Datasets:

problem_id
stringlengths
6
6
buggy_code
stringlengths
8
526k
fixed_code
stringlengths
12
526k
labels
listlengths
0
15
buggy_submission_id
int64
1
1.54M
fixed_submission_id
int64
2
1.54M
user_id
stringlengths
10
10
language
stringclasses
8 values
p02768
mod = 10 ** 9 + 7 def f(n, r): X = 1 Y = 1 for i in range(r): X *= n - i # nCr の分子 X %= mod Y *= i + 1 # nCr の分母 Y %= mod # フェルマーの小定理より (X/Y)%mod = X*Y^(mod - 2) % mod return X * pow(Y, mod - 2, mod) % mod N, A, B = map(int, input().split()) res = pow(2, N, mod) - 1 for i in [A, B]: res -= f(N, i) print(res)
mod = 10 ** 9 + 7 def f(n, r): X = 1 Y = 1 for i in range(r): X *= n - i # nCr の分子 X %= mod Y *= i + 1 # nCr の分母 Y %= mod # フェルマーの小定理より (X/Y)%mod = X*Y^(mod - 2) % mod return X * pow(Y, mod - 2, mod) % mod N, A, B = map(int, input().split()) res = pow(2, N, mod) - 1 for i in [A, B]: res -= f(N, i) print(res % mod)
[ "expression.operation.binary.add" ]
564,207
564,208
u339199690
python
p02768
# coding: utf-8 MOD = 10**9+7 # 二分累積法による a^n mod の計算 def modpow(a, n): res = 1 while n > 0: if n & 1: res = res * a % MOD a = a * a % MOD n >>= 1 return res # nCr mod.p (n <= 10**6) MAX = 1000010 fac = [0] * MAX finv = [0] * MAX inv = [0] * MAX def COMinit(): fac[0] = fac[1] = 1 finv[0] = finv[1] = 1 inv[1] = 1 for i in range(2, MAX): fac[i] = fac[i-1] * i % MOD inv[i] = MOD - inv[MOD%i] * (MOD//i) % MOD finv[i] = finv[i-1] * inv[i] % MOD # より高速化が必要な場合 def COM(n, k): res = 1 for i in range(k): res = res * (n-i) % MOD return res * finv[k] % MOD COMinit() n, a, b = map(int, input().split()) tot = modpow(2, 10**9) - 1 ans = (tot - COM(n,a) - COM(n,b)) % MOD print(ans)
# coding: utf-8 MOD = 10**9+7 # 二分累積法による a^n mod の計算 def modpow(a, n): res = 1 while n > 0: if n & 1: res = res * a % MOD a = a * a % MOD n >>= 1 return res # nCr mod.p (n <= 10**6) MAX = 1000010 fac = [0] * MAX finv = [0] * MAX inv = [0] * MAX def COMinit(): fac[0] = fac[1] = 1 finv[0] = finv[1] = 1 inv[1] = 1 for i in range(2, MAX): fac[i] = fac[i-1] * i % MOD inv[i] = MOD - inv[MOD%i] * (MOD//i) % MOD finv[i] = finv[i-1] * inv[i] % MOD # より高速化が必要な場合 def COM(n, k): res = 1 for i in range(k): res = res * (n-i) % MOD return res * finv[k] % MOD COMinit() n, a, b = map(int, input().split()) tot = modpow(2,n) - 1 ans = (tot - COM(n,a) - COM(n,b)) % MOD print(ans)
[ "assignment.value.change", "identifier.replace.add", "literal.replace.remove", "call.arguments.change", "expression.operation.binary.change", "expression.operation.binary.remove" ]
564,214
564,215
u707808519
python
p02768
n,a,b = map(int,input().split()) def comb(n,r,mod=10**9+7): a=1 b=1 r = min(r,n-r) for i in range(r): a = a*(n-i)%mod b = b*(i+1)%mod return a*pow(b,mod-2,mod)%mod ans = pow(2,n,10**9+7)-1 - comb(n,a) - comb(n,b) if ans < 0: ans += 10**9+7 print(ans)
n,a,b = map(int,input().split()) def comb(n,r,mod=10**9+7): a=1 b=1 r = min(r,n-r) for i in range(r): a = a*(n-i)%mod b = b*(i+1)%mod return a*pow(b,mod-2,mod)%mod ans = pow(2,n,10**9+7)-1 - comb(n,a) - comb(n,b) ans %= 10**9+7 print(ans)
[ "expression.operator.change" ]
564,254
564,255
u882209234
python
p02768
n, a, b = map(int, input().split()) from operator import mul from functools import reduce import math flg = (a == n-b) rep = math.ceil(n/2) MOD = 10**9+7 memo = 0 def modpow(a: int, p: int, mod: int) -> int: # return a**p (mod MOD) O(log p) if p == 0: return 1 if p % 2 == 0: half = modpow(a, p//2, mod) return half*half % mod else: return a * modpow(a, p-1, mod) % mod from operator import mul from functools import reduce def combinations_count(n, r): r = min(r, n - r) numer = reduce(mod_mul, range(n, n - r, -1), 1) denom = reduce(mod_mul, range(1, r + 1), 1) return numer*pow(denom, MOD-2, MOD)%MOD def mod_mul(a, b): return mul(a%MOD, b%MOD)%MOD s = 0 ans = modpow(2, n, MOD)-1 if flg: ans = ans - combinations_count(n, a) else: ans = (ans - combinations_count(n,a))%MOD - combinations_count(n,b) print(ans%MOD)
n, a, b = map(int, input().split()) from operator import mul from functools import reduce import math flg = (a == n-b) rep = math.ceil(n/2) MOD = 10**9+7 memo = 0 def modpow(a: int, p: int, mod: int) -> int: # return a**p (mod MOD) O(log p) if p == 0: return 1 if p % 2 == 0: half = modpow(a, p//2, mod) return half*half % mod else: return a * modpow(a, p-1, mod) % mod from operator import mul from functools import reduce def combinations_count(n, r): r = min(r, n - r) numer = reduce(mod_mul, range(n, n - r, -1), 1) denom = reduce(mod_mul, range(1, r + 1), 1) return numer*pow(denom, MOD-2, MOD)%MOD def mod_mul(a, b): return mul(a%MOD, b%MOD)%MOD s = 0 ans = modpow(2, n, MOD)-1 if flg: ans = ans - 2*combinations_count(n, a)%MOD else: ans = (ans - combinations_count(n,a))%MOD - combinations_count(n,b) print(ans%MOD)
[ "assignment.change" ]
564,258
564,259
u959340534
python
p02768
n, a, b = map(int, input().split()) from operator import mul from functools import reduce import math flg = (a == n-b) rep = math.ceil(n/2) MOD = 10**9+7 memo = 0 def modpow(a: int, p: int, mod: int) -> int: # return a**p (mod MOD) O(log p) if p == 0: return 1 if p % 2 == 0: half = modpow(a, p//2, mod) return half*half % mod else: return a * modpow(a, p-1, mod) % mod from operator import mul from functools import reduce def combinations_count(n, r): r = min(r, n - r) numer = reduce(mod_mul, range(n, n - r, -1), 1) denom = reduce(mod_mul, range(1, r + 1), 1) return numer*pow(denom, MOD-2, MOD)%MOD def mod_mul(a, b): return mul(a%MOD, b%MOD)%MOD s = 0 ans = modpow(2, n, MOD)+1 if flg: ans = ans - combinations_count(n, a) else: ans = (ans - combinations_count(n,a))%MOD - combinations_count(n,b) print(ans%MOD)
n, a, b = map(int, input().split()) from operator import mul from functools import reduce import math flg = (a == n-b) rep = math.ceil(n/2) MOD = 10**9+7 memo = 0 def modpow(a: int, p: int, mod: int) -> int: # return a**p (mod MOD) O(log p) if p == 0: return 1 if p % 2 == 0: half = modpow(a, p//2, mod) return half*half % mod else: return a * modpow(a, p-1, mod) % mod from operator import mul from functools import reduce def combinations_count(n, r): r = min(r, n - r) numer = reduce(mod_mul, range(n, n - r, -1), 1) denom = reduce(mod_mul, range(1, r + 1), 1) return numer*pow(denom, MOD-2, MOD)%MOD def mod_mul(a, b): return mul(a%MOD, b%MOD)%MOD s = 0 ans = modpow(2, n, MOD)-1 if flg: ans = ans - 2*combinations_count(n, a)%MOD else: ans = (ans - combinations_count(n,a))%MOD - combinations_count(n,b) print(ans%MOD)
[ "misc.opposites", "expression.operator.arithmetic.change", "assignment.value.change", "expression.operation.binary.change" ]
564,260
564,259
u959340534
python
p02768
n, a, b = map(int, input().split()) from operator import mul from functools import reduce import math flg = (a == n-b) rep = math.ceil(n/2) MOD = 10**9+7 memo = 0 def modpow(a: int, p: int, mod: int) -> int: # return a**p (mod MOD) O(log p) if p == 0: return 1 if p % 2 == 0: half = modpow(a, p//2, mod) return half*half % mod else: return a * modpow(a, p-1, mod) % mod from operator import mul from functools import reduce def combinations_count(n, r): r = min(r, n - r) numer = reduce(mod_mul, range(n, n - r, -1), 1) denom = reduce(mod_mul, range(1, r + 1), 1) return numer*pow(denom, MOD-2, MOD)%MOD def mod_mul(a, b): return mul(a%MOD, b%MOD)%MOD s = 0 ans = modpow(2, n, MOD) if flg: ans = ans - combinations_count(n, a) else: ans = (ans - combinations_count(n,a))%MOD - combinations_count(n,b) print(ans%MOD)
n, a, b = map(int, input().split()) from operator import mul from functools import reduce import math flg = (a == n-b) rep = math.ceil(n/2) MOD = 10**9+7 memo = 0 def modpow(a: int, p: int, mod: int) -> int: # return a**p (mod MOD) O(log p) if p == 0: return 1 if p % 2 == 0: half = modpow(a, p//2, mod) return half*half % mod else: return a * modpow(a, p-1, mod) % mod from operator import mul from functools import reduce def combinations_count(n, r): r = min(r, n - r) numer = reduce(mod_mul, range(n, n - r, -1), 1) denom = reduce(mod_mul, range(1, r + 1), 1) return numer*pow(denom, MOD-2, MOD)%MOD def mod_mul(a, b): return mul(a%MOD, b%MOD)%MOD s = 0 ans = modpow(2, n, MOD)-1 if flg: ans = ans - 2*combinations_count(n, a)%MOD else: ans = (ans - combinations_count(n,a))%MOD - combinations_count(n,b) print(ans%MOD)
[ "assignment.change" ]
564,261
564,259
u959340534
python
p02768
import math def modpow(a, n , mod): res = 1 while n > 0: if n & 1: res = res * a % mod a = a*a % mod n >>= 1 return res def calcp(n,j,mod): res = 1 for i in range(n,n-j,-1): res = res * i %mod return res def main(): n,a,b = list(map(int, input().split())) MOD = 10**9+7 NMAX = 2*10**5 fact = [0 for i in range(NMAX+5)] fact[0] = 1 invfact = [0 for i in range(NMAX+5)] invfact[0] = 1 for i in range(NMAX): fact[i+1] = (fact[i]*(i+1))%(MOD) invfact[NMAX] = pow(fact[NMAX], MOD-2, MOD) for i in range(NMAX-1,0,-1): invfact[i] = (invfact[i+1] * (i+1)) % MOD ans = modpow(2,n,MOD)-1 pa = calcp(n,a,MOD)*invfact[a]%MOD pb = calcp(n,b,MOD)*invfact[b]%MOD ans = ans - pa - pb; if ans < 0: ans += MOD print(ans) main()
import math def modpow(a, n , mod): res = 1 while n > 0: if n & 1: res = res * a % mod a = a*a % mod n >>= 1 return res def calcp(n,j,mod): res = 1 for i in range(n,n-j,-1): res = res * i %mod return res def main(): n,a,b = list(map(int, input().split())) MOD = 10**9+7 NMAX = 2*10**5 fact = [0 for i in range(NMAX+5)] fact[0] = 1 invfact = [0 for i in range(NMAX+5)] invfact[0] = 1 for i in range(NMAX): fact[i+1] = (fact[i]*(i+1))%(MOD) invfact[NMAX] = pow(fact[NMAX], MOD-2, MOD) for i in range(NMAX-1,0,-1): invfact[i] = (invfact[i+1] * (i+1)) % MOD ans = modpow(2,n,MOD)-1 pa = calcp(n,a,MOD)*invfact[a]%MOD pb = calcp(n,b,MOD)*invfact[b]%MOD ans = ans - pa - pb; while ans < 0: ans += MOD print(ans) main()
[ "control_flow.branch.while.replace.add", "control_flow.loop.if.replace.remove" ]
564,284
564,285
u582847048
python
p02768
n,a,b = map(int,input().split()) mod = 10**9 + 7 aue,bue = 1,1 for i in range(a): aue = aue * (n-i) % mod for i in range(b): bue = bue * (n-i) % mod asita,bsita = 1,1 for i in range(1,a+1): asita = asita*i %mod for i in range(1,b+1): bsita = bsita*i %mod at = aue * pow(asita,mod-2,mod) bt = bue * pow(bsita,mod-2,mod) print(at) ans = (pow(2,n,mod) - 1 -at -bt)%mod print(ans)
n,a,b = map(int,input().split()) mod = 10**9 + 7 aue,bue = 1,1 for i in range(a): aue = aue * (n-i) % mod for i in range(b): bue = bue * (n-i) % mod asita,bsita = 1,1 for i in range(1,a+1): asita = asita*i %mod for i in range(1,b+1): bsita = bsita*i %mod at = aue * pow(asita,mod-2,mod) bt = bue * pow(bsita,mod-2,mod) ans = (pow(2,n,mod) - 1 -at -bt)%mod print(ans)
[ "call.remove" ]
564,286
564,287
u920204936
python
p02768
mod = int(1e9) + 7 n, a, b = map(int, input().split()) def aaa(base, n): # base = 2 ans = 1 nn = n while True: # print(base, nn) if nn == 0: break if nn % 2 == 0: base = base ** 2 base = base % mod nn /= 2 else: ans *= base ans = ans % mod nn -= 1 return ans xn = aaa(2, n) def mul(a, b): return ((a % mod) * (b % mod)) % mod def power(x, y): if y == 0 : return 1 elif y == 1 : return x % mod elif y % 2 == 0 : return power(x, y//2)**2 % mod else : return power(x, y//2)**2 * x % mod def div(a, b): return mul(a, power(b, mod-2)) def fac(start, length, mod): x = 1 for k in range(start, start + length): x *= k x %= mod return x aa = fac(n - a + 1 , a, mod) aaa = fac(1, a, mod) xa = div(aa, aaa) if aa == 0: if aaa == 0: xa = 1 bb = fac(n - b + 1 , b, mod) bbb = fac(1, b, mod) xb = div(bb, bbb) if bb == 0: if bbb == 0: xb = 1 x = xn - xa - xb - 1 if x < 0: x += mod print(x)
mod = int(1e9) + 7 n, a, b = map(int, input().split()) def aaa(base, n): # base = 2 ans = 1 nn = n while True: # print(base, nn) if nn == 0: break if nn % 2 == 0: base = base ** 2 base = base % mod nn /= 2 else: ans *= base ans = ans % mod nn -= 1 return ans xn = aaa(2, n) def mul(a, b): return ((a % mod) * (b % mod)) % mod def power(x, y): if y == 0 : return 1 elif y == 1 : return x % mod elif y % 2 == 0 : return power(x, y//2)**2 % mod else : return power(x, y//2)**2 * x % mod def div(a, b): return mul(a, power(b, mod-2)) def fac(start, length, mod): x = 1 for k in range(start, start + length): x *= k x %= mod return x aa = fac(n - a + 1 , a, mod) aaa = fac(1, a, mod) xa = div(aa, aaa) if aa == 0: if aaa == 0: xa = 1 bb = fac(n - b + 1 , b, mod) bbb = fac(1, b, mod) xb = div(bb, bbb) if bb == 0: if bbb == 0: xb = 1 x = xn - xa - xb - 1 x = x % mod if x < 0: x += mod print(x)
[ "assignment.add" ]
564,300
564,301
u242196904
python
p02768
#156d n,a,b = map(int, input().split()) ############################################## #https://tane-no-blog.com/976/ mod = pow(10, 9) + 7 def comb(N, x): #n*(n-1)*…*(n-1+1)を計算 numerator = 1 for i in range(N-x+1, N+1): numerator = numerator * i % mod #a!を計算 denominator = 1 for j in range(1, x+1): denominator = denominator * j % mod #最後の項 a!**((10**9+7)-2)を計算 d = pow(denominator, mod-2, mod) return numerator * d ################################ comb_all = pow(2,n,MOD_BY) - 1 #(2**n) - 1 comb_a = comb(n,a) comb_b = comb(n,b) #print(comb_all,comb_a,comb_b) print((comb_all-comb_a-comb_b)%MOD_BY)
#156d n,a,b = map(int, input().split()) ############################################## #https://tane-no-blog.com/976/ mod = pow(10, 9) + 7 def comb(N, x): #n*(n-1)*…*(n-1+1)を計算 numerator = 1 for i in range(N-x+1, N+1): numerator = numerator * i % mod #a!を計算 denominator = 1 for j in range(1, x+1): denominator = denominator * j % mod #最後の項 a!**((10**9+7)-2)を計算 d = pow(denominator, mod-2, mod) return numerator * d ################################ comb_all = pow(2,n,mod) - 1 #(2**n) - 1 comb_a = comb(n,a) comb_b = comb(n,b) #print(comb_all,comb_a,comb_b) print((comb_all-comb_a-comb_b)%mod)
[ "assignment.value.change", "identifier.change", "call.arguments.change", "expression.operation.binary.change", "io.output.change" ]
564,314
564,315
u314089899
python
p02768
