id
int64
0
877k
file_name
stringlengths
3
109
file_path
stringlengths
13
185
content
stringlengths
31
9.38M
size
int64
31
9.38M
language
stringclasses
1 value
extension
stringclasses
11 values
total_lines
int64
1
340k
avg_line_length
float64
2.18
149k
max_line_length
int64
7
2.22M
alphanum_fraction
float64
0
1
repo_name
stringlengths
6
66
repo_stars
int64
94
47.3k
repo_forks
int64
0
12k
repo_open_issues
int64
0
3.4k
repo_license
stringclasses
11 values
repo_extraction_date
stringclasses
197 values
exact_duplicates_redpajama
bool
2 classes
near_duplicates_redpajama
bool
2 classes
exact_duplicates_githubcode
bool
2 classes
exact_duplicates_stackv2
bool
1 class
exact_duplicates_stackv1
bool
2 classes
near_duplicates_githubcode
bool
2 classes
near_duplicates_stackv1
bool
2 classes
near_duplicates_stackv2
bool
1 class
1,535,635
algo.hpp
rokzitko_nrgljubljana/c++/algo.hpp
#ifndef _algo_hpp_ #define _algo_hpp_ #include <string> #include <memory> #include <list> #include <functional> // std::function #include <fmt/format.h> #include "traits.hpp" #include "params.hpp" #include "eigen.hpp" #include "operators.hpp" #include "invar.hpp" #include "step.hpp" #include "stats.hpp" namespace NRG { // Wrapper class for NRG spectral-function algorithms template<scalar S, typename t_coef = coef_traits<S>, typename Matrix = Matrix_traits<S>> class Algo { private: public: const Params &P; Algo() = delete; Algo(const Algo&) = delete; explicit Algo(const Params &P) : P(P) {} virtual ~Algo() {} virtual void begin(const Step &) = 0; virtual void calc(const Step &, const Eigen<S> &, const Eigen<S> &, const Matrix &, const Matrix &, const t_coef, const Invar &, const Invar &, const DensMatElements<S> &, const Stats<S> &stats) = 0; virtual void end(const Step &) = 0; virtual std::string rho_type() { return ""; } // what rho type is required }; using FactorFnc = std::function<double(const Invar &, const Invar &)>; using CheckFnc = std::function<bool(const Invar &, const Invar &, int)>; // All information about calculating a spectral function: pointers to the operator data, raw spectral data // acccumulators, algorithm, etc. template <scalar S> class BaseSpectrum { public: const MatrixElements<S> &op1, &op2; int spin{}; // -1 or +1, or 0 where irrelevant using spAlgo = std::shared_ptr<Algo<S>>; spAlgo algo; // Algo_FDM, Algo_DMNRG,... FactorFnc ff; CheckFnc cf; BaseSpectrum(const MatrixElements<S> &op1, const MatrixElements<S> &op2, const int spin, spAlgo algo, FactorFnc ff, CheckFnc cf) : op1(op1), op2(op2), spin(spin), algo(algo), ff(ff), cf(cf) {} // Calculate (finite temperature) spectral function 1/Pi Im << op1^\dag(t) op2(0) >>. Required spin direction is // determined by 'SPIN'. For SPIN=0 both spin direction are equivalent. For QSZ, we need to differentiate the two. void calc(const Step &step, const DiagInfo<S> &diag, const DensMatElements<S> &rho, const DensMatElements<S> &rhoFDM, const Stats<S> &stats, const Symmetry<S> *Sym, const Params &P) { algo->begin(step); const auto & rho_here = algo->rho_type() == "rhoFDM" ? rhoFDM : rho; // Strategy: we loop through all subspace pairs and check whether they have non-zero irreducible matrix elements. for(const auto &[Ii, diagi]: diag) for(const auto &[Ij, diagj]: diag) { const Twoinvar II {Ij,Ii}; if (op1.count(II) && op2.count(II) && cf(Ij, Ii, spin) && Sym->project_subspace(Ii, P.project) && Sym->project_subspace(Ij, P.project)) algo->calc(step, diagi, diagj, op1.at(II), op2.at(II), ff(Ii, Ij), Ii, Ij, rho_here, stats); // stats.Zft needed } algo->end(step); } }; template <scalar S> using speclist = std::list<BaseSpectrum<S>>; inline auto spec_fn(const std::string &name, const std::string &prefix, const std::string &algoname, const bool save = true) { if (save) fmt::print("Spectrum: {} {} {}\n", name, prefix, algoname); // Don't show if it's not going to be saved return prefix + "_" + algoname + "_dens_" + name; // no suffix (.dat vs. .bin) } } // namespace #include "algo_FT.hpp" #include "algo_DMNRG.hpp" #include "algo_FDM.hpp" #include "algo_CFS.hpp" #endif
3,388
C++
.h
73
42.90411
144
0.671506
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,636
eigen.hpp
rokzitko_nrgljubljana/c++/eigen.hpp
#ifndef _eigen_hpp_ #define _eigen_hpp_ #include <vector> #include <string> #include <limits> // quiet_NaN #include <stdexcept> #include <boost/range/adaptor/map.hpp> #include <range/v3/all.hpp> #include "basicio.hpp" #include "portabil.hpp" #include "traits.hpp" #include "invar.hpp" #include "params.hpp" #include "step.hpp" #include "h5.hpp" #include "numerics.hpp" #include <fmt/format.h> namespace NRG { // Storage container for eigenvalues. Vector v contains the raw eigenvalues as computed in the Hamiltonian // diagonalisation. If scale, shift, T_shift and/or GS_energy parameters are defined, then one has also access to various // derived quantities. 'Relative' means in the units of the current NRG shell. 'Absolute' means in the units of // half-bandwidth (or some other general scale). abs_T is the total energy of the state. abs_G is the total energy // of the state referenced to the absolute many-body ground state of the whole system. 'Corrected' means the eigenvalue // corrected for the floating-point round-off errors by fixing the small splittings. template<scalar S, typename t_eigen = eigen_traits<S>> class Values { private: std::vector<t_eigen> v; double scale = std::numeric_limits<double>::quiet_NaN(); double shift = std::numeric_limits<double>::quiet_NaN(); double T_shift = std::numeric_limits<double>::quiet_NaN(); double abs_GS_energy = std::numeric_limits<double>::quiet_NaN(); std::vector<t_eigen> corrected; public: void resize(const size_t size) { v.resize(size); } [[nodiscard]] auto raw(const size_t i) const { return v[i]; } [[nodiscard]] auto rel(const size_t i) const { return v[i]; } [[nodiscard]] auto abs(const size_t i) const { assert(std::isfinite(scale)); return rel(i) * scale; } [[nodiscard]] auto rel_zero(const size_t i) const { assert(std::isfinite(shift)); return rel(i)-shift; } // shift subtracted [[nodiscard]] auto abs_zero(const size_t i) const { return (rel(i)-shift) * scale; } [[nodiscard]] auto abs_T(const size_t i) const { assert(std::isfinite(T_shift)); return abs_zero(i) + T_shift; } // T_shift added [[nodiscard]] auto abs_G(const size_t i) const { assert(std::isfinite(abs_GS_energy)); return abs_T(i) - abs_GS_energy; } // abs_GS_energy subtracted [[nodiscard]] auto corr(const size_t i) const { return corrected[i]; } [[nodiscard]] auto size() const noexcept { return v.size(); } [[nodiscard]] auto lowest_rel() const { return v.front(); } [[nodiscard]] auto highest_corr() const { return corrected.back(); } [[nodiscard]] const auto & all_rel() const noexcept { return v; } [[nodiscard]] auto all_rel_zero() const noexcept { assert(v.size() == 0 || std::isfinite(shift)); return ranges::views::transform(v, [this](const auto x){ return x-shift; }); } [[nodiscard]] auto all_abs_zero() const noexcept { assert(v.size() == 0 || (std::isfinite(shift) && std::isfinite(scale))); return ranges::views::transform(v, [this](const auto x){ return (x-shift) * scale; }); } [[nodiscard]] auto all_abs_T() const noexcept { assert(v.size() == 0 || (std::isfinite(shift) && std::isfinite(scale) && std::isfinite(T_shift))); return ranges::views::transform(v, [this](const auto x){ return (x-shift) * scale + T_shift; }); } [[nodiscard]] auto all_abs_G() const noexcept { assert(v.size() == 0 || (std::isfinite(shift) && std::isfinite(scale) && std::isfinite(T_shift) && std::isfinite(abs_GS_energy))); return ranges::views::transform(v, [this](const auto x){ return (x-shift) * scale + T_shift - abs_GS_energy; }); } [[nodiscard]] const auto & all_corr() const noexcept { return corrected; } void set(std::vector<t_eigen> in) { v = std::move(in); } void set_scale(const double scale_) { scale = scale_; } void set_shift(const double shift_) { shift = shift_; } void set_T_shift(const double T_shift_) { T_shift = T_shift_; } void set_abs_GS_energy(const double abs_GS_energy_) { abs_GS_energy = abs_GS_energy_; } void set_corr(std::vector<t_eigen> in) { corrected = std::move(in); } [[nodiscard]] auto has_abs() const noexcept { return std::isfinite(scale); } [[nodiscard]] auto has_zero() const noexcept { return std::isfinite(shift); } [[nodiscard]] auto has_abs_zero() const noexcept { return has_abs() && has_zero(); } [[nodiscard]] auto has_abs_T() const noexcept { return has_abs_zero() && std::isfinite(T_shift); } [[nodiscard]] auto has_abs_G() const noexcept { return has_abs_T() && std::isfinite(abs_GS_energy); } [[nodiscard]] auto has_corr() const noexcept { return corrected.size() > 0; } void save(boost::archive::binary_oarchive &oa) const { oa << v << scale << shift << T_shift << abs_GS_energy << corrected; } void load(boost::archive::binary_iarchive &ia) { ia >> v >> scale >> shift >> T_shift >> abs_GS_energy >> corrected; } void h5save(H5Easy::File &fd, const std::string &name) const { h5_dump_vector(fd, name + "/value_orig", all_rel()); if (has_zero()) h5_dump_vector(fd, name + "/value_zero", all_rel_zero() | ranges::to_vector); if (has_abs_zero()) h5_dump_vector(fd, name + "/absenergy_zero", all_abs_zero() | ranges::to_vector); if (has_abs_T()) h5_dump_vector(fd, name + "/absenergy", all_abs_T() | ranges::to_vector); if (has_abs_G()) h5_dump_vector(fd, name + "/absenergyG", all_abs_G() | ranges::to_vector); if (has_corr()) h5_dump_vector(fd, name + "/value_corr", all_corr()); } }; template <scalar S, typename t_matel = matel_traits<S>, typename Matrix = Matrix_traits<S>> class Vectors { private: Matrix m; public: [[nodiscard]] auto M() const noexcept { return size1(m); } [[nodiscard]] auto dim() const noexcept { return size2(m); } void set(Matrix m_) { m = std::move(m_); assert(is_unitary<S>(m)); assert(M() <= dim()); } [[nodiscard]] const auto & get() const noexcept { return m; } [[nodiscard]] const auto & operator()() const noexcept { return m; } void standard_basis(const size_t size) { m = id_matrix<t_matel>(size); } auto submatrix_const(const std::pair<size_t,size_t> &r1, const std::pair<size_t,size_t> &r2) const { return NRG::submatrix_const(m, r1, r2); } void resize(const size_t new_size1, const size_t new_size2) { m.resize(new_size1, new_size2); // non-conserving resize } void shrink() { const auto d = dim(); resize(0, d); // Shrink to zero size, but keep the information about the dimensionality!! assert(M() == 0 && dim() == d); } void save(boost::archive::binary_oarchive &oa) const { NRG::save(oa, m); } void load(boost::archive::binary_iarchive &ia) { m = NRG::load<S>(ia); } void h5save(H5Easy::File &fd, const std::string &name) const { h5_dump_matrix(fd, name + "/matrix", m); } }; // Eigenvectors separated according to the invariant subspace from which they originate. // Required for using efficient BLAS routines when performing recalculations of the matrix elements. template <scalar S, typename Matrix = Matrix_traits<S>> class Blocks { private: std::vector<Matrix> blocks; public: void resize(const size_t nr) { blocks.resize(nr); } void set(const size_t i, Matrix m) { assert(i < blocks.size()); blocks[i] = std::move(m); } [[nodiscard]] bool is_unitary() const noexcept { return NRG::is_unitary_blocks<S>(blocks); } const Matrix & get(const size_t i) const { assert(i < blocks.size()); return blocks[i]; } const Matrix & operator()(const size_t i) const { // 1-based MMA index, called from recalc_f() assert(1 <= i && i <= blocks.size()); return blocks[i-1]; } void truncate(const size_t nr) { for (auto &i : blocks) { assert(nr <= nrvec(i)); NRG::resize(i, nr, dim(i)); // conserving matrix resize } } void save(boost::archive::binary_oarchive &oa) const { oa << blocks.size(); for (const auto &b: blocks) NRG::save(oa, b); } void load(boost::archive::binary_iarchive &ia) { resize(read_one<size_t>(ia)); for (auto &b: blocks) b = NRG::load<S>(ia); } void clear() { ranges::fill(blocks, Matrix()); } }; // Result of a diagonalisation: eigenvalues and eigenvectors template <scalar S, typename RVector = RVector_traits<S>, typename Matrix = Matrix_traits<S>> struct RawEigen { public: RVector val; Matrix vec; RawEigen() = default; RawEigen(const size_t M, const size_t dim) { assert(M <= dim); val.resize(M); vec.resize(M, dim); // non-conserving matrix resize } [[nodiscard]] auto getnrcomputed() const noexcept { assert(val.size() == nrvec(vec)); return val.size(); } // nr eigenvalue/eigenvector pairs [[nodiscard]] auto getdim() const noexcept { return dim(vec); } // matrix dimension (length of eigenvectors) void dump_eigenvalues(const size_t max_nr = std::numeric_limits<size_t>::max(), std::ostream &F = std::cout) const { F << "eig= " << std::setprecision(std::numeric_limits<double>::max_digits10); ranges::for_each_n(val.begin(), std::min(val.size(), max_nr), [&F](const double x) { F << x << ' '; }); F << std::endl; } void check_diag() const { NRG::check_diag<S>(val, vec); } }; // High-level representation of eigenvalues/eigenvectors template <scalar S, typename Matrix = Matrix_traits<S>, typename t_eigen = eigen_traits<S>> class Eigen { public: Values<S> values; // eigenvalues Vectors<S> vectors; // eigenvectors Blocks<S> U; // eigenvectors in blocks Eigen() = default; explicit Eigen(const size_t M, const size_t dim) { assert(M <= dim); values.resize(M); vectors.resize(M, dim); // non-conserving matrix-resize } explicit Eigen(RawEigen<S> && raw, const Step &step) { values.set(std::move(raw.val)); vectors.set(std::move(raw.vec)); last = step.last(); } // Called when building DiagInfo from 'data' file. explicit Eigen(const std::vector<t_eigen> &v, const double scale, const bool last_step) { diagonal(v); values.set_corr(v); // required for matrix construction in the first step! values.set_shift(0.0); // required in the first step! values.set_scale(scale); last = last_step; } [[nodiscard]] auto getnrcomputed() const noexcept { return values.size(); } // number of computed eigenpairs [[nodiscard]] auto getdim() const noexcept { return vectors.dim(); } // valid also after the split_in_blocks_Eigen() call private: long nrpost = -1; // number of eigenpairs after truncation (-1: keep all) long nrstored = -1; // number of eigenpairs currently held in store bool last = false; // eigenspectrum from the last step of the NRG iteration [[nodiscard]] auto getnrpost() const noexcept { return nrpost == -1 ? getnrcomputed() : nrpost; } // number of states after truncation [[nodiscard]] auto boundary() const noexcept { return last ? 0ul : getnrkept(); } // for FDM public: [[nodiscard]] auto getnrall() const noexcept { return getnrcomputed(); } // all = all computed [[nodiscard]] auto getnrkept() const noexcept { return getnrpost(); } // # of kept states [[nodiscard]] auto getnrdiscarded() const noexcept { return getnrcomputed()-getnrpost(); } // # of discarded states [[nodiscard]] auto getnrstored() const noexcept { return nrstored == -1 ? values.size() : nrstored; } // number of stored states [[nodiscard]] auto all() const noexcept { return range0(getnrcomputed()); } // iterator over all states [[nodiscard]] auto kept() const noexcept { return range0(getnrpost()); } // iterator over kept states [[nodiscard]] auto discarded() const noexcept { return boost::irange(getnrpost(), getnrcomputed()); } // iterator over discarded states [[nodiscard]] auto stored() const noexcept { return range0(getnrstored()); } // iterator over all stored states // Ranges for FDM algorithm with different semantics of D/K states for the last step [[nodiscard]] auto Drange() const noexcept { return boost::irange(boundary(), getnrall()); } [[nodiscard]] auto Krange() const noexcept { return boost::irange(0ul, boundary()); } [[nodiscard]] auto value_corr_kept() const noexcept { return ranges::subrange(values.all_corr().begin(), values.all_corr().begin() + getnrkept()); } [[nodiscard]] auto value_corr_msr() const noexcept { return ranges::subrange(values.all_corr().begin(), values.all_corr().begin() + getnrstored()); } // range used in measurements (all or kept, depending on the moment of call) // Truncate to nrpost states. void truncate_prepare(const size_t nrpost_) { nrpost = nrpost_; assert(nrpost <= getnrcomputed()); } void truncate_perform() { nrstored = nrpost; U.truncate(nrpost); } // Initialize the data structures with eigenvalues 'v'. The eigenvectors form an identity matrix. This is used to // represent the spectral decomposition in the eigenbasis itself. void diagonal(const std::vector<t_eigen> &v) { values.set(v); vectors.standard_basis(v.size()); } void subtract_Egs(const t_eigen Egs) { values.set_shift(Egs); } void subtract_GS_energy(const t_eigen GS_energy) { values.set_abs_GS_energy(GS_energy); } [[nodiscard]] auto diagonal_exp(const double factor) const noexcept { // produce a diagonal matrix with exp(-factor*E) diagonal elements, used in init_rho() const auto dim = getnrstored(); auto m = zero_matrix<S>(dim); for (const auto i: range0(dim)) m(i, i) = exp(-values.corr(i) * factor); // corrected eigenvalues! return m; } template<typename F> [[nodiscard]] auto trace(F fnc, const double factor) const noexcept { // Tr[fnc(factor*E) exp(-factor*E)] return ranges::accumulate(values.all_rel_zero(), 0.0, {}, [fnc, factor](const auto x) { return fnc(factor*x) * exp(-factor*x); }); } void clear_eigenvectors() { vectors.shrink(); U.clear(); } void save(boost::archive::binary_oarchive &oa) const { values.save(oa); vectors.save(oa); oa << nrpost << nrstored << last; } void load(boost::archive::binary_iarchive &ia) { values.load(ia); vectors.load(ia); ia >> nrpost >> nrstored >> last; } void h5save(H5Easy::File &fd, const std::string &name, const bool save_vectors = true) const { values.h5save(fd, name); if (save_vectors) vectors.h5save(fd, name); h5_dump_scalar(fd, name + "/nrkept", getnrkept()); } }; // Full information after diagonalizations (eigenspectra in all subspaces) template <scalar S, typename Matrix = Matrix_traits<S>, typename t_eigen = eigen_traits<S>> class DiagInfo : public std::map<Invar, Eigen<S>> { public: explicit DiagInfo() = default; DiagInfo(std::istream &fdata, const size_t nsubs, const Params &P) { skip_comments(fdata); for ([[maybe_unused]] const auto i : range1(nsubs)) { const auto I = read_one<Invar>(fdata); auto energies = read_std_vector<t_eigen>(fdata); if (!(P.data_has_rescaled_energies || P.absolute)) for (auto &x : energies) x /= P.SCALE(P.Ninit); // rescale to the suitable energy scale (*this)[I] = Eigen<S>(energies, P.absolute ? 1.0 : P.SCALE(P.Ninit), P.ZBW()); } my_assert(this->size() == nsubs); } [[nodiscard]] auto subspaces() const noexcept { return *this | boost::adaptors::map_keys; } [[nodiscard]] auto eigs() const noexcept { return *this | boost::adaptors::map_values; } [[nodiscard]] auto eigs() noexcept { return *this | boost::adaptors::map_values; } [[nodiscard]] auto find_groundstate() const { const auto [Iground, eig] = *ranges::min_element(*this, {}, [](const auto &a) { return a.second.values.lowest_rel(); }); const auto Egs = eig.values.lowest_rel(); return Egs; } void subtract_Egs(const t_eigen Egs) { ranges::for_each(eigs(), [Egs](auto &eig) { eig.subtract_Egs(Egs); }); } t_eigen Egs_subtraction() { const auto Egs = find_groundstate(); subtract_Egs(Egs); return Egs; } void subtract_GS_energy(const t_eigen GS_energy) { ranges::for_each(eigs(), [GS_energy](auto &eig) { eig.subtract_GS_energy(GS_energy); }); } [[nodiscard]] std::vector<t_eigen> sorted_energies_rel_zero() const { std::vector<t_eigen> energies; for (const auto &eig: eigs()) energies.insert(energies.end(), eig.values.all_rel_zero().begin(), eig.values.all_rel_zero().end()); return energies | ranges::move | ranges::actions::sort; } [[nodiscard]] std::vector<t_eigen> sorted_energies_corr() const { std::vector<t_eigen> energies; for (const auto &eig: eigs()) energies.insert(energies.end(), eig.values.all_corr().begin(), eig.values.all_corr().end()); return energies | ranges::move | ranges::actions::sort; } void dump_energies(std::ostream &F) const { for (const auto &[I, eig]: *this) F << "Subspace: " << I << std::endl << eig.values.all_rel() << std::endl; } void truncate_perform() { ranges::for_each(eigs(), &Eigen<S>::truncate_perform); // Truncate subspace to appropriate size } [[nodiscard]] auto size_subspace(const Invar &I) const { const auto f = this->find(I); return f != this->cend() ? f->second.getnrstored() : 0; } [[nodiscard]] auto subs(const Invar &I1, const Invar &I2) const { return std::make_pair(this->at(I1), this->at(I2)); } [[nodiscard]] auto dims(const Invar &I1, const Invar &I2) const { // Determines matrix sizes for operators (# stored) return std::make_pair(size_subspace(I1), size_subspace(I2)); } void clear_eigenvectors() { ranges::for_each(eigs(), &Eigen<S>::clear_eigenvectors); } // Total number of states (symmetry taken into account) template <typename MF> [[nodiscard]] auto count_states(MF && mult) const noexcept { return ranges::accumulate(*this, 0, {}, [mult](const auto &x) { const auto &[I, eig] = x; return mult(I)*eig.getnrstored(); }); } [[nodiscard]] auto count_subspaces() const noexcept { // Count non-empty subspaces return ranges::count_if(eigs(), [](const auto &eig) { return eig.getnrstored()>0; }); } template<typename F, typename M> [[nodiscard]] auto trace(F fnc, const double factor, M mult) const noexcept { // Tr[fnc(factor*E) exp(-factor*E)] return ranges::accumulate(*this, 0.0, {}, [fnc, factor, mult](const auto &x) { const auto &[I, eig] = x; return mult(I) * eig.trace(fnc, factor); }); } template <typename MF> void states_report(MF && mult) const { fmt::print("Number of invariant subspaces: {}\n", count_subspaces()); for (const auto &[I, eig]: *this) if (eig.getnrstored()) fmt::print("({}) {} states: {}\n", I.str(), eig.getnrstored(), eig.values.all_rel()); fmt::print("Number of states (multiplicity taken into account): {}\n\n", count_states(mult)); } void save(const size_t N, const Params &P) const { const std::string fn = P.workdir->unitaryfn(N); std::ofstream MATRIXF(fn, std::ios::binary | std::ios::out); if (!MATRIXF) throw std::runtime_error(fmt::format("Can't open file {} for writing.", fn)); boost::archive::binary_oarchive oa(MATRIXF); oa << this->size(); for(const auto &[I, eig]: *this) { oa << I; eig.save(oa); if (MATRIXF.bad()) throw std::runtime_error(fmt::format("Error writing {}", fn)); // Check after each write. } } void load(const size_t N, const Params &P, const bool remove_files = false) { const std::string fn = P.workdir->unitaryfn(N); std::ifstream MATRIXF(fn, std::ios::binary | std::ios::in); if (!MATRIXF) throw std::runtime_error(fmt::format("Can't open file {} for reading", fn)); boost::archive::binary_iarchive ia(MATRIXF); const auto nr = read_one<size_t>(ia); // Number of subspaces for ([[maybe_unused]] const auto cnt : range0(nr)) { const auto inv = read_one<Invar>(ia); (*this)[inv].load(ia); if (MATRIXF.bad()) throw std::runtime_error(fmt::format("Error reading {}", fn)); } if (remove_files) NRG::remove(fn); } void h5save(H5Easy::File &fd, const std::string &name, const bool save_vectors = true) const { for (const auto &[I, eig]: *this) eig.h5save(fd, name + "/" + I.name(), save_vectors); } explicit DiagInfo(const size_t N, const Params &P, const bool remove_files = false) { load(N, P, remove_files); } // called from do_diag() }; } // namespace #endif
20,666
C++
.h
412
45.961165
228
0.652866
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,637
numerics.hpp
rokzitko_nrgljubljana/c++/numerics.hpp
// numerics.h - Miscelaneous numerical routines // Copyright (C) 2005-2024 Rok Zitko // This header should be included in all other headers where vector/matrix // objects are manipulated. #ifndef _numerics_hpp_ #define _numerics_hpp_ #include <concepts> #include <complex> #include <iomanip> #include <vector> #include <fstream> #include <stdexcept> #include <range/v3/all.hpp> #include <boost/io/ios_state.hpp> #include <boost/math/special_functions/sign.hpp> #include "traits.hpp" #include <Eigen/Dense> // Serialization support (used for storing to files and for MPI) #include <boost/archive/binary_iarchive.hpp> #include <boost/archive/binary_oarchive.hpp> #include <boost/serialization/vector.hpp> #include <boost/serialization/complex.hpp> #include <fmt/format.h> #include "portabil.hpp" #include "misc.hpp" #include "traits.hpp" namespace NRG { template <typename T> std::complex<T> operator*(const std::integral auto &a, const std::complex<T> &b) { return std::complex<T>(a*b.real(), a*b.imag()); } template <typename T> std::complex<T> operator*(const std::complex<T> &b, const std::integral auto &a) { return std::complex<T>(a*b.real(), a*b.imag()); } template <typename T> std::complex<T> operator/(const std::integral auto &a, const std::complex<T> &b) { return a*(1.0/b); } template <typename T> std::complex<T> operator-(const std::integral auto &a, const std::complex<T> &b) { return std::complex<T>(a-b.real(), -b.imag()); } template <typename T> std::complex<T> operator-(const std::complex<T> &b, const std::integral auto &a) { return std::complex<T>(b.real()-a, b.imag()); } template <typename T> std::complex<T> operator+(const std::integral auto &a, const std::complex<T> &b) { return std::complex<T>(a+b.real(), -b.imag()); } template <typename T> std::complex<T> operator+(const std::complex<T> &b, const std::integral auto &a) { return std::complex<T>(b.real()+a, b.imag()); } template <typename T> using complex_array_const_ref_t = const T(&)[2]; template<typename T> complex_array_const_ref_t<T> reim(const std::complex<T>& z) { return reinterpret_cast<const T(&)[2]>(z); } template<typename U, typename V> V sum2(const std::vector<std::pair<U,V>> &v) { // sum second elements of a vector of pairs return ranges::accumulate(v, V{}, {}, [](const auto el) { return el.second; }); // XXX } // XXX: conj() is constexpr in C++20 [[nodiscard]] inline std::complex<double> conj_me(const std::complex<double> &z) { return conj(z); } // conjugation [[nodiscard]] inline double conj_me(const double x) { return x; } // no op template<scalar S, typename Matrix = Matrix_traits<S>> auto empty_matrix() { return Matrix(); } // Accumulator abstraction: automatically initialized to 0, result checked for finiteness. template <scalar T> class generic_bucket { private: T value{}; public: generic_bucket() = default; // Can be constructured from a STL vector of pairs, by summing the second elements. template <scalar T1> explicit generic_bucket(std::vector<std::pair<T1, T>> v) { for (const auto &i : v) value += i.second; } inline constexpr T operator+=(T x) { return value += x; } [[nodiscard]] inline constexpr operator T() const { return value; } }; using bucket = generic_bucket<double>; template <typename T> inline constexpr bool is_odd(const T n) { return n & 1; } // must return bool template <typename T> inline constexpr bool is_even(const T n) { return !is_odd(n); } // must return bool inline int my_fcmp(const double x, const double y, const double small_epsilon, const double rel_epsilon) { if (x == 0.0 && y == 0.0) return 0.0; // evidently equal if (std::abs(x) < small_epsilon && std::abs(y) < small_epsilon) return 0; // If both x and y are small, we ASSUME them to be equivalent if (std::abs(x-y) < rel_epsilon * (std::abs(x)+std::abs(y))) return 0; return boost::math::sign(x-y); } inline int my_fcmp(const double x, const double y, const double epsilon) { return my_fcmp(x, y, epsilon, epsilon); } // Test if two numbers are equal to within numerical errors. (Use this for comparing values that are expected to be // of order 1.) inline auto num_equal(const double a, const double b, const double check_precision = 1.e-12) { return my_fcmp(a, b, check_precision) == 0; } inline auto num_equal(const std::complex<double> &a, const std::complex<double> &b, const double check_precision = 1.e-12) { return (my_fcmp(a.real(), b.real(), check_precision) == 0) && (my_fcmp(a.imag(), b.imag(), check_precision) == 0); } inline auto are_conjugate(const double a, const double b) { return num_equal(a, b); } inline auto are_conjugate(const std::complex<double> &a, const std::complex<double> &b) { return num_equal(a.real(), b.real()) && num_equal(a.imag(), -b.imag()); } template<matrix M> auto frobenius_norm(const M &m) { // Frobenius norm (without taking the final square root!) double sum{}; for (auto i = 0; i < size1(m); i++) for (auto j = 0; j < size2(m); j++) sum += pow(abs(m(i, j)),2); return sum; } template<matrix M> bool is_square(const M &m) { return size1(m) == size2(m); } // Is m upper triangular? In the lower triangle, all elements must be 0. template<matrix M> auto is_matrix_upper(const M &m) { if (!is_square(m)) return false; for (auto i = 1; i < size1(m); i++) for (auto j = 0; j < i; j++) // j < i if (!num_equal(m(i, j), 0.0)) return false; return true; } // (-1)^n inline constexpr auto psgn(const std::integral auto n) { return n % 2 == 0 ? 1.0 : -1.0; } // Dump a matrix with full numerical precision. The columns are aligned for easier inspection. Expect large output! template<matrix M> inline void dump_matrix(const M &m, std::ostream &F = std::cout, const int header_width = 7, const int column_width = 23) { boost::io::ios_base_all_saver ofs(F); F << std::setprecision(std::numeric_limits<double>::max_digits10); F << fmt::format("Matrix: {}x{}\n", size1(m), size2(m)); for (auto r1 = 0; r1 < size1(m); r1++) { F << std::setw(header_width) << r1 << ":"; for (auto r2 = 0; r2 < size2(m); r2++) F << std::setw(column_width) << m(r1, r2) << " "; F << std::endl; } } template<matrix M> inline void dump_diagonal_matrix(const M &m, const size_t max_nr, std::ostream &F = std::cout) { for (const auto r : range0(std::min(size1(m), max_nr))) F << m(r,r) << ' '; F << std::endl; } // Chop numerical noise template <scalar T> inline constexpr T chop(const T x, const double xlimit = 1.e-8) { return std::abs(x) < xlimit ? 0.0 : x; } // Powers, such as (-1)^n, appear in the coupling coefficients. inline constexpr double Power(const double i, const double nn) { return std::pow(i, nn); } inline constexpr double Abs(const double x) { return abs(x); } // Check if the value x is real [for complex number calculations]. constexpr inline auto is_real([[maybe_unused]] const double x) { return true; } constexpr inline auto is_real(const std::complex<double> z, const double check_real_tolerance = 1e-8) { return abs(z.imag()) <= check_real_tolerance; } // Check if x is real and return the real part, i.e. x.real(). constexpr inline auto real_part_with_check(double x) { return x; } constexpr inline auto real_part_with_check(std::complex<double> z) { if (!is_real(z)) std::cout << "Warning: expected real number, but got " << z << std::endl; return z.real(); } template <matrix M> auto trace_real(const M &m) { assert(is_square(m)); return ranges::accumulate(range0(size1(m)), 0.0, {}, [&m](const auto i){ return real_part_with_check(m(i, i)); }); } inline auto csqrt(const std::complex<double> z) { return std::sqrt(z); } // sqrt() not constexpr for complex (C++17) template<matrix R> // 2D matrix or matrix view auto finite_size(const R &m) { return size1(m) && size2(m); } // 'v' is any 1D range we can iterate over template<typename R, matrix M> auto trace_exp(R && v, const M &m, const double factor) { // Tr[exp(-factor*v) m] assert(v.size() == size1(m) && v.size() == size2(m)); return ranges::accumulate(range0(v.size()), typename M::value_type{}, {}, [&v, &m, factor](const auto i){ return exp(-factor * v[i]) * m(i, i); }); } // 'values' is any 1D range we can iterate over template<typename R> auto sum_of_exp(R && values, const double factor) // sum exp(-factor*x) { return ranges::accumulate(values, 0.0, {}, [factor](const auto &x){ return exp(-factor*x); }); } template<matrix M> auto trace_contract(const M &A, const M &B, const size_t range) // Tr[AB] { typename M::value_type sum{}; for (const auto i : range0(range)) for (const auto j : range0(range)) sum += A(i, j) * B(j, i); return sum; } #include "numerics_Eigen.hpp" template<scalar S> [[nodiscard]] auto zero_matrix(const size_t size) { return NRG::zero_matrix<S>(size, size); } template<matrix M> [[nodiscard]] auto trim_matrix(const M &mat, const size_t new_size1, const size_t new_size2) { const auto old_size1 = size1(mat); const auto old_size2 = size2(mat); if (old_size1 == 0 || old_size2 == 0) return mat; // trimming not necessary assert(new_size1 <= old_size1 && new_size2 <= old_size2); if (new_size1 == old_size1 && new_size2 == old_size2) return mat; // trimming not necessary const auto sub = submatrix_const(mat, {0, new_size1}, {0, new_size2}); M new_mat = sub; return new_mat; } template<matrix M, matrix N> bool has_lesseq_rows(const M &A, const N &B) { return size1(A) <= size1(B) && size2(A) == size2(B); } // M = A*B, size of A is adapted to the size of B template<matrix M> auto prod_fit_left(const M &A, const M &B) { using T = typename M::value_type; assert(size1(B) <= size2(A)); if (size1(A) == 0 || size2(B) == 0) return empty_matrix<T>(); const auto Asub = submatrix_const(A, {0, size1(A)}, {0, size1(B)}); return matrix_prod<T>(Asub, B); } // M = A*B, size of B is adapted to the size of A template<matrix M> auto prod_fit_right(const M &A, const M &B) { using T = typename M::value_type; assert(size1(B) >= size2(A)); if (size1(A) == 0 || size2(B) == 0) return empty_matrix<T>(); const auto Bsub = submatrix_const(B, {0, size2(A)}, {0, size2(B)}); return matrix_prod<T>(A, Bsub); } template<matrix M> auto prod_fit(const M &A, const M &B) { return size1(B) <= size2(A) ? prod_fit_left(A, B) : prod_fit_right(A, B); } // M = A^\dag*B, size of A is adapted to the size of B template<matrix M> inline auto prod_adj_fit_left(const M &A, const M &B) { using T = typename M::value_type; assert(size1(B) <= size1(A)); if (size2(A) == 0 || size2(B) == 0) return empty_matrix<T>(); const auto Asub = submatrix_const(A, {0, size1(B)}, {0, size2(A)}); return matrix_adj_prod<T>(Asub, B); } inline constexpr double WEIGHT_TOL = 1e-8; // where to switch to l'Hospital rule form // weight=(exp(-beta Em)-exp(-beta En))/(beta En-beta Em). NOTE: arguments En, Em are order omega_N, while beta is // order 1/omega_N, thus the combinations betaEn and betaEm are order 1. Also En>0, Em>0, since these are excitation // energies ! inline auto chit_weight(const double En, const double Em, const double beta) { const auto betaEn = beta * En; const auto betaEm = beta * Em; const auto x = betaEn - betaEm; if (abs(x) > WEIGHT_TOL) { // If one of {betaEm,betaEn} is small, one of exp() will have a value around 1, the other around 0, thus the // overall result will be approximately +-1/x. return (exp(-betaEm) - exp(-betaEn)) / x; } else { // Special case for Em~En. In this case, we are integrating a constant over tau\in{0,\beta}, and dividing this by // beta we get 1. What remains is the Boltzmann weight exp(-betaEm). return exp(-betaEm); } } // Note: with dsyevr I have experienced orthogonality between eigenvectors below 1e-12. We thus use a more conservative // epsilon for orthogonality tests of 1e-10. // Addendum (2021): with dysevr, orthogonality can even go below 1e-10. Is it even safe to go beyond this point?? template <scalar S, typename Matrix = Matrix_traits<S>> bool is_unitary(const Matrix &vec, const double NORMALIZATION_EPSILON = 1e-12, const double ORTHOGONALITY_EPSILON = 1e-10) { const auto M = nrvec(vec); const auto d = dim(vec); // Check normalization for (const auto r : range0(M)) { S sumabs{}; for (const auto j : range0(d)) sumabs += conj_me(vec(r, j)) * vec(r, j); if (!num_equal(abs(sumabs), 1.0, NORMALIZATION_EPSILON)) { std::cout << "is_unitary() r=" << r << " : sumabs=" << sumabs << std::endl; return false; } } // Check orthogonality for (const auto r1 : range0(M)) { for (const auto r2 : boost::irange(r1 + 1, M)) { S skpdt{}; for (const auto j : range0(d)) skpdt += conj_me(vec(r1, j)) * vec(r2, j); if (!num_equal(abs(skpdt), 0.0, ORTHOGONALITY_EPSILON)) { std::cout << "is_unitary() r1=" << r1 << " r2=" << r2 << " : skpdt=" << skpdt << std::endl; return false; } } } return true; } template <scalar S, typename Matrix = Matrix_traits<S>> bool is_unitary_blocks(const std::vector<Matrix> &U, const double NORMALIZATION_EPSILON = 1e-12, const double ORTHOGONALITY_EPSILON = 1e-10) { assert(U.size() > 0); const auto M = nrvec(U[0]); // Check normalization for (const auto r : range0(M)) { S sumabs{}; for (const auto i : range0(U.size())) { const auto d = dim(U[i]); assert(M == nrvec(U[i])); for (const auto j : range0(d)) sumabs += conj_me(U[i](r, j)) * U[i](r, j); } if (!num_equal(abs(sumabs), 1.0, NORMALIZATION_EPSILON)) return false; } // Check orthogonality for (const auto r1 : range0(M)) { for (const auto r2 : boost::irange(r1 + 1, M)) { S skpdt{}; for (const auto i : range0(U.size())) { const auto d = dim(U[i]); for (const auto j : range0(d)) skpdt += conj_me(U[i](r1, j)) * U[i](r2, j); } if (!num_equal(abs(skpdt), 0.0, ORTHOGONALITY_EPSILON)) return false; } } return true; } template <scalar S, typename RVector = RVector_traits<S>, typename Matrix = Matrix_traits<S>> void check_diag(const RVector &val, const Matrix &vec) { assert(val.size() == nrvec(vec)); for (const auto v: val) assert_isfinite(v); assert(is_unitary<S>(vec)); } } // namespace #endif
14,404
C++
.h
327
41.122324
163
0.661434
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,638
io.hpp
rokzitko_nrgljubljana/c++/io.hpp
// io.hpp - input/output low-level routines // Copyright (C) 2009-2024 Rok Zitko #ifndef _io_hpp_ #define _io_hpp_ #include <string> #include <fstream> #include <iostream> #include <complex> #include "params.hpp" #include "numerics.hpp"// reim #include <fmt/format.h> #include <fmt/color.h> #include <fmt/ranges.h> namespace NRG { template <typename... Args> auto color_print(bool enable_color, const fmt::text_style& ts, fmt::format_string<Args...> format_str, Args&&... args) { return enable_color ? fmt::print(stdout, ts, format_str, std::forward<Args>(args)...) : fmt::print(stdout, fmt::text_style{}, format_str, std::forward<Args>(args)...); } using namespace fmt::literals; template <typename T> inline std::string formatted_output(const T x, const Params &P) { return fmt::format("{x:>{width}}", "x"_a=x, "width"_a=int(P.width_custom)); } inline std::string formatted_output(const double x, const Params &P) { return fmt::format("{x:>{width}.{prec}}", "x"_a=x, "prec"_a=int(P.prec_custom), "width"_a=int(P.width_custom)); } inline std::string formatted_output(const std::complex<double> z, const Params &P) { // XXX return fmt::format("{x:>{width}.{prec}}", "x"_a=z.real(), "prec"_a=int(P.prec_custom), "width"_a=int(P.width_custom)); } inline void outputxy(std::ostream &F, const double x, const std::complex<double> z, const bool imagpart, const double clip_tol_imag = 1e-10) { const auto [r, i] = reim(z); F << x << " " << r; if (imagpart) F << " " << (abs(i)>abs(r)*clip_tol_imag ? i : 0); F << std::endl; } template <matrix M> std::ostream &operator<<(std::ostream &os, const M &m) { for (auto r1 = 0; r1 < size1(m); r1++) { for (auto r2 = 0; r2 < size2(m); r2++) os << m(r1, r2) << ' '; os << std::endl; } return os; } // Read dim1 x dim2 matrix from stream. Use function next_value to extract consecutive values. 'gen' generates the matrix. template<typename GEN, typename FNC> auto read_matrix_data(GEN && generate_matrix, FNC && next_value, const size_t dim1, const size_t dim2, const bool check_is_finite = true) { auto M = generate_matrix(dim1, dim2); for (auto i = 0; i < dim1; i++) { for (auto j = 0; j < dim2; j++) { const auto x = next_value(); if (check_is_finite && !std::isfinite(x)) throw std::runtime_error("Non-finite number detected."); M(i, j) = x; } } return M; } // Read a matrix from stream (text) template<typename GEN> auto read_matrix_text(GEN && generate_matrix, const std::string &filename, const bool verbose = false) { auto F = safe_open_for_reading(filename, false); const auto [dim1, dim2] = get_dims(F); if (verbose) std::cout << filename << " [" << dim1 << " x " << dim2 << "]" << std::endl; F.clear(); F.seekg (0, std::ios::beg); return read_matrix_data(generate_matrix, [&F]() { return read_one<double>(F); }, dim1, dim2); } // Read a matrix from stream (binary). Format: two unit32_t for matrix size, followed by // dim1 x dim2 double values. template<typename GEN> auto read_matrix_bin(GEN && generate_matrix, const std::string &filename, const bool verbose = false) { auto F = safe_open_for_reading(filename, true); uint32_t dim1, dim2; F.read((char *)&dim1, sizeof(uint32_t)); F.read((char *)&dim2, sizeof(uint32_t)); if (verbose) std::cout << filename << " [" << dim1 << " x " << dim2 << "]" << std::endl; return read_matrix_data(generate_matrix, [&F]() { double x; F.read((char *)&x, sizeof(double)); return x; }, dim1, dim2); } inline auto read_matrix(const std::string &filename, const bool bin = false, const bool verbose = false, const bool veryverbose = false) { auto M = bin ? read_matrix_bin(generate_matrix<double>, filename, verbose) : read_matrix_text(generate_matrix<double>, filename, verbose); if (veryverbose) std::cout << M << std::endl; return M; } template<matrix M> inline void save_matrix(const std::string &filename, const M &m, const bool verbose = false, const double chop_tol = 1e-14, const int output_prec = 18) { if (verbose) std::cout << "Saving result to " << filename << std::endl; auto F = safe_open(filename); F << std::setprecision(output_prec); for (auto i = 0; i < size1(m); i++) { for (auto j = 0; j < size2(m); j++) { const auto val = m(i, j); F << (std::abs(val) > chop_tol ? val : 0.0) << (j != size2(m) - 1 ? " " : ""); } F << std::endl; } F.close(); } } // namespace #endif
4,476
C++
.h
102
40.823529
142
0.642332
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,639
coef.hpp
rokzitko_nrgljubljana/c++/coef.hpp
#ifndef _coef_hpp_ #define _coef_hpp_ #include <vector> #include <fstream> #include "traits.hpp" #include "params.hpp" #include "numerics.hpp" // read_vector namespace NRG { // Table of Wilson chain coefficients template <scalar S, typename t_coef = coef_traits<S>> class coef_table { private: using t_coef_v = std::vector<t_coef>; t_coef_v table; public: using t_ndx = typename t_coef_v::size_type; // Read values from a stream f void read_values(std::istream &f) { table = read_std_vector<t_coef>(f, true); // true means the number given is max index, thus len=#+1 } [[nodiscard]] auto coef(const t_ndx n) const { my_assert(n < table.size()); return table[n]; } // Index of the last coefficient still included in the table [[nodiscard]] auto max() const { my_assert(table.size() >= 1); return table.size()-1; } void set(const t_ndx n, const t_coef val) { if (n+1 > table.size()) table.resize(n+1); table[n] = val; } }; // Read matrices into a std::vector. First value to be read, 'nr', is either vector dimension or // the value of maximum index. This is followed by the matrix dimensions 'size1' and 'size2'. template <scalar S> auto read_matrix_table(std::istream &F, const bool nr_is_max_index = false) { const auto nr = read_one<size_t>(F); const auto len = nr_is_max_index ? nr+1 : nr; assert(len >= 1); const auto size1 = read_one<size_t>(F); const auto size2 = read_one<size_t>(F); assert(size1 == size2); using t_matrix = Matrix_traits<S>; std::vector<t_matrix> vec(len); for (auto j = 0; j < len; j++) vec[j] = read_matrix<S>(F, size1, size2); if (F.fail()) throw std::runtime_error("read_std_vector() error. Input file is corrupted."); return vec; } #ifdef CHAIN_COEF // PROPOSED NEW DATA STRUCTURE // Table of Wilson chain coefficients in matrix form, one element per shell. // The meaning of the internal matrix dimensions depends on the symmetry type, // it can be channel/orbital, spin, Nambu particle/hole degree of freedom, etc., // or a combination of several of those. The implementation of each symmetry type // should provide an appropriate view adapter for the Wilson chain matrices. template <scalar S, typename t_coef = coef_traits<S>, typename t_matrix = Matrix_traits<S>> class chain_coef { private: using t_coef_matrix_v = std::vector<t_matrix>; t_coef_matrix_v matrix_table; public: using t_ndx = typename t_coef_matrix_v::size_type; // Read values from a stream f. void read(std::istream &f) { matrix_table = read_matrix_table<t_coef>(f, true); // true means the number given is max index, thus len=#+1 } [[nodiscard]] auto coef(const t_ndx n) const { my_assert(n < matrix_table.size()); return matrix_table[n]; } [[nodiscard]] auto size() const { my_assert(matrix_table.size() > 0); return matrix_table[0].size1(); } }; #endif // One table of discretization coefficients for each channel template <scalar S, typename t_coef = coef_traits<S>> class set_of_coef_tables { private: using t_coef_vv = std::vector<coef_table<S>>; t_coef_vv tabs; public: using t_ndx = typename coef_table<S>::t_ndx; using t_ch = typename t_coef_vv::size_type; [[nodiscard]] auto nr_tabs() const { return tabs.size(); } void read(std::istream &fdata, const t_ch coefchannels) { tabs.resize(coefchannels); for (auto &i : tabs) i.read_values(fdata); } [[nodiscard]] auto operator()(const t_ndx N, const t_ch alpha) const { my_assert(alpha < tabs.size()); return tabs[alpha].coef(N); } [[nodiscard]] auto max(const t_ch alpha) const { my_assert(alpha < tabs.size()); return tabs[alpha].max(); } void set(const t_ndx N, const t_ch alpha, const t_coef val) { // used in tridiag.hpp my_assert(alpha < tabs.size()); tabs[alpha].set(N, val); } }; template <scalar S> class Coef { private: const Params &P; public: explicit Coef(const Params &P) : P(P) {} // NEW INTERFACE #ifdef CHAIN_COEF chain_coef<S> eps; // f^dag_N f_N+1 terms chain_coef<S> t; // f^dag_N f_N terms #endif // OLD INTERFACE using t_ndx = typename set_of_coef_tables<S>::t_ndx; using t_ch = typename set_of_coef_tables<S>::t_ch; set_of_coef_tables<S> xi; // f^dag_N f_N+1 terms set_of_coef_tables<S> zeta; // f^dag_N f_N terms // channel-mixing chains set_of_coef_tables<S> xiR; set_of_coef_tables<S> zetaR; // superconducting chains set_of_coef_tables<S> delta; // f^dag_up,N f^dag_down,N terms set_of_coef_tables<S> kappa; // f^dag_N f^dag_down,N+1 terms // star-representation coefficients set_of_coef_tables<S> ep, em; // e_n coefficients set_of_coef_tables<S> u0p, u0m; // u_{0,m} coefficients // Support for spin-polarized conduction bands. See also P.polarized. Hack: the total number of channels is // doubled, the index runs from 0...2*P.channels-1. Numbers 0...P.channels-1 correspond to spin up, while // P.channels...2*P.channels-1 correspond to spin down. Compare P.channels and P.coefchannels (which reflects the // same convention in initial.m, i.e. CHANNELS vs. COEFCHANNELS). [[nodiscard]] auto xiUP (const t_ndx N, const t_ch ch) const { return xi (N, ch); } [[nodiscard]] auto xiDOWN (const t_ndx N, const t_ch ch) const { return xi (N, ch + P.channels); } [[nodiscard]] auto zetaUP (const t_ndx N, const t_ch ch) const { return zeta(N, ch); } [[nodiscard]] auto zetaDOWN(const t_ndx N, const t_ch ch) const { return zeta(N, ch + P.channels); } // Support for conduction bands with full 2x2 matrix structure, a generalization of P.polarized. The total number // of "channels" is here multiplied by 4, i.e., the index runs from 0 to 4*P.channels-1. Numbers // 2*P.channels...3*P.channels-1 correspond to UP/DO, 3*P.channels...4*P.channels-1 correspond to DO/UP. [[nodiscard]] auto xiUPDO (const t_ndx N, const t_ch ch) const { return xi (N, ch + 2 * P.channels); } [[nodiscard]] auto xiDOUP (const t_ndx N, const t_ch ch) const { return xi (N, ch + 3 * P.channels); } [[nodiscard]] auto zetaUPDO(const t_ndx N, const t_ch ch) const { return zeta(N, ch + 2 * P.channels); } [[nodiscard]] auto zetaDOUP(const t_ndx N, const t_ch ch) const { return zeta(N, ch + 3 * P.channels); } }; } // namespace #endif
6,269
C++
.h
148
39.587838
115
0.684806
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,641
diag_openmp.hpp
rokzitko_nrgljubljana/c++/diag_openmp.hpp
#ifndef _diag_openmp_hpp_ #define _diag_openmp_hpp_ #include "traits.hpp" #include "step.hpp" #include "operators.hpp" #include "coef.hpp" #include "eigen.hpp" #include "output.hpp" #include "invar.hpp" #include "params.hpp" #include "symmetry.hpp" #include "diagengine.hpp" namespace NRG { template<scalar S> class DiagOpenMP : public DiagEngine<S> { public: DiagInfo<S> diagonalisations(const Step &step, const Opch<S> &opch, const Coef<S> &coef, const DiagInfo<S> &diagprev, const Output<S> &output, const std::vector<Invar> &tasks, const DiagParams &DP, const Symmetry<S> *Sym, const Params &P) { DiagInfo<S> diagnew; const auto nr = tasks.size(); size_t itask = 0; // cppcheck-suppress unreadVariable symbolName=nth const int nth = P.diagth; // NOLINT #pragma omp parallel for schedule(dynamic) num_threads(nth) for (itask = 0; itask < nr; itask++) { const Invar I = tasks[itask]; auto h = hamiltonian(step, I, opch, coef, diagprev, output, Sym, P); // non-const, consumed by diagonalise() const int thid = omp_get_thread_num(); #pragma omp critical { nrglog('(', "[OpenMP] Diagonalizing " << I << " dim=" << dim(h) << " (task " << itask + 1 << "/" << nr << ", thread " << thid << ")"); } auto e = diagonalise(h, DP, -1); // -1 = not using MPI #pragma omp critical { diagnew[I] = Eigen(std::move(e), step); } } return diagnew; } }; } #endif
1,472
C++
.h
39
33.538462
145
0.639356
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,642
mk_sym.hpp
rokzitko_nrgljubljana/c++/mk_sym.hpp
#ifndef _mk_sym_hpp_ #define _mk_sym_hpp_ #include <memory> #include <string> #include <stdexcept> #include "params.hpp" #include "symmetry.hpp" #include "outfield.hpp" #include "sym-QS.hpp" #include "sym-QSZ.hpp" #ifdef NRG_SYM_MORE #include "sym-ISO.hpp" #include "sym-ISOSZ.hpp" #include "sym-SPSU2.hpp" #include "sym-SPU1.hpp" #endif #ifdef NRG_SYM_ALL #include "sym-DBLQSZ.hpp" #include "sym-DBLSU2.hpp" #include "sym-DBLISOSZ.hpp" #include "sym-ISOLR.hpp" #include "sym-ISOSZLR.hpp" #include "sym-NONE.hpp" #include "sym-P.hpp" #include "sym-PP.hpp" #include "sym-SL.hpp" #include "sym-SL3.hpp" #include "sym-SPSU2LR.hpp" #include "sym-SPSU2T.hpp" #include "sym-SPU1LR.hpp" #include "sym-SU2.hpp" #include "sym-QSLR.hpp" #include "sym-QST.hpp" #include "sym-QSTZ.hpp" #include "sym-QSZTZ.hpp" #include "sym-QSZLR.hpp" #include "sym-QJ.hpp" #include "sym-U1.hpp" #include "sym-SPSU2C3.hpp" #include "sym-QSC3.hpp" #endif namespace NRG { template<scalar S> auto get(const std::string &sym_string, const Params &P) { if (sym_string == "QS") return mk_QS<S>(P); if (sym_string == "QSZ") return mk_QSZ<S>(P); #ifdef NRG_SYM_MORE if (sym_string == "ISO") return mk_ISO<S>(P); if (sym_string == "ISO2") return mk_ISO2<S>(P); if (sym_string == "ISOSZ") return mk_ISOSZ<S>(P); if (sym_string == "SPSU2") return mk_SPSU2<S>(P); if (sym_string == "SPU1") return mk_SPU1<S>(P); #endif #ifdef NRG_SYM_ALL if (sym_string == "DBLQSZ") return mk_DBLQSZ<S>(P); if (sym_string == "DBLSU2") return mk_DBLSU2<S>(P); if (sym_string == "DBLISOSZ") return mk_DBLISOSZ<S>(P); if (sym_string == "ISOLR") return mk_ISOLR<S>(P); if (sym_string == "ISO2LR") return mk_ISO2LR<S>(P); if (sym_string == "ISOSZLR") return mk_ISOSZLR<S>(P); if (sym_string == "NONE") return mk_NONE<S>(P); if (sym_string == "P") return mk_P<S>(P); if (sym_string == "PP") return mk_PP<S>(P); if (sym_string == "SL") return mk_SL<S>(P); if (sym_string == "SL3") return mk_SL3<S>(P); if (sym_string == "SPSU2LR") return mk_SPSU2LR<S>(P); if (sym_string == "SPSU2T") return mk_SPSU2T<S>(P); if (sym_string == "SPU1LR") return mk_SPU1LR<S>(P); if (sym_string == "SU2") return mk_SU2<S>(P); if (sym_string == "QSLR") return mk_QSLR<S>(P); if (sym_string == "QST") return mk_QST<S>(P); if (sym_string == "QSTZ") return mk_QSTZ<S>(P); if (sym_string == "QSZTZ") return mk_QSZTZ<S>(P); if (sym_string == "QSZLR") return mk_QSZLR<S>(P); if (sym_string == "QJ") return mk_QJ<S>(P); if (sym_string == "U1") return mk_U1<S>(P); if constexpr (std::is_same_v<S, std::complex<double>>) { if (sym_string == "SPSU2C3") return mk_SPSU2C3<S>(P); if (sym_string == "QSC3") return mk_QSC3<S>(P); } #endif throw std::runtime_error("Unknown symmetry " + sym_string); } // Called immediately after parsing the information about the number of channels from the data file. This ensures // that Invar can be parsed correctly. template <scalar S> std::shared_ptr<Symmetry<S>> set_symmetry(Params &P, const std::string &sym_string, const size_t channels) { P.symtype = sym_string; P.set_channels_and_combs(channels); std::cout << "\nSYMMETRY TYPE: " << sym_string << std::endl; auto Sym = get<S>(sym_string, P); Sym->load(); Sym->erase_first(); return Sym; } } // namespace #endif
