Datasets:

problem_id
stringlengths
6
6
buggy_code
stringlengths
8
526k
fixed_code
stringlengths
12
526k
labels
listlengths
0
15
buggy_submission_id
int64
1
1.54M
fixed_submission_id
int64
2
1.54M
user_id
stringlengths
10
10
language
stringclasses
9 values
p02768
n,a,b=list(map(int,input().split())) #2^n-nCa-nCbを求めればいい。ただし100000007で割ったあまりでなくてはならない #まずは2^nを求める def pow(x,n,m): if n==0: return 1 res=pow(x*x%m,n//2,m) if n%2==1: res=res*x%m return res #コンビネーションを求める c=max(a,b) inv=[0 for i in range(c+1)] finv=[0 for i in range(c+1)] inv[1]=1 finv[0]=finv[1]=1 for i in range(2,c+1): #iの逆数を求める。 #mod p=1000000007の世界で逆元を求める #p=(p//a)*a+(p%a) #mod pをとると a=-(p//a)*(p%a)^-1 inv[i]=1000000007-(1000000007//i)*inv[1000000007%i]%1000000007 finv[i]=finv[i-1]*inv[i]%1000000007 def kaizyou(k): num=1 for i in range(n-k+1,n+1): num=num*i%1000000007 return num def combinations(k): return kaizyou(k)*finv[k]%1000000007 print(pow(2,n,1000000007)-combinations(a)-combinations(b)-1)
n,a,b=list(map(int,input().split())) #2^n-nCa-nCbを求めればいい。ただし100000007で割ったあまりでなくてはならない #まずは2^nを求める def pow(x,n,m): if n==0: return 1 res=pow(x*x%m,n//2,m) if n%2==1: res=res*x%m return res #コンビネーションを求める c=max(a,b) inv=[0 for i in range(c+1)] finv=[0 for i in range(c+1)] inv[1]=1 finv[0]=finv[1]=1 for i in range(2,c+1): #iの逆数を求める。 #mod p=1000000007の世界で逆元を求める #p=(p//a)*a+(p%a) #mod pをとると a=-(p//a)*(p%a)^-1 inv[i]=1000000007-(1000000007//i)*inv[1000000007%i]%1000000007 finv[i]=finv[i-1]*inv[i]%1000000007 def kaizyou(k): num=1 for i in range(n-k+1,n+1): num=num*i%1000000007 return num def combinations(k): return kaizyou(k)*finv[k]%1000000007 print((pow(2,n,1000000007)-combinations(a)-combinations(b)-1)%1000000007)
[ "call.arguments.change", "call.arguments.add" ]
563,865
563,867
u437351386
python
p02768
def combination(n, r, m): res = 1 r = min(r, n - r) for i in range(r): res = res * (n - i) % m res = res * pow(i + 1, m - 2, m) % m return res mod = 10**9 + 7 n, a, b = map(int, input().split()) total = pow(2, n, mod) - 1 total -= (combination(n, a, mod) + combination(n, b, mod)) % mod print(total)
def combination(n, r, m): res = 1 r = min(r, n - r) for i in range(r): res = res * (n - i) % m res = res * pow(i + 1, m - 2, m) % m return res mod = 10**9 + 7 n, a, b = map(int, input().split()) total = pow(2, n, mod) - 1 total -= (combination(n, a, mod) + combination(n, b, mod)) % mod print(total % mod)
[ "expression.operation.binary.add" ]
563,906
563,907
u158995862
python
p02768
class Factorial(): def __init__(self, mod=10**9 + 7): self.mod = mod self._factorial = [1] self._size = 1 self._factorial_inv = [1] self._size_inv = 1 def __call__(self, n): return self.fact(n) def fact(self, n): ''' n! % mod ''' if n >= self.mod: return 0 self._make(n) return self._factorial[n] def _make(self, n): if n >= self.mod: n = self.mod if self._size < n+1: for i in range(self._size, n+1): self._factorial.append(self._factorial[i-1]*i % self.mod) self._size = n+1 def fact_inv(self, n): ''' n!^-1 % mod ''' if n >= self.mod: raise ValueError('Modinv is not exist! arg={}'.format(n)) self._make(n) if self._size_inv < n+1: self._factorial_inv += [-1] * (n+1-self._size_inv) self._size_inv = n+1 if self._factorial_inv[n] == -1: self._factorial_inv[n] = self.modinv(self._factorial[n]) return self._factorial_inv[n] @staticmethod def xgcd(a, b): ''' Return (gcd(a, b), x, y) such that a*x + b*y = gcd(a, b) ''' x0, x1, y0, y1 = 0, 1, 1, 0 while a != 0: (q, a), b = divmod(b, a), a y0, y1 = y1, y0 - q * y1 x0, x1 = x1, x0 - q * x1 return b, x0, y0 def modinv(self, n): g, x, _ = self.xgcd(n, self.mod) if g != 1: raise ValueError('Modinv is not exist! arg={}'.format(n)) return x % self.mod def comb(self, n, r): ''' nCr % mod ''' if r > n: return 0 t = self(n)*self.fact_inv(n-r) % self.mod return t*self.fact_inv(r) % self.mod def comb_(self, n, r): ''' nCr % mod when r is not large and n is too large ''' c = 1 for i in range(1, r+1): c *= (n-i+1) * self.fact_inv(i) c %= self.mod return c def comb_with_repetition(self, n, r): ''' nHr % mod ''' t = self(n+r-1)*self.fact_inv(n-1) % self.mod return t*self.fact_inv(r) % self.mod def perm(self, n, r): ''' nPr % mod ''' if r > n: return 0 return self(n)*self.fact_inv(n-r) % self.mod mod = 10**9 + 7 n, a, b = map(int, input().split()) comb = Factorial().comb_ print((pow(2, n, mod) - comb(n, a) - comb(n, b) - 1) % mod)
class Factorial(): def __init__(self, mod=10**9 + 7): self.mod = mod self._factorial = [1] self._size = 1 self._factorial_inv = [1] self._size_inv = 1 def __call__(self, n): return self.fact(n) def fact(self, n): ''' n! % mod ''' if n >= self.mod: return 0 self._make(n) return self._factorial[n] def _make(self, n): if n >= self.mod: n = self.mod if self._size < n+1: for i in range(self._size, n+1): self._factorial.append(self._factorial[i-1]*i % self.mod) self._size = n+1 def fact_inv(self, n): ''' n!^-1 % mod ''' if n >= self.mod: raise ValueError('Modinv is not exist! arg={}'.format(n)) self._make(n) if self._size_inv < n+1: self._factorial_inv += [-1] * (n+1-self._size_inv) self._size_inv = n+1 if self._factorial_inv[n] == -1: self._factorial_inv[n] = self.modinv(self._factorial[n]) return self._factorial_inv[n] @staticmethod def xgcd(a, b): ''' Return (gcd(a, b), x, y) such that a*x + b*y = gcd(a, b) ''' x0, x1, y0, y1 = 0, 1, 1, 0 while a != 0: (q, a), b = divmod(b, a), a y0, y1 = y1, y0 - q * y1 x0, x1 = x1, x0 - q * x1 return b, x0, y0 def modinv(self, n): g, x, _ = self.xgcd(n, self.mod) if g != 1: raise ValueError('Modinv is not exist! arg={}'.format(n)) return x % self.mod def comb(self, n, r): ''' nCr % mod ''' if r > n: return 0 t = self(n)*self.fact_inv(n-r) % self.mod return t*self.fact_inv(r) % self.mod def comb_(self, n, r): ''' nCr % mod when r is not large and n is too large ''' c = 1 for i in range(1, r+1): c *= (n-i+1) * self.modinv(i) c %= self.mod return c def comb_with_repetition(self, n, r): ''' nHr % mod ''' t = self(n+r-1)*self.fact_inv(n-1) % self.mod return t*self.fact_inv(r) % self.mod def perm(self, n, r): ''' nPr % mod ''' if r > n: return 0 return self(n)*self.fact_inv(n-r) % self.mod mod = 10**9 + 7 n, a, b = map(int, input().split()) comb = Factorial().comb_ print((pow(2, n, mod) - comb(n, a) - comb(n, b) - 1) % mod)
[ "identifier.change", "expression.operation.binary.change" ]
563,910
563,912
u417365712
python
p02768
def cmb(n, r, mod): c=1 for i in range(1, r+1): c = (c * (n-i+1) * pow(i, mod-2, mod)) % mod return c n, a, b = map(int, inputs[0]().split()) MOD = 10**9 + 7 print((pow(2, n, MOD) - cmb(n, a, MOD) - cmb(n, b, MOD) - 1) % MOD)
def cmb(n, r, mod): c=1 for i in range(1, r+1): c = (c * (n-i+1) * pow(i, mod-2, mod)) % mod return c n, a, b = map(int, input().split()) MOD = 10**9 + 7 print((pow(2, n, MOD) - cmb(n, a, MOD) - cmb(n, b, MOD) - 1) % MOD)
[ "assignment.value.change", "call.arguments.change", "io.output.change" ]
563,913
563,914
u417365712
python
p02768
def cmb(n, r, p): r = min(r, n - r) upper = 1 for i in range(n, n - r, -1): upper = (upper * i) % p lower = 1 for i in range(1, r + 1): lower = (lower * i) % p # フェルマーの小定理よりp素数ならupper**(p-2)は逆元 return (upper * pow(lower, p - 2, p)) % p mod = pow(10, 9) + 7 n, a, b = map(int, input().split()) ans = pow(2, n, mod) - 1 - cmb(n, a, mod) - cmb(n, b, mod) print(ans)
def cmb(n, r, p): r = min(r, n - r) upper = 1 for i in range(n, n - r, -1): upper = (upper * i) % p lower = 1 for i in range(1, r + 1): lower = (lower * i) % p # フェルマーの小定理よりp素数ならupper**(p-2)は逆元 return (upper * pow(lower, p - 2, p)) % p mod = pow(10, 9) + 7 n, a, b = map(int, input().split()) ans = (pow(2, n, mod) - 1 - cmb(n, a, mod) - cmb(n, b, mod))%mod print(ans)
[ "assignment.change" ]
563,917
563,918
u011062360
python
p02768
n,a,b = map(int, input().split()) MOD = 10**9 + 7 allpair = pow(2,n,MOD) def combo(n,k): c = 1 for i in range(k): c *= n - i c %= MOD d = 1 for i in range(1, k+1): d *= i d %= MOD return (c * pow(d, mod-2, MOD)) % MOD print((allpair - combo(n, a) - combo(n, b) - 1) % MOD)
n,a,b = map(int, input().split()) MOD = 10**9 + 7 allpair = pow(2,n,MOD) def combo(n,k): c = 1 for i in range(k): c *= n - i c %= MOD d = 1 for i in range(1, k+1): d *= i d %= MOD return (c * pow(d, MOD-2, MOD)) % MOD print((allpair - combo(n, a) - combo(n, b) - 1) % MOD)
[ "identifier.change", "call.arguments.change", "function.return_value.change", "expression.operation.binary.change" ]
563,950
563,952
u922487073
python
p02768
N,a,b=map(int,input().split()) MOD=10**9+7 def comb(n,k): tmp=1 for i in range(n-k+1,n+1): tmp*=i tmp%=MOD for i in range(1,k+1): tmp*=pow(i,MOD-2,MOD) tmp%=MOD return tmp ans = pow(2,N,MOD) - 1 - comb(N,a) - comb(N,b) print(ans)
N,a,b=map(int,input().split()) MOD=10**9+7 def comb(n,k): tmp=1 for i in range(n-k+1,n+1): tmp*=i tmp%=MOD for i in range(1,k+1): tmp*=pow(i,MOD-2,MOD) tmp%=MOD return tmp ans = pow(2,N,MOD) - 1 - comb(N,a) - comb(N,b) print(ans%MOD)
[ "expression.operation.binary.add" ]
563,965
563,967
u506858457
python
p02768
n,a,b=map(int,input().split()) mod=10**9+7 def comb(n,k,mod): if k>n-k: k=n-k c=1 for i in range(n-k+1,n+1): c*=i c%=mod d=1 for i in range(1,k+1): d*=i d%=mod return (c*pow(d,mod-2,mod))%mod ans=pow(2,n,mod)-comb(n,a,mod)-comb(n,b,mod) print(ans%mod)
n,a,b=map(int,input().split()) mod=10**9+7 def comb(n,k,mod): if k>n-k: k=n-k c=1 for i in range(n-k+1,n+1): c*=i c%=mod d=1 for i in range(1,k+1): d*=i d%=mod return (c*pow(d,mod-2,mod))%mod ans=pow(2,n,mod)-1-comb(n,a,mod)-comb(n,b,mod) print(ans%mod)
[ "assignment.change" ]
563,982
563,985
u333700164
python
p02768
n,a,b = map(int,input().split()) mod = 10**9+7 def comb(N,x): numerator = 1 for i in range(N-x+1,N+1): numerator = numerator *i%mod denominator = 1 for j in range(1,x+1): denominator = denominator *i%mod d = pow(denominator,mod-2,mod) return (numerator*d)%mod al = pow(2,n,mod)-1 ac =comb(n,a) bc =comb(n,b) print((al-ac-bc)%mod)
n,a,b = map(int,input().split()) mod = 10**9+7 def comb(N,x): numerator = 1 for i in range(N-x+1,N+1): numerator = numerator *i%mod denominator = 1 for j in range(1,x+1): denominator = denominator *j%mod d = pow(denominator,mod-2,mod) return (numerator*d)%mod al = pow(2,n,mod)-1 ac =comb(n,a) bc =comb(n,b) print((al-ac-bc)%mod)
[ "assignment.value.change", "identifier.change", "expression.operation.binary.change" ]
564,090
564,091
u288430479
python
p02768
# return x^{-1} % mod # it take O(log{mod}) def mod_inverse(x, mod): return pow(x, mod-2, mod) # return nCk % mod # it take O(k) def mod_comb(n, k, mod): numer, denom = 1, 1 for i in range(k): # numer: 分子, denom: 分母 numer = numer * ((n-i) % mod) % mod denom = denom * ((i+1) % mod) % mod return numer * mod_inverse(denom) % mod n, a, b = map(int, input().split()) ans = pow(2, n, mod) - 1 ans = (ans - mod_comb(n, a, mod)) % mod ans = (ans - mod_comb(n, b, mod)) % mod print( (ans + mod) % mod )
# return x^{-1} % mod # it takes O(log{mod}) def mod_inverse(x, mod): return pow(x, mod-2, mod) # return nCk % mod # it takes O(k) def mod_comb(n, k, mod): numer, denom = 1, 1 for i in range(k): # numer: 分子, denom: 分母 numer = numer * ((n-i) % mod) % mod denom = denom * ((i+1) % mod) % mod return numer * mod_inverse(denom, mod) % mod n, a, b = map(int, input().split()) mod = 1000000007 ans = pow(2, n, mod) - 1 ans = (ans - mod_comb(n, a, mod)) % mod ans = (ans - mod_comb(n, b, mod)) % mod print( (ans + mod) % mod )
[ "call.arguments.add" ]
564,102
564,103
u813098295
python
p02768
# return x^{-1} % mod # it take O(log{mod}) def mod_inverse(x, mod): return pow(x, mod-2, mod) # return nCk % mod # it take O(k) def mod_comb(n, k, mod): numer, denom = 1, 1 for i in range(k): # numer: 分子, denom: 分母 numer = numer * ((n-i) % mod) % mod denom = denom * ((i+1) % mod) % mod return numer * mod_inverse(denom) % mod n, a, b = map(int, input().split()) ans = pow(2, n, mod) - 1 ans = (ans - mod_comb(n, a, mod)) % mod ans = (ans - mod_comb(n, b, mod)) % mod print( (ans + mod) % mod )
# return x^{-1} % mod # it take O(log{mod}) def mod_inverse(x, mod): return pow(x, mod-2, mod) # return nCk % mod # it take O(k) def mod_comb(n, k, mod): numer, denom = 1, 1 for i in range(k): # numer: 分子, denom: 分母 numer = numer * ((n-i) % mod) % mod denom = denom * ((i+1) % mod) % mod return numer * mod_inverse(denom, mod) % mod n, a, b = map(int, input().split()) mod = 1000000007 ans = pow(2, n, mod) - 1 ans = (ans - mod_comb(n, a, mod)) % mod ans = (ans - mod_comb(n, b, mod)) % mod print( (ans + mod) % mod )
[ "call.arguments.add" ]
564,102
564,104
u813098295
python
p02768
m=10**9+7 n,a,b=map(int,input().split()) def comb(n,r,m): x,y=1,1 for i in range(r): x*=n-1 y*=n+1 x%=m y%=m return int(x * pow(y, m-2, m)) ans = pow(2, n, m)-comb(n, a, m) - comb(n, b, m) print(ans%m)
m=10**9+7 n,a,b=map(int,input().split()) def comb(n,r,m): x,y=1,1 for i in range(r): x*=n-i y*=i+1 x%=m y%=m return int(x * pow(y, m-2, m)) ans = pow(2, n, m)-1-comb(n, a, m) - comb(n, b, m) print(ans%m)
[ "identifier.replace.add", "literal.replace.remove", "expression.operation.binary.change", "identifier.change" ]
564,111
564,112
u880480312
python
p02768
import sys import math from collections import deque sys.setrecursionlimit(1000000) MOD = 10 ** 9 + 7 input = lambda: sys.stdin.readline().strip() NI = lambda: int(input()) NMI = lambda: map(int, input().split()) NLI = lambda: list(NMI()) SI = lambda: input() def combinations_mod(n, r, mod=1000000007): """Returns nCr in mod.""" r = min(r, n - r) combs = 1 for i, j in zip(range(n - r + 1, n + 1), range(1, r + 1)): combs *= (i % mod) * pow(j, mod - 2, mod) combs %= mod return combs def main(): n, a, b = NMI() all = pow_mod(2, n, MOD) - 1 ans = all - combinations_mod(n, a) - combinations_mod(n, b) ans %= MOD print(ans) if __name__ == "__main__": main()
import sys import math from collections import deque sys.setrecursionlimit(1000000) MOD = 10 ** 9 + 7 input = lambda: sys.stdin.readline().strip() NI = lambda: int(input()) NMI = lambda: map(int, input().split()) NLI = lambda: list(NMI()) SI = lambda: input() def combinations_mod(n, r, mod=1000000007): """Returns nCr in mod.""" r = min(r, n - r) combs = 1 for i, j in zip(range(n - r + 1, n + 1), range(1, r + 1)): combs *= (i % mod) * pow(j, mod - 2, mod) combs %= mod return combs def main(): n, a, b = NMI() all = pow(2, n, MOD) - 1 ans = all - combinations_mod(n, a) - combinations_mod(n, b) ans %= MOD print(ans) if __name__ == "__main__": main()
[ "assignment.value.change", "identifier.change", "call.function.change", "expression.operation.binary.change" ]
564,125
564,126
u607075479
python
p02768
def modpow(a, n, p): if n == 0: return 1 elif n == 1: return a % p if n % 2 == 1: return (a * modpow(a, n-1, p)) % p tmp = modpow(a, n//2, p) return (tmp * tmp) % p def modfactrial(a, p): ret = 1 for i in (a, 1, -1): ret = ret * i % p return ret def main(): mod = 10 ** 9 + 7 n, a, b = map(int, input().split()) # まずは繰り返し2乗法によって全部の組み合わせを求める # すべての組み合わせは、花を選ぶ/選ばないで組み合わせを決めれる ans = (modpow(2, n, mod) - 1) % mod # a本選んだときの数を引く c_a = 1 for i in range(n, n-a, -1): c_a *= i c_a %= mod c_a *= modpow(modfactrial(a, mod), mod-2, mod) ans -= c_a ans %= mod # b本選んだときの数を引く c_b = 1 for i in range(n, n-b, -1): c_b *= i c_b %= mod c_b *= modpow(modfactrial(b, mod), mod-2, mod) ans -= c_b ans %= mod print(ans) if __name__ == "__main__": main()
