|
|
--- |
|
|
license: lgpl |
|
|
task_categories: |
|
|
- text-generation |
|
|
language: |
|
|
- en |
|
|
tags: |
|
|
- Isabelle |
|
|
- theorem-proving |
|
|
size_categories: |
|
|
- 100M<n<1B |
|
|
--- |
|
|
Extensively annotated Isabelle source code, suitable for pretraining, about 500M tokens in Qwen3's tokenizer. |
|
|
|
|
|
Data source: Isabelle/HOL + AFP 2025-02-12. Cases from the PISA benchmark are removed. |
|
|
|
|
|
Example: |
|
|
```isabelle |
|
|
lemma (in group) diff_neutralizes: ✐‹contributor ‹Paulo EmÃlio de Vilhena›› |
|
|
assumes "subgroup H G" "R ∈ rcosets H" |
|
|
shows "⋀r1 r2. ⟦ r1 ∈ R; r2 ∈ R ⟧ ⟹ r1 ⊗ (inv r2) ∈ H" |
|
|
proof (-) |
|
|
(*goal: ‹⋀r1 r2. ⟦r1 ∈ R; r2 ∈ R⟧ ⟹ r1 ⊗ inv r2 ∈ H›*) |
|
|
fix r1 and r2 |
|
|
assume r1: "r1 ∈ R" and r2: "r2 ∈ R" (*‹(r1::'a) ∈ (R::'a set)› ‹(r2::'a) ∈ (R::'a set)›*) |
|
|
obtain g where g: "g ∈ carrier G" "R = H #> g" |
|
|
(*goal: ‹(⋀g. ⟦g ∈ carrier G; R = H #> g⟧ ⟹ thesis) ⟹ thesis›*) |
|
|
using assms (*‹subgroup (H::'a::type set) G› ‹R ∈ rcosets H›*) unfolding RCOSETS_def |
|
|
(*goal: ‹(⋀g. ⟦g ∈ carrier G; R = H #> g⟧ ⟹ thesis) ⟹ thesis›*) |
|
|
by blast |
|
|
then obtain h1 and h2 where h1: "h1 ∈ H" "r1 = h1 ⊗ g" and h2: "h2 ∈ H" "r2 = h2 ⊗ g" |
|
|
(*goal: ‹(⋀h1 h2. ⟦h1 ∈ H; r1 = h1 ⊗ g; h2 ∈ H; r2 = h2 ⊗ g⟧ ⟹ thesis) ⟹ thesis›*) |
|
|
using r1 (*‹(r1::'a) ∈ (R::'a set)›*) r2 (*‹r2 ∈ R›*) unfolding r_coset_def |
|
|
(*goal: ‹(⋀h1 h2. ⟦h1 ∈ H; r1 = h1 ⊗ g; h2 ∈ H; r2 = h2 ⊗ g⟧ ⟹ thesis) ⟹ thesis›*) |
|
|
by blast |
|
|
hence "r1 ⊗ (inv r2) = (h1 ⊗ g) ⊗ ((inv g) ⊗ (inv h2))" |
|
|
using inv_mult_group (*‹⟦?x ∈ carrier G; ?y ∈ carrier G⟧ ⟹ inv (?x ⊗ ?y) = inv ?y ⊗ inv ?x›*) is_group (*‹Group.group G›*) assms(1) (*‹subgroup H G›*) g(1) (*‹g ∈ carrier G›*) subgroup.mem_carrier (*‹⟦subgroup ?H ?G; ?x ∈ ?H⟧ ⟹ ?x ∈ carrier ?G›*) by fastforce |
|
|
also (*calculation: ‹r1 ⊗ inv r2 = h1 ⊗ g ⊗ (inv g ⊗ inv h2)›*) have " ... = (h1 ⊗ (g ⊗ inv g) ⊗ inv h2)" |
|
|
using h1 (*‹(h1::'a) ∈ (H::'a set)› ‹r1 = h1 ⊗ g›*) h2 (*‹h2 ∈ H› ‹r2 = h2 ⊗ g›*) assms(1) (*‹subgroup H G›*) g(1) (*‹g ∈ carrier G›*) inv_closed (*‹?x ∈ carrier G ⟹ inv ?x ∈ carrier G›*) m_closed (*‹⟦?x ∈ carrier G; ?y ∈ carrier G⟧ ⟹ ?x ⊗ ?y ∈ carrier G›*) monoid.m_assoc (*‹⟦Group.monoid ?G; ?x ∈ carrier ?G; ?y ∈ carrier ?G; ?z ∈ carrier ?G⟧ ⟹ ?x ⊗⇘?G⇙ ?y ⊗⇘?G⇙ ?z = ?x ⊗⇘?G⇙ (?y ⊗⇘?G⇙ ?z)›*) monoid_axioms (*‹Group.monoid G›*) subgroup.mem_carrier (*‹⟦subgroup ?H ?G; ?x ∈ ?H⟧ ⟹ ?x ∈ carrier ?G›*) proof (-) |
|
|
(*goal: ‹⟦h1 ∈ H; r1 = h1 ⊗ g; h2 ∈ H; r2 = h2 ⊗ g; subgroup H G; g ∈ carrier G; ⋀x. x ∈ carrier G ⟹ inv x ∈ carrier G; ⋀x y. ⟦x ∈ carrier G; y ∈ carrier G⟧ ⟹ x ⊗ y ∈ carrier G; ⋀G x y z. ⟦Group.monoid G; x ∈ carrier G; y ∈ carrier G; z ∈ carrier G⟧ ⟹ x ⊗⇘G⇙ y ⊗⇘G⇙ z = x ⊗⇘G⇙ (y ⊗⇘G⇙ z); Group.monoid G; ⋀H G x. ⟦subgroup H G; x ∈ H⟧ ⟹ x ∈ carrier G⟧ ⟹ h1 ⊗ g ⊗ (inv g ⊗ inv h2) = h1 ⊗ (g ⊗ inv g) ⊗ inv h2›*) |
|
|
``` |
|
|
|
|
|
Types of annotations: |
|
|
- proof goal |
|
|
- facts |
|
|
- calculation mechanism |
|
|
- ... |
|
|
|
|
|
Minilang's pipeline is used to transform composite tactics to minimal units and annotate the transitions of proof states per unit. |
|
|
|
|
|
Each statement has a 30% probability of being annotated with types, and a further 40% probability of being annotated with the sorts of the type variables. |
|
|
|
|
|
Please cite me! |
|
|
``` |
|
|
@misc{xu2025minimalistprooflanguageneural, |
|
|
title={A Minimalist Proof Language for Neural Theorem Proving over Isabelle/HOL}, |
|
|
author={Qiyuan Xu and Renxi Wang and Peixin Wang and Haonan Li and Conrad Watt}, |
|
|
year={2025}, |
|
|
eprint={2507.18885}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.PL}, |
|
|
url={https://arxiv.org/abs/2507.18885}, |
|
|
} |
|
|
``` |