Q
stringlengths
4
3.96k
A
stringlengths
1
3k
Result
stringclasses
4 values
Consider some (physical) quantity \( u \) depending on time \( t \) and a parameter vector \( a = {\left( {a}_{1},\ldots ,{a}_{n}\right) }^{T} \in {\mathbb{R}}^{n} \) in terms of a known function\n\n\[ u\left( t\right) = f\left( {t;a}\right) \]\n\nIn order to determine the values of the parameter \( a \) (representing some physical constants), one can take \( m \) measurements of \( u \) at different times \( {t}_{1},\ldots ,{t}_{m} \) and then try to find \( a \) by solving the system of equations\n\n\[ u\left( {t}_{j}\right) = f\left( {{t}_{j};a}\right) ,\;j = 1,\ldots, m. \]\n\nIf \( m = n \), this system consists of \( n \) equations for the \( n \) unknowns \( {a}_{1},\ldots ,{a}_{n} \). However, in general, the measurements will be contaminated by errors. Therefore, usually one will take \( m > n \) measurements and then will try to determine \( a \) by requiring the deviations\n\n\[ u\left( {t}_{j}\right) - f\left( {{t}_{j};a}\right) ,\;j = 1,\ldots, m \]\n\nto be as small as possible. Usually the latter requirement is posed in the least squares sense, i.e., the parameter \( a \) is chosen such that\n\n\[ g\left( a\right) \mathrel{\text{:=}} \mathop{\sum }\limits_{{k = 1}}^{m}{\left\lbrack u\left( {t}_{k}\right) - f\left( {t}_{k};a}\right) \right\rbrack }^{2} \]\n\nattains a minimal value.
The necessary conditions for a minimum,\n\n\[ \frac{\partial g}{\partial {a}_{j}} = 0,\;j = 1,\ldots, n \]\n\nlead to the normal equations\n\n\[ \mathop{\sum }\limits_{{k = 1}}^{m}\left\lbrack {u\left( {t}_{k}\right) - f\left( {{t}_{k};a}\right) }\right\rbrack \frac{\partial f\left( {{t}_{k};a}\right) }{\partial {a}_{j}} = 0,\;j = 1,\ldots, n, \]\n\nfor the method of least squares. These constitute a system of \( n \), in general, nonlinear equations for the \( n \) unknowns \( {a}_{1},\ldots ,{a}_{n} \).
Yes
We consider the system\n\n\[ \n{x}_{1} + {200}{x}_{2} = {100} \]\n\n\[ \n{x}_{1} + \;{x}_{2} = 1 \]\n\nwith the exact solution \( {x}_{1} = {100}/{199} = {0.502}\ldots ,{x}_{2} = {99}/{199} = {0.497}\ldots \) .
For the following computations we use two-decimal-digit floating-point arithmetic. Column pivoting leads to \( {a}_{11} \) as pivot element, and the elimination yields\n\n\[ \n{x}_{1} + {200}{x}_{2} = {100} \]\n\n\[ \n- {200}{x}_{2} = - {99} \]\n\nsince \( {199} = {200} \) in two-digit floating-point representation. From the second equation we then have \( {x}_{2} = {0.50}\left( {{0.495} = {0.50}\text{in two decimal digits}}\right) \), and from the first equation it finally follows that \( {x}_{1} = 0 \) .\n\nHowever, if by complete pivoting we choose \( {a}_{12} \) as pivot element, the elimination leads to\n\n\[ \n{x}_{1} + {200}{x}_{2} = {100} \]\n\n\[ \n{x}_{1}\; = {0.5} \]\n\n\( \left( {{0.995} = {1.00}\text{in two decimal digits}}\right) \), and from this we get the solution \( {x}_{1} = {0.5},{x}_{2} = {0.5}\left( {{0.4975} = {0.50}\text{in two decimal digits}}\right) \), which is correct to two decimal digits.
Yes
Theorem 2.9 For a nonsingular matrix \( A \), Gaussian elimination (without reordering rows and columns) yields an LR decomposition.