def modpow(a, n, p): if n == 0: return 1 elif n == 1: return a % p if n % 2 == 1: return (a * modpow(a, n-1, p)) % p tmp = modpow(a, n//2, p) return (tmp * tmp) % p def modfactrial(a, p): ret = 1 for i in range(a, 1, -1): ret = ret * i % p return ret def main(): mod = 10 ** 9 + 7 n, a, b = map(int, input().split()) # まずは繰り返し2乗法によって全部の組み合わせを求める # すべての組み合わせは、花を選ぶ/選ばないで組み合わせを決めれる ans = (modpow(2, n, mod) - 1) % mod # a本選んだときの数を引く c_a = 1 for i in range(n, n-a, -1): c_a *= i c_a %= mod c_a *= modpow(modfactrial(a, mod), mod-2, mod) ans -= c_a ans %= mod # b本選んだときの数を引く c_b = 1 for i in range(n, n-b, -1): c_b *= i c_b %= mod c_b *= modpow(modfactrial(b, mod), mod-2, mod) ans -= c_b ans %= mod print(ans) if __name__ == "__main__": main()
[ "call.add", "control_flow.loop.range.bounds.step.change" ]
564,127
564,128
u426649993
python
p02768
n,a,b = map(int,input().split()) m = 10**9+7 def nCr(n_, r_, m_): c = min(r_ , n_ - r_) bunshi = 1 bunbo = 1 for i in range(1,c+1): bunshi = bunchi * (n_+1-i) % m_ bunbo = bunbo * i % m_ return bunshi * pow(bunbo, m_-2, m_) % m_ ans = pow(2,n,m)-1 ans -= nCr(n,a,m) ans %= m ans -= nCr(n,b,m) ans %= m print(ans)
n,a,b = map(int,input().split()) m = 10**9+7 def nCr(n_, r_, m_): c = min(r_ , n_ - r_) bunshi = 1 bunbo = 1 for i in range(1,c+1): bunshi = bunshi * (n_+1-i) % m_ bunbo = bunbo * i % m_ return bunshi * pow(bunbo, m_-2, m_) % m_ ans = pow(2,n,m)-1 ans -= nCr(n,a,m) ans %= m ans -= nCr(n,b,m) ans %= m print(ans)
[ "assignment.value.change", "identifier.change", "expression.operation.binary.change" ]
564,138
564,139
u227085629
python
p02768
from scipy.special import comb n, a, b = map(int, input().split()) MOD = 10**9+7 all_c = pow(2, n, MOD)-1 a_c = 1 b_c = 1 for i in range(n-a+1, n+1): a_c *= i a_c %= MOD for i in range(1, a+1): a_c *= pow(i, MOD-2, MOD) a_c %= MOD for i in range(n-b+1, n+1): b_c *= i b_c %= MOD for i in range(1, b+1): b_c *= pow(i, MOD-2, MOD) b_c %= MOD ans = (all_c - a_c - b_c) % MOD print(ans)
n, a, b = map(int, input().split()) MOD = 10**9+7 all_c = pow(2, n, MOD)-1 a_c = 1 b_c = 1 for i in range(n-a+1, n+1): a_c *= i a_c %= MOD for i in range(1, a+1): a_c *= pow(i, MOD-2, MOD) a_c %= MOD for i in range(n-b+1, n+1): b_c *= i b_c %= MOD for i in range(1, b+1): b_c *= pow(i, MOD-2, MOD) b_c %= MOD ans = (all_c - a_c - b_c) % MOD print(ans)
[]
564,186
564,187
u538632589
python
p02768
n,a,b = map(int,input().split()) lim = 10**9+7 def combination(n, r, mod=10**9+7): r = min(r, n-r) res = 1 for i in range(r): res = res * (n - i) * pow(a, mod-2, mod) % mod return res print((pow(2,n,lim)-combination(n,a)-combination(n,b)-1) % lim)
n,a,b = map(int,input().split()) lim = 10**9+7 def combination(n, r, mod=10**9+7): r = min(r, n-r) res = 1 for i in range(r): res = res * (n - i) * pow(i+1, mod-2, mod) % mod return res print((pow(2,n,lim)-combination(n,a)-combination(n,b)-1) % lim)
[ "assignment.value.change", "call.arguments.change", "expression.operation.binary.change" ]
564,188
564,189
u349091349
python
p02768
n,a,b = map(int,input().split()) lim = 10**9+7 def modinv(a, mod=10**9+7): return pow(a, mod-2, mod) def combination(n, r, mod=10**9+7): r = min(r, n-r) res = 1 for i in range(r): res = res * (n - i) * modinv(i+1, mod) % mod return res print((pow(2,n,p)-combination(n,a)-combination(n,b)-1) % lim)
n,a,b = map(int,input().split()) lim = 10**9+7 def modinv(a, mod=10**9+7): return pow(a, mod-2, mod) def combination(n, r, mod=10**9+7): r = min(r, n-r) res = 1 for i in range(r): res = res * (n - i) * modinv(i+1, mod) % mod return res print((pow(2,n,lim)-combination(n,a)-combination(n,b)-1) % lim)
[ "identifier.change", "call.arguments.change", "expression.operation.binary.change", "io.output.change" ]
564,190
564,191
u349091349
python
p02768
mod = 10 ** 9 + 7 def f(n, r): X = 1 Y = 1 for i in range(r): X *= n - i # nCr の分子 X %= mod Y *= i + 1 # nCr の分母 Y %= mod # フェルマーの小定理より (X/Y)%mod = X*Y^(mod - 2) % mod return X * pow(Y, mod - 2, mod) % mod N, A, B = map(int, input().split()) res = pow(2, N, mod) - 1 for i in [A, B]: res -= f(N, i) print(res)
mod = 10 ** 9 + 7 def f(n, r): X = 1 Y = 1 for i in range(r): X *= n - i # nCr の分子 X %= mod Y *= i + 1 # nCr の分母 Y %= mod # フェルマーの小定理より (X/Y)%mod = X*Y^(mod - 2) % mod return X * pow(Y, mod - 2, mod) % mod N, A, B = map(int, input().split()) res = pow(2, N, mod) - 1 for i in [A, B]: res -= f(N, i) print(res % mod)
[ "expression.operation.binary.add" ]
564,207
564,208
u339199690
python
p02768
# coding: utf-8 MOD = 10**9+7 # 二分累積法による a^n mod の計算 def modpow(a, n): res = 1 while n > 0: if n & 1: res = res * a % MOD a = a * a % MOD n >>= 1 return res # nCr mod.p (n <= 10**6) MAX = 1000010 fac = [0] * MAX finv = [0] * MAX inv = [0] * MAX def COMinit(): fac[0] = fac[1] = 1 finv[0] = finv[1] = 1 inv[1] = 1 for i in range(2, MAX): fac[i] = fac[i-1] * i % MOD inv[i] = MOD - inv[MOD%i] * (MOD//i) % MOD finv[i] = finv[i-1] * inv[i] % MOD # より高速化が必要な場合 def COM(n, k): res = 1 for i in range(k): res = res * (n-i) % MOD return res * finv[k] % MOD COMinit() n, a, b = map(int, input().split()) tot = modpow(2, 10**9) - 1 ans = (tot - COM(n,a) - COM(n,b)) % MOD print(ans)
# coding: utf-8 MOD = 10**9+7 # 二分累積法による a^n mod の計算 def modpow(a, n): res = 1 while n > 0: if n & 1: res = res * a % MOD a = a * a % MOD n >>= 1 return res # nCr mod.p (n <= 10**6) MAX = 1000010 fac = [0] * MAX finv = [0] * MAX inv = [0] * MAX def COMinit(): fac[0] = fac[1] = 1 finv[0] = finv[1] = 1 inv[1] = 1 for i in range(2, MAX): fac[i] = fac[i-1] * i % MOD inv[i] = MOD - inv[MOD%i] * (MOD//i) % MOD finv[i] = finv[i-1] * inv[i] % MOD # より高速化が必要な場合 def COM(n, k): res = 1 for i in range(k): res = res * (n-i) % MOD return res * finv[k] % MOD COMinit() n, a, b = map(int, input().split()) tot = modpow(2,n) - 1 ans = (tot - COM(n,a) - COM(n,b)) % MOD print(ans)
[ "assignment.value.change", "identifier.replace.add", "literal.replace.remove", "call.arguments.change", "expression.operation.binary.change", "expression.operation.binary.remove" ]
564,214
564,215
u707808519
python
p02768
n,a,b = map(int,input().split()) def comb(n,r,mod=10**9+7): a=1 b=1 r = min(r,n-r) for i in range(r): a = a*(n-i)%mod b = b*(i+1)%mod return a*pow(b,mod-2,mod)%mod ans = pow(2,n,10**9+7)-1 - comb(n,a) - comb(n,b) if ans < 0: ans += 10**9+7 print(ans)
n,a,b = map(int,input().split()) def comb(n,r,mod=10**9+7): a=1 b=1 r = min(r,n-r) for i in range(r): a = a*(n-i)%mod b = b*(i+1)%mod return a*pow(b,mod-2,mod)%mod ans = pow(2,n,10**9+7)-1 - comb(n,a) - comb(n,b) ans %= 10**9+7 print(ans)
[ "expression.operator.change" ]
564,254
564,255
u882209234
python
p02768
n, a, b = map(int, input().split()) from operator import mul from functools import reduce import math flg = (a == n-b) rep = math.ceil(n/2) MOD = 10**9+7 memo = 0 def modpow(a: int, p: int, mod: int) -> int: # return a**p (mod MOD) O(log p) if p == 0: return 1 if p % 2 == 0: half = modpow(a, p//2, mod) return half*half % mod else: return a * modpow(a, p-1, mod) % mod from operator import mul from functools import reduce def combinations_count(n, r): r = min(r, n - r) numer = reduce(mod_mul, range(n, n - r, -1), 1) denom = reduce(mod_mul, range(1, r + 1), 1) return numer*pow(denom, MOD-2, MOD)%MOD def mod_mul(a, b): return mul(a%MOD, b%MOD)%MOD s = 0 ans = modpow(2, n, MOD)-1 if flg: ans = ans - combinations_count(n, a) else: ans = (ans - combinations_count(n,a))%MOD - combinations_count(n,b) print(ans%MOD)
n, a, b = map(int, input().split()) from operator import mul from functools import reduce import math flg = (a == n-b) rep = math.ceil(n/2) MOD = 10**9+7 memo = 0 def modpow(a: int, p: int, mod: int) -> int: # return a**p (mod MOD) O(log p) if p == 0: return 1 if p % 2 == 0: half = modpow(a, p//2, mod) return half*half % mod else: return a * modpow(a, p-1, mod) % mod from operator import mul from functools import reduce def combinations_count(n, r): r = min(r, n - r) numer = reduce(mod_mul, range(n, n - r, -1), 1) denom = reduce(mod_mul, range(1, r + 1), 1) return numer*pow(denom, MOD-2, MOD)%MOD def mod_mul(a, b): return mul(a%MOD, b%MOD)%MOD s = 0 ans = modpow(2, n, MOD)-1 if flg: ans = ans - 2*combinations_count(n, a)%MOD else: ans = (ans - combinations_count(n,a))%MOD - combinations_count(n,b) print(ans%MOD)
[ "assignment.change" ]
564,258
564,259
u959340534
python
p02768
n, a, b = map(int, input().split()) from operator import mul from functools import reduce import math flg = (a == n-b) rep = math.ceil(n/2) MOD = 10**9+7 memo = 0 def modpow(a: int, p: int, mod: int) -> int: # return a**p (mod MOD) O(log p) if p == 0: return 1 if p % 2 == 0: half = modpow(a, p//2, mod) return half*half % mod else: return a * modpow(a, p-1, mod) % mod from operator import mul from functools import reduce def combinations_count(n, r): r = min(r, n - r) numer = reduce(mod_mul, range(n, n - r, -1), 1) denom = reduce(mod_mul, range(1, r + 1), 1) return numer*pow(denom, MOD-2, MOD)%MOD def mod_mul(a, b): return mul(a%MOD, b%MOD)%MOD s = 0 ans = modpow(2, n, MOD)+1 if flg: ans = ans - combinations_count(n, a) else: ans = (ans - combinations_count(n,a))%MOD - combinations_count(n,b) print(ans%MOD)
n, a, b = map(int, input().split()) from operator import mul from functools import reduce import math flg = (a == n-b) rep = math.ceil(n/2) MOD = 10**9+7 memo = 0 def modpow(a: int, p: int, mod: int) -> int: # return a**p (mod MOD) O(log p) if p == 0: return 1 if p % 2 == 0: half = modpow(a, p//2, mod) return half*half % mod else: return a * modpow(a, p-1, mod) % mod from operator import mul from functools import reduce def combinations_count(n, r): r = min(r, n - r) numer = reduce(mod_mul, range(n, n - r, -1), 1) denom = reduce(mod_mul, range(1, r + 1), 1) return numer*pow(denom, MOD-2, MOD)%MOD def mod_mul(a, b): return mul(a%MOD, b%MOD)%MOD s = 0 ans = modpow(2, n, MOD)-1 if flg: ans = ans - 2*combinations_count(n, a)%MOD else: ans = (ans - combinations_count(n,a))%MOD - combinations_count(n,b) print(ans%MOD)
[ "misc.opposites", "expression.operator.arithmetic.change", "assignment.value.change", "expression.operation.binary.change" ]
564,260
564,259
u959340534
python
p02768
n, a, b = map(int, input().split()) from operator import mul from functools import reduce import math flg = (a == n-b) rep = math.ceil(n/2) MOD = 10**9+7 memo = 0 def modpow(a: int, p: int, mod: int) -> int: # return a**p (mod MOD) O(log p) if p == 0: return 1 if p % 2 == 0: half = modpow(a, p//2, mod) return half*half % mod else: return a * modpow(a, p-1, mod) % mod from operator import mul from functools import reduce def combinations_count(n, r): r = min(r, n - r) numer = reduce(mod_mul, range(n, n - r, -1), 1) denom = reduce(mod_mul, range(1, r + 1), 1) return numer*pow(denom, MOD-2, MOD)%MOD def mod_mul(a, b): return mul(a%MOD, b%MOD)%MOD s = 0 ans = modpow(2, n, MOD) if flg: ans = ans - combinations_count(n, a) else: ans = (ans - combinations_count(n,a))%MOD - combinations_count(n,b) print(ans%MOD)
n, a, b = map(int, input().split()) from operator import mul from functools import reduce import math flg = (a == n-b) rep = math.ceil(n/2) MOD = 10**9+7 memo = 0 def modpow(a: int, p: int, mod: int) -> int: # return a**p (mod MOD) O(log p) if p == 0: return 1 if p % 2 == 0: half = modpow(a, p//2, mod) return half*half % mod else: return a * modpow(a, p-1, mod) % mod from operator import mul from functools import reduce def combinations_count(n, r): r = min(r, n - r) numer = reduce(mod_mul, range(n, n - r, -1), 1) denom = reduce(mod_mul, range(1, r + 1), 1) return numer*pow(denom, MOD-2, MOD)%MOD def mod_mul(a, b): return mul(a%MOD, b%MOD)%MOD s = 0 ans = modpow(2, n, MOD)-1 if flg: ans = ans - 2*combinations_count(n, a)%MOD else: ans = (ans - combinations_count(n,a))%MOD - combinations_count(n,b) print(ans%MOD)
[ "assignment.change" ]
564,261
564,259
u959340534
python
p02768
import math def modpow(a, n , mod): res = 1 while n > 0: if n & 1: res = res * a % mod a = a*a % mod n >>= 1 return res def calcp(n,j,mod): res = 1 for i in range(n,n-j,-1): res = res * i %mod return res def main(): n,a,b = list(map(int, input().split())) MOD = 10**9+7 NMAX = 2*10**5 fact = [0 for i in range(NMAX+5)] fact[0] = 1 invfact = [0 for i in range(NMAX+5)] invfact[0] = 1 for i in range(NMAX): fact[i+1] = (fact[i]*(i+1))%(MOD) invfact[NMAX] = pow(fact[NMAX], MOD-2, MOD) for i in range(NMAX-1,0,-1): invfact[i] = (invfact[i+1] * (i+1)) % MOD ans = modpow(2,n,MOD)-1 pa = calcp(n,a,MOD)*invfact[a]%MOD pb = calcp(n,b,MOD)*invfact[b]%MOD ans = ans - pa - pb; if ans < 0: ans += MOD print(ans) main()
import math def modpow(a, n , mod): res = 1 while n > 0: if n & 1: res = res * a % mod a = a*a % mod n >>= 1 return res def calcp(n,j,mod): res = 1 for i in range(n,n-j,-1): res = res * i %mod return res def main(): n,a,b = list(map(int, input().split())) MOD = 10**9+7 NMAX = 2*10**5 fact = [0 for i in range(NMAX+5)] fact[0] = 1 invfact = [0 for i in range(NMAX+5)] invfact[0] = 1 for i in range(NMAX): fact[i+1] = (fact[i]*(i+1))%(MOD) invfact[NMAX] = pow(fact[NMAX], MOD-2, MOD) for i in range(NMAX-1,0,-1): invfact[i] = (invfact[i+1] * (i+1)) % MOD ans = modpow(2,n,MOD)-1 pa = calcp(n,a,MOD)*invfact[a]%MOD pb = calcp(n,b,MOD)*invfact[b]%MOD ans = ans - pa - pb; while ans < 0: ans += MOD print(ans) main()
[ "control_flow.branch.while.replace.add", "control_flow.loop.if.replace.remove" ]
564,284
564,285
u582847048
python
p02768
n,a,b = map(int,input().split()) mod = 10**9 + 7 aue,bue = 1,1 for i in range(a): aue = aue * (n-i) % mod for i in range(b): bue = bue * (n-i) % mod asita,bsita = 1,1 for i in range(1,a+1): asita = asita*i %mod for i in range(1,b+1): bsita = bsita*i %mod at = aue * pow(asita,mod-2,mod) bt = bue * pow(bsita,mod-2,mod) print(at) ans = (pow(2,n,mod) - 1 -at -bt)%mod print(ans)
n,a,b = map(int,input().split()) mod = 10**9 + 7 aue,bue = 1,1 for i in range(a): aue = aue * (n-i) % mod for i in range(b): bue = bue * (n-i) % mod asita,bsita = 1,1 for i in range(1,a+1): asita = asita*i %mod for i in range(1,b+1): bsita = bsita*i %mod at = aue * pow(asita,mod-2,mod) bt = bue * pow(bsita,mod-2,mod) ans = (pow(2,n,mod) - 1 -at -bt)%mod print(ans)
[ "call.remove" ]
564,286
564,287
u920204936
python
p02768
mod = int(1e9) + 7 n, a, b = map(int, input().split()) def aaa(base, n): # base = 2 ans = 1 nn = n while True: # print(base, nn) if nn == 0: break if nn % 2 == 0: base = base ** 2 base = base % mod nn /= 2 else: ans *= base ans = ans % mod nn -= 1 return ans xn = aaa(2, n) def mul(a, b): return ((a % mod) * (b % mod)) % mod def power(x, y): if y == 0 : return 1 elif y == 1 : return x % mod elif y % 2 == 0 : return power(x, y//2)**2 % mod else : return power(x, y//2)**2 * x % mod def div(a, b): return mul(a, power(b, mod-2)) def fac(start, length, mod): x = 1 for k in range(start, start + length): x *= k x %= mod return x aa = fac(n - a + 1 , a, mod) aaa = fac(1, a, mod) xa = div(aa, aaa) if aa == 0: if aaa == 0: xa = 1 bb = fac(n - b + 1 , b, mod) bbb = fac(1, b, mod) xb = div(bb, bbb) if bb == 0: if bbb == 0: xb = 1 x = xn - xa - xb - 1 if x < 0: x += mod print(x)
mod = int(1e9) + 7 n, a, b = map(int, input().split()) def aaa(base, n): # base = 2 ans = 1 nn = n while True: # print(base, nn) if nn == 0: break if nn % 2 == 0: base = base ** 2 base = base % mod nn /= 2 else: ans *= base ans = ans % mod nn -= 1 return ans xn = aaa(2, n) def mul(a, b): return ((a % mod) * (b % mod)) % mod def power(x, y): if y == 0 : return 1 elif y == 1 : return x % mod elif y % 2 == 0 : return power(x, y//2)**2 % mod else : return power(x, y//2)**2 * x % mod def div(a, b): return mul(a, power(b, mod-2)) def fac(start, length, mod): x = 1 for k in range(start, start + length): x *= k x %= mod return x aa = fac(n - a + 1 , a, mod) aaa = fac(1, a, mod) xa = div(aa, aaa) if aa == 0: if aaa == 0: xa = 1 bb = fac(n - b + 1 , b, mod) bbb = fac(1, b, mod) xb = div(bb, bbb) if bb == 0: if bbb == 0: xb = 1 x = xn - xa - xb - 1 x = x % mod if x < 0: x += mod print(x)
