var.upper_from_neg == False
assert var.lower == LRARational(-float("inf"), 0)
assert var.lower_from_eq == False
assert var.lower_from_neg == False
assert var.assign == LRARational(0, 0)
assert var.var is not None
assert var.col_idx is not None
def test_empty_cnf():
cnf = CNF()
enc = EncodedCNF()
enc.from_cnf(cnf)
lra, conflict = LRASolver.from_encoded_cnf(enc)
assert len(conflict) == 0
assert lra.check() == (True, {})