# https://atcoder.jp/contests/abc156/submissions/10277689 # コンテスト中に通せたけどmodintクラスで実装してみる import sys read = sys.stdin.readline def read_ints(): return list(map(int, read().split())) class ModInt: def __init__(self, x, MOD=10 ** 9 + 7): self.mod = MOD self.x = x if x < MOD else x % MOD def __str__(self): return str(self.x) __repr__ = __str__ def __add__(self, other): if isinstance(other, ModInt): return ModInt(self.x + other.x, self.mod) else: return ModInt(self.x + other, self.mod) def __sub__(self, other): if isinstance(other, ModInt): return ModInt(self.x - other.x, self.mod) else: return ModInt(self.x - other, self.mod) def __mul__(self, other): if isinstance(other, ModInt): return ModInt(self.x * other.x, self.mod) else: return ModInt(self.x * other, self.mod) def __truediv__(self, other): if isinstance(other, ModInt): return ModInt(self.x * pow(other.x, self.mod - 2, self.mod)) else: return ModInt(self.x * pow(other, self.mod - 2, self.mod)) def __pow__(self, other): if isinstance(other, ModInt): return ModInt(pow(self.x, other.x, self.mod)) else: return ModInt(pow(self.x, other, self.mod)) __radd__ = __add__ def __rsub__(self, other): # 演算の順序が逆 if isinstance(other, ModInt): return ModInt(other.x - self.x, self.mod) else: return ModInt(other - self.x, self.mod) __rmul__ = __mul__ def __rtruediv__(self, other): if isinstance(other, ModInt): return ModInt(other.x * pow(self.x, self.mod - 2, self.mod)) else: return ModInt(other * pow(self.x, self.mod - 2, self.mod)) def __rpow__(self, other): if isinstance(other, ModInt): return ModInt(pow(other.x, self.x, self.mod)) else: return ModInt(pow(other, self.x, self.mod)) def combination_mod(n, r, mod): if r > n: return 0 # このような通りの数は無いため便宜上こう定義する r = min(r, n - r) nf = rf = 1 for i in range(r): nf = nf * (n - i) % mod rf = rf * (i + 1) % mod return nf * pow(rf, mod - 2, mod) % mod def combination(n, r): if r > n: return 0 # このような通りの数は無いため便宜上こう定義する r = min(r, n - r) nf = rf = ModInt(1) for i in range(r): nf = nf * (n - i) rf = rf * (i + 1) return nf / rf # すべての通り(2^n-1)からnCa,nCbを引けば良い MOD = 10**9 + 7 n, a, b = read_ints() # tmp = pow(2, n, MOD) - 1 # ans = tmp - combination_mod(n, a, MOD) - combination_mod(n, b, MOD) # print(ans % MOD) tmp = ModInt(2)**n - 1 ans = tmp - combination(n, a) - combination(n, b) print(ans)
# https://atcoder.jp/contests/abc156/submissions/10277689 # コンテスト中に通せたけどmodintクラスで実装してみる import sys read = sys.stdin.readline def read_ints(): return list(map(int, read().split())) class ModInt: def __init__(self, x, MOD=10 ** 9 + 7): self.mod = MOD self.x = x if 0 <= x < MOD else x % MOD def __str__(self): return str(self.x) __repr__ = __str__ def __add__(self, other): if isinstance(other, ModInt): return ModInt(self.x + other.x, self.mod) else: return ModInt(self.x + other, self.mod) def __sub__(self, other): if isinstance(other, ModInt): return ModInt(self.x - other.x, self.mod) else: return ModInt(self.x - other, self.mod) def __mul__(self, other): if isinstance(other, ModInt): return ModInt(self.x * other.x, self.mod) else: return ModInt(self.x * other, self.mod) def __truediv__(self, other): if isinstance(other, ModInt): return ModInt(self.x * pow(other.x, self.mod - 2, self.mod)) else: return ModInt(self.x * pow(other, self.mod - 2, self.mod)) def __pow__(self, other): if isinstance(other, ModInt): return ModInt(pow(self.x, other.x, self.mod)) else: return ModInt(pow(self.x, other, self.mod)) __radd__ = __add__ def __rsub__(self, other): # 演算の順序が逆 if isinstance(other, ModInt): return ModInt(other.x - self.x, self.mod) else: return ModInt(other - self.x, self.mod) __rmul__ = __mul__ def __rtruediv__(self, other): if isinstance(other, ModInt): return ModInt(other.x * pow(self.x, self.mod - 2, self.mod)) else: return ModInt(other * pow(self.x, self.mod - 2, self.mod)) def __rpow__(self, other): if isinstance(other, ModInt): return ModInt(pow(other.x, self.x, self.mod)) else: return ModInt(pow(other, self.x, self.mod)) def combination_mod(n, r, mod): if r > n: return 0 # このような通りの数は無いため便宜上こう定義する r = min(r, n - r) nf = rf = 1 for i in range(r): nf = nf * (n - i) % mod rf = rf * (i + 1) % mod return nf * pow(rf, mod - 2, mod) % mod def combination(n, r): if r > n: return 0 # このような通りの数は無いため便宜上こう定義する r = min(r, n - r) nf = rf = ModInt(1) for i in range(r): nf = nf * (n - i) rf = rf * (i + 1) return nf / rf # すべての通り(2^n-1)からnCa,nCbを引けば良い MOD = 10**9 + 7 n, a, b = read_ints() # tmp = pow(2, n, MOD) - 1 # ans = tmp - combination_mod(n, a, MOD) - combination_mod(n, b, MOD) # print(ans % MOD) tmp = ModInt(2)**n - 1 ans = tmp - combination(n, a) - combination(n, b) print(ans)
[]
564,321
564,322
u179169725
python
p02768
import math MOD = 10 ** 9 + 7 def cmb(n, r): total = 1 for i in range(r): total *= (n - i) % MOD return total * pow(math.factorial(r), MOD - 2, MOD) % MOD def calc(n, r): ret = 1 for i in range(r): ret = ret * (n - i) % MOD return ret * pow(factorial(r), MOD - 2, MOD) % MOD if __name__ == '__main__': n, a, b = list(map(int, input().split(" "))) total = pow(2, n, MOD) a_total = calc(n, a) b_total = calc(n, b) print((total - a_total - b_total - 1) % MOD)
import math MOD = 10 ** 9 + 7 def cmb(n, r): total = 1 for i in range(r): total *= (n - i) % MOD return total * pow(math.factorial(r), MOD - 2, MOD) % MOD def calc(n, r): ret = 1 for i in range(r): ret = ret * (n - i) % MOD return ret * pow(math.factorial(r), MOD - 2, MOD) % MOD if __name__ == '__main__': n, a, b = list(map(int, input().split(" "))) total = pow(2, n, MOD) a_total = calc(n, a) b_total = calc(n, b) print((total - a_total - b_total - 1) % MOD)
[]
564,345
564,346
u644224332
python
p02768
n, a, b = map(int, input().split()) a, b = min(a, n-a), min(b, n-b) mod = 10**9 +7 def my_pow(num, p, mod): if p==0: return 1 elif p%2==0: return (my_pow(num, p//2, mod)**2)%mod else: return (my_pow(num, p-1, mod)*num)%mod def comb(num, r, mod): r = min(r, num-r) y = 1 for i in range(num-r+1, num+1): y = (y*i)%mod x = 1 for i in range(1, r+1): x = (x*i)%mod return (y*my_pow(x, mod-2, mod))%mod result = my_pow(2, n, mod)-1 -comb(n, a, mod) -comb(n, b, mod) if result < 0: result += mod print(result)
n, a, b = map(int, input().split()) a, b = min(a, n-a), min(b, n-b) mod = 10**9 +7 def my_pow(num, p, mod): if p==0: return 1 elif p%2==0: return (my_pow(num, p//2, mod)**2)%mod else: return (my_pow(num, p-1, mod)*num)%mod def comb(num, r, mod): r = min(r, num-r) y = 1 for i in range(num-r+1, num+1): y = (y*i)%mod x = 1 for i in range(1, r+1): x = (x*i)%mod return (y*my_pow(x, mod-2, mod))%mod result = my_pow(2, n, mod)-1 -comb(n, a, mod) -comb(n, b, mod) while result < 0: result += mod print(result)
[ "control_flow.branch.while.replace.add", "control_flow.loop.if.replace.remove" ]
564,347
564,348
u413165887
python
p02768
import sys def alg_combination_mod(n, r, mod): r = min(n - r, r) if r == 0: return 1 else: denominator = 1 for i in range(n, n - r, -1): denominator = (denominator * i) % mod molecule = 1 for i in range(1, r + 1): molecule = (molecule * i) % mod return denominator * pow(molecule, mod - 2, mod) % mod def solve(): input = sys.stdin.readline mod = 10 ** 9 + 7 n, a, b = list(map(int, input().rstrip('\n').split())) all_cnt = pow(2, n, mod) + mod a_cnt = alg_combination_mod(n, a, mod) b_cnt = alg_combination_mod(n, b, mod) print(all_cnt - a_cnt - b_cnt - 1) if __name__ == '__main__': solve()
import sys def alg_combination_mod(n, r, mod): r = min(n - r, r) if r == 0: return 1 else: denominator = 1 for i in range(n, n - r, -1): denominator = (denominator * i) % mod molecule = 1 for i in range(1, r + 1): molecule = (molecule * i) % mod return denominator * pow(molecule, mod - 2, mod) % mod def solve(): input = sys.stdin.readline mod = 10 ** 9 + 7 n, a, b = list(map(int, input().rstrip('\n').split())) all_cnt = pow(2, n, mod) a_cnt = alg_combination_mod(n, a, mod) b_cnt = alg_combination_mod(n, b, mod) print((all_cnt - a_cnt - b_cnt - 1) % mod) if __name__ == '__main__': solve()
[ "expression.operation.binary.remove", "call.arguments.change", "call.arguments.add" ]
564,373
564,374
u753803401
python
p02768
import sys def alg_combination_mod(n, r, mod): r = min(n - r, r) if r == 0: return 1 else: denominator = 1 for i in range(n, n - r, -1): denominator = (denominator * i) % mod molecule = 1 for i in range(1, r + 1): molecule = (molecule * i) % mod return denominator * pow(molecule, mod - 2, mod) % mod def solve(): input = sys.stdin.readline mod = 10 ** 9 + 7 n, a, b = list(map(int, input().rstrip('\n').split())) all_cnt = pow(2, n, mod) + mod a_cnt = alg_combination_mod(n, a, mod) b_cnt = alg_combination_mod(n, b, mod) print(all_cnt - a_cnt - b_cnt - 1) if __name__ == '__main__': solve()
import sys def alg_combination_mod(n, r, mod): r = min(n - r, r) if r == 0: return 1 else: denominator = 1 for i in range(n, n - r, -1): denominator = (denominator * i) % mod molecule = 1 for i in range(1, r + 1): molecule = (molecule * i) % mod return denominator * pow(molecule, mod - 2, mod) % mod def solve(): input = sys.stdin.readline mod = 10 ** 9 + 7 n, a, b = list(map(int, input().rstrip('\n').split())) all_cnt = pow(2, n, mod) + mod a_cnt = alg_combination_mod(n, a, mod) b_cnt = alg_combination_mod(n, b, mod) print((all_cnt - a_cnt - b_cnt - 1) % mod) if __name__ == '__main__': solve()
[ "call.arguments.change", "call.arguments.add" ]
564,373
564,376
u753803401
python
p02768
import sys, math def input(): return sys.stdin.readline()[:-1] from itertools import permutations, combinations from collections import defaultdict, Counter from math import factorial from bisect import bisect_left # bisect_left(list, value) #from fractions import gcd enu = enumerate sys.setrecursionlimit(10**7) n, a, b = map(int, input().split()) mod = 10**9 + 7 def cmb(n, r, p): r = min(n - r, r) if r == 0: return 1 over = 1 for i in range(n, n - r, -1): over = over * i % p under = 1 for i in range(1, r + 1): under = under * i % p inv = pow(under, p - 2, p) return over * inv % p cnt = pow(2, n, mod) ng1 = cmb(n, a, mod) ng2 = cmb(n, b, mod) res = cnt - ng1 - ng2 - 1 print(res)
import sys, math def input(): return sys.stdin.readline()[:-1] from itertools import permutations, combinations from collections import defaultdict, Counter from math import factorial from bisect import bisect_left # bisect_left(list, value) #from fractions import gcd enu = enumerate sys.setrecursionlimit(10**7) n, a, b = map(int, input().split()) mod = 10**9 + 7 def cmb(n, r, p): r = min(n - r, r) if r == 0: return 1 over = 1 for i in range(n, n - r, -1): over = over * i % p under = 1 for i in range(1, r + 1): under = under * i % p inv = pow(under, p - 2, p) return over * inv % p cnt = pow(2, n, mod) ng1 = cmb(n, a, mod) ng2 = cmb(n, b, mod) res = (cnt - ng1 - ng2 - 1) % mod print(res)
[ "assignment.change" ]
564,380
564,381
u625729943
python
p02768
n,a,b=map(int,input().split()) def combination(n, a, mod): bunshi = 1 bunbo = 1 for i in range(a): bunshi *= n-i bunshi = bunshi%mod bunbo *= a-i bunbo = bunbo%mod return bunshi*pow(bunbo, mod-2, mod)%mod mod = 100000007 answer = pow(2, n, mod) answer -= 1 answer -= combination(n, a, mod) answer -= combination(n, b, mod) print(answer%mod)
n,a,b=map(int,input().split()) def combination(n, a, mod): bunbo = 1 bunshi = 1 for i in range(a): bunshi *= n-i bunshi = bunshi%mod bunbo *= a-i bunbo = bunbo%mod return bunshi*pow(bunbo, mod-2, mod)%mod mod = 1000000007 answer = pow(2, n, mod) answer -= 1 answer -= combination(n, a, mod) answer -= combination(n, b, mod) print(answer%mod)
[ "assignment.variable.change", "identifier.change", "literal.number.integer.change", "assignment.value.change" ]
564,382
564,383
u257018224
python
p02768
n,a,b=map(int,input().split()) def combination(n, a, mod): bunshi = 1 bunbo = 1 for i in range(a): bunshi *= n-i bunshi = bunshi%mod bunbo *= a-i bunbo = bunbo%mod return bunshi*pow(bunbo, mod-2, mod)%mod mod = 100000007 answer = pow(2, n, mod) answer -= 1 answer -= combination(n, a, mod) answer -= combination(n, b, mod) print(answer%mod)
n, a, b = map(int, input().split()) def combination(n, a, mod): bunbo = 1 bunshi = 1 for i in range(a): bunshi *= n-i bunshi = bunshi%mod bunbo *= a-i bunbo = bunbo%mod return bunshi*pow(bunbo, mod-2, mod)%mod mod = 1000000007 answer = pow(2, n, mod) answer -= 1 answer -= combination(n, a, mod) answer -= combination(n, b, mod) print(answer%mod)
[ "assignment.variable.change", "identifier.change", "literal.number.integer.change", "assignment.value.change" ]
564,382
564,384
u257018224
python
p02768
from functools import reduce def perm(n, k, p): ret = 1 for i in range(n, n-k-1, -1): ret = (ret * i)%p return ret def comb(n, k, p): """power_funcを用いて(nCk) mod p を求める""" a = perm(n, k, p) b = perm(k, k, p) return (a*pow(b, p-2, p))%p n, a, b = map(int, input().split()) MOD = 10**9 + 7 print((pow(2,n,MOD) - 1 - comb(n, a, MOD) - comb(n, b, MOD))%MOD)
from functools import reduce def perm(n, k, p): ret = 1 for i in range(n, n-k, -1): ret = (ret * i)%p return ret def comb(n, k, p): """power_funcを用いて(nCk) mod p を求める""" a = perm(n, k, p) b = perm(k, k, p) return (a*pow(b, p-2, p))%p n, a, b = map(int, input().split()) MOD = 10**9 + 7 print((pow(2,n,MOD) - 1 - comb(n, a, MOD) - comb(n, b, MOD))%MOD)
[ "expression.operation.binary.remove" ]
564,389
564,390
u667084803
python
p02768
def factorial_mod(a, M): ans = 1 for i in range(a,1,-1): ans = (ans * i) % M return ans def test(n, a, M): ans = 1 for i in range(a): ans = (ans * (n-i)) % M return ans def combination_mod(n,a,M): tmp = factorial_mod(a,M) tmp = pow(tmp, M-2, M) ans = test(n,a,M) * tmp % M return ans def output(n,a,b): M = 10**9+7 ans = (pow(2,n,M) - 1 - combination_mod(n,a,M) - combination_mod(n,b,M)) % M return ans n, a, b = map(int, input().split()) print(output(a,b,c))
def factorial_mod(a, M): # return a!(mod M) ans = 1 for i in range(a,1,-1): ans = (ans * i) % M return ans def test(n, a, M): # return (nCaの分子) % M ans = 1 for i in range(a): ans = (ans * (n-i)) % M return ans def combination_mod(n,a,M): # return nCa % M tmp = factorial_mod(a,M) tmp = pow(tmp, M-2, M) ans = test(n,a,M) * tmp % M return ans def output(n,a,b): M = 10**9+7 ans = (pow(2,n,M) - 1 - combination_mod(n,a,M) - combination_mod(n,b,M)) % M return ans n, a, b = map(int, input().split()) print(output(n,a,b))
[ "call.arguments.add", "call.arguments.change" ]
564,393
564,394
u549278479
python
p02768
import math def modinv(a, m): g, x, y = egcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m def egcd(a, b): if a == 0: return b, 0, 1 else: g, y, x = egcd(b % a, a) return g, x - (b // a) * y, y def combination(n, r, mod=10**9+7): r = min(r, n-r) res = 1 for i in range(r): res = res * (n - i) * modinv(i+1, mod) % mod return res def COMint(): fac[0]=1 fac[1]=1 finv[0]=1 finv[1]=1 inv[1]=1 for i in range(2,N+1): fac[i] = fac[i - 1] * i % MOD inv[i] = MOD - inv[MOD%i] * (MOD // i) % MOD finv[i] = finv[i - 1] * inv[i] % MOD def com(n,k): if n<k: return 0 return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD MOD=10**9+7 #繰り返し2乗法を使う場合 def combinations_count(n, r): return math.factorial(n) // (math.factorial(n - r) * math.factorial(r)) n,a,b=[int(x) for x in input().split()] ans1 = pow(2,n,MOD) N = n a1=combination(n,a) b1 = combination(n,b) if ans1-a1%MOD-b1%MOD<0: print(((ans1-a1%MOD-b1%MOD)%MOD+MOD)%MOD) else: print(ans1-a1%MOD-b1%MOD)
import math def modinv(a, m): g, x, y = egcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m def egcd(a, b): if a == 0: return b, 0, 1 else: g, y, x = egcd(b % a, a) return g, x - (b // a) * y, y def combination(n, r, mod=10**9+7): r = min(r, n-r) res = 1 for i in range(r): res = res * (n - i) * modinv(i+1, mod) % mod return res def COMint(): fac[0]=1 fac[1]=1 finv[0]=1 finv[1]=1 inv[1]=1 for i in range(2,N+1): fac[i] = fac[i - 1] * i % MOD inv[i] = MOD - inv[MOD%i] * (MOD // i) % MOD finv[i] = finv[i - 1] * inv[i] % MOD def com(n,k): if n<k: return 0 return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD MOD=10**9+7 #繰り返し2乗法を使う場合 def combinations_count(n, r): return math.factorial(n) // (math.factorial(n - r) * math.factorial(r)) n,a,b=[int(x) for x in input().split()] ans1 = pow(2,n,MOD) N = n a1=combination(n,a) b1 = combination(n,b) if ans1-a1%MOD-b1%MOD<0: print(((ans1-a1%MOD-b1%MOD)%MOD+MOD)%MOD-1) else: print(ans1-a1%MOD-b1%MOD-1)
[ "expression.operation.binary.add" ]
564,415
564,416
u466331465
python
p02768
MOD = 10**9+7 def pow(a, b): res = 1 while b: if b & 1: res = res * a % MOD a = a**2 % MOD b >>= 1 return res n, a, b = list(map(int, input().split())) ans = pow(2, n)-1 for X in [a, b]: x = 1 y = 1 for i in range(X): x = x * (n-i) % MOD y = y * (i+1) % MOD t = x * pow(y, MOD-2) % MOD ans -= t if ans < 0: ans += MOD print(ans)
MOD = 10**9+7 def pow(a, b): res = 1 while b: if b & 1: res = res * a % MOD a = a**2 % MOD b >>= 1 return res n, a, b = list(map(int, input().split())) ans = pow(2, n)-1 for X in [a, b]: x = 1 y = 1 for i in range(X): x = x * (n-i) % MOD y = y * (i+1) % MOD t = x * pow(y, MOD-2) % MOD ans -= t while ans < 0: ans += MOD print(ans)
[ "control_flow.branch.while.replace.add", "control_flow.loop.if.replace.remove" ]
564,423
564,424
u721316601
python
p02768
import sys from collections import deque, Counter, defaultdict from math import gcd input = lambda: sys.stdin.readline().rstrip() def eprint(s): sys.stderr.write('DEBUG: {}'.format(s)) return def comb(n,r,mod): p,q=1,1 for i in range(r): p=p*(n-i)%mod q=q*(i+1)%mod return p*pow(q,mod-2,mod)%mod def main(): n,a,b = map(int, input().split()) #a,bの制約がなければ,2^n - 1通りだけ使える # 2^n ^ nCa - nCb mod = 10**9 +7 nca = comb(n,a,mod) ncb = comb(n,b,mod) print(pow(2,n,mod)-(nca+ncb)%mod-1) return if __name__ == '__main__': main()