[ "assignment.add" ]
564,300
564,301
u242196904
python
p02768
#156d n,a,b = map(int, input().split()) ############################################## #https://tane-no-blog.com/976/ mod = pow(10, 9) + 7 def comb(N, x): #n*(n-1)*…*(n-1+1)を計算 numerator = 1 for i in range(N-x+1, N+1): numerator = numerator * i % mod #a!を計算 denominator = 1 for j in range(1, x+1): denominator = denominator * j % mod #最後の項 a!**((10**9+7)-2)を計算 d = pow(denominator, mod-2, mod) return numerator * d ################################ comb_all = pow(2,n,MOD_BY) - 1 #(2**n) - 1 comb_a = comb(n,a) comb_b = comb(n,b) #print(comb_all,comb_a,comb_b) print((comb_all-comb_a-comb_b)%MOD_BY)
#156d n,a,b = map(int, input().split()) ############################################## #https://tane-no-blog.com/976/ mod = pow(10, 9) + 7 def comb(N, x): #n*(n-1)*…*(n-1+1)を計算 numerator = 1 for i in range(N-x+1, N+1): numerator = numerator * i % mod #a!を計算 denominator = 1 for j in range(1, x+1): denominator = denominator * j % mod #最後の項 a!**((10**9+7)-2)を計算 d = pow(denominator, mod-2, mod) return numerator * d ################################ comb_all = pow(2,n,mod) - 1 #(2**n) - 1 comb_a = comb(n,a) comb_b = comb(n,b) #print(comb_all,comb_a,comb_b) print((comb_all-comb_a-comb_b)%mod)
[ "assignment.value.change", "identifier.change", "call.arguments.change", "expression.operation.binary.change", "io.output.change" ]
564,314
564,315
u314089899
python
p02768
# https://atcoder.jp/contests/abc156/submissions/10277689 # コンテスト中に通せたけどmodintクラスで実装してみる import sys read = sys.stdin.readline def read_ints(): return list(map(int, read().split())) class ModInt: def __init__(self, x, MOD=10 ** 9 + 7): self.mod = MOD self.x = x if x < MOD else x % MOD def __str__(self): return str(self.x) __repr__ = __str__ def __add__(self, other): if isinstance(other, ModInt): return ModInt(self.x + other.x, self.mod) else: return ModInt(self.x + other, self.mod) def __sub__(self, other): if isinstance(other, ModInt): return ModInt(self.x - other.x, self.mod) else: return ModInt(self.x - other, self.mod) def __mul__(self, other): if isinstance(other, ModInt): return ModInt(self.x * other.x, self.mod) else: return ModInt(self.x * other, self.mod) def __truediv__(self, other): if isinstance(other, ModInt): return ModInt(self.x * pow(other.x, self.mod - 2, self.mod)) else: return ModInt(self.x * pow(other, self.mod - 2, self.mod)) def __pow__(self, other): if isinstance(other, ModInt): return ModInt(pow(self.x, other.x, self.mod)) else: return ModInt(pow(self.x, other, self.mod)) __radd__ = __add__ def __rsub__(self, other): # 演算の順序が逆 if isinstance(other, ModInt): return ModInt(other.x - self.x, self.mod) else: return ModInt(other - self.x, self.mod) __rmul__ = __mul__ def __rtruediv__(self, other): if isinstance(other, ModInt): return ModInt(other.x * pow(self.x, self.mod - 2, self.mod)) else: return ModInt(other * pow(self.x, self.mod - 2, self.mod)) def __rpow__(self, other): if isinstance(other, ModInt): return ModInt(pow(other.x, self.x, self.mod)) else: return ModInt(pow(other, self.x, self.mod)) def combination_mod(n, r, mod): if r > n: return 0 # このような通りの数は無いため便宜上こう定義する r = min(r, n - r) nf = rf = 1 for i in range(r): nf = nf * (n - i) % mod rf = rf * (i + 1) % mod return nf * pow(rf, mod - 2, mod) % mod def combination(n, r): if r > n: return 0 # このような通りの数は無いため便宜上こう定義する r = min(r, n - r) nf = rf = ModInt(1) for i in range(r): nf = nf * (n - i) rf = rf * (i + 1) return nf / rf # すべての通り(2^n-1)からnCa,nCbを引けば良い MOD = 10**9 + 7 n, a, b = read_ints() # tmp = pow(2, n, MOD) - 1 # ans = tmp - combination_mod(n, a, MOD) - combination_mod(n, b, MOD) # print(ans % MOD) tmp = ModInt(2)**n - 1 ans = tmp - combination(n, a) - combination(n, b) print(ans)
# https://atcoder.jp/contests/abc156/submissions/10277689 # コンテスト中に通せたけどmodintクラスで実装してみる import sys read = sys.stdin.readline def read_ints(): return list(map(int, read().split())) class ModInt: def __init__(self, x, MOD=10 ** 9 + 7): self.mod = MOD self.x = x if 0 <= x < MOD else x % MOD def __str__(self): return str(self.x) __repr__ = __str__ def __add__(self, other): if isinstance(other, ModInt): return ModInt(self.x + other.x, self.mod) else: return ModInt(self.x + other, self.mod) def __sub__(self, other): if isinstance(other, ModInt): return ModInt(self.x - other.x, self.mod) else: return ModInt(self.x - other, self.mod) def __mul__(self, other): if isinstance(other, ModInt): return ModInt(self.x * other.x, self.mod) else: return ModInt(self.x * other, self.mod) def __truediv__(self, other): if isinstance(other, ModInt): return ModInt(self.x * pow(other.x, self.mod - 2, self.mod)) else: return ModInt(self.x * pow(other, self.mod - 2, self.mod)) def __pow__(self, other): if isinstance(other, ModInt): return ModInt(pow(self.x, other.x, self.mod)) else: return ModInt(pow(self.x, other, self.mod)) __radd__ = __add__ def __rsub__(self, other): # 演算の順序が逆 if isinstance(other, ModInt): return ModInt(other.x - self.x, self.mod) else: return ModInt(other - self.x, self.mod) __rmul__ = __mul__ def __rtruediv__(self, other): if isinstance(other, ModInt): return ModInt(other.x * pow(self.x, self.mod - 2, self.mod)) else: return ModInt(other * pow(self.x, self.mod - 2, self.mod)) def __rpow__(self, other): if isinstance(other, ModInt): return ModInt(pow(other.x, self.x, self.mod)) else: return ModInt(pow(other, self.x, self.mod)) def combination_mod(n, r, mod): if r > n: return 0 # このような通りの数は無いため便宜上こう定義する r = min(r, n - r) nf = rf = 1 for i in range(r): nf = nf * (n - i) % mod rf = rf * (i + 1) % mod return nf * pow(rf, mod - 2, mod) % mod def combination(n, r): if r > n: return 0 # このような通りの数は無いため便宜上こう定義する r = min(r, n - r) nf = rf = ModInt(1) for i in range(r): nf = nf * (n - i) rf = rf * (i + 1) return nf / rf # すべての通り(2^n-1)からnCa,nCbを引けば良い MOD = 10**9 + 7 n, a, b = read_ints() # tmp = pow(2, n, MOD) - 1 # ans = tmp - combination_mod(n, a, MOD) - combination_mod(n, b, MOD) # print(ans % MOD) tmp = ModInt(2)**n - 1 ans = tmp - combination(n, a) - combination(n, b) print(ans)
[]
564,321
564,322
u179169725
python
p02768
import math MOD = 10 ** 9 + 7 def cmb(n, r): total = 1 for i in range(r): total *= (n - i) % MOD return total * pow(math.factorial(r), MOD - 2, MOD) % MOD def calc(n, r): ret = 1 for i in range(r): ret = ret * (n - i) % MOD return ret * pow(factorial(r), MOD - 2, MOD) % MOD if __name__ == '__main__': n, a, b = list(map(int, input().split(" "))) total = pow(2, n, MOD) a_total = calc(n, a) b_total = calc(n, b) print((total - a_total - b_total - 1) % MOD)
import math MOD = 10 ** 9 + 7 def cmb(n, r): total = 1 for i in range(r): total *= (n - i) % MOD return total * pow(math.factorial(r), MOD - 2, MOD) % MOD def calc(n, r): ret = 1 for i in range(r): ret = ret * (n - i) % MOD return ret * pow(math.factorial(r), MOD - 2, MOD) % MOD if __name__ == '__main__': n, a, b = list(map(int, input().split(" "))) total = pow(2, n, MOD) a_total = calc(n, a) b_total = calc(n, b) print((total - a_total - b_total - 1) % MOD)
[]
564,345
564,346
u644224332
python
p02768
n, a, b = map(int, input().split()) a, b = min(a, n-a), min(b, n-b) mod = 10**9 +7 def my_pow(num, p, mod): if p==0: return 1 elif p%2==0: return (my_pow(num, p//2, mod)**2)%mod else: return (my_pow(num, p-1, mod)*num)%mod def comb(num, r, mod): r = min(r, num-r) y = 1 for i in range(num-r+1, num+1): y = (y*i)%mod x = 1 for i in range(1, r+1): x = (x*i)%mod return (y*my_pow(x, mod-2, mod))%mod result = my_pow(2, n, mod)-1 -comb(n, a, mod) -comb(n, b, mod) if result < 0: result += mod print(result)
n, a, b = map(int, input().split()) a, b = min(a, n-a), min(b, n-b) mod = 10**9 +7 def my_pow(num, p, mod): if p==0: return 1 elif p%2==0: return (my_pow(num, p//2, mod)**2)%mod else: return (my_pow(num, p-1, mod)*num)%mod def comb(num, r, mod): r = min(r, num-r) y = 1 for i in range(num-r+1, num+1): y = (y*i)%mod x = 1 for i in range(1, r+1): x = (x*i)%mod return (y*my_pow(x, mod-2, mod))%mod result = my_pow(2, n, mod)-1 -comb(n, a, mod) -comb(n, b, mod) while result < 0: result += mod print(result)
[ "control_flow.branch.while.replace.add", "control_flow.loop.if.replace.remove" ]
564,347
564,348
u413165887
python
p02768
import sys def alg_combination_mod(n, r, mod): r = min(n - r, r) if r == 0: return 1 else: denominator = 1 for i in range(n, n - r, -1): denominator = (denominator * i) % mod molecule = 1 for i in range(1, r + 1): molecule = (molecule * i) % mod return denominator * pow(molecule, mod - 2, mod) % mod def solve(): input = sys.stdin.readline mod = 10 ** 9 + 7 n, a, b = list(map(int, input().rstrip('\n').split())) all_cnt = pow(2, n, mod) + mod a_cnt = alg_combination_mod(n, a, mod) b_cnt = alg_combination_mod(n, b, mod) print(all_cnt - a_cnt - b_cnt - 1) if __name__ == '__main__': solve()
import sys def alg_combination_mod(n, r, mod): r = min(n - r, r) if r == 0: return 1 else: denominator = 1 for i in range(n, n - r, -1): denominator = (denominator * i) % mod molecule = 1 for i in range(1, r + 1): molecule = (molecule * i) % mod return denominator * pow(molecule, mod - 2, mod) % mod def solve(): input = sys.stdin.readline mod = 10 ** 9 + 7 n, a, b = list(map(int, input().rstrip('\n').split())) all_cnt = pow(2, n, mod) a_cnt = alg_combination_mod(n, a, mod) b_cnt = alg_combination_mod(n, b, mod) print((all_cnt - a_cnt - b_cnt - 1) % mod) if __name__ == '__main__': solve()
[ "expression.operation.binary.remove", "call.arguments.change", "call.arguments.add" ]
564,373
564,374
u753803401
python
p02768
import sys def alg_combination_mod(n, r, mod): r = min(n - r, r) if r == 0: return 1 else: denominator = 1 for i in range(n, n - r, -1): denominator = (denominator * i) % mod molecule = 1 for i in range(1, r + 1): molecule = (molecule * i) % mod return denominator * pow(molecule, mod - 2, mod) % mod def solve(): input = sys.stdin.readline mod = 10 ** 9 + 7 n, a, b = list(map(int, input().rstrip('\n').split())) all_cnt = pow(2, n, mod) + mod a_cnt = alg_combination_mod(n, a, mod) b_cnt = alg_combination_mod(n, b, mod) print(all_cnt - a_cnt - b_cnt - 1) if __name__ == '__main__': solve()
import sys def alg_combination_mod(n, r, mod): r = min(n - r, r) if r == 0: return 1 else: denominator = 1 for i in range(n, n - r, -1): denominator = (denominator * i) % mod molecule = 1 for i in range(1, r + 1): molecule = (molecule * i) % mod return denominator * pow(molecule, mod - 2, mod) % mod def solve(): input = sys.stdin.readline mod = 10 ** 9 + 7 n, a, b = list(map(int, input().rstrip('\n').split())) all_cnt = pow(2, n, mod) + mod a_cnt = alg_combination_mod(n, a, mod) b_cnt = alg_combination_mod(n, b, mod) print((all_cnt - a_cnt - b_cnt - 1) % mod) if __name__ == '__main__': solve()
[ "call.arguments.change", "call.arguments.add" ]
564,373
564,376
u753803401
python
p02768
import sys, math def input(): return sys.stdin.readline()[:-1] from itertools import permutations, combinations from collections import defaultdict, Counter from math import factorial from bisect import bisect_left # bisect_left(list, value) #from fractions import gcd enu = enumerate sys.setrecursionlimit(10**7) n, a, b = map(int, input().split()) mod = 10**9 + 7 def cmb(n, r, p): r = min(n - r, r) if r == 0: return 1 over = 1 for i in range(n, n - r, -1): over = over * i % p under = 1 for i in range(1, r + 1): under = under * i % p inv = pow(under, p - 2, p) return over * inv % p cnt = pow(2, n, mod) ng1 = cmb(n, a, mod) ng2 = cmb(n, b, mod) res = cnt - ng1 - ng2 - 1 print(res)
import sys, math def input(): return sys.stdin.readline()[:-1] from itertools import permutations, combinations from collections import defaultdict, Counter from math import factorial from bisect import bisect_left # bisect_left(list, value) #from fractions import gcd enu = enumerate sys.setrecursionlimit(10**7) n, a, b = map(int, input().split()) mod = 10**9 + 7 def cmb(n, r, p): r = min(n - r, r) if r == 0: return 1 over = 1 for i in range(n, n - r, -1): over = over * i % p under = 1 for i in range(1, r + 1): under = under * i % p inv = pow(under, p - 2, p) return over * inv % p cnt = pow(2, n, mod) ng1 = cmb(n, a, mod) ng2 = cmb(n, b, mod) res = (cnt - ng1 - ng2 - 1) % mod print(res)
[ "assignment.change" ]
564,380
564,381
u625729943
python
p02768
n,a,b=map(int,input().split()) def combination(n, a, mod): bunshi = 1 bunbo = 1 for i in range(a): bunshi *= n-i bunshi = bunshi%mod bunbo *= a-i bunbo = bunbo%mod return bunshi*pow(bunbo, mod-2, mod)%mod mod = 100000007 answer = pow(2, n, mod) answer -= 1 answer -= combination(n, a, mod) answer -= combination(n, b, mod) print(answer%mod)
n,a,b=map(int,input().split()) def combination(n, a, mod): bunbo = 1 bunshi = 1 for i in range(a): bunshi *= n-i bunshi = bunshi%mod bunbo *= a-i bunbo = bunbo%mod return bunshi*pow(bunbo, mod-2, mod)%mod mod = 1000000007 answer = pow(2, n, mod) answer -= 1 answer -= combination(n, a, mod) answer -= combination(n, b, mod) print(answer%mod)
[ "assignment.variable.change", "identifier.change", "literal.number.integer.change", "assignment.value.change" ]
564,382
564,383
u257018224
python
p02768
n,a,b=map(int,input().split()) def combination(n, a, mod): bunshi = 1 bunbo = 1 for i in range(a): bunshi *= n-i bunshi = bunshi%mod bunbo *= a-i bunbo = bunbo%mod return bunshi*pow(bunbo, mod-2, mod)%mod mod = 100000007 answer = pow(2, n, mod) answer -= 1 answer -= combination(n, a, mod) answer -= combination(n, b, mod) print(answer%mod)
n, a, b = map(int, input().split()) def combination(n, a, mod): bunbo = 1 bunshi = 1 for i in range(a): bunshi *= n-i bunshi = bunshi%mod bunbo *= a-i bunbo = bunbo%mod return bunshi*pow(bunbo, mod-2, mod)%mod mod = 1000000007 answer = pow(2, n, mod) answer -= 1 answer -= combination(n, a, mod) answer -= combination(n, b, mod) print(answer%mod)
[ "assignment.variable.change", "identifier.change", "literal.number.integer.change", "assignment.value.change" ]
564,382
564,384
u257018224
python
p02768
from functools import reduce def perm(n, k, p): ret = 1 for i in range(n, n-k-1, -1): ret = (ret * i)%p return ret def comb(n, k, p): """power_funcを用いて(nCk) mod p を求める""" a = perm(n, k, p) b = perm(k, k, p) return (a*pow(b, p-2, p))%p n, a, b = map(int, input().split()) MOD = 10**9 + 7 print((pow(2,n,MOD) - 1 - comb(n, a, MOD) - comb(n, b, MOD))%MOD)
from functools import reduce def perm(n, k, p): ret = 1 for i in range(n, n-k, -1): ret = (ret * i)%p return ret def comb(n, k, p): """power_funcを用いて(nCk) mod p を求める""" a = perm(n, k, p) b = perm(k, k, p) return (a*pow(b, p-2, p))%p n, a, b = map(int, input().split()) MOD = 10**9 + 7 print((pow(2,n,MOD) - 1 - comb(n, a, MOD) - comb(n, b, MOD))%MOD)
[ "expression.operation.binary.remove" ]
564,389
564,390
u667084803
python
p02768
def factorial_mod(a, M): ans = 1 for i in range(a,1,-1): ans = (ans * i) % M return ans def test(n, a, M): ans = 1 for i in range(a): ans = (ans * (n-i)) % M return ans def combination_mod(n,a,M): tmp = factorial_mod(a,M) tmp = pow(tmp, M-2, M) ans = test(n,a,M) * tmp % M return ans def output(n,a,b): M = 10**9+7 ans = (pow(2,n,M) - 1 - combination_mod(n,a,M) - combination_mod(n,b,M)) % M return ans n, a, b = map(int, input().split()) print(output(a,b,c))