3,305
C++
.h
98
31.734694
113
0.667188
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,643
subspaces.hpp
rokzitko_nrgljubljana/c++/subspaces.hpp
#ifndef _subspaces_hpp_ #define _subspaces_hpp_ #include <memory> #include <vector> #include <range/v3/all.hpp> #include "eigen.hpp" #include "invar.hpp" #include "h5.hpp" namespace NRG { template<scalar S> class Symmetry; // Dimensions of the invariant subspaces |r,1>, |r,2>, |r,3>, etc. class SubspaceDimensions { private: std::vector<size_t> dims; std::vector<Invar> ancestors; public: SubspaceDimensions() = default; template<scalar S> SubspaceDimensions(const Invar &I, const InvarVec &ancestors, const DiagInfo<S> &diagprev, const Symmetry<S> *Sym, const bool ignore_inequality = false); [[nodiscard]] auto combs() const { return dims.size(); } // number of subspaces [[nodiscard]] auto rmax(const size_t i) const { // subspace dimension my_assert(i < combs()); return dims[i]; } [[nodiscard]] auto operator[](const size_t i) const { return rmax(i); } [[nodiscard]] auto exists(const size_t i) const { my_assert(i < combs()); return dims[i] > 0; } [[nodiscard]] auto offset(const size_t i) const { // offset in the Hamiltonian matrix my_assert(i < combs()); return ranges::accumulate(std::begin(dims), std::begin(dims) + i, size_t{0}); } [[nodiscard]] auto chunk(const size_t i1) const { return std::make_pair(offset(i1-1), rmax(i1-1)); } [[nodiscard]] auto view(const size_t i) const { // index range in the Hamiltonian matrix // XXX: rename to range return boost::irange(offset(i), offset(i)+rmax(i)); } [[nodiscard]] auto view_mma(const size_t i) const { return view(i-1); // Mathematica uses 1-based indexing } [[nodiscard]] auto part(const size_t i) const { return std::make_pair(offset(i), offset(i)+rmax(i)); } [[nodiscard]] auto part_mma(const size_t i1) const { return part(i1-1); // Mathematica uses 1-based indexing } [[nodiscard]] auto total() const { return ranges::accumulate(dims, 0); } // total number of states // *** Mathematica interfacing: i1,j1 are 1-based [[nodiscard]] bool offdiag_contributes(const size_t i1, const size_t j1) const { // i,j are 1-based (Mathematica interface) my_assert(1 <= i1 && i1 <= combs() && 1 <= j1 && j1 <= combs()); my_assert(i1 != j1); return exists(i1-1) && exists(j1-1); // shift by 1 } [[nodiscard]] Invar ancestor(const size_t i) const { return ancestors[i]; } void dump(std::ostream &F = std::cout) const { my_assert(dims.size() == ancestors.size()); for (int i = 0; i < dims.size(); i++) F << "[" << ancestors[i] << "] total=" << dims[i] << std::endl; } void h5save(H5Easy::File &fd, const std::string &name) const { std::vector<std::string> ancestor_names; for (const auto i : range0(combs())) if (dims[i]) ancestor_names.push_back(ancestors[i].name()); // only true ancestors with dim>0 H5Easy::dump(fd, name + "/ancestors", ancestor_names); } private: friend std::ostream &operator<<(std::ostream &os, const SubspaceDimensions &rmax) { for (const auto &x : rmax.dims) os << x << ' '; return os; } template <class Archive> void serialize(Archive &ar, const unsigned int version) { ar &dims; } friend class boost::serialization::access; }; class SubspaceStructure : public std::map<Invar, SubspaceDimensions> { public: SubspaceStructure() = default; template<scalar S> SubspaceStructure(const DiagInfo<S> &, const Symmetry<S> *); void dump(std::ostream &F = std::cout) const { for(const auto &[I, rm]: *this) F << "rmaxvals(" << I << ")=" << rm << " total=" << rm.total() << std::endl; } [[nodiscard]] auto at_or_null(const Invar &I) const { const auto i = this->find(I); return i == this->cend() ? SubspaceDimensions() : i->second; } void h5save(H5Easy::File &fd, const std::string &name) const { for (const auto &[I, rm]: *this) rm.h5save(fd, name + "/" + I.name()); } }; // List of invariant subspaces in which diagonalisations need to be performed class TaskList { private: std::vector<std::pair<size_t, Invar>> tasks_with_sizes; std::vector<Invar> tasks; public: void stats(std::ostream &F) { auto nr = tasks_with_sizes.size(); auto min_size = tasks_with_sizes.back().first; auto max_size = tasks_with_sizes.front().first; F << "Stats: nr=" << nr << " min=" << min_size << " max=" << max_size << std::endl; } explicit TaskList(const SubspaceStructure &structure, std::ostream &F = std::cout) { for (const auto &[I, rm] : structure) if (rm.total()) tasks_with_sizes.emplace_back(rm.total(), I); ranges::sort(tasks_with_sizes, std::greater<>()); // sort in the *decreasing* order! stats(F); tasks = tasks_with_sizes | ranges::views::transform( [](const auto &p) { return p.second; } ) | ranges::to<std::vector>(); } [[nodiscard]] std::vector<Invar> get() const { return tasks; } }; } // namespace #endif
4,983
C++
.h
117
38.136752
127
0.637768
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,644
matsubara.hpp
rokzitko_nrgljubljana/c++/matsubara.hpp
#ifndef _matsubara_hpp_ #define _matsubara_hpp_ #include <vector> #include <utility> #include <cmath> #include <iomanip> #include "traits.hpp" namespace NRG { enum class gf_type { bosonic, fermionic }; // req'd in matsubara.h // Sign factor in GFs for bosonic/fermionic operators inline constexpr auto S_BOSONIC = +1; inline constexpr auto S_FERMIONIC = -1; inline int gf_sign(const gf_type gt) { return gt == gf_type::bosonic ? S_BOSONIC : S_FERMIONIC; } // Note: range limited to short numbers. [[nodiscard]] inline auto ww(const short n, const gf_type mt, const double T) { switch (mt) { case gf_type::bosonic: return T * M_PI * (2 * n); case gf_type::fermionic: return T * M_PI * (2 * n + 1); default: my_assert_not_reached(); } } [[nodiscard]] inline auto wb(const short n, const double T) { return T * M_PI * (2 * n); } [[nodiscard]] inline auto wf(const short n, const double T) { return T * M_PI * (2 * n + 1); } template<scalar S, typename t_weight = weight_traits<S>> class Matsubara { private: using t_temp = typename traits<S>::t_temp; using matsgf = std::vector<std::pair<t_temp, t_weight>>; matsgf v; gf_type mt; t_temp T; public: Matsubara() = delete; Matsubara(const size_t mats, const gf_type mt, const t_temp T) : mt(mt), T(T) { my_assert(mt == gf_type::bosonic || mt == gf_type::fermionic); for (const auto n: range0(mats)) v.emplace_back(ww(n, mt, T), 0); } void add(const size_t n, const t_weight &w) { v[n].second += w; } void merge(const Matsubara &m2) { my_assert(v.size() == m2.v.size()); for (const auto n: range0(v.size())) { my_assert(v[n].first == m2.v[n].first); v[n].second += m2.v[n].second; } } template <typename T> void save(T && F, const int prec) const { F << std::setprecision(prec); // prec_xy for (const auto &[e, w] : v) outputxy(F, e, w, true); } }; } // namespace NRG #endif // _matsubara_hpp_
1,953
C++
.h
53
33.698113
97
0.642706
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,645
mp.hpp
rokzitko_nrgljubljana/c++/mp.hpp
// Copyright (C) 2020 Rok Zitko #ifndef _mp_hpp_ #define _mp_hpp_ #include <gmp.h> #include <vector> namespace NRG { // Wrapper class for arbitrary precision numbers class my_mpf { private: mpf_t val{}; public: my_mpf() { mpf_init(val); } // Copy constructor is mandatory! my_mpf(const my_mpf &x) { mpf_init(val); mpf_set(val, x.val); } my_mpf(my_mpf && x) = delete; my_mpf & operator=(const my_mpf & x) = delete; my_mpf & operator=(my_mpf && x) = delete; ~my_mpf() { mpf_clear(val); } inline operator mpf_t &() { return val; } }; using vmpf = std::vector<my_mpf>; } // namespace NRG #endif
631
C++
.h
26
21.730769
48
0.644891
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,646
algo_CFS.hpp
rokzitko_nrgljubljana/c++/algo_CFS.hpp
#ifndef _algo_CFS_hpp_ #define _algo_CFS_hpp_ #include "traits.hpp" #include "algo.hpp" #include "spectrum.hpp" namespace NRG { // Cf. Peters, Pruschke, Anders, Phys. Rev. B 74, 245113 (2006). // Based on the implementation by Markus Greger. template<scalar S, typename Matrix = Matrix_traits<S>, typename t_coef = coef_traits<S>, typename t_eigen = eigen_traits<S>> class Algo_CFSls : virtual public Algo<S> { private: inline static const std::string algoname = "CFSls"; SpectrumRealFreq<S> spec; const int sign; // 1 for bosons, -1 for fermions const bool save; // if true, save spectral function to a file in destructor protected: using CB = ChainBinning<S>; std::unique_ptr<CB> cb; public: using Algo<S>::P; Algo_CFSls(const std::string &name, const std::string &prefix, const gf_type gt, const Params &P, const bool save = true) : Algo<S>(P), spec(name, algoname, spec_fn(name, prefix, algoname, save), P), sign(gf_sign(gt)), save(save) {} void begin(const Step &) override { cb = std::make_unique<CB>(P); } void calc(const Step &step, const Eigen<S> &diagIp, const Eigen<S> &diagI1, const Matrix &op1, const Matrix &op2, t_coef factor, [[maybe_unused]] const Invar &Ip, [[maybe_unused]] const Invar &I1, const DensMatElements<S> &rho, const Stats<S> &stats) override { // Convention: k-loops over retained states, l-loop over discarded states. if (step.last()) { // i-term, Eq. (11). const auto term1 = [&diagI1, &diagIp, Z=stats.Zft, &op1, &op2, T = P.T.value(), this](const auto r1, const auto rp) { const auto E1 = diagI1.values.abs_zero(r1); const auto Ep = diagIp.values.abs_zero(rp); const auto weight = conj_me(op1(r1, rp)) * op2(r1, rp) * exp(-E1/T) * (-sign)/Z; return std::make_pair(E1-Ep, weight); }; for (const auto r1: diagI1.kept()) for (const auto rp: diagIp.kept()) cb->add(term1(r1, rp), factor); } else { // iii-term, Eq. (16), positive frequency excitations const auto op2_rho = prod_fit_left(op2, rho.at(Ip)); const auto term3 = [&diagI1, &diagIp, &op1, &op2_rho, this](const auto rl, const auto rk) { const auto El = diagI1.values.abs_zero(rl); const auto Ek = diagIp.values.abs_zero(rk); const auto weight = conj_me(op1(rl, rk)) * op2_rho(rl, rk) * (-sign); return std::make_pair(El-Ek, weight); }; for (const auto rl: diagI1.discarded()) for (const auto rk: diagIp.kept()) cb->add(term3(rl, rk), factor); } } void end([[maybe_unused]] const Step &step) override { spec.mergeCFS(*cb.get()); cb.reset(); } ~Algo_CFSls() { if (save) spec.save(); } std::string rho_type() override { return "rho"; } }; template<scalar S, typename Matrix = Matrix_traits<S>, typename t_coef = coef_traits<S>, typename t_eigen = eigen_traits<S>> class Algo_CFSgt : virtual public Algo<S> { private: inline static const std::string algoname = "CFSgt"; SpectrumRealFreq<S> spec; const int sign; // 1 for bosons, -1 for fermions const bool save; protected: using CB = ChainBinning<S>; std::unique_ptr<CB> cb; public: using Algo<S>::P; Algo_CFSgt(const std::string &name, const std::string &prefix, const gf_type gt, const Params &P, const bool save = true) : Algo<S>(P), spec(name, algoname, spec_fn(name, prefix, algoname, save), P), sign(gf_sign(gt)), save(save) {} void begin(const Step &) override { cb = std::make_unique<CB>(P); } void calc(const Step &step, const Eigen<S> &diagIp, const Eigen<S> &diagI1, const Matrix &op1, const Matrix &op2, t_coef factor, [[maybe_unused]] const Invar &Ip, [[maybe_unused]] const Invar &I1, const DensMatElements<S> &rho, const Stats<S> &stats) override { // Convention: k-loops over retained states, l-loop over discarded states. if (step.last()) { // i-term, Eq. (11). const auto term1 = [&diagI1, &diagIp, Z=stats.Zft, &op1, &op2, T = P.T.value()](const auto r1, const auto rp) { const auto E1 = diagI1.values.abs_zero(r1); const auto Ep = diagIp.values.abs_zero(rp); const auto weight = conj_me(op1(r1, rp)) * op2(r1, rp) * exp(-Ep/T)/Z; return std::make_pair(E1-Ep, weight); }; for (const auto r1: diagI1.kept()) for (const auto rp: diagIp.kept()) cb->add(term1(r1, rp), factor); } else { // ii-term, Eq. (15), negative frequency excitations const auto op1_rho = prod_adj_fit_left(op1, rho.at(I1)); const auto term2 = [&diagI1, &diagIp, &op1_rho, &op2](const auto rk, const auto rl) { const auto Ek = diagI1.values.abs_zero(rk); const auto El = diagIp.values.abs_zero(rl); const auto weight = op1_rho(rl, rk) * op2(rk, rl); return std::make_pair(Ek-El, weight); }; for (const auto rk: diagI1.kept()) for (const auto rl: diagIp.discarded()) cb->add(term2(rk, rl), factor); } } void end([[maybe_unused]] const Step &step) override { spec.mergeCFS(*cb.get()); cb.reset(); } ~Algo_CFSgt() { if (save) spec.save(); } std::string rho_type() override { return "rho"; } }; template<scalar S, typename Matrix = Matrix_traits<S>, typename t_coef = coef_traits<S>, typename t_eigen = eigen_traits<S>> class Algo_CFS : public Algo_CFSls<S>, public Algo_CFSgt<S> { private: inline static const std::string algoname2 = "CFS"; SpectrumRealFreq<S> spec_tot; public: using Algo<S>::P; Algo_CFS(const std::string &name, const std::string &prefix, const gf_type gt, const Params &P) : Algo<S>(P), Algo_CFSls<S>(name, prefix, gt, P, false), Algo_CFSgt<S>(name, prefix, gt, P, false), spec_tot(name, algoname2, spec_fn(name, prefix, algoname2), P) {} void begin(const Step &step) override { Algo_CFSgt<S>::begin(step); Algo_CFSls<S>::begin(step); } void calc(const Step &step, const Eigen<S> &diagIp, const Eigen<S> &diagI1, const Matrix &op1, const Matrix &op2, t_coef factor, const Invar &Ip, const Invar &I1, const DensMatElements<S> &rho, const Stats<S> &stats) override { Algo_CFSgt<S>::calc(step, diagIp, diagI1, op1, op2, factor, Ip, I1, rho, stats); Algo_CFSls<S>::calc(step, diagIp, diagI1, op1, op2, factor, Ip, I1, rho, stats); } void end([[maybe_unused]] const Step &step) override { spec_tot.mergeCFS(*Algo_CFSgt<S>::cb.get()); spec_tot.mergeCFS(*Algo_CFSls<S>::cb.get()); Algo_CFSgt<S>::cb.reset(); Algo_CFSls<S>::cb.reset(); } ~Algo_CFS() { spec_tot.save(); } std::string rho_type() override { return "rho"; } }; } // namespace #endif
6,770
C++
.h
140
42.657143
168
0.628964
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,647
nrg-lib.hpp
rokzitko_nrgljubljana/c++/nrg-lib.hpp
#ifndef _nrg_lib_hpp_ #define _nrg_lib_hpp_ // This header is included for both executable and library. #define NRG_COMMON #include <memory> #include <string> #include <boost/mpi/environment.hpp> #include <boost/mpi/communicator.hpp> #include "workdir.hpp" namespace NRG { void print_about_message(); void run_nrg_master(const std::string &workdir); void run_nrg_master(boost::mpi::environment &mpienv, boost::mpi::communicator &mpiw, std::unique_ptr<Workdir> workdir); void run_nrg_slave(boost::mpi::environment &mpienv, boost::mpi::communicator &mpiw); } // namespace #endif
585
C++
.h
16
35.0625
119
0.771836
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,648
diag.hpp
rokzitko_nrgljubljana/c++/diag.hpp
// diag.h - Diagonalisation code // Copyright (C) 2009-2020 Rok Zitko #ifndef _diag_hpp_ #define _diag_hpp_ #include <type_traits> // is_same_v #include <complex> #include <vector> #include <memory> #include <iostream> #include <iomanip> // std::setprecision #include <stdexcept> #include "traits.hpp" #include "params.hpp" #include "eigen.hpp" #include "time_mem.hpp" #include "debug.hpp" // nrglogdp #include "numerics.hpp" // is_matrix_upper #include <fmt/format.h> #define LAPACK_COMPLEX_STRUCTURE #include "lapack.h" namespace NRG { // Handle complex-type conversions (used in copy_vec) [[nodiscard]] inline auto to_matel(const double x) { return x; } [[nodiscard]] inline auto to_matel(const lapack_complex_double &z) { return std::complex<double>(z.real, z.imag); } template<vector SV, vector DV> requires std::is_convertible_v<typename SV::value_type, typename DV::value_type> void copy_val(const SV &source, DV &dest, const size_t M) { using S = typename SV::value_type; my_assert(source.size() >= M); if (std::adjacent_find(source.begin(), source.begin() + M, std::greater<S>()) != source.begin() + M) std::cout << "WARNING: Values are not in ascending order. Bug in LAPACK dsyev* routines." << std::endl; dest.resize(M); std::copy_n(source.begin(), M, dest.begin()); } template<typename U, matrix MM> // U may be _lapack_complex_double void copy_vec(U* eigenvectors, MM & diagvectors, const size_t dim, const size_t M) { diagvectors.resize(M, dim); for (const auto r : range0(M)) for (const auto j : range0(dim)) diagvectors(r, j) = to_matel(eigenvectors[dim * r + j]); // this works correctly for both row-order and column-order storage types (diagvectors) } template<scalar S, vector V, typename U> auto copy_results(const V &eigenvalues, U* eigenvectors, const char jobz, const size_t dim, const size_t M) { RawEigen<S> d(M, dim); copy_val(eigenvalues, d.val, M); if (jobz == 'V') copy_vec(eigenvectors, d.vec, dim, M); my_assert(d.val.size() == nrvec(d.vec)); return d; } // Perform diagonalisation: wrappers for LAPACK. jobz: 'N' for values only, 'V' for values and vectors template<real_matrix RM> auto diagonalise_dsyev(RM &m, const char jobz = 'V') { if (!is_row_ordered(m)) m = NRG::trans(m); const auto dim = int(size1(m)); auto ham = data(m); std::vector<double> eigenvalues(dim); // eigenvalues on exit char UPLO = 'L'; // lower triangle of a is stored int NN = dim; // the order of the matrix int LDA = dim; // the leading dimension of the array a int INFO = 0; // 0 on successful exit int LWORK0 = -1; // length of the WORK array double WORK0 = 0; // on exit: optimal WORK size // Step 1: determine optimal LWORK LAPACK_dsyev(&jobz, &UPLO, &NN, ham, &LDA, eigenvalues.data(), &WORK0, &LWORK0, &INFO); my_assert(INFO == 0); int LWORK = int(WORK0); std::vector<double> WORK(LWORK); // Step 2: perform the diagonalisation LAPACK_dsyev(&jobz, &UPLO, &NN, ham, &LDA, eigenvalues.data(), WORK.data(), &LWORK, &INFO); if (INFO != 0) throw std::runtime_error(fmt::format("dsyev failed. INFO={}", INFO)); return copy_results<double>(eigenvalues, ham, jobz, dim, dim); } template<real_matrix RM> auto diagonalise_dsyevd(RM &m, const char jobz = 'V') { if (!is_row_ordered(m)) m = NRG::trans(m); const auto dim = int(size1(m)); auto ham = data(m); std::vector<double> eigenvalues(dim); char UPLO = 'L'; int NN = dim; int LDA = dim; int INFO = 0; int LWORK = -1; int LIWORK = -1; double WORK0 = 0; // on exit: optimal WORK size int IWORK0 = 0; // on exit: optimal IWORK size LAPACK_dsyevd(&jobz, &UPLO, &NN, ham, &LDA, eigenvalues.data(), &WORK0, &LWORK, &IWORK0, &LIWORK, &INFO); my_assert(INFO == 0); LWORK = int(WORK0); LIWORK = IWORK0; std::vector<double> WORK(LWORK); std::vector<int> IWORK(LIWORK); LAPACK_dsyevd(&jobz, &UPLO, &NN, ham, &LDA, eigenvalues.data(), WORK.data(), &LWORK, IWORK.data(), &LIWORK, &INFO); if (INFO != 0) { // dsyevd sometimes fails to converge (INFO>0). In such cases we do not trigger // an error but return 0, to permit error recovery. if (INFO > 0) return RawEigen<double>(); else throw std::runtime_error(fmt::format("dsyev failed. INFO={}", INFO)); } return copy_results<double>(eigenvalues, ham, jobz, dim, dim); } template<real_matrix RM> auto diagonalise_dsyevr(RM &m, const double ratio = 1.0, const char jobz = 'V') { if (!is_row_ordered(m)) m = NRG::trans(m); const auto dim = int(size1(m)); // M is the number of the eigenvalues that we will attempt to // calculate using dsyevr. auto M = dim; char RANGE = 'A'; // 'A'=all, 'V'=interval, 'I'=part if (ratio != 1.0) { M = ceil(ratio * M); // round up M = std::clamp<int>(M, 1, dim); // at least 1, at most dim RANGE = 'I'; } auto ham = data(m); std::vector<double> eigenvalues(dim); // eigenvalues on exit char UPLO = 'L'; // lower triangle of a is stored int NN = dim; // the order of the matrix int LDA = dim; // the leading dimension of the array a int INFO = 0; // 0 on successful exit double VL = 0; // value range; not referenced if RANGE != 'V' double VU = 0; int IL = 1; // index range int IU = M; double ABSTOL = 0; // If ABSTOL=0, EPS*|T| where |T| is the 1-norm of the tridiagonal // matrix obtained by reducing m to tridiagonal form. int MM{}; // total number of eigenvalues found int LDZ = dim; std::vector<int> ISUPPZ(2 * M); // The support of the eigenvectors in Z, i.e., the indices // indicating the nonzero elements in Z. The i-th eigenvector is // nonzero only in elements ISUPPZ( 2*i-1 ) through ISUPPZ(2*i). std::vector<double> Z(LDZ * M); // eigenvectors int LWORK0 = -1; int LIWORK0 = -1; double WORK0 = 0; // on exit: optimal WORK size int IWORK0 = 0; // on exist: optimal IWORK size // Step 1: determine optimal LWORK and LIWORK LAPACK_dsyevr(&jobz, &RANGE, &UPLO, &NN, ham, &LDA, &VL, &VU, &IL, &IU, &ABSTOL, &MM, eigenvalues.data(), Z.data(), &LDZ, ISUPPZ.data(), &WORK0, &LWORK0, &IWORK0, &LIWORK0, &INFO); my_assert(INFO == 0); int LWORK = int(WORK0); int LIWORK = IWORK0; std::vector<double> WORK(LWORK); std::vector<int> IWORK(LIWORK); // Step 2: perform the diagonalisation LAPACK_dsyevr(&jobz, &RANGE, &UPLO, &NN, ham, &LDA, &VL, &VU, &IL, &IU, &ABSTOL, &MM, eigenvalues.data(), Z.data(), &LDZ, ISUPPZ.data(), WORK.data(), &LWORK, IWORK.data(), &LIWORK, &INFO); if (INFO != 0) throw std::runtime_error(fmt::format("dsyev failed. INFO={}", INFO)); if (MM != int(M)) { std::cout << "dsyevr computed " << MM << "/" << M << std::endl; M = MM; my_assert(M > 0); // at least one } return copy_results<double>(eigenvalues, Z.data(), jobz, dim, M); } template<complex_matrix CM> auto diagonalise_zheev(CM &m, const char jobz = 'V') { if (!is_row_ordered(m)) m = NRG::trans(m); const auto dim = int(size1(m)); auto ham = reinterpret_cast<lapack_complex_double*>(data(m)); std::vector<double> eigenvalues(dim); // eigenvalues on exit char UPLO = 'L'; // lower triangle of a is stored int NN = dim; // the order of the matrix int LDA = dim; // the leading dimension of the array a int INFO = 0; // 0 on successful exit int LWORK0 = -1; // length of the WORK array (-1 == query!) lapack_complex_double WORK0; int RWORKdim = std::max(1, 3 * dim - 2); std::vector<double> RWORK(RWORKdim); // Step 1: determine optimal LWORK LAPACK_zheev(&jobz, &UPLO, &NN, ham, &LDA, eigenvalues.data(), &WORK0, &LWORK0, RWORK.data(), &INFO); my_assert(INFO == 0); int LWORK = int(WORK0.real); std::vector<lapack_complex_double> WORK(LWORK); // Step 2: perform the diagonalisation LAPACK_zheev(&jobz, &UPLO, &NN, ham, &LDA, eigenvalues.data(), WORK.data(), &LWORK, RWORK.data(), &INFO); if (INFO != 0) throw std::runtime_error(fmt::format("dsyev failed. INFO={}", INFO)); return copy_results<std::complex<double>>(eigenvalues, ham, jobz, dim, dim); } template<complex_matrix CM> auto diagonalise_zheevr(CM &m, const double ratio = 1.0, const char jobz = 'V') { if (!is_row_ordered(m)) m = NRG::trans(m); const auto dim = int(size1(m)); // M is the number of the eigenvalues that we will attempt to // calculate using zheevr. auto M = dim; char RANGE = 'A'; // 'A'=all, 'V'=interval, 'I'=part if (ratio != 1.0) { M = ceil(ratio * M); // round up M = std::clamp<int>(M, 1, dim); // at least 1, at most dim RANGE = 'I'; } auto ham = reinterpret_cast<lapack_complex_double*>(data(m)); std::vector<double> eigenvalues(dim); // eigenvalues on exit char UPLO = 'L'; // lower triangle of a is stored int NN = dim; // the order of the matrix int LDA = dim; // the leading dimension of the array a int INFO = 0; // 0 on successful exit double VL = 0; // value range; not referenced if RANGE != 'V' double VU = 0; int IL = 1; // index range int IU = M; double ABSTOL = 0; // If ABSTOL=0, EPS*|T| where |T| is the 1-norm of the tridiagonal // matrix obtained by reducing m to tridiagonal form. int MM = 0; // total number of eigenvalues found int LDZ = dim; std::vector<int> ISUPPZ(2 * M); // The support of the eigenvectors in Z, i.e., the indices indicating the nonzero elements in Z. The i-th // eigenvector is nonzero only in elements ISUPPZ( 2*i-1 ) through ISUPPZ(2*i). std::vector<lapack_complex_double> Z(LDZ * M); // eigenvectors int LWORK0 = -1; // length of the WORK array (-1 == query!) lapack_complex_double WORK0; int LRWORK0 = -1; // query double RWORK0 = 0; // on exit: optimal RWORK size int LIWORK0 = -1; // query int IWORK0 = 0; // on exit: optimal IWORK size // Step 1: determine optimal LWORK, LRWORK, and LIWORK LAPACK_zheevr(&jobz, &RANGE, &UPLO, &NN, ham, &LDA, &VL, &VU, &IL, &IU, &ABSTOL, &MM, eigenvalues.data(), Z.data(), &LDZ, ISUPPZ.data(), &WORK0, &LWORK0, &RWORK0, &LRWORK0, &IWORK0, &LIWORK0, &INFO); my_assert(INFO == 0); int LWORK = int(WORK0.real); std::vector<lapack_complex_double> WORK(LWORK); int LRWORK = int(RWORK0); std::vector<double> RWORK(LRWORK); int LIWORK = IWORK0; std::vector<int> IWORK(LIWORK); // Step 2: perform the diagonalisation LAPACK_zheevr(&jobz, &RANGE, &UPLO, &NN, ham, &LDA, &VL, &VU, &IL, &IU, &ABSTOL, &MM, eigenvalues.data(), Z.data(), &LDZ, ISUPPZ.data(), WORK.data(), &LWORK, RWORK.data(), &LRWORK, IWORK.data(), &LIWORK, &INFO); if (INFO != 0) throw std::runtime_error(fmt::format("zheevr failed. INFO={}", INFO)); if (MM != int(M)) { std::cout << "zheevr computed " << MM << "/" << M << std::endl; M = MM; my_assert(M > 0); // at least one } return copy_results<std::complex<double>>(eigenvalues, Z.data(), jobz, dim, M); } // Wrapper for the diagonalization of the Hamiltonian matrix. The number of eigenpairs returned does NOT need to be // equal to the dimension of the matrix h. Matrix m is destroyed in the process, thus no const attribute! template<matrix M> auto diagonalise(M &m, const DiagParams &DP, const int myrank) { using S = typename M::value_type; const std::string rank_string = myrank >= 0 ? " [rank=" + std::to_string(myrank) + "]" : ""; mpilog("diagonalise " << size1(m) << "x" << size2(m) << " " << DP.diag << " " << DP.diagratio); nrglogdp('@', "diagonalise() - size(m)=" << size1(m) << rank_string); Timing timer; my_assert(is_matrix_upper(m)); RawEigen<S> d; if constexpr (std::is_same_v<S, double>) { if (DP.diag == "dsyev"s || DP.diag == "default"s) d = diagonalise_dsyev(m); if (DP.diag == "dsyevd"s) { d = diagonalise_dsyevd(m); if (d.getnrcomputed() == 0) { std::cout << "dsyevd failed, falling back to dsyev" << std::endl; d = diagonalise_dsyev(m); } } if (DP.diag == "dsyevr"s) d = diagonalise_dsyevr(m, DP.diagratio); } if constexpr (std::is_same_v<S, std::complex<double>>) { if (DP.diag == "zheev"s || DP.diag == "default"s) d = diagonalise_zheev(m); if (DP.diag == "zheevr"s) d = diagonalise_zheevr(m, DP.diagratio); } const auto nr_computed = d.getnrcomputed(); my_assert(nr_computed > 0); // zero computed eigenvalues signals serious failure my_assert(has_lesseq_rows(d.vec, m)); // sanity check if (DP.logletter('e')) d.dump_eigenvalues(); nrglogdp('A', "LAPACK, dim=" << dim(m) << " M=" << nr_computed << rank_string); nrglogdp('t', "Elapsed: " << std::setprecision(3) << timer.total_in_seconds() << rank_string); assert(check_diag()); // only in debug mode! return d; } } // namespace #endif
12,959
C++
.h
281
42.975089
159
0.63594
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,649
outfield.hpp
rokzitko_nrgljubljana/c++/outfield.hpp
// outfield.cc - Code for flexible formatted output // Copyright (C) 2009-2020 Rok Zitko #ifndef _outfield_hpp_ #define _outfield_hpp_ #include <vector> #include <string> #include <fstream> #include <optional> #include <stdexcept> #include <fmt/format.h> #include "params.hpp" namespace NRG { class Outfield { private: std::string desc; std::string value{}; int prec, width; public: explicit Outfield(const std::string &desc, const unsigned int prec, const unsigned int width) : desc(desc), prec(prec), width(width) {} template<typename T> void set_value(const T x) { value = fmt::format("{:>{}.{}}", x, prec, width); // https://fmt.dev/latest/syntax.html } void put_header(std::ostream &F) const { F << std::setw(width) << desc << " "; } void put_value(std::ostream &F) const { F << std::setw(width) << value << " "; } [[nodiscard]] auto get_desc() const { return desc; } }; class Allfields : std::vector<Outfield> { private: unsigned int prec, width; public: void add(const std::string &desc, const int position = -1) { if (position == -1) { this->emplace_back(desc, prec, width); } else { my_assert(position < this->size()); this->insert(this->begin() + position, Outfield(desc, prec, width)); } } void add(const Allfields &more, const int position = -1) { if (position != -1) my_assert(position < this->size()); this->insert(position == -1 ? this->end() : this->begin() + position, more.begin(), more.end()); } Allfields(const std::vector<std::string> &fields, const size_t prec, const size_t width) : prec(prec), width(width) { for(const auto &desc : fields) add(desc); } void add(const std::vector<std::string> &more, const int position = -1) { Allfields more_fields(more, prec, width); this->add(more_fields, position); } void save_header(std::ostream &O) const { O << '#'; for (const auto &f : *this) f.put_header(O); O << std::endl; } void save_values(std::ostream &O) const { O << ' '; for (const auto &f : *this) f.put_value(O); O << std::endl; } template<typename T> void set(const std::string &desc, const T &x) { for(auto &f : *this) if (f.get_desc() == desc) { f.set_value(x); return; } throw std::runtime_error("Invalid field " + desc); } }; class TD_generic { private: std::string filename; std::optional<std::ofstream> O; public: Allfields allfields; TD_generic(const Params &P, const std::string &filename, const std::vector<std::string> &fields) : filename(filename), allfields(fields, P.prec_td, P.width_td) {} template<typename T> void set(const std::string &desc, const T &x) { allfields.set(desc,x); } void save_values() { if (!O) { O.emplace(filename); allfields.save_header(O.value()); } allfields.save_values(O.value()); } }; // Setup output fields that will appear in the file "td". Additional elements are defined in sym* files. class TD : public TD_generic { public: TD(const Params &P, const std::string &filename) : TD_generic(P, filename, {"T", "<E>", "<E^2>", "C", "F", "S"}) {} }; class TD_FDM : public TD_generic { public: TD_FDM(const Params &P, const std::string &filename) : TD_generic(P, filename, {"T", "E_fdm", "C_fdm", "F_fdm", "S_fdm"}) {} }; } // namespace #endif
3,423
C++
.h
95
31.736842
164
0.625754
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,650
time_mem.hpp
rokzitko_nrgljubljana/c++/time_mem.hpp
#ifndef _time_mem_hpp_ #define _time_mem_hpp_ #include <algorithm> #include <utility> #include <chrono> #include <map> #include <string> #include "io.hpp" #include "portabil.hpp" #include "basicio.hpp" #include <fmt/format.h> namespace NRG { // Warning: not thread safe! class Timing { private: using tp = std::chrono::steady_clock::time_point; using dp = std::chrono::duration<double>; const tp start_time; // time when Timing object constructed tp timer; // start time for timing sections bool running{}; // currently timing a section std::map<std::string, dp> t; // accumulators public: Timing() : start_time(std::chrono::steady_clock::now()) {} [[nodiscard]] tp now() const { return std::chrono::steady_clock::now(); } void start() { my_assert(!running); running = true; timer = now(); } dp stop() { my_assert(running); running = false; tp end = now(); return end - timer; } void add(const std::string &timer) { t[timer] += stop(); } [[nodiscard]] dp total() const { const tp end_time = now(); return end_time - start_time; } [[nodiscard]] auto total_in_seconds() const { return total().count(); } void report(const double non_negligible_ratio = 0.01) const { const auto T_WIDTH = 12; const auto t_all = total(); std::cout << std::endl << "Timing report" << std::endl; std::cout << std::setw(T_WIDTH) << "All" << ": " << prec3(t_all.count()) << " s" << std::endl; dp t_sum{}; for (const auto &[name, val] : t) { if (val/t_all > non_negligible_ratio) { std::cout << std::setw(T_WIDTH) << name << ": " << prec3(val.count()) << " s" << std::endl; t_sum += val; } } std::cout << std::setw(T_WIDTH) << "Other" << ": " << prec3((t_all-t_sum).count()) << " s" << std::endl; } }; // Higher-level timing code: time a section for as long as the object is in scope. class TimeScope { private: Timing &timer; const std::string timer_name; public: TimeScope(Timing &timer, const std::string &timer_name) : timer(timer), timer_name(timer_name) { timer.start(); } TimeScope(const TimeScope &) = delete; TimeScope(TimeScope &&) = delete; TimeScope & operator=(const TimeScope &) = delete; TimeScope & operator=(TimeScope &&) = delete; ~TimeScope() { timer.add(timer_name); } }; class MemoryStats { private: mutable long peakusage{}; public: auto used() const { const auto memused = memoryused(); peakusage = std::max<long>(peakusage, memused); return memused; } void report() const { #ifdef HAS_MEMORY_USAGE fmt::print("\nPeak usage: {} MB\n", peakusage / 1024); // NOLINT #endif } }; class MemTime { private: MemoryStats ms; Timing tm; public: void brief_report() const { #ifdef HAS_MEMORY_USAGE std::cout << "Memory used: " << long(ms.used() / 1024) << " MB "; // NOLINT #endif std::cout << "Time elapsed: " << prec3(tm.total_in_seconds()) << " s" << std::endl; } void report() const { ms.report(); tm.report(); } auto time_it(const std::string &name) { return TimeScope(tm, name); // measures time when this object exists in a given scope (assign to variable!) } }; } // namespace #endif
3,362
C++
.h
112
26.098214
116
0.607837
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,651
algo_DMNRG.hpp
rokzitko_nrgljubljana/c++/algo_DMNRG.hpp
#ifndef _algo_DMNRG_hpp_ #define _algo_DMNRG_hpp_ #include <complex> #include <tuple> #include "traits.hpp" #include "algo.hpp" #include "spectrum.hpp" namespace NRG { using namespace std::complex_literals; // OPTIMIZATION NOTE: the inner loop should involve the last index. template<scalar S, typename Matrix = Matrix_traits<S>, typename t_coef = coef_traits<S>, typename t_eigen = eigen_traits<S>, typename t_weight = weight_traits<S>> class Algo_DMNRG : public Algo<S> { private: inline static const std::string algoname = "DMNRG"; SpectrumRealFreq<S> spec; const int sign; // 1 for bosons, -1 for fermions using CB = ChainBinning<S>; std::unique_ptr<CB> cb; public: using Algo<S>::P; Algo_DMNRG(const std::string &name, const std::string &prefix, const gf_type gt, const Params &P) : Algo<S>(P), spec(name, algoname, spec_fn(name, prefix, algoname), P), sign(gf_sign(gt)) {} void begin(const Step &) override { cb = std::make_unique<CB>(P); } void calc(const Step &step, const Eigen<S> &diagIp, const Eigen<S> &diagI1, const Matrix &op1, const Matrix &op2, t_coef factor, const Invar &Ip, const Invar &I1, const DensMatElements<S> &rho, [[maybe_unused]] const Stats<S> &stats) override { const auto weights = [Emin = step.scale() * P.getEmin(), Emax = step.scale() * P.getEmax(), &rhoNIp = rho.at(Ip), &rhoNI1 = rho.at(I1), &diagIp, &diagI1, &op1, &op2](const auto rm, const auto rj) { const auto Em = diagIp.values.abs_zero(rm); const auto Ej = diagI1.values.abs_zero(rj); const auto energy = Ej-Em; if (abs(energy) < Emin || abs(energy) > Emax) return std::make_tuple(energy, t_weight{}, t_weight{}); // does not contribute t_weight sumA{}; for (const auto ri: diagIp.kept()) sumA += op2(rj, ri) * rhoNIp(rm, ri); // rm <-> ri, rho symmetric const auto weightA = sumA * conj_me(op1(rj, rm)); t_weight sumB{}; for (const auto ri: diagI1.kept()) sumB += conj_me(op1(ri, rm)) * rhoNI1(rj, ri); // non-optimal const auto weightB = sumB * op2(rj, rm); return std::make_tuple(energy, weightA, weightB); }; const auto term = [&weights, this](const auto rm, const auto rj) { const auto [energy, weightA, weightB] = weights(rm, rj); return std::make_pair(energy, weightA + (-sign) * weightB); }; for (const auto rm: diagIp.kept()) for (const auto rj: diagI1.kept()) cb->add(term(rm, rj), factor); } void end([[maybe_unused]] const Step &step) override { spec.mergeNN2(*cb.get(), step); cb.reset(); } ~Algo_DMNRG() { spec.save(); } std::string rho_type() override { return "rho"; } }; template<scalar S, typename Matrix = Matrix_traits<S>, typename t_coef = coef_traits<S>, typename t_eigen = eigen_traits<S>, typename t_weight = weight_traits<S>> class Algo_DMNRGmats : public Algo<S> { private: inline static const std::string algoname = "DMNRGmats"; GFMatsubara<S> gf; const int sign; const gf_type gt; using CM = ChainMatsubara<S>; std::unique_ptr<CM> cm; public: using Algo<S>::P; Algo_DMNRGmats(const std::string &name, const std::string &prefix, const gf_type gt, const Params &P) : Algo<S>(P), gf(name, algoname, spec_fn(name, prefix, algoname), gt, P), sign(gf_sign(gt)), gt(gt) {} void begin(const Step &) override { cm = std::make_unique<CM>(P, gt); } void calc([[maybe_unused]] const Step &step, const Eigen<S> &diagIp, const Eigen<S> &diagI1, const Matrix &op1, const Matrix &op2, t_coef factor, [[maybe_unused]] const Invar &Ip, [[maybe_unused]] const Invar &I1, const DensMatElements<S> &rho, [[maybe_unused]] const Stats<S> &stats) override { const auto weights = [&rhoNIp = rho.at(Ip), &rhoNI1 = rho.at(I1), &diagIp, &diagI1, &op1, &op2](const auto rm, const auto rj) { const auto Em = diagIp.values.abs_zero(rm); const auto Ej = diagI1.values.abs_zero(rj); t_weight sumA{}; for (const auto ri: diagIp.kept()) sumA += op2(rj, ri) * rhoNIp(rm, ri); // rm <-> ri, rho symmetric const auto weightA = sumA * conj_me(op1(rj, rm)); t_weight sumB{}; for (const auto ri: diagI1.kept()) sumB += conj_me(op1(ri, rm)) * rhoNI1(rj, ri); // non-optimal const auto weightB = sumB * op2(rj, rm); return std::make_tuple(Ej-Em, weightA, weightB); }; const auto term = [&weights, this](const auto rm, const auto rj, const auto n) { const auto [energy, weightA, weightB] = weights(rm, rj); if (gt == gf_type::fermionic || n>0 || abs(energy) > WEIGHT_TOL) // [[likely]] return (weightA + (-sign) * weightB) / (ww(n, gt, P.T)*1i - energy); else // bosonic w=0 && Em=Ej case return -weightA / t_weight(P.T); }; for (const auto rm: diagIp.kept()) for (const auto rj: diagI1.kept()) for (size_t n = 0; n < P.mats; n++) cm->add(n, factor * term(rm, rj, n)); } void end([[maybe_unused]] const Step &step) override { gf.merge(*cm.get()); cm.reset(); } ~Algo_DMNRGmats() { gf.save(); } std::string rho_type() override { return "rho"; } }; } // namespace #endif
5,222
C++
.h
103
45.07767
202
0.627666
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,652
operators.hpp
rokzitko_nrgljubljana/c++/operators.hpp
#ifndef _operators_hpp_ #define _operators_hpp_ #include <map> #include <iostream> #include <fstream> #include <iomanip> #include <string> #include <stdexcept> #include <boost/archive/binary_iarchive.hpp> #include <boost/archive/binary_oarchive.hpp> #include <boost/range/adaptor/map.hpp> #include <range/v3/all.hpp> #include "invar.hpp" #include "misc.hpp" #include "traits.hpp" #include "eigen.hpp" #include "params.hpp" #include "h5.hpp" #include "numerics.hpp"// read_matrix namespace NRG { template<scalar S, typename t_matel = matel_traits<S>, typename Matrix = Matrix_traits<S>> class MatrixElements : public std::map<Twoinvar, Matrix> { public: MatrixElements() = default; MatrixElements(std::istream &fdata, const DiagInfo<S> &diag) { const auto nf = read_one<size_t>(fdata); // Number of I1 x I2 combinations for ([[maybe_unused]] const auto i : range0(nf)) { const auto I1 = read_one<Invar>(fdata); const auto I2 = read_one<Invar>(fdata); if (const auto it1 = diag.find(I1), it2 = diag.find(I2); it1 != diag.end() && it2 != diag.end()) (*this)[{I1, I2}] = read_matrix<t_matel>(fdata, it1->second.getnrstored(), it2->second.getnrstored()); // YYY else throw std::runtime_error("Corrupted input file."); } my_assert(this->size() == nf); } // We trim the matrices containing the irreducible matrix elements of the operators to the sizes that are actually // required in the next iterations. This saves memory and leads to better cache usage in recalc_general() // recalculations. Note: this is only needed for strategy=all; copying is avoided for strategy=kept. void trim(const DiagInfo<S> &diag) { for (auto &[II, mat] : *this) { const auto &[I1, I2] = II; const auto &[dim1, dim2] = diag.dims(I1, I2); // Target matrix dimensions mat = trim_matrix(mat, dim1, dim2); } } std::ostream &insertor(std::ostream &os) const { for (const auto &[II, mat] : *this) os << "----" << II << "----" << std::endl << mat << std::endl; return os; } friend std::ostream &operator<<(std::ostream &os, const MatrixElements<S> &m) { return m.insertor(os); } friend void dump_diagonal_op(const std::string &name, const MatrixElements<S> &m, const size_t max_nr, std::ostream &F) { F << "Diagonal matrix elements of operator " << name << std::endl; for (const auto &[II, mat] : m) { const auto & [I1, I2] = II; if (I1 == I2) { F << I1 << ": "; dump_diagonal_matrix(mat, max_nr, F); } } } void h5save(H5Easy::File &fd, const std::string &name) const { for (const auto &[II, mat] : *this) { const auto &[I1, I2] = II; h5_dump_matrix(fd, name + "/" + I1.name() + "/" + I2.name() + "/matrix", mat); } } }; template<scalar S, typename Matrix = Matrix_traits<S>> class DensMatElements : public std::map<Invar, Matrix> { public: template <typename MF> auto trace(MF mult) const { return ranges::accumulate(*this, 0.0, {}, [mult](const auto z) { const auto &[I, mat] = z; return mult(I) * trace_real(mat); }); } void save(const size_t N, const Params &P, const std::string &prefix) const { const auto fn = P.workdir->rhofn(N, prefix); std::ofstream MATRIXF(fn, std::ios::binary | std::ios::out); if (!MATRIXF) throw std::runtime_error(fmt::format("Can't open file {} for writing.", fn)); boost::archive::binary_oarchive oa(MATRIXF); oa << this->size(); for (const auto &[I, mat] : *this) { oa << I; NRG::save(oa, mat); if (MATRIXF.bad()) throw std::runtime_error(fmt::format("Error writing {}", fn)); // Check each time } MATRIXF.close(); } void load(const size_t N, const Params &P, const std::string &prefix, const bool remove_files) { const auto fn = P.workdir->rhofn(N, prefix); std::ifstream MATRIXF(fn, std::ios::binary | std::ios::in); if (!MATRIXF) throw std::runtime_error(fmt::format("Can't open file {} for reading", fn)); boost::archive::binary_iarchive ia(MATRIXF); const auto nr = read_one<size_t>(ia); for ([[maybe_unused]] const auto cnt : range0(nr)) { const auto inv = read_one<Invar>(ia); (*this)[inv] = NRG::load<S>(ia); if (MATRIXF.bad()) throw std::runtime_error(fmt::format("Error reading {}", fn)); // Check each time } MATRIXF.close(); if (remove_files) if (NRG::remove(fn)) throw std::runtime_error(fmt::format("Error removing {}", fn)); } }; // Map of operator matrices template <scalar S> struct CustomOp : public std::map<std::string, MatrixElements<S>> { void trim(const DiagInfo<S> &diag) { for (auto &op : *this | boost::adaptors::map_values) op.trim(diag); } void h5save(H5Easy::File &fd, const std::string &name) const { for (const auto &[n, op] : *this) op.h5save(fd, name + "/" + n); } }; // Vector containing irreducible matrix elements of f operators. template<scalar S> using OpchChannel = std::vector<MatrixElements<S>>; // Each channel contains P.perchannel OpchChannel matrices. template<scalar S> class Opch : public std::vector<OpchChannel<S>> { public: Opch() = default; explicit Opch(const Params &P) { this->resize(P.channels); for (auto &oc: *this) { oc.resize(P.perchannel); for (auto &o: oc) o.clear(); // set all matrix elements to zero } } explicit Opch(std::istream &fdata, const DiagInfo<S> &diag, const Params &P) { skip_comments(fdata); this->resize(P.channels); for (auto &oc : *this) { oc.resize(P.perchannel); for (auto &o : oc) { [[maybe_unused]] const auto ch = read_one<char>(fdata); [[maybe_unused]] const auto iread = read_one<size_t>(fdata); [[maybe_unused]] const auto jread = read_one<size_t>(fdata); my_assert(ch == 'f'); o = MatrixElements<S>(fdata, diag); } } } void dump(std::ostream &F = std::cout) { F << std::endl; for (const auto &&[i, ch] : *this | ranges::views::enumerate) for (const auto &&[j, mat] : ch | ranges::views::enumerate) F << fmt::format("<f> dump, i={} j={}\n", i, j) << mat << std::endl; F << std::endl; } }; // Object of class Operators cotains full information about matrix representations when entering stage N of the NRG // iteration. template<scalar S> class Operators { public: Opch<S> opch; // f operators (channels) CustomOp<S> ops; // singlet operators (even parity) CustomOp<S> opsp; // singlet operators (odd parity) CustomOp<S> opsg; // singlet operators [global op] CustomOp<S> opd; // doublet operators (spectral functions) CustomOp<S> opt; // triplet operators (dynamical spin susceptibility) CustomOp<S> opq; // quadruplet operators (spectral functions for J=3/2) CustomOp<S> opot; // orbital triplet operators void dump_diagonal(const size_t max_nr, std::ostream &F = std::cout) const { if (max_nr) { for (const auto &[name, m] : ops) dump_diagonal_op(name, m, max_nr, F); for (const auto &[name, m] : opsg) dump_diagonal_op(name, m, max_nr, F); } } void trim_matrices(const DiagInfo<S> &diag) { ops.trim(diag); opsp.trim(diag); opsg.trim(diag); opd.trim(diag); opt.trim(diag); opq.trim(diag); opot.trim(diag); } void h5save(H5Easy::File &fd, const std::string &name) const { ops.h5save(fd, name + "/s"); opsp.h5save(fd, name + "/sp"); opsg.h5save(fd, name + "/sg"); opd.h5save(fd, name + "/d"); opt.h5save(fd, name + "/t"); opq.h5save(fd, name + "/q"); opot.h5save(fd, name + "/ot"); } }; } // namespace #endif
7,797
C++
.h
194
35.134021
124
0.623979
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,653
oprecalc.hpp
rokzitko_nrgljubljana/c++/oprecalc.hpp