import sys from collections import deque, Counter, defaultdict from math import gcd input = lambda: sys.stdin.readline().rstrip() def eprint(s): sys.stderr.write('DEBUG: {}'.format(s)) return def comb(n,r,mod): p,q=1,1 for i in range(r): p=p*(n-i)%mod q=q*(i+1)%mod return p*pow(q,mod-2,mod)%mod def main(): n,a,b = map(int, input().split()) #a,bの制約がなければ,2^n - 1通りだけ使える # 2^n ^ nCa - nCb mod = 10**9 +7 nca = comb(n,a,mod) ncb = comb(n,b,mod) print((pow(2,n,mod)-(nca+ncb)%mod) % mod-1) return if __name__ == '__main__': main()
[ "call.arguments.change" ]
564,438
564,439
u593934357
python
p02768
def cmb(n, r): if n - r < r: r = n - r if r == 0: return 1 if r == 1: return n numerator = [] mod = 10**9+7 numerator = [n - r + k + 1 for k in range(r)] denominator = [k + 1 for k in range(r)] for p in range(2,r+1): pivot = denominator[p - 1] if pivot > 1: offset = (n - r) % p for k in range(p-1,r,p): numerator[k - offset] /= pivot denominator[k] /= pivot result = 1 for k in range(r): if numerator[k] > 1: result *= int(numerator[k]) result %= mod return result def power_func(a,n,p): bi=str(format(n,"b")) res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res n, a, b = map(int, input().split()) mod = 10**9+7 ALL = power_func(2,n,mod)-1 A = cmb(n, a)%mod B = cmb(n, b)%mod ans = ALL-A-B if ans < 0: ans = mod + ans print(ans)
def cmb(n, r): if n - r < r: r = n - r if r == 0: return 1 if r == 1: return n numerator = [] mod = 10**9+7 numerator = [n - r + k + 1 for k in range(r)] denominator = [k + 1 for k in range(r)] for p in range(2,r+1): pivot = denominator[p - 1] if pivot > 1: offset = (n - r) % p for k in range(p-1,r,p): numerator[k - offset] /= pivot denominator[k] /= pivot result = 1 for k in range(r): if numerator[k] > 1: result *= int(numerator[k]) result %= mod return result def power_func(a,n,p): bi=str(format(n,"b")) res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res n, a, b = map(int, input().split()) mod = 10**9+7 ALL = power_func(2,n,mod)-1 A = cmb(n,a) B = cmb(n, b) ans = ALL-A-B while ans < 0: ans = mod + ans print(ans)
[ "expression.operation.binary.remove", "control_flow.branch.while.replace.add", "control_flow.loop.if.replace.remove" ]
564,456
564,457
u686713618
python
p02768
def cmb(n, r): if n - r < r: r = n - r if r == 0: return 1 if r == 1: return n numerator = [] mod = 10**9+7 numerator = [n - r + k + 1 for k in range(r)] denominator = [k + 1 for k in range(r)] for p in range(2,r+1): pivot = denominator[p - 1] if pivot > 1: offset = (n - r) % p for k in range(p-1,r,p): numerator[k - offset] /= pivot denominator[k] /= pivot result = 1 for k in range(r): if numerator[k] > 1: result *= int(numerator[k]) result %= mod return result def power_func(a,n,p): bi=str(format(n,"b")) res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res n, a, b = map(int, input().split()) mod = 10**9+7 ALL = power_func(2,n,mod)-1 A = cmb(n, a) B = cmb(n, b) ans = ALL-A-B if ans < 0: ans = mod + ans print(ans)
def cmb(n, r): if n - r < r: r = n - r if r == 0: return 1 if r == 1: return n numerator = [] mod = 10**9+7 numerator = [n - r + k + 1 for k in range(r)] denominator = [k + 1 for k in range(r)] for p in range(2,r+1): pivot = denominator[p - 1] if pivot > 1: offset = (n - r) % p for k in range(p-1,r,p): numerator[k - offset] /= pivot denominator[k] /= pivot result = 1 for k in range(r): if numerator[k] > 1: result *= int(numerator[k]) result %= mod return result def power_func(a,n,p): bi=str(format(n,"b")) res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res n, a, b = map(int, input().split()) mod = 10**9+7 ALL = power_func(2,n,mod)-1 A = cmb(n,a) B = cmb(n, b) ans = ALL-A-B while ans < 0: ans = mod + ans print(ans)
[ "control_flow.branch.while.replace.add", "control_flow.loop.if.replace.remove" ]
564,458
564,457
u686713618
python
p02768
def cmb(n, r): if n - r < r: r = n - r if r == 0: return 1 if r == 1: return n numerator = [] mod = 10**9+7 numerator = [n - r + k + 1 for k in range(r)] denominator = [k + 1 for k in range(r)] for p in range(2,r+1): pivot = denominator[p - 1] if pivot > 1: offset = (n - r) % p for k in range(p-1,r,p): numerator[k - offset] /= pivot denominator[k] /= pivot result = 1 for k in range(r): if numerator[k] > 1: result *= int(numerator[k]) result %= mod return result def power_func(a,n,p): bi=str(format(n,"b")) res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res n, a, b = map(int, input().split()) mod = 10**9+7 ALL = power_func(2,n,mod)-1 A = cmb(n,a) B = cmb(n, b) ans = ALL-A-B if ans < 0: ans = mod + ans print(ans)
def cmb(n, r): if n - r < r: r = n - r if r == 0: return 1 if r == 1: return n numerator = [] mod = 10**9+7 numerator = [n - r + k + 1 for k in range(r)] denominator = [k + 1 for k in range(r)] for p in range(2,r+1): pivot = denominator[p - 1] if pivot > 1: offset = (n - r) % p for k in range(p-1,r,p): numerator[k - offset] /= pivot denominator[k] /= pivot result = 1 for k in range(r): if numerator[k] > 1: result *= int(numerator[k]) result %= mod return result def power_func(a,n,p): bi=str(format(n,"b")) res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res n, a, b = map(int, input().split()) mod = 10**9+7 ALL = power_func(2,n,mod)-1 A = cmb(n,a) B = cmb(n, b) ans = ALL-A-B while ans < 0: ans = mod + ans print(ans)
[ "control_flow.branch.while.replace.add", "control_flow.loop.if.replace.remove" ]
564,459
564,457
u686713618
python
p02768
n, a, b = map(int, input().split()) m = 10**9+7 def cmb(r): N = 1 R = 1 for i in range(r): N = N*(n - i) % m R = R*(i+1) % m return N*pow(R, m-2, m)%m ans = pow(2, n, m) - ((cmb(a) + cmb(b) + 1)%m) print(ans)
n, a, b = map(int, input().split()) m = 10**9+7 def cmb(r): N = 1 R = 1 for i in range(r): N = N*(n - i) % m R = R*(i+1) % m return N*pow(R, m-2, m)%m ans = (pow(2, n, m) - ((cmb(a) + cmb(b) + 1)%m))%m print(ans)
[ "assignment.change" ]
564,460
564,461
u700805562
python
p02768
def pow2(n, mod): p = 2 r = 1 while n: if n % 2: r = r * p % mod p = (p * p) % mod n //= 2 return r g1 = [1, 1] g2 = [1, 1] inverse = [0, 1] def nCr(n, r, mod): t = 1 r = min(r, n - r) for i in range(n - r + 1, n + 1): t = t * i % mod return t * g2[r] % mod def prep(n, mod): for i in range(2, n): g1.append((g1[-1] * i) % mod) inverse.append((-inverse[mod % i] * (mod // i)) % mod) g2.append((g2[-1] * inverse[-1]) % mod) def main(): n, a, b = list(map(int, input().split())) aod = 10 ** 9 + 7 prep(2 * (10 ** 5), mod) print((pow2(n, mod) - 1 - nCr(n, a, mod) - nCr(n, b, mod))% mod) main()
def pow2(n, mod): p = 2 r = 1 while n: if n % 2: r = r * p % mod p = (p * p) % mod n //= 2 return r g1 = [1, 1] g2 = [1, 1] inverse = [0, 1] def nCr(n, r, mod): t = 1 r = min(r, n - r) for i in range(n - r + 1, n + 1): t = t * i % mod return t * g2[r] % mod def prep(n, mod): for i in range(2, n): g1.append((g1[-1] * i) % mod) inverse.append((-inverse[mod % i] * (mod // i)) % mod) g2.append((g2[-1] * inverse[-1]) % mod) def main(): n, a, b = list(map(int, input().split())) mod = 10 ** 9 + 7 prep(2 * (10 ** 5) + 1, mod) print((pow2(n, mod) - 1 - nCr(n, a, mod) - nCr(n, b, mod))% mod) main()
[ "assignment.variable.change", "identifier.change" ]
564,492
564,493
u858742833
python
p02768
n,a,b=map(int,input().split()) def combination(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = (numer*(n1-i)) % mod denom = (denom*i) % mod return numer * pow(denom, mod-2, mod) % mod mod=10**9+7 print((pow(2,n,mod) - combination(n,a,mod) - combination(n,b,mod))%mod)
n,a,b=map(int,input().split()) def combination(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = (numer*(n1-i)) % mod denom = (denom*i) % mod return numer * pow(denom, mod-2, mod) % mod mod=10**9+7 print((pow(2,n,mod)- 1 - combination(n,a,mod) - combination(n,b,mod))%mod)
[ "expression.operation.binary.add" ]
564,504
564,505
u951480280
python
p02768
from scipy.special import comb n,a,b=map(int,input().split()) MOD=10**9+7 def pos(x, n, m): if n == 0: return 1 res = pos(x*x%m, n//2, m) if n%2 == 1: res = res*x%m return res def comb(n,k): if n<k: return 0 if n<0 or k<0: return 0 k=min(n-k,k) ans=1 inv=[1]*(k+1) if k>=1: ans*=(n-k+1)%MOD for i in range(2,k+1): inv[i]=MOD-inv[MOD%i]*(MOD//i)%MOD ans=ans*(n-k+i)*inv[i]%MOD return ans na=comb(n,a) nb=comb(n,b) ans=(pos(2,n,MOD)-na-nb-1)%MOD print(ans)
n,a,b=map(int,input().split()) MOD=10**9+7 def pos(x, n, m): if n == 0: return 1 res = pos(x*x%m, n//2, m) if n%2 == 1: res = res*x%m return res def comb(n,k): if n<k: return 0 if n<0 or k<0: return 0 k=min(n-k,k) ans=1 inv=[1]*(k+1) if k>=1: ans*=(n-k+1)%MOD for i in range(2,k+1): inv[i]=MOD-inv[MOD%i]*(MOD//i)%MOD ans=ans*(n-k+i)*inv[i]%MOD return ans na=comb(n,a) nb=comb(n,b) ans=(pos(2,n,MOD)-na-nb-1)%MOD print(ans)
[]
564,510
564,511
u511379665
python
p02768
def binary(n): return bin(n)[2:] # バイナリ法 def pow_by_binary_exponentiation(a, x, n): # a^x mod n x = [int(b) for b in binary(x)] y = a for i in range(1, len(x)): y = (y**2) % n if x[i] == 1: y = (y * a) % n return y # mを法とするaの乗法的逆元 def modinv(a, m): g, x, y = egcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m def egcd(a, b): if a == 0: return b, 0, 1 else: g, y, x = egcd(b % a, a) return g, x - (b // a) * y, y # nCr mod m # modinvが必要 # rがn/2に近いと非常に重くなる def combination(n, r, mod=10**9 + 7): r = min(r, n - r) res = 1 for i in range(r): res = res * (n - i) * modinv(i + 1, mod) % mod return res n, a, b = map(int, input().split()) mod = 10**9 + 7 S = pow_by_binary_exponentiation(2, n, mod) - 1 A = combination(n, a, mod) B = combination(n, b, mod) ans = S -A -B if ans < 0: ans += mod print(ans)
def binary(n): return bin(n)[2:] # バイナリ法 def pow_by_binary_exponentiation(a, x, n): # a^x mod n x = [int(b) for b in binary(x)] y = a for i in range(1, len(x)): y = (y**2) % n if x[i] == 1: y = (y * a) % n return y # mを法とするaの乗法的逆元 def modinv(a, m): g, x, y = egcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m def egcd(a, b): if a == 0: return b, 0, 1 else: g, y, x = egcd(b % a, a) return g, x - (b // a) * y, y # nCr mod m # modinvが必要 # rがn/2に近いと非常に重くなる def combination(n, r, mod=10**9 + 7): r = min(r, n - r) res = 1 for i in range(r): res = res * (n - i) * modinv(i + 1, mod) % mod return res n, a, b = map(int, input().split()) mod = 10**9 + 7 S = pow_by_binary_exponentiation(2, n, mod) - 1 A = combination(n, a, mod) B = combination(n, b, mod) ans = (S - A - B) % mod if ans < 0: ans += mod print(ans % mod)
[ "assignment.change", "expression.operation.binary.add" ]
564,529
564,530
u815878613
python
p02768
n,a,b=map(int,input().split()) m=10**9+7 def com(n,k,m): p,q=1,1 for i in range(n-k+1,n+1): p*=i p%=m for i in range(1,k+1): q*=i q%=m return p*pow(q,m-2,m)%m ca,cb=com(n,a,m),com(n,b,m) ans=(pow(2,n,m)-1-ca-cb)%m
n,a,b=map(int,input().split()) m=10**9+7 def com(n,k,m): p,q=1,1 for i in range(n-k+1,n+1): p*=i p%=m for i in range(1,k+1): q*=i q%=m return p*pow(q,m-2,m)%m ca,cb=com(n,a,m),com(n,b,m) ans=(pow(2,n,m)-1-ca-cb)%m print(ans)
[ "call.add" ]
564,552
564,553
u393512980
python
p02768
n,a,b=map(int,input().split()) m=10**9+7 def com(n,k,m): p,q=1,1 for i in range(n-k+1,n+1): p*=i p%=m for i in range(1,k+1): q*=i q%=m return p*pow(q,m-2,m)%m ca,cb=com(n,a,m),com(n,b,m) ans=(pow(2,n,m)-ca-cb)%m
n,a,b=map(int,input().split()) m=10**9+7 def com(n,k,m): p,q=1,1 for i in range(n-k+1,n+1): p*=i p%=m for i in range(1,k+1): q*=i q%=m return p*pow(q,m-2,m)%m ca,cb=com(n,a,m),com(n,b,m) ans=(pow(2,n,m)-1-ca-cb)%m print(ans)
[ "call.add" ]
564,555
564,553
u393512980
python
p02768
n, a, b = map(int, input().split()) mod = 10**9 + 7 a = min(a, n-a) b = min(b, n-b) com = [1] * (max(a, b) + 1) for i in range(1,len(com)): com[i] = (com[i-1] * pow(i, mod-2, mod) * (n-i+1)) % mod print(pow(2, n, mod) - 1 - com[a] - com[b])
#!/usr/bin/env python3 n, a, b = map(int, input().split()) mod = 10**9 + 7 a = min(a, n-a) b = min(b, n-b) com = [1] * (max(a, b) + 1) for i in range(1,len(com)): com[i] = (com[i-1] * pow(i, mod-2, mod) * (n-i+1)) % mod print((pow(2, n, mod) + mod - 1 - com[a] - com[b]) % mod)
[ "call.arguments.change", "call.arguments.add" ]
564,571
564,572
u552357043
python
p02768
n, a, b = map(int, input().split()) mod = 10**9 + 7 a = min(a, n-a) b = min(b, n-b) com = [1] * (max(a, b) + 1) for i in range(1,len(com)): com[i] = (com[i-1] * pow(i, mod-2, mod) * (n-i+1)) % mod print(pow(2, n, mod) - 1 - com[a] - com[b])
n, a, b = map(int, input().split()) mod = 10**9 + 7 a = min(a, n-a) b = min(b, n-b) com = [1] * (max(a, b) + 1) for i in range(1,len(com)): com[i] = (com[i-1] * pow(i, mod-2, mod) * (n-i+1)) % mod print((pow(2, n, mod) - 1 - com[a] - com[b] + mod) % mod)
[ "call.arguments.change", "call.arguments.add" ]
564,571
564,574
u552357043
python
p02768
n, a, b = list(map(int, input().split())) mod = 10**9 + 7 import time start = time.time() # xの逆元を求める。フェルマーの小定理より、 x の逆元は x ^ (mod - 2) に等しい。計算時間はO(log(mod))程度。 # https://qiita.com/Yaruki00/items/fd1fc269ff7fe40d09a6 def modinv(x): return pow(x, mod-2, mod) modinv_table = [-1] * (b+1) for i in range(1, b+1): modinv_table[i] = modinv(i) end = time.time() # print("time: ", end - start) def binomial_coefficients2(n, k): ans = 1 for i in range(k): ans *= n-i ans *= modinv_table[i + 1] ans %= mod return ans # (2 ** n - 1) - nCa - nCb ans = power(2, n) - 1 ans -= (binomial_coefficients2(n, a) + binomial_coefficients2(n, b)) print(ans % mod) # print(binomial_coefficients2 (5, 2) % mod)
n, a, b = list(map(int, input().split())) mod = 10**9 + 7 import time start = time.time() # xの逆元を求める。フェルマーの小定理より、 x の逆元は x ^ (mod - 2) に等しい。計算時間はO(log(mod))程度。 # https://qiita.com/Yaruki00/items/fd1fc269ff7fe40d09a6 def modinv(x): return pow(x, mod-2, mod) modinv_table = [-1] * (b+1) for i in range(1, b+1): modinv_table[i] = modinv(i) end = time.time() # print("time: ", end - start) def binomial_coefficients2(n, k): ans = 1 for i in range(k): ans *= n-i ans *= modinv_table[i + 1] ans %= mod return ans # (2 ** n - 1) - nCa - nCb ans = pow(2, n, mod) - 1 ans -= (binomial_coefficients2(n, a) + binomial_coefficients2(n, b)) print(ans % mod) # print(binomial_coefficients2 (5, 2) % mod)
[ "assignment.value.change", "identifier.change", "call.function.change", "expression.operation.binary.change", "call.arguments.add" ]
564,579
564,580
u162612857
python
p02768
def loop_pow(x,n,mod): if n==0: return 1 if n%2==0: t=loop_pow(x,n//2,mod) return (t*t)%mod return x*loop_pow(x,n-1,mod)%mod def com(N,K,mod): n=N k=K up=1 down=1 for _ in range(K): up*=n up%=mod n-=1 for _ in range(K): down*=k down%=mod k-=1 down=loop_pow(down,10**9+5,mod) return up*down%mod def main(): N,a,b=map(int,input().split()) mod=10**9+7 t=loop_pow(2,N,mod)-1-com(N,a,mod)-com(N,b,mod) print(t) if __name__=="__main__": main()
def loop_pow(x,n,mod): if n==0: return 1 if n%2==0: t=loop_pow(x,n//2,mod) return (t*t)%mod return x*loop_pow(x,n-1,mod)%mod def com(N,K,mod): n=N k=K up=1 down=1 for _ in range(K): up*=n up%=mod n-=1 for _ in range(K): down*=k down%=mod k-=1 down=loop_pow(down,10**9+5,mod) return up*down%mod def main(): N,a,b=map(int,input().split()) mod=10**9+7 t=(loop_pow(2,N,mod)-1-com(N,a,mod)-com(N,b,mod))%mod print(t) if __name__=="__main__": main()
[ "assignment.change" ]
564,585
564,586
u079022693
python
p02768
n, a, b = map(int, input().split()) law = 10 ** 9 + 7 def fermat(n, r, law): x = 1 y = 1 for i in range(r): x = x * (n - i) % law y = y * (i + 1) % law ans = x * pow(y, law - 2, law) return ans print((pow(2,n,law)- fermat(n,a,law)-fermat(n,b,law))%law)