def factorial_mod(a, M): # return a!(mod M) ans = 1 for i in range(a,1,-1): ans = (ans * i) % M return ans def test(n, a, M): # return (nCaの分子) % M ans = 1 for i in range(a): ans = (ans * (n-i)) % M return ans def combination_mod(n,a,M): # return nCa % M tmp = factorial_mod(a,M) tmp = pow(tmp, M-2, M) ans = test(n,a,M) * tmp % M return ans def output(n,a,b): M = 10**9+7 ans = (pow(2,n,M) - 1 - combination_mod(n,a,M) - combination_mod(n,b,M)) % M return ans n, a, b = map(int, input().split()) print(output(n,a,b))
[ "call.arguments.add", "call.arguments.change" ]
564,393
564,394
u549278479
python
p02768
import math def modinv(a, m): g, x, y = egcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m def egcd(a, b): if a == 0: return b, 0, 1 else: g, y, x = egcd(b % a, a) return g, x - (b // a) * y, y def combination(n, r, mod=10**9+7): r = min(r, n-r) res = 1 for i in range(r): res = res * (n - i) * modinv(i+1, mod) % mod return res def COMint(): fac[0]=1 fac[1]=1 finv[0]=1 finv[1]=1 inv[1]=1 for i in range(2,N+1): fac[i] = fac[i - 1] * i % MOD inv[i] = MOD - inv[MOD%i] * (MOD // i) % MOD finv[i] = finv[i - 1] * inv[i] % MOD def com(n,k): if n<k: return 0 return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD MOD=10**9+7 #繰り返し2乗法を使う場合 def combinations_count(n, r): return math.factorial(n) // (math.factorial(n - r) * math.factorial(r)) n,a,b=[int(x) for x in input().split()] ans1 = pow(2,n,MOD) N = n a1=combination(n,a) b1 = combination(n,b) if ans1-a1%MOD-b1%MOD<0: print(((ans1-a1%MOD-b1%MOD)%MOD+MOD)%MOD) else: print(ans1-a1%MOD-b1%MOD)
import math def modinv(a, m): g, x, y = egcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m def egcd(a, b): if a == 0: return b, 0, 1 else: g, y, x = egcd(b % a, a) return g, x - (b // a) * y, y def combination(n, r, mod=10**9+7): r = min(r, n-r) res = 1 for i in range(r): res = res * (n - i) * modinv(i+1, mod) % mod return res def COMint(): fac[0]=1 fac[1]=1 finv[0]=1 finv[1]=1 inv[1]=1 for i in range(2,N+1): fac[i] = fac[i - 1] * i % MOD inv[i] = MOD - inv[MOD%i] * (MOD // i) % MOD finv[i] = finv[i - 1] * inv[i] % MOD def com(n,k): if n<k: return 0 return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD MOD=10**9+7 #繰り返し2乗法を使う場合 def combinations_count(n, r): return math.factorial(n) // (math.factorial(n - r) * math.factorial(r)) n,a,b=[int(x) for x in input().split()] ans1 = pow(2,n,MOD) N = n a1=combination(n,a) b1 = combination(n,b) if ans1-a1%MOD-b1%MOD<0: print(((ans1-a1%MOD-b1%MOD)%MOD+MOD)%MOD-1) else: print(ans1-a1%MOD-b1%MOD-1)
[ "expression.operation.binary.add" ]
564,415
564,416
u466331465
python
p02768
MOD = 10**9+7 def pow(a, b): res = 1 while b: if b & 1: res = res * a % MOD a = a**2 % MOD b >>= 1 return res n, a, b = list(map(int, input().split())) ans = pow(2, n)-1 for X in [a, b]: x = 1 y = 1 for i in range(X): x = x * (n-i) % MOD y = y * (i+1) % MOD t = x * pow(y, MOD-2) % MOD ans -= t if ans < 0: ans += MOD print(ans)
MOD = 10**9+7 def pow(a, b): res = 1 while b: if b & 1: res = res * a % MOD a = a**2 % MOD b >>= 1 return res n, a, b = list(map(int, input().split())) ans = pow(2, n)-1 for X in [a, b]: x = 1 y = 1 for i in range(X): x = x * (n-i) % MOD y = y * (i+1) % MOD t = x * pow(y, MOD-2) % MOD ans -= t while ans < 0: ans += MOD print(ans)
[ "control_flow.branch.while.replace.add", "control_flow.loop.if.replace.remove" ]
564,423
564,424
u721316601
python
p02768
import sys from collections import deque, Counter, defaultdict from math import gcd input = lambda: sys.stdin.readline().rstrip() def eprint(s): sys.stderr.write('DEBUG: {}'.format(s)) return def comb(n,r,mod): p,q=1,1 for i in range(r): p=p*(n-i)%mod q=q*(i+1)%mod return p*pow(q,mod-2,mod)%mod def main(): n,a,b = map(int, input().split()) #a,bの制約がなければ,2^n - 1通りだけ使える # 2^n ^ nCa - nCb mod = 10**9 +7 nca = comb(n,a,mod) ncb = comb(n,b,mod) print(pow(2,n,mod)-(nca+ncb)%mod-1) return if __name__ == '__main__': main()
import sys from collections import deque, Counter, defaultdict from math import gcd input = lambda: sys.stdin.readline().rstrip() def eprint(s): sys.stderr.write('DEBUG: {}'.format(s)) return def comb(n,r,mod): p,q=1,1 for i in range(r): p=p*(n-i)%mod q=q*(i+1)%mod return p*pow(q,mod-2,mod)%mod def main(): n,a,b = map(int, input().split()) #a,bの制約がなければ,2^n - 1通りだけ使える # 2^n ^ nCa - nCb mod = 10**9 +7 nca = comb(n,a,mod) ncb = comb(n,b,mod) print((pow(2,n,mod)-(nca+ncb)%mod) % mod-1) return if __name__ == '__main__': main()
[ "call.arguments.change" ]
564,438
564,439
u593934357
python
p02768
def cmb(n, r): if n - r < r: r = n - r if r == 0: return 1 if r == 1: return n numerator = [] mod = 10**9+7 numerator = [n - r + k + 1 for k in range(r)] denominator = [k + 1 for k in range(r)] for p in range(2,r+1): pivot = denominator[p - 1] if pivot > 1: offset = (n - r) % p for k in range(p-1,r,p): numerator[k - offset] /= pivot denominator[k] /= pivot result = 1 for k in range(r): if numerator[k] > 1: result *= int(numerator[k]) result %= mod return result def power_func(a,n,p): bi=str(format(n,"b")) res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res n, a, b = map(int, input().split()) mod = 10**9+7 ALL = power_func(2,n,mod)-1 A = cmb(n, a)%mod B = cmb(n, b)%mod ans = ALL-A-B if ans < 0: ans = mod + ans print(ans)
def cmb(n, r): if n - r < r: r = n - r if r == 0: return 1 if r == 1: return n numerator = [] mod = 10**9+7 numerator = [n - r + k + 1 for k in range(r)] denominator = [k + 1 for k in range(r)] for p in range(2,r+1): pivot = denominator[p - 1] if pivot > 1: offset = (n - r) % p for k in range(p-1,r,p): numerator[k - offset] /= pivot denominator[k] /= pivot result = 1 for k in range(r): if numerator[k] > 1: result *= int(numerator[k]) result %= mod return result def power_func(a,n,p): bi=str(format(n,"b")) res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res n, a, b = map(int, input().split()) mod = 10**9+7 ALL = power_func(2,n,mod)-1 A = cmb(n,a) B = cmb(n, b) ans = ALL-A-B while ans < 0: ans = mod + ans print(ans)
[ "expression.operation.binary.remove", "control_flow.branch.while.replace.add", "control_flow.loop.if.replace.remove" ]
564,456
564,457
u686713618
python
p02768
def cmb(n, r): if n - r < r: r = n - r if r == 0: return 1 if r == 1: return n numerator = [] mod = 10**9+7 numerator = [n - r + k + 1 for k in range(r)] denominator = [k + 1 for k in range(r)] for p in range(2,r+1): pivot = denominator[p - 1] if pivot > 1: offset = (n - r) % p for k in range(p-1,r,p): numerator[k - offset] /= pivot denominator[k] /= pivot result = 1 for k in range(r): if numerator[k] > 1: result *= int(numerator[k]) result %= mod return result def power_func(a,n,p): bi=str(format(n,"b")) res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res n, a, b = map(int, input().split()) mod = 10**9+7 ALL = power_func(2,n,mod)-1 A = cmb(n, a) B = cmb(n, b) ans = ALL-A-B if ans < 0: ans = mod + ans print(ans)
def cmb(n, r): if n - r < r: r = n - r if r == 0: return 1 if r == 1: return n numerator = [] mod = 10**9+7 numerator = [n - r + k + 1 for k in range(r)] denominator = [k + 1 for k in range(r)] for p in range(2,r+1): pivot = denominator[p - 1] if pivot > 1: offset = (n - r) % p for k in range(p-1,r,p): numerator[k - offset] /= pivot denominator[k] /= pivot result = 1 for k in range(r): if numerator[k] > 1: result *= int(numerator[k]) result %= mod return result def power_func(a,n,p): bi=str(format(n,"b")) res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res n, a, b = map(int, input().split()) mod = 10**9+7 ALL = power_func(2,n,mod)-1 A = cmb(n,a) B = cmb(n, b) ans = ALL-A-B while ans < 0: ans = mod + ans print(ans)
[ "control_flow.branch.while.replace.add", "control_flow.loop.if.replace.remove" ]
564,458
564,457
u686713618
python
p02768
def cmb(n, r): if n - r < r: r = n - r if r == 0: return 1 if r == 1: return n numerator = [] mod = 10**9+7 numerator = [n - r + k + 1 for k in range(r)] denominator = [k + 1 for k in range(r)] for p in range(2,r+1): pivot = denominator[p - 1] if pivot > 1: offset = (n - r) % p for k in range(p-1,r,p): numerator[k - offset] /= pivot denominator[k] /= pivot result = 1 for k in range(r): if numerator[k] > 1: result *= int(numerator[k]) result %= mod return result def power_func(a,n,p): bi=str(format(n,"b")) res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res n, a, b = map(int, input().split()) mod = 10**9+7 ALL = power_func(2,n,mod)-1 A = cmb(n,a) B = cmb(n, b) ans = ALL-A-B if ans < 0: ans = mod + ans print(ans)
def cmb(n, r): if n - r < r: r = n - r if r == 0: return 1 if r == 1: return n numerator = [] mod = 10**9+7 numerator = [n - r + k + 1 for k in range(r)] denominator = [k + 1 for k in range(r)] for p in range(2,r+1): pivot = denominator[p - 1] if pivot > 1: offset = (n - r) % p for k in range(p-1,r,p): numerator[k - offset] /= pivot denominator[k] /= pivot result = 1 for k in range(r): if numerator[k] > 1: result *= int(numerator[k]) result %= mod return result def power_func(a,n,p): bi=str(format(n,"b")) res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res n, a, b = map(int, input().split()) mod = 10**9+7 ALL = power_func(2,n,mod)-1 A = cmb(n,a) B = cmb(n, b) ans = ALL-A-B while ans < 0: ans = mod + ans print(ans)
[ "control_flow.branch.while.replace.add", "control_flow.loop.if.replace.remove" ]
564,459
564,457
u686713618
python
p02768
n, a, b = map(int, input().split()) m = 10**9+7 def cmb(r): N = 1 R = 1 for i in range(r): N = N*(n - i) % m R = R*(i+1) % m return N*pow(R, m-2, m)%m ans = pow(2, n, m) - ((cmb(a) + cmb(b) + 1)%m) print(ans)
n, a, b = map(int, input().split()) m = 10**9+7 def cmb(r): N = 1 R = 1 for i in range(r): N = N*(n - i) % m R = R*(i+1) % m return N*pow(R, m-2, m)%m ans = (pow(2, n, m) - ((cmb(a) + cmb(b) + 1)%m))%m print(ans)
[ "assignment.change" ]
564,460
564,461
u700805562
python
p02768
def pow2(n, mod): p = 2 r = 1 while n: if n % 2: r = r * p % mod p = (p * p) % mod n //= 2 return r g1 = [1, 1] g2 = [1, 1] inverse = [0, 1] def nCr(n, r, mod): t = 1 r = min(r, n - r) for i in range(n - r + 1, n + 1): t = t * i % mod return t * g2[r] % mod def prep(n, mod): for i in range(2, n): g1.append((g1[-1] * i) % mod) inverse.append((-inverse[mod % i] * (mod // i)) % mod) g2.append((g2[-1] * inverse[-1]) % mod) def main(): n, a, b = list(map(int, input().split())) aod = 10 ** 9 + 7 prep(2 * (10 ** 5), mod) print((pow2(n, mod) - 1 - nCr(n, a, mod) - nCr(n, b, mod))% mod) main()
def pow2(n, mod): p = 2 r = 1 while n: if n % 2: r = r * p % mod p = (p * p) % mod n //= 2 return r g1 = [1, 1] g2 = [1, 1] inverse = [0, 1] def nCr(n, r, mod): t = 1 r = min(r, n - r) for i in range(n - r + 1, n + 1): t = t * i % mod return t * g2[r] % mod def prep(n, mod): for i in range(2, n): g1.append((g1[-1] * i) % mod) inverse.append((-inverse[mod % i] * (mod // i)) % mod) g2.append((g2[-1] * inverse[-1]) % mod) def main(): n, a, b = list(map(int, input().split())) mod = 10 ** 9 + 7 prep(2 * (10 ** 5) + 1, mod) print((pow2(n, mod) - 1 - nCr(n, a, mod) - nCr(n, b, mod))% mod) main()
[ "assignment.variable.change", "identifier.change" ]
564,492
564,493
u858742833
python
p02768
n,a,b=map(int,input().split()) def combination(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = (numer*(n1-i)) % mod denom = (denom*i) % mod return numer * pow(denom, mod-2, mod) % mod mod=10**9+7 print((pow(2,n,mod) - combination(n,a,mod) - combination(n,b,mod))%mod)
n,a,b=map(int,input().split()) def combination(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = (numer*(n1-i)) % mod denom = (denom*i) % mod return numer * pow(denom, mod-2, mod) % mod mod=10**9+7 print((pow(2,n,mod)- 1 - combination(n,a,mod) - combination(n,b,mod))%mod)
[ "expression.operation.binary.add" ]
564,504
564,505
u951480280
python
p02768
from scipy.special import comb n,a,b=map(int,input().split()) MOD=10**9+7 def pos(x, n, m): if n == 0: return 1 res = pos(x*x%m, n//2, m) if n%2 == 1: res = res*x%m return res def comb(n,k): if n<k: return 0 if n<0 or k<0: return 0 k=min(n-k,k) ans=1 inv=[1]*(k+1) if k>=1: ans*=(n-k+1)%MOD for i in range(2,k+1): inv[i]=MOD-inv[MOD%i]*(MOD//i)%MOD ans=ans*(n-k+i)*inv[i]%MOD return ans na=comb(n,a) nb=comb(n,b) ans=(pos(2,n,MOD)-na-nb-1)%MOD print(ans)
n,a,b=map(int,input().split()) MOD=10**9+7 def pos(x, n, m): if n == 0: return 1 res = pos(x*x%m, n//2, m) if n%2 == 1: res = res*x%m return res def comb(n,k): if n<k: return 0 if n<0 or k<0: return 0 k=min(n-k,k) ans=1 inv=[1]*(k+1) if k>=1: ans*=(n-k+1)%MOD for i in range(2,k+1): inv[i]=MOD-inv[MOD%i]*(MOD//i)%MOD ans=ans*(n-k+i)*inv[i]%MOD return ans na=comb(n,a) nb=comb(n,b) ans=(pos(2,n,MOD)-na-nb-1)%MOD print(ans)
[]
564,510
564,511
u511379665
python
p02768
def binary(n): return bin(n)[2:] # バイナリ法 def pow_by_binary_exponentiation(a, x, n): # a^x mod n x = [int(b) for b in binary(x)] y = a for i in range(1, len(x)): y = (y**2) % n if x[i] == 1: y = (y * a) % n return y # mを法とするaの乗法的逆元 def modinv(a, m): g, x, y = egcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m def egcd(a, b): if a == 0: return b, 0, 1 else: g, y, x = egcd(b % a, a) return g, x - (b // a) * y, y # nCr mod m # modinvが必要 # rがn/2に近いと非常に重くなる def combination(n, r, mod=10**9 + 7): r = min(r, n - r) res = 1 for i in range(r): res = res * (n - i) * modinv(i + 1, mod) % mod return res n, a, b = map(int, input().split()) mod = 10**9 + 7 S = pow_by_binary_exponentiation(2, n, mod) - 1 A = combination(n, a, mod) B = combination(n, b, mod) ans = S -A -B if ans < 0: ans += mod print(ans)
def binary(n): return bin(n)[2:] # バイナリ法 def pow_by_binary_exponentiation(a, x, n): # a^x mod n x = [int(b) for b in binary(x)] y = a for i in range(1, len(x)): y = (y**2) % n if x[i] == 1: y = (y * a) % n return y # mを法とするaの乗法的逆元 def modinv(a, m): g, x, y = egcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m def egcd(a, b): if a == 0: return b, 0, 1 else: g, y, x = egcd(b % a, a) return g, x - (b // a) * y, y # nCr mod m # modinvが必要 # rがn/2に近いと非常に重くなる def combination(n, r, mod=10**9 + 7): r = min(r, n - r) res = 1 for i in range(r): res = res * (n - i) * modinv(i + 1, mod) % mod return res n, a, b = map(int, input().split()) mod = 10**9 + 7 S = pow_by_binary_exponentiation(2, n, mod) - 1 A = combination(n, a, mod) B = combination(n, b, mod) ans = (S - A - B) % mod if ans < 0: ans += mod print(ans % mod)
[ "assignment.change", "expression.operation.binary.add" ]
564,529
564,530
u815878613
python
p02768
n,a,b=map(int,input().split()) m=10**9+7 def com(n,k,m): p,q=1,1 for i in range(n-k+1,n+1): p*=i p%=m for i in range(1,k+1): q*=i q%=m return p*pow(q,m-2,m)%m ca,cb=com(n,a,m),com(n,b,m) ans=(pow(2,n,m)-1-ca-cb)%m
n,a,b=map(int,input().split()) m=10**9+7 def com(n,k,m): p,q=1,1 for i in range(n-k+1,n+1): p*=i p%=m for i in range(1,k+1): q*=i q%=m return p*pow(q,m-2,m)%m ca,cb=com(n,a,m),com(n,b,m) ans=(pow(2,n,m)-1-ca-cb)%m print(ans)
[ "call.add" ]
564,552
564,553
u393512980
python
p02768
n,a,b=map(int,input().split()) m=10**9+7 def com(n,k,m): p,q=1,1 for i in range(n-k+1,n+1): p*=i p%=m for i in range(1,k+1): q*=i q%=m return p*pow(q,m-2,m)%m ca,cb=com(n,a,m),com(n,b,m) ans=(pow(2,n,m)-ca-cb)%m
n,a,b=map(int,input().split()) m=10**9+7 def com(n,k,m): p,q=1,1 for i in range(n-k+1,n+1): p*=i p%=m for i in range(1,k+1): q*=i q%=m return p*pow(q,m-2,m)%m ca,cb=com(n,a,m),com(n,b,m) ans=(pow(2,n,m)-1-ca-cb)%m print(ans)
[ "call.add" ]
564,555
564,553
u393512980
python
p02768
n, a, b = map(int, input().split()) mod = 10**9 + 7 a = min(a, n-a) b = min(b, n-b) com = [1] * (max(a, b) + 1) for i in range(1,len(com)): com[i] = (com[i-1] * pow(i, mod-2, mod) * (n-i+1)) % mod print(pow(2, n, mod) - 1 - com[a] - com[b])