Proof. In the first elimination step we multiply the first equation by \( {a}_{j1}/{a}_{11} \) and subtract the result from the \( j \) th equation; i.e., the matrix \( {A}_{1} = A \) is multiplied from the left by the lower triangular matrix\n\n\[ \n{L}_{1} = \left( \begin{array}{rrrr} 1 & & & \\ - \frac{{a}_{21}}{{a}_{11}} & 1 & & \\ \cdot & \cdot & \cdot & \cdot \\ - \frac{{a}_{n1}}{{a}_{11}} & & & 1 \end{array}\right) .\n\]\n\nThe resulting matrix \( {A}_{2} = {L}_{1}{A}_{1} \) is of the form\n\n\[ \n{A}_{2} = \left( \begin{array}{rr} {a}_{11} & * \\ 0 & {\widetilde{A}}_{n - 1} \end{array}\right)\n\]\nwhere \( {\widetilde{A}}_{n - 1} \) is an \( \left( {n - 1}\right) \times \left( {n - 1}\right) \) matrix. In the second step the same procedure is repeated for the \( \left( {n - 1}\right) \times \left( {n - 1}\right) \) matrix \( {\widetilde{A}}_{n - 1} \) . The corresponding \( \left( {n - 1}\right) \times \left( {n - 1}\right) \) elimination matrix is completed as an \( n \times n \) triangular matrix \( {L}_{2} \) by setting the diagonal element in the first row equal to one. In this way, \( n - 1 \) elimination steps lead to\n\n\[ \n{L}_{n - 1}\cdots {L}_{1}A = R\n\]\n\nwith nonsingular lower triangular matrices \( {L}_{1},\ldots ,{L}_{n - 1} \) and an upper triangular matrix \( R \) . From this we find\n\n\[ \nA = {LR}\n\]\n\nwhere \( L \) denotes the inverse of the product \( {L}_{n - 1}\cdots {L}_{1} \) .
Yes
Theorem 3.5 The limit of a convergent sequence is uniquely determined.
Proof. Assume that \( {x}_{n} \rightarrow x \) and \( {x}_{n} \rightarrow y \) for \( n \rightarrow \infty \) . Then from the triangle inequality we obtain that\n\n\[ \parallel x - y\parallel = \begin{Vmatrix}{x - {x}_{n} + {x}_{n} - y}\end{Vmatrix} \leq \begin{Vmatrix}{x - {x}_{n}}\end{Vmatrix} + \begin{Vmatrix}{{x}_{n} - y}\end{Vmatrix} \rightarrow 0,\;n \rightarrow \infty .\n\]\n\nTherefore, \( \parallel x - y\parallel = 0 \) and \( x = y \) by (N2).
Yes
Theorem 3.7 Two norms \( \parallel \cdot {\parallel }_{a} \) and \( \parallel \cdot {\parallel }_{b} \) on a linear space \( X \) are equivalent if and only if there exist positive numbers \( c \) and \( C \) such that\n\n\[ c\parallel x{\parallel }_{a} \leq \parallel x{\parallel }_{b} \leq C\parallel x{\parallel }_{a} \]\n\nfor all \( x \in X \) . The limits with respect to the two norms coincide.
Proof. Provided that the conditions are satisfied, from \( {\begin{Vmatrix}{x}_{n} - x\end{Vmatrix}}_{a} \rightarrow 0 \) , \( n \rightarrow \infty \), it follows that \( {\begin{Vmatrix}{x}_{n} - x\end{Vmatrix}}_{b} \rightarrow 0, n \rightarrow \infty \), and vice versa.\n\nConversely, let the two norms be equivalent and assume that there is no \( C > 0 \) such that \( \parallel x{\parallel }_{b} \leq C\parallel x{\parallel }_{a} \) for all \( x \in X \) . Then there exists a sequence \( \left( {x}_{n}\right) \) with \( {\begin{Vmatrix}{x}_{n}\end{Vmatrix}}_{a} = 1 \) and \( {\begin{Vmatrix}{x}_{n}\end{Vmatrix}}_{b} \geq {n}^{2} \) . Now, the sequence \( \left( {y}_{n}\right) \) with \( {y}_{n} \mathrel{\text{:=}} {x}_{n}/n \) converges to zero with respect to \( \parallel \cdot {\parallel }_{a} \), whereas with respect to \( \parallel \cdot {\parallel }_{b} \) it is divergent because of \( {\begin{Vmatrix}{y}_{n}\end{Vmatrix}}_{b} \geq n \) .