#ifndef _oprecalc_hpp_ #define _oprecalc_hpp_ #include <string> #include <set> #include <memory> #include "time_mem.hpp" #include "operators.hpp" #include "symmetry.hpp" #include "step.hpp" #include "params.hpp" #include "algo.hpp" #include "stats.hpp" #include <fmt/format.h> namespace NRG { template<scalar S> class Oprecalc { private: RUNTYPE runtype; std::shared_ptr<Symmetry<S>> Sym; MemTime &mt; // ref! const Params &P; public: // Operators required to calculate expectation values and spectral densities struct Ops : public std::set<std::pair<std::string,std::string>> { void report(std::ostream &F = std::cout) { F << std::endl << "Computing the following operators:" << std::endl; for (const auto &[type, name]: *this) fmt::print("{} {}\n", name, type); } // Singlet operators are always recomputed in the first NRG run, so that we can calculate the expectation values. [[nodiscard]] bool do_s(const std::string &name, const Params &P, const Step &step) { if (step.nrg()) return true; // for computing <O> if (step.dmnrg() && P.fdmexpv && step.N() <= P.fdmexpvn) return true; // for computing <O> using FDM algorithm return this->count({"s", name}); } [[nodiscard]] bool do_g(const std::string &name, const Params &P, const Step &step) { if (step.nrg()) return true; // for computing <O> if (step.dmnrg() && P.fdmexpv && step.N() <= P.fdmexpvn) return true; // for computing <O> using FDM algorithm return this->count({"g", name}); } }; Ops ops; // Spectral densities struct SL : public speclist<S> { void calc(const Step &step, const DiagInfo<S> &diag, DensMatElements<S> &rho, DensMatElements<S> &rhoFDM, const Stats<S> &stats, MemTime &mt, const Symmetry<S> *Sym, const Params &P) { const auto section_timing = mt.time_it("spec"); for (auto &i : *this) i.calc(step, diag, rho, rhoFDM, stats, Sym, P); } }; SL sl; // Wrapper routine for recalculations template <typename RecalcFnc> MatrixElements<S> recalc(const std::string &name, const MatrixElements<S> &mold, RecalcFnc recalc_fnc, const std::string &tip, const Step &step, const DiagInfo<S> &diag) { nrglog('0', "\n#### Recalculate " << tip << " " << name); auto mnew = recalc_fnc(diag, mold); if (tip == "g") Sym->recalc_global(step, diag, name, mnew); return mnew; } template <typename ... Args> MatrixElements<S> recalc_or_clear(const bool selected, Args&& ... args) { return selected ? recalc(std::forward<Args>(args)...) : MatrixElements<S>(); } // Recalculate operator matrix representations void recalculate_operators(Operators<S> &a, const Step &step, const DiagInfo<S> &diag, const Params &P) { nrglog('@', "recalculate_operators()"); const auto section_timing = mt.time_it("recalc"); for (auto &[name, m] : a.ops) m = recalc_or_clear(ops.do_s(name, P, step), name, m, [this](const auto &... pr) { return Sym->recalc_singlet(pr..., 1); }, "s", step, diag); for (auto &[name, m] : a.opsp) m = recalc_or_clear(ops.count({"p", name}), name, m, [this](const auto &... pr) { return Sym->recalc_singlet(pr..., -1); }, "p", step, diag); for (auto &[name, m] : a.opsg) m = recalc_or_clear(ops.do_g(name, P, step), name, m, [this](const auto &... pr) { return Sym->recalc_singlet(pr..., 1); }, "g", step, diag); for (auto &[name, m] : a.opd) m = recalc_or_clear(ops.count({"d", name}), name, m, [this](const auto &... pr) { return Sym->recalc_doublet(pr...); }, "d", step, diag); for (auto &[name, m] : a.opt) m = recalc_or_clear(ops.count({"t", name}), name, m, [this](const auto &... pr) { return Sym->recalc_triplet(pr...); }, "t", step, diag); for (auto &[name, m] : a.opot) m = recalc_or_clear(ops.count({"ot", name}), name, m, [this](const auto &... pr) { return Sym->recalc_orb_triplet(pr...); }, "ot", step, diag); for (auto &[name, m] : a.opq) m = recalc_or_clear(ops.count({"q", name}), name, m, [this](const auto &... pr) { return Sym->recalc_quadruplet(pr...); }, "q", step, diag); } // Establish the data structures for storing spectral information [and prepare output files]. template<typename A, typename M> [[nodiscard]] bool prepare_spec_algo(std::string prefix, const Params &P, FactorFnc ff, CheckFnc cf, M && op1, M && op2, int spin, std::string name, const gf_type gt) { BaseSpectrum<S> spec(std::forward<M>(op1), std::forward<M>(op2), spin, std::make_shared<A>(name, prefix, gt, P), ff, cf); sl.push_back(spec); return true; // recalculation of operators required } template<typename ... Args> [[nodiscard]] bool prepare_spec(std::string prefix, Args && ... args) { bool b = false; if (prefix == "gt") { if (runtype == RUNTYPE::NRG) b |= prepare_spec_algo<Algo_GT<S,0>>(prefix, P, std::forward<Args>(args)...); return b; } if (prefix == "i1t") { if (runtype == RUNTYPE::NRG) b |= prepare_spec_algo<Algo_GT<S,1>>(prefix, P, std::forward<Args>(args)...); return b; } if (prefix == "i2t") { if (runtype == RUNTYPE::NRG) b |= prepare_spec_algo<Algo_GT<S,2>>(prefix, P, std::forward<Args>(args)...); return b; } if (prefix == "chit") { if (runtype == RUNTYPE::NRG) b |= prepare_spec_algo<Algo_CHIT<S>>(prefix, P, std::forward<Args>(args)...); return b; } // If we did not return from this funciton by this point, what we are computing is the spectral function. There are // several possibilities in this case, all of which may be enabled at the same time. if (runtype == RUNTYPE::NRG) { if (P.finite) b |= prepare_spec_algo<Algo_FT<S>> (prefix, P, std::forward<Args>(args)...); if (P.finitemats) b |= prepare_spec_algo<Algo_FTmats<S>>(prefix, P, std::forward<Args>(args)...); } if (runtype == RUNTYPE::DMNRG) { if (P.dmnrg) b |= prepare_spec_algo<Algo_DMNRG<S>>(prefix, P, std::forward<Args>(args)...); if (P.dmnrgmats) b |= prepare_spec_algo<Algo_DMNRGmats<S>>(prefix, P, std::forward<Args>(args)...); if (P.cfs) b |= prepare_spec_algo<Algo_CFS<S>>(prefix, P, std::forward<Args>(args)...); if (P.cfsgt) b |= prepare_spec_algo<Algo_CFSgt<S>>(prefix, P, std::forward<Args>(args)...); if (P.cfsls) b |= prepare_spec_algo<Algo_CFSls<S>>(prefix, P, std::forward<Args>(args)...); if (P.fdm) b |= prepare_spec_algo<Algo_FDM<S>>(prefix, P, std::forward<Args>(args)...); if (P.fdmgt) b |= prepare_spec_algo<Algo_FDMgt<S>>(prefix, P, std::forward<Args>(args)...); if (P.fdmls) b |= prepare_spec_algo<Algo_FDMls<S>>(prefix, P, std::forward<Args>(args)...); if (P.fdmmats) b |= prepare_spec_algo<Algo_FDMmats<S>>(prefix, P, std::forward<Args>(args)...); } return b; } // Construct the suffix of the filename for spectral density files: 'A_?-A_?'. // If SPIN == 1 or SPIN == -1, '-u' or '-d' is appended to the string. [[nodiscard]] auto sdname(const std::string &a, const std::string &b, const int spin) { return a + "-" + b + (spin == 0 ? "" : (spin == 1 ? "-u" : "-d")); } void loopover(const CustomOp<S> &set1, const CustomOp<S> &set2, const string_token &stringtoken, FactorFnc ff, CheckFnc cf, const std::string &prefix, const std::string &type1, const std::string &type2, const gf_type gt, const int spin) { for (const auto &[name1, op1] : set1) { for (const auto &[name2, op2] : set2) { if (const auto name = sdname(name1, name2, spin); stringtoken.find(name)) { if (prepare_spec(prefix, ff, cf, op1, op2, spin, name, gt)) { ops.insert({type1, name1}); ops.insert({type2, name2}); } } } } } // Reset lists of operators which need to be iterated Oprecalc(const RUNTYPE &runtype, const Operators<S> &a, std::shared_ptr<Symmetry<S>> Sym, MemTime &mt, const Params &P) : runtype(runtype), Sym(Sym), mt(mt), P(P) { std::cout << std::endl << "Computing the following spectra:" << std::endl; // Correlators (singlet operators of all kinds) string_token sts(P.specs); loopover(a.ops, a.ops, sts, Sym->CorrelatorFactorFnc(), Sym->TrivialCheckSpinFnc(), "corr", "s", "s", gf_type::bosonic, 0); loopover(a.opsp, a.opsp, sts, Sym->CorrelatorFactorFnc(), Sym->TrivialCheckSpinFnc(), "corr", "p", "p", gf_type::bosonic, 0); loopover(a.opsg, a.opsg, sts, Sym->CorrelatorFactorFnc(), Sym->TrivialCheckSpinFnc(), "corr", "g", "g", gf_type::bosonic, 0); loopover(a.ops, a.opsg, sts, Sym->CorrelatorFactorFnc(), Sym->TrivialCheckSpinFnc(), "corr", "s", "g", gf_type::bosonic, 0); loopover(a.opsg, a.ops, sts, Sym->CorrelatorFactorFnc(), Sym->TrivialCheckSpinFnc(), "corr", "g", "s", gf_type::bosonic, 0); // Global susceptibilities (global singlet operators) string_token stchit(P.specchit); loopover(a.ops, a.ops, stchit, Sym->CorrelatorFactorFnc(), Sym->TrivialCheckSpinFnc(), "chit", "s", "s", gf_type::bosonic, 0); loopover(a.ops, a.opsg, stchit, Sym->CorrelatorFactorFnc(), Sym->TrivialCheckSpinFnc(), "chit", "s", "g", gf_type::bosonic, 0); loopover(a.opsg, a.ops, stchit, Sym->CorrelatorFactorFnc(), Sym->TrivialCheckSpinFnc(), "chit", "g", "s", gf_type::bosonic, 0); loopover(a.opsg, a.opsg, stchit, Sym->CorrelatorFactorFnc(), Sym->TrivialCheckSpinFnc(), "chit", "g", "g", gf_type::bosonic, 0); // Dynamic spin susceptibilities (triplet operators) string_token stt(P.spect); loopover(a.opt, a.opt, stt, Sym->SpinSuscFactorFnc(), Sym->TrivialCheckSpinFnc(), "spin", "t", "t", gf_type::bosonic, 0); string_token stot(P.specot); loopover(a.opot, a.opot, stot, Sym->OrbSuscFactorFnc(), Sym->TrivialCheckSpinFnc(), "orbspin", "ot", "ot", gf_type::bosonic, 0); const auto varmin = Sym->isfield() ? -1 : 0; const auto varmax = Sym->isfield() ? +1 : 0; // Spectral functions (doublet operators) string_token std(P.specd); for (int SPIN = varmin; SPIN <= varmax; SPIN += 2) loopover(a.opd, a.opd, std, Sym->SpecdensFactorFnc(), Sym->SpecdensCheckSpinFnc(), "spec", "d", "d", gf_type::fermionic, SPIN); string_token stgt(P.specgt); for (int SPIN = varmin; SPIN <= varmax; SPIN += 2) loopover(a.opd, a.opd, stgt, Sym->SpecdensFactorFnc(), Sym->SpecdensCheckSpinFnc(), "gt", "d", "d", gf_type::fermionic, SPIN); string_token sti1t(P.speci1t); for (int SPIN = varmin; SPIN <= varmax; SPIN += 2) loopover(a.opd, a.opd, sti1t, Sym->SpecdensFactorFnc(), Sym->SpecdensCheckSpinFnc(),"i1t", "d", "d", gf_type::fermionic, SPIN); string_token sti2t(P.speci2t); for (int SPIN = varmin; SPIN <= varmax; SPIN += 2) loopover(a.opd, a.opd, sti2t, Sym->SpecdensFactorFnc(), Sym->SpecdensCheckSpinFnc(), "i2t", "d", "d", gf_type::fermionic, SPIN); // Spectral functions (quadruplet operators) string_token stq(P.specq); loopover(a.opq, a.opq, stq, Sym->SpecdensquadFactorFnc(), Sym->TrivialCheckSpinFnc(), "specq", "q", "q", gf_type::fermionic, 0); ops.report(); } }; // Recalculate irreducible matrix elements for Wilson chains. template<scalar S> void recalc_irreducible(const Step &step, const DiagInfo<S> &diag, Opch<S> &opch, const Symmetry<S> *Sym, MemTime &mt, const Params &P) { const auto section_timing = mt.time_it("recalc f"); if (!P.substeps) { opch = Sym->recalc_irreduc(step, diag); } else { const auto [N, M] = step.NM(); for (const auto i: range0(size_t(P.channels))) if (i == M) { opch[i] = Sym->recalc_irreduc_substeps(step, diag, i); } else { for (const auto j: range0(size_t(P.perchannel))) opch[i][j] = Sym->recalc_doublet(diag, opch[i][j]); } } } } // namespace #endif
12,268
C++
.h
212
51.273585
152
0.605449
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,654
core.hpp
rokzitko_nrgljubljana/c++/core.hpp
#ifndef _core_hpp_ #define _core_hpp_ #include <cstddef> #include <set> #include <algorithm> #include <omp.h> #include <range/v3/all.hpp> #include "constants.hpp" #include "traits.hpp" #include "invar.hpp" #include "eigen.hpp" #include "operators.hpp" #include "subspaces.hpp" #include "store.hpp" #include "step.hpp" #include "stats.hpp" #include "spectral.hpp" #include "coef.hpp" #include "tridiag.hpp" #include "diag.hpp" #include "symmetry.hpp" #include "matrix.hpp" #include "recalc.hpp" #include "read-input.hpp" #include "spectrum.hpp" #include "algo.hpp" #include "dmnrg.hpp" #include "splitting.hpp" #include "output.hpp" #include "oprecalc.hpp" #include "measurements.hpp" #include "truncation.hpp" #include "diag_mpi.hpp" #include "diag_openmp.hpp" #include "diag_serial.hpp" #include "h5.hpp" #include "io.hpp" #include <fmt/format.h> #include <fmt/color.h> namespace NRG { // Determine the ranges of index r template<scalar S> SubspaceDimensions::SubspaceDimensions(const Invar &I, const InvarVec &ancestors, const DiagInfo<S> &diagprev, const Symmetry<S> *Sym, const bool ignore_inequality) : ancestors(ancestors) { for (const auto &[i, anc] : ancestors | ranges::views::enumerate) { const bool coupled = Sym->triangle_inequality(I, anc, Sym->QN_subspace(i)); dims.push_back(coupled || ignore_inequality? diagprev.size_subspace(anc) : 0); } // The triangle inequality test here is *required*. There are cases where a candidate subspace exists (as generated // from the In vector as one of the "combinations"), but it is actually decoupled from space I, because the // triangle inequality is not satisfied. [Set ignore_inequality=true to disable the check for testing purposes.] } // Determine the structure of matrices in the new NRG shell template<scalar S> SubspaceStructure::SubspaceStructure(const DiagInfo<S> &diagprev, const Symmetry<S> *Sym) { for (const auto &I : new_subspaces(diagprev, Sym)) (*this)[I] = SubspaceDimensions{I, Sym->ancestors(I), diagprev, Sym}; } // Subspaces for the new iteration template<scalar S> auto new_subspaces(const DiagInfo<S> &diagprev, const Symmetry<S> *Sym) { std::set<Invar> subspaces; for (const auto &I : diagprev.subspaces()) { const auto all = Sym->new_subspaces(I); const auto non_empty = all | ranges::views::filter([Sym](const auto &In) { return Sym->Invar_allowed(In); }) | ranges::to<std::vector>(); std::copy(non_empty.begin(), non_empty.end(), std::inserter(subspaces, subspaces.end())); } return subspaces; } template<scalar S> auto hamiltonian(const Step &step, const Invar &I, const Opch<S> &opch, const Coef<S> &coef, const DiagInfo<S> &diagprev, const Output<S> &output, const Symmetry<S> *Sym, const Params &P) { const auto anc = Sym->ancestors(I); const SubspaceDimensions rm{I, anc, diagprev, Sym}; auto h = zero_matrix<S>(rm.total()); for (const auto i : Sym->combs()) { const auto range = rm.view(i); for (const auto & [n, r] : range | ranges::views::enumerate) h(r,r) = P.nrg_step_scale_factor() * diagprev.at(anc[i]).values.corr(n); // H_{N+1}=\lambda^{1/2} H_N+\xi_N (hopping terms) } Sym->make_matrix(h, step, rm, I, anc, opch, coef); // Symmetry-type-specific matrix initialization steps if (P.logletter('m')) dump_matrix(h); if (P.h5raw && (P.h5all || (P.h5last && step.last())) && P.h5ham) h5_dump_matrix(*output.h5raw, std::to_string(step.ndx()+1) + "/hamiltonian/" + I.name() + "/matrix", h); return h; } template<scalar S> auto do_diag(const Step &step, const Operators<S> &operators, const Coef<S> &coef, Stats<S> &stats, const DiagInfo<S> &diagprev, const Output<S> &output, const TaskList &tasklist, const Symmetry<S> *Sym, DiagEngine<S> *eng, MemTime &mt, const Params &P) { step.infostring(); Sym->show_coefficients(step, coef); double diagratio = P.diagratio; // non-const DiagInfo<S> diag; while (true) { try { if (step.nrg()) { if (!(P.resume && P.laststored.has_value() && step.ndx() <= P.laststored.value())) { const auto section_timing = mt.time_it("diag"); diag = eng->diagonalisations(step, operators.opch, coef, diagprev, output, tasklist.get(), DiagParams(P, diagratio), Sym, P); // compute in first run } else { diag = DiagInfo<S>(step.ndx(), P, false); // or read from disk } } if (step.dmnrg()) { diag = DiagInfo<S>(step.ndx(), P, P.removefiles); // read from disk in second run diag.subtract_GS_energy(stats.GS_energy); } stats.Egs = diag.Egs_subtraction(); Clusters<S> clusters(diag, P.fixeps); truncate_prepare(step, diag, Sym->multfnc(), P); break; } catch (NotEnough &e) { color_print(P.pretty_out, fmt::emphasis::bold | fg(fmt::color::yellow), "Insufficient number of states computed.\n"); if (!(step.nrg() && P.restart)) break; diagratio = std::min(diagratio * P.restartfactor, 1.0); color_print(P.pretty_out, fmt::emphasis::bold | fg(fmt::color::yellow), "\nRestarting this iteration step. diagratio={}\n\n", diagratio); } } return diag; } // Absolute energies. Must be called in the first NRG run after stats.total_energy has been updated, but before // store_transformations(). template<scalar S> void calc_abs_energies(const Step &step, DiagInfo<S> &diag, const Stats<S> &stats) { for (auto &eig : diag.eigs()) { eig.values.set_scale(step.scale()); eig.values.set_T_shift(stats.total_energy); } } // Operator sumrules template<scalar S, typename F> auto norm(const MatrixElements<S> &m, const Symmetry<S> *Sym, F factor_fnc, const int SPIN) { weight_traits<S> sum{}; for (const auto &[II, mat] : m) { const auto & [I1, Ip] = II; if (!Sym->check_SPIN(I1, Ip, SPIN)) continue; sum += factor_fnc(Ip, I1) * frobenius_norm(mat); } return 2.0 * sum.real(); // Factor 2: Tr[d d^\dag + d^\dag d] = 2 \sum_{i,j} A_{i,j}^2 !! } template<scalar S> void operator_sumrules(const Operators<S> &a, const Symmetry<S> *Sym) { // We check sum rules wrt some given spin (+1/2, by convention). For non-spin-polarized calculations, this is // irrelevant (0). const int SPIN = Sym->isfield() ? 1 : 0; for (const auto &[name, m] : a.opd) std::cout << "norm[" << name << "]=" << norm(m, Sym, Sym->SpecdensFactorFnc(), SPIN) << std::endl; for (const auto &[name, m] : a.opq) std::cout << "norm[" << name << "]=" << norm(m, Sym, Sym->SpecdensquadFactorFnc(), 0) << std::endl; for (const auto && [i, ch] : a.opch | ranges::views::enumerate) for (const auto && [j, m] : ch | ranges::views::enumerate) std::cout << "norm[f," << i << "," << j << "]=" << norm(m, Sym, Sym->SpecdensFactorFnc(), SPIN) << std::endl; } // Store information about subspaces and states for the DM algorithms template<scalar S> void store_states(const Step &step, Store<S> &store, Store<S> &store_all, const DiagInfo<S> &diag_in, const SubspaceStructure &substruct, const Symmetry<S> *Sym, const Params &P) { store_all[step.ndx()] = Subs(diag_in, substruct, step.last()); if (P.project == ""s) { store[step.ndx()] = Subs(diag_in, substruct, step.last()); } else { const auto diag = Sym->project(diag_in, P.project); // We need 'substruct' to obtain information about the structure (rmax values) of the ancestor spaces. store[step.ndx()] = Subs(diag, substruct, step.last()); } } // Perform processing after a successful NRG step. Also called from doZBW() as a final step. template<scalar S> void after_diag(const Step &step, Operators<S> &operators, Stats<S> &stats, DiagInfo<S> &diag, Output<S> &output, const SubspaceStructure &substruct, Store<S> &store, Store<S> &store_all, Oprecalc<S> &oprecalc, const Symmetry<S> *Sym, MemTime &mt, const Params &P) { nrglog('@', "after_diag()"); stats.update(step); if (step.nrg()) { calc_abs_energies(step, diag, stats); // only in the first run, in the second one the data is loaded from file! if (P.dm && !(P.resume && P.laststored.has_value() && step.ndx() <= P.laststored.value())) diag.save(step.ndx(), P); perform_basic_measurements(step, diag, Sym, stats, output, P); // Measurements are performed before the truncation! } if (P.h5raw && (P.h5all || (P.h5last && step.last()))) diag.h5save(*output.h5raw, std::to_string(step.ndx()+1) + "/eigen/", P.h5vectors); if (!P.ZBW()) { split_in_blocks(diag, substruct); if (P.h5raw && (P.h5all || (P.h5last && step.last())) && P.h5U) h5save_blocks(*output.h5raw, std::to_string(step.ndx()+1) + "/U/", diag, substruct); } if (P.do_recalc_all(step.get_runtype())) { // Either ... oprecalc.recalculate_operators(operators, step, diag, P); calculate_spectral_and_expv(step, stats, output, oprecalc, diag, operators, store_all, mt, Sym, P); } if (!P.ZBW()) { nrglog('@', "truncate_perform()"); diag.truncate_perform(); // Actual truncation occurs at this point } store_states(step, store, store_all, diag, substruct, Sym, P); if (!step.last()) { nrglog('@', "recalc_irreducible()"); recalc_irreducible(step, diag, operators.opch, Sym, mt, P); if (P.dump_f) operators.opch.dump(); } if (P.do_recalc_kept(step.get_runtype())) { // ... or ... oprecalc.recalculate_operators(operators, step, diag, P); calculate_spectral_and_expv(step, stats, output, oprecalc, diag, operators, store_all, mt, Sym, P); } if (P.do_recalc_none()) // ... or this calculate_spectral_and_expv(step, stats, output, oprecalc, diag, operators, store_all, mt, Sym, P); if (P.checksumrules) operator_sumrules(operators, Sym); if (P.h5raw && (P.h5all || (P.h5last && step.last())) && P.h5ops) operators.h5save(*output.h5raw, std::to_string(step.ndx()+1)); } // Perform one iteration step template<scalar S> auto iterate(const Step &step, Operators<S> &operators, const Coef<S> &coef, Stats<S> &stats, const DiagInfo<S> &diagprev, Output<S> &output, Store<S> &store, Store<S> &store_all, Oprecalc<S> &oprecalc, const Symmetry<S> *Sym, DiagEngine<S> *eng, MemTime &mt, const Params &P) { SubspaceStructure substruct{diagprev, Sym}; TaskList tasklist{substruct}; if (P.h5raw && (P.h5all || (P.h5last && step.last())) && P.h5struct) substruct.h5save(*output.h5raw, std::to_string(step.ndx()+1) + "/structure"); auto diag = do_diag(step, operators, coef, stats, diagprev, output, tasklist, Sym, eng, mt, P); after_diag(step, operators, stats, diag, output, substruct, store, store_all, oprecalc, Sym, mt, P); operators.trim_matrices(diag); diag.clear_eigenvectors(); mt.brief_report(); return diag; } // Perform calculations with quantities from 'data' file template<scalar S> void docalc0(Step &step, const Operators<S> &operators, const DiagInfo<S> &diag0, Stats<S> &stats, Output<S> &output, Oprecalc<S> &oprecalc, const Symmetry<S> *Sym, MemTime &mt, const Params &P) { step.set(P.Ninit - 1); // in the usual case with Ninit=0, this will result in N=-1 std::cout << std::endl << "Before NRG iteration"; std::cout << " (N=" << step.N() << ")" << std::endl; perform_basic_measurements(step, diag0, Sym, stats, output, P); Store<S> empty_st(0, 0); calculate_spectral_and_expv(step, stats, output, oprecalc, diag0, operators, empty_st, mt, Sym, P); if (P.checksumrules) operator_sumrules(operators, Sym); } // doZBW() takes the place of iterate() called from main_loop() in the case of zero-bandwidth calculation. // It replaces do_diag() and calls after_diag() as the last step. template<scalar S> auto nrg_ZBW(Step &step, Operators<S> &operators, Stats<S> &stats, const DiagInfo<S> &diag0, Output<S> &output, Store<S> &store, Store<S> &store_all, Oprecalc<S> &oprecalc, const Symmetry<S> *Sym, MemTime &mt, const Params &P) { std::cout << std::endl << "Zero bandwidth calculation" << std::endl; step.set_ZBW(); // --- begin do_diag() equivalent DiagInfo<S> diag; if (step.nrg()) diag = diag0; if (step.dmnrg()) { diag = DiagInfo<S>(step.ndx(), P, P.removefiles); diag.subtract_GS_energy(stats.GS_energy); } stats.Egs = diag.Egs_subtraction(); truncate_prepare(step, diag, Sym->multfnc(), P); // determine # of kept and discarded states // --- end do_diag() equivalent SubspaceStructure substruct{}; after_diag(step, operators, stats, diag, output, substruct, store, store_all, oprecalc, Sym, mt, P); return diag; } template<scalar S> auto nrg_loop(Step &step, Operators<S> &operators, const Coef<S> &coef, Stats<S> &stats, const DiagInfo<S> &diag0, Output<S> &output, Store<S> &store, Store<S> &store_all, Oprecalc<S> &oprecalc, const Symmetry<S> *Sym, DiagEngine<S> *eng, MemTime &mt, const Params &P) { auto diag = diag0; for (step.init(); !step.end(); step.next()) diag = iterate(step, operators, coef, stats, diag, output, store, store_all, oprecalc, Sym, eng, mt, P); step.set(step.lastndx()); return diag; } } // namespace #endif
13,118
C++
.h
271
44.693727
169
0.666407
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,655
h5.hpp
rokzitko_nrgljubljana/c++/h5.hpp
#ifndef _h5_hpp_ #define _h5_hpp_ #include <iostream> #include <vector> #include <string> #include <complex> #include <type_traits> #include "traits.hpp" #define H5_USE_EIGEN #include <highfive/highfive.hpp> #include <highfive/eigen.hpp> #include <highfive/H5Easy.hpp> namespace NRG { template<typename T> void h5_dump_scalar(H5Easy::File &file, const std::string &path, const T x) { if constexpr (std::is_same<T, bool>::value) { std::vector<int> vec = {x ? 1 : 0}; // workaround for bool H5Easy::dump(file, path, vec); } else { std::vector<T> vec = {x}; H5Easy::dump(file, path, vec); } } template<typename T> void h5_dump_vector(H5Easy::File &file, const std::string &path, const std::vector<T> &vec) { H5Easy::dump(file, path, vec); } template <real_Eigen_matrix REM> void h5_dump_matrix(H5Easy::File &file, const std::string &path, const REM &m) { H5Easy::dump(file, path, m); } template <complex_Eigen_matrix CEM> void h5_dump_matrix(H5Easy::File &file, const std::string &path, const CEM &m) { EigenMatrix<double> mr = m.real(); h5_dump_matrix(file, path, mr); EigenMatrix<double> mi = m.imag(); h5_dump_matrix(file, path + "-imag", mi); } } #endif
1,265
C++
.h
40
27.875
96
0.658176
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,656
matrix.hpp
rokzitko_nrgljubljana/c++/matrix.hpp
// matrix.cc - Symmetry dependent code for Hamiltonian matrix generation // Copyright (C) 2009-2020 Rok Zitko #ifndef _matrix_hpp_ #define _matrix_hpp_ #include <stdexcept> #include "invar.hpp" #include "eigen.hpp" #include "symmetry.hpp" #include "step.hpp" #include "operators.hpp" #include "subspaces.hpp" #include <fmt/format.h> namespace NRG { // +++ Construct an offdiagonal part of the Hamiltonian. +++ // We test if the block (i,j) exists at all. If not, factor is not evaluated. This prevents divisions by zero. #define offdiag_function(step, i, j, ch, fnr, factor, h, qq, In, opch) \ { if (qq.offdiag_contributes(i, j)) this->offdiag_function_impl(step, i, j, ch, fnr, factor, h, qq, In, opch); } // i,j - indexes of the out-of-diagonal matrix block that we are constructing // ch,fnr - channel and extra index to locate the correct block of the <||f||> matrix (irreducible matrix elements) // h - matrix being built // qq - matrix dimensions data (to determine the position in the matrix) // In - In[i] and In[j] are the invariant subspaces of required <||f||> matrix elements // factor - the coefficient which multiplies the irreducible matrix elements. This coefficient takes into account // the multiplicities. // NOTE: the offdiagonal part depends on xi(N), while zeta(N) affect the diagonal part of the Hamiltonian matrix! template<scalar S> void Symmetry<S>::offdiag_function_impl(const Step &step, const size_t i, const size_t j, const size_t ch, // channel number const size_t fnr, // extra index for <||f||>, usually 0 const t_coef factor, // may be complex (in principle) Matrix &h, const SubspaceDimensions &qq, const InvarVec &In, const Opch<S> &opch) const { my_assert(1 <= i && i <= qq.combs() && 1 <= j && j <= qq.combs()); if (!my_isfinite(factor)) throw std::runtime_error(fmt::format("offdiag_function(): factor not finite {} {} {} {}", i, j, ch, fnr)); if (const auto f = opch[ch][fnr].find({In[i-1], In[j-1]}); f != opch[ch][fnr].cend()) { // < In[i] r | f^\dag | In[j] r' > const Matrix & mat = f->second; my_assert(qq.rmax(i-1) == size1(mat) && qq.rmax(j-1) == size2(mat)); const auto factor_scaled = factor / step.scale(); // We are building the upper triangular part of the Hermitian Hamiltonian. Thus usually i < j. If not, we must // conjugate transpose the contribution! const bool conj_transpose = i > j; if (conj_transpose) { auto hsub = submatrix(h, qq.part_mma(j), qq.part_mma(i)); hsub += conj_me(factor_scaled) * herm(mat); } else { auto hsub = submatrix(h, qq.part_mma(i), qq.part_mma(j)); hsub += factor_scaled * mat; } } else throw std::runtime_error(fmt::format("offdiag_function(): matrix not found {} {} {} {}", i, j, ch, fnr)); } // +++ Shift the diagonal matrix elements by the number of electrons multiplied by the required constant(s) zeta. +++ // // 'number' is the number of electrons for channel 'ch' in invariant subspaces indexed by 'i'. Note that 'number' is // a floating point number: this is required, for example, in the LR symmetric basis sets. // // NOTE: for problems where a given invariant subspace does not correspond to a fixed number of added electrons, a // generalized routine should be used. template<scalar S> void Symmetry<S>::diag_function_impl(const Step &step, const size_t i, const double number, const t_coef sc_zeta, Matrix &h, const SubspaceDimensions &qq, const double f) const { my_assert(1 <= i && i <= qq.combs()); // For convenience we subtract the average site occupancy. XXX: how does this affect the total energy?? const auto avgoccup = (double)P.spin / 2; // multiplicity divided by 2 // Energy shift of the diagonal matrix elements in the NRG Hamiltonian. for (const auto j: qq.view_mma(i)) h(j, j) += sc_zeta * (number - f*avgoccup) / step.scale(); } template<scalar S> void Symmetry<S>::diag_function(const Step &step, const size_t i, const double number, const t_coef sc_zeta, Matrix &h, const SubspaceDimensions &qq) const { diag_function_impl(step, i, number, sc_zeta, h, qq, 1); } template<scalar S> void Symmetry<S>::diag_function_half(const Step &step, const size_t i, const double number, const t_coef sc_zeta, Matrix &h, const SubspaceDimensions &qq) const { diag_function_impl(step, i, number, sc_zeta, h, qq, 0.5); } // +++ Shift the offdiagonal matrix elements by factor. +++ template<scalar S> void Symmetry<S>::diag_offdiag_function(const Step &step, const size_t i, const size_t j, const t_coef factor, Matrix &h, const SubspaceDimensions &qq) const { my_assert(1 <= i && i <= qq.combs() && 1 <= j && j <= qq.combs()); if (i > j) return; // only upper triangular part const auto begin1 = qq.offset(i-1); const auto size1 = qq.rmax(i-1); const auto begin2 = qq.offset(j-1); const auto size2 = qq.rmax(j-1); const auto contributes = (size1 > 0) && (size2 > 0); if (!contributes) return; my_assert(size1 == size2); const t_coef factor_scaled = factor / step.scale(); for (const auto l: range0(size1)) h(begin1 + l, begin2 + l) += factor_scaled; } } // namespace NRG #endif // _matrix_cc_
5,496
C++
.h
100
49.2
132
0.647092
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,657
stats.hpp
rokzitko_nrgljubljana/c++/stats.hpp
#ifndef _stats_hpp_ #define _stats_hpp_ #include <string> #include <map> #include <vector> #include "constants.hpp" #include "traits.hpp" #include "outfield.hpp" #include "mp.hpp" #include "step.hpp" namespace NRG { // Structure for storing various statistical quantities calculated during the iteration template<scalar S, typename t_eigen = eigen_traits<S>, typename t_expv = expv_traits<S>> class Stats { private: const Params &P; public: t_eigen Egs{}; // ** Thermodynamic quantities double Z{}; double Zft{}; // grand-canonical partition function (at shell n) double Zgt{}; // grand-canonical partition function for computing G(T) double Zchit{}; // grand-canonical partition function for computing chi(T) TD td; // ** Expectation values std::map<std::string, t_expv> expv; // expectation values of custom operators std::map<std::string, t_expv> fdmexpv; // Expectation values computed using the FDM algorithm // ** Energies // "total_energy" is the total energy of the ground state at the current iteration. This is the sum of all the // zero state energies (eigenvalue shifts converted to absolute energies) for all the iteration steps so far. t_eigen total_energy{}; // GS_energy is the energy of the ground states in absolute units. It is equal to the value of the variable // "total_energy" at the end of the iteration. t_eigen GS_energy{}; std::vector<double> rel_Egs; // Values of 'Egs' for all NRG steps. std::vector<double> abs_Egs; // Values of 'Egs' (multiplied by the scale, i.e. in absolute scale) for all NRG steps. std::vector<double> energy_offsets; // Values of "total_energy" for all NRG steps. // ** Containers related to the FDM-NRG approach // Consult A. Weichselbaum, J. von Delft, PRL 99, 076402 (2007). vmpf ZnDG; // Z_n^D=\sum_s^D exp(-beta E^n_s), sum over **discarded** states at shell n vmpf ZnDN; // Z'_n^D=Z_n^D exp(beta E^n_0)=\sum_s^D exp[-beta(E^n_s-E^n_0)] std::vector<double> ZnDNd; // std::vector<double> wn; // Weights w_n. They sum to 1. std::vector<double> wnfactor; // wn/ZnDG double ZZG{}; // grand-canonical partition function with energies referred to the ground state energy double Z_fdm{}; // grand-canonical partition function (full-shell) at temperature T double F_fdm{}; // free-energy at temperature T double E_fdm{}; // energy at temperature T double C_fdm{}; // heat capacity at temperature T double S_fdm{}; // entropy at temperature T TD_FDM td_fdm; explicit Stats(const Params &_P, const std::vector<std::string> &td_fields, const double GS_energy_0, const std::string &filename_td = "td"s, const std::string &filename_tdfdm = "tdfdm"s) : P(_P), td(P, filename_td), total_energy(GS_energy_0), rel_Egs(MAX_NDX), abs_Egs(MAX_NDX), energy_offsets(MAX_NDX), ZnDG(MAX_NDX), ZnDN(MAX_NDX), ZnDNd(MAX_NDX), wn(MAX_NDX), wnfactor(MAX_NDX), td_fdm(P, filename_tdfdm) { td.allfields.add(td_fields, 1); } void update(const Step &step) { total_energy += Egs * step.scale(); // stats.Egs has already been initialized std::cout << "Total energy=" << HIGHPREC(total_energy) << " Egs=" << HIGHPREC(Egs) << std::endl; rel_Egs[step.ndx()] = Egs; abs_Egs[step.ndx()] = Egs * step.scale(); energy_offsets[step.ndx()] = total_energy; } // Called after first run void h5save_nrg(H5Easy::File &fd) const { h5_dump_scalar(fd, "stats/GS_energy", GS_energy); for (Step step(P); !step.end(); step.next()) { const auto ndx = step.ndx(); // 0-based! const auto prefix = "stats/" + std::to_string(ndx+1); // 1-based! h5_dump_scalar(fd, prefix + "/energyscale", step.energyscale()); h5_dump_scalar(fd, prefix + "/scale", step.scale()); h5_dump_scalar(fd, prefix + "/Teff", step.Teff()); h5_dump_scalar(fd, prefix + "/rel_Egs", rel_Egs[ndx]); h5_dump_scalar(fd, prefix + "/abs_Egs", rel_Egs[ndx]); h5_dump_scalar(fd, prefix + "/energy_offset", energy_offsets[ndx]); } for (const auto &[name, value]: expv) h5_dump_scalar(fd, "expv/" + name, value); h5_dump_scalar(fd, "total_energy", total_energy); } // Called after second run void h5save_dmnrg(H5Easy::File &fd) const { if (P.fdm) { h5_dump_scalar(fd, "fdm/Z", Z_fdm); h5_dump_scalar(fd, "fdm/F", F_fdm); h5_dump_scalar(fd, "fdm/E", E_fdm); h5_dump_scalar(fd, "fdm/C", C_fdm); h5_dump_scalar(fd, "fdm/S", S_fdm); if (P.fdmexpv) for (const auto &[name, value]: fdmexpv) h5_dump_scalar(fd, "fdm/expv/" + name, value); } } }; } // namespace #endif
4,850
C++
.h
97
45.185567
126
0.635021
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,658
bins.hpp
rokzitko_nrgljubljana/c++/bins.hpp
// bins.h - Binning of the spectral data // Copyright (C) 2009-2020 Rok Zitko #ifndef _bins_hpp_ #define _bins_hpp_ #include <cmath> #include <range/v3/all.hpp> #include "portabil.hpp" #include "traits.hpp" #include "spectral.hpp" #include "params.hpp" #include "numerics.hpp" namespace NRG { // Binned spectral peaks. P.bins defines the number of bins per energy decade. The lowest and highest energies are // defined by the zero-th and last NRG energy scale. // bins[i].first is the energy of the representative point (it is NOT an interval boundary!). Thus bins[i].second // represents the spectral weight at energy bins[i].first. This implies that when the spectral weight is collected // [see function add()], the weight of a delta peak with energy between two consecutive representative points is // divided between the two points proportionally with respect to the energies of the points. This also implies that // during broadening, we may consider "bins" as delta peaks, rather than as interval representations (true bins). In // other words, what we are doing here is coarse graining rather than binning! template<scalar S> class Bins { private: using t_weight = weight_traits<S>; double emin{}, emax{}; double log10emin{}, log10emax{}; // base-10 log of the limits void setlimits(); inline void add_std(const double energy, const t_weight weight); inline void add_acc(const double energy, const t_weight weight); void loggrid_std(); // standard NRG logarithmic mesh for spec. funcions void loggrid_acc(); // log grid with shifted accumulation point void loggrid(); const Params &P; // These control the energy range of the bins. This is the shift in the (10-base) exponent of the top-most and // bottom-most bins. inline static const double max_bin_shift = 2.0; inline static const double min_bin_shift = 2.0; inline static const double base = 10; inline static const double discarded_weight_warn_limit = 1e-8; public: Spikes<S> bins; // Note: Spikes is vector of (t_eigen,t_weight) pairs // XXX: make private operator const Spikes<S> &() const { return bins; } operator Spikes<S> &() { return bins; } // auto & get() { return bins; } explicit Bins(const Params &P) : P(P) { loggrid(); } // default: logarithmic grid inline void add(const double energy, const t_weight weight); void merge(const Bins<S> &b); void trim(); auto total_weight() const { return bins.sum_weights(); } }; template<scalar S> void Bins<S>::setlimits() { // NOTE: this will silently discard spectral peaks far outside the conduction band!! emax = (P.emax > 0 ? P.emax : P.SCALE(0) * pow(base, max_bin_shift)); emin = (P.emin > 0 ? P.emin : P.last_step_scale() / pow(base, min_bin_shift)); // Trick: use ceil/floor to obtain uniform binning grids for different values of the twist parameter z! log10emin = floor(log10(emin)); log10emax = ceil(log10(emax)); } template<scalar S> void Bins<S>::loggrid() { my_assert(P.bins > 0); setlimits(); if (P.accumulation > 0.0) loggrid_acc(); else loggrid_std(); } template<scalar S> void Bins<S>::loggrid_acc() { const double a = P.accumulation; my_assert(a > 0.0); bins.resize(0); for (auto e = emin; e <= emax; e *= pow(base, 1.0 / P.bins)) bins.emplace_back((emax - a) / emax * e + a, 0); if (P.linstep > 0) for (auto e = a; e > 0.0; e -= P.linstep) bins.emplace_back(e, 0); bins.emplace_back(DBL_MIN, 0); // add zero point ranges::sort(bins, sortfirst()); my_assert(bins.size() >= 2); } template<scalar S> void Bins<S>::loggrid_std() { const auto nrbins = (size_t)((log10emax - log10emin) * P.bins + 1.0); bins.resize(nrbins); // Note: Spikes is a vector type! for (const auto i : range0(nrbins)) bins[i] = { pow(base, log10emin + (double)i / P.bins), 0 }; } // Unbiased assignment of the spectral weight to bins. template<scalar S> inline void Bins<S>::add(const double energy, const t_weight weight) { if (abs(weight) < P.discard_immediately * energy) return; if (P.accumulation > 0.0) add_acc(energy, weight); else add_std(energy, weight); } template<scalar S> inline void Bins<S>::add_std(const double energy, const t_weight weight) { // Important: if 'energy' is lower than the lower limit of the first interval, the weight is assigned to the first // bin. This is especially relevant for collecting the omega=0 data in bosonic correlators. (rz, 25 Oct 2012) if (energy < emin) { // handle this special case separately (for reasons of efficiency) bins[0].second += weight; return; } const double log10e = log10(energy); const double x = (log10e - log10emin) * P.bins; const double int_part = floor(x); if (int_part < 0) { bins.front().second += weight; } else if (const auto index = size_t(int_part) ; index >= bins.size() - 1) { bins.back().second += weight; } else { const double rem = x - int_part; bins[index].second += (1.0 - rem) * weight; bins[index + 1].second += rem * weight; } } template<scalar S> inline void Bins<S>::add_acc(const double energy, const t_weight weight) { for (const auto i: range0(bins.size()-1)) { auto &[e1, w1] = bins[i]; // non-const auto &[e2, w2] = bins[i+1]; // non-const my_assert(e1 < e2); if (e1 < energy && energy < e2) { const auto dx = e2 - e1; const auto reldist = (energy - e1) / dx; w1 += (1.0 - reldist) * weight; w2 += reldist * weight; return; } } // Note: if no suitable interval is found, the weight is discarded! } // Merge two bins. They need to agree in the representative energies // (first element of the pairs). template<scalar S> void Bins<S>::merge(const Bins<S> &b) { my_assert(bins.size() == b.bins.size()); for (const auto i: range0(bins.size())) { auto &[e1, w1] = bins[i]; const auto &[e2, w2] = b.bins[i]; my_assert(e1 == e2); w1 += w2; } } // Only keep bins which are "heavy" enough. template<scalar S> void Bins<S>::trim() { Spikes<S> orig{}; orig.swap(bins); bucket discarded_weight_abs; // nr-1, because we need to compute the energy interval size 'ewidth' for (const auto i: range0(orig.size()-1)) { const auto [e, w] = orig[i]; const auto e_next = orig[i+1].first; my_assert(e_next > e); // increasing! const auto e_width = e_next - e; if (abs(w) >= P.discard_trim * e_width) bins.push_back(orig[i]); else discarded_weight_abs += abs(w); } // Always keep the last one.. This ensures that we keep information about the energy range on which the // calculations has been performed. bins.push_back(orig.back()); if (discarded_weight_abs > discarded_weight_warn_limit) std::cout << "WARNING: we are probably discarding too much weight!" << std::endl; } template<scalar S, typename t_weight = weight_traits<S>> class Temp : public Spikes<S> { private: const Params &P; public: explicit Temp(const Params &P) : P(P) {} void add_value(const double energy, const t_weight &weight) { for (auto & [e, w] : *this) { if (e == energy) { w += weight; return; } } // or else this->emplace_back(energy, weight); } }; } // namespace #endif // _bins_hpp_
7,265
C++
.h
186
35.806452
139
0.674175
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,659
measurements.hpp
rokzitko_nrgljubljana/c++/measurements.hpp
#ifndef _measurements_hpp_ #define _measurements_hpp_ #include "step.hpp" #include "eigen.hpp" #include "operators.hpp" #include "symmetry.hpp" #include "traits.hpp" #include "output.hpp" #include "store.hpp" #include "time_mem.hpp" #include "oprecalc.hpp" namespace NRG { // note: t_expv = t_matel, thus the return type is OK template<scalar S, typename MF, typename t_matel = matel_traits<S>> auto calc_trace_singlet(const DiagInfo<S> &diag, const MatrixElements<S> &m, MF mult, const double factor) { return ranges::accumulate(diag, S{}, {}, [&m, &mult, factor](const auto &x){ const auto [I, eig] = x; return mult(I) * trace_exp(eig.value_corr_msr(), m.at({I,I}), factor); }); } // Measure thermodynamic expectation values of singlet operators template<scalar S, typename MF> void measure_singlet(const double factor, Stats<S> &stats, const Operators<S> &a, MF mult, const DiagInfo<S> &diag, const Params &P) { const auto Z = ranges::accumulate(diag, 0.0, {}, [mult, factor](const auto &d) { const auto &[I, eig] = d; return mult(I) * sum_of_exp(eig.value_corr_msr(), factor); }); nrglog('Z', "Z_expv=" << Z); for (const auto &[name, m] : a.ops) stats.expv[name] = calc_trace_singlet(diag, m, mult, factor) / Z; for (const auto &[name, m] : a.opsg) stats.expv[name] = calc_trace_singlet(diag, m, mult, factor) / Z; } template<scalar S, typename MF, typename t_matel = matel_traits<S>> auto calc_trace_fdm_kept(const size_t ndx, const MatrixElements<S> &n, const DensMatElements<S> &rhoFDM, const Store<S> &store_all, MF mult) { return ranges::accumulate(rhoFDM, t_matel{}, {}, [&n, &s = store_all[ndx], mult](const auto &x) { const auto [I, rhoI] = x; return mult(I) * trace_contract(rhoI, n.at({I,I}), s.at(I).kept()); }); // over kept states ONLY } template<scalar S, typename MF> void measure_singlet_fdm(const size_t ndx, Stats<S> &stats, const Operators<S> &a, MF mult, const DensMatElements<S> &rhoFDM, const Store<S> &store_all) { for (const auto &[name, m] : a.ops) stats.fdmexpv[name] = calc_trace_fdm_kept(ndx, m, rhoFDM, store_all, mult); for (const auto &[name, m] : a.opsg) stats.fdmexpv[name] = calc_trace_fdm_kept(ndx, m, rhoFDM, store_all, mult); } // Calculate grand canonical partition function at current NRG energy shell. This is not the same as the true // partition function of the full problem! Instead this is the Z_N that is used to initialize the density matrix, // i.e. rho = 1/Z_N \sum_{l} exp{-beta E_l} |l;N> <l;N|. grand_canonical_Z() is also used to calculate stats.Zft, // that is used to compute the spectral function with the conventional approach, as well as stats.Zgt for G(T) // calculations, stats.Zchit for chi(T) calculations. template<scalar S, typename MF> auto grand_canonical_Z(const double factor, const DiagInfo<S> &diag, MF mult) { return ranges::accumulate(diag, 0.0, {}, [factor,mult](const auto &x) { const auto &[I, eig] = x; return mult(I) * sum_of_exp(eig.value_corr_kept(), factor); }); // over kept states ONLY } // Calculate partial statistical sums, ZnD*, and the grand canonical Z (stats.ZZG), computed with respect to absolute // energies. calc_ZnD() must be called before the second NRG run. template<scalar S> void calc_ZnD(const Store<S> &store, Stats<S> &stats, const Symmetry<S> *Sym, const Params &P) { const auto T = P.T; mpf_set_default_prec(400); // this is the number of bits, not decimal digits! for (const auto N : store.Nall()) { my_mpf ZnDG, ZnDN; // arbitrary-precision accumulators to avoid precision loss mpf_set_d(ZnDG, 0.0); mpf_set_d(ZnDN, 0.0); for (const auto &[I, ds] : store[N]) for (const auto i : ds.all()) { my_mpf g, n; mpf_set_d(g, Sym->mult(I) * exp(-ds.eig.values.abs_G(i)/T)); // abs_G >= 0.0 mpf_set_d(n, Sym->mult(I) * exp(-ds.eig.values.abs_zero(i)/T)); // abs_zero >= 0.0 mpf_add(ZnDG, ZnDG, g); mpf_add(ZnDN, ZnDN, n); } mpf_set(stats.ZnDG[N], ZnDG); mpf_set(stats.ZnDN[N], ZnDN); stats.ZnDNd[N] = mpf_get_d(stats.ZnDN[N]); } // Note: for ZBW, Nlen=Nmax+1. For Ninit=Nmax=0, index 0 will thus be included here. my_mpf ZZG; mpf_set_d(ZZG, 0.0); for (const auto N : store.Nall()) { my_mpf a; mpf_set(a, stats.ZnDG[N]); my_mpf b; mpf_set_d(b, Sym->nr_combs()); mpf_pow_ui(b, b, store.Nend - N - 1); my_mpf c; mpf_mul(c, a, b); mpf_add(ZZG, ZZG, c); } stats.ZZG = mpf_get_d(ZZG); nrglog('Z', "ZZG=" << HIGHPREC(stats.ZZG)); for (const auto N : store.Nall()) { const double w = std::pow(Sym->nr_combs(), store.Nend - N - 1) / stats.ZZG; // ZZZ stats.wnfactor[N] = w; // These ratios enter the terms for the spectral function. stats.wn[N] = w * mpf_get_d(stats.ZnDG[N]); // This is w_n defined after Eq. (8) in the WvD paper. } const auto sumwn = ranges::accumulate(stats.wn, 0.0); nrglog('Z', "sumwn=" << sumwn << " sumwn-1=" << sumwn - 1.0); my_assert(num_equal(sumwn, 1.0)); // Check the sum-rule. } template<scalar S> void report_ZnD(Stats<S> &stats, const Params &P) { for (const auto N : P.Nall()) std::cout << "ZG[" << N << "]=" << HIGHPREC(mpf_get_d(stats.ZnDG[N])) << std::endl; for (const auto N : P.Nall()) std::cout << "ZN[" << N << "]=" << HIGHPREC(mpf_get_d(stats.ZnDN[N])) << std::endl; for (const auto N : P.Nall()) std::cout << "w[" << N << "]=" << HIGHPREC(stats.wn[N]) << std::endl; for (const auto N : P.Nall()) std::cout << "wfactor[" << N << "]=" << HIGHPREC(stats.wnfactor[N]) << std::endl; } // TO DO: use Boost.Multiprecision instead of low-level GMP calls // https://www.boost.org/doc/libs/1_72_0/libs/multiprecision/doc/html/index.html template<scalar S> void fdm_thermodynamics(const Store<S> &store, Stats<S> &stats, const Symmetry<S> *Sym, const double T) { stats.Z_fdm = stats.ZZG*exp(-stats.GS_energy/T); // this is the true partition function stats.F_fdm = -log(stats.ZZG)*T+stats.GS_energy; // F = -k_B*T*log(Z) // We use multiple precision arithmetics to ensure sufficient accuracy in the calculation of // the variance of energy and thus the heat capacity. my_mpf E, E2; mpf_set_d(E, 0.0); mpf_set_d(E2, 0.0); for (const auto N : store.Nall()) if (stats.wn[N] > 1e-16) for (const auto &[I, ds] : store[N]) for (const auto i : ds.all()) { my_mpf weight; mpf_set_d(weight, stats.wn[N] * Sym->mult(I) * exp(-ds.eig.values.abs_zero(i)/T)); mpf_div(weight, weight, stats.ZnDN[N]); my_mpf e; mpf_set_d(e, ds.eig.values.abs_T(i)); my_mpf e2; mpf_mul(e2, e, e); mpf_mul(e, e, weight); mpf_mul(e2, e2, weight); mpf_add(E, E, e); mpf_add(E2, E2, e2); } stats.E_fdm = mpf_get_d(E); my_mpf sqrE; mpf_mul(sqrE, E, E); my_mpf varE; mpf_sub(varE, E2, sqrE); stats.C_fdm = mpf_get_d(varE)/pow(T,2); stats.S_fdm = (stats.E_fdm-stats.F_fdm)/T; std::cout << std::endl; std::cout << "Z_fdm=" << HIGHPREC(stats.Z_fdm) << std::endl; std::cout << "F_fdm=" << HIGHPREC(stats.F_fdm) << std::endl; std::cout << "E_fdm=" << HIGHPREC(stats.E_fdm) << std::endl; std::cout << "C_fdm=" << HIGHPREC(stats.C_fdm) << std::endl; std::cout << "S_fdm=" << HIGHPREC(stats.S_fdm) << std::endl; std::cout << std::endl; stats.td_fdm.set("T", T); stats.td_fdm.set("F_fdm", stats.F_fdm); stats.td_fdm.set("E_fdm", stats.E_fdm); stats.td_fdm.set("C_fdm", stats.C_fdm); stats.td_fdm.set("S_fdm", stats.S_fdm); stats.td_fdm.save_values(); } // We calculate thermodynamic quantities before truncation to make better use of the available states. Here we // compute quantities which are defined for all symmetry types. Other calculations are performed by calculate_TD // member functions defined in symmetry.h template<scalar S> void calculate_TD(const Step &step, const DiagInfo<S> &diag, Stats<S> &stats, const Symmetry<S> *Sym, const Params &P, const double additional_factor = 1.0) { // Rescale factor for energies. The energies are expressed in units of omega_N, thus we need to appropriately // rescale them to calculate the Boltzmann weights at the temperature scale Teff (Teff=scale/betabar). const auto rescale_factor = step.TD_factor() * additional_factor; const auto Z = diag.trace([]([[maybe_unused]] double x) { return 1; }, rescale_factor, Sym->multfnc()); // partition function const auto E = diag.trace([](double x) { return x; }, rescale_factor, Sym->multfnc()); // Tr[beta H] const auto E2 = diag.trace([](double x) { return pow(x,2); }, rescale_factor, Sym->multfnc()); // Tr[(beta H)^2] stats.Z = Z; nrglog('Z', "Z_td=" << stats.Z); stats.td.set("T", step.Teff()); stats.td.set("<E>", E/Z); // beta <H> stats.td.set("<E^2>", E2/Z); // beta^2 <H^2> stats.td.set("C", E2/Z - pow(E/Z,2)); // C/k_B=beta^2(<H^2>-<H>^2) stats.td.set("F", -log(Z)); // F/(k_B T)=-ln(Z) stats.td.set("S", E/Z+log(Z)); // S/k_B=beta<H>+ln(Z) Sym->calculate_TD(step, diag, stats, rescale_factor); // symmetry-specific calculation routine stats.td.save_values(); } template<scalar S, typename MF> void calc_Z(const Step &step, Stats<S> &stats, const DiagInfo<S> &diag, MF mult, const Params &P) { stats.Zft = grand_canonical_Z(step.scT(), diag, mult); nrglog('Z', "Z_ft=" << stats.Zft); if (std::string(P.specgt) != "" || std::string(P.speci1t) != "" || std::string(P.speci2t) != "") stats.Zgt = grand_canonical_Z(1.0/P.gtp, diag, mult); // exp(-x*gtp) if (std::string(P.specchit) != "") stats.Zchit = grand_canonical_Z(1.0/P.chitp, diag, mult); // exp(-x*chitp) } template<scalar S> void calculate_spectral_and_expv_impl(const Step &step, Stats<S> &stats, Output<S> &output, Oprecalc<S> &oprecalc, const DiagInfo<S> &diag, // projected! const Operators<S> &operators, const Store<S> &store_all, MemTime &mt, const Symmetry<S> *Sym, const Params &P) { // Load the density matrices DensMatElements<S> rho, rhoFDM; if (step.dmnrg()) { if (P.need_rho()) { rho.load(step.ndx(), P, fn_rho, P.removefiles); check_trace_rho(rho, Sym->multfnc()); // Check if Tr[rho]=1, i.e. the normalization } if (P.need_rhoFDM()) rhoFDM.load(step.ndx(), P, fn_rhoFDM, P.removefiles); } // Calculate all spectral functions calc_Z(step, stats, diag, Sym->multfnc(), P); // required for FT and CFS approaches oprecalc.sl.calc(step, diag, rho, rhoFDM, stats, mt, Sym, P); // Calculate all expectation values if (step.nrg()) { const auto section_timing = mt.time_it("singlet"); measure_singlet(step.TD_factor(), stats, operators, Sym->multfnc(), diag, P); output.custom->field_values(step.Teff()); operators.dump_diagonal(P.dumpdiagonal); } if (step.dmnrg() && P.fdmexpv && step.N() == P.fdmexpvn) { const auto section_timing = mt.time_it("singlet fdm"); measure_singlet_fdm(step.N(), stats, operators, Sym->multfnc(), rhoFDM, store_all); // store_all required here! output.customfdm->field_values(P.T); } } template<scalar S> void calculate_spectral_and_expv(const Step &step, Stats<S> &stats, Output<S> &output, Oprecalc<S> &oprecalc, const DiagInfo<S> &diag_in, const Operators<S> &operators, const Store<S> &store_all, MemTime &mt, const Symmetry<S> *Sym, const Params &P) { if (P.project == ""s) { calculate_spectral_and_expv_impl(step, stats, output, oprecalc, diag_in, operators, store_all, mt, Sym, P); } else { auto diag = Sym->project(diag_in, P.project); calculate_spectral_and_expv_impl(step, stats, output, oprecalc, diag, operators, store_all, mt, Sym, P); } } // Perform calculations of physical quantities. Called prior to NRG iteration (if calc0=true) and after each NRG // step. template<scalar S> void perform_basic_measurements_impl(const Step &step, const DiagInfo<S> &diag, // projected! const Symmetry<S> *Sym, Stats<S> &stats, Output<S> &output, const Params &P) { output.dump_energies(step.ndx(), diag); // "energies.nrg" output.annotated.dump(step, diag, stats, Sym->multfnc()); // "annotated.dat" calculate_TD(step, diag, stats, Sym, P); // "td" } template<scalar S> void perform_basic_measurements(const Step &step, const DiagInfo<S> &diag_in, const Symmetry<S> *Sym, Stats<S> &stats, Output<S> &output, const Params &P) { if (P.project == ""s) { perform_basic_measurements_impl(step, diag_in, Sym, stats, output, P); } else { auto diag = Sym->project(diag_in, P.project); perform_basic_measurements_impl(step, diag, Sym, stats, output, P); } } } // namespace #endif
13,275
C++
.h
256
46.183594
134
0.618557
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,660
splitting.hpp
rokzitko_nrgljubljana/c++/splitting.hpp
// Code for correcting floating-point roundoff errors // Rok Zitko, rok.zitko@ijs.si #ifndef _splitting_hpp_ #define _splitting_hpp_ #include <iostream> #include <unordered_map> #include "portabil.hpp" #include "traits.hpp" #include "eigen.hpp" namespace NRG { template<typename T> inline void cluster_show(const T &i0, const T &i1) { std::cout << "["; for (auto j = i0; j != i1; ++j) { std::cout << HIGHPREC(*j) << " "; } std::cout << "]" << std::endl; } // Returns true if not all the states have the same energy. template<typename T> inline bool cluster_splitting(const T &i0, const T &i1) { my_assert(i0 != i1); // non-empty set // We need to compare all distinct pairs. for (auto i = i0; i != i1; ++i) for (auto j = i + 1; j != i1; ++j) if (*i != *j) return true; return false; } template<scalar S, typename t_eigen = eigen_traits<S>> class Clusters { public: std::unordered_map<t_eigen, t_eigen> cluster_mapping; // Fix splittings of eigenvalues. void fix_it(DiagInfo<S> &diag) { for(auto &[I, eig]: diag) { auto v = eig.values.all_rel_zero() | ranges::to_vector; for (auto &r : v) if (auto m = cluster_mapping.find(r); m != cluster_mapping.cend()) r = m->second; eig.values.set_corr(std::move(v)); } } // Find clusters of values which differ by at most 'epsilon' Clusters(DiagInfo<S> &diag, const double epsilon, bool fix = true) { const auto energies = diag.sorted_energies_rel_zero(); my_assert(energies.size()); auto e0 = energies.front(); // energy of the lower boundary of the cluster, [e0:e1] auto i0 = energies.cbegin(); // iterator to the lower boundary of the cluster, [i0:i1] int size = 1; // number of states in the current cluster for (auto i = energies.begin(); i != energies.end(); ++i) { if ((*i - e0) < epsilon) { // in the cluster size++; } else { // end of cluster detected auto i1 = i; if (size > 1) { // is this a real cluster? if (cluster_splitting(i0, i1)) { // are the states actually split? auto replace_with = *i0; // use the lowest eigenvalue of the cluster for (auto j = (i0 + 1); j != i1; ++j) // skip 1st if (*j != *i0) cluster_mapping.insert({*j, replace_with}); } } e0 = *i; i0 = i; size = 1; } } if (fix) fix_it(diag); } }; } // namespace #endif
2,514
C++
.h
69
31.15942
91
0.588428
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,661
symmetry.hpp
rokzitko_nrgljubljana/c++/symmetry.hpp