#!/usr/bin/env python3 n, a, b = map(int, input().split()) mod = 10**9 + 7 a = min(a, n-a) b = min(b, n-b) com = [1] * (max(a, b) + 1) for i in range(1,len(com)): com[i] = (com[i-1] * pow(i, mod-2, mod) * (n-i+1)) % mod print((pow(2, n, mod) + mod - 1 - com[a] - com[b]) % mod)
[ "call.arguments.change", "call.arguments.add" ]
564,571
564,572
u552357043
python
p02768
n, a, b = map(int, input().split()) mod = 10**9 + 7 a = min(a, n-a) b = min(b, n-b) com = [1] * (max(a, b) + 1) for i in range(1,len(com)): com[i] = (com[i-1] * pow(i, mod-2, mod) * (n-i+1)) % mod print(pow(2, n, mod) - 1 - com[a] - com[b])
n, a, b = map(int, input().split()) mod = 10**9 + 7 a = min(a, n-a) b = min(b, n-b) com = [1] * (max(a, b) + 1) for i in range(1,len(com)): com[i] = (com[i-1] * pow(i, mod-2, mod) * (n-i+1)) % mod print((pow(2, n, mod) - 1 - com[a] - com[b] + mod) % mod)
[ "call.arguments.change", "call.arguments.add" ]
564,571
564,574
u552357043
python
p02768
n, a, b = list(map(int, input().split())) mod = 10**9 + 7 import time start = time.time() # xの逆元を求める。フェルマーの小定理より、 x の逆元は x ^ (mod - 2) に等しい。計算時間はO(log(mod))程度。 # https://qiita.com/Yaruki00/items/fd1fc269ff7fe40d09a6 def modinv(x): return pow(x, mod-2, mod) modinv_table = [-1] * (b+1) for i in range(1, b+1): modinv_table[i] = modinv(i) end = time.time() # print("time: ", end - start) def binomial_coefficients2(n, k): ans = 1 for i in range(k): ans *= n-i ans *= modinv_table[i + 1] ans %= mod return ans # (2 ** n - 1) - nCa - nCb ans = power(2, n) - 1 ans -= (binomial_coefficients2(n, a) + binomial_coefficients2(n, b)) print(ans % mod) # print(binomial_coefficients2 (5, 2) % mod)
n, a, b = list(map(int, input().split())) mod = 10**9 + 7 import time start = time.time() # xの逆元を求める。フェルマーの小定理より、 x の逆元は x ^ (mod - 2) に等しい。計算時間はO(log(mod))程度。 # https://qiita.com/Yaruki00/items/fd1fc269ff7fe40d09a6 def modinv(x): return pow(x, mod-2, mod) modinv_table = [-1] * (b+1) for i in range(1, b+1): modinv_table[i] = modinv(i) end = time.time() # print("time: ", end - start) def binomial_coefficients2(n, k): ans = 1 for i in range(k): ans *= n-i ans *= modinv_table[i + 1] ans %= mod return ans # (2 ** n - 1) - nCa - nCb ans = pow(2, n, mod) - 1 ans -= (binomial_coefficients2(n, a) + binomial_coefficients2(n, b)) print(ans % mod) # print(binomial_coefficients2 (5, 2) % mod)
[ "assignment.value.change", "identifier.change", "call.function.change", "expression.operation.binary.change", "call.arguments.add" ]
564,579
564,580
u162612857
python
p02768
def loop_pow(x,n,mod): if n==0: return 1 if n%2==0: t=loop_pow(x,n//2,mod) return (t*t)%mod return x*loop_pow(x,n-1,mod)%mod def com(N,K,mod): n=N k=K up=1 down=1 for _ in range(K): up*=n up%=mod n-=1 for _ in range(K): down*=k down%=mod k-=1 down=loop_pow(down,10**9+5,mod) return up*down%mod def main(): N,a,b=map(int,input().split()) mod=10**9+7 t=loop_pow(2,N,mod)-1-com(N,a,mod)-com(N,b,mod) print(t) if __name__=="__main__": main()
def loop_pow(x,n,mod): if n==0: return 1 if n%2==0: t=loop_pow(x,n//2,mod) return (t*t)%mod return x*loop_pow(x,n-1,mod)%mod def com(N,K,mod): n=N k=K up=1 down=1 for _ in range(K): up*=n up%=mod n-=1 for _ in range(K): down*=k down%=mod k-=1 down=loop_pow(down,10**9+5,mod) return up*down%mod def main(): N,a,b=map(int,input().split()) mod=10**9+7 t=(loop_pow(2,N,mod)-1-com(N,a,mod)-com(N,b,mod))%mod print(t) if __name__=="__main__": main()
[ "assignment.change" ]
564,585
564,586
u079022693
python
p02768
n, a, b = map(int, input().split()) law = 10 ** 9 + 7 def fermat(n, r, law): x = 1 y = 1 for i in range(r): x = x * (n - i) % law y = y * (i + 1) % law ans = x * pow(y, law - 2, law) return ans print((pow(2,n,law)- fermat(n,a,law)-fermat(n,b,law))%law)
n, a, b = map(int, input().split()) law = 10 ** 9 + 7 def fermat(n, r, law): x = 1 y = 1 for i in range(r): x = x * (n - i) % law y = y * (i + 1) % law ans = x * pow(y, law - 2, law) % law return ans print((pow(2,n,law)- fermat(n,a,law)-fermat(n,b,law)-1)%law)
[ "assignment.change", "expression.operation.binary.add" ]
564,623
564,624
u809816772
python
p02768
n, a, b = list(map(int, input().split())) mod = 10**9 + 7 def choose(n, a): x = 1 y = 1 for i in range(1, a + 1): x = (x * (n - i + 1)) % mod y = (y * i) % mod return (x * pow(y, mod - 2, mod)) % mod print(pow(2, n, mod) - 1 - ((choose(n, a) + choose(n, b)) % mod))
n, a, b = list(map(int, input().split())) mod = 10**9 + 7 def choose(n, a): x = 1 y = 1 for i in range(1, a + 1): x = (x * (n - i + 1)) % mod y = (y * i) % mod return (x * pow(y, mod - 2, mod)) % mod print((pow(2, n, mod) - 1 - choose(n, a) - choose(n, b)) % mod )
[ "call.arguments.change", "misc.opposites", "expression.operator.arithmetic.change", "expression.operation.binary.change", "io.output.change" ]
564,634
564,635
u639340617
python
p02768
#d n,a,b = map(int,input().split()) def power(x, n, mod): """ x**n mod in O(log n) """ if n == 0: return 1 K = 1 while n > 1: if n % 2 != 0: K = K * x % mod x = x ** 2 % mod n = (n - 1) // 2 else: x = x ** 2 % mod n = n // 2 return K * x % mod def nCrMOD(a,b,m): c = 1 for i in range(b): c = c * (a - i) % m c = c * modinv(i + 1,m) % m return c def egcd(a, b): (x, lastx) = (0, 1) (y, lasty) = (1, 0) while b != 0: q = a // b (a, b) = (b, a % b) (x, lastx) = (lastx - q * x, x) (y, lasty) = (lasty - q * y, y) return (lastx, lasty, a) def modinv(a, m): (inv, q, gcd_val) = egcd(a, m) return inv % m m=10*9+7 ans = power(2,n,m) -1 - nCrMOD(n,a,m) -nCrMOD(n,b,m) print(ans%m)
#d n,a,b = map(int,input().split()) def power(x, n, mod): """ x**n mod in O(log n) """ if n == 0: return 1 K = 1 while n > 1: if n % 2 != 0: K = K * x % mod x = x ** 2 % mod n = (n - 1) // 2 else: x = x ** 2 % mod n = n // 2 return K * x % mod def nCrMOD(a,b,m): c = 1 for i in range(b): c = c * (a - i) % m c = c * modinv(i + 1,m) % m return c def egcd(a, b): (x, lastx) = (0, 1) (y, lasty) = (1, 0) while b != 0: q = a // b (a, b) = (b, a % b) (x, lastx) = (lastx - q * x, x) (y, lasty) = (lasty - q * y, y) return (lastx, lasty, a) def modinv(a, m): (inv, q, gcd_val) = egcd(a, m) return inv % m m=10**9+7 ans = power(2,n,m) -1 - nCrMOD(n,a,m) -nCrMOD(n,b,m) print(ans%m)
[ "assignment.value.change", "expression.operation.binary.change" ]
564,651
564,652
u586759271
python
p02768
n, a, b = map(int, input().split()) MOD = 1000000007 def combination(n, r): r = min(r, n - r) num = 1 den = 1 for i in range(1, r + 1): num = (num * (n + 1 - i)) % MOD den = (den * i) % MOD return num * pow(den, MOD - 2, MOD) % MOD def func(a, n, p): bi = str(format(n, "b")) res = 1 for i in range(len(bi)): res = (res * res) % p if bi[i] == "1": res = (res * a) % p return res s = func(2, n, MOD) - 1 xa = combination(n, a) xb = combination(n, b) p = (s - xa - xb) if p < 0: print(p + MOD) else: print(p)
n, a, b = map(int, input().split()) MOD = 1000000007 def combination(n, r): r = min(r, n - r) num = 1 den = 1 for i in range(1, r + 1): num = (num * (n + 1 - i)) % MOD den = (den * i) % MOD return num * pow(den, MOD - 2, MOD) % MOD def func(a, n, p): bi = str(format(n, "b")) res = 1 for i in range(len(bi)): res = (res * res) % p if bi[i] == "1": res = (res * a) % p return res s = func(2, n, MOD) - 1 xa = combination(n, a) xb = combination(n, b) p = (s - xa - xb) % MOD if p < 0: print(p + MOD) else: print(p)
[ "assignment.change" ]
564,728
564,729
u137542041
python
p02768
import math z = 10**9 + 7 n, a, b = [int(i) for i in input().split()] r = pow(2, n, z) def c(m): x = 1 for i in range(n-m+1, n+1): x = x*i % z return (x * pow(math.factorial(m), z-2, z)) % z r = (r - c(a) - c(b)) % z print(r)
import math z = 10**9 + 7 n, a, b = [int(i) for i in input().split()] r = pow(2, n, z) - 1 def c(m): x = 1 for i in range(n-m+1, n+1): x = x*i % z return (x * pow(math.factorial(m), z-2, z)) % z r = (r - c(a) - c(b)) % z print(r)
[ "assignment.change" ]
564,752
564,753
u871509659
python
p02768
n, a, b = [int(i) for i in input().split()] mod = 10**9+7 def func_156d(n, r): r =min(r, n-r) numerator = 1 denominator = 1 for i in range(n-r+1, n+1): numerator = numerator * i % mod for i in range(1, r+1): denominator = denominator * i % mod return numerator * pow(denominator, mod-2, mod) %mod print(pow(2, n, mod) -1 - func_156d(n,a) - func_156d(n,b) %mod)
n, a, b = [int(i) for i in input().split()] mod = 10**9+7 def func_156d(n, r): r =min(r, n-r) numerator = 1 denominator = 1 for i in range(n-r+1, n+1): numerator = numerator * i % mod for i in range(1, r+1): denominator = denominator * i % mod return numerator * pow(denominator, mod-2, mod) %mod print((pow(2, n, mod) -1 - func_156d(n,a) - func_156d(n,b) + 2*mod) %mod )
[ "call.arguments.change" ]
564,773
564,774
u840310460
python
p02768
n,a,b = map(int,input().split()) mod = 10**9+7 def modinv(a, mod=10**9+7): return pow(a, mod-2, mod) def combination(n, r, mod=10**9+7): r = min(r, n-r) res = 1 for i in range(r): res = res * (n - i) * modinv(i+1, mod) % mod return res sum = pow(2,n,mod) case = combination(n,a,mod) + combination(n,b,mod) + 1 ans = sum-case if ans < 0 : ans += mod print(ans)
n,a,b = map(int,input().split()) mod = 10**9+7 def modinv(a, mod=10**9+7): return pow(a, mod-2, mod) def combination(n, r, mod=10**9+7): r = min(r, n-r) res = 1 for i in range(r): res = res * (n - i) * modinv(i+1, mod) % mod return res sum = pow(2,n,mod) case = combination(n,a,mod) + combination(n,b,mod) + 1 ans = sum-case while ans < 0 : ans += mod print(ans)
[ "control_flow.branch.while.replace.add", "control_flow.loop.if.replace.remove" ]
564,802
564,803
u397384480
python
p02768
#!/usr/bin/env python3 import sys # sys.setrecursionlimit(10000000) INF = 1<<32 # import numpy as np MOD = 1000000007 # type: int def solve(n: int, a: int, b: int): def combination_with_mod(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = numer * (n1-i) % mod denom = denom * i % mod return numer * pow(denom, mod-2, mod) % mod ans = pow(2, n, MOD)-combination_with_mod(n, a)-combination_with_mod(n, b)-combination_with_mod(n, 0) if ans < 0: print(MOD+ans) else: print(ans%MOD) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = int(next(tokens)) # type: int b = int(next(tokens)) # type: int solve(n, a, b) if __name__ == '__main__': main()
#!/usr/bin/env python3 import sys # sys.setrecursionlimit(10000000) INF = 1<<32 # import numpy as np MOD = 1000000007 # type: int def solve(n: int, a: int, b: int): def combination_with_mod(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = numer * (n1-i) % mod denom = denom * i % mod return numer * pow(denom, mod-2, mod) % mod ans = pow(2, n, MOD)-combination_with_mod(n, a)-combination_with_mod(n, b)-combination_with_mod(n, 0) if ans < 0: print((MOD+ans)%MOD) else: print(ans%MOD) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = int(next(tokens)) # type: int b = int(next(tokens)) # type: int solve(n, a, b) if __name__ == '__main__': main()
[ "call.arguments.change", "call.arguments.add" ]
564,807
564,808
u386819480
python
p02768
#!/usr/bin/env python3 import sys # sys.setrecursionlimit(10000000) INF = 1<<32 # import numpy as np MOD = 1000000007 # type: int def solve(n: int, a: int, b: int): def combination_with_mod(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = numer * (n1-i) % mod denom = denom * i % mod return numer * pow(denom, mod-2, mod) % mod ans = pow(2, n, MOD)-combination_with_mod(n, a)-combination_with_mod(n, b)-combination_with_mod(n, 0) if ans < 0: print(MOD+ans) else: print(ans) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = int(next(tokens)) # type: int b = int(next(tokens)) # type: int solve(n, a, b) if __name__ == '__main__': main()
#!/usr/bin/env python3 import sys # sys.setrecursionlimit(10000000) INF = 1<<32 # import numpy as np MOD = 1000000007 # type: int def solve(n: int, a: int, b: int): def combination_with_mod(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = numer * (n1-i) % mod denom = denom * i % mod return numer * pow(denom, mod-2, mod) % mod ans = pow(2, n, MOD)-combination_with_mod(n, a)-combination_with_mod(n, b)-combination_with_mod(n, 0) if ans < 0: print((MOD+ans)%MOD) else: print(ans%MOD) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = int(next(tokens)) # type: int b = int(next(tokens)) # type: int solve(n, a, b) if __name__ == '__main__': main()
[ "call.arguments.change" ]
564,809
564,808
u386819480
python
p02768
#!/usr/bin/env python3 import sys # sys.setrecursionlimit(10000000) INF = 1<<32 # import numpy as np MOD = 1000000007 # type: int def solve(n: int, a: int, b: int): def combination_with_mod(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = numer * (n1-i) % mod denom = denom * i % mod return numer * pow(denom, mod-2, mod) % mod def power_func(a,n,p): bi=str(format(n,"b"))#2進表現に res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res ans = 0 ans = power_func(2, n, MOD) ans = ans-combination_with_mod(n,a)-combination_with_mod(n, b)-combination_with_mod(n,0) if ans < 0: print(MOD+ans) else: print(ans) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = int(next(tokens)) # type: int b = int(next(tokens)) # type: int solve(n, a, b) if __name__ == '__main__': main()
#!/usr/bin/env python3 import sys # sys.setrecursionlimit(10000000) INF = 1<<32 # import numpy as np MOD = 1000000007 # type: int def solve(n: int, a: int, b: int): def combination_with_mod(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = numer * (n1-i) % mod denom = denom * i % mod return numer * pow(denom, mod-2, mod) % mod def power_func(a,n,p): bi=str(format(n,"b"))#2進表現に res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res ans = 0 ans = power_func(2, n, MOD) ans = ans-combination_with_mod(n, a)-combination_with_mod(n, b)-combination_with_mod(n, 0) if ans < 0: print((MOD+ans)%MOD) else: print(ans%MOD) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = int(next(tokens)) # type: int b = int(next(tokens)) # type: int solve(n, a, b) if __name__ == '__main__': main()
[ "call.arguments.change" ]
564,810
564,811
u386819480
python
p02768
#!/usr/bin/env python3 import sys # sys.setrecursionlimit(10000000) INF = 1<<32 # import numpy as np MOD = 1000000007 # type: int def solve(n: int, a: int, b: int): def combination_with_mod(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = numer * (n1-i) % mod denom = denom * i % mod return numer * pow(denom, mod-2, mod) % mod def power_func(a,n,p): bi=str(format(n,"b"))#2進表現に res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res ans = 0 ans = power_func(2, n, MOD) # print(mod_inv(ans, MOD)) # print(ans) # for i in range(1,n+1): # ans += combination_with_mod(n, i) ans = ans-combination_with_mod(n,a)-combination_with_mod(n, b)-combination_with_mod(n,0) if ans < 0: print(MOD+ans) else: print(ans) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = int(next(tokens)) # type: int b = int(next(tokens)) # type: int solve(n, a, b) if __name__ == '__main__': main()
#!/usr/bin/env python3 import sys # sys.setrecursionlimit(10000000) INF = 1<<32 # import numpy as np MOD = 1000000007 # type: int def solve(n: int, a: int, b: int): def combination_with_mod(n, r, mod=10**9+7): n1, r = n+1, min(r, n-r) numer = denom = 1 for i in range(1, r+1): numer = numer * (n1-i) % mod denom = denom * i % mod return numer * pow(denom, mod-2, mod) % mod def power_func(a,n,p): bi=str(format(n,"b"))#2進表現に res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res ans = 0 ans = power_func(2, n, MOD) ans = ans-combination_with_mod(n, a)-combination_with_mod(n, b)-combination_with_mod(n, 0) if ans < 0: print((MOD+ans)%MOD) else: print(ans%MOD) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = int(next(tokens)) # type: int b = int(next(tokens)) # type: int solve(n, a, b) if __name__ == '__main__': main()