n, a, b = map(int, input().split()) law = 10 ** 9 + 7 def fermat(n, r, law): x = 1 y = 1 for i in range(r): x = x * (n - i) % law y = y * (i + 1) % law ans = x * pow(y, law - 2, law) % law return ans print((pow(2,n,law)- fermat(n,a,law)-fermat(n,b,law)-1)%law)
[ "assignment.change", "expression.operation.binary.add" ]
564,623
564,624
u809816772
python
p02768
n, a, b = list(map(int, input().split())) mod = 10**9 + 7 def choose(n, a): x = 1 y = 1 for i in range(1, a + 1): x = (x * (n - i + 1)) % mod y = (y * i) % mod return (x * pow(y, mod - 2, mod)) % mod print(pow(2, n, mod) - 1 - ((choose(n, a) + choose(n, b)) % mod))
n, a, b = list(map(int, input().split())) mod = 10**9 + 7 def choose(n, a): x = 1 y = 1 for i in range(1, a + 1): x = (x * (n - i + 1)) % mod y = (y * i) % mod return (x * pow(y, mod - 2, mod)) % mod print((pow(2, n, mod) - 1 - choose(n, a) - choose(n, b)) % mod )
[ "call.arguments.change", "misc.opposites", "expression.operator.arithmetic.change", "expression.operation.binary.change", "io.output.change" ]
564,634
564,635
u639340617
python
p02768
#d n,a,b = map(int,input().split()) def power(x, n, mod): """ x**n mod in O(log n) """ if n == 0: return 1 K = 1 while n > 1: if n % 2 != 0: K = K * x % mod x = x ** 2 % mod n = (n - 1) // 2 else: x = x ** 2 % mod n = n // 2 return K * x % mod def nCrMOD(a,b,m): c = 1 for i in range(b): c = c * (a - i) % m c = c * modinv(i + 1,m) % m return c def egcd(a, b): (x, lastx) = (0, 1) (y, lasty) = (1, 0) while b != 0: q = a // b (a, b) = (b, a % b) (x, lastx) = (lastx - q * x, x) (y, lasty) = (lasty - q * y, y) return (lastx, lasty, a) def modinv(a, m): (inv, q, gcd_val) = egcd(a, m) return inv % m m=10*9+7 ans = power(2,n,m) -1 - nCrMOD(n,a,m) -nCrMOD(n,b,m) print(ans%m)
#d n,a,b = map(int,input().split()) def power(x, n, mod): """ x**n mod in O(log n) """ if n == 0: return 1 K = 1 while n > 1: if n % 2 != 0: K = K * x % mod x = x ** 2 % mod n = (n - 1) // 2 else: x = x ** 2 % mod n = n // 2 return K * x % mod def nCrMOD(a,b,m): c = 1 for i in range(b): c = c * (a - i) % m c = c * modinv(i + 1,m) % m return c def egcd(a, b): (x, lastx) = (0, 1) (y, lasty) = (1, 0) while b != 0: q = a // b (a, b) = (b, a % b) (x, lastx) = (lastx - q * x, x) (y, lasty) = (lasty - q * y, y) return (lastx, lasty, a) def modinv(a, m): (inv, q, gcd_val) = egcd(a, m) return inv % m m=10**9+7 ans = power(2,n,m) -1 - nCrMOD(n,a,m) -nCrMOD(n,b,m) print(ans%m)
[ "assignment.value.change", "expression.operation.binary.change" ]
564,651
564,652
u586759271
python
p02768
n, a, b = map(int, input().split()) MOD = 1000000007 def combination(n, r): r = min(r, n - r) num = 1 den = 1 for i in range(1, r + 1): num = (num * (n + 1 - i)) % MOD den = (den * i) % MOD return num * pow(den, MOD - 2, MOD) % MOD def func(a, n, p): bi = str(format(n, "b")) res = 1 for i in range(len(bi)): res = (res * res) % p if bi[i] == "1": res = (res * a) % p return res s = func(2, n, MOD) - 1 xa = combination(n, a) xb = combination(n, b) p = (s - xa - xb) if p < 0: print(p + MOD) else: print(p)
n, a, b = map(int, input().split()) MOD = 1000000007 def combination(n, r): r = min(r, n - r) num = 1 den = 1 for i in range(1, r + 1): num = (num * (n + 1 - i)) % MOD den = (den * i) % MOD return num * pow(den, MOD - 2, MOD) % MOD def func(a, n, p): bi = str(format(n, "b")) res = 1 for i in range(len(bi)): res = (res * res) % p if bi[i] == "1": res = (res * a) % p return res s = func(2, n, MOD) - 1 xa = combination(n, a) xb = combination(n, b) p = (s - xa - xb) % MOD if p < 0: print(p + MOD) else: print(p)
[ "assignment.change" ]
564,728
564,729
u137542041
python
p02768
import math z = 10**9 + 7 n, a, b = [int(i) for i in input().split()] r = pow(2, n, z) def c(m): x = 1 for i in range(n-m+1, n+1): x = x*i % z return (x * pow(math.factorial(m), z-2, z)) % z r = (r - c(a) - c(b)) % z print(r)
import math z = 10**9 + 7 n, a, b = [int(i) for i in input().split()] r = pow(2, n, z) - 1 def c(m): x = 1 for i in range(n-m+1, n+1): x = x*i % z return (x * pow(math.factorial(m), z-2, z)) % z r = (r - c(a) - c(b)) % z print(r)
[ "assignment.change" ]
564,752
564,753
u871509659
python
p02768
n, a, b = [int(i) for i in input().split()] mod = 10**9+7 def func_156d(n, r): r =min(r, n-r) numerator = 1 denominator = 1 for i in range(n-r+1, n+1): numerator = numerator * i % mod for i in range(1, r+1): denominator = denominator * i % mod return numerator * pow(denominator, mod-2, mod) %mod print(pow(2, n, mod) -1 - func_156d(n,a) - func_156d(n,b) %mod)
n, a, b = [int(i) for i in input().split()] mod = 10**9+7 def func_156d(n, r): r =min(r, n-r) numerator = 1 denominator = 1 for i in range(n-r+1, n+1): numerator = numerator * i % mod for i in range(1, r+1): denominator = denominator * i % mod return numerator * pow(denominator, mod-2, mod) %mod print((pow(2, n, mod) -1 - func_156d(n,a) - func_156d(n,b) + 2*mod) %mod )
[ "call.arguments.change" ]
564,773
564,774
u840310460
python
p02768
n,a,b = map(int,input().split()) mod = 10**9+7 def modinv(a, mod=10**9+7): return pow(a, mod-2, mod) def combination(n, r, mod=10**9+7): r = min(r, n-r) res = 1 for i in range(r): res = res * (n - i) * modinv(i+1, mod) % mod return res sum = pow(2,n,mod) case = combination(n,a,mod) + combination(n,b,mod) + 1 ans = sum-case if ans < 0 : ans += mod print(ans)
n,a,b = map(int,input().split()) mod = 10**9+7 def modinv(a, mod=10**9+7): return pow(a, mod-2, mod) def combination(n, r, mod=10**9+7): r = min(r, n-r) res = 1 for i in range(r): res = res * (n - i) * modinv(i+1, mod) % mod return res sum = pow(2,n,mod) case = combination(n,a,mod) + combination(n,b,mod) + 1 ans = sum-case while ans < 0 : ans += mod print(ans)
[ "control_flow.branch.while.replace.add", "control_flow.loop.if.replace.remove" ]
564,802
564,803
u397384480
python
p02768
#!/usr/bin/env python3 import sys # sys.setrecursionlimit(10000000) INF = 1<<32 # import numpy as np MOD = 1000000007 # type: int def solve(n: int, a: int, b: int): def combination_with_mod(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = numer * (n1-i) % mod denom = denom * i % mod return numer * pow(denom, mod-2, mod) % mod ans = pow(2, n, MOD)-combination_with_mod(n, a)-combination_with_mod(n, b)-combination_with_mod(n, 0) if ans < 0: print(MOD+ans) else: print(ans%MOD) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = int(next(tokens)) # type: int b = int(next(tokens)) # type: int solve(n, a, b) if __name__ == '__main__': main()
#!/usr/bin/env python3 import sys # sys.setrecursionlimit(10000000) INF = 1<<32 # import numpy as np MOD = 1000000007 # type: int def solve(n: int, a: int, b: int): def combination_with_mod(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = numer * (n1-i) % mod denom = denom * i % mod return numer * pow(denom, mod-2, mod) % mod ans = pow(2, n, MOD)-combination_with_mod(n, a)-combination_with_mod(n, b)-combination_with_mod(n, 0) if ans < 0: print((MOD+ans)%MOD) else: print(ans%MOD) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = int(next(tokens)) # type: int b = int(next(tokens)) # type: int solve(n, a, b) if __name__ == '__main__': main()
[ "call.arguments.change", "call.arguments.add" ]
564,807
564,808
u386819480
python
p02768
#!/usr/bin/env python3 import sys # sys.setrecursionlimit(10000000) INF = 1<<32 # import numpy as np MOD = 1000000007 # type: int def solve(n: int, a: int, b: int): def combination_with_mod(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = numer * (n1-i) % mod denom = denom * i % mod return numer * pow(denom, mod-2, mod) % mod ans = pow(2, n, MOD)-combination_with_mod(n, a)-combination_with_mod(n, b)-combination_with_mod(n, 0) if ans < 0: print(MOD+ans) else: print(ans) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = int(next(tokens)) # type: int b = int(next(tokens)) # type: int solve(n, a, b) if __name__ == '__main__': main()
#!/usr/bin/env python3 import sys # sys.setrecursionlimit(10000000) INF = 1<<32 # import numpy as np MOD = 1000000007 # type: int def solve(n: int, a: int, b: int): def combination_with_mod(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = numer * (n1-i) % mod denom = denom * i % mod return numer * pow(denom, mod-2, mod) % mod ans = pow(2, n, MOD)-combination_with_mod(n, a)-combination_with_mod(n, b)-combination_with_mod(n, 0) if ans < 0: print((MOD+ans)%MOD) else: print(ans%MOD) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = int(next(tokens)) # type: int b = int(next(tokens)) # type: int solve(n, a, b) if __name__ == '__main__': main()
[ "call.arguments.change" ]
564,809
564,808
u386819480
python
p02768
#!/usr/bin/env python3 import sys # sys.setrecursionlimit(10000000) INF = 1<<32 # import numpy as np MOD = 1000000007 # type: int def solve(n: int, a: int, b: int): def combination_with_mod(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = numer * (n1-i) % mod denom = denom * i % mod return numer * pow(denom, mod-2, mod) % mod def power_func(a,n,p): bi=str(format(n,"b"))#2進表現に res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res ans = 0 ans = power_func(2, n, MOD) ans = ans-combination_with_mod(n,a)-combination_with_mod(n, b)-combination_with_mod(n,0) if ans < 0: print(MOD+ans) else: print(ans) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = int(next(tokens)) # type: int b = int(next(tokens)) # type: int solve(n, a, b) if __name__ == '__main__': main()
#!/usr/bin/env python3 import sys # sys.setrecursionlimit(10000000) INF = 1<<32 # import numpy as np MOD = 1000000007 # type: int def solve(n: int, a: int, b: int): def combination_with_mod(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = numer * (n1-i) % mod denom = denom * i % mod return numer * pow(denom, mod-2, mod) % mod def power_func(a,n,p): bi=str(format(n,"b"))#2進表現に res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res ans = 0 ans = power_func(2, n, MOD) ans = ans-combination_with_mod(n, a)-combination_with_mod(n, b)-combination_with_mod(n, 0) if ans < 0: print((MOD+ans)%MOD) else: print(ans%MOD) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = int(next(tokens)) # type: int b = int(next(tokens)) # type: int solve(n, a, b) if __name__ == '__main__': main()
[ "call.arguments.change" ]
564,810
564,811
u386819480
python
p02768
#!/usr/bin/env python3 import sys # sys.setrecursionlimit(10000000) INF = 1<<32 # import numpy as np MOD = 1000000007 # type: int def solve(n: int, a: int, b: int): def combination_with_mod(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = numer * (n1-i) % mod denom = denom * i % mod return numer * pow(denom, mod-2, mod) % mod def power_func(a,n,p): bi=str(format(n,"b"))#2進表現に res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res ans = 0 ans = power_func(2, n, MOD) # print(mod_inv(ans, MOD)) # print(ans) # for i in range(1,n+1): # ans += combination_with_mod(n, i) ans = ans-combination_with_mod(n,a)-combination_with_mod(n, b)-combination_with_mod(n,0) if ans < 0: print(MOD+ans) else: print(ans) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = int(next(tokens)) # type: int b = int(next(tokens)) # type: int solve(n, a, b) if __name__ == '__main__': main()
#!/usr/bin/env python3 import sys # sys.setrecursionlimit(10000000) INF = 1<<32 # import numpy as np MOD = 1000000007 # type: int def solve(n: int, a: int, b: int): def combination_with_mod(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = numer * (n1-i) % mod denom = denom * i % mod return numer * pow(denom, mod-2, mod) % mod def power_func(a,n,p): bi=str(format(n,"b"))#2進表現に res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res ans = 0 ans = power_func(2, n, MOD) ans = ans-combination_with_mod(n, a)-combination_with_mod(n, b)-combination_with_mod(n, 0) if ans < 0: print((MOD+ans)%MOD) else: print(ans%MOD) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = int(next(tokens)) # type: int b = int(next(tokens)) # type: int solve(n, a, b) if __name__ == '__main__': main()
[ "call.arguments.change" ]
564,812
564,811
u386819480
python
p02768
n, a, b = map(int, input().split()) mod = 10 ** 9 + 7 def choose(n, r, mod): r = min(r, n - r) x = 1 y = 1 for i in range(r): x = x * (n - i) % mod y = y * (i + 1) % mod y = pow(y, -2, mod) return x * y % mod ans = pow(2, n, mod) - 1 - choose(n, a, mod) - choose(n, b, mod) while ans < 0: ans += mod print(ans)
n, a, b = map(int, input().split()) mod = 10 ** 9 + 7 def choose(n, r, mod): r = min(r, n - r) x = 1 y = 1 for i in range(r): x = x * (n - i) % mod y = y * (i + 1) % mod y = pow(y, mod-2, mod) return x * y % mod ans = pow(2, n, mod) - 1 - choose(n, a, mod) - choose(n, b, mod) while ans < 0: ans += mod print(ans)
[ "call.arguments.change" ]
564,819
564,820
u118211443
python
p02768
#コンビネーション。 def comb(n,m,p=10**9+7): if n < m : return 0 if n < 0 or m < 0:return 0 m = min(m, n-m) top = bot = 1 for i in range(m): top = top*(n-i) % p bot = bot*(i+1) % p bot = pow(bot, p-2, p) return top*bot % p #累乗 def mpow(x: int, k: int, MOD=1000000007) -> int: res = 1 y = x while (k): if(k % 2 == 1): res = (res * y) % MOD y = (y ** 2) % MOD k = k // 2 return res [n,a,b] = list(map(int,input().split())) CA = comb(n,a,10**9+7) CB = comb(n,b,10**9+7) X = mpow(2,n,10**9+7) output = X-CA-CB-1 if output<0: output += 10**9+7 print(output)
#コンビネーション。 def comb(n,m,p=10**9+7): if n < m : return 0 if n < 0 or m < 0:return 0 m = min(m, n-m) top = bot = 1 for i in range(m): top = top*(n-i) % p bot = bot*(i+1) % p bot = pow(bot, p-2, p) return top*bot % p #累乗 def mpow(x: int, k: int, MOD=1000000007) -> int: res = 1 y = x while (k): if(k % 2 == 1): res = (res * y) % MOD y = (y ** 2) % MOD k = k // 2 return res [n,a,b] = list(map(int,input().split())) CA = comb(n,a,10**9+7) CB = comb(n,b,10**9+7) X = mpow(2,n,10**9+7) output = X-CA-CB-1 while output<0: output += 10**9+7 print(output)
[ "control_flow.branch.while.replace.add", "control_flow.loop.if.replace.remove" ]
564,885
564,886
u208713671
python
p02768
n,a,b=map(int,input().split()) mod=10**9+7 P = 10**9 + 7 N = 200001 inv_t = [0]+[1] for i in range(2,N): inv_t += [inv_t[P % i] * (P - int(P / i)) % P] def power_func(a,n,p): bi=str(format(n,"b"))#2進表現に res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res def comb(x): res=1 for i in range(n-x+1,n+1): res*=i res=res%mod for i in range(1,x+1): res*=inv_t[i] res=res%mod return res al=power_func(2,n,mod) print((al-comb(a)-comb(b))%mod)
n,a,b=map(int,input().split()) mod=10**9+7 P = 10**9 + 7 N = 200001 inv_t = [0]+[1] for i in range(2,N): inv_t += [inv_t[P % i] * (P - int(P / i)) % P] def power_func(a,n,p): bi=str(format(n,"b"))#2進表現に res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res def comb(x): res=1 for i in range(n-x+1,n+1): res*=i res=res%mod for i in range(1,x+1): res*=inv_t[i] res=res%mod return res al=power_func(2,n,mod)-1 print((al-comb(a)-comb(b))%mod)
[ "assignment.change" ]
564,905
564,906
u459798349
python
p02768
from collections import defaultdict,deque import sys,heapq,bisect,math,itertools,string,queue,copy,time sys.setrecursionlimit(10**8) INF = float('inf') mod = 10**9+7 eps = 10**-7 def inp(): return int(sys.stdin.readline()) def inpl(): return list(map(int, sys.stdin.readline().split())) def inpl_str(): return list(sys.stdin.readline().split()) N,a,b = inpl() def calc(N,x): ret = 1 for i in range(N-x+1,N+1): ret *= i ret %= mod for i in range(1, x+1): ret *= pow(i,mod-2,mod) ret %= mod return ret%mod ans = pow(2,N,mod)-1 - calc(a) - calc(b) print(ans%mod)
from collections import defaultdict,deque import sys,heapq,bisect,math,itertools,string,queue,copy,time sys.setrecursionlimit(10**8) INF = float('inf') mod = 10**9+7 eps = 10**-7 def inp(): return int(sys.stdin.readline()) def inpl(): return list(map(int, sys.stdin.readline().split())) def inpl_str(): return list(sys.stdin.readline().split()) N,a,b = inpl() def calc(x): ret = 1 for i in range(N-x+1,N+1): ret *= i ret %= mod for i in range(1, x+1): ret *= pow(i,mod-2,mod) ret %= mod return ret%mod ans = pow(2,N,mod)-1 - calc(a) - calc(b) print(ans%mod)