// symmetry.cc - Classes representing various symmetry types // Copyright (C) 2009-2020 Rok Zitko #ifndef _symmetry_hpp_ #define _symmetry_hpp_ #include <string> #include <vector> #include <iostream> #include <iomanip> #include <limits> #include "operators.hpp" #include "params.hpp" #include "traits.hpp" #include "operators.hpp" #include "invar.hpp" #include "step.hpp" #include "eigen.hpp" #include "subspaces.hpp" #include "stats.hpp" #include "coef.hpp" namespace NRG { using cmpl = std::complex<double>; // Check if the triangle inequality is satisfied (i.e. if Clebsch-Gordan coefficient can be different from zero). // This is important, for example, for triplet operators, which are zero when evaluated between two singlet states. // Arguments ss1, ss2, ss3 are spin multiplicities. Returns true if the inequality is satisfied, false otherwise. inline auto su2_triangle_inequality(const int ss1, const int ss2, const int ss3) { return (abs(ss1-ss2) <= ss3-1) && (abs(ss2-ss3) <= ss1-1) && (abs(ss3-ss1) <= ss2-1); } inline auto u1_equality(const int q1, const int q2, const int q3) { return q1 == q2 + q3; } // Equality for U(1) symmetry inline auto z2_equality(const int p1, const int p2, const int p3) { return p1 == p2 * p3; } inline auto c3_equality(const int p1, const int p2, const int p3) { return p1 == (p2+p3) % 3; } // C_3 quantum number: Equality modulo 3 template<scalar S> struct Recalc_f { size_t i1; // subspace indexes size_t ip; coef_traits<S> factor; }; // Structure which holds subspace information and factor for each of nonzero irreducible matrix elements. cf. // Hofstetter PhD p. 120. <Q+1 S+-1/2 .. i1 ||f^\dag|| Q S .. ip>_N = factor < IN1 .. ||f^\dag|| INp ..>_{N_1} template<scalar S> struct Recalc { size_t i1{}; // combination of states size_t ip{}; Invar IN1; // subspace in N-1 stage Invar INp; coef_traits<S> factor{}; // additional multiplicative factor }; template<scalar S> class Symmetry { protected: const Params &P; const std::vector<std::string> td_fields; // In and QN contain information about how the invariant subspaces at consecutive iteration steps are combined. In // is the array of quantum number DIFFERENCES used in the construction of the basis. QN is the array of the // conserved quantum numbers corresponding to the states being added. For example, in case of SU(2) symmetry, In // will include S_z, while QN will include S. In other words, QN involves those quantum numbers that we need to // retain in the calculation, while In involves those quantum numbers that "drop out" of the problem due to the // symmetry. std::vector<Invar> In, QN; const Invar InvarSinglet; // QNs for singlet operator const Invar Invar_f; // QNs for f operator public: virtual void load() = 0; // load In, QN void erase_first() { // drop the first element in In, QN to convert to 0-based vectors; call after load() In.erase(In.begin()); QN.erase(QN.begin()); } template<typename T> Symmetry(const Params &P_, const T td_fields_, const Invar & InvarSinglet = {}, const Invar & Invar_f = {}) : P(P_), td_fields(td_fields_.begin(), td_fields_.end()), In(P.combs+1), QN(P.combs+1), InvarSinglet(InvarSinglet), Invar_f(Invar_f) {} Symmetry(const Symmetry &) = delete; Symmetry(Symmetry &&) = delete; Symmetry &operator=(const Symmetry &) = delete; Symmetry &operator=(Symmetry &&) = delete; virtual ~Symmetry() {} auto input_subspaces() const { return In; } auto QN_subspace(const size_t i) const { my_assert(i < P.combs); return QN[i]; } auto ancestor(const Invar &I, const size_t i) const { my_assert(i < P.combs); const auto input = input_subspaces(); Invar anc = I; anc.combine(input[i]); return anc; // I.combine(input[i]) == input[i].combine(I) } [[nodiscard]] size_t nr_combs() const { my_assert(P.combs == In.size()); my_assert(P.combs == QN.size()); return P.combs; } auto combs() const { return range0(nr_combs()); } auto ancestors(const Invar &I) const { auto input = input_subspaces(); for (const auto i: combs()) input[i].combine(I); // In is the list of differences wrt I return input; } auto new_subspaces(const Invar &I) const { auto input = input_subspaces(); for (const auto i: combs()) { input[i].inverse(); input[i].combine(I); } return input; } auto get_td_fields() const { return td_fields; } // For some symmetry types with two-channels we distinguish between even and odd parity with respect to the // channel-interchange operation. virtual bool islr() const { return false; } // Ditto for 3 channels: C_3 symmetry. virtual bool isc3() const { return false; } // For some symmetry types, we may distinguish between spin-up and spin-down quantities (in particular spin-up and // spin-down spectral functions). virtual bool isfield() const { return false; } // Multiplicity of the states in the invariant subspace [[nodiscard]] virtual size_t mult(const Invar &) const { return 1; }; auto multfnc() const { return [this](const Invar &I) { return this->mult(I); }; } auto calculate_Z(const Invar &I, const Eigen<S> &eig, const double rescale_factor) const { return mult(I) * ranges::accumulate(eig.value_corr_msr(), 0.0, {}, [rf=rescale_factor](const auto &x) { return exp(-rf*x); }); } // Does the combination of subspaces I1 and I2 contribute to the spectral function corresponding to spin SPIN? [[nodiscard]] virtual bool check_SPIN([[maybe_unused]] const Invar &I1, [[maybe_unused]] const Invar &I2, [[maybe_unused]] const int &SPIN) const { return true; } // Is the triangle inequality satisfied (i.e. can Clebsch-Gordan coefficient be different from zero)? [[nodiscard]] virtual bool triangle_inequality([[maybe_unused]] const Invar &I1, [[maybe_unused]] const Invar &I2, [[maybe_unused]] const Invar &I3) const { return true; } // Is an invariant subspace with given quantum numbers allowed? [[nodiscard]] virtual bool Invar_allowed([[maybe_unused]] const Invar &I) const { return true; } // Project the states before taking measurements. String p defines what kind of projection is performed. virtual bool project_subspace([[maybe_unused]] const Invar &I, [[maybe_unused]] const std::string &p) const { return true; // by default retain all (i.e., no projection) } virtual DiagInfo<S> project(const DiagInfo<S> &diag, const std::string &p) const { my_assert(p != ""s); // for performance reasons, this should never be called if the projection is not specified explicitly DiagInfo<S> proj; if (p == "trivial"s) { proj = diag; // no projection } else { for (const auto &[I, eig]: diag) if (project_subspace(I, p)) proj[I] = eig; } return proj; } using Matrix = Matrix_traits<S>; using t_matel = matel_traits<S>; using t_coef = coef_traits<S>; void offdiag_function_impl(const Step &step, const size_t i, const size_t j, const size_t ch, const size_t fnr, const t_coef factor, Matrix &h, const SubspaceDimensions &qq, const InvarVec &In, const Opch<S> &opch) const; void diag_function_impl(const Step &step, const size_t i, const double number, const t_coef sc_zeta, Matrix &h, const SubspaceDimensions &qq, const double f) const; void diag_function(const Step &step, const size_t i, const double number, const t_coef sc_zeta, Matrix &h, const SubspaceDimensions &qq) const; void diag_function_half(const Step &step, const size_t i, const double number, const t_coef sc_zeta, Matrix &h, const SubspaceDimensions &qq) const; void diag_offdiag_function(const Step &step, const size_t i, const size_t j, const t_coef factor, Matrix &h, const SubspaceDimensions &qq) const; virtual void make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<S> &opch, const Coef<S> &coef) const = 0; // Called from recalc_dynamicsusceptibility(). This is the factor due // to the spin degeneracy when calculating the trace of Sz.Sz. [[nodiscard]] virtual double dynamicsusceptibility_factor([[maybe_unused]] const Invar &Ip, [[maybe_unused]] const Invar &I1) const { return 1.0; } // Called from recalc_dynamic_orb_susceptibility(). This is the factor due // to the orbital moment degeneracy when calculating the trace of Tz.Tz. [[nodiscard]] virtual double dynamic_orb_susceptibility_factor([[maybe_unused]] const Invar &Ip, [[maybe_unused]] const Invar &I1) const { return 1.0; } // Called from calc_specdens(). // See spectral_density_clebschgordan.nb and DMNRG_clebschgordan.nb. [[nodiscard]] virtual double specdens_factor([[maybe_unused]] const Invar &Ip, [[maybe_unused]] const Invar &I1) const { return 1.0; } [[nodiscard]] virtual double specdensquad_factor([[maybe_unused]] const Invar &Ip, [[maybe_unused]] const Invar &I1) const { return 1.0; } virtual void calculate_TD(const Step &step, const DiagInfo<S> &diag, Stats<S> &stats, const double factor) const = 0; virtual Opch<S> recalc_irreduc([[maybe_unused]] const Step &step, [[maybe_unused]] const DiagInfo<S> &diag) const { my_assert_not_reached(); } virtual OpchChannel<S> recalc_irreduc_substeps([[maybe_unused]] const Step &step, [[maybe_unused]] const DiagInfo<S> &diag, [[maybe_unused]] int M) const { my_assert_not_reached(); } virtual MatrixElements<S> recalc_doublet([[maybe_unused]] const DiagInfo<S> &diag, [[maybe_unused]] const MatrixElements<S> &cold) const { my_assert_not_reached(); } virtual MatrixElements<S> recalc_triplet([[maybe_unused]] const DiagInfo<S> &diag, [[maybe_unused]] const MatrixElements<S> &cold) const { my_assert_not_reached(); } virtual MatrixElements<S> recalc_orb_triplet([[maybe_unused]] const DiagInfo<S> &diag, [[maybe_unused]] const MatrixElements<S> &cold) const { my_assert_not_reached(); } virtual MatrixElements<S> recalc_quadruplet([[maybe_unused]] const DiagInfo<S> &diag, [[maybe_unused]] const MatrixElements<S> &cold) const { my_assert_not_reached(); } virtual void recalc_global([[maybe_unused]] const Step &step, [[maybe_unused]] const DiagInfo<S> &diag, [[maybe_unused]] std::string name, [[maybe_unused]] MatrixElements<S> &cnew) const { my_assert_not_reached(); } // Recalculates irreducible matrix elements of a singlet operator, as well as odd-parity spin-singlet operator (for // parity -1). Generic implementation, valid for all symmetry types. MatrixElements<S> recalc_singlet(const DiagInfo<S> &diag, const MatrixElements<S> &nold, const int parity) const { MatrixElements<S> nnew; my_assert(islr() ? parity == 1 || parity == -1 : parity == 1); for (const auto &I : diag.subspaces()) { const Invar I1 = I; const Invar Ip = parity == -1 ? I.InvertParity() : I; std::vector<Recalc<S>> recalc_table; for (const auto i: combs()) { const auto anc = ancestor(I, i); recalc_table.push_back({i+1, i+1, anc, parity == -1 ? anc.InvertParity() : anc, 1.0}); } const auto Iop = parity == -1 ? InvarSinglet.InvertParity() : InvarSinglet; nnew[Twoinvar(I1,Ip)] = recalc_general(diag, nold, I1, Ip, recalc_table, Iop); } return nnew; } virtual void show_coefficients(const Step &step, const Coef<S> &coef) const { std::cout << std::setprecision(std::numeric_limits<double>::max_digits10); if (!P.substeps) { for (size_t i = 0; i < P.coefchannels; i++) { const auto N = step.N(); std::cout << "[" << i + 1 << "]" << " xi(" << N << ")=" << coef.xi(N, i) << " xi_scaled(" << N << ")=" << coef.xi(N, i)/step.scale() << " zeta(" << N+1 << ")=" << coef.zeta(N+1, i) << std::endl; } } else { const auto [N, M] = step.NM(); for (auto i = 0; i < P.coeffactor; i++) { const auto index = M + P.channels * i; std::cout << "[" << index << "]" << " xi(" << N << ")=" << coef.xi(N, index) << " zeta(" << N+1 << ")=" << coef.zeta(N+1, index) << std::endl; } } } // only overriden for symtypes QST and SPSU2T virtual bool recalc_f_coupled([[maybe_unused]] const Invar &I1, [[maybe_unused]] const Invar &I2, [[maybe_unused]] const Invar &If) const { return true; } // used in recalc_f() template<typename T> auto recalc_f(const DiagInfo<S> &diag, const Invar &I1, const Invar &Ip, const T &table) const; template<typename T> auto recalc_general(const DiagInfo<S> &diag, const MatrixElements<S> &cold, const Invar &I1, const Invar &Ip, const T &table, const Invar &Iop) const; void recalc1_global(const DiagInfo<S> &diag, const Invar &I, Matrix &m, const size_t i1, const size_t ip, const t_coef value) const; auto CorrelatorFactorFnc() const { return [this]([[maybe_unused]] const Invar &Ip, const Invar &I1) { return this->mult(I1); }; } auto SpecdensFactorFnc() const { return [this](const Invar &Ip, const Invar &I1) { return this->specdens_factor(Ip, I1); }; } auto SpecdensquadFactorFnc() const { return [this](const Invar &Ip, const Invar &I1) { return this->specdensquad_factor(Ip, I1); }; } auto SpinSuscFactorFnc() const { return [this](const Invar &Ip, const Invar &I1) { return this->dynamicsusceptibility_factor(Ip, I1); }; } auto OrbSuscFactorFnc() const { return [this](const Invar &Ip, const Invar &I1) { return this->dynamic_orb_susceptibility_factor(Ip, I1); }; } auto TrivialCheckSpinFnc() const { return []([[maybe_unused]] const Invar &Ip, [[maybe_unused]] const Invar &I1, [[maybe_unused]] int SPIN) { return true; }; } auto SpecdensCheckSpinFnc() const { return [this](const Invar &I1, const Invar &Ip, int SPIN) { return this->check_SPIN(I1, Ip, SPIN); }; } }; // Add DECL declaration in each symmetry class #define DECL \ void make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, \ const Opch<SC> &opch, const Coef<SC> &coef) const override; \ Opch<SC> recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const override // Optional declaration #define HAS_SUBSTEPS OpchChannel<SC> recalc_irreduc_substeps(const Step &step, const DiagInfo<SC> &diag, int M) const override #define HAS_DOUBLET MatrixElements<SC> recalc_doublet(const DiagInfo<SC> &diag, \ const MatrixElements<SC> &cold) const override #define HAS_TRIPLET MatrixElements<SC> recalc_triplet(const DiagInfo<SC> &diag, \ const MatrixElements<SC> &cold) const override #define HAS_ORB_TRIPLET MatrixElements<SC> recalc_orb_triplet(const DiagInfo<SC> &diag, \ const MatrixElements<SC> &cold) const override #define HAS_QUADRUPLET MatrixElements<SC> recalc_quadruplet(const DiagInfo<SC> &diag, \ const MatrixElements<SC> &cold) const override #define HAS_GLOBAL void recalc_global(const Step &step, const DiagInfo<SC> &diag, \ std::string name, MatrixElements<SC> &cnew) const override template<scalar S> class SymField : public Symmetry<S> { public: template<typename ... Args> explicit SymField(Args && ... args) : Symmetry<S>(std::forward<Args>(args)...) {} bool isfield() const final override { return true; } }; template<scalar S> class SymLR : public Symmetry<S> { public: template<typename ... Args> explicit SymLR(Args && ... args) : Symmetry<S>(std::forward<Args>(args)...) {} bool islr() const final override { return true; } }; template<scalar S> class SymC3 : public Symmetry<S> { public: template<typename ... Args> explicit SymC3(Args && ... args) : Symmetry<S>(std::forward<Args>(args)...) {} bool isc3() const final override { return true; } }; template<scalar S> class SymFieldLR : public Symmetry<S> { public: template<typename ... Args> explicit SymFieldLR(Args && ... args) : Symmetry<S>(std::forward<Args>(args)...) {} bool isfield() const final override { return true; } bool islr() const final override { return true; } }; // Helper functions inline void check_abs_diff(const Invar &Ip, const Invar &I1, const std::string &what, const int diff) { const auto a = Ip.get(what); const auto b = I1.get(what); my_assert(abs(b - a) == diff); } inline void check_diff(const Invar &Ip, const Invar &I1, const std::string &what, const int diff) { const auto a = Ip.get(what); const auto b = I1.get(what); my_assert(b - a == diff); } } // namespace #endif
17,374
C++
.h
285
54.403509
179
0.650032
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,662
tridiag.hpp
rokzitko_nrgljubljana/c++/tridiag.hpp
// tridiag.h - Tridiagonalisation code // Copyright (C) 2009-2020 Rok Zitko #ifndef _tridiag_hpp_ #define _tridiag_hpp_ #include "mp.hpp" #include "coef.hpp" #include "params.hpp" namespace NRG { template<scalar S> class Tridiag { public: Tridiag(Coef<S> &coef, const size_t Nmax, const Params &P) : Nmax(Nmax), P(P) { my_assert(P.coefchannels >= 1); for (unsigned int alpha = 0; alpha < P.coefchannels; alpha++) tridiag_ch(alpha, coef); } private: size_t Nmax; const Params &P; void tridiag_ch(const size_t alpha, Coef<S> &coef); }; // Fix normalization of u_{n,m}, v_{n,m} to 1. IMPORTANT: pass by reference! inline void fix_norm(vmpf &up, vmpf &um, const unsigned int mMAX) { // Constants my_mpf mpZERO, mpONE; mpf_set_str(mpONE, "1.e0", 10); my_mpf sum, temp, tempsq; mpf_set(sum, mpZERO); for (unsigned int m = 0; m <= mMAX; m++) { mpf_mul(tempsq, up[m], up[m]); mpf_add(sum, sum, tempsq); mpf_mul(tempsq, um[m], um[m]); mpf_add(sum, sum, tempsq); } mpf_sqrt(temp, sum); for (unsigned int m = 0; m <= mMAX; m++) { mpf_div(up[m], up[m], temp); mpf_div(um[m], um[m], temp); } } // Tridiagonalisation of the discretization coefficients. Multiple precision arithmetics library GMP is required. template<scalar S> void Tridiag<S>::tridiag_ch(const size_t alpha, Coef<S> &coef) { std::cout << "Tridiagonalisation, ch=" << alpha << "."; std::cout << " Using GMP version " << gmp_version << std::endl; const unsigned int mMAX = coef.em.max(alpha); std::cout << "mMAX=" << mMAX << std::endl; my_assert(coef.ep.max(alpha) == mMAX); my_assert(coef.u0p.max(alpha) == mMAX); my_assert(coef.u0m.max(alpha) == mMAX); mpf_set_default_prec(P.preccpp); std::cout << "Using precision of " << P.preccpp << " digits." << std::endl; // Constants my_mpf mpZERO; // Temporary MP variables my_mpf temp, tempsq, sum; my_mpf mpxi; // xi my_mpf xi2; // xi^2 my_mpf mpzeta; // zeta my_mpf xi_prev, xi2_prev; // values in previous iteration vmpf up(mMAX + 1); vmpf up_prev(mMAX + 1); vmpf up_prev2(mMAX + 1); vmpf um(mMAX + 1); vmpf um_prev(mMAX + 1); vmpf um_prev2(mMAX + 1); vmpf ep1(mMAX + 1); vmpf em1(mMAX + 1); vmpf ep2(mMAX + 1); vmpf em2(mMAX + 1); for (unsigned int m = 0; m <= mMAX; m++) { // Only real parameters are supported in this code [8.10.2009] mpf_set_d(up_prev[m], real_part_with_check(coef.u0p(m, alpha))); mpf_set_d(um_prev[m], real_part_with_check(coef.u0m(m, alpha))); mpf_set_d(ep1[m], real_part_with_check(coef.ep(m, alpha))); mpf_set_d(em1[m], real_part_with_check(coef.em(m, alpha))); mpf_mul(ep2[m], ep1[m], ep1[m]); mpf_mul(em2[m], em1[m], em1[m]); } fix_norm(up_prev, um_prev, mMAX); for (unsigned int n = 0; n <= Nmax; n++) { // Calculate zeta_n, xi2_n and xi_n mpf_set(mpzeta, mpZERO); mpf_set(xi2, mpZERO); for (unsigned int m = 0; m <= mMAX; m++) { // up_prev = u^+_{n,m} mpf_mul(tempsq, up_prev[m], up_prev[m]); mpf_mul(temp, tempsq, ep2[m]); mpf_add(xi2, xi2, temp); mpf_mul(temp, tempsq, ep1[m]); mpf_add(mpzeta, mpzeta, temp); // um_prev = u^-_{n,m} mpf_mul(tempsq, um_prev[m], um_prev[m]); mpf_mul(temp, tempsq, em2[m]); mpf_add(xi2, xi2, temp); mpf_mul(temp, tempsq, em1[m]); mpf_sub(mpzeta, mpzeta, temp); } // subtract xi^2_{n-1} mpf_sub(xi2, xi2, xi2_prev); // subtract zeta^2_n mpf_mul(tempsq, mpzeta, mpzeta); mpf_sub(xi2, xi2, tempsq); mpf_sqrt(mpxi, xi2); // compute u_{n+1,m}, v_{n+1,m} for (unsigned int m = 0; m <= mMAX; m++) { // zeta=zeta_n mpf_sub(temp, ep1[m], mpzeta); // up_prev[m]=u_{n,m} mpf_mul(up[m], temp, up_prev[m]); // xi_prev=xi_{n-1}, up_prev2=u_{n-1,m} mpf_mul(temp, xi_prev, up_prev2[m]); mpf_sub(up[m], up[m], temp); // xi=xi_n mpf_div(up[m], up[m], mpxi); mpf_neg(temp, em1[m]); mpf_sub(temp, temp, mpzeta); mpf_mul(um[m], temp, um_prev[m]); mpf_mul(temp, xi_prev, um_prev2[m]); mpf_sub(um[m], um[m], temp); mpf_div(um[m], um[m], mpxi); } fix_norm(up, um, mMAX); // Recalculate xi, xi2 mpf_set(sum, mpZERO); for (unsigned int m = 0; m <= mMAX; m++) { mpf_mul(temp, up[m], up_prev[m]); mpf_mul(temp, temp, ep1[m]); mpf_add(sum, sum, temp); mpf_mul(temp, um[m], um_prev[m]); mpf_mul(temp, temp, em1[m]); mpf_sub(sum, sum, temp); } mpf_set(mpxi, sum); mpf_mul(xi2, mpxi, mpxi); // Save results double dxi = mpf_get_d(mpxi); double dzeta = mpf_get_d(mpzeta); double coef_xi = dxi * P.bandrescale; double coef_zeta = dzeta * P.bandrescale; coef.xi.set(n, alpha, coef_xi); coef.zeta.set(n, alpha, coef_zeta); std::cout << " xi(" << n << ")=" << HIGHPREC(dxi) << std::endl; std::cout << "zeta(" << n << ")=" << HIGHPREC(dzeta) << std::endl; // Store results from previous iteration mpf_set(xi_prev, mpxi); mpf_set(xi2_prev, xi2); for (unsigned int m = 0; m <= mMAX; m++) { mpf_set(um_prev2[m], um_prev[m]); mpf_set(up_prev2[m], up_prev[m]); mpf_set(um_prev[m], um[m]); mpf_set(up_prev[m], up[m]); } } } } // namespace #endif // _tridiag_hpp_
5,364
C++
.h
156
29.762821
113
0.588235
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,663
dmnrg.hpp
rokzitko_nrgljubljana/c++/dmnrg.hpp
// dmnrg.h - Density-matrix NRG // Copyright (C) 2009-2021 Rok Zitko #ifndef _dmnrg_hpp_ #define _dmnrg_hpp_ #include <memory> #include <fstream> #include <iomanip> #include <stdexcept> #include <string> #include <cmath> #include "operators.hpp" #include "symmetry.hpp" #include "step.hpp" #include "eigen.hpp" #include "params.hpp" #include "invar.hpp" #include "traits.hpp" #include "store.hpp" #include "time_mem.hpp" #include "stats.hpp" #include "numerics.hpp" #include <fmt/format.h> namespace NRG { // Check if the trace of the density matrix equals 'ref_value'. template<scalar S, typename MF> void check_trace_rho(const DensMatElements<S> &m, MF mult, const double ref_value = 1.0) { const auto tr = m.trace(mult); if (!num_equal(tr, ref_value)) throw std::runtime_error(fmt::format("check_trace_rho() failed, tr={}, ref_value={}", tr, ref_value)); } // Calculate rho_N, the density matrix at the last NRG iteration. It is // normalized to 1. Note: in CFS approach, we consider all states in the // last iteration to be "discarded". // For the details on the full Fock space approach see: // F. B. Anders, A. Schiller, Phys. Rev. Lett. 95, 196801 (2005). // F. B. Anders, A. Schiller, Phys. Rev. B 74, 245113 (2006). // R. Peters, Th. Pruschke, F. B. Anders, Phys. Rev. B 74, 245114 (2006). template<scalar S, typename MF> auto init_rho_impl(const Step &step, const DiagInfo<S> &diag, MF mult) { DensMatElements<S> rho; for (const auto &[I, eig]: diag) rho[I] = eig.diagonal_exp(step.scT()) / grand_canonical_Z(step.scT(), diag, mult); // NOTE: diagonal_exp() and grand_canonical_Z() both use the round-off-error corrected eigenvalues. check_trace_rho(rho, mult); return rho; } template<scalar S> auto init_rho(const Step &step, const DiagInfo<S> &diag_in, const Symmetry<S> *Sym, const Params &P) { if (P.project == ""s) { return init_rho_impl(step, diag_in, Sym->multfnc()); } else { const auto diag = Sym->project(diag_in, P.project); return init_rho_impl(step, diag, Sym->multfnc()); } } // Calculation of the contribution from subspace I1 of rhoN (density matrix at iteration N) to rhoNEW (density matrix // at iteration N-1) template<scalar S, typename Matrix = Matrix_traits<S>, typename t_coef = coef_traits<S>> void cdmI(const size_t i, // Subspace index const Invar &I1, // Quantum numbers corresponding to subspace i const Matrix &rhoN, // rho^N const Eigen<S> &diagI1, // contains U_{I1} Matrix &rhoNEW, // rho^{N-1} const size_t N, const t_coef factor, // multiplicative factor that accounts for multiplicity const Store<S> &store_all, const Params &P) { my_assert(i < P.combs); nrglog('D', "cdmI i=" << i << " I1=" << I1 << " factor=" << factor); // Range of indexes r and r' in matrix C^{QS,N}_{r,r'}, cf. Eq. (3.55) in my dissertation. const auto dim = size2(rhoNEW); // number of states taken into account in the density-matrix at *current* (Nth) stage (in subspace I1) const auto nromega = size2(rhoN); if (nromega == 0 || dim == 0) return; // continue only if connection exists // rmax (info[I1].rmax[i]) is the range of r in U^N_I1(omega|ri), only those states that we actually kept.. const auto rmax = store_all[N].at(I1).rmax.rmax(i); if (rmax == 0) return; // rmax can be zero in the case a subspace has been completely truncated my_assert(rmax == dim); // Otherwise, rmax must equal dim // Check range of omega: do the dimensions of C^N_I1(omega omega') and U^N_I1(omega|r1) match? my_assert(nromega <= diagI1.getnrstored()); const auto U = diagI1.vectors.submatrix_const({0, nromega}, store_all[N].at(I1).rmax.part(i)); // YYY: Ublock ?? rotate<S>(rhoNEW, factor, U, rhoN); } // Calculation of the shell-N REDUCED DENSITY MATRICES: Calculate rho at previous iteration (N-1) from rho // at the current iteration (N, rho) template<scalar S> auto calc_densitymatrix_iterN(const DiagInfo<S> &diag, const DensMatElements<S> &rho, const size_t N, const Store<S> &store_all, const Symmetry<S> *Sym, const Params &P) { nrglog('D', "calc_densitymatrix_iterN N=" << N); DensMatElements<S> rhoPrev; for (const auto &[I, dimsub] : store_all[N - 1]) { // loop over all subspaces at *previous* iteration const auto dim = dimsub.kept(); rhoPrev[I] = zero_matrix<S>(dim); if (dim == 0) continue; const auto ns = Sym->new_subspaces(I); for (const auto &[i, sub] : ns | ranges::views::enumerate) { const auto x = rho.find(sub); const auto y = diag.find(sub); if (x != rho.end() && y != diag.end()) cdmI(i, sub, x->second, y->second, rhoPrev[I], N, double(Sym->mult(sub)) / double(Sym->mult(I)), store_all, P); } } return rhoPrev; } // Returns true if all the required density matrices are already saved on the disk. inline bool already_computed(const std::string &prefix, const Params &P) { for (auto N = P.Nmax - 1; N > P.Ninit; N--) { const std::string fn = P.workdir->rhofn(N-1, prefix); // note the minus 1 if (!file_exists(fn)) { std::cout << fn << " not found. Computing." << std::endl; return false; } } return true; } // calc_densitymatrix() is called prior to starting the NRG procedure for the second time. Here we calculate the // shell-N density matrices for all iteration steps. template<scalar S> void calc_densitymatrix(DensMatElements<S> &rho, const Store<S> &store_all, const Symmetry<S> *Sym, MemTime &mt, const Params &P, const std::string filename = fn_rho) { if (P.resume && already_computed(filename, P)) return; check_trace_rho(rho, Sym->multfnc()); // Must be 1. if (P.ZBW()) return; const auto section_timing = mt.time_it("DM"); for (size_t N = P.Nmax - 1; N > P.Ninit; N--) { std::cout << "[DM] " << N << std::endl; const DiagInfo<S> diag_loaded(N, P); auto rhoPrev = calc_densitymatrix_iterN(diag_loaded, rho, N, store_all, Sym, P); // need store_all for backiteration! check_trace_rho(rhoPrev, Sym->multfnc()); // Make sure rho is normalized to 1. rhoPrev.save(N-1, P, filename); rho.swap(rhoPrev); } } // ****************** Calculation of the FULL REDUCED DENSITY MATIRICES // Calculate rho(N), the shell-N density matrix, computed using // the discarded states at shell N. // Must be called AFTER calc_ZnD(). // Called fron nrg.cc immediately after the first NRG run (with N=Nmax-1), // and also from calc_fulldensity_iterN (with lower N). // A. Weichselbaum, J. von Delft, Phys. Rev. Lett. 99, 076402 (2007) // T. A. Costi, V. Zlatic, Phys. Rev. B 81, 235127 (2010) // H. Zhang, X. C. Xie, Q. Sun, Phys. Rev. B 82, 075111 (2010) template<scalar S, typename MF> DensMatElements<S> init_rho_FDM(const size_t N, const Store<S> &store, const Stats<S> &stats, MF mult, const double T) { DensMatElements<S> rhoFDM; for (const auto &[I, ds] : store[N]) { rhoFDM[I] = zero_matrix<S>(ds.max()); if (stats.ZnDNd[N] != 0.0) for (const auto i: ds.all()) rhoFDM[I](i, i) = exp(-ds.eig.values.abs_zero(i) / T) * stats.wn[N] / stats.ZnDNd[N]; } if (stats.wn[N] != 0.0) { // note: wn \propto ZnDNd, so this is the same condition as above // Trace should be equal to the total weight of the shell-N contribution to the FDM. const auto tr = rhoFDM.trace(mult); const auto diff = (tr - stats.wn[N]) / stats.wn[N]; // relative error if (!num_equal(diff, 0.0, 1e-8)) my_assert(stats.wn[N] < 1e-12); // OK if small enough overall } return rhoFDM; } template<scalar S> auto calc_fulldensitymatrix_iterN(const Step &step, // only required for step::last() const DiagInfo<S> &diag, const DensMatElements<S> &rhoFDM, // input const size_t N, const Store<S> &store, const Store<S> &store_all, const Stats<S> &stats, const Symmetry<S> *Sym, const Params &P) { nrglog('D', "calc_fulldensitymatrix_iterN N=" << N); DensMatElements<S> rhoDD; DensMatElements<S> rhoFDMPrev; if (!step.last(N)) rhoDD = init_rho_FDM(N, store, stats, Sym->multfnc(), P.T); // store here! for (const auto &[I, ds] : store_all[N - 1]) { // loop over all subspaces at *previous* iteration, hence store_all here const auto subs = Sym->new_subspaces(I); const auto dim = ds.kept(); rhoFDMPrev[I] = zero_matrix<S>(dim); if (!dim) continue; for (const auto i : Sym->combs()) { const auto sub = subs[i]; // DM construction for non-Abelian symmetries: must include the ratio of multiplicities as a coefficient. const auto coef = double(Sym->mult(sub)) / double(Sym->mult(I)); // Contribution from the KK sector. const auto x1 = rhoFDM.find(sub); const auto y = diag.find(sub); if (x1 != rhoFDM.end() && y != diag.end()) cdmI(i, sub, x1->second, y->second, rhoFDMPrev[I], N, coef, store_all, P); // Contribution from the DD sector. rhoDD -> rhoFDMPrev if (!step.last(N)) if (const auto x2 = rhoDD.find(sub); x2 !=rhoDD.end() && y != diag.end()) cdmI(i, sub, x2->second, y->second, rhoFDMPrev[I], N, coef, store_all, P); // (Exception: for the N-1 iteration, the rhoPrev is already initialized with the DD sector of the last iteration.) } } // over combinations } // over subspaces return rhoFDMPrev; } template<scalar S> void calc_fulldensitymatrix(const Step &step, DensMatElements<S> &rhoFDM, const Store<S> &store, const Store<S> &store_all, const Stats<S> &stats, const Symmetry<S> *Sym, MemTime &mt, const Params &P, const std::string &filename = fn_rhoFDM) { if (P.resume && already_computed(filename, P)) return; if (P.ZBW()) return; const auto section_timing = mt.time_it("FDM"); for (size_t N = P.Nmax - 1; N > P.Ninit; N--) { std::cout << "[FDM] " << N << std::endl; const DiagInfo<S> diag_loaded(N, P); // = load_and_project(N, Sym, P); auto rhoFDMPrev = calc_fulldensitymatrix_iterN(step, diag_loaded, rhoFDM, N, store, store_all, stats, Sym, P); const auto tr = rhoFDMPrev.trace(Sym->multfnc()); const auto expected = std::accumulate(stats.wn.begin() + N, stats.wn.begin() + P.Nmax, 0.0); const auto diff = (tr - expected) / expected; nrglog('w', "tr[rhoFDM(" << N << ")]=" << tr << " sum(wn)=" << expected << " diff=" << diff); my_assert(num_equal(diff, 0.0)); rhoFDMPrev.save(N-1, P, filename); rhoFDM.swap(rhoFDMPrev); } } } // namespace #endif
10,687
C++
.h
216
44.893519
146
0.644408
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,664
store.hpp
rokzitko_nrgljubljana/c++/store.hpp
#ifndef _store_hpp_ #define _store_hpp_ #include <vector> #include <map> #include <iostream> #include <fstream> #include <string> #include <boost/range/irange.hpp> #include <boost/range/adaptor/map.hpp> #include "invar.hpp" #include "eigen.hpp" #include "subspaces.hpp" #include "h5.hpp" namespace NRG { // Container for all information which needs to be gathered in each invariant subspace. // Required for the density-matrix construction. template<scalar S> struct Sub { Eigen<S> eig; SubspaceDimensions rmax; bool is_last = false; [[nodiscard]] auto kept() const { return eig.getnrkept(); } [[nodiscard]] auto total() const { return eig.getdim(); } [[nodiscard]] auto min() const { return is_last ? 0 : kept(); } // min(), max() return the range of D states to be summed over in FDM [[nodiscard]] auto max() const { return total(); } [[nodiscard]] auto all() const { return boost::irange(min(), max()); } void h5save(H5Easy::File &fd, const std::string &name) const { h5_dump_scalar(fd, name + "/kept", kept()); h5_dump_scalar(fd, name + "/total", total()); h5_dump_scalar(fd, name + "/min", min()); h5_dump_scalar(fd, name + "/max", max()); } }; template<scalar S> class Subs : public std::map<Invar, Sub<S>> { public: Subs() = default; Subs(const DiagInfo<S> &diag, const SubspaceStructure &substruct, const bool last) { for (const auto &[I, eig]: diag) (*this)[I] = { eig, substruct.at_or_null(I), last }; } void h5save(H5Easy::File &fd, const std::string &name) const { const std::vector<int> dummy = {1}; for (const auto &I : *this | boost::adaptors::map_keys) H5Easy::dump(fd, name+"/list/" + I.name(), dummy); for (const auto &[I, sub]: *this) sub.h5save(fd, name + "/data/" + I.name()); } }; template<scalar S> class Store : public std::vector<Subs<S>> { public: const size_t Nbegin, Nend; // range of valid indexes Store(const size_t Nbegin, const size_t Nend) : Nbegin(Nbegin), Nend(Nend) { this->resize(Nend ? Nend : 1); } // at least 1 for ZBW auto Nall() const { return boost::irange(Nbegin, Nend); } void dump_abs_G(std::ostream &F) const { for (const auto N : Nall()) { F << std::endl << "===== Iteration number: " << N+1 << std::endl; // mind the shift by 1 for (const auto &[I, ds]: this->at(N)) F << "Subspace: " << I << std::endl << (ds.eig.values.all_abs_G() | ranges::to_vector) << std::endl; } } void dump_all_absolute_energies(const std::string &filename = "absolute_energies.dat"s) { std::ofstream F(filename); this->dump_abs_G(F); } // Save a dump of all subspaces, with dimension info, etc. void dump_subspaces(const std::string &filename = "subspaces.dat"s) const { std::ofstream O(filename); for (const auto N : Nall()) { O << "Iteration " << N << std::endl; O << "len_dm=" << this->at(N).size() << std::endl; for (const auto &[I, sub] : this->at(N)) O << "I=" << I << " kept=" << sub.kept() << " total=" << sub.total() << std::endl; O << std::endl; } } void shift_abs_energies(const double GS_energy) { for (const auto N : Nall()) for (auto &ds : this->at(N) | boost::adaptors::map_values) ds.eig.subtract_GS_energy(GS_energy); } void h5save(H5Easy::File &fd, const std::string &name) const { const std::vector range = {Nbegin, Nend}; H5Easy::dump(fd, name + "/range", range); for (const auto N : Nall()) this->at(N).h5save(fd, name + "/" + std::to_string(N+1)); // note the shift by 1 } }; } // namespace #endif
3,628
C++
.h
91
35.758242
135
0.618197
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,665
misc.hpp
rokzitko_nrgljubljana/c++/misc.hpp
// misc.h - Miscelaneous functions // Copyright (C) 2005-2022 Rok Zitko #ifndef _misc_hpp_ #define _misc_hpp_ #include <stdexcept> #include <string> #include <iterator> #include <optional> #include <deque> #include <vector> #include <set> #include <map> #include <fstream> #include <iostream> #include <sstream> #include <cstring> // stdcasecmp #include <exception> #include <cstdio> // stdout #include <unistd.h> // isatyy #include <boost/range/irange.hpp> #include <boost/range/adaptor/map.hpp> #include <fmt/format.h> #include "basicio.hpp" #include "portabil.hpp" #include <Eigen/Dense> namespace NRG { inline bool is_stdout_redirected() { return !isatty(fileno(stdout)); } inline auto file_exists(const char *fileName) { std::ifstream file(fileName); return file.good(); } inline auto contains(const std::string &str, const char c) { return str.find(c) != std::string::npos; } // x raised to the power of n template<typename T, typename N> constexpr inline auto intpow(const T x, const N n) { assert(n >= 0); T res = 1; for (N i = 1; i <= n; i++) res *= x; return res; } template<typename T> auto get_back(T &d) { // usually T is list or deque if (d.empty()) throw std::runtime_error("Error: List empty! File: "s + (std::string)__FILE__ + " Line: "s + std::to_string(__LINE__)); auto i = d.back(); d.pop_back(); return i; } template<typename T> auto get_front(T &d) { if (d.empty()) throw std::runtime_error("Error: List empty! File: "s + (std::string)__FILE__ + " Line: "s + std::to_string(__LINE__)); auto i = d.front(); d.pop_front(); return i; } // switch statement with three cases template <typename T, typename T1> inline T switch3(const T1 x0, const T1 x1, const T y1, const T1 x2, const T y2, const T1 x3, const T y3) { if (x0 == x1) return y1; if (x0 == x2) return y2; if (x0 == x3) return y3; throw std::runtime_error("Error: No match! File: "s + (std::string)__FILE__ + " Line: "s + std::to_string(__LINE__)); } // Get next line from stream F, skipping empty lines and comments. inline std::optional<std::string> nextline(std::istream &F) { std::string line; while (F) { std::getline(F, line); if (!F) return std::nullopt; // bail out if (line.length() == 0) continue; // skip empty lines if (line[0] == '#') continue; // skip comment lines return line; } return std::nullopt; // error } inline std::string strip_trailing_whitespace(const std::string &in) { auto s(in); auto it = s.rbegin(); while (it != s.rend() && std::isspace(*it)) { s.erase(--it.base()); it = s.rbegin(); } return s; } // Parse a block of "keyword=value" lines. inline auto parse_block(std::istream &F) { std::map<std::string, std::string> parsed_params; while (F) { if (const auto l = nextline(F)) { const auto line = l.value(); if (line[0] == '[') // new block, we're done! break; const auto pos_eq = line.find_first_of('='); if (pos_eq == std::string::npos) // not found continue; const auto keyword = line.substr(0, pos_eq); // Important: Strip trailing whitespace to avoid hard-to-detect problems! const auto value = strip_trailing_whitespace(line.substr(pos_eq+1)); if (parsed_params.count(keyword)) throw std::runtime_error("Duplicate keyword: " + keyword); parsed_params[keyword] = value; } } return parsed_params; } // Locate block [name] in a file stream. Returns true if succeessful. inline bool find_block(std::istream &F, const std::string &s) { std::string target = "[" + s + "]"; F.clear(); F.seekg(0, std::ios::beg); while (F) { if (auto l = nextline(F)) if(target.compare(l.value()) == 0) { return true; } } return false; } // Parse the [param] block of an input file. inline auto parser(const std::string &filename, const std::string &block) { auto F = safe_open_for_reading(filename); if (!find_block(F, block)) throw std::runtime_error(fmt::format("Block {} not found in input file {}.", block, filename)); return parse_block(F); } // Simple tokenizer class class string_token { private: std::istringstream iss; std::set<std::string> l; public: explicit string_token(const std::string &s) : iss(s), l(std::istream_iterator<std::string>(iss), std::istream_iterator<std::string>()) {}; [[nodiscard]] auto find(const std::string &x) const { return l.count(x) != 0; } }; // Skip comment lines in the input stream 'f'. inline void skip_comments(std::istream &f, const bool output = false, std::ostream &OUT = std::cout) { while (f) { const auto ch = f.peek(); // skip white space and line breaks if (ch == ' ' || ch == '\t' || ch == '\n') { f.ignore(); continue; } // break the loop if a non-comment like found if (ch != '#') break; f.ignore(); // ignore '#' std::string line; std::getline(f, line); if (output) OUT << ">> " << line << std::endl; } } // Sort according to the first component of the pair. Second component is ignored (unlike in the default sort // function). struct sortfirst { template <typename T1, typename T2> constexpr bool operator()(const std::pair<T1, T2> &xy1, const std::pair<T1, T2> &xy2) { return xy1.first < xy2.first; } }; template<typename T> auto range0(const T b) { return boost::irange(T{0}, b); } template<typename T> auto range1(const T b) { return boost::irange(T{1}, b+1); } // Returns true if the data file contains complex values inline bool complex_data(const std::string &filename = "data") { std::ifstream F(filename); if (!F) throw std::runtime_error("Can't load initial data."); std::string l; std::getline(F, l); std::getline(F, l); std::getline(F, l); // third line const auto pos = l.find("COMPLEX"); return pos != std::string::npos; } template<typename K, typename V> auto vector_of_keys(const std::map<K,V> &container) { std::vector<K> keys; for (const auto &k: container | boost::adaptors::map_keys) keys.push_back(k); return keys; } inline double atof(const std::string &s) { return std::atof(s.c_str()); } inline int atoi(const std::string &s) { return std::atoi(s.c_str()); } // Read data from stream F. template <typename T1, typename T2> std::vector<std::pair<T1, T2>> readtable(const std::string &filename, const bool verbose = false) { auto F = safe_open_for_reading(filename); std::vector<std::pair<T1, T2>> v; while (F) { skip_comments(F); const auto x = read_one<T1>(F); const auto y = read_one<T2>(F); if (F.fail()) break; assert(std::isfinite(x) && std::isfinite(y)); v.push_back(std::make_pair(x, y)); } if (verbose) std::cout << v.size() << " lines read." << std::endl; return v; } template <typename T1, typename T2> void writetable(const std::vector<std::pair<T1, T2>> &re, std::string filename, const int output_precision = 16) { auto F = safe_open(filename); F << std::setprecision(output_precision); for (const auto & [x, y] : re) F << x << " " << y << std::endl; } inline std::vector<std::string> split (const std::string &s, char delim) { std::vector<std::string> result; std::stringstream ss (s); std::string item; while (getline (ss, item, delim)) { result.push_back (item); } return result; } } // namespace #endif
7,363
C++
.h
214
31.369159
157
0.649803
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,666
sym-QSZLR-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-QSZLR-impl.hpp
namespace NRG { template<typename SC> class SymmetryQSZLR : public SymFieldLR<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryQSZLR(const Params &P) : SymFieldLR<SC>(P, std::vector{"<Sz^2>", "<Sz>", "<Q>", "<Q^2>"}, Invar(0,0,1)) { initInvar({ {"Q", additive}, // charge {"SSZ", additive}, // spin projection {"P", multiplicative} // parity }); } bool check_SPIN(const Invar &I1, const Invar &Ip, const int &SPIN) const override { // The spin projection of the operator is defined by the difference // in Sz of both the invariant subspaces. const int ssz1 = I1.get("SSZ"); const int sszp = Ip.get("SSZ"); const int sszop = ssz1 - sszp; return sszop == SPIN; } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return u1_equality(I1.get("Q"), I2.get("Q"), I3.get("Q")) && u1_equality(I1.get("SSZ"), I2.get("SSZ"), I3.get("SSZ")) && z2_equality(I1.get("P"), I2.get("P"), I3.get("P")); } void load() override { my_assert(P.channels == 2); #include "qszlr/qszlr-2ch-In2.dat" #include "qszlr/qszlr-2ch-QN.dat" } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trSZ, trSZ2, trQ, trQ2; // Tr[S_z], Tr[(S_z)^2], etc. for (const auto &[I, eig]: diag) { const int ssz = I.get("SSZ"); const int q = I.get("Q"); const double sumZ = this->calculate_Z(I, eig, factor); trSZ += sumZ * SZ(ssz); trSZ2 += sumZ * pow(SZ(ssz),2); trQ += sumZ * q; trQ2 += sumZ * pow(q,2); } stats.td.set("<Sz^2>", trSZ2 / stats.Z); stats.td.set("<Sz>", trSZ / stats.Z); stats.td.set("<Q>", trQ / stats.Z); stats.td.set("<Q^2>", trQ2 / stats.Z); } DECL; }; #undef OFFDIAG #define OFFDIAG(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xi(step.N(), ch), h, qq, In, opch) #undef DIAG #define DIAG(i, ch, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, ch), h, qq) template<typename SC> void SymmetryQSZLR<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { #include "qszlr/qszlr-2ch-offdiag.dat" #include "qszlr/qszlr-2ch-diag.dat" } } #include "nrg-recalc-QSZLR.hpp"
2,574
C++
.h
63
36.746032
182
0.62585
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,667
sym-P-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-P-impl.hpp
namespace NRG { template<typename SC> class SymmetryP : public Symmetry<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryP(const Params &P) : Symmetry<SC>(P, std::vector<std::string>{}, Invar(1)) { initInvar({ {"P", multiplicative} // fermion parity }); } void load() override { switch (P.channels) { case 1: #include "p/p-1ch-In2.dat" #include "p/p-1ch-QN.dat" break; case 2: #include "p/p-2ch-In2.dat" #include "p/p-2ch-QN.dat" break; default: my_assert_not_reached(); } } void make_matrix_polarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const; void make_matrix_nonpolarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const; void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override {}; bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return z2_equality(I1.get("P"), I2.get("P"), I3.get("P")); } DECL; HAS_DOUBLET; HAS_GLOBAL; }; #undef OFFDIAG_CR_DO #undef OFFDIAG_CR_UP #undef OFFDIAG_AN_DO #undef OFFDIAG_AN_UP #define OFFDIAG_CR_DO(i, j, ch, factor) offdiag_function(step, i, j, ch, 0, t_matel(factor) * coef.xi(step.N(), ch), h, qq, In, opch) #define OFFDIAG_CR_UP(i, j, ch, factor) offdiag_function(step, i, j, ch, 1, t_matel(factor) * coef.xi(step.N(), ch), h, qq, In, opch) #define OFFDIAG_AN_DO(i, j, ch, factor) offdiag_function(step, i, j, ch, 2, t_matel(factor) * coef.xi(step.N(), ch), h, qq, In, opch) #define OFFDIAG_AN_UP(i, j, ch, factor) offdiag_function(step, i, j, ch, 3, t_matel(factor) * coef.xi(step.N(), ch), h, qq, In, opch) #undef ISOSPINX #define ISOSPINX(i, j, ch, factor) this->diag_offdiag_function(step, i, j, t_matel(factor) * 2.0 * coef.delta(step.N() + 1, ch), h, qq) #undef DIAG #define DIAG(i, ch, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, ch), h, qq) template<typename SC> void SymmetryP<SC>::make_matrix_nonpolarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { switch (P.channels) { case 1: #include "p/p-1ch-offdiag-CR-UP.dat" #include "p/p-1ch-offdiag-CR-DO.dat" #include "p/p-1ch-offdiag-AN-UP.dat" #include "p/p-1ch-offdiag-AN-DO.dat" #include "p/p-1ch-diag.dat" #include "p/p-1ch-Ixtot.dat" break; case 2: #include "p/p-2ch-offdiag-CR-UP.dat" #include "p/p-2ch-offdiag-CR-DO.dat" #include "p/p-2ch-offdiag-AN-UP.dat" #include "p/p-2ch-offdiag-AN-DO.dat" #include "p/p-2ch-diag.dat" #include "p/p-2ch-Ixtot.dat" break; default: my_assert_not_reached(); } } #undef OFFDIAG_CR_DO #undef OFFDIAG_CR_UP #undef OFFDIAG_AN_DO #undef OFFDIAG_AN_UP #define OFFDIAG_CR_DO(i, j, ch, factor) offdiag_function(step, i, j, ch, 0, t_matel(factor) * coef.xiDOWN(step.N(), ch), h, qq, In, opch) #define OFFDIAG_CR_UP(i, j, ch, factor) offdiag_function(step, i, j, ch, 1, t_matel(factor) * coef.xiUP(step.N(), ch), h, qq, In, opch) #define OFFDIAG_AN_DO(i, j, ch, factor) offdiag_function(step, i, j, ch, 2, t_matel(factor) * coef.xiDOWN(step.N(), ch), h, qq, In, opch) #define OFFDIAG_AN_UP(i, j, ch, factor) offdiag_function(step, i, j, ch, 3, t_matel(factor) * coef.xiUP(step.N(), ch), h, qq, In, opch) #undef ISOSPINX #define ISOSPINX(i, j, ch, factor) this->diag_offdiag_function(step, i, j, t_matel(factor) * 2.0 * coef.delta(step.N() + 1, ch), h, qq) #undef DIAG_UP #define DIAG_UP(i, j, ch, number) this->diag_function(step, i, number, coef.zetaUP(step.N() + 1, ch), h, qq) #undef DIAG_DOWN #define DIAG_DOWN(i, j, ch, number) this->diag_function(step, i, number, coef.zetaDOWN(step.N() + 1, ch), h, qq) template<typename SC> void SymmetryP<SC>::make_matrix_polarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { switch (P.channels) { case 1: #include "p/p-1ch-offdiag-CR-UP.dat" #include "p/p-1ch-offdiag-CR-DO.dat" #include "p/p-1ch-offdiag-AN-UP.dat" #include "p/p-1ch-offdiag-AN-DO.dat" #include "p/p-1ch-diag-UP.dat" #include "p/p-1ch-diag-DOWN.dat" #include "p/p-1ch-Ixtot.dat" break; case 2: #include "p/p-2ch-offdiag-CR-UP.dat" #include "p/p-2ch-offdiag-CR-DO.dat" #include "p/p-2ch-offdiag-AN-UP.dat" #include "p/p-2ch-offdiag-AN-DO.dat" #include "p/p-2ch-diag-UP.dat" #include "p/p-2ch-diag-DOWN.dat" #include "p/p-2ch-Ixtot.dat" break; default: my_assert_not_reached(); } } template<typename SC> void SymmetryP<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { if (P.polarized) { make_matrix_polarized(h, step, qq, I, In, opch, coef); } else { make_matrix_nonpolarized(h, step, qq, I, In, opch, coef); } } } #include "nrg-recalc-P.hpp"
5,264
C++
.h
118
41.974576
191
0.681171
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,668
sym-SU2.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-SU2.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_SU2(const Params &P); }
96
C++
.h
4
22.5
53
0.744444
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,669
sym-SPU1LR-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-SPU1LR-impl.hpp
namespace NRG { template<typename SC> class SymmetrySPU1LR : public SymFieldLR<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetrySPU1LR(const Params &P) : SymFieldLR<SC>(P, std::vector{"<Sz^2>", "<Sz>"}, Invar(0,1)) { initInvar({ {"SSZ", additive}, // spin projection {"P", multiplicative} // parity }); } bool check_SPIN(const Invar &I1, const Invar &Ip, const int &SPIN) const override { // The spin projection of the operator is defined by the difference // in Sz of both the invariant subspaces. int ssz1 = I1.get("SSZ"); int sszp = Ip.get("SSZ"); int sszop = ssz1 - sszp; return sszop == SPIN; } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return u1_equality(I1.get("SSZ"), I2.get("SSZ"), I3.get("SSZ")) && z2_equality(I1.get("P"), I2.get("P"), I3.get("P")); } void load() override { switch (P.channels) { case 1: #include "spu1lr/spu1lr-1ch-In2.dat" #include "spu1lr/spu1lr-1ch-QN.dat" break; case 2: #include "spu1lr/spu1lr-2ch-In2.dat" #include "spu1lr/spu1lr-2ch-QN.dat" break; default: my_assert_not_reached(); } } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trSZ, trSZ2; // Tr[S_z], Tr[S_z^2] for (const auto &[I, eig]: diag) { const int ssz = I.get("SSZ"); const double sumZ = this->calculate_Z(I, eig, factor); trSZ += sumZ * SZ(ssz); trSZ2 += sumZ * pow(SZ(ssz),2); } stats.td.set("<Sz^2>", trSZ2 / stats.Z); stats.td.set("<Sz>", trSZ / stats.Z); } DECL; HAS_DOUBLET; HAS_TRIPLET; HAS_GLOBAL; }; #undef ISOSPINX #define ISOSPINX(i, j, ch, factor) this->diag_offdiag_function(step, i, j, t_matel(factor) * 2.0 * coef.delta(step.N() + 1, ch), h, qq) #undef ANOMALOUS #define ANOMALOUS(i, j, ch, factor) offdiag_function(step, i, j, ch, 0, t_matel(factor) * coef.kappa(step.N(), ch), h, qq, In, opch) #undef OFFDIAG #define OFFDIAG(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xi(step.N(), ch), h, qq, In, opch) #undef DIAG #define DIAG(i, ch, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, ch), h, qq) template<typename SC> void SymmetrySPU1LR<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { switch (P.channels) { case 1: #include "spu1lr/spu1lr-1ch-offdiag.dat" #include "spu1lr/spu1lr-1ch-anomalous.dat" #include "spu1lr/spu1lr-1ch-diag.dat" #include "spu1lr/spu1lr-1ch-isospinx.dat" break; case 2: #include "spu1lr/spu1lr-2ch-diag.dat" #include "spu1lr/spu1lr-2ch-offdiag.dat" #include "spu1lr/spu1lr-2ch-anomalous.dat" #include "spu1lr/spu1lr-2ch-isospinx.dat" break; default: my_assert_not_reached(); } } } #include "nrg-recalc-SPU1LR.hpp"
3,138
C++
.h
84
33.630952
183
0.660526
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,670
sym-SL3.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-SL3.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_SL3(const Params &P); }
96
C++
.h
4
22.5
53
0.744444
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,671
sym-QSZLR.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-QSZLR.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_QSZLR(const Params &P); }
98
C++
.h
4
23
55
0.75
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,672
sym-DBLISOSZ-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-DBLISOSZ-impl.hpp