[ "call.arguments.change" ]
564,812
564,811
u386819480
python
p02768
n, a, b = map(int, input().split()) mod = 10 ** 9 + 7 def choose(n, r, mod): r = min(r, n - r) x = 1 y = 1 for i in range(r): x = x * (n - i) % mod y = y * (i + 1) % mod y = pow(y, -2, mod) return x * y % mod ans = pow(2, n, mod) - 1 - choose(n, a, mod) - choose(n, b, mod) while ans < 0: ans += mod print(ans)
n, a, b = map(int, input().split()) mod = 10 ** 9 + 7 def choose(n, r, mod): r = min(r, n - r) x = 1 y = 1 for i in range(r): x = x * (n - i) % mod y = y * (i + 1) % mod y = pow(y, mod-2, mod) return x * y % mod ans = pow(2, n, mod) - 1 - choose(n, a, mod) - choose(n, b, mod) while ans < 0: ans += mod print(ans)
[ "call.arguments.change" ]
564,819
564,820
u118211443
python
p02768
#コンビネーション。 def comb(n,m,p=10**9+7): if n < m : return 0 if n < 0 or m < 0:return 0 m = min(m, n-m) top = bot = 1 for i in range(m): top = top*(n-i) % p bot = bot*(i+1) % p bot = pow(bot, p-2, p) return top*bot % p #累乗 def mpow(x: int, k: int, MOD=1000000007) -> int: res = 1 y = x while (k): if(k % 2 == 1): res = (res * y) % MOD y = (y ** 2) % MOD k = k // 2 return res [n,a,b] = list(map(int,input().split())) CA = comb(n,a,10**9+7) CB = comb(n,b,10**9+7) X = mpow(2,n,10**9+7) output = X-CA-CB-1 if output<0: output += 10**9+7 print(output)
#コンビネーション。 def comb(n,m,p=10**9+7): if n < m : return 0 if n < 0 or m < 0:return 0 m = min(m, n-m) top = bot = 1 for i in range(m): top = top*(n-i) % p bot = bot*(i+1) % p bot = pow(bot, p-2, p) return top*bot % p #累乗 def mpow(x: int, k: int, MOD=1000000007) -> int: res = 1 y = x while (k): if(k % 2 == 1): res = (res * y) % MOD y = (y ** 2) % MOD k = k // 2 return res [n,a,b] = list(map(int,input().split())) CA = comb(n,a,10**9+7) CB = comb(n,b,10**9+7) X = mpow(2,n,10**9+7) output = X-CA-CB-1 while output<0: output += 10**9+7 print(output)
[ "control_flow.branch.while.replace.add", "control_flow.loop.if.replace.remove" ]
564,885
564,886
u208713671
python
p02768
n,a,b=map(int,input().split()) mod=10**9+7 P = 10**9 + 7 N = 200001 inv_t = [0]+[1] for i in range(2,N): inv_t += [inv_t[P % i] * (P - int(P / i)) % P] def power_func(a,n,p): bi=str(format(n,"b"))#2進表現に res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res def comb(x): res=1 for i in range(n-x+1,n+1): res*=i res=res%mod for i in range(1,x+1): res*=inv_t[i] res=res%mod return res al=power_func(2,n,mod) print((al-comb(a)-comb(b))%mod)
n,a,b=map(int,input().split()) mod=10**9+7 P = 10**9 + 7 N = 200001 inv_t = [0]+[1] for i in range(2,N): inv_t += [inv_t[P % i] * (P - int(P / i)) % P] def power_func(a,n,p): bi=str(format(n,"b"))#2進表現に res=1 for i in range(len(bi)): res=(res*res) %p if bi[i]=="1": res=(res*a) %p return res def comb(x): res=1 for i in range(n-x+1,n+1): res*=i res=res%mod for i in range(1,x+1): res*=inv_t[i] res=res%mod return res al=power_func(2,n,mod)-1 print((al-comb(a)-comb(b))%mod)
[ "assignment.change" ]
564,905
564,906
u459798349
python
p02768
from collections import defaultdict,deque import sys,heapq,bisect,math,itertools,string,queue,copy,time sys.setrecursionlimit(10**8) INF = float('inf') mod = 10**9+7 eps = 10**-7 def inp(): return int(sys.stdin.readline()) def inpl(): return list(map(int, sys.stdin.readline().split())) def inpl_str(): return list(sys.stdin.readline().split()) N,a,b = inpl() def calc(N,x): ret = 1 for i in range(N-x+1,N+1): ret *= i ret %= mod for i in range(1, x+1): ret *= pow(i,mod-2,mod) ret %= mod return ret%mod ans = pow(2,N,mod)-1 - calc(a) - calc(b) print(ans%mod)
from collections import defaultdict,deque import sys,heapq,bisect,math,itertools,string,queue,copy,time sys.setrecursionlimit(10**8) INF = float('inf') mod = 10**9+7 eps = 10**-7 def inp(): return int(sys.stdin.readline()) def inpl(): return list(map(int, sys.stdin.readline().split())) def inpl_str(): return list(sys.stdin.readline().split()) N,a,b = inpl() def calc(x): ret = 1 for i in range(N-x+1,N+1): ret *= i ret %= mod for i in range(1, x+1): ret *= pow(i,mod-2,mod) ret %= mod return ret%mod ans = pow(2,N,mod)-1 - calc(a) - calc(b) print(ans%mod)
[]
564,916
564,917
u333945892
python
p02769
mod_val = 10**9+7 n, k = map(int, input().split()) factorials = [1]*(n+1) # values 0 to n for i in range(2, n+1): factorials[i] = (factorials[i-1]*i)%mod_val def mod_binomial(a, b): numerator = factorials[a] denominator = (factorials[b]*factorials[a-b])%mod_val invert = pow(denominator, mod_val-2, mod_val) return (numerator*invert)%mod_val partial = 0 # m is number of rooms with no people for m in range(min(k+1, n-1)): # m places within n to place the 'no people' rooms # put n-(n-m) people in n-m rooms (n-m) must be placed to be non-empty partial = (partial + (mod_binomial(n, m) * mod_binomial(n-1, m))%mod_val)%mod_val print(partial)
mod_val = 10**9+7 n, k = map(int, input().split()) factorials = [1]*(n+1) # values 0 to n for i in range(2, n+1): factorials[i] = (factorials[i-1]*i)%mod_val def mod_binomial(a, b): numerator = factorials[a] denominator = (factorials[b]*factorials[a-b])%mod_val invert = pow(denominator, mod_val-2, mod_val) return (numerator*invert)%mod_val partial = 0 # m is number of rooms with no people for m in range(min(k+1, n)): # m places within n to place the 'no people' rooms # put n-(n-m) people in n-m rooms (n-m) must be placed to be non-empty partial = (partial + (mod_binomial(n, m) * mod_binomial(n-1, m))%mod_val)%mod_val print(partial)
[ "expression.operation.binary.remove" ]
564,945
564,946
u460375306
python
p02769
n,k = map(int,input().split()) mod = 10**9 + 7 fact = [1] finv = [1] for i in range(1, 2*n): fact.append((fact[i-1] * i) % mod) finv.append(pow(fact[i], mod-2, mod)) if n-1 <= k: print((fact[2*n-1] * finv[n] * finv[n-1]) % mod) ans = 0 for i in range(k+1): ans += fact[n] * finv[n-i] * finv[i] * fact[n-1] * finv[n-1-i] * finv[i] ans %= mod print(ans)
n,k = map(int,input().split()) mod = 10**9 + 7 fact = [1] finv = [1] for i in range(1, 2*n): fact.append((fact[i-1] * i) % mod) finv.append(pow(fact[i], mod-2, mod)) if n-1 <= k: print((fact[2*n-1] * finv[n] * finv[n-1]) % mod) exit() ans = 0 for i in range(k+1): ans += fact[n] * finv[n-i] * finv[i] * fact[n-1] * finv[n-1-i] * finv[i] ans %= mod print(ans)
[ "call.add" ]
564,951
564,952
u934868410
python
p02769
N, K = list(map(int, input().split())) p = 10**9+7 size = 2*2*10**5 def binom(n, r, p): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p fact = [1, 1] factinv = [1, 1] inv = [0, 1] for i in range(2, size + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) res = 0 for i in range(min(K, N)): res += (binom(N, i, p) * binom(N-1, N-i-1, p)) % p print(res % p)
N, K = list(map(int, input().split())) p = 10**9+7 size = 2*2*10**5 def binom(n, r, p): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p fact = [1, 1] factinv = [1, 1] inv = [0, 1] for i in range(2, size + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) res = 0 for i in range(min(K, N)+1): res += (binom(N, i, p) * binom(N-1, N-i-1, p)) % p print(res % p)
[ "control_flow.loop.range.bounds.upper.change", "expression.operation.binary.add" ]
564,953
564,954
u892305365
python
p02769
n, k = map(int, input().split()) c1 = 1 c2 = 1 mod = 10**9+7 ans = 0 for i in range(min(n, k+1)): ans += c1 * c2 c1 *= (n-i) * pow(i+1, mod-2, mod) c1 %= mod c2 *= (n-i-1) * pow(i+1, mod-2, mod) c2 %= mod print(ans)
n, k = map(int, input().split()) c1 = 1 c2 = 1 mod = 10**9+7 ans = 0 for i in range(min(n, k+1)): ans += c1 * c2 c1 *= (n-i) * pow(i+1, mod-2, mod) c1 %= mod c2 *= (n-i-1) * pow(i+1, mod-2, mod) c2 %= mod print(ans%mod)
[ "expression.operation.binary.add" ]
564,979
564,980
u875541136
python
p02769
mod=10**9+7 comb1=1 comb2=1 N,K=map(int,input().split()) k=min(K,N-1) x=0 for i in range(k): comb1=(comb1*(N-i)*pow(i+1,mod-2,mod))%(mod) comb2=(comb2*(N-1-i)*pow(i+1,mod-2,mod))%(mod) x+=(comb1*comb2)%(mod) print(x%(mod))
mod=10**9+7 comb1=1 comb2=1 N,K=map(int,input().split()) k=min(K,N-1) x=0 for i in range(k): comb1=(comb1*(N-i)*pow(i+1,mod-2,mod))%(mod) comb2=(comb2*(N-1-i)*pow(i+1,mod-2,mod))%(mod) x+=(comb1*comb2)%(mod) print((x+1)%(mod))
[ "call.arguments.change" ]
564,981
564,982
u387774811
python
p02769
n,k=map(int,input().split()) mod=10**9+7 U = 4*10**5+1 MOD = 10**9+7 fact = [1]*(U+1) fact_inv = [1]*(U+1) for i in range(1,U+1): fact[i] = (fact[i-1]*i)%MOD fact_inv[U] = pow(fact[U],MOD-2,MOD) for i in range(U,0,-1): fact_inv[i-1] = (fact_inv[i]*i)%MOD def comb(n,k): if k < 0 or k > n: return 0 x = fact[n] x *= fact_inv[k] x %= MOD x *= fact_inv[n-k] x %= MOD return x if n-1<=k: print(comb(2*n-1,n-1)) else: ans=0 for i in range(1,1+k): ans+=comb(n,i)*comb(n-1,n-i-1) ans%=mod print(ans)
n,k=map(int,input().split()) mod=10**9+7 U = 4*10**5+1 MOD = 10**9+7 fact = [1]*(U+1) fact_inv = [1]*(U+1) for i in range(1,U+1): fact[i] = (fact[i-1]*i)%MOD fact_inv[U] = pow(fact[U],MOD-2,MOD) for i in range(U,0,-1): fact_inv[i-1] = (fact_inv[i]*i)%MOD def comb(n,k): if k < 0 or k > n: return 0 x = fact[n] x *= fact_inv[k] x %= MOD x *= fact_inv[n-k] x %= MOD return x if n-1<=k: print(comb(2*n-1,n-1)) else: ans=0 for i in range(1+k): ans+=comb(n,i)*comb(n-1,n-i-1) ans%=mod print(ans)
[ "call.arguments.change" ]
564,989
564,990
u350248178
python
p02769
from sys import stdin def prepare(n, p): fact = [1, 1] # fact[n] = (n! mod p) factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p) inv = [0, 1] # factinv 計算用 for i in range(2, n + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) return fact, factinv def cmb(n, r, p, fact, factinv): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p def get_result(data): n, k = data mod = 10**9+7 fact, factinv = prepare(n, mod) ans = 0 for m in range(n): # xHy = x+y−1Cx−1 ans += (cmb(n, m, mod, fact, factinv) * cmb(n-1, n-m-1, mod, fact, factinv)) % mod ans %= mod return ans if __name__ == '__main__': data = list(map(int, stdin.readline().split(' '))) result = get_result(data) print(result)
from sys import stdin def prepare(n, p): fact = [1, 1] # fact[n] = (n! mod p) factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p) inv = [0, 1] # factinv 計算用 for i in range(2, n + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) return fact, factinv def cmb(n, r, p, fact, factinv): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p def get_result(data): n, k = data mod = 10**9+7 fact, factinv = prepare(n, mod) ans = 0 for m in range(n): # xHy = x+y−1Cx−1 if m <= k: ans += (cmb(n, m, mod, fact, factinv) * cmb(n-1, n-m-1, mod, fact, factinv)) % mod ans %= mod return ans if __name__ == '__main__': data = list(map(int, stdin.readline().split(' '))) result = get_result(data) print(result)
[ "control_flow.branch.if.add" ]
564,999
565,000
u659302753
python
p02769
n, k = map(int, input().split()) mod = 10**9+7 k = min([k, n-1]) ans = 0 key = 1 for i in range(k): ans += key ans %= mod key = (((key*(n-i)%mod)*(n-i-1)%mod)*pow(pow(i+1, mod-2, mod), 2, mod))%mod print(ans)
n, k = map(int, input().split()) mod = 10**9+7 k = min([k, n-1]) ans = 0 key = 1 for i in range(k+1): ans += key ans %= mod key = (((key*(n-i)%mod)*(n-i-1)%mod)*pow(pow(i+1, mod-2, mod), 2, mod))%mod print(ans)
[ "control_flow.loop.range.bounds.upper.change", "expression.operation.binary.add" ]
565,001
565,002
u021548497
python
p02769
class Combinatorics: def __init__(self, N, mod): ''' Preprocess for calculating binomial coefficients nCr (0 <= r <= n, 0 <= n <= N) over the finite field Z/(mod)Z. Input: N (int): maximum n mod (int): a prime number. The order of the field Z/(mod)Z over which nCr is calculated. ''' self.mod = mod self.fact = {i: None for i in range(N+1)} # n! self.inverse = {i: None for i in range(1, N+1)} # inverse of n in the field Z/(MOD)Z self.fact_inverse = {i: None for i in range(N+1)} # inverse of n! in the field Z/(MOD)Z # preprocess self.fact[0] = self.fact[1] = 1 self.fact_inverse[0] = self.fact_inverse[1] = 1 self.inverse[1] = 1 for i in range(2, N+1): self.fact[i] = i * self.fact[i-1] % self.mod q, r = divmod(self.mod, i) self.inverse[i] = (- (q % self.mod) * self.inverse[r]) % self.mod self.fact_inverse[i] = self.inverse[i] * self.fact_inverse[i-1] % self.mod def perm(self, n, r): ''' Calculate nPr = n! / (n-r)! % mod ''' if n < r or n < 0 or r < 0: return 0 else: return (self.fact[n] * self.fact_inverse[n-r]) % self.mod def binom(self, n, r): ''' Calculate nCr = n! /(r! (n-r)!) % mod ''' if n < r or n < 0 or r < 0: return 0 else: return self.fact[n] * (self.fact_inverse[r] * self.fact_inverse[n-r] % self.mod) % self.mod def hom(self, n, r): ''' Calculate nHr = {n+r-1}Cr % mod. Assign r objects to one of n classes. Arrangement of r circles and n-1 partitions: o o o | o o | | | o | | | o o | | o ''' if n == 0 and r > 0: return 0 if n >= 0 and r == 0: return 1 return self.binom(n + r - 1, r) MOD = 10**9 + 7 N, K = map(int, input().split()) com = Combinatorics(N, MOD) ans = 0 for i in range(max(0, N - K), N+1): ans += (com.binom(N, i) * com.hom(N-i, i)) % MOD ans %= MOD print(ans)
class Combinatorics: def __init__(self, N, mod): ''' Preprocess for calculating binomial coefficients nCr (0 <= r <= n, 0 <= n <= N) over the finite field Z/(mod)Z. Input: N (int): maximum n mod (int): a prime number. The order of the field Z/(mod)Z over which nCr is calculated. ''' self.mod = mod self.fact = {i: None for i in range(N+1)} # n! self.inverse = {i: None for i in range(1, N+1)} # inverse of n in the field Z/(MOD)Z self.fact_inverse = {i: None for i in range(N+1)} # inverse of n! in the field Z/(MOD)Z # preprocess self.fact[0] = self.fact[1] = 1 self.fact_inverse[0] = self.fact_inverse[1] = 1 self.inverse[1] = 1 for i in range(2, N+1): self.fact[i] = i * self.fact[i-1] % self.mod q, r = divmod(self.mod, i) self.inverse[i] = (- (q % self.mod) * self.inverse[r]) % self.mod self.fact_inverse[i] = self.inverse[i] * self.fact_inverse[i-1] % self.mod def perm(self, n, r): ''' Calculate nPr = n! / (n-r)! % mod ''' if n < r or n < 0 or r < 0: return 0 else: return (self.fact[n] * self.fact_inverse[n-r]) % self.mod def binom(self, n, r): ''' Calculate nCr = n! /(r! (n-r)!) % mod ''' if n < r or n < 0 or r < 0: return 0 else: return self.fact[n] * (self.fact_inverse[r] * self.fact_inverse[n-r] % self.mod) % self.mod def hom(self, n, r): ''' Calculate nHr = {n+r-1}Cr % mod. Assign r objects to one of n classes. Arrangement of r circles and n-1 partitions: o o o | o o | | | o | | | o o | | o ''' if n == 0 and r > 0: return 0 if n >= 0 and r == 0: return 1 return self.binom(n + r - 1, r) MOD = 10**9 + 7 N, K = map(int, input().split()) com = Combinatorics(N, MOD) ans = 0 for i in range(min(K, N-1) + 1): ans += (com.binom(N, i) * com.hom(N-i, i)) % MOD ans %= MOD print(ans)
[ "misc.opposites", "identifier.change", "call.function.change", "call.arguments.change", "control_flow.loop.range.bounds.upper.change", "identifier.replace.add", "literal.replace.remove", "identifier.replace.remove", "literal.replace.add", "expression.operation.binary.change" ]
565,013
565,014
u497046426
python
p02769