[]
564,916
564,917
u333945892
python
p02769
mod_val = 10**9+7 n, k = map(int, input().split()) factorials = [1]*(n+1) # values 0 to n for i in range(2, n+1): factorials[i] = (factorials[i-1]*i)%mod_val def mod_binomial(a, b): numerator = factorials[a] denominator = (factorials[b]*factorials[a-b])%mod_val invert = pow(denominator, mod_val-2, mod_val) return (numerator*invert)%mod_val partial = 0 # m is number of rooms with no people for m in range(min(k+1, n-1)): # m places within n to place the 'no people' rooms # put n-(n-m) people in n-m rooms (n-m) must be placed to be non-empty partial = (partial + (mod_binomial(n, m) * mod_binomial(n-1, m))%mod_val)%mod_val print(partial)
mod_val = 10**9+7 n, k = map(int, input().split()) factorials = [1]*(n+1) # values 0 to n for i in range(2, n+1): factorials[i] = (factorials[i-1]*i)%mod_val def mod_binomial(a, b): numerator = factorials[a] denominator = (factorials[b]*factorials[a-b])%mod_val invert = pow(denominator, mod_val-2, mod_val) return (numerator*invert)%mod_val partial = 0 # m is number of rooms with no people for m in range(min(k+1, n)): # m places within n to place the 'no people' rooms # put n-(n-m) people in n-m rooms (n-m) must be placed to be non-empty partial = (partial + (mod_binomial(n, m) * mod_binomial(n-1, m))%mod_val)%mod_val print(partial)
[ "expression.operation.binary.remove" ]
564,945
564,946
u460375306
python
p02769
n,k = map(int,input().split()) mod = 10**9 + 7 fact = [1] finv = [1] for i in range(1, 2*n): fact.append((fact[i-1] * i) % mod) finv.append(pow(fact[i], mod-2, mod)) if n-1 <= k: print((fact[2*n-1] * finv[n] * finv[n-1]) % mod) ans = 0 for i in range(k+1): ans += fact[n] * finv[n-i] * finv[i] * fact[n-1] * finv[n-1-i] * finv[i] ans %= mod print(ans)
n,k = map(int,input().split()) mod = 10**9 + 7 fact = [1] finv = [1] for i in range(1, 2*n): fact.append((fact[i-1] * i) % mod) finv.append(pow(fact[i], mod-2, mod)) if n-1 <= k: print((fact[2*n-1] * finv[n] * finv[n-1]) % mod) exit() ans = 0 for i in range(k+1): ans += fact[n] * finv[n-i] * finv[i] * fact[n-1] * finv[n-1-i] * finv[i] ans %= mod print(ans)
[ "call.add" ]
564,951
564,952
u934868410
python
p02769
N, K = list(map(int, input().split())) p = 10**9+7 size = 2*2*10**5 def binom(n, r, p): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p fact = [1, 1] factinv = [1, 1] inv = [0, 1] for i in range(2, size + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) res = 0 for i in range(min(K, N)): res += (binom(N, i, p) * binom(N-1, N-i-1, p)) % p print(res % p)
N, K = list(map(int, input().split())) p = 10**9+7 size = 2*2*10**5 def binom(n, r, p): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p fact = [1, 1] factinv = [1, 1] inv = [0, 1] for i in range(2, size + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) res = 0 for i in range(min(K, N)+1): res += (binom(N, i, p) * binom(N-1, N-i-1, p)) % p print(res % p)
[ "control_flow.loop.range.bounds.upper.change", "expression.operation.binary.add" ]
564,953
564,954
u892305365
python
p02769
n, k = map(int, input().split()) c1 = 1 c2 = 1 mod = 10**9+7 ans = 0 for i in range(min(n, k+1)): ans += c1 * c2 c1 *= (n-i) * pow(i+1, mod-2, mod) c1 %= mod c2 *= (n-i-1) * pow(i+1, mod-2, mod) c2 %= mod print(ans)
n, k = map(int, input().split()) c1 = 1 c2 = 1 mod = 10**9+7 ans = 0 for i in range(min(n, k+1)): ans += c1 * c2 c1 *= (n-i) * pow(i+1, mod-2, mod) c1 %= mod c2 *= (n-i-1) * pow(i+1, mod-2, mod) c2 %= mod print(ans%mod)
[ "expression.operation.binary.add" ]
564,979
564,980
u875541136
python
p02769
mod=10**9+7 comb1=1 comb2=1 N,K=map(int,input().split()) k=min(K,N-1) x=0 for i in range(k): comb1=(comb1*(N-i)*pow(i+1,mod-2,mod))%(mod) comb2=(comb2*(N-1-i)*pow(i+1,mod-2,mod))%(mod) x+=(comb1*comb2)%(mod) print(x%(mod))
mod=10**9+7 comb1=1 comb2=1 N,K=map(int,input().split()) k=min(K,N-1) x=0 for i in range(k): comb1=(comb1*(N-i)*pow(i+1,mod-2,mod))%(mod) comb2=(comb2*(N-1-i)*pow(i+1,mod-2,mod))%(mod) x+=(comb1*comb2)%(mod) print((x+1)%(mod))
[ "call.arguments.change" ]
564,981
564,982
u387774811
python
p02769
n,k=map(int,input().split()) mod=10**9+7 U = 4*10**5+1 MOD = 10**9+7 fact = [1]*(U+1) fact_inv = [1]*(U+1) for i in range(1,U+1): fact[i] = (fact[i-1]*i)%MOD fact_inv[U] = pow(fact[U],MOD-2,MOD) for i in range(U,0,-1): fact_inv[i-1] = (fact_inv[i]*i)%MOD def comb(n,k): if k < 0 or k > n: return 0 x = fact[n] x *= fact_inv[k] x %= MOD x *= fact_inv[n-k] x %= MOD return x if n-1<=k: print(comb(2*n-1,n-1)) else: ans=0 for i in range(1,1+k): ans+=comb(n,i)*comb(n-1,n-i-1) ans%=mod print(ans)
n,k=map(int,input().split()) mod=10**9+7 U = 4*10**5+1 MOD = 10**9+7 fact = [1]*(U+1) fact_inv = [1]*(U+1) for i in range(1,U+1): fact[i] = (fact[i-1]*i)%MOD fact_inv[U] = pow(fact[U],MOD-2,MOD) for i in range(U,0,-1): fact_inv[i-1] = (fact_inv[i]*i)%MOD def comb(n,k): if k < 0 or k > n: return 0 x = fact[n] x *= fact_inv[k] x %= MOD x *= fact_inv[n-k] x %= MOD return x if n-1<=k: print(comb(2*n-1,n-1)) else: ans=0 for i in range(1+k): ans+=comb(n,i)*comb(n-1,n-i-1) ans%=mod print(ans)
[ "call.arguments.change" ]
564,989
564,990
u350248178
python
p02769
from sys import stdin def prepare(n, p): fact = [1, 1] # fact[n] = (n! mod p) factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p) inv = [0, 1] # factinv 計算用 for i in range(2, n + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) return fact, factinv def cmb(n, r, p, fact, factinv): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p def get_result(data): n, k = data mod = 10**9+7 fact, factinv = prepare(n, mod) ans = 0 for m in range(n): # xHy = x+y−1Cx−1 ans += (cmb(n, m, mod, fact, factinv) * cmb(n-1, n-m-1, mod, fact, factinv)) % mod ans %= mod return ans if __name__ == '__main__': data = list(map(int, stdin.readline().split(' '))) result = get_result(data) print(result)
from sys import stdin def prepare(n, p): fact = [1, 1] # fact[n] = (n! mod p) factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p) inv = [0, 1] # factinv 計算用 for i in range(2, n + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) return fact, factinv def cmb(n, r, p, fact, factinv): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p def get_result(data): n, k = data mod = 10**9+7 fact, factinv = prepare(n, mod) ans = 0 for m in range(n): # xHy = x+y−1Cx−1 if m <= k: ans += (cmb(n, m, mod, fact, factinv) * cmb(n-1, n-m-1, mod, fact, factinv)) % mod ans %= mod return ans if __name__ == '__main__': data = list(map(int, stdin.readline().split(' '))) result = get_result(data) print(result)
[ "control_flow.branch.if.add" ]
564,999
565,000
u659302753
python
p02769
n, k = map(int, input().split()) mod = 10**9+7 k = min([k, n-1]) ans = 0 key = 1 for i in range(k): ans += key ans %= mod key = (((key*(n-i)%mod)*(n-i-1)%mod)*pow(pow(i+1, mod-2, mod), 2, mod))%mod print(ans)
n, k = map(int, input().split()) mod = 10**9+7 k = min([k, n-1]) ans = 0 key = 1 for i in range(k+1): ans += key ans %= mod key = (((key*(n-i)%mod)*(n-i-1)%mod)*pow(pow(i+1, mod-2, mod), 2, mod))%mod print(ans)
[ "control_flow.loop.range.bounds.upper.change", "expression.operation.binary.add" ]
565,001
565,002
u021548497
python
p02769
class Combinatorics: def __init__(self, N, mod): ''' Preprocess for calculating binomial coefficients nCr (0 <= r <= n, 0 <= n <= N) over the finite field Z/(mod)Z. Input: N (int): maximum n mod (int): a prime number. The order of the field Z/(mod)Z over which nCr is calculated. ''' self.mod = mod self.fact = {i: None for i in range(N+1)} # n! self.inverse = {i: None for i in range(1, N+1)} # inverse of n in the field Z/(MOD)Z self.fact_inverse = {i: None for i in range(N+1)} # inverse of n! in the field Z/(MOD)Z # preprocess self.fact[0] = self.fact[1] = 1 self.fact_inverse[0] = self.fact_inverse[1] = 1 self.inverse[1] = 1 for i in range(2, N+1): self.fact[i] = i * self.fact[i-1] % self.mod q, r = divmod(self.mod, i) self.inverse[i] = (- (q % self.mod) * self.inverse[r]) % self.mod self.fact_inverse[i] = self.inverse[i] * self.fact_inverse[i-1] % self.mod def perm(self, n, r): ''' Calculate nPr = n! / (n-r)! % mod ''' if n < r or n < 0 or r < 0: return 0 else: return (self.fact[n] * self.fact_inverse[n-r]) % self.mod def binom(self, n, r): ''' Calculate nCr = n! /(r! (n-r)!) % mod ''' if n < r or n < 0 or r < 0: return 0 else: return self.fact[n] * (self.fact_inverse[r] * self.fact_inverse[n-r] % self.mod) % self.mod def hom(self, n, r): ''' Calculate nHr = {n+r-1}Cr % mod. Assign r objects to one of n classes. Arrangement of r circles and n-1 partitions: o o o | o o | | | o | | | o o | | o ''' if n == 0 and r > 0: return 0 if n >= 0 and r == 0: return 1 return self.binom(n + r - 1, r) MOD = 10**9 + 7 N, K = map(int, input().split()) com = Combinatorics(N, MOD) ans = 0 for i in range(max(0, N - K), N+1): ans += (com.binom(N, i) * com.hom(N-i, i)) % MOD ans %= MOD print(ans)
class Combinatorics: def __init__(self, N, mod): ''' Preprocess for calculating binomial coefficients nCr (0 <= r <= n, 0 <= n <= N) over the finite field Z/(mod)Z. Input: N (int): maximum n mod (int): a prime number. The order of the field Z/(mod)Z over which nCr is calculated. ''' self.mod = mod self.fact = {i: None for i in range(N+1)} # n! self.inverse = {i: None for i in range(1, N+1)} # inverse of n in the field Z/(MOD)Z self.fact_inverse = {i: None for i in range(N+1)} # inverse of n! in the field Z/(MOD)Z # preprocess self.fact[0] = self.fact[1] = 1 self.fact_inverse[0] = self.fact_inverse[1] = 1 self.inverse[1] = 1 for i in range(2, N+1): self.fact[i] = i * self.fact[i-1] % self.mod q, r = divmod(self.mod, i) self.inverse[i] = (- (q % self.mod) * self.inverse[r]) % self.mod self.fact_inverse[i] = self.inverse[i] * self.fact_inverse[i-1] % self.mod def perm(self, n, r): ''' Calculate nPr = n! / (n-r)! % mod ''' if n < r or n < 0 or r < 0: return 0 else: return (self.fact[n] * self.fact_inverse[n-r]) % self.mod def binom(self, n, r): ''' Calculate nCr = n! /(r! (n-r)!) % mod ''' if n < r or n < 0 or r < 0: return 0 else: return self.fact[n] * (self.fact_inverse[r] * self.fact_inverse[n-r] % self.mod) % self.mod def hom(self, n, r): ''' Calculate nHr = {n+r-1}Cr % mod. Assign r objects to one of n classes. Arrangement of r circles and n-1 partitions: o o o | o o | | | o | | | o o | | o ''' if n == 0 and r > 0: return 0 if n >= 0 and r == 0: return 1 return self.binom(n + r - 1, r) MOD = 10**9 + 7 N, K = map(int, input().split()) com = Combinatorics(N, MOD) ans = 0 for i in range(min(K, N-1) + 1): ans += (com.binom(N, i) * com.hom(N-i, i)) % MOD ans %= MOD print(ans)
[ "misc.opposites", "identifier.change", "call.function.change", "call.arguments.change", "control_flow.loop.range.bounds.upper.change", "identifier.replace.add", "literal.replace.remove", "identifier.replace.remove", "literal.replace.add", "expression.operation.binary.change" ]
565,013
565,014
u497046426
python
p02769
#input n, k = map(int, input().split()) #output mod = pow(10, 9) + 7 n_ = 3*10**5 fun = [1]*(n_+1) for i in range(1,n_+1): fun[i] = fun[i-1]*i%mod rev = [1]*(n_+1) rev[n_] = pow(fun[n_],mod-2,mod) for i in range(n_-1,0,-1): rev[i] = rev[i+1]*(i+1)%mod def cmb(n,r): if n <= 0 or r < 0 or r > n: return 0 return fun[n]*rev[r]%mod*rev[n-r]%mod if n <= k-1: print(cmb(2*n-1, n)) else: answer = 0 for m in range(k+1): answer += cmb(n, m)*cmb(n-1, m) % mod answer %= mod print(answer)
#input n, k = map(int, input().split()) #output mod = pow(10, 9) + 7 n_ = 4*10**5 + 5 fun = [1]*(n_+1) for i in range(1,n_+1): fun[i] = fun[i-1]*i%mod rev = [1]*(n_+1) rev[n_] = pow(fun[n_],mod-2,mod) for i in range(n_-1,0,-1): rev[i] = rev[i+1]*(i+1)%mod def cmb(n,r): if n <= 0 or r < 0 or r > n: return 0 return fun[n]*rev[r]%mod*rev[n-r]%mod if n <= k-1: print(cmb(2*n-1, n)) else: answer = 0 for m in range(k+1): answer += cmb(n, m)*cmb(n-1, m) % mod answer %= mod print(answer)
[ "literal.number.integer.change", "assignment.value.change", "expression.operation.binary.change" ]
565,027
565,028
u461454424
python
p02769
#input n, k = map(int, input().split()) #output mod = pow(10, 9) + 7 n_ = 2*10**5 + 3 fun = [1]*(n_+1) for i in range(1,n_+1): fun[i] = fun[i-1]*i%mod rev = [1]*(n_+1) rev[n_] = pow(fun[n_],mod-2,mod) for i in range(n_-1,0,-1): rev[i] = rev[i+1]*(i+1)%mod def cmb(n,r): if n <= 0 or r < 0 or r > n: return 0 return fun[n]*rev[r]%mod*rev[n-r]%mod if n <= k-1: print(cmb(2*n-1, n)) else: answer = 0 for m in range(k+1): answer += cmb(n, m)*cmb(n-1, m) % mod answer %= mod print(answer)
#input n, k = map(int, input().split()) #output mod = pow(10, 9) + 7 n_ = 4*10**5 + 5 fun = [1]*(n_+1) for i in range(1,n_+1): fun[i] = fun[i-1]*i%mod rev = [1]*(n_+1) rev[n_] = pow(fun[n_],mod-2,mod) for i in range(n_-1,0,-1): rev[i] = rev[i+1]*(i+1)%mod def cmb(n,r): if n <= 0 or r < 0 or r > n: return 0 return fun[n]*rev[r]%mod*rev[n-r]%mod if n <= k-1: print(cmb(2*n-1, n)) else: answer = 0 for m in range(k+1): answer += cmb(n, m)*cmb(n-1, m) % mod answer %= mod print(answer)
[ "literal.number.integer.change", "assignment.value.change", "expression.operation.binary.change" ]
565,029
565,028
u461454424
python
p02769
#input n, k = map(int, input().split()) #output mod = pow(10, 9) + 7 n_ = 2*10**5 fun = [1]*(n_+1) for i in range(1,n_+1): fun[i] = fun[i-1]*i%mod rev = [1]*(n_+1) rev[n_] = pow(fun[n_],mod-2,mod) for i in range(n_-1,0,-1): rev[i] = rev[i+1]*(i+1)%mod def cmb(n,r): if n <= 0 or r < 0 or r > n: return 0 return fun[n]*rev[r]%mod*rev[n-r]%mod if n <= k-1: print(cmb(2*n-1, n)) else: answer = 0 for m in range(k+1): answer += cmb(n, m)*cmb(n-1, m) % mod answer %= mod print(answer)
#input n, k = map(int, input().split()) #output mod = pow(10, 9) + 7 n_ = 4*10**5 + 5 fun = [1]*(n_+1) for i in range(1,n_+1): fun[i] = fun[i-1]*i%mod rev = [1]*(n_+1) rev[n_] = pow(fun[n_],mod-2,mod) for i in range(n_-1,0,-1): rev[i] = rev[i+1]*(i+1)%mod def cmb(n,r): if n <= 0 or r < 0 or r > n: return 0 return fun[n]*rev[r]%mod*rev[n-r]%mod if n <= k-1: print(cmb(2*n-1, n)) else: answer = 0 for m in range(k+1): answer += cmb(n, m)*cmb(n-1, m) % mod answer %= mod print(answer)
[ "literal.number.integer.change", "assignment.value.change", "expression.operation.binary.change" ]
565,030
565,028
u461454424
python
p02769
MOD = 10**9 + 7 inpl = lambda: list(map(int,input().split())) def inv_mod(a, p=10**9+7): p = abs(p) a %= p stack = [] p0 = p while a > 1: d, a, p = p//a, p%a, a stack.append(d) x, y = 1, 0 while stack: d = stack.pop() x, y = y-d*x, x return x % p0 n, k = inpl() if k >= n: k = n-1 ans = 1 t = 1 print(k) for i in range(k): t *= (n-1-i)*(n-i) t %= MOD j = inv_mod(i+1) t *= j*j % MOD ans += t ans %= MOD print(ans)
MOD = 10**9 + 7 inpl = lambda: list(map(int,input().split())) def inv_mod(a, p=10**9+7): p = abs(p) a %= p stack = [] p0 = p while a > 1: d, a, p = p//a, p%a, a stack.append(d) x, y = 1, 0 while stack: d = stack.pop() x, y = y-d*x, x return x % p0 n, k = inpl() if k >= n: k = n-1 ans = 1 t = 1 for i in range(k): t *= (n-1-i)*(n-i) t %= MOD j = inv_mod(i+1) t *= j*j % MOD ans += t ans %= MOD print(ans)
[ "call.remove" ]
565,141
565,142
u894258749
python
p02769
def xgcd(a, b): x0, y0, x1, y1 = 1, 0, 0, 1 while b != 0: q, a, b = a // b, b, a % b x0, x1 = x1, x0 - q * x1 y0, y1 = y1, y0 - q * y1 return a, x0, y0 def invmod(a, m): g, x, y = xgcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m n, k = map(int, input().split()) c = 10**9 + 7 if k >= n-1: a = 2*n - 1 ans = a temp = a for i in range(1, n-1): temp = temp*(a-i) % c temp = temp*invmod(i+1, c) % c print(temp) else: temp1 = n temp2 = n-1 ans = 1 + (temp1 * temp2) % c for i in range(1, k): temp1 = temp1*(n-i) % c temp2 = temp2*(n-i-1) % c inv = invmod(i+1, c) temp1 = temp1*inv % c temp2 = temp2*inv % c ans += temp1 * temp2 % c print(ans)