namespace NRG { template<typename SC> class SymmetryDBLISOSZ : public SymField<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryDBLISOSZ(const Params &P) : SymField<SC>(P, std::vector{"<Sz^2>", "<Sz>", "<Q1^2>", "<Q2^2>"}, Invar(1, 1, 0)) { initInvar({ {"II1", additive}, // isospin 1 {"II2", additive}, // isospin 2 {"SSZ", additive} // spin projection }); } bool check_SPIN(const Invar &I1, const Invar &Ip, const int &SPIN) const override { // The spin projection of the operator is defined by the difference // in Sz of both the invariant subspaces. int ssz1 = I1.get("SSZ"); int sszp = Ip.get("SSZ"); int sszop = ssz1 - sszp; return sszop == SPIN; } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return su2_triangle_inequality(I1.get("II1"), I2.get("II1"), I3.get("II1")) && su2_triangle_inequality(I1.get("II2"), I2.get("II2"), I3.get("II2")) && u1_equality(I1.get("SSZ"), I2.get("SSZ"), I3.get("SSZ")); } // Multiplicity of the I=(II1,II2) subspace = (2I1+1)(2I2+1) = II1 II2. size_t mult(const Invar &I) const override { return I.get("II1") * I.get("II2"); } // We always must have I1 >= 0 and I2 >= 0. bool Invar_allowed(const Invar &I) const override { return (I.get("II1") > 0) && (I.get("II2") > 0); } // This function supports isospin doublets with respect to either first or the // second isospin quantum number. Since the doublet operators are either doublets // with respect to one or another, this function should always return a non-zero // value! double specdens_factor(const Invar &Ip, const Invar &I1) const override { check_abs_diff(Ip, I1, "SSZ", 1); const int ii1p = Ip.get("II1"); const int ii11 = I1.get("II1"); const int ii2p = Ip.get("II2"); const int ii21 = I1.get("II2"); if (abs(ii11 - ii1p) == 1) { const double isofactor1 = (ii11 == ii1p + 1 ? ISO(ii1p) + 1.0 : ISO(ii1p)); my_assert(ii2p == ii21); my_assert(ii2p >= 1); const double isofactor2 = ii2p; // multiplicity wrt 2nd isospin quantum number return isofactor1 * isofactor2; } if (abs(ii21 - ii2p) == 1) { const double isofactor1 = (ii21 == ii2p + 1 ? ISO(ii2p) + 1.0 : ISO(ii2p)); my_assert(ii1p == ii11); my_assert(ii1p >= 1); const double isofactor2 = ii1p; return isofactor1 * isofactor2; } my_assert_not_reached(); } void load() override { switch (P.channels) { case 2: #include "dblisosz/dblisosz-2ch-In2.dat" #include "dblisosz/dblisosz-2ch-QN.dat" break; default: my_assert_not_reached(); } } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { auto trSZ = 0.0, trSZ2 = 0.0; // Tr[S_z], Tr[S_z^2] auto trIZ12 = 0.0; // Tr[I1_z^2] auto trIZ22 = 0.0; // Tr[I2_z^2] for (const auto &[I, eig]: diag) { const int ii1 = I.get("II1"); const int ii2 = I.get("II2"); const int ssz = I.get("SSZ"); const auto sumZ = this->calculate_Z(I, eig, factor); trSZ += sumZ * SZ(ssz); trSZ2 += sumZ * pow(SZ(ssz),2); // isospin multiplicity contained in sumZ trIZ12 += sumZ * (ii1 * ii1 - 1) / 12.; trIZ22 += sumZ * (ii2 * ii2 - 1) / 12.; } stats.td.set("<Sz>", trSZ / stats.Z); stats.td.set("<Sz^2>", trSZ2 / stats.Z); stats.td.set("<Q1^2>", (4 * trIZ12) / stats.Z); stats.td.set("<Q2^2>", (4 * trIZ22) / stats.Z); } DECL; HAS_DOUBLET; HAS_GLOBAL; // HAS_TRIPLET; }; #undef OFFDIAG #define OFFDIAG(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xi(step.N(), ch), h, qq, In, opch) template<typename SC> void SymmetryDBLISOSZ<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { switch (P.channels) { case 2: #include "dblisosz/dblisosz-2ch-offdiag.dat" break; default: my_assert_not_reached(); } } } #include "nrg-recalc-DBLISOSZ.hpp"
4,319
C++
.h
104
36.788462
185
0.621519
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,673
nrg-recalc-ISO.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-ISO.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-ISO.cc.m4, not nrg-recalc-ISO.cc !!! // Quantum number dependant recalculation routines // Rok Zitko, rok.zitko@ijs.si, Feb 2006 // This file pertains to (I,S) subspaces namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } template<typename SC> MatrixElements<SC> SymmetryISO<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int ii1 = I1.get("II"); int ss1 = I1.get("SS"); Invar Ip; Ip = Invar(ii1 - 1, ss1 + 1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "iso/iso-1ch-doubletmp.dat" << ", Iop=" << Invar(2, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso/iso-1ch-doubletmp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "iso/iso-2ch-doubletmp.dat" << ", Iop=" << Invar(2, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso/iso-2ch-doubletmp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ii1-1, ss1-1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "iso/iso-1ch-doubletmm.dat" << ", Iop=" << Invar(2, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso/iso-1ch-doubletmm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "iso/iso-2ch-doubletmm.dat" << ", Iop=" << Invar(2, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso/iso-2ch-doubletmm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ii1+1, ss1+1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "iso/iso-1ch-doubletpp.dat" << ", Iop=" << Invar(2, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso/iso-1ch-doubletpp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "iso/iso-2ch-doubletpp.dat" << ", Iop=" << Invar(2, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso/iso-2ch-doubletpp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ii1+1, ss1-1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "iso/iso-1ch-doubletpm.dat" << ", Iop=" << Invar(2, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso/iso-1ch-doubletpm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "iso/iso-2ch-doubletpm.dat" << ", Iop=" << Invar(2, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso/iso-2ch-doubletpm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2)); } } } } break; default: my_assert_not_reached(); }; } return cnew; } template<typename SC> Opch<SC> SymmetryISO<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { Invar I1; // NOTE: ii,ss only couples to ii+-1,ss+-1 in general, even for // several channels. int iip = Ip.get("II"); int ssp = Ip.get("SS"); // NN is index n of f_n, the last site in the chain prior to adding // the new site (f_{n+1}). int NN = step.getnn(); I1 = Invar(iip + 1, ssp + 1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "iso/iso-1ch-spinup-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-1ch-spinup-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "iso/iso-2ch-spinup-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-2ch-spinup-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso/iso-2ch-spinup-isoupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-2ch-spinup-isoupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 3: { { nrglog('f', "RECALC_F(fn=" << "iso/iso-3ch-spinup-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-3ch-spinup-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso/iso-3ch-spinup-isoupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-3ch-spinup-isoupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso/iso-3ch-spinup-isoupc.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-3ch-spinup-isoupc.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } break; default: my_assert_not_reached(); }; I1 = Invar(iip+1, ssp-1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "iso/iso-1ch-spindown-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-1ch-spindown-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "iso/iso-2ch-spindown-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-2ch-spindown-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso/iso-2ch-spindown-isoupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-2ch-spindown-isoupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 3: { { nrglog('f', "RECALC_F(fn=" << "iso/iso-3ch-spindown-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-3ch-spindown-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso/iso-3ch-spindown-isoupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-3ch-spindown-isoupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso/iso-3ch-spindown-isoupc.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-3ch-spindown-isoupc.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } break; default: my_assert_not_reached(); }; I1 = Invar(iip-1, ssp+1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "iso/iso-1ch-spinup-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-1ch-spinup-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "iso/iso-2ch-spinup-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-2ch-spinup-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso/iso-2ch-spinup-isodownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-2ch-spinup-isodownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 3: { { nrglog('f', "RECALC_F(fn=" << "iso/iso-3ch-spinup-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-3ch-spinup-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso/iso-3ch-spinup-isodownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-3ch-spinup-isodownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso/iso-3ch-spinup-isodownc.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-3ch-spinup-isodownc.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } break; default: my_assert_not_reached(); }; I1 = Invar(iip-1, ssp-1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "iso/iso-1ch-spindown-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-1ch-spindown-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "iso/iso-2ch-spindown-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-2ch-spindown-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso/iso-2ch-spindown-isodownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-2ch-spindown-isodownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 3: { { nrglog('f', "RECALC_F(fn=" << "iso/iso-3ch-spindown-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-3ch-spindown-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso/iso-3ch-spindown-isodownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-3ch-spindown-isodownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso/iso-3ch-spindown-isodownc.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso/iso-3ch-spindown-isodownc.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } break; default: my_assert_not_reached(); }; } return opch; } template<typename SC> MatrixElements<SC> SymmetryISO<SC>::recalc_triplet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int ii1 = I1.get("II"); int ss1 = I1.get("SS"); Invar Ip; Ip = Invar(ii1, ss1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "iso/iso-1ch-triplets.dat" << ", Iop=" << Invar(1, 3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso/iso-1ch-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 3)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "iso/iso-2ch-triplets.dat" << ", Iop=" << Invar(1, 3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso/iso-2ch-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 3)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ii1, ss1+2); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "iso/iso-1ch-tripletp.dat" << ", Iop=" << Invar(1, 3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso/iso-1ch-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 3)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "iso/iso-2ch-tripletp.dat" << ", Iop=" << Invar(1, 3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso/iso-2ch-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 3)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ii1, ss1-2); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "iso/iso-1ch-tripletm.dat" << ", Iop=" << Invar(1, 3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso/iso-1ch-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 3)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "iso/iso-2ch-tripletm.dat" << ", Iop=" << Invar(1, 3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso/iso-2ch-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 3)); } } } } break; default: my_assert_not_reached(); }; } return cnew; } }
20,547
C++
.h
545
33.546789
116
0.582795
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,674
sym-QS.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-QS.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_QS(const Params &P); }
95
C++
.h
4
22.25
52
0.741573
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,675
sym-QST.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-QST.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_QST(const Params &P); }
96
C++
.h
4
22.5
53
0.744444
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,676
sym-ISOLR.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-ISOLR.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_ISOLR(const Params &P); template <typename S> std::unique_ptr<Symmetry<S>> mk_ISO2LR(const Params &P); }
178
C++
.h
6
28.166667
56
0.751479
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,677
sym-DBLSU2-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-DBLSU2-impl.hpp
namespace NRG { template<typename SC> class SymmetryDBLSU2 : public Symmetry<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryDBLSU2(const Params &P) : Symmetry<SC>(P, std::vector{"<Q1^2>", "<Q2^2>"}, Invar(1, 1)) { initInvar({ {"II1", additive}, // isospin 1 {"II2", additive}, // isospin 2 }); } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return su2_triangle_inequality(I1.get("II1"), I2.get("II1"), I3.get("II1")) && su2_triangle_inequality(I1.get("II2"), I2.get("II2"), I3.get("II2")); } // Multiplicity of the I=(II1,II2) subspace = (2I1+1)(2I2+1) = II1 II2. size_t mult(const Invar &I) const override { return I.get("II1") * I.get("II2"); } // We always must have I1 >= 0 and I2 >= 0. bool Invar_allowed(const Invar &I) const override { return (I.get("II1") > 0) && (I.get("II2") > 0); } // TO DO: support for the doublets wrt the second quantum number double specdens_factor(const Invar &Ip, const Invar &I1) const override { const int ii1p = Ip.get("II1"); const int ii11 = I1.get("II1"); my_assert(abs(ii11 - ii1p) == 1); const double isofactor = (ii11 == ii1p + 1 ? ISO(ii1p) + 1.0 : ISO(ii1p)); return isofactor; } void load() override { switch (P.channels) { case 2: #include "dblsu2/dblsu2-2ch-In2.dat" #include "dblsu2/dblsu2-2ch-QN.dat" break; default: my_assert_not_reached(); } } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trIZ12; // Tr[I1_z^2] bucket trIZ22; // Tr[I2_z^2] for (const auto &[I, eig]: diag) { const int ii1 = I.get("II1"); const int ii2 = I.get("II2"); const double sumZ = this->calculate_Z(I, eig, factor); trIZ12 += sumZ * (ii1 * ii1 - 1) / 12.; trIZ22 += sumZ * (ii2 * ii2 - 1) / 12.; } stats.td.set("<Q1^2>", (4 * trIZ12) / stats.Z); stats.td.set("<Q2^2>", (4 * trIZ22) / stats.Z); } DECL; HAS_DOUBLET; HAS_GLOBAL; }; // see sym-SU2.cc #undef OFFDIAG_1 #define OFFDIAG_1(i, j, ch, factor) offdiag_function(step, i, j, ch, 0, t_matel(factor) * coef.xi(step.N(), ch), h, qq, In, opch) #undef OFFDIAG_2 #define OFFDIAG_2(i, j, ch, factor) offdiag_function(step, i, j, ch, 1, t_matel(factor) * coef.xi(step.N(), ch), h, qq, In, opch) template<typename SC> void SymmetryDBLSU2<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { switch (P.channels) { case 2: #include "dblsu2/dblsu2-2ch-offdiag-1.dat" #include "dblsu2/dblsu2-2ch-offdiag-2.dat" break; default: my_assert_not_reached(); } } } #include "nrg-recalc-DBLSU2.hpp"
2,972
C++
.h
75
35.613333
183
0.634755
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,678
nrg-recalc-QSZLR.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-QSZLR.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-QSZLR.cc.m4, not nrg-recalc-QSZLR.cc !!! // Quantum number dependant recalculation routines // Rok Zitko, rok.zitko@ijs.si, June 2006 // This file pertains to (Q,Sz,P) subspaces namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } template<typename SC> Opch<SC> SymmetryQSZLR<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { int qp = Ip.get("Q"); int sszp = Ip.get("SSZ"); int pp = Ip.get("P"); // NOTE: q,ssz only couples to q+1,ssz+-1 in general, even for // several channels. // ****** CASE I: SAME PARITY ****** Invar I1; I1 = Invar(qp + 1, sszp + 1, pp); { nrglog('f', "RECALC_F(fn=" << "qszlr/qszlr-2ch-spinupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qszlr/qszlr-2ch-spinupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qszlr/qszlr-2ch-spinupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qszlr/qszlr-2ch-spinupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, sszp - 1, pp); { nrglog('f', "RECALC_F(fn=" << "qszlr/qszlr-2ch-spindowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qszlr/qszlr-2ch-spindowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qszlr/qszlr-2ch-spindownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qszlr/qszlr-2ch-spindownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; // ****** CASE II: DIFFERENT PARITY ****** I1 = Invar(qp + 1, sszp + 1, -pp); { nrglog('f', "RECALC_F(fn=" << "qszlr/qszlr-2ch-spinupdiffa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qszlr/qszlr-2ch-spinupdiffa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qszlr/qszlr-2ch-spinupdiffb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qszlr/qszlr-2ch-spinupdiffb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, sszp - 1, -pp); { nrglog('f', "RECALC_F(fn=" << "qszlr/qszlr-2ch-spindowndiffa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qszlr/qszlr-2ch-spindowndiffa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qszlr/qszlr-2ch-spindowndiffb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qszlr/qszlr-2ch-spindowndiffb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } return opch; } }
4,778
C++
.h
125
34.096
94
0.587192
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,679
sym-P.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-P.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_P(const Params &P); }
94
C++
.h
4
22
51
0.738636
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,680
nrg-recalc-QST.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-QST.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-QST.cc.m4, not nrg-recalc-QST.cc !!! // Quantum number dependant recalculation routines // Rok Zitko, rok.zitko@ijs.si, Aug 2015 // This file pertains to (Q,S,T) subspaces namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } // Recalculate matrix elements of a doublet tensor operator template<typename SC> MatrixElements<SC> SymmetryQST<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int q1 = I1.get("Q"); int ss1 = I1.get("SS"); int t1 = I1.get("T"); double T = t1; // trick! double S = (ss1 - 1.) / 2.; Invar Ip; // Two different lengths: D_3CH_a and D_3CH_b // Invar(1,2,1) is correct. 1 = add charge, 2 = doublet, // 1 = triplet (because working with abs orbital momentum QNs) Ip = Invar(q1 - 1, ss1 + 1, t1 - 1); { nrglog('f', "RECALC(fn=" << "qst/qst-doubletp-1.dat" << ", Iop=" << Invar(1, 2, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qst/qst-doubletp-1.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, 1)); } } }; Ip = Invar(q1 - 1, ss1 - 1, t1 - 1); { nrglog('f', "RECALC(fn=" << "qst/qst-doubletm-1.dat" << ", Iop=" << Invar(1, 2, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qst/qst-doubletm-1.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, 1)); } } }; Ip = Invar(q1 - 1, ss1 + 1, t1); { nrglog('f', "RECALC(fn=" << "qst/qst-doubletp0.dat" << ", Iop=" << Invar(1, 2, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qst/qst-doubletp0.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, 1)); } } }; Ip = Invar(q1 - 1, ss1 - 1, t1); { nrglog('f', "RECALC(fn=" << "qst/qst-doubletm0.dat" << ", Iop=" << Invar(1, 2, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qst/qst-doubletm0.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, 1)); } } }; Ip = Invar(q1 - 1, ss1 + 1, t1 + 1); { nrglog('f', "RECALC(fn=" << "qst/qst-doubletp+1.dat" << ", Iop=" << Invar(1, 2, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qst/qst-doubletp+1.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, 1)); } } }; Ip = Invar(q1 - 1, ss1 - 1, t1 + 1); { nrglog('f', "RECALC(fn=" << "qst/qst-doubletm+1.dat" << ", Iop=" << Invar(1, 2, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qst/qst-doubletm+1.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, 1)); } } }; } return cnew; } // ch=1 <-> Tz=+1 // ch=2 <-> Tz=0 // ch=3 <-> Tz=-1 // Driver routine for recalc_f() template<typename SC> Opch<SC> SymmetryQST<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { int qp = Ip.get("Q"); int ssp = Ip.get("SS"); int tp = Ip.get("T"); double T = tp; // trick! Invar I1; // The different files just correspond to contributions computed // for various d[CR,sz,tz] operators. // Check: there should not be any lines with equal subspaces // indexes in different files!! That's indeed the case for the // generated files for symtype=QST. I1 = Invar(qp + 1, ssp + 1, tp + 1); { nrglog('f', "RECALC_F(fn=" << "qst/qst-spinup+1.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qst/qst-spinup+1.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, ssp + 1, tp); { nrglog('f', "RECALC_F(fn=" << "qst/qst-spinup0.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qst/qst-spinup0.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, ssp + 1, tp - 1); { nrglog('f', "RECALC_F(fn=" << "qst/qst-spinup-1.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qst/qst-spinup-1.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, ssp - 1, tp + 1); { nrglog('f', "RECALC_F(fn=" << "qst/qst-spindo+1.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qst/qst-spindo+1.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, ssp - 1, tp); { nrglog('f', "RECALC_F(fn=" << "qst/qst-spindo0.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qst/qst-spindo0.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, ssp - 1, tp - 1); { nrglog('f', "RECALC_F(fn=" << "qst/qst-spindo-1.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qst/qst-spindo-1.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } return opch; } // Recalculate matrix elements of a triplet tenzor operator template<typename SC> MatrixElements<SC> SymmetryQST<SC>::recalc_triplet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int q1 = I1.get("Q"); int ss1 = I1.get("SS"); int t1 = I1.get("T"); double S = (ss1 - 1.) / 2.; double T = t1; // trick! Invar Ip; Ip = Invar(q1, ss1, t1); { nrglog('f', "RECALC(fn=" << "qst/qst-triplets.dat" << ", Iop=" << Invar(0, 3, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qst/qst-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 3, 0)); } } }; Ip = Invar(q1, ss1 + 2, t1); { nrglog('f', "RECALC(fn=" << "qst/qst-tripletp.dat" << ", Iop=" << Invar(0, 3, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qst/qst-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 3, 0)); } } }; Ip = Invar(q1, ss1 - 2, t1); { nrglog('f', "RECALC(fn=" << "qst/qst-tripletm.dat" << ", Iop=" << Invar(0, 3, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qst/qst-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 3, 0)); } } }; } return cnew; } // Recalculate matrix elements of an orbital triplet tenzor operator template<typename SC> MatrixElements<SC> SymmetryQST<SC>::recalc_orb_triplet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int q1 = I1.get("Q"); int ss1 = I1.get("SS"); int t1 = I1.get("T"); double S = (ss1 - 1.) / 2.; double T = t1; // trick! Invar Ip; // 0 = chargeless // 1 = spin singlet (deg=2S+1=1) // 1 = spin triplet (T=1) Ip = Invar(q1, ss1, t1); { nrglog('f', "RECALC(fn=" << "qst/qst-orb-triplets.dat" << ", Iop=" << Invar(0, 1, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qst/qst-orb-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 1, 1)); } } }; Ip = Invar(q1, ss1, t1 + 1); { nrglog('f', "RECALC(fn=" << "qst/qst-orb-tripletp.dat" << ", Iop=" << Invar(0, 1, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qst/qst-orb-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 1, 1)); } } }; Ip = Invar(q1, ss1, t1 - 1); { nrglog('f', "RECALC(fn=" << "qst/qst-orb-tripletm.dat" << ", Iop=" << Invar(0, 1, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qst/qst-orb-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 1, 1)); } } }; } return cnew; } }
11,334
C++
.h
313
32.102236
120
0.577834
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,681
sym-DBLSU2.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-DBLSU2.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_DBLSU2(const Params &P); }
99
C++
.h
4
23.25
56
0.752688
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,682
sym-PP.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-PP.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_PP(const Params &P); }
95
C++
.h
4
22.25
52
0.741573
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,683
nrg-recalc-QJ.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-QJ.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-QJ.cc.m4, not nrg-recalc-QJ.cc !!! // Quantum number dependant recalculation routines // Rok Zitko, rok.zitko@ijs.si, Mar 2016 // This file pertains to (Q,J) subspaces namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } // Recalculate matrix elements of a doublet tensor operator template<typename SC> MatrixElements<SC> SymmetryQJ<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int q1 = I1.get("Q"); int jj1 = I1.get("JJ"); Invar Ip; Ip = Invar(q1 - 1, jj1 + 1); { nrglog('f', "RECALC(fn=" << "qj/qj-doubletp.dat" << ", Iop=" << Invar(1, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qj/qj-doubletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2)); } } }; Ip = Invar(q1 - 1, jj1 - 1); { nrglog('f', "RECALC(fn=" << "qj/qj-doubletm.dat" << ", Iop=" << Invar(1, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qj/qj-doubletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2)); } } }; } return cnew; } #undef If #define If(cond, a, b) (cond ? a : b) // Recalculate matrix elements of a quadruplet tensor operator template<typename SC> MatrixElements<SC> SymmetryQJ<SC>::recalc_quadruplet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int q1 = I1.get("Q"); int jj1 = I1.get("JJ"); // double J = (jj1-1.0)/2.0; Invar Ip; Ip = Invar(q1 - 1, jj1 + 3); { nrglog('f', "RECALC(fn=" << "qj/qj-quad1.dat" << ", Iop=" << Invar(1, 4) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qj/qj-quad1.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 4)); } } }; Ip = Invar(q1 - 1, jj1 + 1); { nrglog('f', "RECALC(fn=" << "qj/qj-quad2.dat" << ", Iop=" << Invar(1, 4) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qj/qj-quad2.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 4)); } } }; Ip = Invar(q1 - 1, jj1 - 1); { nrglog('f', "RECALC(fn=" << "qj/qj-quad3.dat" << ", Iop=" << Invar(1, 4) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qj/qj-quad3.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 4)); } } }; Ip = Invar(q1 - 1, jj1 - 3); { nrglog('f', "RECALC(fn=" << "qj/qj-quad4.dat" << ", Iop=" << Invar(1, 4) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qj/qj-quad4.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 4)); } } }; } return cnew; } template<typename SC> Opch<SC> SymmetryQJ<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { int qp = Ip.get("Q"); int jjp = Ip.get("JJ"); double j = J(jjp); Invar I1; I1 = Invar(qp + 1, jjp + 3); { nrglog('f', "RECALC_F(fn=" << "qj/qj-spin_j3_2-jz3_2.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qj/qj-spin_j3_2-jz3_2.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, jjp + 1); { nrglog('f', "RECALC_F(fn=" << "qj/qj-spin_j1_2-jz1_2.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qj/qj-spin_j1_2-jz1_2.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qj/qj-spin_j3_2-jz1_2.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qj/qj-spin_j3_2-jz1_2.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, jjp - 1); { nrglog('f', "RECALC_F(fn=" << "qj/qj-spin_j1_2-jz-1_2.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qj/qj-spin_j1_2-jz-1_2.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qj/qj-spin_j3_2-jz-1_2.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qj/qj-spin_j3_2-jz-1_2.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, jjp - 3); { nrglog('f', "RECALC_F(fn=" << "qj/qj-spin_j3_2-jz-3_2.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qj/qj-spin_j3_2-jz-3_2.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } return opch; } }
7,080
C++
.h
200
31.395
118
0.577378
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,684
nrg-recalc-ISO2LR.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-ISO2LR.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-ISOLR.cc.m4, not nrg-recalc-ISOLR.cc !!! // Quantum number dependent recalculation routines // Rok Zitko, rok.zitko@ijs.si, Feb 2006, June 2006, Nov 2007, May 2008 // This file pertains to (I,S,P) subspaces // Version for EVEN number of impurities namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } double sign(double x) { if (x > 0.0) return +1.0; if (x < 0.0) return -1.0; my_assert_not_reached(); } // (ISOLR): 8 calls of recalc_f() are necessary: different parities are also possible! template<typename SC> Opch<SC> SymmetryISO2LR<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { Invar I1; // NOTE: ii,ss only couples to ii+-1,ss+-1 in general, even for // several channels. int iip = Ip.get("II"); int ssp = Ip.get("SS"); // IMPORTANT NEW ELEMENT: the parity is important here!! int pp = Ip.get("P"); // nn is index n of f_n, the last site in the chain prior to adding // the new site (f_{n+1}). int NN = step.getnn(); // Both parities yield non-zero <I+-1/2, S+-1/2, P| a^\mu_\nu // |I,S,P'>. Coefficients *DO* depend on P,P', or more accurately, // on whether or not P and P' are the same. // // Observation: due to reflection symmetry, the coefficient for 'a' and // 'b' (2 channels) are either all the same or differ in sign. // ****** CASE I: SAME PARITY ****** I1 = Invar(iip + 1, ssp + 1, pp); { nrglog('f', "RECALC_F(fn=" << "iso2lr/iso2lr-2ch-spinup-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-spinup-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso2lr/iso2lr-2ch-spinup-isoupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-spinup-isoupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(iip + 1, ssp - 1, pp); { nrglog('f', "RECALC_F(fn=" << "iso2lr/iso2lr-2ch-spindown-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-spindown-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso2lr/iso2lr-2ch-spindown-isoupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-spindown-isoupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(iip - 1, ssp + 1, pp); { nrglog('f', "RECALC_F(fn=" << "iso2lr/iso2lr-2ch-spinup-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-spinup-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso2lr/iso2lr-2ch-spinup-isodownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-spinup-isodownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(iip - 1, ssp - 1, pp); { nrglog('f', "RECALC_F(fn=" << "iso2lr/iso2lr-2ch-spindown-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-spindown-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso2lr/iso2lr-2ch-spindown-isodownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-spindown-isodownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; // ****** CASE II: DIFFERENT PARITY ****** I1 = Invar(iip + 1, ssp + 1, -pp); { nrglog('f', "RECALC_F(fn=" << "iso2lr/iso2lr-2ch-spinup-isoupdiffa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-spinup-isoupdiffa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso2lr/iso2lr-2ch-spinup-isoupdiffb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-spinup-isoupdiffb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(iip + 1, ssp - 1, -pp); { nrglog('f', "RECALC_F(fn=" << "iso2lr/iso2lr-2ch-spindown-isoupdiffa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-spindown-isoupdiffa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso2lr/iso2lr-2ch-spindown-isoupdiffb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-spindown-isoupdiffb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(iip - 1, ssp + 1, -pp); { nrglog('f', "RECALC_F(fn=" << "iso2lr/iso2lr-2ch-spinup-isodowndiffa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-spinup-isodowndiffa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso2lr/iso2lr-2ch-spinup-isodowndiffb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-spinup-isodowndiffb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(iip - 1, ssp - 1, -pp); { nrglog('f', "RECALC_F(fn=" << "iso2lr/iso2lr-2ch-spindown-isodowndiffa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-spindown-isodowndiffa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso2lr/iso2lr-2ch-spindown-isodowndiffb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-spindown-isodowndiffb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } return opch; } // Recalculate matrix elements of a doublet tensor operator [EVEN PARITY] template<typename SC> MatrixElements<SC> SymmetryISO2LR<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int ii1 = I1.get("II"); int ss1 = I1.get("SS"); int p1 = I1.get("P"); Invar Ip; Ip = Invar(ii1 - 1, ss1 + 1, p1); { nrglog('f', "RECALC(fn=" << "iso2lr/iso2lr-2ch-doubletmp.dat" << ", Iop=" << Invar(2, 2, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-doubletmp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2, +1)); } } }; Ip = Invar(ii1 - 1, ss1 - 1, p1); { nrglog('f', "RECALC(fn=" << "iso2lr/iso2lr-2ch-doubletmm.dat" << ", Iop=" << Invar(2, 2, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-doubletmm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2, +1)); } } }; Ip = Invar(ii1 + 1, ss1 + 1, p1); { nrglog('f', "RECALC(fn=" << "iso2lr/iso2lr-2ch-doubletpp.dat" << ", Iop=" << Invar(2, 2, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-doubletpp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2, +1)); } } }; Ip = Invar(ii1 + 1, ss1 - 1, p1); { nrglog('f', "RECALC(fn=" << "iso2lr/iso2lr-2ch-doubletpm.dat" << ", Iop=" << Invar(2, 2, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-doubletpm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2, +1)); } } }; } return cnew; } // Recalculate matrix elements of a triplet tensor operator [EVEN PARITY] template<typename SC> MatrixElements<SC> SymmetryISO2LR<SC>::recalc_triplet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int ii1 = I1.get("II"); int ss1 = I1.get("SS"); int p1 = I1.get("P"); Invar Ip; Ip = Invar(ii1, ss1, p1); { nrglog('f', "RECALC(fn=" << "iso2lr/iso2lr-2ch-triplets.dat" << ", Iop=" << Invar(1, 3, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 3, +1)); } } }; Ip = Invar(ii1, ss1 + 2, p1); { nrglog('f', "RECALC(fn=" << "iso2lr/iso2lr-2ch-tripletp.dat" << ", Iop=" << Invar(1, 3, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 3, +1)); } } }; Ip = Invar(ii1, ss1 - 2, p1); { nrglog('f', "RECALC(fn=" << "iso2lr/iso2lr-2ch-tripletm.dat" << ", Iop=" << Invar(1, 3, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2lr/iso2lr-2ch-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 3, +1)); } } }; } return cnew; } }
14,075
C++
.h
357
35.294118
119
0.595917
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,685
nrg-recalc-DBLSU2.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-DBLSU2.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-DBLSU2.cc.m4, not nrg-recalc-DBLSU2.cc !!! // Quantum number dependant recalculation routines // Rok Zitko, rok.zitko@ijs.si, Dec 2009 // This file pertains to (I1,I2) subspaces namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } template<typename SC> MatrixElements<SC> SymmetryDBLSU2<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int ii11 = I1.get("II1"); int ii21 = I1.get("II2"); Invar Ip; Ip = Invar(ii11 - 1, ii21); { nrglog('f', "RECALC(fn=" << "dblsu2/dblsu2-2ch-doubletm0.dat" << ", Iop=" << Invar(2, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "dblsu2/dblsu2-2ch-doubletm0.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 0)); } } }; Ip = Invar(ii11 + 1, ii21); { nrglog('f', "RECALC(fn=" << "dblsu2/dblsu2-2ch-doubletp0.dat" << ", Iop=" << Invar(2, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "dblsu2/dblsu2-2ch-doubletp0.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 0)); } } }; Ip = Invar(ii11, ii21 - 1); { nrglog('f', "RECALC(fn=" << "dblsu2/dblsu2-2ch-doublet0m.dat" << ", Iop=" << Invar(0, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "dblsu2/dblsu2-2ch-doublet0m.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 2)); } } }; Ip = Invar(ii11, ii21 + 1); { nrglog('f', "RECALC(fn=" << "dblsu2/dblsu2-2ch-doublet0p.dat" << ", Iop=" << Invar(0, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "dblsu2/dblsu2-2ch-doublet0p.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 2)); } } }; } return cnew; } template<typename SC> Opch<SC> SymmetryDBLSU2<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { Invar I1; int ii1p = Ip.get("II1"); int ii2p = Ip.get("II2"); // NN is index n of f_n, the last site in the chain prior to adding // the new site (f_{n+1}). int NN = step.getnn(); // RECALC_F_TAB_... (filename, channel_number, matrix_number, array_length) // type 1: [f^dag_UP, f_DO] // type 2: [f^dag_DO, f_UP] I1 = Invar(ii1p + 1, ii2p); { nrglog('f', "RECALC_F(fn=" << "dblsu2/dblsu2-2ch-type1-isoup-a.dat" << ", ch=" << 0 << ", n=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "dblsu2/dblsu2-2ch-type1-isoup-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "dblsu2/dblsu2-2ch-type2-isoup-a.dat" << ", ch=" << 0 << ", n=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "dblsu2/dblsu2-2ch-type2-isoup-a.dat" }; opch[0][1][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(ii1p, ii2p + 1); { nrglog('f', "RECALC_F(fn=" << "dblsu2/dblsu2-2ch-type1-isoup-b.dat" << ", ch=" << 1 << ", n=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "dblsu2/dblsu2-2ch-type1-isoup-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "dblsu2/dblsu2-2ch-type2-isoup-b.dat" << ", ch=" << 1 << ", n=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "dblsu2/dblsu2-2ch-type2-isoup-b.dat" }; opch[1][1][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(ii1p - 1, ii2p); { nrglog('f', "RECALC_F(fn=" << "dblsu2/dblsu2-2ch-type1-isodown-a.dat" << ", ch=" << 0 << ", n=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "dblsu2/dblsu2-2ch-type1-isodown-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "dblsu2/dblsu2-2ch-type2-isodown-a.dat" << ", ch=" << 0 << ", n=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "dblsu2/dblsu2-2ch-type2-isodown-a.dat" }; opch[0][1][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(ii1p, ii2p - 1); { nrglog('f', "RECALC_F(fn=" << "dblsu2/dblsu2-2ch-type1-isodown-b.dat" << ", ch=" << 1 << ", n=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "dblsu2/dblsu2-2ch-type1-isodown-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "dblsu2/dblsu2-2ch-type2-isodown-b.dat" << ", ch=" << 1 << ", n=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "dblsu2/dblsu2-2ch-type2-isodown-b.dat" }; opch[1][1][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } return opch; } #undef SPINX #define SPINX(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef SPINZ #define SPINZ(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef SPINY #define SPINY(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef Complex #define Complex(x, y) cmpl(x, y) template<typename SC> void SymmetryDBLSU2<SC>::recalc_global(const Step &step, const DiagInfo<SC> &diag, const std::string name, MatrixElements<SC> &cnew) const { if (name == "SZtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II{I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "dblsu2/dblsu2-2ch-spinz.dat" break; default: my_assert_not_reached(); } } return; } if constexpr (std::is_same_v<SC, std::complex<double>>) { if (name == "SYtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II{I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "dblsu2/dblsu2-2ch-spiny.dat" break; default: my_assert_not_reached(); } } return; } } if (name == "SXtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II{I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "dblsu2/dblsu2-2ch-spinx.dat" break; default: my_assert_not_reached(); } } return; } my_assert_not_reached(); } }
8,766
C++
.h
241
32.070539
140
0.590663
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,686
sym-SPSU2LR-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-SPSU2LR-impl.hpp
namespace NRG { template<typename SC> class SymmetrySPSU2LR : public SymLR<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetrySPSU2LR(const Params &P) : SymLR<SC>(P, std::vector{"<Sz^2>"}, Invar(0,1)) { initInvar({ {"SS", additive}, // spin {"P", multiplicative} // parity }); } size_t mult(const Invar &I) const override { return I.get("SS"); } bool Invar_allowed(const Invar &I) const override { return I.get("SS") > 0; } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return su2_triangle_inequality(I1.get("SS"), I2.get("SS"), I3.get("SS")) && z2_equality(I1.get("P"), I2.get("P"), I3.get("P")); } void load() override { my_assert(P.channels == 2); #include "spsu2lr/spsu2lr-2ch-In2.dat" #include "spsu2lr/spsu2lr-2ch-QN.dat" } double dynamicsusceptibility_factor(const Invar &Ip, const Invar &I1) const override { check_diff(Ip, I1, "Q", 0); const int ssp = Ip.get("SS"); const int ss1 = I1.get("SS"); my_assert((abs(ss1 - ssp) == 2 || ss1 == ssp)); return switch3(ss1, ssp + 2, 1. + (ssp - 1) / 3., ssp, ssp / 3., ssp - 2, (-2. + ssp) / 3.); } double specdens_factor(const Invar &Ip, const Invar &I1) const override { check_diff(Ip, I1, "Q", 1); const int ssp = Ip.get("SS"); const int ss1 = I1.get("SS"); return (ss1 == ssp + 1 ? S(ssp) + 1.0 : S(ssp)); } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trSZ2; // Tr[S_z^2] for (const auto &[I, eig]: diag) { const int ss = I.get("SS"); const double sumZ = this->calculate_Z(I, eig, factor); trSZ2 += sumZ * (ss * ss - 1) / 12.; } stats.td.set("<Sz^2>", trSZ2 / stats.Z); } DECL; HAS_DOUBLET; HAS_TRIPLET; }; #undef ISOSPINX #define ISOSPINX(i, j, ch, factor) this->diag_offdiag_function(step, i, j, t_matel(factor) * 2.0 * coef.delta(step.N() + 1, ch), h, qq) #undef ANOMALOUS #define ANOMALOUS(i, j, ch, factor) offdiag_function(step, i, j, ch, 0, t_matel(factor) * coef.kappa(step.N(), ch), h, qq, In, opch) #undef OFFDIAG #define OFFDIAG(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xi(step.N(), ch), h, qq, In, opch) #undef DIAG #define DIAG(i, ch, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, ch), h, qq) template<typename SC> void SymmetrySPSU2LR<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { my_assert(P.channels == 2); int ss = I.get("SS"); #include "spsu2lr/spsu2lr-2ch-diag.dat" #include "spsu2lr/spsu2lr-2ch-offdiag.dat" #include "spsu2lr/spsu2lr-2ch-anomalous.dat" #include "spsu2lr/spsu2lr-2ch-isospinx.dat" } } #include "nrg-recalc-SPSU2LR.hpp"
3,041
C++
.h
71
39.323944
184
0.645107
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,687
sym-SU2-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-SU2-impl.hpp
namespace NRG { template<typename SC> class SymmetrySU2 : public Symmetry<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetrySU2(const Params &P) : Symmetry<SC>(P, std::vector{"<Q^2>"}, Invar(1)) { initInvar({ {"II", additive} // isospin }); } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return su2_triangle_inequality(I1.get("II"), I2.get("II"), I3.get("II")); } // Multiplicity of the I=(II) subspace = (2I+1) = II. size_t mult(const Invar &I) const override { return I.get("II"); // isospin multiplicity } // We always must have I >= 0. bool Invar_allowed(const Invar &I) const override { return I.get("II") > 0; } double specdens_factor(const Invar &Ip, const Invar &I1) const override { const int iip = Ip.get("II"); const int ii1 = I1.get("II"); my_assert(abs(ii1 - iip) == 1); const double isofactor = (ii1 == iip + 1 ? ISO(iip) + 1.0 : ISO(iip)); return isofactor; } void load() override { switch (P.channels) { case 1: #include "su2/su2-1ch-In2.dat" #include "su2/su2-1ch-QN.dat" break; case 2: #include "su2/su2-2ch-In2.dat" #include "su2/su2-2ch-QN.dat" break; default: my_assert_not_reached(); } } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trIZ2; // Tr[I_z^2] for (const auto &[I, eig]: diag) { const int ii = I.get("II"); const double sumZ = this->calculate_Z(I, eig, factor); trIZ2 += sumZ * (ii * ii - 1) / 12.; } stats.td.set("<Q^2>", (4 * trIZ2) / stats.Z); } DECL; HAS_DOUBLET; HAS_GLOBAL; }; // For SU2, the <||f||> depend on the "type"! // OFFDIAG_1 corresponds to the first combination, OFFDIAG_2 to the // second combination of operators. Each of them has contributions // in each channel. #undef OFFDIAG_1 #define OFFDIAG_1(i, j, ch, factor) offdiag_function(step, i, j, ch, 0, t_matel(factor) * coef.xi(step.N(), ch), h, qq, In, opch) #undef OFFDIAG_2 #define OFFDIAG_2(i, j, ch, factor) offdiag_function(step, i, j, ch, 1, t_matel(factor) * coef.xi(step.N(), ch), h, qq, In, opch) template<typename SC> void SymmetrySU2<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { int ii = I.get("II"); int NN = step.getnn(); switch (P.channels) { case 1: #include "su2/su2-1ch-offdiag-1.dat" #include "su2/su2-1ch-offdiag-2.dat" break; case 2: #include "su2/su2-2ch-offdiag-1.dat" #include "su2/su2-2ch-offdiag-2.dat" break; default: my_assert_not_reached(); } } } #include "nrg-recalc-SU2.hpp"
2,931
C++
.h
83
31.542169
180
0.645025
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,688
sym-ISO.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-ISO.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_ISO(const Params &P); template <typename S> std::unique_ptr<Symmetry<S>> mk_ISO2(const Params &P); }
174
C++
.h
6
27.5
54
0.745455
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,689
sym-SPSU2T.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-SPSU2T.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_SPSU2T(const Params &P); }
99
C++
.h
4
23.25
56
0.752688
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,690
sym-QST-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-QST-impl.hpp
namespace NRG { template<typename SC> class SymmetryQST : public Symmetry<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryQST(const Params &P) : Symmetry<SC>(P, std::vector{"<Sz^2>", "<Tz^2>", "<Q>", "<Q^2>"}, Invar(0,1,0), Invar(1,2,1)) { initInvar({ {"Q", additive}, // charge {"SS", additive}, // spin {"T", additive} // angular momentum }); } // Multiplicity of the (Q,SS,T) subspace is (2S+1 = SS) times (2T+1). size_t mult(const Invar &I) const override { return I.get("SS") * (2 * I.get("T") + 1); } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return u1_equality(I1.get("Q"), I2.get("Q"), I3.get("Q")) && su2_triangle_inequality(I1.get("SS"), I2.get("SS"), I3.get("SS")) && su2_triangle_inequality(2 * I1.get("T") + 1, 2 * I2.get("T") + 1, 2 * I3.get("T") + 1); } bool Invar_allowed(const Invar &I) const override { const bool spin_ok = I.get("SS") > 0; const bool angmom_ok = I.get("T") >= 0; return spin_ok && angmom_ok; } void load() override { my_assert(!P.substeps); my_assert(P.channels == 3); #include "qst/qst-In2.dat" #include "qst/qst-QN.dat" } // load // Same as for SYMTYPE=QS, because spin operators are angular momentum singlets. double dynamicsusceptibility_factor(const Invar &Ip, const Invar &I1) const override { check_diff(Ip, I1, "Q", 0); check_diff(Ip, I1, "T", 0); const int ssp = Ip.get("SS"); const int ss1 = I1.get("SS"); my_assert((abs(ss1 - ssp) == 2 || ss1 == ssp)); return switch3(ss1, ssp + 2, 1. + (ssp - 1) / 3., ssp, ssp / 3., ssp - 2, (-2. + ssp) / 3.); } double dynamic_orb_susceptibility_factor(const Invar &Ip, const Invar &I1) const override { check_diff(Ip, I1, "Q", 0); check_diff(Ip, I1, "SS", 0); const int tp = Ip.get("T"); const int t1 = I1.get("T"); int ttp = 2 * tp + 1; int tt1 = 2 * t1 + 1; my_assert((abs(tt1 - ttp) == 2 || tt1 == ttp)); return switch3(tt1, ttp + 2, 1. + (ttp - 1) / 3., ttp, ttp / 3., ttp - 2, (-2. + ttp) / 3.); } // Creation operator is a spin-doublet, angular-momentum-triplet ! // See clebsch_gordan_qst.nb double specdens_factor(const Invar &Ip, const Invar &I1) const override { check_diff(Ip, I1, "Q", 1); const int ssp = Ip.get("SS"); const int ss1 = I1.get("SS"); my_assert(abs(ss1 - ssp) == 1); double spinfactor = (ss1 == ssp + 1 ? S(ssp) + 1.0 : S(ssp)); const int tp = Ip.get("T"); const int t1 = I1.get("T"); const int ttp = 2 * tp + 1; const int tt1 = 2 * t1 + 1; my_assert(abs(ttp - tt1) == 2 || ttp == tt1); double angmomfactor; if (tt1 == 1 && ttp == 1) { angmomfactor = 0; // special case, two singlets don't couple } else { angmomfactor = switch3(tt1, ttp + 2, 1. + (ttp - 1) / 3., ttp, ttp / 3., ttp - 2, (-2. + ttp) / 3.); } return spinfactor * angmomfactor; } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trSZ, trTZ, trQ, trQ2; // Tr[S_z^2], Tr[T_z^2], Tr[Q], Tr[Q^2] for (const auto &[I, eig]: diag) { const int q = I.get("Q"); const int ss = I.get("SS"); const int t = I.get("T"); const double sumZ = this->calculate_Z(I, eig, factor); trQ += sumZ * q; trQ2 += sumZ * q * q; trSZ += sumZ * (ss * ss - 1) / 12.; // [(2S+1)(2S+1)-1]/12=S(S+1)/3 trTZ += sumZ * t * (t + 1) / 3.; } stats.td.set("<Sz^2>", trSZ / stats.Z); stats.td.set("<Tz^2>", trTZ / stats.Z); stats.td.set("<Q>", trQ / stats.Z); stats.td.set("<Q^2>", trQ2 / stats.Z); } DECL; HAS_DOUBLET; HAS_TRIPLET; HAS_ORB_TRIPLET; bool recalc_f_coupled(const Invar &I1, const Invar &I2, const Invar &If) const override { return triangle_inequality(I1, I2, If); } }; bool qst_exception(const unsigned int i, const unsigned int j, const Invar &I) { // In these cases the subspace exists, but taking the T=2 or T=1 // limit shows that the coefficient is actually zero, so there is // no contribution. (Directly computed factor is nan.) // This exception handling is added to avoid false positives // in error detection assertions. int T = I.get("T"); if (i == 9 && j == 34 && T == 2) return true; if (i == 17 && j == 23 && T == 1) return true; if (i == 52 && j == 58 && T == 1) return true; return false; } #define offdiag_qst(i, j, ch, fnr, factor0, h, qq, In, I, opch) \ { \ const bool contributes = qq.offdiag_contributes(i, j); \ if (contributes) { \ t_matel factor; \ if (qst_exception(i, j, I)) { \ factor = 0; \ } else { \ factor = factor0; \ } \ this->offdiag_function_impl(step, i, j, ch, fnr, factor, h, qq, In, opch); \ } \ }; // We take the coefficients of the first channel (indexed as 0), because all three set are exactly the same due to // orbital symmetry. #undef OFFDIAG #define OFFDIAG(i, j, factor0) offdiag_qst(i, j, 0, 0, t_matel(factor0) * coef.xi(step.N(), 0), h, qq, In, I, opch) #undef DIAG #define DIAG(i, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, 0), h, qq) template<typename SC> void SymmetryQST<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { int ss = I.get("SS"); int t = I.get("T"); double T = t; // crucially important to use floating point! my_assert(!P.substeps); my_assert(P.channels == 3); #include "qst/qst-offdiag.dat" #include "qst/qst-diag.dat" } } #include "nrg-recalc-QST.hpp"
7,311
C++
.h
142
47.267606
180
0.475245
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,691
sym-QSLR-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-QSLR-impl.hpp