#input n, k = map(int, input().split()) #output mod = pow(10, 9) + 7 n_ = 3*10**5 fun = [1]*(n_+1) for i in range(1,n_+1): fun[i] = fun[i-1]*i%mod rev = [1]*(n_+1) rev[n_] = pow(fun[n_],mod-2,mod) for i in range(n_-1,0,-1): rev[i] = rev[i+1]*(i+1)%mod def cmb(n,r): if n <= 0 or r < 0 or r > n: return 0 return fun[n]*rev[r]%mod*rev[n-r]%mod if n <= k-1: print(cmb(2*n-1, n)) else: answer = 0 for m in range(k+1): answer += cmb(n, m)*cmb(n-1, m) % mod answer %= mod print(answer)
#input n, k = map(int, input().split()) #output mod = pow(10, 9) + 7 n_ = 4*10**5 + 5 fun = [1]*(n_+1) for i in range(1,n_+1): fun[i] = fun[i-1]*i%mod rev = [1]*(n_+1) rev[n_] = pow(fun[n_],mod-2,mod) for i in range(n_-1,0,-1): rev[i] = rev[i+1]*(i+1)%mod def cmb(n,r): if n <= 0 or r < 0 or r > n: return 0 return fun[n]*rev[r]%mod*rev[n-r]%mod if n <= k-1: print(cmb(2*n-1, n)) else: answer = 0 for m in range(k+1): answer += cmb(n, m)*cmb(n-1, m) % mod answer %= mod print(answer)
[ "literal.number.integer.change", "assignment.value.change", "expression.operation.binary.change" ]
565,027
565,028
u461454424
python
p02769
#input n, k = map(int, input().split()) #output mod = pow(10, 9) + 7 n_ = 2*10**5 + 3 fun = [1]*(n_+1) for i in range(1,n_+1): fun[i] = fun[i-1]*i%mod rev = [1]*(n_+1) rev[n_] = pow(fun[n_],mod-2,mod) for i in range(n_-1,0,-1): rev[i] = rev[i+1]*(i+1)%mod def cmb(n,r): if n <= 0 or r < 0 or r > n: return 0 return fun[n]*rev[r]%mod*rev[n-r]%mod if n <= k-1: print(cmb(2*n-1, n)) else: answer = 0 for m in range(k+1): answer += cmb(n, m)*cmb(n-1, m) % mod answer %= mod print(answer)
#input n, k = map(int, input().split()) #output mod = pow(10, 9) + 7 n_ = 4*10**5 + 5 fun = [1]*(n_+1) for i in range(1,n_+1): fun[i] = fun[i-1]*i%mod rev = [1]*(n_+1) rev[n_] = pow(fun[n_],mod-2,mod) for i in range(n_-1,0,-1): rev[i] = rev[i+1]*(i+1)%mod def cmb(n,r): if n <= 0 or r < 0 or r > n: return 0 return fun[n]*rev[r]%mod*rev[n-r]%mod if n <= k-1: print(cmb(2*n-1, n)) else: answer = 0 for m in range(k+1): answer += cmb(n, m)*cmb(n-1, m) % mod answer %= mod print(answer)
[ "literal.number.integer.change", "assignment.value.change", "expression.operation.binary.change" ]
565,029
565,028
u461454424
python
p02769
#input n, k = map(int, input().split()) #output mod = pow(10, 9) + 7 n_ = 2*10**5 fun = [1]*(n_+1) for i in range(1,n_+1): fun[i] = fun[i-1]*i%mod rev = [1]*(n_+1) rev[n_] = pow(fun[n_],mod-2,mod) for i in range(n_-1,0,-1): rev[i] = rev[i+1]*(i+1)%mod def cmb(n,r): if n <= 0 or r < 0 or r > n: return 0 return fun[n]*rev[r]%mod*rev[n-r]%mod if n <= k-1: print(cmb(2*n-1, n)) else: answer = 0 for m in range(k+1): answer += cmb(n, m)*cmb(n-1, m) % mod answer %= mod print(answer)
#input n, k = map(int, input().split()) #output mod = pow(10, 9) + 7 n_ = 4*10**5 + 5 fun = [1]*(n_+1) for i in range(1,n_+1): fun[i] = fun[i-1]*i%mod rev = [1]*(n_+1) rev[n_] = pow(fun[n_],mod-2,mod) for i in range(n_-1,0,-1): rev[i] = rev[i+1]*(i+1)%mod def cmb(n,r): if n <= 0 or r < 0 or r > n: return 0 return fun[n]*rev[r]%mod*rev[n-r]%mod if n <= k-1: print(cmb(2*n-1, n)) else: answer = 0 for m in range(k+1): answer += cmb(n, m)*cmb(n-1, m) % mod answer %= mod print(answer)
[ "literal.number.integer.change", "assignment.value.change", "expression.operation.binary.change" ]
565,030
565,028
u461454424
python
p02769
MOD = 10**9 + 7 inpl = lambda: list(map(int,input().split())) def inv_mod(a, p=10**9+7): p = abs(p) a %= p stack = [] p0 = p while a > 1: d, a, p = p//a, p%a, a stack.append(d) x, y = 1, 0 while stack: d = stack.pop() x, y = y-d*x, x return x % p0 n, k = inpl() if k >= n: k = n-1 ans = 1 t = 1 print(k) for i in range(k): t *= (n-1-i)*(n-i) t %= MOD j = inv_mod(i+1) t *= j*j % MOD ans += t ans %= MOD print(ans)
MOD = 10**9 + 7 inpl = lambda: list(map(int,input().split())) def inv_mod(a, p=10**9+7): p = abs(p) a %= p stack = [] p0 = p while a > 1: d, a, p = p//a, p%a, a stack.append(d) x, y = 1, 0 while stack: d = stack.pop() x, y = y-d*x, x return x % p0 n, k = inpl() if k >= n: k = n-1 ans = 1 t = 1 for i in range(k): t *= (n-1-i)*(n-i) t %= MOD j = inv_mod(i+1) t *= j*j % MOD ans += t ans %= MOD print(ans)
[ "call.remove" ]
565,141
565,142
u894258749
python
p02769
def xgcd(a, b): x0, y0, x1, y1 = 1, 0, 0, 1 while b != 0: q, a, b = a // b, b, a % b x0, x1 = x1, x0 - q * x1 y0, y1 = y1, y0 - q * y1 return a, x0, y0 def invmod(a, m): g, x, y = xgcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m n, k = map(int, input().split()) c = 10**9 + 7 if k >= n-1: a = 2*n - 1 ans = a temp = a for i in range(1, n-1): temp = temp*(a-i) % c temp = temp*invmod(i+1, c) % c print(temp) else: temp1 = n temp2 = n-1 ans = 1 + (temp1 * temp2) % c for i in range(1, k): temp1 = temp1*(n-i) % c temp2 = temp2*(n-i-1) % c inv = invmod(i+1, c) temp1 = temp1*inv % c temp2 = temp2*inv % c ans += temp1 * temp2 % c print(ans)
def xgcd(a, b): x0, y0, x1, y1 = 1, 0, 0, 1 while b != 0: q, a, b = a // b, b, a % b x0, x1 = x1, x0 - q * x1 y0, y1 = y1, y0 - q * y1 return a, x0, y0 def invmod(a, m): g, x, y = xgcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m n, k = map(int, input().split()) c = 10**9 + 7 if k >= n-1: a = 2*n - 1 ans = a temp = a for i in range(1, n-1): temp = temp*(a-i) % c temp = temp*invmod(i+1, c) % c print(temp) else: temp1 = n temp2 = n-1 ans = 1 + (temp1 * temp2) % c for i in range(1, k): temp1 = temp1*(n-i) % c temp2 = temp2*(n-i-1) % c inv = invmod(i+1, c) temp1 = temp1*inv % c temp2 = temp2*inv % c ans += (temp1 * temp2) % c print(ans%c)
[ "expression.operation.binary.add" ]
565,147
565,148
u486065927
python
p02769
def modpow(a, n, mod): res = 1 while n > 0: if n & 1: res = res * a % mod a = a * a % mod n >>= 1 return res n, k = map(int, input().split()) MOD = 1000000007 if n-1 > k: ans = 1 com1 = 1 com2 = 1 for i in range(k): com1 = com1 * (n-1-i) * modpow(i+1, MOD-2, MOD) % MOD com2 = com2 * (n-i) * modpow(i+1, MOD-2, MOD) % MOD ans += com1 * com2 print(ans) else: ans = 1 for i in range(n-1): ans = ans * (n*2-1-i) * modpow(i+1, MOD-2, MOD) % MOD print(ans)
def modpow(a, n, mod): res = 1 while n > 0: if n & 1: res = res * a % mod a = a * a % mod n >>= 1 return res n, k = map(int, input().split()) MOD = 1000000007 if n-1 > k: ans = 1 com1 = 1 com2 = 1 for i in range(k): com1 = com1 * (n-1-i) * modpow(i+1, MOD-2, MOD) % MOD com2 = com2 * (n-i) * modpow(i+1, MOD-2, MOD) % MOD ans += com1 * com2 print(ans % MOD) else: ans = 1 for i in range(n-1): ans = ans * (n*2-1-i) * modpow(i+1, MOD-2, MOD) % MOD print(ans % MOD)
[ "expression.operation.binary.add" ]
565,161
565,162
u137913818
python
p02769
def cmb(n, r, mod): if (r < 0 or r > n): return 0 r = min(r, n - r) return g1[n] * g2[r] * g2[n - r] % mod mod = 10**9 + 7 N = 2 * 10**5 #出力の制限 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range(2, N + 1): g1.append((g1[-1] * i) % mod) inverse.append((-inverse[mod % i] * (mod // i)) % mod) g2.append((g2[-1] * inverse[-1]) % mod) def modPow(a, n, mod): if n == 1: return a if n % 2 == 1: return (a * (modPow(a, n//2, mod) ** 2)) % mod else: return (modPow(a, n//2, mod) ** 2) % mod def modInverse(a, p): # calculates the modular multiplicative of a mod m. # (assuming p is prime). return modPow(a, p-2, p) def modBinomial(n, k, p): # calculates C(n,k) mod p (assuming p is prime). numerator = 1 # n * (n-1) * ... * (n-k+1) for i in range(k): numerator = (numerator * (n-i)) % p denominator = 1 # k! for i in range(1, k+1): denominator = (denominator * i) % p # numerator / denominator mod p. return (numerator * modInverse(denominator, p)) % p n, k = map(int,(input().split())) if n <= k: print(modBinomial(2*n-1,n,mod)) exit() ans = 0 if k % 2 == 0: ans += 1 for i in range(1,k+1): ans = (ans + cmb(n,i,mod) * cmb(n-1,i,mod)) % mod print(ans)
def cmb(n, r, mod): if (r < 0 or r > n): return 0 r = min(r, n - r) return g1[n] * g2[r] * g2[n - r] % mod mod = 10**9 + 7 N = 2 * 10**5 #出力の制限 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range(2, N + 1): g1.append((g1[-1] * i) % mod) inverse.append((-inverse[mod % i] * (mod // i)) % mod) g2.append((g2[-1] * inverse[-1]) % mod) def modPow(a, n, mod): if n == 1: return a if n % 2 == 1: return (a * (modPow(a, n//2, mod) ** 2)) % mod else: return (modPow(a, n//2, mod) ** 2) % mod def modInverse(a, p): # calculates the modular multiplicative of a mod m. # (assuming p is prime). return modPow(a, p-2, p) def modBinomial(n, k, p): # calculates C(n,k) mod p (assuming p is prime). numerator = 1 # n * (n-1) * ... * (n-k+1) for i in range(k): numerator = (numerator * (n-i)) % p denominator = 1 # k! for i in range(1, k+1): denominator = (denominator * i) % p # numerator / denominator mod p. return (numerator * modInverse(denominator, p)) % p n, k = map(int,(input().split())) if n <= k: print(modBinomial(2*n-1,n,mod)) exit() ans = 0 if k != 1: ans += 1 for i in range(1,k+1): ans = (ans + cmb(n,i,mod) * cmb(n-1,i,mod)) % mod print(ans)
[]
565,171
565,172
u886633618
python
p02769
def extgcd(a,b): r = [1,0,a] w = [0,1,b] while w[2] != 1: q = r[2]//w[2] r2 = w w2 = [r[0]-q*w[0],r[1]-q*w[1],r[2]-q*w[2]] r = r2 w = w2 return [w[0],w[1]] def mod_inv(a,mod): x = extgcd(a,mod)[0] return (mod + x % mod)% mod def comb(n,k,mod): c = 1 for i in range(k): c = c*(n-i)%mod c = c*mod_inv(i+1,mod)%mod return c n,k = map(int,input().split()) mod = 10**9+7 if k >= n-1: print(comb(n+n-1,n,mod)) else: ans = 0 c = 1 c2 = 1 for i in range(k): c = c*(n-1-i)%mod c2 = c2*(n-i)%mod c = c*mod_inv(i+1,mod)%mod c2 = c2*(mod_inv(i+1,mod))%mod ans += c*c2 ans %= mod if k % 2 == 0: ans += 1 print(ans)
def extgcd(a,b): r = [1,0,a] w = [0,1,b] while w[2] != 1: q = r[2]//w[2] r2 = w w2 = [r[0]-q*w[0],r[1]-q*w[1],r[2]-q*w[2]] r = r2 w = w2 return [w[0],w[1]] def mod_inv(a,mod): x = extgcd(a,mod)[0] return (mod + x % mod)% mod def comb(n,k,mod): c = 1 for i in range(k): c = c*(n-i)%mod c = c*mod_inv(i+1,mod)%mod return c n,k = map(int,input().split()) mod = 10**9+7 if k >= n-1: print(comb(n+n-1,n,mod)) else: ans = 0 c = 1 c2 = 1 for i in range(k): c = c*(n-1-i)%mod c2 = c2*(n-i)%mod c = c*mod_inv(i+1,mod)%mod c2 = c2*(mod_inv(i+1,mod))%mod ans += c*c2 ans %= mod if k > 1: ans += 1 print(ans)
[]
565,173
565,174
u918935103
python
p02769
#coding:utf-8 class Combination: def __init__(self,N,P=10**9+7): if N > 10**7: self.fact = lambda x: x * self.fact(x-1) % P if x > 2 else 2 self.perm = lambda x, r: x * self.perm(x-1,r-1) % P if r > 0 else 1 self.cmb = lambda n,r: (self.perm(n,min(n-r,r)) * pow(self.fact(min(n-r,r)) ,P-2 ,P) % P) if r > 0 else 1 else: self.__fact = [1] * (N+1) self.__inv = [1] * (N+1) self.__inv_fact = [1] * (N+1) for i in range(2,N+1): self.__fact[i] = self.__fact[i-1] * i % P self.__inv[i] = - self.__inv[P%i] * (P//i) % P self.__inv_fact[i] = self.__inv_fact[i-1] * self.__inv[i] % P self.fact = lambda n: self.__fact[n] self.perm = lambda n,r: self.__fact[n] * self.__inv_fact[n-r] % P self.cmb = lambda n,r: (self.__fact[n] * self.__inv_fact[n-r] * self.__inv_fact[r] % P) if r > 0 else 1 import sys,os sys.setrecursionlimit(10**6) write = sys.stdout.write dbg = (lambda *something: print(*something)) if 'TERM_PROGRAM' in os.environ else lambda *x: 0 def main(given=sys.stdin.readline): input = lambda: given().rstrip() LMIIS = lambda: list(map(int,input().split())) II = lambda: int(input()) XLMIIS = lambda x: [LMIIS() for _ in range(x)] YN = lambda c : print('Yes') if c else print('No') MOD = 10**9+7 from collections import deque n,k = LMIIS() cmb = Combination(2*n) ans = 1 for i in range(1,min(n,k+1)): ans = ans + cmb.cmb(n,i) * cmb.cmb(n-1,i) % MOD print(ans) if __name__ == '__main__': main()
#coding:utf-8 class Combination: def __init__(self,N,P=10**9+7): if N > 10**7: self.fact = lambda x: x * self.fact(x-1) % P if x > 2 else 2 self.perm = lambda x, r: x * self.perm(x-1,r-1) % P if r > 0 else 1 self.cmb = lambda n,r: (self.perm(n,min(n-r,r)) * pow(self.fact(min(n-r,r)) ,P-2 ,P) % P) if r > 0 else 1 else: self.__fact = [1] * (N+1) self.__inv = [1] * (N+1) self.__inv_fact = [1] * (N+1) for i in range(2,N+1): self.__fact[i] = self.__fact[i-1] * i % P self.__inv[i] = - self.__inv[P%i] * (P//i) % P self.__inv_fact[i] = self.__inv_fact[i-1] * self.__inv[i] % P self.fact = lambda n: self.__fact[n] self.perm = lambda n,r: self.__fact[n] * self.__inv_fact[n-r] % P self.cmb = lambda n,r: (self.__fact[n] * self.__inv_fact[n-r] * self.__inv_fact[r] % P) if r > 0 else 1 import sys,os sys.setrecursionlimit(10**6) write = sys.stdout.write dbg = (lambda *something: print(*something)) if 'TERM_PROGRAM' in os.environ else lambda *x: 0 def main(given=sys.stdin.readline): input = lambda: given().rstrip() LMIIS = lambda: list(map(int,input().split())) II = lambda: int(input()) XLMIIS = lambda x: [LMIIS() for _ in range(x)] YN = lambda c : print('Yes') if c else print('No') MOD = 10**9+7 from collections import deque n,k = LMIIS() cmb = Combination(2*n) ans = 1 for i in range(1,min(n,k+1)): ans = (ans + cmb.cmb(n,i) * cmb.cmb(n-1,i)) % MOD print(ans) if __name__ == '__main__': main()
[]
565,044
565,045
u043048943
python
p02769
N, K = map(int, input().split()) MOD = 10**9 + 7 MAX_N = 10**6 + 5 fact = [0]*(MAX_N) fact_inv = [0]*(MAX_N) fact[0] = 1 for i in range(MAX_N-1): fact[i+1] = fact[i]*(i+1) % MOD fact_inv[-1] = pow(fact[-1], MOD-2, MOD) for i in range(MAX_N-2, -1, -1): fact_inv[i] = fact_inv[i+1]*(i+1) % MOD def comb(n, k): return fact[n]*fact_inv[k] % MOD * fact_inv[n-k] % MOD if K >= N: print(comb(2*N-1, N-1)) exit() ans = 1 for i in range(1, K+1): ans += comb(N, i)*comb(N-1, i) % MOD print(ans)
N, K = map(int, input().split()) MOD = 10**9 + 7 MAX_N = 10**6 + 5 fact = [0]*(MAX_N) fact_inv = [0]*(MAX_N) fact[0] = 1 for i in range(MAX_N-1): fact[i+1] = fact[i]*(i+1) % MOD fact_inv[-1] = pow(fact[-1], MOD-2, MOD) for i in range(MAX_N-2, -1, -1): fact_inv[i] = fact_inv[i+1]*(i+1) % MOD def comb(n, k): return fact[n]*fact_inv[k] % MOD * fact_inv[n-k] % MOD if K >= N: print(comb(2*N-1, N-1)) exit() ans = 1 for i in range(1, K+1): ans += comb(N, i)*comb(N-1, i) % MOD ans %= MOD print(ans)
[]
565,048
565,049
u503228842
python
p02769
n, k = map(int, input().split()) mod = 10 ** 9 + 7 def comb(n, r): if n < r:return 0 if n < 0 or k < 0:return 0 return fa[n] * fi[r] % mod * fi[n - r] % mod fa = [1] * (n + 1) fi = [1] * (n + 1) for i in range(1, n + 1): fa[i] = fa[i - 1] * i % mod fi[i] = pow(fa[i], mod - 2, mod) ans = 0 for i in range(min(k, n - 1) + 1): ans += comb(n, i) * comb(n - 1, i) % mod print(ans)
n, k = map(int, input().split()) mod = 10 ** 9 + 7 def comb(n, r): if n < r:return 0 if n < 0 or k < 0:return 0 return fa[n] * fi[r] % mod * fi[n - r] % mod fa = [1] * (n + 1) fi = [1] * (n + 1) for i in range(1, n + 1): fa[i] = fa[i - 1] * i % mod fi[i] = pow(fa[i], mod - 2, mod) ans = 0 for i in range(min(k, n - 1) + 1): ans += comb(n, i) * comb(n - 1, i) % mod print(ans % mod)
[ "expression.operation.binary.add" ]
565,053
565,054
u923270446
python
p02769
import sys input = lambda : sys.stdin.readline().rstrip() sys.setrecursionlimit(max(1000, 10**9)) write = lambda x: sys.stdout.write(x+"\n") M = 10**9+7 N = 4*10**5+3 # 必要なテーブルサイズ def cmb(n, r, M): if ( r<0 or r>n ): return 0 r = min(r, n-r) return (g1[n] * g2[r] * g2[n-r]) % M g1 = [None] * (N+1) # 元テーブル g2 = [None] * (N+1) #逆元テーブル inverse = [None] * (N+1) #逆元テーブル計算用テーブル g1[0] = g1[1] = g2[0] = g2[1] = 1 inverse[0], inverse[1] = [0, 1] for i in range( 2, N + 1 ): g1[i] = ( g1[i-1] * i ) % M inverse[i] = ( -inverse[M % i] * (M//i) ) % M # ai+b==0 mod M <=> i==-b*a^(-1) <=> i^(-1)==-b^(-1)*aより g2[i] = (g2[i-1] * inverse[i]) % M n,k = map(int, input().split()) M = 10**9+7 if k<n: ans = 0 for p in range(k+1): ans += cmb(n,p,M) * cmb(n-1+p, p, M) ans %= M else: ans = cmb(2*n-1,n,M) print(ans)