def xgcd(a, b): x0, y0, x1, y1 = 1, 0, 0, 1 while b != 0: q, a, b = a // b, b, a % b x0, x1 = x1, x0 - q * x1 y0, y1 = y1, y0 - q * y1 return a, x0, y0 def invmod(a, m): g, x, y = xgcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m n, k = map(int, input().split()) c = 10**9 + 7 if k >= n-1: a = 2*n - 1 ans = a temp = a for i in range(1, n-1): temp = temp*(a-i) % c temp = temp*invmod(i+1, c) % c print(temp) else: temp1 = n temp2 = n-1 ans = 1 + (temp1 * temp2) % c for i in range(1, k): temp1 = temp1*(n-i) % c temp2 = temp2*(n-i-1) % c inv = invmod(i+1, c) temp1 = temp1*inv % c temp2 = temp2*inv % c ans += (temp1 * temp2) % c print(ans%c)
[ "expression.operation.binary.add" ]
565,147
565,148
u486065927
python
p02769
def modpow(a, n, mod): res = 1 while n > 0: if n & 1: res = res * a % mod a = a * a % mod n >>= 1 return res n, k = map(int, input().split()) MOD = 1000000007 if n-1 > k: ans = 1 com1 = 1 com2 = 1 for i in range(k): com1 = com1 * (n-1-i) * modpow(i+1, MOD-2, MOD) % MOD com2 = com2 * (n-i) * modpow(i+1, MOD-2, MOD) % MOD ans += com1 * com2 print(ans) else: ans = 1 for i in range(n-1): ans = ans * (n*2-1-i) * modpow(i+1, MOD-2, MOD) % MOD print(ans)
def modpow(a, n, mod): res = 1 while n > 0: if n & 1: res = res * a % mod a = a * a % mod n >>= 1 return res n, k = map(int, input().split()) MOD = 1000000007 if n-1 > k: ans = 1 com1 = 1 com2 = 1 for i in range(k): com1 = com1 * (n-1-i) * modpow(i+1, MOD-2, MOD) % MOD com2 = com2 * (n-i) * modpow(i+1, MOD-2, MOD) % MOD ans += com1 * com2 print(ans % MOD) else: ans = 1 for i in range(n-1): ans = ans * (n*2-1-i) * modpow(i+1, MOD-2, MOD) % MOD print(ans % MOD)
[ "expression.operation.binary.add" ]
565,161
565,162
u137913818
python
p02769
def cmb(n, r, mod): if (r < 0 or r > n): return 0 r = min(r, n - r) return g1[n] * g2[r] * g2[n - r] % mod mod = 10**9 + 7 N = 2 * 10**5 #出力の制限 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range(2, N + 1): g1.append((g1[-1] * i) % mod) inverse.append((-inverse[mod % i] * (mod // i)) % mod) g2.append((g2[-1] * inverse[-1]) % mod) def modPow(a, n, mod): if n == 1: return a if n % 2 == 1: return (a * (modPow(a, n//2, mod) ** 2)) % mod else: return (modPow(a, n//2, mod) ** 2) % mod def modInverse(a, p): # calculates the modular multiplicative of a mod m. # (assuming p is prime). return modPow(a, p-2, p) def modBinomial(n, k, p): # calculates C(n,k) mod p (assuming p is prime). numerator = 1 # n * (n-1) * ... * (n-k+1) for i in range(k): numerator = (numerator * (n-i)) % p denominator = 1 # k! for i in range(1, k+1): denominator = (denominator * i) % p # numerator / denominator mod p. return (numerator * modInverse(denominator, p)) % p n, k = map(int,(input().split())) if n <= k: print(modBinomial(2*n-1,n,mod)) exit() ans = 0 if k % 2 == 0: ans += 1 for i in range(1,k+1): ans = (ans + cmb(n,i,mod) * cmb(n-1,i,mod)) % mod print(ans)
def cmb(n, r, mod): if (r < 0 or r > n): return 0 r = min(r, n - r) return g1[n] * g2[r] * g2[n - r] % mod mod = 10**9 + 7 N = 2 * 10**5 #出力の制限 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range(2, N + 1): g1.append((g1[-1] * i) % mod) inverse.append((-inverse[mod % i] * (mod // i)) % mod) g2.append((g2[-1] * inverse[-1]) % mod) def modPow(a, n, mod): if n == 1: return a if n % 2 == 1: return (a * (modPow(a, n//2, mod) ** 2)) % mod else: return (modPow(a, n//2, mod) ** 2) % mod def modInverse(a, p): # calculates the modular multiplicative of a mod m. # (assuming p is prime). return modPow(a, p-2, p) def modBinomial(n, k, p): # calculates C(n,k) mod p (assuming p is prime). numerator = 1 # n * (n-1) * ... * (n-k+1) for i in range(k): numerator = (numerator * (n-i)) % p denominator = 1 # k! for i in range(1, k+1): denominator = (denominator * i) % p # numerator / denominator mod p. return (numerator * modInverse(denominator, p)) % p n, k = map(int,(input().split())) if n <= k: print(modBinomial(2*n-1,n,mod)) exit() ans = 0 if k != 1: ans += 1 for i in range(1,k+1): ans = (ans + cmb(n,i,mod) * cmb(n-1,i,mod)) % mod print(ans)
[]
565,171
565,172
u886633618
python
p02769
def extgcd(a,b): r = [1,0,a] w = [0,1,b] while w[2] != 1: q = r[2]//w[2] r2 = w w2 = [r[0]-q*w[0],r[1]-q*w[1],r[2]-q*w[2]] r = r2 w = w2 return [w[0],w[1]] def mod_inv(a,mod): x = extgcd(a,mod)[0] return (mod + x % mod)% mod def comb(n,k,mod): c = 1 for i in range(k): c = c*(n-i)%mod c = c*mod_inv(i+1,mod)%mod return c n,k = map(int,input().split()) mod = 10**9+7 if k >= n-1: print(comb(n+n-1,n,mod)) else: ans = 0 c = 1 c2 = 1 for i in range(k): c = c*(n-1-i)%mod c2 = c2*(n-i)%mod c = c*mod_inv(i+1,mod)%mod c2 = c2*(mod_inv(i+1,mod))%mod ans += c*c2 ans %= mod if k % 2 == 0: ans += 1 print(ans)
def extgcd(a,b): r = [1,0,a] w = [0,1,b] while w[2] != 1: q = r[2]//w[2] r2 = w w2 = [r[0]-q*w[0],r[1]-q*w[1],r[2]-q*w[2]] r = r2 w = w2 return [w[0],w[1]] def mod_inv(a,mod): x = extgcd(a,mod)[0] return (mod + x % mod)% mod def comb(n,k,mod): c = 1 for i in range(k): c = c*(n-i)%mod c = c*mod_inv(i+1,mod)%mod return c n,k = map(int,input().split()) mod = 10**9+7 if k >= n-1: print(comb(n+n-1,n,mod)) else: ans = 0 c = 1 c2 = 1 for i in range(k): c = c*(n-1-i)%mod c2 = c2*(n-i)%mod c = c*mod_inv(i+1,mod)%mod c2 = c2*(mod_inv(i+1,mod))%mod ans += c*c2 ans %= mod if k > 1: ans += 1 print(ans)
[]
565,173
565,174
u918935103
python
p02769
#coding:utf-8 class Combination: def __init__(self,N,P=10**9+7): if N > 10**7: self.fact = lambda x: x * self.fact(x-1) % P if x > 2 else 2 self.perm = lambda x, r: x * self.perm(x-1,r-1) % P if r > 0 else 1 self.cmb = lambda n,r: (self.perm(n,min(n-r,r)) * pow(self.fact(min(n-r,r)) ,P-2 ,P) % P) if r > 0 else 1 else: self.__fact = [1] * (N+1) self.__inv = [1] * (N+1) self.__inv_fact = [1] * (N+1) for i in range(2,N+1): self.__fact[i] = self.__fact[i-1] * i % P self.__inv[i] = - self.__inv[P%i] * (P//i) % P self.__inv_fact[i] = self.__inv_fact[i-1] * self.__inv[i] % P self.fact = lambda n: self.__fact[n] self.perm = lambda n,r: self.__fact[n] * self.__inv_fact[n-r] % P self.cmb = lambda n,r: (self.__fact[n] * self.__inv_fact[n-r] * self.__inv_fact[r] % P) if r > 0 else 1 import sys,os sys.setrecursionlimit(10**6) write = sys.stdout.write dbg = (lambda *something: print(*something)) if 'TERM_PROGRAM' in os.environ else lambda *x: 0 def main(given=sys.stdin.readline): input = lambda: given().rstrip() LMIIS = lambda: list(map(int,input().split())) II = lambda: int(input()) XLMIIS = lambda x: [LMIIS() for _ in range(x)] YN = lambda c : print('Yes') if c else print('No') MOD = 10**9+7 from collections import deque n,k = LMIIS() cmb = Combination(2*n) ans = 1 for i in range(1,min(n,k+1)): ans = ans + cmb.cmb(n,i) * cmb.cmb(n-1,i) % MOD print(ans) if __name__ == '__main__': main()
#coding:utf-8 class Combination: def __init__(self,N,P=10**9+7): if N > 10**7: self.fact = lambda x: x * self.fact(x-1) % P if x > 2 else 2 self.perm = lambda x, r: x * self.perm(x-1,r-1) % P if r > 0 else 1 self.cmb = lambda n,r: (self.perm(n,min(n-r,r)) * pow(self.fact(min(n-r,r)) ,P-2 ,P) % P) if r > 0 else 1 else: self.__fact = [1] * (N+1) self.__inv = [1] * (N+1) self.__inv_fact = [1] * (N+1) for i in range(2,N+1): self.__fact[i] = self.__fact[i-1] * i % P self.__inv[i] = - self.__inv[P%i] * (P//i) % P self.__inv_fact[i] = self.__inv_fact[i-1] * self.__inv[i] % P self.fact = lambda n: self.__fact[n] self.perm = lambda n,r: self.__fact[n] * self.__inv_fact[n-r] % P self.cmb = lambda n,r: (self.__fact[n] * self.__inv_fact[n-r] * self.__inv_fact[r] % P) if r > 0 else 1 import sys,os sys.setrecursionlimit(10**6) write = sys.stdout.write dbg = (lambda *something: print(*something)) if 'TERM_PROGRAM' in os.environ else lambda *x: 0 def main(given=sys.stdin.readline): input = lambda: given().rstrip() LMIIS = lambda: list(map(int,input().split())) II = lambda: int(input()) XLMIIS = lambda x: [LMIIS() for _ in range(x)] YN = lambda c : print('Yes') if c else print('No') MOD = 10**9+7 from collections import deque n,k = LMIIS() cmb = Combination(2*n) ans = 1 for i in range(1,min(n,k+1)): ans = (ans + cmb.cmb(n,i) * cmb.cmb(n-1,i)) % MOD print(ans) if __name__ == '__main__': main()
[]
565,044
565,045
u043048943
python
p02769
N, K = map(int, input().split()) MOD = 10**9 + 7 MAX_N = 10**6 + 5 fact = [0]*(MAX_N) fact_inv = [0]*(MAX_N) fact[0] = 1 for i in range(MAX_N-1): fact[i+1] = fact[i]*(i+1) % MOD fact_inv[-1] = pow(fact[-1], MOD-2, MOD) for i in range(MAX_N-2, -1, -1): fact_inv[i] = fact_inv[i+1]*(i+1) % MOD def comb(n, k): return fact[n]*fact_inv[k] % MOD * fact_inv[n-k] % MOD if K >= N: print(comb(2*N-1, N-1)) exit() ans = 1 for i in range(1, K+1): ans += comb(N, i)*comb(N-1, i) % MOD print(ans)
N, K = map(int, input().split()) MOD = 10**9 + 7 MAX_N = 10**6 + 5 fact = [0]*(MAX_N) fact_inv = [0]*(MAX_N) fact[0] = 1 for i in range(MAX_N-1): fact[i+1] = fact[i]*(i+1) % MOD fact_inv[-1] = pow(fact[-1], MOD-2, MOD) for i in range(MAX_N-2, -1, -1): fact_inv[i] = fact_inv[i+1]*(i+1) % MOD def comb(n, k): return fact[n]*fact_inv[k] % MOD * fact_inv[n-k] % MOD if K >= N: print(comb(2*N-1, N-1)) exit() ans = 1 for i in range(1, K+1): ans += comb(N, i)*comb(N-1, i) % MOD ans %= MOD print(ans)
[]
565,048
565,049
u503228842
python
p02769
n, k = map(int, input().split()) mod = 10 ** 9 + 7 def comb(n, r): if n < r:return 0 if n < 0 or k < 0:return 0 return fa[n] * fi[r] % mod * fi[n - r] % mod fa = [1] * (n + 1) fi = [1] * (n + 1) for i in range(1, n + 1): fa[i] = fa[i - 1] * i % mod fi[i] = pow(fa[i], mod - 2, mod) ans = 0 for i in range(min(k, n - 1) + 1): ans += comb(n, i) * comb(n - 1, i) % mod print(ans)
n, k = map(int, input().split()) mod = 10 ** 9 + 7 def comb(n, r): if n < r:return 0 if n < 0 or k < 0:return 0 return fa[n] * fi[r] % mod * fi[n - r] % mod fa = [1] * (n + 1) fi = [1] * (n + 1) for i in range(1, n + 1): fa[i] = fa[i - 1] * i % mod fi[i] = pow(fa[i], mod - 2, mod) ans = 0 for i in range(min(k, n - 1) + 1): ans += comb(n, i) * comb(n - 1, i) % mod print(ans % mod)
[ "expression.operation.binary.add" ]
565,053
565,054
u923270446
python
p02769
import sys input = lambda : sys.stdin.readline().rstrip() sys.setrecursionlimit(max(1000, 10**9)) write = lambda x: sys.stdout.write(x+"\n") M = 10**9+7 N = 4*10**5+3 # 必要なテーブルサイズ def cmb(n, r, M): if ( r<0 or r>n ): return 0 r = min(r, n-r) return (g1[n] * g2[r] * g2[n-r]) % M g1 = [None] * (N+1) # 元テーブル g2 = [None] * (N+1) #逆元テーブル inverse = [None] * (N+1) #逆元テーブル計算用テーブル g1[0] = g1[1] = g2[0] = g2[1] = 1 inverse[0], inverse[1] = [0, 1] for i in range( 2, N + 1 ): g1[i] = ( g1[i-1] * i ) % M inverse[i] = ( -inverse[M % i] * (M//i) ) % M # ai+b==0 mod M <=> i==-b*a^(-1) <=> i^(-1)==-b^(-1)*aより g2[i] = (g2[i-1] * inverse[i]) % M n,k = map(int, input().split()) M = 10**9+7 if k<n: ans = 0 for p in range(k+1): ans += cmb(n,p,M) * cmb(n-1+p, p, M) ans %= M else: ans = cmb(2*n-1,n,M) print(ans)
import sys input = lambda : sys.stdin.readline().rstrip() sys.setrecursionlimit(max(1000, 10**9)) write = lambda x: sys.stdout.write(x+"\n") M = 10**9+7 N = 4*10**5+3 # 必要なテーブルサイズ def cmb(n, r, M): if ( r<0 or r>n ): return 0 r = min(r, n-r) return (g1[n] * g2[r] * g2[n-r]) % M g1 = [None] * (N+1) # 元テーブル g2 = [None] * (N+1) #逆元テーブル inverse = [None] * (N+1) #逆元テーブル計算用テーブル g1[0] = g1[1] = g2[0] = g2[1] = 1 inverse[0], inverse[1] = [0, 1] for i in range( 2, N + 1 ): g1[i] = ( g1[i-1] * i ) % M inverse[i] = ( -inverse[M % i] * (M//i) ) % M # ai+b==0 mod M <=> i==-b*a^(-1) <=> i^(-1)==-b^(-1)*aより g2[i] = (g2[i-1] * inverse[i]) % M n,k = map(int, input().split()) M = 10**9+7 if k<n: ans = 0 for p in range(k+1): ans += cmb(n,p,M) * cmb(n-1, p, M) ans %= M else: ans = cmb(2*n-1,n,M) print(ans)
[ "expression.operation.binary.remove" ]
565,059
565,060
u535803878
python
p02769
import sys input = lambda : sys.stdin.readline().rstrip() sys.setrecursionlimit(max(1000, 10**9)) write = lambda x: sys.stdout.write(x+"\n") M = 10**9+7 N = 4*10**5+3 # 必要なテーブルサイズ def cmb(n, r, M): if ( r<0 or r>n ): return 0 r = min(r, n-r) return (g1[n] * g2[r] * g2[n-r]) % M g1 = [None] * (N+1) # 元テーブル g2 = [None] * (N+1) #逆元テーブル inverse = [None] * (N+1) #逆元テーブル計算用テーブル g1[0] = g1[1] = g2[0] = g2[1] = 1 inverse[0], inverse[1] = [0, 1] for i in range( 2, N + 1 ): g1[i] = ( g1[i-1] * i ) % M inverse[i] = ( -inverse[M % i] * (M//i) ) % M # ai+b==0 mod M <=> i==-b*a^(-1) <=> i^(-1)==-b^(-1)*aより g2[i] = (g2[i-1] * inverse[i]) % M n,k = map(int, input().split()) M = 10**9+7 if k<n: ans = 0 for p in range(k+1): ans += cmb(n,p,M) * cmb(n-1+p, p) ans %= M else: ans = cmb(2*n-1,n,M) print(ans)
import sys input = lambda : sys.stdin.readline().rstrip() sys.setrecursionlimit(max(1000, 10**9)) write = lambda x: sys.stdout.write(x+"\n") M = 10**9+7 N = 4*10**5+3 # 必要なテーブルサイズ def cmb(n, r, M): if ( r<0 or r>n ): return 0 r = min(r, n-r) return (g1[n] * g2[r] * g2[n-r]) % M g1 = [None] * (N+1) # 元テーブル g2 = [None] * (N+1) #逆元テーブル inverse = [None] * (N+1) #逆元テーブル計算用テーブル g1[0] = g1[1] = g2[0] = g2[1] = 1 inverse[0], inverse[1] = [0, 1] for i in range( 2, N + 1 ): g1[i] = ( g1[i-1] * i ) % M inverse[i] = ( -inverse[M % i] * (M//i) ) % M # ai+b==0 mod M <=> i==-b*a^(-1) <=> i^(-1)==-b^(-1)*aより g2[i] = (g2[i-1] * inverse[i]) % M n,k = map(int, input().split()) M = 10**9+7 if k<n: ans = 0 for p in range(k+1): ans += cmb(n,p,M) * cmb(n-1, p, M) ans %= M else: ans = cmb(2*n-1,n,M) print(ans)
[ "expression.operation.binary.remove", "call.arguments.add" ]
565,061
565,060
u535803878
python
p02769
N,K=map(int, input().split()) def cmb(n, r, p): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p p = 10 ** 9 + 7 n= 2*10 ** 5 # N は必要分だけ用意する fact = [1, 1] # fact[n] = (n! mod p) 階乗のmod factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p) inv = [0, 1] # factinv 計算用 for i in range(2, n + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) #0の数 zeros=min(K, N-1) ans=0 for i in range(1,zeros+1): ans+=(cmb(N,i,p)*cmb(i+N-i-1, i, p))%p #print(pow(N-i, i, p)) ans%=p print(ans)
N,K=map(int, input().split()) def cmb(n, r, p): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p p = 10 ** 9 + 7 n= 2*10 ** 5 # N は必要分だけ用意する fact = [1, 1] # fact[n] = (n! mod p) 階乗のmod factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p) inv = [0, 1] # factinv 計算用 for i in range(2, n + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) #0の数 zeros=min(K, N-1) ans=1 for i in range(1,zeros+1): ans+=(cmb(N,i,p)*cmb(i+N-i-1, i, p))%p #print(pow(N-i, i, p)) ans%=p print(ans)
[ "literal.number.integer.change", "assignment.value.change" ]
565,066
565,067
u784022244
python
p02769
m=10**9+7;f=[1];n,k=map(int,input().split()) for i in range(10**6):f+=[f[i]*(i+1)%m] def c(a,b):return f[a]*pow(f[b],m-2,m)*pow(f[a-b],m-2,m)%m s=c(n*2-1,n-1) if k>n-2:print(s) else:print(s+(m-sum(c(n-1,i)*c(n,n-i)for i in range(n-1,k,-1))%m)%m)
m=10**9+7;f=[1];n,k=map(int,input().split()) for i in range(10**6):f+=[f[i]*(i+1)%m] def c(a,b):return f[a]*pow(f[b],m-2,m)*pow(f[a-b],m-2,m)%m s=c(n*2-1,n-1) if k>n-2:print(s) else:print((s+(m-sum(c(n-1,i)*c(n,n-i)for i in range(n-1,k,-1))%m))%m)
[ "call.arguments.change" ]
565,068
565,069
u227082700
python
p02769
class Cmb: def __init__(self, N, mod=10**9+7): self.fact = [1,1] self.fact_inv = [1,1] self.inv = [0,1] """ 階乗を保存する配列を作成 """ for i in range(2, N+1): self.fact.append((self.fact[-1]*i) % mod) self.inv.append((-self.inv[mod%i] * (mod//i))%mod) self.fact_inv.append((self.fact_inv[-1]*self.inv[i])%mod) """ 関数として使えるように、callで定義 """ def __call__(self, n, r, mod=10**9+7): if (r<0) or (n<r): return 0 r = min(r, n-r) return self.fact[n] * self.fact_inv[r] * self.fact_inv[n-r] % mod n,k = map(int,input().split()) mod = 10**9+7 c = Cmb(N=n) ans = 0 for l in range(min(k+1, n)): tmp = c(n,l)*c(n-1, n-l-1) ans += tmp%mod print(ans)