namespace NRG { template<typename SC> class SymmetryQSLR : public SymLR<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryQSLR(const Params &P) : SymLR<SC>(P, std::vector{"<Sz^2>", "<Q>", "<Q^2>"}, Invar(0,1,1)) { initInvar({ {"Q", additive}, // charge {"SS", additive}, // spin {"P", multiplicative} // parity }); } // Multiplicity of the I=(Q,SS,P) subspace = 2S+1 = SS. size_t mult(const Invar &I) const override { return I.get("SS"); // spin multiplicity } bool Invar_allowed(const Invar &I) const override { return I.get("SS") > 0; } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return u1_equality(I1.get("Q"), I2.get("Q"), I3.get("Q")) && su2_triangle_inequality(I1.get("SS"), I2.get("SS"), I3.get("SS")) && z2_equality(I1.get("P"), I2.get("P"), I3.get("P")); } void load() override { my_assert(P.channels == 2); #include "qslr/qslr-2ch-In2.dat" #include "qslr/qslr-2ch-QN.dat" } double dynamicsusceptibility_factor(const Invar &Ip, const Invar &I1) const override { check_diff(Ip, I1, "Q", 0); const int ssp = Ip.get("SS"); const int ss1 = I1.get("SS"); my_assert((abs(ss1 - ssp) == 2 || ss1 == ssp)); return switch3(ss1, ssp + 2, 1. + (ssp - 1) / 3., ssp, ssp / 3., ssp - 2, (-2. + ssp) / 3.); } double specdens_factor(const Invar &Ip, const Invar &I1) const override { check_diff(Ip, I1, "Q", 1); const int ssp = Ip.get("SS"); const int ss1 = I1.get("SS"); return (ss1 == ssp + 1 ? S(ssp) + 1.0 : S(ssp)); } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trSZ, trQ, trQ2; // Tr[S_z^2], Tr[Q], Tr[Q^2] for (const auto &[I, eig]: diag) { const int ss = I.get("SS"); const int q = I.get("Q"); const double sumZ = this->calculate_Z(I, eig, factor); trQ += sumZ * q; trQ2 += sumZ * q * q; trSZ += sumZ * (ss * ss - 1) / 12.; } stats.td.set("<Sz^2>", trSZ / stats.Z); stats.td.set("<Q>", trQ / stats.Z); stats.td.set("<Q^2>", trQ2 / stats.Z); } DECL; HAS_DOUBLET; HAS_TRIPLET; }; #undef OFFDIAG #define OFFDIAG(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xi(step.N(), ch), h, qq, In, opch) #undef DIAG #define DIAG(i, ch, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, ch), h, qq) template<typename SC> void SymmetryQSLR<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { int ss = I.get("SS"); #include "qslr/qslr-2ch-diag.dat" #include "qslr/qslr-2ch-offdiag.dat" } } #include "nrg-recalc-QSLR.hpp"
2,982
C++
.h
74
36.297297
181
0.609191
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,692
nrg-recalc-SPSU2C3.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-SPSU2C3.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-SPSU2C3.cc.m4, not nrg-recalc-SPSU2C3.cc !!! // Quantum number dependant recalculation routines // Rok Zitko, rok.zitko@ijs.si, Oct 2015 // This file pertains to (S,P) subspaces namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } #define xRECALC_F_TAB(a, b, c) 0; template<typename SC> Opch<SC> SymmetrySPSU2C3<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); if constexpr (std::is_same_v<SC, std::complex<double>>) { // CONVENTION: primed indeces are on the right side (ket) for(const auto &[Ip, eig]: diag) { int ssp = Ip.get("SS"); int p = Ip.get("P"); Invar I1; // TRICK: ensure we are evaluating the expressions in the complex plane #undef Power #define Power(x, y) pow(cmpl(x), cmpl(y)) #undef sqrt #define sqrt(x) csqrt(x) I1 = Invar(ssp + 1, (p + 0) % 3); { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spinup0-a.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spinup0-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spinup0-b.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spinup0-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spinup0-c.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spinup0-c.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(ssp - 1, (p + 0) % 3); { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spindown0-a.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spindown0-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spindown0-b.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spindown0-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spindown0-c.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spindown0-c.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(ssp + 1, (p + 1) % 3); { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spinup1-a.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spinup1-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spinup1-b.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spinup1-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spinup1-c.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spinup1-c.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(ssp - 1, (p + 1) % 3); { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spindown1-a.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spindown1-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spindown1-b.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spindown1-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spindown1-c.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spindown1-c.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(ssp + 1, (p + 2) % 3); { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spinup2-a.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spinup2-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spinup2-b.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spinup2-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spinup2-c.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spinup2-c.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(ssp - 1, (p + 2) % 3); { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spindown2-a.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spindown2-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spindown2-b.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spindown2-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2c3/spsu2c3-spindown2-c.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2c3/spsu2c3-spindown2-c.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; #undef sqrt #undef Power } } return opch; } }
9,728
C++
.h
253
34.391304
96
0.587811
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,693
sym-DBLQSZ.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-DBLQSZ.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_DBLQSZ(const Params &P); }
99
C++
.h
4
23.25
56
0.752688
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,694
nrg-recalc-QSLR.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-QSLR.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-QSLR.cc.m4, not nrg-recalc-QSLR.cc !!! // Quantum number dependent recalculation routines // Rok Zitko, rok.zitko@ijs.si, Feb 2006, June 2006, Aug 2006 // This file pertains to (Q,S,P) subspaces namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } template<typename SC> Opch<SC> SymmetryQSLR<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { int qp = Ip.get("Q"); int ssp = Ip.get("SS"); Invar I1; // NOTE: q,ss only couples to q+1,ss+-1 in general, even for // several channels. // IMPORTANT NEW ELEMENT: the parity is important here!! int lrp = Ip.get("P"); // Both parities yield non-zero <Q+1, S+-1/2, P| a^\dag_\nu // |Q,S,P'>. Coefficients *DO* depend on P,P', or more // accurately, on whether or not P and P' are the same. // // Observation: due to reflection symmetry, the coefficient for 'a' and // 'b' (2 channels) are either all the same or differ in sign. // ****** CASE I: SAME PARITY ****** I1 = Invar(qp + 1, ssp + 1, lrp); { nrglog('f', "RECALC_F(fn=" << "qslr/qslr-2ch-spinupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qslr/qslr-2ch-spinupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qslr/qslr-2ch-spinupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qslr/qslr-2ch-spinupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, ssp - 1, lrp); { nrglog('f', "RECALC_F(fn=" << "qslr/qslr-2ch-spindowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qslr/qslr-2ch-spindowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qslr/qslr-2ch-spindownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qslr/qslr-2ch-spindownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; // ****** CASE II: DIFFERENT PARITY ****** I1 = Invar(qp + 1, ssp + 1, -lrp); { nrglog('f', "RECALC_F(fn=" << "qslr/qslr-2ch-spinupdiffa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qslr/qslr-2ch-spinupdiffa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qslr/qslr-2ch-spinupdiffb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qslr/qslr-2ch-spinupdiffb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, ssp - 1, -lrp); { nrglog('f', "RECALC_F(fn=" << "qslr/qslr-2ch-spindowndiffa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qslr/qslr-2ch-spindowndiffa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qslr/qslr-2ch-spindowndiffb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qslr/qslr-2ch-spindowndiffb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } return opch; } // Recalculate matrix elements of a doublet tensor operator [EVEN PARITY] template<typename SC> MatrixElements<SC> SymmetryQSLR<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int q1 = I1.get("Q"); int ss1 = I1.get("SS"); int p1 = I1.get("P"); Invar Ip; Ip = Invar(q1 - 1, ss1 + 1, p1); { nrglog('f', "RECALC(fn=" << "qslr/qslr-2ch-doubletp.dat" << ", Iop=" << Invar(1, 2, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qslr/qslr-2ch-doubletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, +1)); } } }; Ip = Invar(q1 - 1, ss1 - 1, p1); { nrglog('f', "RECALC(fn=" << "qslr/qslr-2ch-doubletm.dat" << ", Iop=" << Invar(1, 2, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qslr/qslr-2ch-doubletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, +1)); } } }; } return cnew; } // Recalculate matrix elements of a triplet tenzor operator [EVEN PARITY] template<typename SC> MatrixElements<SC> SymmetryQSLR<SC>::recalc_triplet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int q1 = I1.get("Q"); int ss1 = I1.get("SS"); int p1 = I1.get("P"); Invar Ip; Ip = Invar(q1, ss1, p1); { nrglog('f', "RECALC(fn=" << "qslr/qslr-2ch-triplets.dat" << ", Iop=" << Invar(0, 3, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qslr/qslr-2ch-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 3, +1)); } } }; Ip = Invar(q1, ss1 + 2, p1); { nrglog('f', "RECALC(fn=" << "qslr/qslr-2ch-tripletp.dat" << ", Iop=" << Invar(0, 3, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qslr/qslr-2ch-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 3, +1)); } } }; Ip = Invar(q1, ss1 - 2, p1); { nrglog('f', "RECALC(fn=" << "qslr/qslr-2ch-tripletm.dat" << ", Iop=" << Invar(0, 3, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qslr/qslr-2ch-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 3, +1)); } } }; } return cnew; } }
8,367
C++
.h
221
33.755656
117
0.590674
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,695
sym-SL3-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-SL3-impl.hpp
namespace NRG { template<typename SC> class SymmetrySL3 : public Symmetry<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetrySL3(const Params &P) : Symmetry<SC>(P, std::vector{"<Q1>", "<Q1^2>", "<sQ1^2>", "<Q2>", "<Q2^2>", "<sQ2^2>", "<Q3>", "<Q3^2>", "<sQ3^2>"}, Invar(0,0,0)) { initInvar({ {"Q1", additive}, // charge in channel 1 {"Q2", additive}, // charge in channel 2 {"Q3", additive} // charge in channel 3 }); } void load() override { switch (P.channels) { case 3: #include "sl3/sl3-3ch-In2.dat" #include "sl3/sl3-3ch-QN.dat" break; default: my_assert_not_reached(); } } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trQ1, trQ12; // Tr[Q], Tr[Q^2] bucket trQ2, trQ22; bucket trQ3, trQ32; for (const auto &[I, eig]: diag) { const int q1 = I.get("Q1"); const int q2 = I.get("Q2"); const int q3 = I.get("Q3"); const double sumZ = this->calculate_Z(I, eig, factor); trQ1 += sumZ * q1; trQ12 += sumZ * q1 * q1; trQ2 += sumZ * q2; trQ22 += sumZ * q2 * q2; trQ3 += sumZ * q3; trQ32 += sumZ * q3 * q3; } stats.td.set("<Q1>", trQ1 / stats.Z); stats.td.set("<Q1^2>", trQ12 / stats.Z); stats.td.set("<sQ1^2>", (trQ12 / stats.Z) - pow(trQ1 / stats.Z, 2)); stats.td.set("<Q2>", trQ2 / stats.Z); stats.td.set("<Q2^2>", trQ22 / stats.Z); stats.td.set("<sQ2^2>", (trQ22 / stats.Z) - pow(trQ2 / stats.Z, 2)); stats.td.set("<Q3>", trQ3 / stats.Z); stats.td.set("<Q3^2>", trQ32 / stats.Z); stats.td.set("<sQ3^2>", (trQ32 / stats.Z) - pow(trQ3 / stats.Z, 2)); } DECL; HAS_DOUBLET; HAS_GLOBAL; }; #undef OFFDIAG #define OFFDIAG(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xi(step.N(), ch), h, qq, In, opch) #undef DIAG #define DIAG(i, ch, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, ch), h, qq) template<typename SC> void SymmetrySL3<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { switch (P.channels) { case 3: #include "sl3/sl3-3ch-offdiag.dat" #include "sl3/sl3-3ch-diag.dat" break; default: my_assert_not_reached(); } } } #include "nrg-recalc-SL3.hpp"
2,603
C++
.h
72
31.75
180
0.595399
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,696
nrg-recalc-ISOSZ.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-ISOSZ.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-ISO.cc.m4, not nrg-recalc-ISO.cc !!! // Quantum number dependant recalculation routines // Rok Zitko, rok.zitko@ijs.si, Feb 2006, Jan 2009 // This file pertains to (I,S) subspaces namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } template<typename SC> MatrixElements<SC> SymmetryISOSZ<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int ii1 = I1.get("II"); int ssz1 = I1.get("SSZ"); Invar Ip; Ip = Invar(ii1 - 1, ssz1 + 1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "isosz/isosz-1ch-doubletmp.dat" << ", Iop=" << Invar(2, -1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isosz/isosz-1ch-doubletmp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, -1)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "isosz/isosz-2ch-doubletmp.dat" << ", Iop=" << Invar(2, -1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isosz/isosz-2ch-doubletmp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, -1)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ii1-1, ssz1-1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "isosz/isosz-1ch-doubletmm.dat" << ", Iop=" << Invar(2, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isosz/isosz-1ch-doubletmm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, +1)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "isosz/isosz-2ch-doubletmm.dat" << ", Iop=" << Invar(2, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isosz/isosz-2ch-doubletmm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, +1)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ii1+1, ssz1+1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "isosz/isosz-1ch-doubletpp.dat" << ", Iop=" << Invar(2, -1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isosz/isosz-1ch-doubletpp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, -1)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "isosz/isosz-2ch-doubletpp.dat" << ", Iop=" << Invar(2, -1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isosz/isosz-2ch-doubletpp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, -1)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ii1+1, ssz1-1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "isosz/isosz-1ch-doubletpm.dat" << ", Iop=" << Invar(2, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isosz/isosz-1ch-doubletpm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, +1)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "isosz/isosz-2ch-doubletpm.dat" << ", Iop=" << Invar(2, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isosz/isosz-2ch-doubletpm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, +1)); } } } } break; default: my_assert_not_reached(); }; } return cnew; } // (ISOSZ): Four calls of recalc_f() are necessary for each channel. template<typename SC> Opch<SC> SymmetryISOSZ<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { Invar I1; // NOTE: ii,ss only couples to ii+-1,ss+-1 in general, even for // several channels. int iip = Ip.get("II"); int sszp = Ip.get("SSZ"); // NN is index n of f_n, the last site in the chain prior to adding // the new site (f_{n+1}). int NN = step.getnn(); I1 = Invar(iip + 1, sszp + 1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "isosz/isosz-1ch-spinup-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isosz/isosz-1ch-spinup-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "isosz/isosz-2ch-spinup-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isosz/isosz-2ch-spinup-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "isosz/isosz-2ch-spinup-isoupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isosz/isosz-2ch-spinup-isoupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; default: my_assert_not_reached(); }; I1 = Invar(iip+1, sszp-1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "isosz/isosz-1ch-spindown-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isosz/isosz-1ch-spindown-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "isosz/isosz-2ch-spindown-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isosz/isosz-2ch-spindown-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "isosz/isosz-2ch-spindown-isoupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isosz/isosz-2ch-spindown-isoupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; default: my_assert_not_reached(); }; I1 = Invar(iip-1, sszp+1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "isosz/isosz-1ch-spinup-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isosz/isosz-1ch-spinup-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "isosz/isosz-2ch-spinup-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isosz/isosz-2ch-spinup-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "isosz/isosz-2ch-spinup-isodownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isosz/isosz-2ch-spinup-isodownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; default: my_assert_not_reached(); }; I1 = Invar(iip-1, sszp-1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "isosz/isosz-1ch-spindown-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isosz/isosz-1ch-spindown-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "isosz/isosz-2ch-spindown-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isosz/isosz-2ch-spindown-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "isosz/isosz-2ch-spindown-isodownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isosz/isosz-2ch-spindown-isodownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; default: my_assert_not_reached(); }; } return opch; } template<typename SC> MatrixElements<SC> SymmetryISOSZ<SC>::recalc_triplet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int ii1 = I1.get("II"); int ssz1 = I1.get("SSZ"); Invar Ip; Ip = Invar(ii1, ssz1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "isosz/isosz-1ch-triplets.dat" << ", Iop=" << Invar(1, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isosz/isosz-1ch-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 0)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "isosz/isosz-2ch-triplets.dat" << ", Iop=" << Invar(1, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isosz/isosz-2ch-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 0)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ii1, ssz1+2); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "isosz/isosz-1ch-tripletp.dat" << ", Iop=" << Invar(1, -2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isosz/isosz-1ch-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, -2)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "isosz/isosz-2ch-tripletp.dat" << ", Iop=" << Invar(1, -2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isosz/isosz-2ch-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, -2)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ii1, ssz1-2); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "isosz/isosz-1ch-tripletm.dat" << ", Iop=" << Invar(1, +2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isosz/isosz-1ch-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, +2)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "isosz/isosz-2ch-tripletm.dat" << ", Iop=" << Invar(1, +2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isosz/isosz-2ch-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, +2)); } } } } break; default: my_assert_not_reached(); }; } return cnew; } #undef SPINZ #define SPINZ(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) template<typename SC> void SymmetryISOSZ<SC>::recalc_global(const Step &step, const DiagInfo<SC> &diag, const std::string name, MatrixElements<SC> &cnew) const { if (name == "SZtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II{I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "isosz/isosz-1ch-spinz.dat" break; case 2: #include "isosz/isosz-2ch-spinz.dat" break; default: my_assert_not_reached(); } } return; } my_assert_not_reached(); } }
15,728
C++
.h
424
32.997642
139
0.593539
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,697
sym-QSZ-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-QSZ-impl.hpp
namespace NRG { template<typename SC> class SymmetryQSZ : public SymField<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryQSZ(const Params &P) : SymField<SC>(P, std::vector{"<Sz^2>", "<Sz>", "<Q>", "<Q^2>"}, Invar(0,0), Invar(1,2)) { initInvar({ {"Q", additive}, // charge {"SSZ", additive} // spin projection }); } bool check_SPIN(const Invar &I1, const Invar &Ip, const int &SPIN) const override { // The spin projection of the operator is defined by the difference in Sz of both the invariant subspaces. int ssz1 = I1.get("SSZ"); int sszp = Ip.get("SSZ"); int sszop = ssz1 - sszp; return sszop == SPIN; } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return u1_equality(I1.get("Q"), I2.get("Q"), I3.get("Q")) && u1_equality(I1.get("SSZ"), I2.get("SSZ"), I3.get("SSZ")); } void load() override { if (!P.substeps) { switch (P.channels) { case 1: #include "qsz/qsz-1ch-In2.dat" #include "qsz/qsz-1ch-QN.dat" break; case 2: #include "qsz/qsz-2ch-In2.dat" #include "qsz/qsz-2ch-QN.dat" break; case 3: #include "qsz/qsz-3ch-In2.dat" #include "qsz/qsz-3ch-QN.dat" break; default: my_assert_not_reached(); } // switch } else { #include "qsz/qsz-1ch-In2.dat" #include "qsz/qsz-1ch-QN.dat" } // if } void make_matrix_polarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const; void make_matrix_nonpolarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const; void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trSZ, trSZ2, trQ, trQ2; // Tr[S_z], Tr[(S_z)^2], etc. for (const auto &[I, eig]: diag) { const int ssz = I.get("SSZ"); const int q = I.get("Q"); const double sumZ = this->calculate_Z(I, eig, factor); trSZ += sumZ * SZ(ssz); trSZ2 += sumZ * pow(SZ(ssz),2); trQ += sumZ * q; trQ2 += sumZ * pow(q,2); } stats.td.set("<Sz^2>", trSZ2 / stats.Z); stats.td.set("<Sz>", trSZ / stats.Z); stats.td.set("<Q>", trQ / stats.Z); stats.td.set("<Q^2>", trQ2 / stats.Z); } DECL; HAS_DOUBLET; HAS_TRIPLET; HAS_GLOBAL; HAS_SUBSTEPS; void show_coefficients(const Step &, const Coef<SC> &) const override; }; // *** Helper macros for make_matrix() members in matrix.cc #undef OFFDIAG #define OFFDIAG(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xi(step.N(), ch), h, qq, In, opch) /* i - subspace index ch - channel (0 or 1) number - number of electrons added in channel 'ch' in subspace 'i' */ #undef DIAG #define DIAG(i, ch, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, ch), h, qq) // Note ch indexes the <||f||> matrix which is used to construct the Hamiltonian matrix in the new step, i.e., the // f_{N} from the f^\dag_{N_1} f_{N} hopping term. #undef OFFDIAG_MIX #define OFFDIAG_MIX(i, j, ch, factor) offdiag_function(step, i, j, ch, 0, t_matel(factor) * coef.xiR(step.N(), ch), h, qq, In, opch) #undef RUNGHOP #define RUNGHOP(i, j, factor) this->diag_offdiag_function(step, i, j, t_matel(factor) * coef.zetaR(step.N() + 1, 0), h, qq) // "non-polarized" here means that the coefficients xi do not depend on spin. Note, however, that there is support // for a global magnetic field, cf. P.globalB. template<typename SC> void SymmetryQSZ<SC>::make_matrix_nonpolarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { if (!P.substeps) { switch (P.channels) { case 1: #include "qsz/qsz-1ch-offdiag.dat" #include "qsz/qsz-1ch-diag.dat" break; case 2: #include "qsz/qsz-2ch-offdiag.dat" #include "qsz/qsz-2ch-diag.dat" if (P.rungs) { #include "qsz/qsz-2ch-offdiag-mix.dat" #include "qsz/qsz-2ch-runghop.dat" } break; case 3: #include "qsz/qsz-3ch-offdiag.dat" #include "qsz/qsz-3ch-diag.dat" break; default: my_assert_not_reached(); } } else { my_assert(P.coeffactor == 1); const auto [N, M] = step.NM(); #undef OFFDIAG #define OFFDIAG(i, j, ch, factor0) offdiag_function(step, i, j, M, 0, t_matel(factor0) * coef.xi(N, M), h, qq, In, opch) #undef DIAG #define DIAG(i, ch, number) this->diag_function(step, i, number, coef.zeta(N + 1, M), h, qq) #include "qsz/qsz-1ch-offdiag.dat" #include "qsz/qsz-1ch-diag.dat" if (P.rungs) my_assert_not_reached(); } } #define OFFDIAG_UP(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xiUP(step.N(), ch), h, qq, In, opch) #define OFFDIAG_DOWN(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xiDOWN(step.N(), ch), h, qq, In, opch) #define DIAG_UP(i, j, ch, number) this->diag_function_half(step, i, number, coef.zetaUP(step.N() + 1, ch), h, qq) #define DIAG_DOWN(i, j, ch, number) this->diag_function_half(step, i, number, coef.zetaDOWN(step.N() + 1, ch), h, qq) template<typename SC> void SymmetryQSZ<SC>::make_matrix_polarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { my_assert(!P.substeps); // not implemented! switch (P.channels) { case 1: #include "qsz/qsz-1ch-offdiag-UP.dat" #include "qsz/qsz-1ch-offdiag-DOWN.dat" #include "qsz/qsz-1ch-diag-UP.dat" #include "qsz/qsz-1ch-diag-DOWN.dat" break; case 2: #include "qsz/qsz-2ch-offdiag-UP.dat" #include "qsz/qsz-2ch-offdiag-DOWN.dat" #include "qsz/qsz-2ch-diag-UP.dat" #include "qsz/qsz-2ch-diag-DOWN.dat" if (P.rungs) { //#include "qsz/qsz-2ch-offdiag-mix-UP.dat" //#include "qsz/qsz-2ch-offdiag-mix-DOWN.dat" //#include "qsz/qsz-2ch-runghop-UP.dat" //#include "qsz/qsz-2ch-runghop-DOWN.dat" my_assert_not_reached(); } break; case 3: #include "qsz/qsz-3ch-offdiag-UP.dat" #include "qsz/qsz-3ch-offdiag-DOWN.dat" #include "qsz/qsz-3ch-diag-UP.dat" #include "qsz/qsz-3ch-diag-DOWN.dat" break; default: my_assert_not_reached(); } } template<typename SC> void SymmetryQSZ<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { if (P.polarized) make_matrix_polarized(h, step, qq, I, In, opch, coef); else make_matrix_nonpolarized(h, step, qq, I, In, opch, coef); } template<typename SC> void SymmetryQSZ<SC>::show_coefficients(const Step &step, const Coef<SC> &coef) const { Symmetry<SC>::show_coefficients(step, coef); if (P.rungs) for (unsigned int i = 0; i < P.channels; i++) { std::cout << "[" << i + 1 << "]" << " xi_rung(" << step.N() << ")=" << coef.xiR(step.N(), i) << " zeta_rung(" << step.N() + 1 << ")=" << coef.zetaR(step.N() + 1, i) << std::endl; } } } #include "nrg-recalc-QSZ.hpp"
7,621
C++
.h
182
36.730769
153
0.626417
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,698
sym-QSTZ-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-QSTZ-impl.hpp
namespace NRG { template<typename SC> class SymmetryQSTZ : public Symmetry<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryQSTZ(const Params &P) : Symmetry<SC>(P, std::vector{"<Sz^2>", "<Tz^2>", "<Q>", "<Q^2>"}, Invar(0,1,0), Invar(1,2,1)) { initInvar({ {"Q", additive}, // charge {"SS", additive}, // spin {"TZ", additive} // angular momentum }); } // Multiplicity of the (Q,SS,TZ) subspace is (2S+1 = SS). size_t mult(const Invar &I) const override { return I.get("SS"); } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return u1_equality(I1.get("Q"), I2.get("Q"), I3.get("Q")) && su2_triangle_inequality(I1.get("SS"), I2.get("SS"), I3.get("SS")) && u1_equality(I1.get("TZ"), I2.get("TZ"), I3.get("TZ")); } bool Invar_allowed(const Invar &I) const override { return I.get("SS") > 0; } void load() override { my_assert(!P.substeps); my_assert(P.channels == 3); #include "qstz/qstz-In2.dat" #include "qstz/qstz-QN.dat" } // load // Same as for SYMTYPE=QS, because spin operators are angular momentum singlets. double dynamicsusceptibility_factor(const Invar &Ip, const Invar &I1) const override { check_diff(Ip, I1, "Q", 0); check_diff(Ip, I1, "TZ", 0); const int ssp = Ip.get("SS"); const int ss1 = I1.get("SS"); my_assert((abs(ss1 - ssp) == 2 || ss1 == ssp)); return switch3(ss1, ssp + 2, 1. + (ssp - 1) / 3., ssp, ssp / 3., ssp - 2, (-2. + ssp) / 3.); } // Creation operator is a spin-doublet, angular-momentum-triplet ! double specdens_factor(const Invar &Ip, const Invar &I1) const override { check_diff(Ip, I1, "Q", 1); const int ssp = Ip.get("SS"); const int ss1 = I1.get("SS"); my_assert(abs(ss1 - ssp) == 1); return (ss1 == ssp + 1 ? S(ssp) + 1.0 : S(ssp)); } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trSZ2, trTZ2, trQ, trQ2; // Tr[S_z^2], Tr[T_z^2], Tr[Q], Tr[Q^2] for (const auto &[I, eig]: diag) { const int q = I.get("Q"); const int ss = I.get("SS"); const int tz = I.get("TZ"); const double sumZ = this->calculate_Z(I, eig, factor); trQ += sumZ * q; trQ2 += sumZ * q * q; trSZ2 += sumZ * (ss * ss - 1) / 12.; // [(2S+1)(2S+1)-1]/12=S(S+1)/3 trTZ2 += sumZ * tz * tz; } stats.td.set("<Sz^2>", trSZ2 / stats.Z); stats.td.set("<Tz^2>", trTZ2 / stats.Z); stats.td.set("<Q>", trQ / stats.Z); stats.td.set("<Q^2>", trQ2 / stats.Z); } DECL; HAS_DOUBLET; HAS_TRIPLET; }; // We take the coefficients of the first channel (indexed as 0), // because all three set are exactly the same due to orbital // symmetry. [XXXX True for QST, for QSTZ we could relax this approx.] #undef OFFDIAG #define OFFDIAG(i, j, factor0) offdiag_function(step, i, j, 0, 0, t_matel(factor0) * coef.xi(step.N(), 0), h, qq, In, opch) #undef DIAG #define DIAG(i, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, 0), h, qq) template<typename SC> void SymmetryQSTZ<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { int ss = I.get("SS"); my_assert(!P.substeps); my_assert(P.channels == 3); #include "qstz/qstz-offdiag.dat" #include "qstz/qstz-diag.dat" } } #include "nrg-recalc-QSTZ.hpp"
3,636
C++
.h
85
38.8
181
0.61793
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,699
sym-NONE-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-NONE-impl.hpp
namespace NRG { template<typename SC> class SymmetryNONE : public Symmetry<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryNONE(const Params &P) : Symmetry<SC>(P, std::vector<std::string>{}, Invar(0)) { initInvar({ {"x", additive} // dummy quantum number }); } void load() override { switch (P.channels) { case 1: #include "none/none-1ch-In2.dat" #include "none/none-1ch-QN.dat" break; case 2: #include "none/none-2ch-In2.dat" #include "none/none-2ch-QN.dat" break; default: my_assert_not_reached(); } } void make_matrix_polarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const; void make_matrix_nonpolarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const; void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override {}; DECL; HAS_DOUBLET; HAS_GLOBAL; }; #undef OFFDIAG_CR_DO #undef OFFDIAG_CR_UP #define OFFDIAG_CR_DO(i, j, ch, factor) offdiag_function(step, i, j, ch, 0, t_matel(factor) * coef.xi(step.N(), ch), h, qq, In, opch) #define OFFDIAG_CR_UP(i, j, ch, factor) offdiag_function(step, i, j, ch, 1, t_matel(factor) * coef.xi(step.N(), ch), h, qq, In, opch) #undef ISOSPINX #define ISOSPINX(i, j, ch, factor) this->diag_offdiag_function(step, i, j, t_matel(factor) * 2.0 * coef.delta(step.N() + 1, ch), h, qq) #undef DIAG #define DIAG(i, ch, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, ch), h, qq) template<typename SC> void SymmetryNONE<SC>::make_matrix_nonpolarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { switch (P.channels) { case 1: #include "none/none-1ch-offdiag-CR-UP.dat" #include "none/none-1ch-offdiag-CR-DO.dat" #include "none/none-1ch-diag.dat" #include "none/none-1ch-Ixtot.dat" break; case 2: #include "none/none-2ch-offdiag-CR-UP.dat" #include "none/none-2ch-offdiag-CR-DO.dat" #include "none/none-2ch-diag.dat" #include "none/none-2ch-Ixtot.dat" break; default: my_assert_not_reached(); } } #undef OFFDIAG_CR_DO #undef OFFDIAG_CR_UP #define OFFDIAG_CR_DO(i, j, ch, factor) offdiag_function(step, i, j, ch, 0, t_matel(factor) * coef.xiDOWN(step.N(), ch), h, qq, In, opch) #define OFFDIAG_CR_UP(i, j, ch, factor) offdiag_function(step, i, j, ch, 1, t_matel(factor) * coef.xiUP(step.N(), ch), h, qq, In, opch) #undef ISOSPINX #define ISOSPINX(i, j, ch, factor) this->diag_offdiag_function(step, i, j, t_matel(factor) * 2.0 * coef.delta(step.N() + 1, ch), h, qq) #undef DIAG_UP #define DIAG_UP(i, j, ch, number) this->diag_function(step, i, number, coef.zetaUP(step.N() + 1, ch), h, qq) #undef DIAG_DOWN #define DIAG_DOWN(i, j, ch, number) this->diag_function(step, i, number, coef.zetaDOWN(step.N() + 1, ch), h, qq) template<typename SC> void SymmetryNONE<SC>::make_matrix_polarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { switch (P.channels) { case 1: #include "none/none-1ch-offdiag-CR-UP.dat" #include "none/none-1ch-offdiag-CR-DO.dat" #include "none/none-1ch-diag-UP.dat" #include "none/none-1ch-diag-DOWN.dat" #include "none/none-1ch-Ixtot.dat" break; case 2: #include "none/none-2ch-offdiag-CR-UP.dat" #include "none/none-2ch-offdiag-CR-DO.dat" #include "none/none-2ch-diag-UP.dat" #include "none/none-2ch-diag-DOWN.dat" #include "none/none-2ch-Ixtot.dat" break; default: my_assert_not_reached(); } } template<typename SC> void SymmetryNONE<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { if (P.polarized) make_matrix_polarized(h, step, qq, I, In, opch, coef); else make_matrix_nonpolarized(h, step, qq, I, In, opch, coef); } } #include "nrg-recalc-NONE.hpp"
4,320
C++
.h
100
40.37
194
0.693698
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,700
nrg-recalc-U1.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-U1.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-U1.cc.m4, not nrg-recalc-U1.cc !!! // Quantum number dependant recalculation routines // Rok Zitko, rok.zitko@ijs.si, June 2006, Oct 2012 // This file pertains to (Q) subspaces namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } // Recalculate matrix elements of a doublet tensor operator template<typename SC> MatrixElements<SC> SymmetryU1<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int q1 = I1.get("Q"); Invar Ip = Invar(q1 - 1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "u1/u1-1ch-doublet.dat" << ", Iop=" << Invar(1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "u1/u1-1ch-doublet.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "u1/u1-2ch-doublet.dat" << ", Iop=" << Invar(1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "u1/u1-2ch-doublet.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1)); } } } } break; case 3: { { nrglog('f', "RECALC(fn=" << "u1/u1-3ch-doublet.dat" << ", Iop=" << Invar(1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "u1/u1-3ch-doublet.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1)); } } } } break; default: my_assert_not_reached(); }; } return cnew; } // Driver routine for recalc_f() template<typename SC> Opch<SC> SymmetryU1<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { int qp = Ip.get("Q"); Invar I1 = Invar(qp + 1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "u1/u1-1ch-a-DO.dat" << ", ch=" << 0 << ", n=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "u1/u1-1ch-a-DO.dat" }; opch[0][1][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "u1/u1-1ch-a-UP.dat" << ", ch=" << 0 << ", n=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "u1/u1-1ch-a-UP.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "u1/u1-2ch-a-DO.dat" << ", ch=" << 0 << ", n=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "u1/u1-2ch-a-DO.dat" }; opch[0][1][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "u1/u1-2ch-b-DO.dat" << ", ch=" << 1 << ", n=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "u1/u1-2ch-b-DO.dat" }; opch[1][1][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "u1/u1-2ch-a-UP.dat" << ", ch=" << 0 << ", n=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "u1/u1-2ch-a-UP.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "u1/u1-2ch-b-UP.dat" << ", ch=" << 1 << ", n=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "u1/u1-2ch-b-UP.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 3: { { nrglog('f', "RECALC_F(fn=" << "u1/u1-3ch-a-DO.dat" << ", ch=" << 0 << ", n=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "u1/u1-3ch-a-DO.dat" }; opch[0][1][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "u1/u1-3ch-b-DO.dat" << ", ch=" << 1 << ", n=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "u1/u1-3ch-b-DO.dat" }; opch[1][1][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "u1/u1-3ch-c-DO.dat" << ", ch=" << 2 << ", n=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "u1/u1-3ch-c-DO.dat" }; opch[2][1][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "u1/u1-3ch-a-UP.dat" << ", ch=" << 0 << ", n=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "u1/u1-3ch-a-UP.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "u1/u1-3ch-b-UP.dat" << ", ch=" << 1 << ", n=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "u1/u1-3ch-b-UP.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "u1/u1-3ch-c-UP.dat" << ", ch=" << 2 << ", n=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "u1/u1-3ch-c-UP.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } break; default: my_assert_not_reached(); }; } return opch; } #undef SPINX #define SPINX(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef SPINY #define SPINY(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef SPINZ #define SPINZ(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) template<typename SC> void SymmetryU1<SC>::recalc_global(const Step &step, const DiagInfo<SC> &diag, const std::string name, MatrixElements<SC> &cnew) const { if (name == "SZtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "u1/u1-1ch-spinz.dat" break; case 2: #include "u1/u1-2ch-spinz.dat" break; case 3: #include "u1/u1-3ch-spinz.dat" break; default: my_assert_not_reached(); } } return; } if constexpr (std::is_same_v<SC, std::complex<double>>) { #undef Complex #define Complex(x, y) cmpl(x, y) if (name == "SYtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "u1/u1-1ch-spiny.dat" break; case 2: #include "u1/u1-2ch-spiny.dat" break; case 3: #include "u1/u1-3ch-spiny.dat" break; default: my_assert_not_reached(); } } return; } } if (name == "SXtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "u1/u1-1ch-spinx.dat" break; case 2: #include "u1/u1-2ch-spinx.dat" break; case 3: #include "u1/u1-3ch-spinx.dat" break; default: my_assert_not_reached(); } } return; } my_assert_not_reached(); } }
9,986
C++
.h
287
30.299652
136
0.56345
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,701
sym-SPSU2LR.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-SPSU2LR.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_SPSU2LR(const Params &P); }
100
C++
.h
4
23.5
57
0.755319
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,702
sym-SPSU2.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-SPSU2.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_SPSU2(const Params &P); }
98
C++
.h
4
23
55
0.75
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,703
sym-PP-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-PP-impl.hpp
namespace NRG { template<typename SC> class SymmetryPP : public Symmetry<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryPP(const Params &P) : Symmetry<SC>(P, std::vector<std::string>{}, Invar(1,1)) { initInvar({ {"Pa", multiplicative}, // fermion parity in channel a {"Pb", multiplicative} // fermion parity in channel b }); } void load() override { switch (P.channels) { case 2: #include "pp/pp-2ch-In2.dat" #include "pp/pp-2ch-QN.dat" break; default: my_assert_not_reached(); } } void make_matrix_polarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const; void make_matrix_nonpolarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const; void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override {}; bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return z2_equality(I1.get("Pa"), I2.get("Pa"), I3.get("Pa")) && z2_equality(I1.get("Pb"), I2.get("Pb"), I3.get("Pb")); } DECL; HAS_GLOBAL; }; #undef OFFDIAG_CR_DO #undef OFFDIAG_CR_UP #undef OFFDIAG_AN_DO #undef OFFDIAG_AN_UP #define OFFDIAG_CR_DO(i, j, ch, factor) offdiag_function(step, i, j, ch, 0, t_matel(factor) * coef.xi(step.N(), ch), h, qq, In, opch) #define OFFDIAG_CR_UP(i, j, ch, factor) offdiag_function(step, i, j, ch, 1, t_matel(factor) * coef.xi(step.N(), ch), h, qq, In, opch) #define OFFDIAG_AN_DO(i, j, ch, factor) offdiag_function(step, i, j, ch, 2, t_matel(factor) * coef.xi(step.N(), ch), h, qq, In, opch) #define OFFDIAG_AN_UP(i, j, ch, factor) offdiag_function(step, i, j, ch, 3, t_matel(factor) * coef.xi(step.N(), ch), h, qq, In, opch) #undef ISOSPINX #define ISOSPINX(i, j, ch, factor) this->diag_offdiag_function(step, i, j, t_matel(factor) * 2.0 * coef.delta(step.N() + 1, ch), h, qq) #undef DIAG #define DIAG(i, ch, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, ch), h, qq) template<typename SC> void SymmetryPP<SC>::make_matrix_nonpolarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { switch (P.channels) { case 2: #include "pp/pp-2ch-offdiag-CR-UP.dat" #include "pp/pp-2ch-offdiag-CR-DO.dat" #include "pp/pp-2ch-offdiag-AN-UP.dat" #include "pp/pp-2ch-offdiag-AN-DO.dat" #include "pp/pp-2ch-diag.dat" #include "pp/pp-2ch-Ixtot.dat" break; default: my_assert_not_reached(); } } #undef OFFDIAG_CR_DO #undef OFFDIAG_CR_UP #undef OFFDIAG_AN_DO #undef OFFDIAG_AN_UP #define OFFDIAG_CR_DO(i, j, ch, factor) offdiag_function(step, i, j, ch, 0, t_matel(factor) * coef.xiDOWN(step.N(), ch), h, qq, In, opch) #define OFFDIAG_CR_UP(i, j, ch, factor) offdiag_function(step, i, j, ch, 1, t_matel(factor) * coef.xiUP(step.N(), ch), h, qq, In, opch) #define OFFDIAG_AN_DO(i, j, ch, factor) offdiag_function(step, i, j, ch, 2, t_matel(factor) * coef.xiDOWN(step.N(), ch), h, qq, In, opch) #define OFFDIAG_AN_UP(i, j, ch, factor) offdiag_function(step, i, j, ch, 3, t_matel(factor) * coef.xiUP(step.N(), ch), h, qq, In, opch) #undef ISOSPINX #define ISOSPINX(i, j, ch, factor) this->diag_offdiag_function(step, i, j, t_matel(factor) * 2.0 * coef.delta(step.N() + 1, ch), h, qq) #undef DIAG_UP #define DIAG_UP(i, j, ch, number) this->diag_function(step, i, number, coef.zetaUP(step.N() + 1, ch), h, qq) #undef DIAG_DOWN #define DIAG_DOWN(i, j, ch, number) this->diag_function(step, i, number, coef.zetaDOWN(step.N() + 1, ch), h, qq) template<typename SC> void SymmetryPP<SC>::make_matrix_polarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { switch (P.channels) { case 2: #include "pp/pp-2ch-offdiag-CR-UP.dat" #include "pp/pp-2ch-offdiag-CR-DO.dat" #include "pp/pp-2ch-offdiag-AN-UP.dat" #include "pp/pp-2ch-offdiag-AN-DO.dat" #include "pp/pp-2ch-diag-UP.dat" #include "pp/pp-2ch-diag-DOWN.dat" #include "pp/pp-2ch-Ixtot.dat" break; default: my_assert_not_reached(); } } template<typename SC> void SymmetryPP<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { if (P.polarized) make_matrix_polarized(h, step, qq, I, In, opch, coef); else make_matrix_nonpolarized(h, step, qq, I, In, opch, coef); } } #include "nrg-recalc-PP.hpp"
4,834
C++
.h
98
46.693878
192
0.68333
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,704
sym-DBLQSZ-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-DBLQSZ-impl.hpp
namespace NRG { template<typename SC> class SymmetryDBLQSZ : public SymField<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryDBLQSZ(const Params &P) : SymField<SC>(P, std::vector{"<Sz^2>", "<Sz>", "<Q1>", "<Q1^2>", "<Q2>", "<Q2^2>"}, Invar(0, 0, 0)) { initInvar({ {"Q1", additive}, // charge 1 {"Q2", additive}, // charge 2 {"SSZ", additive} // spin projection }); } bool check_SPIN(const Invar &I1, const Invar &Ip, const int &SPIN) const override { // The spin projection of the operator is defined by the difference // in Sz of both the invariant subspaces. int ssz1 = I1.get("SSZ"); int sszp = Ip.get("SSZ"); int sszop = ssz1 - sszp; return sszop == SPIN; } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return u1_equality(I1.get("Q1"), I2.get("Q1"), I3.get("Q1")) && u1_equality(I1.get("Q2"), I2.get("Q2"), I3.get("Q2")) && u1_equality(I1.get("SSZ"), I2.get("SSZ"), I3.get("SSZ")); } void load() override { switch (P.channels) { case 2: #include "dblqsz/dblqsz-2ch-In2.dat" #include "dblqsz/dblqsz-2ch-QN.dat" break; default: my_assert_not_reached(); } } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { auto trSZ = 0.0, trSZ2 = 0.0; // Tr[S_z], Tr[S_z^2] auto trQ1 = 0.0, trQ12 = 0.0; // Tr[Q_1], Tr[Q_1^2] auto trQ2 = 0.0, trQ22 = 0.0; // Tr[Q_2], Tr[Q_2^2] for (const auto &[I, eig]: diag) { const int q1 = I.get("Q1"); const int q2 = I.get("Q2"); const int ssz = I.get("SSZ"); const auto sumZ = this->calculate_Z(I, eig, factor); trSZ += sumZ * SZ(ssz); trSZ2 += sumZ * pow(SZ(ssz),2); trQ1 += sumZ * q1; trQ12 += sumZ * pow(q1, 2); trQ2 += sumZ * q2; trQ22 += sumZ * pow(q2, 2); } stats.td.set("<Sz>", trSZ / stats.Z); stats.td.set("<Sz^2>", trSZ2 / stats.Z); stats.td.set("<Q1>", trQ1 / stats.Z); stats.td.set("<Q1^2>", trQ12 / stats.Z); stats.td.set("<Q2>", trQ2 / stats.Z); stats.td.set("<Q2^2>", trQ22 / stats.Z); } DECL; HAS_DOUBLET; HAS_GLOBAL; }; #undef OFFDIAG #define OFFDIAG(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xi(step.N(), ch), h, qq, In, opch) #undef DIAG #define DIAG(i, ch, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, ch), h, qq) template<typename SC> void SymmetryDBLQSZ<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { switch (P.channels) { case 2: #include "dblqsz/dblqsz-2ch-offdiag.dat" #include "dblqsz/dblqsz-2ch-diag.dat" break; default: my_assert_not_reached(); } } } #include "nrg-recalc-DBLQSZ.hpp"
3,094
C++
.h
82
33.097561
183
0.602667
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,705
sym-QSLR.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-QSLR.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_QSLR(const Params &P); }
97
C++
.h
4
22.75
54
0.747253
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,706