Yes
Theorem 3.8 On a finite-dimensional linear space all norms are equivalent.
Proof. In a linear space \( X \) with finite dimension \( n \) and basis \( {u}_{1},\ldots ,{u}_{n} \) every element can be expressed in the form\n\n\[ x = \mathop{\sum }\limits_{{j = 1}}^{n}{\alpha }_{j}{u}_{j} \]\n\nAs in Example 3.2,\n\n\[ \parallel x{\parallel }_{\infty } \mathrel{\text{:=}} \mathop{\max }\limits_{{j = 1,\ldots, n}}\left| {\alpha }_{j}\right| \]\n\n(3.2)\n\ndefines a norm on \( X \) . Let \( \parallel \cdot \parallel \) denote any other norm on \( X \) . Then, by the triangle inequality we have\n\n\[ \parallel x\parallel \leq \mathop{\sum }\limits_{{j = 1}}^{n}\left| {\alpha }_{j}\right| \begin{Vmatrix}{u}_{j}\end{Vmatrix} \leq C\parallel x{\parallel }_{\infty } \]\n\nfor all \( x \in X \), where\n\n\[ C \mathrel{\text{:=}} \mathop{\sum }\limits_{{j = 1}}^{n}\begin{Vmatrix}{u}_{j}\end{Vmatrix} \]\n\nAssume that there is no \( c > 0 \) such that \( c\parallel x{\parallel }_{\infty } \leq \parallel x\parallel \) for all \( x \in X \) . Then there exists a sequence \( \left( {x}_{\nu }\right) \) with \( \begin{Vmatrix}{x}_{\nu }\end{Vmatrix} = 1 \) such that \( {\begin{Vmatrix}{x}_{\nu }\end{Vmatrix}}_{\infty } \geq \nu \) . Consider the sequence \( \left( {y}_{\nu }\right) \) with \( {y}_{\nu } \mathrel{\text{:=}} {x}_{\nu }/{\begin{Vmatrix}{x}_{\nu }\end{Vmatrix}}_{\infty } \) and write\n\n\[ {y}_{\nu } = \mathop{\sum }\limits_{{j = 1}}^{n}{\alpha }_{j\nu }{u}_{j} \]\n\nBecause of \( {\begin{Vmatrix}{y}_{\nu }\end{Vmatrix}}_{\infty } = 1 \) each of the sequences \( \left( {\alpha }_{j\nu }\right), j = 1,\ldots, n \), is bounded in \( \mathbb{C} \) . Hence, by the Bolzano-Weierstrass theorem we can select convergent subsequences \( {\alpha }_{j,\nu \left( \ell \right) } \rightarrow {\alpha }_{j},\ell \rightarrow \infty \), for each \( j = 1,\ldots, n \) . This now implies \( {\begin{Vmatrix}{y}_{\nu \left( \ell \right) } - y\end{Vmatrix}}_{\infty } \rightarrow 0,\ell \rightarrow \infty \), where\n\n\[ y \mathrel{\text{:=}} \mathop{\sum }\limits_{{j = 1}}^{n}{\alpha }_{j}{u}_{j} \]\n\nand also \( \begin{Vmatrix}{{y}_{\nu \left( \ell \right) } - y}\end{Vmatrix} \leq C{\begin{Vmatrix}{y}_{\nu \left( \ell \right) } - y\end{Vmatrix}}_{\infty } \rightarrow 0,\ell \rightarrow \infty \) . But on the other hand we have \( \begin{Vmatrix}{y}_{\nu }\end{Vmatrix} = 1/{\begin{Vmatrix}{x}_{\nu }\end{Vmatrix}}_{\infty } \rightarrow 0,\nu \rightarrow \infty \) . Therefore, \( y = 0 \), and consequently \( {\begin{Vmatrix}{y}_{\nu \left( \ell \right) }\end{Vmatrix}}_{\infty } \rightarrow 0,\ell \rightarrow \infty \), which contradicts \( {\begin{Vmatrix}{y}_{\nu }\end{Vmatrix}}_{\infty } = 1 \) for all \( \nu .