class Cmb: def __init__(self, N, mod=10**9+7): self.fact = [1,1] self.fact_inv = [1,1] self.inv = [0,1] """ 階乗を保存する配列を作成 """ for i in range(2, N+1): self.fact.append((self.fact[-1]*i) % mod) self.inv.append((-self.inv[mod%i] * (mod//i))%mod) self.fact_inv.append((self.fact_inv[-1]*self.inv[i])%mod) """ 関数として使えるように、callで定義 """ def __call__(self, n, r, mod=10**9+7): if (r<0) or (n<r): return 0 r = min(r, n-r) return self.fact[n] * self.fact_inv[r] * self.fact_inv[n-r] % mod n,k = map(int,input().split()) mod = 10**9+7 c = Cmb(N=n) ans = 0 for l in range(min(k+1, n)): tmp = c(n,l)*c(n-1, n-l-1) ans += tmp%mod print(ans%mod)
[ "expression.operation.binary.add" ]
565,074
565,075
u672475305
python
p02769
n, k = map( int, input().split() ) mod = 10 ** 9 + 7 numer = [ 1 ] * ( n + 1 ) demon = [ 1 ] * ( n + 1 ) for i in range( 1, n + 1 ): numer[ i ] = numer[ i - 1 ] * i % mod demon[ n ] = pow( numer[ n ], mod - 2, mod ) for i in range( n, 0, -1 ): demon[ i - 1 ] = ( demon[ i ] * i ) % mod def nCr( n, r ): if r < 1: return 1 return ( numer[ n ] * demon[ r ] % mod ) * demon[ n - r ] % mod ans = 0 for i in range( min( k, n - 1) + 1 ): ans = ( ans + nCr( n, i ) * nCr( n - 1, i - 1 )) % mod print( ans )
n, k = map( int, input().split() ) mod = 10 ** 9 + 7 numer = [ 1 ] * ( n + 1 ) demon = [ 1 ] * ( n + 1 ) for i in range( 1, n + 1 ): numer[ i ] = numer[ i - 1 ] * i % mod demon[ n ] = pow( numer[ n ], mod - 2, mod ) for i in range( n, 0, -1 ): demon[ i - 1 ] = ( demon[ i ] * i ) % mod def nCr( n, r ): if r < 1: return 1 return ( numer[ n ] * demon[ r ] % mod ) * demon[ n - r ] % mod ans = 0 for i in range( min( k, n - 1) + 1 ): ans = ( ans + nCr( n, i ) * nCr( n - 1, i )) % mod print( ans )
[ "expression.operation.binary.remove" ]
565,079
565,080
u699008198
python
p02769
import sys import math from decimal import Decimal, ROUND_HALF_UP, ROUND_HALF_EVEN from collections import deque from bisect import bisect_left from itertools import product def I(): return int(sys.stdin.readline()) def MI(): return map(int, sys.stdin.readline().split()) def LI(): return list(map(int, sys.stdin.readline().split())) def LI2(N): return [list(map(int, sys.stdin.readline().split())) for i in range(N)] #文字列を一文字ずつ数字に変換、'5678'を[5,6,7,8]とできる def LSI(): return list(map(int, list(sys.stdin.readline().rstrip()))) def LSI2(N): return [list(map(int, list(sys.stdin.readline().rstrip()))) for i in range(N)] #文字列として取得 def ST(): return sys.stdin.readline().rstrip() def LST(): return sys.stdin.readline().rstrip().split() def LST2(N): return [sys.stdin.readline().rstrip().split() for i in range(N)] def FILL(i,h): return [i for j in range(h)] def FILL2(i,h,w): return [FILL(i,w) for j in range(h)] def FILL3(i,h,w,d): return [FILL2(i,w,d) for j in range(h)] def FILL4(i,h,w,d,d2): return [FILL3(i,w,d,d2) for j in range(h)] def sisha(num,digit): return Decimal(str(num)).quantize(Decimal(digit),rounding=ROUND_HALF_UP) #'0.01'や'1E1'などで指定、整数に戻すならintをかます MOD = 1000000007 INF = float("inf") sys.setrecursionlimit(10**6+10) def cmb(n, r, mod): if ( r<0 or r>n ): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod mod = MOD #出力の制限 N = 5*10**5 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) g2.append( (g2[-1] * inverse[-1]) % mod ) N,K = MI() ans = cmb(2*N-1,N-1,MOD) if K<N-1: for i in range(K+1,N): ans -= cmb(N,i,MOD)*cmb(N-1,i,MOD) print(ans)
import sys import math from decimal import Decimal, ROUND_HALF_UP, ROUND_HALF_EVEN from collections import deque from bisect import bisect_left from itertools import product def I(): return int(sys.stdin.readline()) def MI(): return map(int, sys.stdin.readline().split()) def LI(): return list(map(int, sys.stdin.readline().split())) def LI2(N): return [list(map(int, sys.stdin.readline().split())) for i in range(N)] #文字列を一文字ずつ数字に変換、'5678'を[5,6,7,8]とできる def LSI(): return list(map(int, list(sys.stdin.readline().rstrip()))) def LSI2(N): return [list(map(int, list(sys.stdin.readline().rstrip()))) for i in range(N)] #文字列として取得 def ST(): return sys.stdin.readline().rstrip() def LST(): return sys.stdin.readline().rstrip().split() def LST2(N): return [sys.stdin.readline().rstrip().split() for i in range(N)] def FILL(i,h): return [i for j in range(h)] def FILL2(i,h,w): return [FILL(i,w) for j in range(h)] def FILL3(i,h,w,d): return [FILL2(i,w,d) for j in range(h)] def FILL4(i,h,w,d,d2): return [FILL3(i,w,d,d2) for j in range(h)] def sisha(num,digit): return Decimal(str(num)).quantize(Decimal(digit),rounding=ROUND_HALF_UP) #'0.01'や'1E1'などで指定、整数に戻すならintをかます MOD = 1000000007 INF = float("inf") sys.setrecursionlimit(10**6+10) def cmb(n, r, mod): if ( r<0 or r>n ): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod mod = MOD #出力の制限 N = 5*10**5 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) g2.append( (g2[-1] * inverse[-1]) % mod ) N,K = MI() ans = cmb(2*N-1,N-1,MOD) if K<N-1: for i in range(K+1,N): ans -= cmb(N,i,MOD)*cmb(N-1,i,MOD) print(ans%MOD)
[ "expression.operation.binary.add" ]
565,081
565,082
u380995377
python
p02769
n, k = map(int,input().split()) mod = 10**9+7 #nCrをmodで割った余りを求める。Nに最大値を入れて使用。 N = n g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル def cmb(n,r,mod): if r<0 or r>n : return 0 r = min(r,n-r) return g1[n]*g2[r]*g2[n-r]%mod for i in range(2,N+1): g1.append((g1[-1]*i)%mod) inverse.append((-inverse[mod%i]*(mod//i))%mod) g2.append((g2[-1]*inverse[-1])%mod) ans = 0 for i in range(min(n-1,k)+1): di = cmb(n,i,mod)*cmb(n-1,i,mod)%mod print(di) ans = (ans+di)%mod print(ans)
n, k = map(int,input().split()) mod = 10**9+7 #nCrをmodで割った余りを求める。Nに最大値を入れて使用。 N = n g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル def cmb(n,r,mod): if r<0 or r>n : return 0 r = min(r,n-r) return g1[n]*g2[r]*g2[n-r]%mod for i in range(2,N+1): g1.append((g1[-1]*i)%mod) inverse.append((-inverse[mod%i]*(mod//i))%mod) g2.append((g2[-1]*inverse[-1])%mod) ans = 0 for i in range(min(n-1,k)+1): di = cmb(n,i,mod)*cmb(n-1,i,mod)%mod ans = (ans+di)%mod print(ans)
[ "call.remove" ]
565,084
565,085
u169350228
python
p02769
import sys sys.setrecursionlimit(10 ** 6) INF = float("inf") MOD = 10 ** 9 + 7 def input(): return sys.stdin.readline().strip() class Combination: """ O(n)の前計算を1回行うことで,O(1)でnCr mod mを求められる n_max = 10**6のとき前処理は約950ms (PyPyなら約340ms, 10**7で約1800ms) 使用例: comb = Combination(1000000) print(comb(5, 3)) # 10 """ def __init__(self, n_max, mod=10 ** 9 + 7): self.mod = mod self.modinv = self.make_modinv_list(n_max) self.fac, self.facinv = self.make_factorial_list(n_max) def __call__(self, n, r): if n < r: return 0 return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n - r] % self.mod def make_factorial_list(self, n): # 階乗のリストと階乗のmod逆元のリストを返す O(n) # self.make_modinv_list()が先に実行されている必要がある fac = [1] facinv = [1] for i in range(1, n + 1): fac.append(fac[i - 1] * i % self.mod) facinv.append(facinv[i - 1] * self.modinv[i] % self.mod) return fac, facinv def make_modinv_list(self, n): # 0からnまでのmod逆元のリストを返す O(n) modinv = [0] * (n + 1) modinv[1] = 1 for i in range(2, n + 1): modinv[i] = self.mod - self.mod // i * modinv[self.mod % i] % self.mod return modinv def main(): N, K = map(int, input().split()) comb = Combination(n_max=10 ** 5 * 2 + 10) if N <= K: ans = comb(2 * N - 1, N) else: if K == 1: ans = comb(N, 1) * comb(N - 1, 1) else: ans = 0 # mはゼロとなる数 for m in range(K + 1): ans += comb(N, m) * comb(N - 1, m) ans %= MOD print(ans) if __name__ == "__main__": main()
import sys sys.setrecursionlimit(10 ** 6) INF = float("inf") MOD = 10 ** 9 + 7 def input(): return sys.stdin.readline().strip() class Combination: """ O(n)の前計算を1回行うことで,O(1)でnCr mod mを求められる n_max = 10**6のとき前処理は約950ms (PyPyなら約340ms, 10**7で約1800ms) 使用例: comb = Combination(1000000) print(comb(5, 3)) # 10 """ def __init__(self, n_max, mod=10 ** 9 + 7): self.mod = mod self.modinv = self.make_modinv_list(n_max) self.fac, self.facinv = self.make_factorial_list(n_max) def __call__(self, n, r): if n < r: return 0 return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n - r] % self.mod def make_factorial_list(self, n): # 階乗のリストと階乗のmod逆元のリストを返す O(n) # self.make_modinv_list()が先に実行されている必要がある fac = [1] facinv = [1] for i in range(1, n + 1): fac.append(fac[i - 1] * i % self.mod) facinv.append(facinv[i - 1] * self.modinv[i] % self.mod) return fac, facinv def make_modinv_list(self, n): # 0からnまでのmod逆元のリストを返す O(n) modinv = [0] * (n + 1) modinv[1] = 1 for i in range(2, n + 1): modinv[i] = self.mod - self.mod // i * modinv[self.mod % i] % self.mod return modinv def main(): N, K = map(int, input().split()) comb = Combination(n_max=10 ** 5 * 4 + 10) if N <= K: ans = comb(2 * N - 1, N) else: if K == 1: ans = comb(N, 1) * comb(N - 1, 1) else: ans = 0 # mはゼロとなる数 for m in range(K + 1): ans += comb(N, m) * comb(N - 1, m) ans %= MOD print(ans) if __name__ == "__main__": main()
[ "literal.number.integer.change", "assignment.value.change", "call.arguments.change", "expression.operation.binary.change" ]
565,097
565,098
u346812984
python
p02769
# -*- coding: utf-8 -*- class FactMod(): ''' modの値が素数の時のfactと組み合わせを求める フェルマーの小定理を用いているため、modが素数以外の時は使えない ''' def __init__(self, n, mod): ''' コンストラクタ f:nまでの i!の値を 配列に入れる inv: (i!)^-1 の値を配列に入れる ''' self.mod = mod self.f = [1]*(n+1) for i in range(1, n+1): self.f[i] = self.f[i-1]*i % mod self.inv = [pow(self.f[-1], mod-2, mod)] for i in range(1, n+1)[::-1]: self.inv.append(self.inv[-1]*i % mod) self.inv.reverse() def fact(self, n): ''' n!の値を返す ''' return self.f[n] def comb(self, n, r): ''' nCrの値を返す ''' ret = self.f[n] * self.inv[n-r]*self.inv[r] ret %= self.mod return ret def perm(self, n, r): """ nPrの値を返す """ ret = self.f[n] * self.inv[n-r] ret %= self.mod return ret N,K = map(int,input().split()) ans=0 MOD=10**9+7 F= FactMod(N,MOD) for k in range(0,min(N,K+1)): ans += F.comb(N,k)*F.comb(N-1,k)%MOD print(ans)
# -*- coding: utf-8 -*- class FactMod(): ''' modの値が素数の時のfactと組み合わせを求める フェルマーの小定理を用いているため、modが素数以外の時は使えない ''' def __init__(self, n, mod): ''' コンストラクタ f:nまでの i!の値を 配列に入れる inv: (i!)^-1 の値を配列に入れる ''' self.mod = mod self.f = [1]*(n+1) for i in range(1, n+1): self.f[i] = self.f[i-1]*i % mod self.inv = [pow(self.f[-1], mod-2, mod)] for i in range(1, n+1)[::-1]: self.inv.append(self.inv[-1]*i % mod) self.inv.reverse() def fact(self, n): ''' n!の値を返す ''' return self.f[n] def comb(self, n, r): ''' nCrの値を返す ''' ret = self.f[n] * self.inv[n-r]*self.inv[r] ret %= self.mod return ret def perm(self, n, r): """ nPrの値を返す """ ret = self.f[n] * self.inv[n-r] ret %= self.mod return ret N,K = map(int,input().split()) ans=0 MOD=10**9+7 F= FactMod(N,MOD) for k in range(0,min(N,K+1)): ans += F.comb(N,k)*F.comb(N-1,k)%MOD ans%=MOD print(ans)
[]
565,133
565,134
u375616706
python
p02768
def modpow(a,b,mod): ans=1 a=a%mod while b>0: if b%2==1: ans=(ans*a)%mod a=(a**2)%mod b=b//2 return ans N,A,B=map(int,input().split()) ans=modpow(2,N,10**9+7)-1 c=1 d=1 for i in range(A): c=(c*(N-i))%(10**9+7) for i in range(A): d=(d*(i+1))%(10**9+7) d=modpow(d,10**9+5,10**9+7) ans-=(c*d)%(10**9+7) c=1 d=1 for i in range(B): c=(c*(N-i))%(10**9+7) for i in range(B): d=(d*(i+1))%(10**9+7) d=modpow(d,10**9+5,10**9+7) ans-=(c*d)%(10**9+7) if ans<0: ans+=10**9+7 print(ans)
def modpow(a,b,mod): ans=1 a=a%mod while b>0: if b%2==1: ans=(ans*a)%mod a=(a**2)%mod b=b//2 return ans N,A,B=map(int,input().split()) ans=modpow(2,N,10**9+7)-1 c=1 d=1 for i in range(A): c=(c*(N-i))%(10**9+7) for i in range(A): d=(d*(i+1))%(10**9+7) d=modpow(d,10**9+5,10**9+7) ans-=(c*d)%(10**9+7) c=1 d=1 for i in range(B): c=(c*(N-i))%(10**9+7) for i in range(B): d=(d*(i+1))%(10**9+7) d=modpow(d,10**9+5,10**9+7) ans-=(c*d)%(10**9+7) while ans<0: ans+=10**9+7 print(ans)
[ "control_flow.branch.while.replace.add", "control_flow.loop.if.replace.remove" ]
565,212
565,213
u444082822
python
p02769
import sys input = sys.stdin.readline def cmb(n, r, p): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p p = 10 ** 9 + 7 N = 10 ** 5+15 # N は必要分だけ用意する fact = [1, 1] # fact[n] = (n! mod p) factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p) inv = [0, 1] # factinv 計算用 for i in range(2, N + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) def solve(): n,k = (int(i) for i in input().split()) mod = 10**9+7 if n-k <= 1: #任意の部屋に移動可能 comba = 1 inva = 1 for i in range(1,n+1): comba *= (n+i-1) inva *= i comba %= mod inva %= mod comba *= pow(inva,10**9+5,mod) comba %= mod print(comba) else: #n <= 2**10^5 #k <= 2**10^5 ans = 0 for i in range(0,k+1): ans += cmb(n,i,mod)*cmb(n-1,i,mod) ans %= mod print(ans) solve()
import sys input = sys.stdin.readline def cmb(n, r, p): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p p = 10 ** 9 + 7 N = 2* 10 ** 5+2 # N は必要分だけ用意する fact = [1, 1] # fact[n] = (n! mod p) factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p) inv = [0, 1] # factinv 計算用 for i in range(2, N + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) def solve(): n,k = (int(i) for i in input().split()) mod = 10**9+7 if n-k <= 1: #任意の部屋に移動可能 comba = 1 inva = 1 for i in range(1,n+1): comba *= (n+i-1) inva *= i comba %= mod inva %= mod comba *= pow(inva,10**9+5,mod) comba %= mod print(comba) else: #n <= 2**10^5 #k <= 2**10^5 ans = 0 for i in range(0,k+1): ans += cmb(n,i,mod)*cmb(n-1,i,mod) ans %= mod print(ans) solve()
[ "literal.number.integer.change", "assignment.value.change", "expression.operation.binary.change" ]
565,224
565,225
u950708010
python
p02769
n,k=map(int,input().split()) mod=10**9+7 n_max=4*(10**5+1) F,FI=[0]*(n_max+1),[0]*(n_max+1) F[0],FI[0]=1,1 for i in range(n_max): F[i+1]=(F[i]*(i+1))%mod FI[n_max-1]=pow(F[n_max-1],mod-2,mod) for i in reversed(range(n_max-1)): FI[i]=(FI[i+1]*(i+1))%mod def comb(x,y): return (F[x]*FI[x-y]*FI[y])%mod if k>=n-1: print(comb(2*n-1,n)) else: ans=1 for i in range(k): ans=ans+(comb(n,i+1)*comb(n-1,i+1))%mod print(ans)
n,k=map(int,input().split()) mod=10**9+7 n_max=4*(10**5+1) F,FI=[0]*(n_max+1),[0]*(n_max+1) F[0],FI[0]=1,1 for i in range(n_max): F[i+1]=(F[i]*(i+1))%mod FI[n_max-1]=pow(F[n_max-1],mod-2,mod) for i in reversed(range(n_max-1)): FI[i]=(FI[i+1]*(i+1))%mod def comb(x,y): return (F[x]*FI[x-y]*FI[y])%mod if k>=n-1: print(comb(2*n-1,n)) else: ans=1 for i in range(k): ans=(ans+comb(n,i+1)*comb(n-1,i+1))%mod print(ans)
[]
565,238
565,239
u969190727
python
p02769
def cmb(n, r, mod): if ( r<0 or r>n ): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod mod = 10**9+7 #出力の制限 N = 10**6 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) g2.append( (g2[-1] * inverse[-1]) % mod ) N, K = map(int, input().split()) MOD = 10**9+7 n = max(N,K) ans = 0 for i in range(max(1,N-n),N+1): m = cmb(N,i,MOD) m *= cmb(N-1,i-1, MOD) ans += m ans %= MOD print(ans)
def cmb(n, r, mod): if ( r<0 or r>n ): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod mod = 10**9+7 #出力の制限 N = 10**6 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) g2.append( (g2[-1] * inverse[-1]) % mod ) N, K = map(int, input().split()) MOD = 10**9+7 n = min(N,K) ans = 0 for i in range(max(1,N-n),N+1): m = cmb(N,i,MOD) m *= cmb(N-1,i-1, MOD) ans += m ans %= MOD print(ans)
[ "misc.opposites", "assignment.value.change", "identifier.change", "call.function.change" ]
565,248
565,249
u476604182
python
p02769