nrg-recalc-SPSU2.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-SPSU2.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-SPSU2.cc.m4, not nrg-recalc-SPSU2.cc !!! // Quantum number dependant recalculation routines // Rok Zitko, rok.zitko@ijs.si, Feb 2006, Dec 2007 // This file pertains to (S) subspaces namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } template<typename SC> MatrixElements<SC> SymmetrySPSU2<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; if (!P.substeps) { for(const auto &[I1, eig]: diag) { int ss1 = I1.get("SS"); Invar Ip; Ip = Invar(ss1 + 1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "spsu2/spsu2-1ch-doubletp.dat" << ", Iop=" << Invar(2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2/spsu2-1ch-doubletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "spsu2/spsu2-2ch-doubletp.dat" << ", Iop=" << Invar(2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2/spsu2-2ch-doubletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2)); } } } } break; case 3: { { nrglog('f', "RECALC(fn=" << "spsu2/spsu2-3ch-doubletp.dat" << ", Iop=" << Invar(2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2/spsu2-3ch-doubletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ss1-1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "spsu2/spsu2-1ch-doubletm.dat" << ", Iop=" << Invar(2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2/spsu2-1ch-doubletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "spsu2/spsu2-2ch-doubletm.dat" << ", Iop=" << Invar(2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2/spsu2-2ch-doubletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2)); } } } } break; case 3: { { nrglog('f', "RECALC(fn=" << "spsu2/spsu2-3ch-doubletm.dat" << ", Iop=" << Invar(2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2/spsu2-3ch-doubletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2)); } } } } break; default: my_assert_not_reached(); }; } } else { for(const auto &[I1, eig]: diag) { int ss1 = I1.get("SS"); Invar Ip; Ip = Invar(ss1 + 1); { nrglog('f', "RECALC(fn=" << "spsu2/spsu2-1ch-doubletp.dat" << ", Iop=" << Invar(2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2/spsu2-1ch-doubletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2)); } } }; Ip = Invar(ss1 - 1); { nrglog('f', "RECALC(fn=" << "spsu2/spsu2-1ch-doubletm.dat" << ", Iop=" << Invar(2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2/spsu2-1ch-doubletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2)); } } }; } } return cnew; } template<typename SC> Opch<SC> SymmetrySPSU2<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { my_assert(!P.substeps); Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { int ssp = Ip.get("SS"); Invar I1; I1 = Invar(ssp + 1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "spsu2/spsu2-1ch-spinupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2/spsu2-1ch-spinupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "spsu2/spsu2-2ch-spinupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2/spsu2-2ch-spinupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2/spsu2-2ch-spinupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2/spsu2-2ch-spinupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 3: { { nrglog('f', "RECALC_F(fn=" << "spsu2/spsu2-3ch-spinupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2/spsu2-3ch-spinupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2/spsu2-3ch-spinupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2/spsu2-3ch-spinupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2/spsu2-3ch-spinupc.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2/spsu2-3ch-spinupc.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; default: my_assert_not_reached(); }; I1 = Invar(ssp-1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "spsu2/spsu2-1ch-spindowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2/spsu2-1ch-spindowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "spsu2/spsu2-2ch-spindowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2/spsu2-2ch-spindowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2/spsu2-2ch-spindownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2/spsu2-2ch-spindownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 3: { { nrglog('f', "RECALC_F(fn=" << "spsu2/spsu2-3ch-spindowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2/spsu2-3ch-spindowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2/spsu2-3ch-spindownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2/spsu2-3ch-spindownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spsu2/spsu2-3ch-spindownc.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2/spsu2-3ch-spindownc.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; default: my_assert_not_reached(); }; // Note: for 3ch cases, the lengths in the three channels are not the same! // The same thing occurs for all SU(2)_spin cases, for instance for symtype=QS. // RZ, oct 2015 } return opch; } template<typename SC> OpchChannel<SC> SymmetrySPSU2<SC>::recalc_irreduc_substeps(const Step &step, const DiagInfo<SC> &diag, const int M) const { my_assert(P.substeps); Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { int ssp = Ip.get("SS"); Invar I1; I1 = Invar(ssp + 1); { nrglog('f', "RECALC_F(fn=" << "spsu2/spsu2-1ch-spinupa.dat" << ", ch=" << M << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2/spsu2-1ch-spinupa.dat" }; opch[M][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(ssp - 1); { nrglog('f', "RECALC_F(fn=" << "spsu2/spsu2-1ch-spindowna.dat" << ", ch=" << M << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2/spsu2-1ch-spindowna.dat" }; opch[M][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } return opch[M]; } template<typename SC> MatrixElements<SC> SymmetrySPSU2<SC>::recalc_triplet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; if (!P.substeps) { for(const auto &[I1, eig]: diag) { int ss1 = I1.get("SS"); Invar Ip; Ip = Invar(ss1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "spsu2/spsu2-1ch-triplets.dat" << ", Iop=" << Invar(3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2/spsu2-1ch-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(3)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "spsu2/spsu2-2ch-triplets.dat" << ", Iop=" << Invar(3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2/spsu2-2ch-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(3)); } } } } break; case 3: { { nrglog('f', "RECALC(fn=" << "spsu2/spsu2-3ch-triplets.dat" << ", Iop=" << Invar(3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2/spsu2-3ch-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(3)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ss1+2); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "spsu2/spsu2-1ch-tripletp.dat" << ", Iop=" << Invar(3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2/spsu2-1ch-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(3)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "spsu2/spsu2-2ch-tripletp.dat" << ", Iop=" << Invar(3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2/spsu2-2ch-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(3)); } } } } break; case 3: { { nrglog('f', "RECALC(fn=" << "spsu2/spsu2-3ch-tripletp.dat" << ", Iop=" << Invar(3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2/spsu2-3ch-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(3)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ss1-2); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "spsu2/spsu2-1ch-tripletm.dat" << ", Iop=" << Invar(3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2/spsu2-1ch-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(3)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "spsu2/spsu2-2ch-tripletm.dat" << ", Iop=" << Invar(3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2/spsu2-2ch-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(3)); } } } } break; default: my_assert_not_reached(); }; } } else my_assert_not_reached(); return cnew; } #undef CHARGE #define CHARGE(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef QDIFF #define QDIFF(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef Q1 #define Q1(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef Q2 #define Q2(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef ISOSPINZ #define ISOSPINZ(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) // NOTE: the transverse components of the isospin depend on the site // index! This is taken into account by appropriately multiplying 'value' // by (-1)^N. #undef ISOSPINX #define ISOSPINX(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value *psgn(step.getnn() + 1)) #undef ISOSPINP #define ISOSPINP(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value *psgn(step.getnn() + 1)) #undef ISOSPINM #define ISOSPINM(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value *psgn(step.getnn() + 1)) template<typename SC> void SymmetrySPSU2<SC>::recalc_global(const Step &step, const DiagInfo<SC> &diag, const std::string name, MatrixElements<SC> &cnew) const { // NOTE: none of these are implemented for substeps==true. if (name == "Qtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "spsu2/spsu2-1ch-Qtot.dat" break; case 2: #include "spsu2/spsu2-2ch-Qtot.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Qdiff") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "spsu2/spsu2-2ch-qdiff.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Q1") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "spsu2/spsu2-2ch-q1.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Q2") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "spsu2/spsu2-2ch-q2.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Iztot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "spsu2/spsu2-1ch-Iztot.dat" break; case 2: #include "spsu2/spsu2-2ch-Iztot.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Ixtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "spsu2/spsu2-1ch-Ixtot.dat" break; case 2: #include "spsu2/spsu2-2ch-Ixtot.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Iptot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "spsu2/spsu2-1ch-Iptot.dat" break; case 2: #include "spsu2/spsu2-2ch-Iptot.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Imtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "spsu2/spsu2-1ch-Imtot.dat" break; case 2: #include "spsu2/spsu2-2ch-Imtot.dat" break; default: my_assert_not_reached(); } } return; } my_assert_not_reached(); } }
20,624
C++
.h
595
30.203361
139
0.587001
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,707
nrg-recalc-ISOSZLR.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-ISOSZLR.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-ISOSZLR.cc.m4, not nrg-recalc-ISOSZLR.cc !!! // Quantum number dependent recalculation routines // Rok Zitko, rok.zitko@ijs.si, June 2009 // This file pertains to (I,Sz,P) subspaces namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } template<typename SC> Opch<SC> SymmetryISOSZLR<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { Invar I1; int iip = Ip.get("II"); int sszp = Ip.get("SSZ"); int pp = Ip.get("P"); // nn is index n of f_n, the last site in the chain prior to adding // the new site (f_{n+1}). int NN = step.getnn(); // ****** CASE I: SAME PARITY ****** I1 = Invar(iip + 1, sszp + 1, pp); { nrglog('f', "RECALC_F(fn=" << "isoszlr/isoszlr-2ch-spinup-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-spinup-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "isoszlr/isoszlr-2ch-spinup-isoupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-spinup-isoupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(iip + 1, sszp - 1, pp); { nrglog('f', "RECALC_F(fn=" << "isoszlr/isoszlr-2ch-spindown-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-spindown-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "isoszlr/isoszlr-2ch-spindown-isoupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-spindown-isoupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(iip - 1, sszp + 1, pp); { nrglog('f', "RECALC_F(fn=" << "isoszlr/isoszlr-2ch-spinup-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-spinup-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "isoszlr/isoszlr-2ch-spinup-isodownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-spinup-isodownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(iip - 1, sszp - 1, pp); { nrglog('f', "RECALC_F(fn=" << "isoszlr/isoszlr-2ch-spindown-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-spindown-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "isoszlr/isoszlr-2ch-spindown-isodownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-spindown-isodownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; // ****** CASE II: DIFFERENT PARITY ****** I1 = Invar(iip + 1, sszp + 1, -pp); { nrglog('f', "RECALC_F(fn=" << "isoszlr/isoszlr-2ch-spinup-isoupdiffa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-spinup-isoupdiffa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "isoszlr/isoszlr-2ch-spinup-isoupdiffb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-spinup-isoupdiffb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(iip + 1, sszp - 1, -pp); { nrglog('f', "RECALC_F(fn=" << "isoszlr/isoszlr-2ch-spindown-isoupdiffa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-spindown-isoupdiffa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "isoszlr/isoszlr-2ch-spindown-isoupdiffb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-spindown-isoupdiffb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(iip - 1, sszp + 1, -pp); { nrglog('f', "RECALC_F(fn=" << "isoszlr/isoszlr-2ch-spinup-isodowndiffa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-spinup-isodowndiffa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "isoszlr/isoszlr-2ch-spinup-isodowndiffb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-spinup-isodowndiffb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(iip - 1, sszp - 1, -pp); { nrglog('f', "RECALC_F(fn=" << "isoszlr/isoszlr-2ch-spindown-isodowndiffa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-spindown-isodowndiffa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "isoszlr/isoszlr-2ch-spindown-isodowndiffb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-spindown-isodowndiffb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } return opch; } // Recalculate matrix elements of a doublet tensor operator [EVEN PARITY] template<typename SC> MatrixElements<SC> SymmetryISOSZLR<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int ii1 = I1.get("II"); int ssz1 = I1.get("SSZ"); int p1 = I1.get("P"); Invar Ip; Ip = Invar(ii1 - 1, ssz1 + 1, p1); { nrglog('f', "RECALC(fn=" << "isoszlr/isoszlr-2ch-doubletmp.dat" << ", Iop=" << Invar(2, -1, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-doubletmp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, -1, +1)); } } }; Ip = Invar(ii1 - 1, ssz1 - 1, p1); { nrglog('f', "RECALC(fn=" << "isoszlr/isoszlr-2ch-doubletmm.dat" << ", Iop=" << Invar(2, +1, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-doubletmm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, +1, +1)); } } }; Ip = Invar(ii1 + 1, ssz1 + 1, p1); { nrglog('f', "RECALC(fn=" << "isoszlr/isoszlr-2ch-doubletpp.dat" << ", Iop=" << Invar(2, -1, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-doubletpp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, -1, +1)); } } }; Ip = Invar(ii1 + 1, ssz1 - 1, p1); { nrglog('f', "RECALC(fn=" << "isoszlr/isoszlr-2ch-doubletpm.dat" << ", Iop=" << Invar(2, +1, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-doubletpm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, +1, +1)); } } }; } return cnew; } // Recalculate matrix elements of a triplet tensor operator [EVEN PARITY] template<typename SC> MatrixElements<SC> SymmetryISOSZLR<SC>::recalc_triplet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int ii1 = I1.get("II"); int ssz1 = I1.get("SSZ"); int p1 = I1.get("P"); Invar Ip; Ip = Invar(ii1, ssz1, p1); { nrglog('f', "RECALC(fn=" << "isoszlr/isoszlr-2ch-triplets.dat" << ", Iop=" << Invar(1, 0, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 0, +1)); } } }; Ip = Invar(ii1, ssz1 + 2, p1); { nrglog('f', "RECALC(fn=" << "isoszlr/isoszlr-2ch-tripletp.dat" << ", Iop=" << Invar(1, -2, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, -2, +1)); } } }; Ip = Invar(ii1, ssz1 - 2, p1); { nrglog('f', "RECALC(fn=" << "isoszlr/isoszlr-2ch-tripletm.dat" << ", Iop=" << Invar(1, +2, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "isoszlr/isoszlr-2ch-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, +2, +1)); } } }; } return cnew; } }
13,461
C++
.h
341
35.334311
120
0.595105
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,708
nrg-recalc-SPU1.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-SPU1.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-SPSU2.cc.m4, not nrg-recalc-SPSU2.cc !!! // Quantum number dependant recalculation routines // Rok Zitko, rok.zitko@ijs.si, Dec 2008. // This file pertains to (S) subspaces namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } template<typename SC> MatrixElements<SC> SymmetrySPU1<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; if (!P.substeps) { for(const auto &[I1, eig]: diag) { int ssz1 = I1.get("SSZ"); Invar Ip; Ip = Invar(ssz1 + 1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "spu1/spu1-1ch-doubletp.dat" << ", Iop=" << Invar(-1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1/spu1-1ch-doubletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(-1)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "spu1/spu1-2ch-doubletp.dat" << ", Iop=" << Invar(-1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1/spu1-2ch-doubletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(-1)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ssz1-1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "spu1/spu1-1ch-doubletm.dat" << ", Iop=" << Invar(+1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1/spu1-1ch-doubletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(+1)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "spu1/spu1-2ch-doubletm.dat" << ", Iop=" << Invar(+1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1/spu1-2ch-doubletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(+1)); } } } } break; default: my_assert_not_reached(); }; } } else { for(const auto &[I1, eig]: diag) { int ssz1 = I1.get("SSZ"); Invar Ip; Ip = Invar(ssz1 + 1); { nrglog('f', "RECALC(fn=" << "spu1/spu1-1ch-doubletp.dat" << ", Iop=" << Invar(-1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1/spu1-1ch-doubletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(-1)); } } }; Ip = Invar(ssz1 - 1); { nrglog('f', "RECALC(fn=" << "spu1/spu1-1ch-doubletm.dat" << ", Iop=" << Invar(+1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1/spu1-1ch-doubletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(+1)); } } }; } } return cnew; } template<typename SC> Opch<SC> SymmetrySPU1<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { my_assert(!P.substeps); Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { int sszp = Ip.get("SSZ"); Invar I1; I1 = Invar(sszp + 1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "spu1/spu1-1ch-spinupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1/spu1-1ch-spinupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "spu1/spu1-2ch-spinupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1/spu1-2ch-spinupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spu1/spu1-2ch-spinupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1/spu1-2ch-spinupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; default: my_assert_not_reached(); }; I1 = Invar(sszp-1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "spu1/spu1-1ch-spindowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1/spu1-1ch-spindowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "spu1/spu1-2ch-spindowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1/spu1-2ch-spindowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spu1/spu1-2ch-spindownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1/spu1-2ch-spindownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; default: my_assert_not_reached(); }; } return opch; } template<typename SC> OpchChannel<SC> SymmetrySPU1<SC>::recalc_irreduc_substeps(const Step &step, const DiagInfo<SC> &diag, const int M) const { my_assert(P.substeps); Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { int sszp = Ip.get("SSZ"); Invar I1; I1 = Invar(sszp + 1); { nrglog('f', "RECALC_F(fn=" << "spu1/spu1-1ch-spinupa.dat" << ", ch=" << M << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1/spu1-1ch-spinupa.dat" }; opch[M][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(sszp - 1); { nrglog('f', "RECALC_F(fn=" << "spu1/spu1-1ch-spindowna.dat" << ", ch=" << M << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1/spu1-1ch-spindowna.dat" }; opch[M][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } return opch[M]; } template<typename SC> MatrixElements<SC> SymmetrySPU1<SC>::recalc_triplet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; if (!P.substeps) { for(const auto &[I1, eig]: diag) { int ssz1 = I1.get("SSZ"); Invar Ip; Ip = Invar(ssz1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "spu1/spu1-1ch-triplets.dat" << ", Iop=" << Invar(0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1/spu1-1ch-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "spu1/spu1-2ch-triplets.dat" << ", Iop=" << Invar(0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1/spu1-2ch-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ssz1+2); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "spu1/spu1-1ch-tripletp.dat" << ", Iop=" << Invar(-2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1/spu1-1ch-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(-2)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "spu1/spu1-2ch-tripletp.dat" << ", Iop=" << Invar(-2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1/spu1-2ch-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(-2)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ssz1-2); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "spu1/spu1-1ch-tripletm.dat" << ", Iop=" << Invar(+2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1/spu1-1ch-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(+2)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "spu1/spu1-2ch-tripletm.dat" << ", Iop=" << Invar(+2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1/spu1-2ch-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(+2)); } } } } break; default: my_assert_not_reached(); }; } } else { for(const auto &[I1, eig]: diag) { int ssz1 = I1.get("SSZ"); Invar Ip; Ip = Invar(ssz1); { nrglog('f', "RECALC(fn=" << "spu1/spu1-1ch-triplets.dat" << ", Iop=" << Invar(0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1/spu1-1ch-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0)); } } }; Ip = Invar(ssz1 + 2); { nrglog('f', "RECALC(fn=" << "spu1/spu1-1ch-tripletp.dat" << ", Iop=" << Invar(-2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1/spu1-1ch-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(-2)); } } }; Ip = Invar(ssz1 - 2); { nrglog('f', "RECALC(fn=" << "spu1/spu1-1ch-tripletm.dat" << ", Iop=" << Invar(+2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1/spu1-1ch-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(+2)); } } }; } } return cnew; } #undef CHARGE #define CHARGE(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef ISOSPINZ #define ISOSPINZ(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) // NOTE: the transverse components of the isospin depend on the site // index! This is taken into account by appropriately multiplying 'value' // by (-1)^N. #undef ISOSPINX #define ISOSPINX(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value *psgn(step.getnn() + 1)) #undef ISOSPINP #define ISOSPINP(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value *psgn(step.getnn() + 1)) #undef ISOSPINM #define ISOSPINM(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value *psgn(step.getnn() + 1)) // 2-channel only #undef QDIFF #define QDIFF(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef Q1 #define Q1(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef Q2 #define Q2(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef Q1UP #define Q1UP(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef Q2UP #define Q2UP(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef Q1DO #define Q1DO(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef Q2DO #define Q2DO(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) template<typename SC> void SymmetrySPU1<SC>::recalc_global(const Step &step, const DiagInfo<SC> &diag, const std::string name, MatrixElements<SC> &cnew) const { if (name == "Qtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "spu1/spu1-1ch-Qtot.dat" break; case 2: #include "spu1/spu1-2ch-Qtot.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Iztot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "spu1/spu1-1ch-Iztot.dat" break; case 2: #include "spu1/spu1-2ch-Iztot.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Ixtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "spu1/spu1-1ch-Ixtot.dat" break; case 2: #include "spu1/spu1-2ch-Ixtot.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Iptot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "spu1/spu1-1ch-Iptot.dat" break; case 2: #include "spu1/spu1-2ch-Iptot.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Imtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "spu1/spu1-1ch-Imtot.dat" break; case 2: #include "spu1/spu1-2ch-Imtot.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Qdiff") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "spu1/spu1-2ch-qdiff.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Q1") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "spu1/spu1-2ch-q1.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Q2") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "spu1/spu1-2ch-q2.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Q1UP") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "spu1/spu1-2ch-q1up.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Q2UP") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "spu1/spu1-2ch-q2up.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Q1DO") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "spu1/spu1-2ch-q1do.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Q2DO") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "spu1/spu1-2ch-q2do.dat" break; default: my_assert_not_reached(); } } return; } my_assert_not_reached(); } // XXX: use m4 macros rather than C++ macros #undef Q1 #undef Q2 #undef Q3 }
18,779
C++
.h
580
27.756897
138
0.579812
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,709
sym-SL.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-SL.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_SL(const Params &P); }
95
C++
.h
4
22.25
52
0.741573
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,710
sym-SL-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-SL-impl.hpp
namespace NRG { template<typename SC> class SymmetrySL : public Symmetry<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetrySL(const Params &P) : Symmetry<SC>(P, std::vector{"<Q>", "<Q^2>", "<sQ^2>"}, Invar(0)) { initInvar({ {"Q", additive} // charge }); } void load() override { switch (P.channels) { case 1: #include "sl/sl-1ch-In2.dat" #include "sl/sl-1ch-QN.dat" break; case 2: #include "sl/sl-2ch-In2.dat" #include "sl/sl-2ch-QN.dat" break; case 3: #include "sl/sl-3ch-In2.dat" #include "sl/sl-3ch-QN.dat" break; default: my_assert_not_reached(); } } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trQ, trQ2; // Tr[Q], Tr[Q^2] for (const auto &[I, eig]: diag) { const int q = I.get("Q"); const double sumZ = this->calculate_Z(I, eig, factor); trQ += sumZ * q; trQ2 += sumZ * q * q; } stats.td.set("<Q>", trQ / stats.Z); stats.td.set("<Q^2>", trQ2 / stats.Z); // charge fluctuations -> susceptibility stats.td.set("<sQ^2>", (trQ2 / stats.Z) - pow(trQ / stats.Z, 2)); } DECL; HAS_DOUBLET; HAS_GLOBAL; }; #undef OFFDIAG #define OFFDIAG(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xi(step.N(), ch), h, qq, In, opch) #undef DIAG #define DIAG(i, ch, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, ch), h, qq) template<typename SC> void SymmetrySL<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { switch (P.channels) { case 1: #include "sl/sl-1ch-offdiag.dat" #include "sl/sl-1ch-diag.dat" break; case 2: #include "sl/sl-2ch-offdiag.dat" #include "sl/sl-2ch-diag.dat" break; case 3: #include "sl/sl-3ch-offdiag.dat" #include "sl/sl-3ch-diag.dat" break; default: my_assert_not_reached(); } } } #include "nrg-recalc-SL.hpp"
2,232
C++
.h
73
26.643836
179
0.628611
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,711
sym-QSZTZ.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-QSZTZ.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_QSZTZ(const Params &P); }
98
C++
.h
4
23
55
0.75
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,712
sym-QSZTZ-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-QSZTZ-impl.hpp
namespace NRG { template<typename SC> class SymmetryQSZTZ : public Symmetry<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryQSZTZ(const Params &P) : Symmetry<SC>(P, std::vector{"<Sz>", "<Sz^2>", "<Tz>", "<Tz^2>", "<Q>", "<Q^2>"}, Invar(0,0,0), Invar(1,2,1)) { initInvar({ {"Q", additive}, // charge {"SZ", additive}, // spin {"TZ", additive} // angular momentum }); } size_t mult(const Invar &I) const override { return 1; } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return u1_equality(I1.get("Q"), I2.get("Q"), I3.get("Q")) && u1_equality(I1.get("SZ"), I2.get("SZ"), I3.get("SZ")) && u1_equality(I1.get("TZ"), I2.get("TZ"), I3.get("TZ")); } bool Invar_allowed(const Invar &I) const override { return true; } void load() override { my_assert(!P.substeps); my_assert(P.channels == 3); #include "qsztz/qsztz-In2.dat" #include "qsztz/qsztz-QN.dat" } // load void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trSZ, trSZ2, trTZ, trTZ2, trQ, trQ2; for (const auto &[I, eig]: diag) { const int q = I.get("Q"); const int ssz = I.get("SZ"); const int tz = I.get("TZ"); const double sumZ = this->calculate_Z(I, eig, factor); trQ += sumZ * q; trQ2 += sumZ * q * q; trSZ += sumZ * (ssz - 1) / 2.; trSZ2 += sumZ * pow((ssz - 1) / 2., 2); trTZ += sumZ * tz; trTZ2 += sumZ * tz * tz; } stats.td.set("<Sz>", trSZ / stats.Z); stats.td.set("<Sz^2>", trSZ2 / stats.Z); stats.td.set("<Tz>", trTZ / stats.Z); stats.td.set("<Tz^2>", trTZ2 / stats.Z); stats.td.set("<Q>", trQ / stats.Z); stats.td.set("<Q^2>", trQ2 / stats.Z); } DECL; HAS_DOUBLET; HAS_TRIPLET; }; // We take the coefficients of the first channel (indexed as 0), because all three set are exactly the same due to // orbital symmetry. [Can be generalized for symmetry-broken cases if the need arises.] #undef OFFDIAG #define OFFDIAG(i, j, factor0) offdiag_function(step, i, j, 0, 0, t_matel(factor0) * coef.xi(step.N(), 0), h, qq, In, opch) #undef DIAG #define DIAG(i, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, 0), h, qq) template<typename SC> void SymmetryQSZTZ<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { my_assert(!P.substeps); my_assert(P.channels == 3); #include "qsztz/qsztz-offdiag.dat" #include "qsztz/qsztz-diag.dat" } } #include "nrg-recalc-QSZTZ.hpp"
2,841
C++
.h
69
37.217391
182
0.623283
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,713
nrg-recalc-SPU1LR.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-SPU1LR.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-SPU1LR.cc.m4, not nrg-recalc-SPU1LR.cc !!! // Quantum number dependant recalculation routines // Rok Zitko, rok.zitko@ijs.si, May 2010 // This file pertains to (SZ,P) subspaces namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } template<typename SC> MatrixElements<SC> SymmetrySPU1LR<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int ssz1 = I1.get("SSZ"); int p1 = I1.get("P"); Invar Ip; Ip = Invar(ssz1 + 1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "spu1lr/spu1lr-1ch-doubletp.dat" << ", Iop=" << Invar(-1, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1lr/spu1lr-1ch-doubletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(-1, 1)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "spu1lr/spu1lr-2ch-doubletp.dat" << ", Iop=" << Invar(-1, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1lr/spu1lr-2ch-doubletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(-1, 1)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ssz1-1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "spu1lr/spu1lr-1ch-doubletm.dat" << ", Iop=" << Invar(+1, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1lr/spu1lr-1ch-doubletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(+1, 1)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "spu1lr/spu1lr-2ch-doubletm.dat" << ", Iop=" << Invar(+1, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1lr/spu1lr-2ch-doubletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(+1, 1)); } } } } break; default: my_assert_not_reached(); }; } return cnew; } template<typename SC> Opch<SC> SymmetrySPU1LR<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { int sszp = Ip.get("SSZ"); int pp = Ip.get("P"); Invar I1; // CASE I: SAME PARITY I1 = Invar(sszp + 1, pp); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "spu1lr/spu1lr-1ch-spinupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1lr/spu1lr-1ch-spinupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "spu1lr/spu1lr-2ch-spinupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1lr/spu1lr-2ch-spinupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spu1lr/spu1lr-2ch-spinupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1lr/spu1lr-2ch-spinupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; default: my_assert_not_reached(); }; I1 = Invar(sszp-1, pp); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "spu1lr/spu1lr-1ch-spindowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1lr/spu1lr-1ch-spindowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "spu1lr/spu1lr-2ch-spindowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1lr/spu1lr-2ch-spindowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spu1lr/spu1lr-2ch-spindownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1lr/spu1lr-2ch-spindownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; default: my_assert_not_reached(); }; // CASE II: OPPOSITE PARITY if (P.channels == 2) { I1 = Invar(sszp + 1, -pp); { nrglog('f', "RECALC_F(fn=" << "spu1lr/spu1lr-2ch-spinupdiffa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1lr/spu1lr-2ch-spinupdiffa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spu1lr/spu1lr-2ch-spinupdiffb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1lr/spu1lr-2ch-spinupdiffb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(sszp - 1, -pp); { nrglog('f', "RECALC_F(fn=" << "spu1lr/spu1lr-2ch-spindowndiffa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1lr/spu1lr-2ch-spindowndiffa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "spu1lr/spu1lr-2ch-spindowndiffb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spu1lr/spu1lr-2ch-spindowndiffb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } } return opch; } template<typename SC> MatrixElements<SC> SymmetrySPU1LR<SC>::recalc_triplet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int ssz1 = I1.get("SSZ"); int p1 = I1.get("P"); Invar Ip; Ip = Invar(ssz1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "spu1lr/spu1lr-1ch-triplets.dat" << ", Iop=" << Invar(0, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1lr/spu1lr-1ch-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 1)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "spu1lr/spu1lr-2ch-triplets.dat" << ", Iop=" << Invar(0, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1lr/spu1lr-2ch-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 1)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ssz1+2); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "spu1lr/spu1lr-1ch-tripletp.dat" << ", Iop=" << Invar(-2, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1lr/spu1lr-1ch-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(-2, 1)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "spu1lr/spu1lr-2ch-tripletp.dat" << ", Iop=" << Invar(-2, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1lr/spu1lr-2ch-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(-2, 1)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ssz1-2); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "spu1lr/spu1lr-1ch-tripletm.dat" << ", Iop=" << Invar(+2, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1lr/spu1lr-1ch-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(+2, 1)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "spu1lr/spu1lr-2ch-tripletm.dat" << ", Iop=" << Invar(+2, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spu1lr/spu1lr-2ch-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(+2, 1)); } } } } break; default: my_assert_not_reached(); }; } return cnew; } #undef CHARGE #define CHARGE(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef ISOSPINZ #define ISOSPINZ(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) // NOTE: the transverse components of the isospin depend on the site // index! This is taken into account by appropriately multiplying 'value' // by (-1)^N. #undef ISOSPINX #define ISOSPINX(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value *psgn(step.getnn() + 1)) #undef ISOSPINP #define ISOSPINP(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value *psgn(step.getnn() + 1)) #undef ISOSPINM #define ISOSPINM(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value *psgn(step.getnn() + 1)) template<typename SC> void SymmetrySPU1LR<SC>::recalc_global(const Step &step, const DiagInfo<SC> &diag, const std::string name, MatrixElements<SC> &cnew) const { if (name == "Qtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "spu1lr/spu1lr-1ch-Qtot.dat" break; case 2: #include "spu1lr/spu1lr-2ch-Qtot.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Iztot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "spu1lr/spu1lr-1ch-Iztot.dat" break; case 2: #include "spu1lr/spu1lr-2ch-Iztot.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Ixtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "spu1lr/spu1lr-1ch-Ixtot.dat" break; case 2: #include "spu1lr/spu1lr-2ch-Ixtot.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Iptot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "spu1lr/spu1lr-1ch-Iptot.dat" break; case 2: #include "spu1lr/spu1lr-2ch-Iptot.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Imtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 1: #include "spu1lr/spu1lr-1ch-Imtot.dat" break; case 2: #include "spu1lr/spu1lr-2ch-Imtot.dat" break; default: my_assert_not_reached(); } } return; } my_assert_not_reached(); } }
14,407
C++
.h
411
30.654501
140
0.59174
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,714
nrg-recalc-SL.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-SL.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-SL.cc.m4, not nrg-recalc-SL.cc !!! // Quantum number dependant recalculation routines // Rok Zitko, rok.zitko@ijs.si, June 2006, Nov 2007 // This file pertains to the spinless-fermions code. namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } template<typename SC> MatrixElements<SC> SymmetrySL<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold)const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int q1 = I1.get("Q"); Invar Ip = Invar(q1 - 1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "sl/sl-1ch-doublet.dat" << ", Iop=" << Invar(1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "sl/sl-1ch-doublet.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "sl/sl-2ch-doublet.dat" << ", Iop=" << Invar(1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "sl/sl-2ch-doublet.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1)); } } } } break; case 3: { { nrglog('f', "RECALC(fn=" << "sl/sl-3ch-doublet.dat" << ", Iop=" << Invar(1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "sl/sl-3ch-doublet.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1)); } } } } break; default: my_assert_not_reached(); }; } return cnew; } template<typename SC> Opch<SC> SymmetrySL<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { int qp = Ip.get("Q"); Invar I1 = Invar(qp + 1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "sl/sl-1ch-a.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "sl/sl-1ch-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "sl/sl-2ch-a.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "sl/sl-2ch-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "sl/sl-2ch-b.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "sl/sl-2ch-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 3: { { nrglog('f', "RECALC_F(fn=" << "sl/sl-3ch-a.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "sl/sl-3ch-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "sl/sl-3ch-b.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "sl/sl-3ch-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "sl/sl-3ch-c.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "sl/sl-3ch-c.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; default: my_assert_not_reached(); }; } return opch; } #undef QDIFF #define QDIFF(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef QTOT #define QTOT(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef N1 #define N1(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef N2 #define N2(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef N3 #define N3(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) template<typename SC> void SymmetrySL<SC>::recalc_global(const Step &step, const DiagInfo<SC> &diag, const std::string name, MatrixElements<SC> &cnew) const { if (name == "Qdiff") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "sl/sl-2ch-qdiff.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Qtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "sl/sl-2ch-qtot.dat" break; default: my_assert_not_reached(); } } return; } if (name == "N1") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 3: #include "sl/sl-3ch-N1.dat" break; default: my_assert_not_reached(); } } return; } if (name == "N2") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 3: #include "sl/sl-3ch-N2.dat" break; default: my_assert_not_reached(); } } return; } if (name == "N3") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 3: #include "sl/sl-3ch-N3.dat" break; default: my_assert_not_reached(); } } return; } my_assert_not_reached(); } }
7,223
C++
.h
221
28.217195
136
0.574648
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,715
sym-U1-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-U1-impl.hpp
namespace NRG { template<typename SC> class SymmetryU1 : public Symmetry<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryU1(const Params &P) : Symmetry<SC>(P, std::vector{"<Q>","<Q^2>"}, Invar(0)) { initInvar({ {"Q", additive} // charge }); } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return u1_equality(I1.get("Q"), I2.get("Q"), I3.get("Q")); } void load() override { switch (P.channels) { case 1: #include "u1/u1-1ch-In2.dat" #include "u1/u1-1ch-QN.dat" break; case 2: #include "u1/u1-2ch-In2.dat" #include "u1/u1-2ch-QN.dat" break; case 3: #include "u1/u1-3ch-In2.dat" #include "u1/u1-3ch-QN.dat" break; default: my_assert_not_reached(); } } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trQ, trQ2; // Tr[Q], Tr[Q^2] for (const auto &[I, eig]: diag) { const int q = I.get("Q"); const double sumZ = this->calculate_Z(I, eig, factor); trQ += sumZ * q; trQ2 += sumZ * q * q; } stats.td.set("<Q>", trQ / stats.Z); stats.td.set("<Q^2>", trQ2 / stats.Z); } void make_matrix_pol2x2(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const; void make_matrix_polarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const; void make_matrix_nonpolarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const; DECL; HAS_DOUBLET; HAS_GLOBAL; }; #undef DIAG #define DIAG(i, ch, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, ch), h, qq) #undef OFFDIAG_UP #undef OFFDIAG_DO #undef OFFDIAG_UPDO #undef OFFDIAG_DOUP #undef DIAG_UP #undef DIAG_DOWN #undef DIAG_DOUP #define OFFDIAG_UP(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xiUP(step.N(), ch), h, qq, In, opch) #define OFFDIAG_DO(i, j, ch, factor0) offdiag_function(step, i, j, ch, 1, t_matel(factor0) * coef.xiDOWN(step.N(), ch), h, qq, In, opch) // UPDO -> <f> from previous site for spin UP (index fnr=0) #define OFFDIAG_UPDO(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xiUPDO(step.N(), ch), h, qq, In, opch) // DOUP -> <f> from previous site for spin DO (index fnr=1) #define OFFDIAG_DOUP(i, j, ch, factor0) offdiag_function(step, i, j, ch, 1, t_matel(factor0) * coef.xiDOUP(step.N(), ch), h, qq, In, opch) // Note the _half !! #define DIAG_UP(i, j, ch, number) this->diag_function_half(step, i, number, coef.zetaUP(step.N() + 1, ch), h, qq) #define DIAG_DOWN(i, j, ch, number) this->diag_function_half(step, i, number, coef.zetaDOWN(step.N() + 1, ch), h, qq) // Compare with ISOSPINX for symtype=SPSU2 case // See also coefnew/u1/u1.m #define DIAG_DOUP(i, j, ch, factor) this->diag_offdiag_function(step, i, j, t_matel(factor) * coef.zetaDOUP(step.N() + 1, ch), h, qq) template<typename SC> void SymmetryU1<SC>::make_matrix_polarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { switch (P.channels) { case 1: #include "u1/u1-1ch-offdiag-UP.dat" #include "u1/u1-1ch-offdiag-DO.dat" #include "u1/u1-1ch-diag-UP.dat" #include "u1/u1-1ch-diag-DOWN.dat" break; case 2: #include "u1/u1-2ch-offdiag-UP.dat" #include "u1/u1-2ch-offdiag-DO.dat" #include "u1/u1-2ch-diag-UP.dat" #include "u1/u1-2ch-diag-DOWN.dat" break; case 3: #include "u1/u1-3ch-offdiag-UP.dat" #include "u1/u1-3ch-offdiag-DO.dat" #include "u1/u1-3ch-diag-UP.dat" #include "u1/u1-3ch-diag-DOWN.dat" break; default: my_assert_not_reached(); } } // Full 2x2 spin matrix structure. Added 10.9.2012 template<typename SC> void SymmetryU1<SC>::make_matrix_pol2x2(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { switch (P.channels) { case 1: #include "u1/u1-1ch-offdiag-UP.dat" #include "u1/u1-1ch-offdiag-DO.dat" #include "u1/u1-1ch-offdiag-UPDO.dat" #include "u1/u1-1ch-offdiag-DOUP.dat" #include "u1/u1-1ch-diag-UP.dat" #include "u1/u1-1ch-diag-DOWN.dat" #include "u1/u1-1ch-diag-DOUP.dat" break; case 2: #include "u1/u1-2ch-offdiag-UP.dat" #include "u1/u1-2ch-offdiag-DO.dat" #include "u1/u1-2ch-offdiag-UPDO.dat" #include "u1/u1-2ch-offdiag-DOUP.dat" #include "u1/u1-2ch-diag-UP.dat" #include "u1/u1-2ch-diag-DOWN.dat" #include "u1/u1-2ch-diag-DOUP.dat" break; case 3: #include "u1/u1-3ch-offdiag-UP.dat" #include "u1/u1-3ch-offdiag-DO.dat" #include "u1/u1-3ch-offdiag-UPDO.dat" #include "u1/u1-3ch-offdiag-DOUP.dat" #include "u1/u1-3ch-diag-UP.dat" #include "u1/u1-3ch-diag-DOWN.dat" #include "u1/u1-3ch-diag-DOUP.dat" break; default: my_assert_not_reached(); } } #undef OFFDIAG_DO #undef OFFDIAG_UP #define OFFDIAG_DO(i, j, ch, factor) offdiag_function(step, i, j, ch, 0, t_matel(factor) * coef.xi(step.N(), ch), h, qq, In, opch) #define OFFDIAG_UP(i, j, ch, factor) offdiag_function(step, i, j, ch, 1, t_matel(factor) * coef.xi(step.N(), ch), h, qq, In, opch) template<typename SC> void SymmetryU1<SC>::make_matrix_nonpolarized(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { switch (P.channels) { case 1: #include "u1/u1-1ch-offdiag-UP.dat" #include "u1/u1-1ch-offdiag-DO.dat" #include "u1/u1-1ch-diag.dat" break; case 2: #include "u1/u1-2ch-offdiag-UP.dat" #include "u1/u1-2ch-offdiag-DO.dat" #include "u1/u1-2ch-diag.dat" break; case 3: #include "u1/u1-3ch-offdiag-UP.dat" #include "u1/u1-3ch-offdiag-DO.dat" #include "u1/u1-3ch-diag.dat" break; default: my_assert_not_reached(); } } template<typename SC> void SymmetryU1<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { if (P.pol2x2) { make_matrix_pol2x2(h, step, qq, I, In, opch, coef); } else if (P.polarized) { make_matrix_polarized(h, step, qq, I, In, opch, coef); } else { make_matrix_nonpolarized(h, step, qq, I, In, opch, coef); } } } #include "nrg-recalc-U1.hpp"
6,711
C++
.h
167
37.263473
192
0.679755
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,716
sym-QJ-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-QJ-impl.hpp
#include <boost/math/special_functions/factorials.hpp> namespace NRG { template<typename SC> class SymmetryQJ : public Symmetry<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryQJ(const Params &P) : Symmetry<SC>(P, std::vector{"<Jz^2>", "<Q>", "<Q^2>"}, Invar(0,1), Invar(1,4)) { initInvar({ {"Q", additive}, // charge {"JJ", additive} // total angular momentum }); } // Multiplicity of the (Q,JJ) subspace is 2J+1 = JJ. size_t mult(const Invar &I) const override { return I.get("JJ"); } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return u1_equality(I1.get("Q"), I2.get("Q"), I3.get("Q")) && su2_triangle_inequality(I1.get("JJ"), I2.get("JJ"), I3.get("JJ")); } bool Invar_allowed(const Invar &I) const override { const bool spin_ok = I.get("JJ") > 0; return spin_ok; } void load() override { #include "qj/qj-In2.dat" #include "qj/qj-QN.dat" } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trJZ2, trQ, trQ2; // Tr[J_z^2], Tr[Q], Tr[Q^2] for (const auto &[I, eig]: diag) { const int jj = I.get("JJ"); const int q = I.get("Q"); const double sumZ = this->calculate_Z(I, eig, factor); trQ += sumZ * q; trQ2 += sumZ * q * q; trJZ2 += sumZ * (jj * jj - 1) / 12.; } stats.td.set("<Jz^2>", trJZ2 / stats.Z); stats.td.set("<Q>", trQ / stats.Z); stats.td.set("<Q^2>", trQ2 / stats.Z); } // ClebschGordan[ket (p), op, bra (1)] double specdens_factor(const Invar &Ip, const Invar &I1) const override { check_diff(Ip, I1, "Q", 1); const int jjp = Ip.get("JJ"); const int jj1 = I1.get("JJ"); my_assert(abs(jj1 - jjp) == 1); return (jj1 == jjp + 1 ? S(jjp) + 1.0 : S(jjp)); } // See cg_factors_doublet_triplet_quadruplet.nb double specdensquad_factor(const Invar &Ip, const Invar &I1) const override { check_diff(Ip, I1, "Q", 1); const int jjp = Ip.get("JJ"); const int jj1 = I1.get("JJ"); my_assert(abs(jj1 - jjp) == 1 || abs(jj1 - jjp) == 3); if (jj1 == jjp + 3) return S(jjp) / 2.0 + 1.0; if (jj1 == jjp + 1) { my_assert(jjp >= 2); // singlet in kvadruplet se ne moreta sklopiti v dublet return S(jjp) / 2.0 + 0.5; } if (jj1 == jjp - 1) { my_assert(jjp >= 2); // trikotniska return S(jjp) / 2.0; } if (jj1 == jjp - 3) { my_assert(jjp >= 4); // trikotniska return S(jjp) / 2.0 - 0.5; } my_assert_not_reached(); return 0; } void offdiag_function_QJ(const Step &step, const unsigned int i, const unsigned int j, const unsigned int ch, const unsigned int fnr, const t_matel factor, Matrix &h, const SubspaceDimensions &qq, const InvarVec &In, const Opch<SC> &opch) const { const Invar Iop = ch == 0 ? Invar(1, 2) : Invar(1, 4); const Invar I1 = In[i]; const Invar I2 = In[j]; const bool triangle = triangle_inequality(I1, I2, Iop); // I1 = I2+Iop if (triangle) { offdiag_function(step, i, j, ch, fnr, factor, h, qq, In, opch); } } HAS_DOUBLET; HAS_QUADRUPLET; DECL; }; double Factorial(const double x) { return boost::math::factorial<double>(round(x)); } // *** Helper macros for make_matrix() members in matrix.cc // Jndx = 0 for doublet, Jndx = 1 for quadruplet #undef OFFDIAG #define OFFDIAG(i, j, Jndx, factor0) offdiag_function_QJ(step, i, j, Jndx, 0, t_matel(factor0) * coef.xi(step.N(), 0), h, qq, In, opch) #undef DIAG #define DIAG(i, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, 0), h, qq) inline double J(int JJ) { return (JJ - 1.0) / 2.0; // JJ=2J+1 } template<typename SC> void SymmetryQJ<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { int jj = I.get("JJ"); #include "qj/qj-offdiag.dat" #include "qj/qj-diag.dat" } } #include "nrg-recalc-QJ.hpp"
4,230
C++
.h
105
35.933333
199
0.613005
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,717
sym-ISOSZLR-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-ISOSZLR-impl.hpp
namespace NRG { template<typename SC> class SymmetryISOSZLR : public SymFieldLR<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryISOSZLR(const Params &P) : SymFieldLR<SC>(P, std::vector{"<Sz^2>", "<Sz>", "<Q^2>"}, Invar(1,0,1)) { initInvar({ {"II", additive}, // isospin {"SSZ", additive}, // spin projection {"P", multiplicative} // parity }); } // Multiplicity of the I=(II,SSZ) subspace = (2I+1) = II. size_t mult(const Invar &I) const override { return I.get("II"); } bool check_SPIN(const Invar &I1, const Invar &Ip, const int &SPIN) const override { // The spin projection of the operator is defined by the difference // in Sz of both the invariant subspaces. int ssz1 = I1.get("SSZ"); int sszp = Ip.get("SSZ"); int sszop = ssz1 - sszp; return sszop == SPIN; } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return u1_equality(I1.get("SSZ"), I2.get("SSZ"), I3.get("SSZ")) && su2_triangle_inequality(I1.get("II"), I2.get("II"), I3.get("II")) && z2_equality(I1.get("P"), I2.get("P"), I3.get("P")); } void load() override { my_assert(P.channels == 2); #include "isoszlr/isoszlr-2ch-In2.dat" #include "isoszlr/isoszlr-2ch-QN.dat" } double specdens_factor(const Invar &Ip, const Invar &I1) const override { check_abs_diff(Ip, I1, "SSZ", 1); const int iip = Ip.get("II"); const int ii1 = I1.get("II"); const double isofactor = (ii1 == iip + 1 ? ISO(iip) + 1.0 : ISO(iip)); return isofactor; } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trSZ, trSZ2, trIZ2; // Tr[S_z], Tr[S_z^2], Tr[I_z^2] for (const auto &[I, eig]: diag) { const int ii = I.get("II"); const int ssz = I.get("SSZ"); const double sumZ = this->calculate_Z(I, eig, factor); trSZ += sumZ * SZ(ssz); trSZ2 += sumZ * pow(SZ(ssz),2); // isospin multiplicity contained in sumZ trIZ2 += sumZ * (ii * ii - 1) / 12.; // spin multiplicity contained in sumZ } stats.td.set("<Sz>", trSZ / stats.Z); stats.td.set("<Sz^2>", trSZ2 / stats.Z); stats.td.set("<Q^2>", (4 * trIZ2) / stats.Z); } DECL; HAS_DOUBLET; HAS_TRIPLET; }; #undef OFFDIAG #define OFFDIAG(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xi(step.N(), ch), h, qq, In, opch) template<typename SC> void SymmetryISOSZLR<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { int ii = I.get("II"); #include "isoszlr/isoszlr-2ch-offdiag.dat" } } #include "nrg-recalc-ISOSZLR.hpp"
2,937
C++
.h
70
37.914286
184
0.631726
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,718
sym-NONE.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-NONE.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_NONE(const Params &P); }
97
C++
.h
4
22.75
54
0.747253
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,719
sym-SPSU2-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-SPSU2-impl.hpp