Yes
Theorem 3.11 Any bounded sequence in a finite-dimensional normed space \( X \) contains a convergent subsequence.
Proof. Let \( {u}_{1},\ldots ,{u}_{n} \) be a basis of \( X \) and let \( \left( {x}_{\nu }\right) \) be a bounded sequence. Then writing\n\n\[ \n{x}_{\nu } = \mathop{\sum }\limits_{{j = 1}}^{n}{\alpha }_{j\nu }{u}_{j} \n\] \n\nand using the norm (3.2), as in the proof of Theorem 3.8 we deduce that each of the sequences \( \left( {\alpha }_{j\nu }\right), j = 1,\ldots, n \), is bounded in \( \mathbb{C} \) . Hence, by the Bolzano-Weierstrass theorem we can select convergent subsequences \( {\alpha }_{j,\nu \left( \ell \right) } \rightarrow {\alpha }_{j},\ell \rightarrow \infty \), for each \( j = 1,\ldots, n \) . This now implies\n\n\[ \n{x}_{\nu \left( \ell \right) } \rightarrow \mathop{\sum }\limits_{{j = 1}}^{n}{\alpha }_{j}{u}_{j} \in X,\;\ell \rightarrow \infty , \n\] \n\nand the proof is finished.
Yes
Theorem 3.14 For a scalar product we have the Cauchy-Schwarz inequality\n\n\[ \n{\left| \left( x, y\right) \right| }^{2} \leq \left( {x, x}\right) \left( {y, y}\right) \n\]\n\nfor all \( x, y \in X \), with equality if and only if \( x \) and \( y \) are linearly dependent.
Proof. The inequality is trivial for \( x = 0 \) . For \( x \neq 0 \) it follows from\n\n\[ \n\left( {{\alpha x} + {\beta y},{\alpha x} + {\beta y}}\right) = {\left| \alpha \right| }^{2}\left( {x, x}\right) + 2\operatorname{Re}\{ \alpha \bar{\beta }\left( {x, y}\right) \} + {\left| \beta \right| }^{2}\left( {y, y}\right) \n\]\n\n\[ \n= \left( {x, x}\right) \left( {y, y}\right) - {\left| \left( x, y\right) \right| }^{2}, \n\]\n\nwhere we have set \( \alpha = - {\left( x, x\right) }^{-1/2}\overline{\left( x, y\right) } \) and \( \beta = {\left( x, x\right) }^{1/2} \) . Since \( \left( {\cdot , \cdot }\right) \) is positive definite, this expression is nonnegative, and it is equal to zero if and only if \( {\alpha x} + {\beta y} = 0 \) . In the latter case \( x \) and \( y \) are linearly dependent because \( \beta \neq 0 \) .
Yes
Theorem 3.14 For a scalar product we have the Cauchy-Schwarz inequality\n\n\\[ \n{\\left| \\left( x, y\\right) \\right| }^{2} \\leq \\left( {x, x}\\right) \\left( {y, y}\\right) \n\\]\n\nfor all \\( x, y \\in X \\), with equality if and only if \\( x \\) and \\( y \\) are linearly dependent.
Proof. The inequality is trivial for \\( x = 0 \\) . For \\( x \\neq 0 \\) it follows from\n\n\\[ \n\\left( {{\\alpha x} + {\\beta y},{\\alpha x} + {\\beta y}}\\right) = {\\left| \\alpha \\right| }^{2}\\left( {x, x}\\right) + 2\\operatorname{Re}\\{ \\alpha \\bar{\\beta }\\left( {x, y}\\right) \\} + {\\left| \\beta \\right| }^{2}\\left( {y, y}\\right) \n\\]\n\n\\[ \n= \\left( {x, x}\\right) \\left( {y, y}\\right) - {\\left| \\left( x, y\\right) \\right| }^{2}, \n\\]\n\nwhere we have set \\( \\alpha = - {\\left( x, x\\right) }^{-1/2}\\overline{\\left( x, y\\right) } \\) and \\( \\beta = {\\left( x, x\\right) }^{1/2} \\) . Since \\( \\left( {\\cdot , \\cdot }\\right) \\) is positive definite, this expression is nonnegative, and it is equal to zero if and only if \\( {\\alpha x} + {\\beta y} = 0 \\) . In the latter case \\( x \\) and \\( y \\) are linearly dependent because \\( \\beta \\neq 0 \\) .