import math from functools import reduce from collections import deque import sys sys.setrecursionlimit(10**7) # スペース区切りの入力を読み込んで数値リストにして返します。 def get_nums_l(): return [ int(s) for s in input().split(" ")] # 改行区切りの入力をn行読み込んで数値リストにして返します。 def get_nums_n(n): return [ int(input()) for _ in range(n)] # 改行またはスペース区切りの入力をすべて読み込んでイテレータを返します。 def get_all_int(): return map(int, open(0).read().split()) def log(*args): print("DEBUG:", *args, file=sys.stderr) def inv(x): return pow(x, MOD-2, MOD) def nPk(n,k): # x=1 # for a in range(n-k+1, n+1): # x = x * a % MOD # return x return kaijo[n] * inv(kaijo[k-1]) % MOD def nCk(n,k): return nPk(n,k) * inv(kaijo[k]) MOD = 10**9+7 kaijo = [0] * 200005 kaijo[0] = 1 for i in range(1, len(kaijo)): kaijo[i] = kaijo[i-1] * i % MOD n,k = get_nums_l() if k >= n-1: print(nCk(n+n-1, n) % MOD) exit() # 0人の部屋=zがk以下であるような人数の並べ方の個数 # z=0 1 # z=1 nC1 * (n-1)**1 # z=2 nC2 * (n-2)**2 # z=3 nC3 * (n-3)**3 ans = 1 for z in range(1,k+1): ans += nCk(n,z) * nCk(n-1, z) % MOD print(ans%MOD)
import math from functools import reduce from collections import deque import sys sys.setrecursionlimit(10**7) # スペース区切りの入力を読み込んで数値リストにして返します。 def get_nums_l(): return [ int(s) for s in input().split(" ")] # 改行区切りの入力をn行読み込んで数値リストにして返します。 def get_nums_n(n): return [ int(input()) for _ in range(n)] # 改行またはスペース区切りの入力をすべて読み込んでイテレータを返します。 def get_all_int(): return map(int, open(0).read().split()) def log(*args): print("DEBUG:", *args, file=sys.stderr) def inv(x): return pow(x, MOD-2, MOD) def nPk(n,k): return kaijo[n] * inv(kaijo[n-k]) % MOD def nCk(n,k): return nPk(n,k) * inv(kaijo[k]) MOD = 10**9+7 kaijo = [0] * 400020 kaijo[0] = 1 for i in range(1, len(kaijo)): kaijo[i] = kaijo[i-1] * i % MOD n,k = get_nums_l() if k >= n-1: print(nCk(n+n-1, n) % MOD) exit() # 0人の部屋=zがk以下であるような人数の並べ方の個数 # z=0 1 # z=1 nC1 * (n-1)H1 # z=2 nC2 * (n-2)H2 # z=3 nC3 * (n-3)H3 # z nCz * (n-z)Hz ans = 1 for z in range(1,k+1): ans += nCk(n,z) * nCk(n-1, z) print(ans%MOD)
[ "identifier.change", "variable_access.subscript.index.change", "call.arguments.change", "function.return_value.change", "expression.operation.binary.change", "identifier.replace.add", "literal.replace.remove", "literal.number.integer.change", "assignment.value.change", "expression.operation.binary.remove" ]
565,262
565,263
u407160848
python
p02769
import math from functools import reduce from collections import deque import sys sys.setrecursionlimit(10**7) # スペース区切りの入力を読み込んで数値リストにして返します。 def get_nums_l(): return [ int(s) for s in input().split(" ")] # 改行区切りの入力をn行読み込んで数値リストにして返します。 def get_nums_n(n): return [ int(input()) for _ in range(n)] # 改行またはスペース区切りの入力をすべて読み込んでイテレータを返します。 def get_all_int(): return map(int, open(0).read().split()) def log(*args): print("DEBUG:", *args, file=sys.stderr) def inv(x): return pow(x, MOD-2, MOD) def nPk(n,k): # x=1 # for a in range(n-k+1, n+1): # x = x * a % MOD # return x return kaijo[n] * inv(kaijo[k-1]) % MOD def nCk(n,k): return nPk(n,k) * inv(kaijo[k]) MOD = 10**9+7 kaijo = [0] * 200005 kaijo[0] = 1 for i in range(1, len(kaijo)): kaijo[i] = kaijo[i-1] * i % MOD n,k = get_nums_l() if k >= n-1: print(nCk(n+n-1, n) % MOD) exit() # 0人の部屋=zがk以下であるような人数の並べ方の個数 # z=0 1 # z=1 nC1 * (n-1)**1 # z=2 nC2 * (n-2)**2 # z=3 nC3 * (n-3)**3 ans = 1 for z in range(1,k+1): ans += nCk(n,z) * nCk(n-1, z) % MOD print(ans%MOD)
import math from functools import reduce from collections import deque import sys sys.setrecursionlimit(10**7) # スペース区切りの入力を読み込んで数値リストにして返します。 def get_nums_l(): return [ int(s) for s in input().split(" ")] # 改行区切りの入力をn行読み込んで数値リストにして返します。 def get_nums_n(n): return [ int(input()) for _ in range(n)] # 改行またはスペース区切りの入力をすべて読み込んでイテレータを返します。 def get_all_int(): return map(int, open(0).read().split()) def log(*args): print("DEBUG:", *args, file=sys.stderr) def inv(x): return pow(x, MOD-2, MOD) def nPk(n,k): # x=1 # for a in range(n-k+1, n+1): # x = x * a % MOD # return x return kaijo[n] * inv(kaijo[n-k]) % MOD def nCk(n,k): return nPk(n,k) * inv(kaijo[k]) MOD = 10**9+7 kaijo = [0] * 400020 kaijo[0] = 1 for i in range(1, len(kaijo)): kaijo[i] = kaijo[i-1] * i % MOD n,k = get_nums_l() if k >= n-1: print(nCk(n+n-1, n) % MOD) exit() # 0人の部屋=zがk以下であるような人数の並べ方の個数 # z=0 1 # z=1 nC1 * (n-1)**1 # z=2 nC2 * (n-2)**2 # z=3 nC3 * (n-3)**3 ans = 1 for z in range(1,k+1): ans += nCk(n,z) * nCk(n-1, z) print(ans%MOD)
[ "identifier.change", "variable_access.subscript.index.change", "call.arguments.change", "function.return_value.change", "expression.operation.binary.change", "identifier.replace.add", "literal.replace.remove", "literal.number.integer.change", "assignment.value.change", "expression.operation.binary.remove" ]
565,262
565,264
u407160848
python
p02769
mod=10**9+7 n,k=map(int,input().split()) ans=1-k%2 coef1=n coef2=n-1 for i in range(1,min(k+1,n)): tmp=1 tmp*=coef1 tmp%=mod tmp*=coef2 tmp%=mod ans+=tmp ans%=mod coef1*=n-i coef1%=mod coef1*=pow(i+1,mod-2,mod) coef1%=mod coef2*=n-1-i coef2%=mod coef2*=pow(i+1,mod-2,mod) coef2%=mod print(ans)
mod=10**9+7 n,k=map(int,input().split()) ans=1 coef1=n coef2=n-1 for i in range(1,min(k+1,n)): tmp=1 tmp*=coef1 tmp%=mod tmp*=coef2 tmp%=mod ans+=tmp ans%=mod coef1*=n-i coef1%=mod coef1*=pow(i+1,mod-2,mod) coef1%=mod coef2*=n-1-i coef2%=mod coef2*=pow(i+1,mod-2,mod) coef2%=mod print(ans)
[ "expression.operation.binary.remove" ]
565,267
565,268
u163320134
python
p02769
def factorial(n, mod=10**9+7): a = 1 for i in range(1,n+1): a = a * i % mod return a def power(n, r, mod=10**9+7): if r == 0: return 1 if r%2 == 0: return power(n*n % mod, r//2, mod) % mod if r%2 == 1: return n * power(n, r-1, mod) % mod def comb(n, k, mod=10**9+7): if n < k or k < 0: result = 0 else: a = factorial(n, mod=mod) b = factorial(k, mod=mod) c = factorial(n-k, mod=mod) result = (a * power(b, mod-2, mod=mod) * power(c, mod-2, mod=mod)) % mod return result n, k = map(int, input().split()) MOD = 10**9 + 7 if k >= n: print(comb(2*n-1, n)) quit() def power(n, r, mod=10**9+7): if r == 0: return 1 if r%2 == 0: return power(n*n % mod, r//2, mod) % mod if r%2 == 1: return n * power(n, r-1, mod) % mod fl = [-1]*(k+1) fl[0] = 1 def f(i): global fl if fl[i] > 0: return fl[i] else: if i <= n//2: res = f(i-1)*(n-i+1)*(n-i) t = power(i, MOD-2) res *= t res %= MOD res *= t res %= MOD fl[i] = res return res else: res = f(n-i) * (n-i) res *= power(i, MOD-2) res %= MOD fl[i] = res return res if k <= n//2: fl = [-1]*(k+1) fl[0] = 1 def f(i): global fl if fl[i] > 0: return fl[i] else: res = f(i-1)*(n-i+1)*(n-i) t = power(i, MOD-2) res *= t res %= MOD res *= t res %= MOD fl[i] = res return res ans = 0 for i in range(k+1): ans += f(i) ans %= MOD else: fl = [-1]*(n+1) fl[0] = comb(n, k) * comb(n-1, k) % MOD def f(i): global fl if fl[i-k] > 0: return fl[i-k] else: res = f(i-1)*(n-i+1)*(n-i) t = power(i, MOD-2) res *= t res %= MOD res *= t res %= MOD fl[i-k] = res return res ans = 0 for i in range(k+1, n+1): ans += f(i) ans %= MOD ans = comb(2*n-1, n) - ans ans %= M0D print(ans % MOD)
def factorial(n, mod=10**9+7): a = 1 for i in range(1,n+1): a = a * i % mod return a def power(n, r, mod=10**9+7): if r == 0: return 1 if r%2 == 0: return power(n*n % mod, r//2, mod) % mod if r%2 == 1: return n * power(n, r-1, mod) % mod def comb(n, k, mod=10**9+7): if n < k or k < 0: result = 0 else: a = factorial(n, mod=mod) b = factorial(k, mod=mod) c = factorial(n-k, mod=mod) result = (a * power(b, mod-2, mod=mod) * power(c, mod-2, mod=mod)) % mod return result n, k = map(int, input().split()) MOD = 10**9 + 7 if k >= n: print(comb(2*n-1, n)) quit() def power(n, r, mod=10**9+7): if r == 0: return 1 if r%2 == 0: return power(n*n % mod, r//2, mod) % mod if r%2 == 1: return n * power(n, r-1, mod) % mod fl = [-1]*(k+1) fl[0] = 1 def f(i): global fl if fl[i] > 0: return fl[i] else: if i <= n//2: res = f(i-1)*(n-i+1)*(n-i) t = power(i, MOD-2) res *= t res %= MOD res *= t res %= MOD fl[i] = res return res else: res = f(n-i) * (n-i) res *= power(i, MOD-2) res %= MOD fl[i] = res return res if k <= n//2: fl = [-1]*(k+1) fl[0] = 1 def f(i): global fl if fl[i] > 0: return fl[i] else: res = f(i-1)*(n-i+1)*(n-i) t = power(i, MOD-2) res *= t res %= MOD res *= t res %= MOD fl[i] = res return res ans = 0 for i in range(k+1): ans += f(i) ans %= MOD else: fl = [-1]*(n+1) fl[0] = comb(n, k) * comb(n-1, k) % MOD def f(i): global fl if fl[i-k] > 0: return fl[i-k] else: res = f(i-1)*(n-i+1)*(n-i) t = power(i, MOD-2) res *= t res %= MOD res *= t res %= MOD fl[i-k] = res return res ans = 0 for i in range(k+1, n+1): ans += f(i) ans %= MOD ans = comb(2*n-1, n) - ans ans %= MOD print(ans % MOD)
[ "identifier.change" ]
565,275
565,276
u922449550
python
p02769
import sys n, k = map(int, input().split()) mod = 10 ** 9 + 7 f = [1] for i in range(1,2*n+1): f.append((f[-1] * i) % mod) def comb(n,r): return f[n] * (pow(f[r], mod-2, mod) * pow(f[n-r], mod-2, mod) % mod) % mod ans = comb(2*n-1, n) if n-1 <= k: print(ans) sys.exit() j = 0 for i in range(k+1,n)[::-1]: ans -= (comb(n,n-i) * comb(i+j,j)) % mod ans % mod j += 1 print(ans)
import sys n, k = map(int, input().split()) mod = 10 ** 9 + 7 f = [1] for i in range(1,2*n+1): f.append((f[-1] * i) % mod) def comb(n,r): return f[n] * (pow(f[r], mod-2, mod) * pow(f[n-r], mod-2, mod) % mod) % mod ans = comb(2*n-1, n) if n-1 <= k: print(ans) sys.exit() j = 0 for i in range(k+1,n)[::-1]: ans -= (comb(n,n-i) * comb(n-1,j)) % mod ans %= mod j += 1 print(ans)
[ "assignment.compound.arithmetic.replace.add", "expression.operator.arithmetic.replace.remove", "expression.operation.binary.change" ]
565,286
565,287
u513434790
python
p02769
import sys n, k = map(int, input().split()) mod = 10 ** 9 + 7 f = [1] for i in range(1,2*n+1): f.append((f[-1] * i) % mod) def comb(n,r): return f[n] * (pow(f[r], mod-2, mod) * pow(f[n-r], mod-2, mod) % mod) % mod ans = comb(2*n-1, n) if n-1 <= k: print(ans) sys.exit() j = 0 for i in range(k+1,n)[::-1]: ans -= (comb(n,n-i) * comb(i+j,j)) % mod ans % mod j += 1 print(ans)
import sys n, k = map(int, input().split()) mod = 10 ** 9 + 7 f = [1] for i in range(1,2*n+1): f.append((f[-1] * i) % mod) def comb(n,r): return f[n] * (pow(f[r], mod-2, mod) * pow(f[n-r], mod-2, mod) % mod) % mod ans = comb(2*n-1, n) if n-1 <= k: print(ans) sys.exit() j = 0 for i in range(k+1,n)[::-1]: ans -= (comb(n,n-i) * comb(i+j,j)) % mod ans %= mod j += 1 print(ans)
[ "assignment.compound.arithmetic.replace.add", "expression.operator.arithmetic.replace.remove", "expression.operation.binary.change" ]
565,286
565,288
u513434790
python
p02769
#!/usr/bin/env python3 import sys import math from bisect import bisect_right as br from bisect import bisect_left as bl sys.setrecursionlimit(2147483647) from heapq import heappush, heappop,heappushpop from collections import defaultdict from itertools import accumulate from collections import Counter from collections import deque from operator import itemgetter from itertools import permutations mod = 10**9 + 7 inf = float('inf') def I(): return int(sys.stdin.readline()) def LI(): return list(map(int,sys.stdin.readline().split())) def C(n,r): return fact[n]*pow(fact[n-r],mod-2,mod)*pow(fact[r],mod-2,mod)%mod n,k = LI() fact = [1]*(n+1) for i in range(1,n+1): fact[i] = i*fact[i-1] fact[i] %= mod ans = 0 for i in range(min(n+1,k+1)): ans += C(n,i)*C(n-1,n-i-1) % mod ans %= mod print(ans)
#!/usr/bin/env python3 import sys import math from bisect import bisect_right as br from bisect import bisect_left as bl sys.setrecursionlimit(2147483647) from heapq import heappush, heappop,heappushpop from collections import defaultdict from itertools import accumulate from collections import Counter from collections import deque from operator import itemgetter from itertools import permutations mod = 10**9 + 7 inf = float('inf') def I(): return int(sys.stdin.readline()) def LI(): return list(map(int,sys.stdin.readline().split())) def C(n,r): return fact[n] * pow(fact[n-r],mod-2,mod) * pow(fact[r],mod-2,mod) % mod n,k = LI() fact = [1]*(n+1) for i in range(1,n+1): fact[i] = i*fact[i-1] fact[i] %= mod ans = 0 for i in range(min(n,k+1)): ans += C(n,i) * C(n-1,n-i-1) ans %= mod print(ans)
[ "expression.operation.binary.remove" ]
565,289
565,290
u191874006
python
p02769
n,k = map(int, input().split()) mod = 10**9 + 7 ans = 0 lim = 2*(10**5) + 5 mothers = [1] * lim mothers_inv = [1] * lim for i in range(1, lim): mothers[i] = mothers[i-1] * i % mod mothers_inv[i] = pow(mothers[i], mod-2, mod) def calc(n,k): child = mothers[n] * mothers_inv[n-k] % mod mother_inv = mothers_inv[k] return((child * mother_inv)%mod) def calc2(n,k): child = 1 for i in range(n, n-k, -1): child = child * i % mod mother_inv = mothers_inv[k] return((child * mother_inv)%mod) if( n <= k+1): ans = calc2(2*n-1, n-1) print(ans) exit() ans = calc(2*n-1, n-1) tmp = 0 for i in range(1,n-k): if(i ==1): c1 = 1 else: c1 = calc(n-1, i-1) c2 = calc(n, i) ans = (ans - c1 * c2)%mod print(ans)
n,k = map(int, input().split()) mod = 10**9 + 7 ans = 0 lim = 2*(10**5) + 5 mothers = [1] * lim mothers_inv = [1] * lim for i in range(1, lim): mothers[i] = mothers[i-1] * i % mod mothers_inv[i] = pow(mothers[i], mod-2, mod) def calc(n,k): child = mothers[n] * mothers_inv[n-k] % mod mother_inv = mothers_inv[k] return((child * mother_inv)%mod) def calc2(n,k): child = 1 for i in range(n, n-k, -1): child = child * i % mod mother_inv = mothers_inv[k] return((child * mother_inv)%mod) if( n <= k+1): ans = calc2(2*n-1, n-1) print(ans) exit() ans = calc2(2*n-1, n-1) for i in range(1,n-k): if(i ==1): c1 = 1 else: c1 = calc(n-1, i-1) c2 = calc(n, i) ans = (ans - c1 * c2)%mod print(ans)
[ "assignment.value.change", "identifier.change", "call.function.change" ]
565,291
565,292
u490642448
python
p02771
a,b,c = map(int,input().split()) if a==b and b!=c: print('Yes') elif a==c and a!=b: print('Yes') elif b==c and b!=c:print('Yes') else:print('No')
a,b,c = map(int,input().split()) if a==b and b!=c: print('Yes') elif a==c and a!=b: print('Yes') elif b==c and b!=a:print('Yes') else:print('No')
[ "identifier.change", "control_flow.branch.if.condition.change" ]
565,297
565,298
u773440446
python
p02771
a, b, c = input().split() ans = "No" if (a == b and a != c) or (a == c and a != b) or (b == c and b != c): ans = "Yes" print(ans)
a, b, c = input().split() ans = "No" if (a == b and a != c) or (a == c and a != b) or (b == c and a != b): ans = "Yes" print(ans)
[ "identifier.change", "control_flow.branch.if.condition.change" ]
565,299
565,300
u544272759
python
p02771
a,b,c=input().split() if a==b==c: print('No') elif a!=b!=c: print('No') else: print('Yes')
a,b,c=input().split() if a==b==c: print('No') elif a!=b!=c!=a: print('No') else: print('Yes')
[ "control_flow.branch.if.condition.change" ]
565,309
565,310
u539367121
python
p02771
A = input().split() a = A.count(A[0]) b = A.count(A[1]) c = A.count(A[2]) if a == 1 or b == 1 or c == 1: print("Yes") else: print("No")
A = input().split() a = A.count(A[0]) b = A.count(A[1]) c = A.count(A[2]) if a == 2 or b == 2 or c == 2: print("Yes") else: print("No")
[ "literal.number.integer.change", "control_flow.branch.if.condition.change" ]
565,313
565,314
u344888046
python
p02771
i = map(int,input().split()) if (i[0] == i[1] and i[0] != i[2]) or (i[0] == i[2] and i[0] != i[1]) or (i[1] == i[2] and i[1] != i[0]): print("Yes") else: print("No")
i = list(map(int,input().split())) if (i[0] == i[1] and i[0] != i[2]) or (i[0] == i[2] and i[0] != i[1]) or (i[1] == i[2] and i[1] != i[0]): print("Yes") else: print("No")
[ "call.add", "call.arguments.change" ]
565,315
565,316
u763628696
python
p02771
i = map(int,input(),split()) if (i[0] == i[1] and i[0] != i[2]) or (i[0] == i[2] and i[0] != i[1]) or (i[1] == i[2] and i[1] != i[0]): print("Yes") else: print("No")
i = list(map(int,input().split())) if (i[0] == i[1] and i[0] != i[2]) or (i[0] == i[2] and i[0] != i[1]) or (i[1] == i[2] and i[1] != i[0]): print("Yes") else: print("No")
[ "call.add", "assignment.value.change", "call.arguments.change" ]
565,317
565,316
u763628696
python