import sys input = lambda : sys.stdin.readline().rstrip() sys.setrecursionlimit(max(1000, 10**9)) write = lambda x: sys.stdout.write(x+"\n") M = 10**9+7 N = 4*10**5+3 # 必要なテーブルサイズ def cmb(n, r, M): if ( r<0 or r>n ): return 0 r = min(r, n-r) return (g1[n] * g2[r] * g2[n-r]) % M g1 = [None] * (N+1) # 元テーブル g2 = [None] * (N+1) #逆元テーブル inverse = [None] * (N+1) #逆元テーブル計算用テーブル g1[0] = g1[1] = g2[0] = g2[1] = 1 inverse[0], inverse[1] = [0, 1] for i in range( 2, N + 1 ): g1[i] = ( g1[i-1] * i ) % M inverse[i] = ( -inverse[M % i] * (M//i) ) % M # ai+b==0 mod M <=> i==-b*a^(-1) <=> i^(-1)==-b^(-1)*aより g2[i] = (g2[i-1] * inverse[i]) % M n,k = map(int, input().split()) M = 10**9+7 if k<n: ans = 0 for p in range(k+1): ans += cmb(n,p,M) * cmb(n-1, p, M) ans %= M else: ans = cmb(2*n-1,n,M) print(ans)
[ "expression.operation.binary.remove" ]
565,059
565,060
u535803878
python
p02769
import sys input = lambda : sys.stdin.readline().rstrip() sys.setrecursionlimit(max(1000, 10**9)) write = lambda x: sys.stdout.write(x+"\n") M = 10**9+7 N = 4*10**5+3 # 必要なテーブルサイズ def cmb(n, r, M): if ( r<0 or r>n ): return 0 r = min(r, n-r) return (g1[n] * g2[r] * g2[n-r]) % M g1 = [None] * (N+1) # 元テーブル g2 = [None] * (N+1) #逆元テーブル inverse = [None] * (N+1) #逆元テーブル計算用テーブル g1[0] = g1[1] = g2[0] = g2[1] = 1 inverse[0], inverse[1] = [0, 1] for i in range( 2, N + 1 ): g1[i] = ( g1[i-1] * i ) % M inverse[i] = ( -inverse[M % i] * (M//i) ) % M # ai+b==0 mod M <=> i==-b*a^(-1) <=> i^(-1)==-b^(-1)*aより g2[i] = (g2[i-1] * inverse[i]) % M n,k = map(int, input().split()) M = 10**9+7 if k<n: ans = 0 for p in range(k+1): ans += cmb(n,p,M) * cmb(n-1+p, p) ans %= M else: ans = cmb(2*n-1,n,M) print(ans)
import sys input = lambda : sys.stdin.readline().rstrip() sys.setrecursionlimit(max(1000, 10**9)) write = lambda x: sys.stdout.write(x+"\n") M = 10**9+7 N = 4*10**5+3 # 必要なテーブルサイズ def cmb(n, r, M): if ( r<0 or r>n ): return 0 r = min(r, n-r) return (g1[n] * g2[r] * g2[n-r]) % M g1 = [None] * (N+1) # 元テーブル g2 = [None] * (N+1) #逆元テーブル inverse = [None] * (N+1) #逆元テーブル計算用テーブル g1[0] = g1[1] = g2[0] = g2[1] = 1 inverse[0], inverse[1] = [0, 1] for i in range( 2, N + 1 ): g1[i] = ( g1[i-1] * i ) % M inverse[i] = ( -inverse[M % i] * (M//i) ) % M # ai+b==0 mod M <=> i==-b*a^(-1) <=> i^(-1)==-b^(-1)*aより g2[i] = (g2[i-1] * inverse[i]) % M n,k = map(int, input().split()) M = 10**9+7 if k<n: ans = 0 for p in range(k+1): ans += cmb(n,p,M) * cmb(n-1, p, M) ans %= M else: ans = cmb(2*n-1,n,M) print(ans)
[ "expression.operation.binary.remove", "call.arguments.add" ]
565,061
565,060
u535803878
python
p02769
N,K=map(int, input().split()) def cmb(n, r, p): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p p = 10 ** 9 + 7 n= 2*10 ** 5 # N は必要分だけ用意する fact = [1, 1] # fact[n] = (n! mod p) 階乗のmod factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p) inv = [0, 1] # factinv 計算用 for i in range(2, n + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) #0の数 zeros=min(K, N-1) ans=0 for i in range(1,zeros+1): ans+=(cmb(N,i,p)*cmb(i+N-i-1, i, p))%p #print(pow(N-i, i, p)) ans%=p print(ans)
N,K=map(int, input().split()) def cmb(n, r, p): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p p = 10 ** 9 + 7 n= 2*10 ** 5 # N は必要分だけ用意する fact = [1, 1] # fact[n] = (n! mod p) 階乗のmod factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p) inv = [0, 1] # factinv 計算用 for i in range(2, n + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) #0の数 zeros=min(K, N-1) ans=1 for i in range(1,zeros+1): ans+=(cmb(N,i,p)*cmb(i+N-i-1, i, p))%p #print(pow(N-i, i, p)) ans%=p print(ans)
[ "literal.number.integer.change", "assignment.value.change" ]
565,066
565,067
u784022244
python
p02769
m=10**9+7;f=[1];n,k=map(int,input().split()) for i in range(10**6):f+=[f[i]*(i+1)%m] def c(a,b):return f[a]*pow(f[b],m-2,m)*pow(f[a-b],m-2,m)%m s=c(n*2-1,n-1) if k>n-2:print(s) else:print(s+(m-sum(c(n-1,i)*c(n,n-i)for i in range(n-1,k,-1))%m)%m)
m=10**9+7;f=[1];n,k=map(int,input().split()) for i in range(10**6):f+=[f[i]*(i+1)%m] def c(a,b):return f[a]*pow(f[b],m-2,m)*pow(f[a-b],m-2,m)%m s=c(n*2-1,n-1) if k>n-2:print(s) else:print((s+(m-sum(c(n-1,i)*c(n,n-i)for i in range(n-1,k,-1))%m))%m)
[ "call.arguments.change" ]
565,068
565,069
u227082700
python
p02769
class Cmb: def __init__(self, N, mod=10**9+7): self.fact = [1,1] self.fact_inv = [1,1] self.inv = [0,1] """ 階乗を保存する配列を作成 """ for i in range(2, N+1): self.fact.append((self.fact[-1]*i) % mod) self.inv.append((-self.inv[mod%i] * (mod//i))%mod) self.fact_inv.append((self.fact_inv[-1]*self.inv[i])%mod) """ 関数として使えるように、callで定義 """ def __call__(self, n, r, mod=10**9+7): if (r<0) or (n<r): return 0 r = min(r, n-r) return self.fact[n] * self.fact_inv[r] * self.fact_inv[n-r] % mod n,k = map(int,input().split()) mod = 10**9+7 c = Cmb(N=n) ans = 0 for l in range(min(k+1, n)): tmp = c(n,l)*c(n-1, n-l-1) ans += tmp%mod print(ans)
class Cmb: def __init__(self, N, mod=10**9+7): self.fact = [1,1] self.fact_inv = [1,1] self.inv = [0,1] """ 階乗を保存する配列を作成 """ for i in range(2, N+1): self.fact.append((self.fact[-1]*i) % mod) self.inv.append((-self.inv[mod%i] * (mod//i))%mod) self.fact_inv.append((self.fact_inv[-1]*self.inv[i])%mod) """ 関数として使えるように、callで定義 """ def __call__(self, n, r, mod=10**9+7): if (r<0) or (n<r): return 0 r = min(r, n-r) return self.fact[n] * self.fact_inv[r] * self.fact_inv[n-r] % mod n,k = map(int,input().split()) mod = 10**9+7 c = Cmb(N=n) ans = 0 for l in range(min(k+1, n)): tmp = c(n,l)*c(n-1, n-l-1) ans += tmp%mod print(ans%mod)
[ "expression.operation.binary.add" ]
565,074
565,075
u672475305
python
p02769
n, k = map( int, input().split() ) mod = 10 ** 9 + 7 numer = [ 1 ] * ( n + 1 ) demon = [ 1 ] * ( n + 1 ) for i in range( 1, n + 1 ): numer[ i ] = numer[ i - 1 ] * i % mod demon[ n ] = pow( numer[ n ], mod - 2, mod ) for i in range( n, 0, -1 ): demon[ i - 1 ] = ( demon[ i ] * i ) % mod def nCr( n, r ): if r < 1: return 1 return ( numer[ n ] * demon[ r ] % mod ) * demon[ n - r ] % mod ans = 0 for i in range( min( k, n - 1) + 1 ): ans = ( ans + nCr( n, i ) * nCr( n - 1, i - 1 )) % mod print( ans )
n, k = map( int, input().split() ) mod = 10 ** 9 + 7 numer = [ 1 ] * ( n + 1 ) demon = [ 1 ] * ( n + 1 ) for i in range( 1, n + 1 ): numer[ i ] = numer[ i - 1 ] * i % mod demon[ n ] = pow( numer[ n ], mod - 2, mod ) for i in range( n, 0, -1 ): demon[ i - 1 ] = ( demon[ i ] * i ) % mod def nCr( n, r ): if r < 1: return 1 return ( numer[ n ] * demon[ r ] % mod ) * demon[ n - r ] % mod ans = 0 for i in range( min( k, n - 1) + 1 ): ans = ( ans + nCr( n, i ) * nCr( n - 1, i )) % mod print( ans )
[ "expression.operation.binary.remove" ]
565,079
565,080
u699008198
python
p02769
import sys import math from decimal import Decimal, ROUND_HALF_UP, ROUND_HALF_EVEN from collections import deque from bisect import bisect_left from itertools import product def I(): return int(sys.stdin.readline()) def MI(): return map(int, sys.stdin.readline().split()) def LI(): return list(map(int, sys.stdin.readline().split())) def LI2(N): return [list(map(int, sys.stdin.readline().split())) for i in range(N)] #文字列を一文字ずつ数字に変換、'5678'を[5,6,7,8]とできる def LSI(): return list(map(int, list(sys.stdin.readline().rstrip()))) def LSI2(N): return [list(map(int, list(sys.stdin.readline().rstrip()))) for i in range(N)] #文字列として取得 def ST(): return sys.stdin.readline().rstrip() def LST(): return sys.stdin.readline().rstrip().split() def LST2(N): return [sys.stdin.readline().rstrip().split() for i in range(N)] def FILL(i,h): return [i for j in range(h)] def FILL2(i,h,w): return [FILL(i,w) for j in range(h)] def FILL3(i,h,w,d): return [FILL2(i,w,d) for j in range(h)] def FILL4(i,h,w,d,d2): return [FILL3(i,w,d,d2) for j in range(h)] def sisha(num,digit): return Decimal(str(num)).quantize(Decimal(digit),rounding=ROUND_HALF_UP) #'0.01'や'1E1'などで指定、整数に戻すならintをかます MOD = 1000000007 INF = float("inf") sys.setrecursionlimit(10**6+10) def cmb(n, r, mod): if ( r<0 or r>n ): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod mod = MOD #出力の制限 N = 5*10**5 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) g2.append( (g2[-1] * inverse[-1]) % mod ) N,K = MI() ans = cmb(2*N-1,N-1,MOD) if K<N-1: for i in range(K+1,N): ans -= cmb(N,i,MOD)*cmb(N-1,i,MOD) print(ans)
import sys import math from decimal import Decimal, ROUND_HALF_UP, ROUND_HALF_EVEN from collections import deque from bisect import bisect_left from itertools import product def I(): return int(sys.stdin.readline()) def MI(): return map(int, sys.stdin.readline().split()) def LI(): return list(map(int, sys.stdin.readline().split())) def LI2(N): return [list(map(int, sys.stdin.readline().split())) for i in range(N)] #文字列を一文字ずつ数字に変換、'5678'を[5,6,7,8]とできる def LSI(): return list(map(int, list(sys.stdin.readline().rstrip()))) def LSI2(N): return [list(map(int, list(sys.stdin.readline().rstrip()))) for i in range(N)] #文字列として取得 def ST(): return sys.stdin.readline().rstrip() def LST(): return sys.stdin.readline().rstrip().split() def LST2(N): return [sys.stdin.readline().rstrip().split() for i in range(N)] def FILL(i,h): return [i for j in range(h)] def FILL2(i,h,w): return [FILL(i,w) for j in range(h)] def FILL3(i,h,w,d): return [FILL2(i,w,d) for j in range(h)] def FILL4(i,h,w,d,d2): return [FILL3(i,w,d,d2) for j in range(h)] def sisha(num,digit): return Decimal(str(num)).quantize(Decimal(digit),rounding=ROUND_HALF_UP) #'0.01'や'1E1'などで指定、整数に戻すならintをかます MOD = 1000000007 INF = float("inf") sys.setrecursionlimit(10**6+10) def cmb(n, r, mod): if ( r<0 or r>n ): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod mod = MOD #出力の制限 N = 5*10**5 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) g2.append( (g2[-1] * inverse[-1]) % mod ) N,K = MI() ans = cmb(2*N-1,N-1,MOD) if K<N-1: for i in range(K+1,N): ans -= cmb(N,i,MOD)*cmb(N-1,i,MOD) print(ans%MOD)
[ "expression.operation.binary.add" ]
565,081
565,082
u380995377
python
p02769
n, k = map(int,input().split()) mod = 10**9+7 #nCrをmodで割った余りを求める。Nに最大値を入れて使用。 N = n g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル def cmb(n,r,mod): if r<0 or r>n : return 0 r = min(r,n-r) return g1[n]*g2[r]*g2[n-r]%mod for i in range(2,N+1): g1.append((g1[-1]*i)%mod) inverse.append((-inverse[mod%i]*(mod//i))%mod) g2.append((g2[-1]*inverse[-1])%mod) ans = 0 for i in range(min(n-1,k)+1): di = cmb(n,i,mod)*cmb(n-1,i,mod)%mod print(di) ans = (ans+di)%mod print(ans)
n, k = map(int,input().split()) mod = 10**9+7 #nCrをmodで割った余りを求める。Nに最大値を入れて使用。 N = n g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル def cmb(n,r,mod): if r<0 or r>n : return 0 r = min(r,n-r) return g1[n]*g2[r]*g2[n-r]%mod for i in range(2,N+1): g1.append((g1[-1]*i)%mod) inverse.append((-inverse[mod%i]*(mod//i))%mod) g2.append((g2[-1]*inverse[-1])%mod) ans = 0 for i in range(min(n-1,k)+1): di = cmb(n,i,mod)*cmb(n-1,i,mod)%mod ans = (ans+di)%mod print(ans)
[ "call.remove" ]
565,084
565,085
u169350228
python
p02769
import sys sys.setrecursionlimit(10 ** 6) INF = float("inf") MOD = 10 ** 9 + 7 def input(): return sys.stdin.readline().strip() class Combination: """ O(n)の前計算を1回行うことで,O(1)でnCr mod mを求められる n_max = 10**6のとき前処理は約950ms (PyPyなら約340ms, 10**7で約1800ms) 使用例: comb = Combination(1000000) print(comb(5, 3)) # 10 """ def __init__(self, n_max, mod=10 ** 9 + 7): self.mod = mod self.modinv = self.make_modinv_list(n_max) self.fac, self.facinv = self.make_factorial_list(n_max) def __call__(self, n, r): if n < r: return 0 return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n - r] % self.mod def make_factorial_list(self, n): # 階乗のリストと階乗のmod逆元のリストを返す O(n) # self.make_modinv_list()が先に実行されている必要がある fac = [1] facinv = [1] for i in range(1, n + 1): fac.append(fac[i - 1] * i % self.mod) facinv.append(facinv[i - 1] * self.modinv[i] % self.mod) return fac, facinv def make_modinv_list(self, n): # 0からnまでのmod逆元のリストを返す O(n) modinv = [0] * (n + 1) modinv[1] = 1 for i in range(2, n + 1): modinv[i] = self.mod - self.mod // i * modinv[self.mod % i] % self.mod return modinv def main(): N, K = map(int, input().split()) comb = Combination(n_max=10 ** 5 * 2 + 10) if N <= K: ans = comb(2 * N - 1, N) else: if K == 1: ans = comb(N, 1) * comb(N - 1, 1) else: ans = 0 # mはゼロとなる数 for m in range(K + 1): ans += comb(N, m) * comb(N - 1, m) ans %= MOD print(ans) if __name__ == "__main__": main()
import sys sys.setrecursionlimit(10 ** 6) INF = float("inf") MOD = 10 ** 9 + 7 def input(): return sys.stdin.readline().strip() class Combination: """ O(n)の前計算を1回行うことで,O(1)でnCr mod mを求められる n_max = 10**6のとき前処理は約950ms (PyPyなら約340ms, 10**7で約1800ms) 使用例: comb = Combination(1000000) print(comb(5, 3)) # 10 """ def __init__(self, n_max, mod=10 ** 9 + 7): self.mod = mod self.modinv = self.make_modinv_list(n_max) self.fac, self.facinv = self.make_factorial_list(n_max) def __call__(self, n, r): if n < r: return 0 return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n - r] % self.mod def make_factorial_list(self, n): # 階乗のリストと階乗のmod逆元のリストを返す O(n) # self.make_modinv_list()が先に実行されている必要がある fac = [1] facinv = [1] for i in range(1, n + 1): fac.append(fac[i - 1] * i % self.mod) facinv.append(facinv[i - 1] * self.modinv[i] % self.mod) return fac, facinv def make_modinv_list(self, n): # 0からnまでのmod逆元のリストを返す O(n) modinv = [0] * (n + 1) modinv[1] = 1 for i in range(2, n + 1): modinv[i] = self.mod - self.mod // i * modinv[self.mod % i] % self.mod return modinv def main(): N, K = map(int, input().split()) comb = Combination(n_max=10 ** 5 * 4 + 10) if N <= K: ans = comb(2 * N - 1, N) else: if K == 1: ans = comb(N, 1) * comb(N - 1, 1) else: ans = 0 # mはゼロとなる数 for m in range(K + 1): ans += comb(N, m) * comb(N - 1, m) ans %= MOD print(ans) if __name__ == "__main__": main()
[ "literal.number.integer.change", "assignment.value.change", "call.arguments.change", "expression.operation.binary.change" ]
565,097
565,098
u346812984
python
p02769
# -*- coding: utf-8 -*- class FactMod(): ''' modの値が素数の時のfactと組み合わせを求める フェルマーの小定理を用いているため、modが素数以外の時は使えない ''' def __init__(self, n, mod): ''' コンストラクタ f:nまでの i!の値を 配列に入れる inv: (i!)^-1 の値を配列に入れる ''' self.mod = mod self.f = [1]*(n+1) for i in range(1, n+1): self.f[i] = self.f[i-1]*i % mod self.inv = [pow(self.f[-1], mod-2, mod)] for i in range(1, n+1)[::-1]: self.inv.append(self.inv[-1]*i % mod) self.inv.reverse() def fact(self, n): ''' n!の値を返す ''' return self.f[n] def comb(self, n, r): ''' nCrの値を返す ''' ret = self.f[n] * self.inv[n-r]*self.inv[r] ret %= self.mod return ret def perm(self, n, r): """ nPrの値を返す """ ret = self.f[n] * self.inv[n-r] ret %= self.mod return ret N,K = map(int,input().split()) ans=0 MOD=10**9+7 F= FactMod(N,MOD) for k in range(0,min(N,K+1)): ans += F.comb(N,k)*F.comb(N-1,k)%MOD print(ans)
# -*- coding: utf-8 -*- class FactMod(): ''' modの値が素数の時のfactと組み合わせを求める フェルマーの小定理を用いているため、modが素数以外の時は使えない ''' def __init__(self, n, mod): ''' コンストラクタ f:nまでの i!の値を 配列に入れる inv: (i!)^-1 の値を配列に入れる ''' self.mod = mod self.f = [1]*(n+1) for i in range(1, n+1): self.f[i] = self.f[i-1]*i % mod self.inv = [pow(self.f[-1], mod-2, mod)] for i in range(1, n+1)[::-1]: self.inv.append(self.inv[-1]*i % mod) self.inv.reverse() def fact(self, n): ''' n!の値を返す ''' return self.f[n] def comb(self, n, r): ''' nCrの値を返す ''' ret = self.f[n] * self.inv[n-r]*self.inv[r] ret %= self.mod return ret def perm(self, n, r): """ nPrの値を返す """ ret = self.f[n] * self.inv[n-r] ret %= self.mod return ret N,K = map(int,input().split()) ans=0 MOD=10**9+7 F= FactMod(N,MOD) for k in range(0,min(N,K+1)): ans += F.comb(N,k)*F.comb(N-1,k)%MOD ans%=MOD print(ans)
[]
565,133
565,134
u375616706
python