Yes
Theorem 3.15 A scalar product \( \left( {\cdot , \cdot }\right) \) on a linear space \( X \) defines a norm by\n\n\[ \parallel x\parallel \mathrel{\text{:=}} {\left( x, x\right) }^{1/2} \]\n\nfor all \( x \in X \) ; i.e., a pre-Hilbert space is always a normed space.
Proof. We leave it as an exercise for the reader to verify the norm axioms. The triangle inequality follows by\n\n\[ \parallel x + y{\parallel }^{2} = \left( {x + y, x + y}\right) \leq \parallel x{\parallel }^{2} + 2\parallel x\parallel \parallel y\parallel + \parallel y{\parallel }^{2} = {\left( \parallel x\parallel + \parallel y\parallel \right) }^{2} \]\n\nfrom the Cauchy-Schwarz inequality.
No
Theorem 3.17 The elements of an orthonormal system are linearly independent.
Proof. From\n\n\[ \mathop{\sum }\limits_{{k = 1}}^{n}{\alpha }_{k}{q}_{k} = 0 \]\n\nfor the orthonormal system \( \left\{ {{q}_{1},\ldots ,{q}_{n}}\right\} \), by taking the scalar product with \( {q}_{j} \), we immediately have that \( {\alpha }_{j} = 0 \) for \( j = 1,\ldots, n \) .
Yes
Theorem 3.18 Let \( \left\{ {{u}_{0},{u}_{1},\ldots }\right\} \) be a finite or countable number of linearly independent elements of a pre-Hilbert space. Then there exists a uniquely determined orthogonal system \( \left\{ {{q}_{0},{q}_{1},\ldots }\right\} \) of the form\n\n\[ \n{q}_{n} = {u}_{n} + {r}_{n},\;n = 0,1,\ldots ,\n\]\n\n(3.3)\n\nwith \( {r}_{0} = 0 \) and \( {r}_{n} \in \operatorname{span}\left\{ {{u}_{0},\ldots ,{u}_{n - 1}}\right\}, n = 1,2,\ldots \), satisfying\n\n\[ \n\operatorname{span}\left\{ {{u}_{0},\ldots ,{u}_{n}}\right\} = \operatorname{span}\left\{ {{q}_{0},\ldots ,{q}_{n}}\right\} ,\;n = 0,1,\ldots\n\]\n\n(3.4)
Proof. Assume that we have constructed orthogonal elements of the form (3.3) with the property (3.4) up to \( {q}_{n - 1} \) . By (3.4), the \( \left\{ {{q}_{0},\ldots ,{q}_{n - 1}}\right\} \) are linearly independent, and therefore \( \begin{Vmatrix}{q}_{k}\end{Vmatrix} \neq 0 \) for \( k = 0,1,\ldots, n - 1 \) . Hence,\n\n\[ \n{q}_{n} \mathrel{\text{:=}} {u}_{n} - \mathop{\sum }\limits_{{k = 0}}^{{n - 1}}\frac{\left( {u}_{n},{q}_{k}\right) }{\left( {q}_{k},{q}_{k}\right) }{q}_{k}\n\]\n\nis well-defined, and using the induction assumption, we obtain \( \left( {{q}_{n},{q}_{m}}\right) = 0 \) for \( m = 0,\ldots, n - 1 \) and\n\n\[ \n\operatorname{span}\left\{ {{u}_{0},\ldots ,{u}_{n - 1},{u}_{n}}\right\} = \operatorname{span}\left\{ {{q}_{0},\ldots ,{q}_{n - 1},{u}_{n}}\right\} = \operatorname{span}\left\{ {{q}_{0},\ldots ,{q}_{n - 1},{q}_{n}}\right\} .\n\]\n\nHence, the existence of \( {q}_{n} \) is established.