namespace NRG { template<typename SC> class SymmetrySPSU2 : public Symmetry<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetrySPSU2(const Params &P) : Symmetry<SC>(P, std::vector{"<Sz^2>"}, Invar(1)) { initInvar({ {"SS", additive} // spin }); } // Multiplicity of the I=(SS) subspace = 2S+1 = SS. size_t mult(const Invar &I) const override { return I.get("SS"); } bool Invar_allowed(const Invar &I) const override { return I.get("SS") > 0; } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return su2_triangle_inequality(I1.get("SS"), I2.get("SS"), I3.get("SS")); } void load() override { if (!P.substeps) { switch (P.channels) { case 1: #include "spsu2/spsu2-1ch-In2.dat" #include "spsu2/spsu2-1ch-QN.dat" break; case 2: #include "spsu2/spsu2-2ch-In2.dat" #include "spsu2/spsu2-2ch-QN.dat" break; case 3: #include "spsu2/spsu2-3ch-In2.dat" #include "spsu2/spsu2-3ch-QN.dat" break; default: my_assert_not_reached(); } } else { #include "spsu2/spsu2-1ch-In2.dat" #include "spsu2/spsu2-1ch-QN.dat" } } double dynamicsusceptibility_factor(const Invar &Ip, const Invar &I1) const override { const int ssp = Ip.get("SS"); const int ss1 = I1.get("SS"); my_assert(abs(ss1 - ssp) == 2 || ss1 == ssp); return switch3(ss1, ssp + 2, 1. + (ssp - 1) / 3., ssp, ssp / 3., ssp - 2, (-2. + ssp) / 3.); } double specdens_factor(const Invar &Ip, const Invar &I1) const override { const int ssp = Ip.get("SS"); const int ss1 = I1.get("SS"); my_assert(abs(ss1 - ssp) == 1); return (ss1 == ssp + 1 ? S(ssp) + 1.0 : S(ssp)); } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trSZ; // Tr[S_z^2] for (const auto &[I, eig]: diag) { const int ss = I.get("SS"); const double sumZ = this->calculate_Z(I, eig, factor); trSZ += sumZ * (ss * ss - 1) / 12.; } stats.td.set("<Sz^2>", trSZ / stats.Z); } bool project_subspace(const Invar &I, const std::string &p) const override { if (p == ""s || p == "trivial"s) { return true; } else if (p == "even"s) { // even particule number is half-interger spin, SS=1,3,5,... return is_odd(I.get("SS")); } else if (p == "odd"s) { // odd particle number is integer spin, SS=2,4,... return is_even(I.get("SS")); } else throw std::runtime_error(fmt::format("Unknown projection type {} for symmetry SPSU2.", p)); } void show_coefficients(const Step &step, const Coef<SC> &coef) const override { Symmetry<SC>::show_coefficients(step, coef); if (!P.substeps) { for (size_t i = 0; i < P.coefchannels; i++) { const auto N = step.N(); std::cout << "[" << i + 1 << "]" << " Delta(" << N+1 << ")=" << coef.delta(N+1, i) << " kappa(" << N << ")=" << coef.kappa(N, i) << std::endl; } } else { const auto [N, M] = step.NM(); for (auto i = 0; i < P.coeffactor; i++) { const auto index = M + P.channels * i; std::cout << "[" << index << "]" << " Delta(" << N+1 << ")=" << coef.delta(N+1, index) << " kappa(" << N << ")=" << coef.kappa(N, index) << std::endl; } } } DECL; HAS_DOUBLET; HAS_TRIPLET; HAS_GLOBAL; HAS_SUBSTEPS; }; // NOTE: the additional factor of 2 for coef.delta is due to the fact that the isospin is in fact defined as 1/2 of // the (d^\dag d^\dag + d d) pairing operator. template<typename SC> void SymmetrySPSU2<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { int ss = I.get("SS"); if (!P.substeps) { // conjugate the coefficient, to bring it in line with the standard convention for superconducting phases (only relevant for complex-valued parameters) #undef ISOSPINX #define ISOSPINX(i, j, ch, factor) this->diag_offdiag_function(step, i, j, t_matel(factor) * 2.0 * conj_me( coef.delta(step.N() + 1, ch) ), h, qq) #undef ANOMALOUS #define ANOMALOUS(i, j, ch, factor) offdiag_function(step, i, j, ch, 0, t_matel(factor) * coef.kappa(step.N(), ch), h, qq, In, opch) #undef OFFDIAG #define OFFDIAG(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xi(step.N(), ch), h, qq, In, opch) #undef DIAG #define DIAG(i, ch, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, ch), h, qq) switch (P.channels) { case 1: #include "spsu2/spsu2-1ch-offdiag.dat" #include "spsu2/spsu2-1ch-anomalous.dat" #include "spsu2/spsu2-1ch-diag.dat" #include "spsu2/spsu2-1ch-isospinx.dat" break; case 2: #include "spsu2/spsu2-2ch-diag.dat" #include "spsu2/spsu2-2ch-offdiag.dat" #include "spsu2/spsu2-2ch-anomalous.dat" #include "spsu2/spsu2-2ch-isospinx.dat" break; case 3: #include "spsu2/spsu2-3ch-diag.dat" #include "spsu2/spsu2-3ch-offdiag.dat" #include "spsu2/spsu2-3ch-anomalous.dat" #include "spsu2/spsu2-3ch-isospinx.dat" break; default: my_assert_not_reached(); } } else { my_assert(P.coeffactor == 1); const auto [Ntrue, M] = step.NM(); #undef ISOSPINX #define ISOSPINX(i, j, ch, factor) this->diag_offdiag_function(step, i, j, t_matel(factor) * 2.0 * conj_me( coef.delta(Ntrue + 1, M) ), h, qq) #undef ANOMALOUS #define ANOMALOUS(i, j, ch, factor) offdiag_function(step, i, j, M, 0, t_matel(factor) * coef.kappa(Ntrue, M), h, qq, In, opch) #undef OFFDIAG #define OFFDIAG(i, j, ch, factor0) offdiag_function(step, i, j, M, 0, t_matel(factor0) * coef.xi(Ntrue, M), h, qq, In, opch) #undef DIAG #define DIAG(i, ch, number) this->diag_function(step, i, number, coef.zeta(Ntrue + 1, M), h, qq) #include "spsu2/spsu2-1ch-offdiag.dat" #include "spsu2/spsu2-1ch-anomalous.dat" #include "spsu2/spsu2-1ch-diag.dat" #include "spsu2/spsu2-1ch-isospinx.dat" } } } #include "nrg-recalc-SPSU2.hpp"
6,191
C++
.h
151
36.821192
182
0.630098
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,720
nrg-recalc-QSTZ.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-QSTZ.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-QSTZ.cc.m4, not nrg-recalc-QSTZ.cc !!! // Quantum number dependant recalculation routines // Rok Zitko, rok.zitko@ijs.si, Feb 2016 // This file pertains to (Q,S,Tz) subspaces namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } template<typename SC> MatrixElements<SC> SymmetryQSTZ<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int q1 = I1.get("Q"); int ss1 = I1.get("SS"); int tz1 = I1.get("TZ"); Invar Ip; // Two different lengths: D_3CH_a and D_3CH_b // Invar(1,2,+-1,0) is correct. 1 = add charge, 2 = doublet, // 1 = triplet (because working with abs orbital momentum QNs) Ip = Invar(q1 - 1, ss1 + 1, tz1 - 1); { nrglog('f', "RECALC(fn=" << "qstz/qstz-doubletp-1.dat" << ", Iop=" << Invar(1, 2, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qstz/qstz-doubletp-1.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, +1)); } } }; Ip = Invar(q1 - 1, ss1 - 1, tz1 - 1); { nrglog('f', "RECALC(fn=" << "qstz/qstz-doubletm-1.dat" << ", Iop=" << Invar(1, 2, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qstz/qstz-doubletm-1.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, +1)); } } }; Ip = Invar(q1 - 1, ss1 + 1, tz1); { nrglog('f', "RECALC(fn=" << "qstz/qstz-doubletp0.dat" << ", Iop=" << Invar(1, 2, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qstz/qstz-doubletp0.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, 0)); } } }; Ip = Invar(q1 - 1, ss1 - 1, tz1); { nrglog('f', "RECALC(fn=" << "qstz/qstz-doubletm0.dat" << ", Iop=" << Invar(1, 2, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qstz/qstz-doubletm0.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, 0)); } } }; Ip = Invar(q1 - 1, ss1 + 1, tz1 + 1); { nrglog('f', "RECALC(fn=" << "qstz/qstz-doubletp+1.dat" << ", Iop=" << Invar(1, 2, -1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qstz/qstz-doubletp+1.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, -1)); } } }; Ip = Invar(q1 - 1, ss1 - 1, tz1 + 1); { nrglog('f', "RECALC(fn=" << "qstz/qstz-doubletm+1.dat" << ", Iop=" << Invar(1, 2, -1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qstz/qstz-doubletm+1.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, -1)); } } }; } return cnew; } // ch=1 <-> Tz=+1 // ch=2 <-> Tz=0 // ch=3 <-> Tz=-1 template<typename SC> Opch<SC> SymmetryQSTZ<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { int qp = Ip.get("Q"); int ssp = Ip.get("SS"); int tzp = Ip.get("TZ"); Invar I1; // The different files just correspond to contributions computed // for various d[CR,sz,tz] operators. // Check: there should not be any lines with equal subspaces // indexes in different files!! That's indeed the case for the // generated files for symtype=QST. I1 = Invar(qp + 1, ssp + 1, tzp + 1); { nrglog('f', "RECALC_F(fn=" << "qstz/qstz-spinup+1.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qstz/qstz-spinup+1.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, ssp + 1, tzp); { nrglog('f', "RECALC_F(fn=" << "qstz/qstz-spinup0.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qstz/qstz-spinup0.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, ssp + 1, tzp - 1); { nrglog('f', "RECALC_F(fn=" << "qstz/qstz-spinup-1.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qstz/qstz-spinup-1.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, ssp - 1, tzp + 1); { nrglog('f', "RECALC_F(fn=" << "qstz/qstz-spindo+1.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qstz/qstz-spindo+1.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, ssp - 1, tzp); { nrglog('f', "RECALC_F(fn=" << "qstz/qstz-spindo0.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qstz/qstz-spindo0.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, ssp - 1, tzp - 1); { nrglog('f', "RECALC_F(fn=" << "qstz/qstz-spindo-1.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qstz/qstz-spindo-1.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } return opch; } template<typename SC> MatrixElements<SC> SymmetryQSTZ<SC>::recalc_triplet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int q1 = I1.get("Q"); int ss1 = I1.get("SS"); int tz1 = I1.get("TZ"); Invar Ip; Ip = Invar(q1, ss1, tz1); { nrglog('f', "RECALC(fn=" << "qstz/qstz-triplets.dat" << ", Iop=" << Invar(0, 3, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qstz/qstz-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 3, 0)); } } }; Ip = Invar(q1, ss1 + 2, tz1); { nrglog('f', "RECALC(fn=" << "qstz/qstz-tripletp.dat" << ", Iop=" << Invar(0, 3, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qstz/qstz-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 3, 0)); } } }; Ip = Invar(q1, ss1 - 2, tz1); { nrglog('f', "RECALC(fn=" << "qstz/qstz-tripletm.dat" << ", Iop=" << Invar(0, 3, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qstz/qstz-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 3, 0)); } } }; } return cnew; } }
9,146
C++
.h
249
32.606426
117
0.579126
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,721
nrg-recalc-PP.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-PP.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-PP.cc.m4, not nrg-recalc-PP.cc !!! // Quantum number dependent recalculation routines // Rok Zitko, rok.zitko@ijs.si, Aug 2017 // This file pertains to the case with only fermion number parities // (one per channel). namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } template<typename SC> Opch<SC> SymmetryPP<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { int pa = Ip.get("Pa"); int pb = Ip.get("Pb"); { Invar I1 = Invar(-pa, pb); { nrglog('f', "RECALC_F(fn=" << "pp/pp-2ch-a-CR-DO.dat" << ", ch=" << 0 << ", n=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "pp/pp-2ch-a-CR-DO.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "pp/pp-2ch-a-CR-UP.dat" << ", ch=" << 0 << ", n=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "pp/pp-2ch-a-CR-UP.dat" }; opch[0][1][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "pp/pp-2ch-a-AN-DO.dat" << ", ch=" << 0 << ", n=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "pp/pp-2ch-a-AN-DO.dat" }; opch[0][2][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "pp/pp-2ch-a-AN-UP.dat" << ", ch=" << 0 << ", n=" << 3 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "pp/pp-2ch-a-AN-UP.dat" }; opch[0][3][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } { Invar I1 = Invar(pa, -pb); { nrglog('f', "RECALC_F(fn=" << "pp/pp-2ch-b-CR-DO.dat" << ", ch=" << 1 << ", n=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "pp/pp-2ch-b-CR-DO.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "pp/pp-2ch-b-CR-UP.dat" << ", ch=" << 1 << ", n=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "pp/pp-2ch-b-CR-UP.dat" }; opch[1][1][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "pp/pp-2ch-b-AN-DO.dat" << ", ch=" << 1 << ", n=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "pp/pp-2ch-b-AN-DO.dat" }; opch[1][2][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "pp/pp-2ch-b-AN-UP.dat" << ", ch=" << 1 << ", n=" << 3 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "pp/pp-2ch-b-AN-UP.dat" }; opch[1][3][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } } return opch; } #undef SPINX #define SPINX(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef SPINZ #define SPINZ(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) // Isospin operator need an appropriate phase factor (bipartite sublattice index) #define USEISOFACTOR #if defined(USEISOFACTOR) #define ISOFACTOR psgn(step.getnn() + 1) #else #define ISOFACTOR 1 #endif #undef SPINY #define SPINY(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef ISOSPINY #define ISOSPINY(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value * std::complex<double>(ISOFACTOR)) #undef Complex #define Complex(x, y) cmpl(x, y) #undef CHARGE #define CHARGE(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef ISOSPINZ #define ISOSPINZ(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) #undef ISOSPINX #define ISOSPINX(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value *ISOFACTOR) #undef ISOSPINP #define ISOSPINP(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value *ISOFACTOR) #undef ISOSPINM #define ISOSPINM(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value *ISOFACTOR) template<typename SC> void SymmetryPP<SC>::recalc_global(const Step &step, const DiagInfo<SC> &diag, const std::string name, MatrixElements<SC> &cnew) const { if (name == "SZtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "pp/pp-2ch-spinz.dat" break; default: my_assert_not_reached(); } } return; } if constexpr (std::is_same_v<SC, std::complex<double>>) { if (name == "SYtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "pp/pp-2ch-spiny.dat" break; default: my_assert_not_reached(); } } return; } } if (name == "SXtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "pp/pp-2ch-spinx.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Qtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "pp/pp-2ch-Qtot.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Iztot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "pp/pp-2ch-Iztot.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Ixtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "pp/pp-2ch-Ixtot.dat" break; default: my_assert_not_reached(); } } return; } if constexpr (std::is_same_v<SC, std::complex<double>>) { if (name == "Iytot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "pp/pp-2ch-Iytot.dat" break; default: my_assert_not_reached(); } } return; } } if (name == "Iptot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "pp/pp-2ch-Iptot.dat" break; default: my_assert_not_reached(); } } return; } if (name == "Imtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II = {I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "pp/pp-2ch-Imtot.dat" break; default: my_assert_not_reached(); } } return; } my_assert_not_reached(); } }
8,764
C++
.h
274
27.270073
136
0.569008
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,722
nrg-recalc-SPSU2T.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-SPSU2T.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-SPSU2T.cc.m4, not nrg-recalc-SPSU2T.cc !!! // Quantum number dependant recalculation routines // Rok Zitko, rok.zitko@ijs.si, Aug 2015 // This file pertains to (S,T) subspaces namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } template<typename SC> MatrixElements<SC> SymmetrySPSU2T<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int ss1 = I1.get("SS"); int t1 = I1.get("T"); double T = t1; // trick! Invar Ip; // Two different lengths: D_3CH_a and D_3CH_b Ip = Invar(ss1 + 1, t1 - 1); { nrglog('f', "RECALC(fn=" << "spsu2t/spsu2t-doubletp-1.dat" << ", Iop=" << Invar(1, 2, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2t/spsu2t-doubletp-1.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, 1)); } } }; Ip = Invar(ss1 - 1, t1 - 1); { nrglog('f', "RECALC(fn=" << "spsu2t/spsu2t-doubletm-1.dat" << ", Iop=" << Invar(1, 2, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2t/spsu2t-doubletm-1.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, 1)); } } }; Ip = Invar(ss1 + 1, t1); { nrglog('f', "RECALC(fn=" << "spsu2t/spsu2t-doubletp0.dat" << ", Iop=" << Invar(1, 2, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2t/spsu2t-doubletp0.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, 1)); } } }; Ip = Invar(ss1 - 1, t1); { nrglog('f', "RECALC(fn=" << "spsu2t/spsu2t-doubletm0.dat" << ", Iop=" << Invar(1, 2, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2t/spsu2t-doubletm0.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, 1)); } } }; Ip = Invar(ss1 + 1, t1 + 1); { nrglog('f', "RECALC(fn=" << "spsu2t/spsu2t-doubletp+1.dat" << ", Iop=" << Invar(1, 2, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2t/spsu2t-doubletp+1.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, 1)); } } }; Ip = Invar(ss1 - 1, t1 + 1); { nrglog('f', "RECALC(fn=" << "spsu2t/spsu2t-doubletm+1.dat" << ", Iop=" << Invar(1, 2, 1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2t/spsu2t-doubletm+1.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 2, 1)); } } }; } return cnew; } // ch=1 <-> Tz=+1 // ch=2 <-> Tz=0 // ch=3 <-> Tz=-1 template<typename SC> Opch<SC> SymmetrySPSU2T<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { int ssp = Ip.get("SS"); int tp = Ip.get("T"); double T = tp; // trick! Invar I1; // The different files just correspond to contributions computed // for various d[CR,sz,tz] operators. // Check: there should not be any lines with equal subspaces // indexes in different files!! That's indeed the case for the // generated files for symtype=SPSU2T. I1 = Invar(ssp + 1, tp + 1); { nrglog('f', "RECALC_F(fn=" << "spsu2t/spsu2t-spinup+1.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2t/spsu2t-spinup+1.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(ssp + 1, tp); { nrglog('f', "RECALC_F(fn=" << "spsu2t/spsu2t-spinup0.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2t/spsu2t-spinup0.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(ssp + 1, tp - 1); { nrglog('f', "RECALC_F(fn=" << "spsu2t/spsu2t-spinup-1.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2t/spsu2t-spinup-1.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(ssp - 1, tp + 1); { nrglog('f', "RECALC_F(fn=" << "spsu2t/spsu2t-spindo+1.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2t/spsu2t-spindo+1.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(ssp - 1, tp); { nrglog('f', "RECALC_F(fn=" << "spsu2t/spsu2t-spindo0.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2t/spsu2t-spindo0.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(ssp - 1, tp - 1); { nrglog('f', "RECALC_F(fn=" << "spsu2t/spsu2t-spindo-1.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "spsu2t/spsu2t-spindo-1.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } return opch; } template<typename SC> MatrixElements<SC> SymmetrySPSU2T<SC>::recalc_triplet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int ss1 = I1.get("SS"); int t1 = I1.get("T"); double T = t1; // trick! Invar Ip; Ip = Invar(ss1, t1); { nrglog('f', "RECALC(fn=" << "spsu2t/spsu2t-triplets.dat" << ", Iop=" << Invar(3, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2t/spsu2t-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(3, 0)); } } }; Ip = Invar(ss1 + 2, t1); { nrglog('f', "RECALC(fn=" << "spsu2t/spsu2t-tripletp.dat" << ", Iop=" << Invar(3, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2t/spsu2t-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(3, 0)); } } }; Ip = Invar(ss1 - 2, t1); { nrglog('f', "RECALC(fn=" << "spsu2t/spsu2t-tripletm.dat" << ", Iop=" << Invar(3, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "spsu2t/spsu2t-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(3, 0)); } } }; } return cnew; } }
8,994
C++
.h
247
32.299595
119
0.587661
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,723
sym-DBLISOSZ.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-DBLISOSZ.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_DBLISOSZ(const Params &P); }
101
C++
.h
4
23.75
58
0.757895
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,724
nrg-recalc-ISO2.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-ISO2.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-ISO2.cc.m4, not nrg-recalc-ISO2.cc !!! // Quantum number dependant recalculation routines // Rok Zitko, rok.zitko@ijs.si, Feb 2006, May 2008 // This file pertains to (I,S) subspaces // Version for EVEN number of impurities. namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } template<typename SC> MatrixElements<SC> SymmetryISO2<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int ii1 = I1.get("II"); int ss1 = I1.get("SS"); Invar Ip; Ip = Invar(ii1 - 1, ss1 + 1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "iso2/iso2-1ch-doubletmp.dat" << ", Iop=" << Invar(2, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2/iso2-1ch-doubletmp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "iso2/iso2-2ch-doubletmp.dat" << ", Iop=" << Invar(2, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2/iso2-2ch-doubletmp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ii1-1, ss1-1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "iso2/iso2-1ch-doubletmm.dat" << ", Iop=" << Invar(2, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2/iso2-1ch-doubletmm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "iso2/iso2-2ch-doubletmm.dat" << ", Iop=" << Invar(2, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2/iso2-2ch-doubletmm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ii1+1, ss1+1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "iso2/iso2-1ch-doubletpp.dat" << ", Iop=" << Invar(2, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2/iso2-1ch-doubletpp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "iso2/iso2-2ch-doubletpp.dat" << ", Iop=" << Invar(2, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2/iso2-2ch-doubletpp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ii1+1, ss1-1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "iso2/iso2-1ch-doubletpm.dat" << ", Iop=" << Invar(2, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2/iso2-1ch-doubletpm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "iso2/iso2-2ch-doubletpm.dat" << ", Iop=" << Invar(2, 2) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2/iso2-2ch-doubletpm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(2, 2)); } } } } break; default: my_assert_not_reached(); }; } return cnew; } template<typename SC> Opch<SC> SymmetryISO2<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { Invar I1; // NOTE: ii,ss only couples to ii+-1,ss+-1 in general, even for // several channels. int iip = Ip.get("II"); int ssp = Ip.get("SS"); // NN is index n of f_n, the last site in the chain prior to adding // the new site (f_{n+1}). int NN = step.getnn(); I1 = Invar(iip + 1, ssp + 1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "iso2/iso2-1ch-spinup-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2/iso2-1ch-spinup-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "iso2/iso2-2ch-spinup-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2/iso2-2ch-spinup-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso2/iso2-2ch-spinup-isoupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2/iso2-2ch-spinup-isoupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; default: my_assert_not_reached(); }; I1 = Invar(iip+1, ssp-1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "iso2/iso2-1ch-spindown-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2/iso2-1ch-spindown-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "iso2/iso2-2ch-spindown-isoupa.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2/iso2-2ch-spindown-isoupa.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso2/iso2-2ch-spindown-isoupb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2/iso2-2ch-spindown-isoupb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; default: my_assert_not_reached(); }; I1 = Invar(iip-1, ssp+1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "iso2/iso2-1ch-spinup-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2/iso2-1ch-spinup-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "iso2/iso2-2ch-spinup-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2/iso2-2ch-spinup-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso2/iso2-2ch-spinup-isodownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2/iso2-2ch-spinup-isodownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; default: my_assert_not_reached(); }; I1 = Invar(iip-1, ssp-1); switch (P.channels) { case 1: { { nrglog('f', "RECALC_F(fn=" << "iso2/iso2-1ch-spindown-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2/iso2-1ch-spindown-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; case 2: { { nrglog('f', "RECALC_F(fn=" << "iso2/iso2-2ch-spindown-isodowna.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2/iso2-2ch-spindown-isodowna.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "iso2/iso2-2ch-spindown-isodownb.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "iso2/iso2-2ch-spindown-isodownb.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } } } break; default: my_assert_not_reached(); }; } return opch; } template<typename SC> MatrixElements<SC> SymmetryISO2<SC>::recalc_triplet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int ii1 = I1.get("II"); int ss1 = I1.get("SS"); Invar Ip; Ip = Invar(ii1, ss1); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "iso2/iso2-1ch-triplets.dat" << ", Iop=" << Invar(1, 3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2/iso2-1ch-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 3)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "iso2/iso2-2ch-triplets.dat" << ", Iop=" << Invar(1, 3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2/iso2-2ch-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 3)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ii1, ss1+2); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "iso2/iso2-1ch-tripletp.dat" << ", Iop=" << Invar(1, 3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2/iso2-1ch-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 3)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "iso2/iso2-2ch-tripletp.dat" << ", Iop=" << Invar(1, 3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2/iso2-2ch-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 3)); } } } } break; default: my_assert_not_reached(); }; Ip = Invar(ii1, ss1-2); switch (P.channels) { case 1: { { nrglog('f', "RECALC(fn=" << "iso2/iso2-1ch-tripletm.dat" << ", Iop=" << Invar(1, 3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2/iso2-1ch-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 3)); } } } } break; case 2: { { nrglog('f', "RECALC(fn=" << "iso2/iso2-2ch-tripletm.dat" << ", Iop=" << Invar(1, 3) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "iso2/iso2-2ch-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 3)); } } } } break; default: my_assert_not_reached(); }; } return cnew; } }
14,893
C++
.h
402
33.002488
117
0.589815
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,725
nrg-recalc-QSZTZ.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-QSZTZ.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-QSZTZ.cc.m4, not nrg-recalc-QSZTZ.cc !!! // Quantum number dependant recalculation routines // Rok Zitko, rok.zitko@ijs.si, Mar 2016 // This file pertains to (Q,Sz,Tz) subspaces namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } template<typename SC> MatrixElements<SC> SymmetryQSZTZ<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int q1 = I1.get("Q"); int ssz1 = I1.get("SZ"); int tz1 = I1.get("TZ"); Invar Ip; // Invar(1,2,+-1,0) is correct. 1 = add charge, 2 = doublet, // 1 = triplet (because working with abs orbital momentum QNs) Ip = Invar(q1 - 1, ssz1 + 1, tz1 - 1); { nrglog('f', "RECALC(fn=" << "qsztz/qsztz-doubletp-1.dat" << ", Iop=" << Invar(1, -1, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qsztz/qsztz-doubletp-1.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, -1, +1)); } } }; Ip = Invar(q1 - 1, ssz1 - 1, tz1 - 1); { nrglog('f', "RECALC(fn=" << "qsztz/qsztz-doubletm-1.dat" << ", Iop=" << Invar(1, +1, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qsztz/qsztz-doubletm-1.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, +1, +1)); } } }; Ip = Invar(q1 - 1, ssz1 + 1, tz1); { nrglog('f', "RECALC(fn=" << "qsztz/qsztz-doubletp0.dat" << ", Iop=" << Invar(1, -1, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qsztz/qsztz-doubletp0.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, -1, 0)); } } }; Ip = Invar(q1 - 1, ssz1 - 1, tz1); { nrglog('f', "RECALC(fn=" << "qsztz/qsztz-doubletm0.dat" << ", Iop=" << Invar(1, +1, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qsztz/qsztz-doubletm0.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, +1, 0)); } } }; Ip = Invar(q1 - 1, ssz1 + 1, tz1 + 1); { nrglog('f', "RECALC(fn=" << "qsztz/qsztz-doubletp+1.dat" << ", Iop=" << Invar(1, -1, -1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qsztz/qsztz-doubletp+1.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, -1, -1)); } } }; Ip = Invar(q1 - 1, ssz1 - 1, tz1 + 1); { nrglog('f', "RECALC(fn=" << "qsztz/qsztz-doubletm+1.dat" << ", Iop=" << Invar(1, +1, -1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qsztz/qsztz-doubletm+1.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, +1, -1)); } } }; } return cnew; } // ch=1 <-> Tz=+1 // ch=2 <-> Tz=0 // ch=3 <-> Tz=-1 template<typename SC> Opch<SC> SymmetryQSZTZ<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { int qp = Ip.get("Q"); int sszp = Ip.get("SZ"); int tzp = Ip.get("TZ"); Invar I1; I1 = Invar(qp + 1, sszp + 1, tzp + 1); { nrglog('f', "RECALC_F(fn=" << "qsztz/qsztz-spinup+1.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsztz/qsztz-spinup+1.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, sszp + 1, tzp); { nrglog('f', "RECALC_F(fn=" << "qsztz/qsztz-spinup0.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsztz/qsztz-spinup0.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, sszp + 1, tzp - 1); { nrglog('f', "RECALC_F(fn=" << "qsztz/qsztz-spinup-1.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsztz/qsztz-spinup-1.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, sszp - 1, tzp + 1); { nrglog('f', "RECALC_F(fn=" << "qsztz/qsztz-spindo+1.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsztz/qsztz-spindo+1.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, sszp - 1, tzp); { nrglog('f', "RECALC_F(fn=" << "qsztz/qsztz-spindo0.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsztz/qsztz-spindo0.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, sszp - 1, tzp - 1); { nrglog('f', "RECALC_F(fn=" << "qsztz/qsztz-spindo-1.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsztz/qsztz-spindo-1.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } return opch; } template<typename SC> MatrixElements<SC> SymmetryQSZTZ<SC>::recalc_triplet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int q1 = I1.get("Q"); int ssz1 = I1.get("SZ"); int tz1 = I1.get("TZ"); Invar Ip; Ip = Invar(q1, ssz1, tz1); { nrglog('f', "RECALC(fn=" << "qsztz/qsztz-triplets.dat" << ", Iop=" << Invar(0, 3, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qsztz/qsztz-triplets.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 3, 0)); } } }; Ip = Invar(q1, ssz1 + 2, tz1); { nrglog('f', "RECALC(fn=" << "qsztz/qsztz-tripletp.dat" << ", Iop=" << Invar(0, 3, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qsztz/qsztz-tripletp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 3, 0)); } } }; Ip = Invar(q1, ssz1 - 2, tz1); { nrglog('f', "RECALC(fn=" << "qsztz/qsztz-tripletm.dat" << ", Iop=" << Invar(0, 3, 0) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "qsztz/qsztz-tripletm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 3, 0)); } } }; } return cnew; } }
8,905
C++
.h
243
32.547325
118
0.577561
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,726
sym-ISOSZ-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-ISOSZ-impl.hpp
namespace NRG { template<typename SC> class SymmetryISOSZ : public SymField<SC> { private: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryISOSZ(const Params &P) : SymField<SC>(P, std::vector{"<Sz^2>", "<Sz>", "<Q^2>"}, Invar(1,0)) { initInvar({ {"II", additive}, // isospin {"SSZ", additive} // spin projection }); } // Multiplicity of the I=(II,SSZ) subspace = (2I+1) = II. size_t mult(const Invar &I) const override { return I.get("II"); // isospin multiplicity } bool check_SPIN(const Invar &I1, const Invar &Ip, const int &SPIN) const override { // The spin projection of the operator is defined by the difference // in Sz of both the invariant subspaces. int ssz1 = I1.get("SSZ"); int sszp = Ip.get("SSZ"); int sszop = ssz1 - sszp; return sszop == SPIN; } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return u1_equality(I1.get("SSZ"), I2.get("SSZ"), I3.get("SSZ")) && su2_triangle_inequality(I1.get("II"), I2.get("II"), I3.get("II")); } // We always must have I >= 0. bool Invar_allowed(const Invar &I) const override { return I.get("II") > 0; } void load() override { switch (P.channels) { case 1: #include "isosz/isosz-1ch-In2.dat" #include "isosz/isosz-1ch-QN.dat" break; case 2: #include "isosz/isosz-2ch-In2.dat" #include "isosz/isosz-2ch-QN.dat" break; default: my_assert_not_reached(); } } double specdens_factor(const Invar &Ip, const Invar &I1) const override { check_abs_diff(Ip, I1, "SSZ", 1); const int iip = Ip.get("II"); const int ii1 = I1.get("II"); const double isofactor = (ii1 == iip + 1 ? ISO(iip) + 1.0 : ISO(iip)); return isofactor; } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trSZ, trSZ2, trIZ2; // Tr[S_z], Tr[S_z^2], Tr[I_z^2] for (const auto &[I, eig]: diag) { const int ii = I.get("II"); const int ssz = I.get("SSZ"); const double sumZ = this->calculate_Z(I, eig, factor); trSZ += sumZ * SZ(ssz); trSZ2 += sumZ * pow(SZ(ssz),2); // isospin multiplicity contained in sumZ trIZ2 += sumZ * (ii * ii - 1) / 12.; // spin multiplicity contained in sumZ } stats.td.set("<Sz>", trSZ / stats.Z); stats.td.set("<Sz^2>", trSZ2 / stats.Z); stats.td.set("<Q^2>", (4 * trIZ2) / stats.Z); } DECL; HAS_DOUBLET; HAS_TRIPLET; HAS_GLOBAL; }; #undef OFFDIAG #define OFFDIAG(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xi(step.N(), ch), h, qq, In, opch) template<typename SC> void SymmetryISOSZ<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { int ii = I.get("II"); int NN = step.getnn(); switch (P.channels) { case 1: #include "isosz/isosz-1ch-offdiag.dat" break; case 2: #include "isosz/isosz-2ch-offdiag.dat" break; default: my_assert_not_reached(); } } } #include "nrg-recalc-ISOSZ.hpp"
3,311
C++
.h
90
32.666667
182
0.631415
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,727
sym-QSC3.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-QSC3.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_QSC3(const Params &P); }
97
C++
.h
4
22.75
54
0.747253
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,728
sym-ISO-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-ISO-impl.hpp
namespace NRG { template<typename SC> class SymmetryISOcommon : public Symmetry<SC> { protected: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: SymmetryISOcommon(const Params &P) : Symmetry<SC>(P, std::vector{"<Sz^2>", "<Q^2>"}, Invar(1, 1), Invar(2, 2)) { initInvar({ {"II", additive}, // isospin {"SS", additive} // spin }); } // Multiplicity of the I=(II,SS) subspace = (2I+1)(2S+1) = II SS. size_t mult(const Invar &I) const override { int mi = I.get("II"); // isospin multiplicity int ms = I.get("SS"); // spin multiplicity return mi * ms; } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return su2_triangle_inequality(I1.get("SS"), I2.get("SS"), I3.get("SS")) && su2_triangle_inequality(I1.get("II"), I2.get("II"), I3.get("II")); } // We always must have S >= 0 and I >= 0. bool Invar_allowed(const Invar &I) const override { const bool isospin_ok = I.get("II") > 0; const bool spin_ok = I.get("SS") > 0; return isospin_ok && spin_ok; } double specdens_factor(const Invar &Ip, const Invar &I1) const override { const int ssp = Ip.get("SS"); const int ss1 = I1.get("SS"); my_assert(abs(ss1 - ssp) == 1); const int iip = Ip.get("II"); const int ii1 = I1.get("II"); my_assert(abs(ii1 - iip) == 1); const double spinfactor = (ss1 == ssp + 1 ? S(ssp) + 1.0 : S(ssp)); const double isofactor = (ii1 == iip + 1 ? ISO(iip) + 1.0 : ISO(iip)); return spinfactor * isofactor; } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trSZ, trIZ; // Tr[S_z^2], Tr[I_z^2] for (const auto &[I, eig]: diag) { const int ii = I.get("II"); const int ss = I.get("SS"); const double sumZ = this->calculate_Z(I, eig, factor); trSZ += sumZ * (ss * ss - 1) / 12.; // isospin multiplicity contained in sumZ trIZ += sumZ * (ii * ii - 1) / 12.; // spin multiplicity contained in sumZ } stats.td.set("<Sz^2>", trSZ / stats.Z); stats.td.set("<Q^2>", (4 * trIZ) / stats.Z); } }; template<typename SC> class SymmetryISO : public SymmetryISOcommon<SC> { private: using SymmetryISOcommon<SC>::P; using SymmetryISOcommon<SC>::In; using SymmetryISOcommon<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryISO(const Params &P) : SymmetryISOcommon<SC>(P) {} void load() override { switch (P.channels) { case 1: #include "iso/iso-1ch-In2.dat" #include "iso/iso-1ch-QN.dat" break; case 2: #include "iso/iso-2ch-In2.dat" #include "iso/iso-2ch-QN.dat" break; case 3: #include "iso/iso-3ch-In2.dat" #include "iso/iso-3ch-QN.dat" break; default: my_assert_not_reached(); } } DECL; HAS_DOUBLET; HAS_TRIPLET; }; template<typename SC> class SymmetryISO2 : public SymmetryISOcommon<SC> { private: using SymmetryISOcommon<SC>::P; using SymmetryISOcommon<SC>::In; using SymmetryISOcommon<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryISO2(const Params &P) : SymmetryISOcommon<SC>(P) {} void load() override { switch (P.channels) { case 1: #include "iso2/iso2-1ch-In2.dat" #include "iso2/iso2-1ch-QN.dat" break; case 2: #include "iso2/iso2-2ch-In2.dat" #include "iso2/iso2-2ch-QN.dat" break; default: my_assert_not_reached(); } } DECL; HAS_DOUBLET; HAS_TRIPLET; }; #undef OFFDIAG #define OFFDIAG(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xi(step.N(), ch), h, qq, In, opch) #undef DIAG #define DIAG(i, ch, number) this->diag_function(step, i, number, coef.zeta(step.N() + 1, ch), h, qq) template<typename SC> void SymmetryISO<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { int ss = I.get("SS"); int ii = I.get("II"); // nn is the index of the last site in the chain, while nn+1 is the // index of the site that is being added to the chain in this // iteration. This is consistent with the definition in // isospin-1ch-automatic.nb. int NN = step.getnn(); switch (P.channels) { case 1: #include "iso/iso-1ch-offdiag.dat" break; case 2: #include "iso/iso-2ch-offdiag.dat" break; case 3: #include "iso/iso-3ch-offdiag.dat" break; default: my_assert_not_reached(); } } template<typename SC> void SymmetryISO2<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { int ss = I.get("SS"); int ii = I.get("II"); int NN = step.getnn(); switch (P.channels) { case 1: #include "iso2/iso2-1ch-offdiag.dat" break; case 2: #include "iso2/iso2-2ch-offdiag.dat" break; default: my_assert_not_reached(); } } } #include "nrg-recalc-ISO.hpp" #include "nrg-recalc-ISO2.hpp"
5,219
C++
.h
155
29.774194
181
0.644841
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,729
sym-ISOLR-impl.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-ISOLR-impl.hpp
namespace NRG { template<typename SC> class SymmetryISOLRcommon : public SymLR<SC> { protected: using Symmetry<SC>::P; using Symmetry<SC>::In; using Symmetry<SC>::QN; public: SymmetryISOLRcommon(const Params &P) : SymLR<SC>(P, std::vector{"<Sz^2>", "<Q^2>"}, Invar(1,1,1)) { initInvar({ {"II", additive}, // isospin {"SS", additive}, // spin {"P", multiplicative} // parity }); } // Multiplicity of the I=(II,SS,P) subspace = (2I+1)(2S+1) = II SS. size_t mult(const Invar &I) const override { int mi = I.get("II"); // isospin multiplicity int ms = I.get("SS"); // spin multiplicity return mi * ms; } // We always must have S >= 0 and I >= 0. bool Invar_allowed(const Invar &I) const override { const bool isospin_ok = I.get("II") > 0; const bool spin_ok = I.get("SS") > 0; return isospin_ok && spin_ok; } bool triangle_inequality(const Invar &I1, const Invar &I2, const Invar &I3) const override { return su2_triangle_inequality(I1.get("II"), I2.get("II"), I3.get("II")) && su2_triangle_inequality(I1.get("SS"), I2.get("SS"), I3.get("SS")) && z2_equality(I1.get("P"), I2.get("P"), I3.get("P")); } double specdens_factor(const Invar &Ip, const Invar &I1) const override { const int ssp = Ip.get("SS"); const int ss1 = I1.get("SS"); my_assert(abs(ss1 - ssp) == 1); const int iip = Ip.get("II"); const int ii1 = I1.get("II"); my_assert(abs(ii1 - iip) == 1); const double spinfactor = (ss1 == ssp + 1 ? S(ssp) + 1.0 : S(ssp)); const double isofactor = (ii1 == iip + 1 ? ISO(iip) + 1.0 : ISO(iip)); return spinfactor * isofactor; } void calculate_TD(const Step &step, const DiagInfo<SC> &diag, Stats<SC> &stats, const double factor) const override { bucket trSZ, trIZ; // Tr[S_z^2], Tr[I_z^2] for (const auto &[I, eig]: diag) { const int ii = I.get("II"); const int ss = I.get("SS"); const double sumZ = this->calculate_Z(I, eig, factor); trSZ += sumZ * (ss * ss - 1) / 12.; // isospin multiplicity contained in sumZ trIZ += sumZ * (ii * ii - 1) / 12.; // spin multiplicity contained in sumZ } stats.td.set("<Sz^2>", trSZ / stats.Z); stats.td.set("<Q^2>", (4 * trIZ) / stats.Z); } }; template<typename SC> class SymmetryISOLR : public SymmetryISOLRcommon<SC> { private: using SymmetryISOLRcommon<SC>::P; using SymmetryISOLRcommon<SC>::In; using SymmetryISOLRcommon<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryISOLR(const Params &P) : SymmetryISOLRcommon<SC>(P) {} void load() override { my_assert(P.channels == 2); #include "isolr/isolr-2ch-In2.dat" #include "isolr/isolr-2ch-QN.dat" } DECL; HAS_DOUBLET; HAS_TRIPLET; }; template<typename SC> class SymmetryISO2LR : public SymmetryISOLRcommon<SC> { private: using SymmetryISOLRcommon<SC>::P; using SymmetryISOLRcommon<SC>::In; using SymmetryISOLRcommon<SC>::QN; public: using Matrix = typename traits<SC>::Matrix; using t_matel = typename traits<SC>::t_matel; SymmetryISO2LR(const Params &P) : SymmetryISOLRcommon<SC>(P) {} void load() override { my_assert(P.channels == 2); #include "iso2lr/iso2lr-2ch-In2.dat" #include "iso2lr/iso2lr-2ch-QN.dat" } DECL; HAS_DOUBLET; HAS_TRIPLET; }; // *** Helper macros for make_matrix() members in matrix.cc #undef OFFIAG #define OFFDIAG(i, j, ch, factor0) offdiag_function(step, i, j, ch, 0, t_matel(factor0) * coef.xi(step.N(), ch), h, qq, In, opch) template<typename SC> void SymmetryISOLR<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { int ss = I.get("SS"); int ii = I.get("II"); #include "isolr/isolr-2ch-offdiag.dat" } template<typename SC> void SymmetryISO2LR<SC>::make_matrix(Matrix &h, const Step &step, const SubspaceDimensions &qq, const Invar &I, const InvarVec &In, const Opch<SC> &opch, const Coef<SC> &coef) const { int ss = I.get("SS"); int ii = I.get("II"); #include "iso2lr/iso2lr-2ch-offdiag.dat" } } #include "nrg-recalc-ISOLR.hpp" #include "nrg-recalc-ISO2LR.hpp"
4,260
C++
.h
111
34.801802
183
0.651753
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,730
sym-U1.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-U1.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_U1(const Params &P); }
95
C++
.h
4
22.25
52
0.741573
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,731
sym-SPSU2C3.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-SPSU2C3.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_SPSU2C3(const Params &P); }
100
C++
.h
4
23.5
57
0.755319
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,732
sym-QSTZ.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-QSTZ.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_QSTZ(const Params &P); }
97
C++
.h
4
22.75
54
0.747253
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,733
nrg-recalc-QSC3.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-QSC3.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-QSC3.cc.m4, not nrg-recalc-QSC3.cc !!! // Quantum number dependent recalculation routines // Rok Zitko, rok.zitko@ijs.si, Oct 2015 // This file pertains to (Q,S,P) subspaces, P modulo 3 namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } #define xRECALC_F_TAB(a, b, c) 0; // Driver routine for recalc_f() template<typename SC> Opch<SC> SymmetryQSC3<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); if constexpr (std::is_same_v<SC, std::complex<double>>) { for(const auto &[Ip, eig]: diag) { int qp = Ip.get("Q"); int ssp = Ip.get("SS"); int p = Ip.get("P"); Invar I1; // TRICK: ensure we are evaluating the expressions in the complex plane #undef Power #define Power(x, y) pow(cmpl(x), cmpl(y)) #undef sqrt #define sqrt(x) csqrt(x) I1 = Invar(qp + 1, ssp + 1, (p + 0) % 3); { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spinup0-a.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spinup0-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spinup0-b.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spinup0-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spinup0-c.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spinup0-c.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, ssp - 1, (p + 0) % 3); { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spindown0-a.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spindown0-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spindown0-b.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spindown0-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spindown0-c.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spindown0-c.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, ssp + 1, (p + 1) % 3); { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spinup1-a.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spinup1-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spinup1-b.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spinup1-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spinup1-c.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spinup1-c.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, ssp - 1, (p + 1) % 3); { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spindown1-a.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spindown1-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spindown1-b.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spindown1-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spindown1-c.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spindown1-c.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, ssp + 1, (p + 2) % 3); { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spinup2-a.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spinup2-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spinup2-b.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spinup2-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spinup2-c.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spinup2-c.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(qp + 1, ssp - 1, (p + 2) % 3); { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spindown2-a.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spindown2-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spindown2-b.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spindown2-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; { nrglog('f', "RECALC_F(fn=" << "qsc3/qsc3-spindown2-c.dat" << ", ch=" << 2 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "qsc3/qsc3-spindown2-c.dat" }; opch[2][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; #undef Power #undef sqrt } } return opch; } }
9,561
C++
.h
254
33.598425
93
0.575944
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,734
sym-SPU1LR.hpp
rokzitko_nrgljubljana/c++/symmetry/sym-SPU1LR.hpp
namespace NRG { template <typename S> std::unique_ptr<Symmetry<S>> mk_SPU1LR(const Params &P); }
99
C++
.h
4
23.25
56
0.752688
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false
1,535,735
nrg-recalc-DBLQSZ.hpp
rokzitko_nrgljubljana/c++/symmetry/nrg-recalc-DBLQSZ.hpp
namespace NRG { // *** WARNING!!! Modify nrg-recalc-DBLQSZ.cc.m4, not nrg-recalc-DBLQSZ.cc !!! // Quantum number dependant recalculation routines // Rok Zitko, rok.zitko@ijs.si, Mar 2022 // This file pertains to (Q1,Q2,Sz) subspaces namespace NRG { // m4 macros for nrg-recalc-*.cc files // Rok Zitko, rok.zitko@ijs.si, 2007-2020 } template<typename SC> MatrixElements<SC> SymmetryDBLQSZ<SC>::recalc_doublet(const DiagInfo<SC> &diag, const MatrixElements<SC> &cold) const { MatrixElements<SC> cnew; for(const auto &[I1, eig]: diag) { int q11 = I1.get("Q1"); int q21 = I1.get("Q2"); int ssz1 = I1.get("SSZ"); Invar Ip; Ip = Invar(q11 - 1, q21, ssz1 + 1); { nrglog('f', "RECALC(fn=" << "dblqsz/dblqsz-2ch-doubletm0p.dat" << ", Iop=" << Invar(1, 0, -1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "dblqsz/dblqsz-2ch-doubletm0p.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 0, -1)); } } }; Ip = Invar(q11 - 1, q21, ssz1 - 1); { nrglog('f', "RECALC(fn=" << "dblqsz/dblqsz-2ch-doubletm0m.dat" << ", Iop=" << Invar(1, 0, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "dblqsz/dblqsz-2ch-doubletm0m.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(1, 0, +1)); } } }; Ip = Invar(q11, q21 - 1, ssz1 + 1); { nrglog('f', "RECALC(fn=" << "dblqsz/dblqsz-2ch-doublet0mp.dat" << ", Iop=" << Invar(0, 1, -1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "dblqsz/dblqsz-2ch-doublet0mp.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 1, -1)); } } }; Ip = Invar(q11, q21 - 1, ssz1 - 1); { nrglog('f', "RECALC(fn=" << "dblqsz/dblqsz-2ch-doublet0mm.dat" << ", Iop=" << Invar(0, 1, +1) << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc<SC>> recalc_table = { #include "dblqsz/dblqsz-2ch-doublet0mm.dat" }; cnew[II] = this->recalc_general(diag, cold, I1, Ip, recalc_table, Invar(0, 1, +1)); } } }; } return cnew; } template<typename SC> Opch<SC> SymmetryDBLQSZ<SC>::recalc_irreduc(const Step &step, const DiagInfo<SC> &diag) const { Opch<SC> opch(P); for(const auto &[Ip, eig]: diag) { Invar I1; int q1p = Ip.get("Q1"); int q2p = Ip.get("Q2"); int sszp = Ip.get("SSZ"); I1 = Invar(q1p + 1, q2p, sszp + 1); { nrglog('f', "RECALC_F(fn=" << "dblqsz/dblqsz-2ch-spinup-a.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "dblqsz/dblqsz-2ch-spinup-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(q1p + 1, q2p, sszp - 1); { nrglog('f', "RECALC_F(fn=" << "dblqsz/dblqsz-2ch-spindown-a.dat" << ", ch=" << 0 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "dblqsz/dblqsz-2ch-spindown-a.dat" }; opch[0][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(q1p, q2p + 1, sszp + 1); { nrglog('f', "RECALC_F(fn=" << "dblqsz/dblqsz-2ch-spinup-b.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "dblqsz/dblqsz-2ch-spinup-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; I1 = Invar(q1p, q2p + 1, sszp - 1); { nrglog('f', "RECALC_F(fn=" << "dblqsz/dblqsz-2ch-spindown-b.dat" << ", ch=" << 1 << ")"); auto II = Twoinvar(I1, Ip); if (diag.count(I1) && diag.count(Ip) && this->recalc_f_coupled(I1, Ip, this->Invar_f)) { if (diag.at(I1).getnrstored() && diag.at(Ip).getnrstored()) { std::initializer_list<Recalc_f<SC>> recalc_table = { #include "dblqsz/dblqsz-2ch-spindown-b.dat" }; opch[1][0][II] = this->recalc_f(diag, I1, Ip, recalc_table); } } }; } return opch; } #undef SPINZ #define SPINZ(i1, ip, ch, value) this->recalc1_global(diag, I1, cn, i1, ip, value) template<typename SC> void SymmetryDBLQSZ<SC>::recalc_global(const Step &step, const DiagInfo<SC> &diag, const std::string name, MatrixElements<SC> &cnew) const { if (name == "SZtot") { for(const auto &[I1, eig]: diag) { const Twoinvar II{I1, I1}; Matrix &cn = cnew[II]; switch (P.channels) { case 2: #include "dblqsz/dblqsz-2ch-spinz.dat" break; default: my_assert_not_reached(); } } return; } my_assert_not_reached(); } }
5,654
C++
.h
155
32.329032
140
0.596668
rokzitko/nrgljubljana
31
8
4
GPL-3.0
9/20/2024, 10:44:18 PM (Europe/Amsterdam)
false
false
false
false
false
false
false
false