\n\nAssume that \( \left\{ {{q}_{0},{q}_{1},\ldots }\right\} \) and \( \left\{ {{\widetilde{q}}_{0},{\widetilde{q}}_{1},\ldots }\right\} \) are two orthogonal sets of elements with the required properties. Then clearly \( {q}_{0} = {u}_{0} = {\widetilde{q}}_{0} \) . Assume that we have shown that equality holds up to \( {q}_{n - 1} = {\widetilde{q}}_{n - 1} \) . Then, since \( {q}_{n} - {\widetilde{q}}_{n} \in \operatorname{span}\left\{ {{u}_{0},\ldots ,{u}_{n - 1}}\right\} \), we can represent \( {q}_{n} - {\widetilde{q}}_{n} \) as a linear combination of \( {q}_{1},\ldots ,{q}_{n - 1} \) ; i.e.,\n\n\[ \n{q}_{n} - {\widetilde{q}}_{n} = \mathop{\sum }\limits_{{k = 0}}^{{n - 1}}{\alpha }_{k}{q}_{k}\n\]\n\nNow the orthogonality yields\n\n\[ \n{\begin{Vmatrix}{q}_{n} - {\widetilde{q}}_{n}\end{Vmatrix}}^{2} = \left( {{q}_{n} - {\widetilde{q}}_{n},\mathop{\sum }\limits_{{k = 0}}^{{n - 1}}{\alpha }_{k}{q}_{k}}\right) = 0,\n\]\n\nwhence \( {q}_{n} = {\widetilde{q}}_{n} \) .
Yes
Theorem 3.21 A linear operator is continuous if it is continuous at one element.
Proof. Let \( A : X \rightarrow Y \) be continuous at \( {x}_{0} \in X \) . Then for every \( x \in X \) and every sequence \( \left( {x}_{n}\right) \) with \( {x}_{n} \rightarrow x, n \rightarrow ∞ \), we have\n\n\[ A{x}_{n} = A\left( {{x}_{n} - x + {x}_{0}}\right) + A\left( {x - {x}_{0}}\right) \rightarrow A\left( {x}_{0}\right) + A\left( {x - {x}_{0}}\right) = A\left( x\right) ,\;n \rightarrow ∞ ,\]\n\n since \( {x}_{n} - x + {x}_{0} \rightarrow {x}_{0}, n \rightarrow ∞ \) .
Yes
Theorem 3.23 A linear operator \( A : X \rightarrow Y \) is bounded if and only if\n\n\[ \parallel A\parallel \mathrel{\text{:=}} \mathop{\sup }\limits_{{\parallel x\parallel = 1}}\parallel {Ax}\parallel < \infty . \]\n\nThe number \( \parallel A\parallel \) is the smallest bound for \( A \) and is called the norm of \( A \) .
Proof. Assume that \( A \) is bounded with the bound \( C \) . Then\n\n\[ \mathop{\sup }\limits_{{\parallel x\parallel = 1}}\parallel {Ax}\parallel \leq C \]\n\nand, in particular, \( \parallel A\parallel \) is less than or equal to any bound for \( A \) . Conversely, if \( \parallel A\parallel < \infty \), then using the linearity of \( A \) and the homogeneity of the norm,\n\nwe find that\n\[ \parallel {Ax}\parallel = \begin{Vmatrix}{A\left( \frac{x}{\parallel x\parallel }\right) }\end{Vmatrix}\parallel x\parallel \leq \parallel A\parallel \parallel x\parallel \]\n\nfor all \( x \neq 0 \) . Therefore, \( A \) is bounded with the bound \( \parallel A\parallel \) .
Yes
Theorem 3.24 A linear operator is continuous if and only if it is bounded.
Proof. Let \( A : X \rightarrow Y \) be bounded and let \( \left( {x}_{n}\right) \) be a sequence in \( X \) with \( {x}_{n} \rightarrow 0, n \rightarrow \infty \) . Then from \( \begin{Vmatrix}{A{x}_{n}}\end{Vmatrix} \leq C\begin{Vmatrix}{x}_{n}\end{Vmatrix} \) it follows that \( A{x}_{n} \rightarrow 0 \) , \( n \rightarrow \infty \) . Thus, \( A \) is continuous at \( x = 0 \), and because of Theorem 3.21 it is continuous everywhere in \( X \) .\n\nConversely, let \( A \) be continuous and assume that there is no \( C > 0 \) such that \( \parallel {Ax}\parallel \leq C\parallel x\parallel \) for all \( x \in X \) . Then there exists a sequence \( \left( {x}_{n}\right) \) in \( X \) with \( \begin{Vmatrix}{x}_{n}\end{Vmatrix} = 1 \) and \( \begin{Vmatrix}{A{x}_{n}}\end{Vmatrix} \geq n \) . Consider the sequence \( {y}_{n} \mathrel{\text{:=}} {x}_{n}/\begin{Vmatrix}{A{x}_{n}}\end{Vmatrix} \) . Then \( {y}_{n} \rightarrow 0, n \rightarrow \infty \), and since \( A \) is continuous, \( A{y}_{n} \rightarrow A\left( 0\right) = 0, n \rightarrow \infty \) . This is a contradiction to \( \begin{Vmatrix}{A{y}_{n}}\end{Vmatrix} = 1 \) for all \( n \) . Hence, \( A \) is bounded.
Yes
Theorem 3.27 To each matrix \( A \) there exists a unitary matrix \( Q \) such that \( {Q}^{ * }{AQ} \) is an upper triangular matrix.
Proof. Assume that it has been shown that for each \( \left( {n - 1}\right) \times \left( {n - 1}\right) \) matrix \( {A}_{n - 1} \) there exists a unitary \( \left( {n - 1}\right) \times \left( {n - 1}\right) \) matrix \( {Q}_{n - 1} \) such that \( {Q}_{n - 1}^{ * }{A}_{n - 1}{Q}_{n - 1} \) is an upper triangular matrix. Let \( \lambda \) be an eigenvalue of the \( n \times n \) matrix \( {A}_{n} \) with eigenvector \( u \) . We may assume that \( \left( {u, u}\right) = 1 \), where \( \left( {\cdot , \cdot }\right) \) is the Euclidean scalar product. Using the Gram-Schmidt procedure of Theorem 3.18 we can construct an orthonormal basis of \( {\mathbb{C}}^{n} \) of the form \( u,{v}_{2},\ldots ,{v}_{n} \) . Then we define a unitary \( n \times n \) matrix by\n\n\[ \n{U}_{n} \mathrel{\text{:=}} \left( {u,{v}_{2},\ldots ,{v}_{n}}\right) \n\]\n\nWith the aid of \( \left( {u,{v}_{j}}\right) = 0, j = 2,\ldots, n \), we see that\n\n\[ \n{U}_{n}^{ * }{A}_{n}{U}_{n} = {U}_{n}^{ * }\left( {{\lambda u},{A}_{n}{v}_{2},\ldots ,{A}_{n}{v}_{n}}\right) = \left( \begin{matrix} \lambda & * \\ 0 & {A}_{n - 1} \end{matrix}\right) , \n\]\n\nwith some \( \left( {n - 1}\right) \times \left( {n - 1}\right) \) matrix \( {A}_{n - 1} \) . By the induction assumption there exists a unitary \( \left( {n - 1}\right) \times \left( {n - 1}\right) \) matrix \( {Q}_{n - 1} \) such that \( {Q}_{n - 1}^{ * }{A}_{n - 1}{Q}_{n - 1} \) is upper triangular. Then\n\n\[ \n{Q}_{n} \mathrel{\text{:=}} {U}_{n}\left( \begin{matrix} 1 & 0 \\ 0 & {Q}_{n - 1} \end{matrix}\right) \n\]\n\ndefines a unitary \( n \times n \) matrix, and \( {Q}_{n}^{ * }{A}_{n}{Q}_{n} \) is upper triangular.
Yes
Lemma 3.28 For an \( n \times n \) matrix \( A \) and its adjoint \( {A}^{ * } \) we have that\n\n\[ \left( {{Ax}, y}\right) = \left( {x,{A}^{ * }y}\right) \]\n\nfor all \( x, y \in {\mathbb{C}}^{n} \), where \( \left( {\cdot , \cdot }\right) \) denotes the Euclidean scalar product.
Proof. Simple calculations yield\n\n\[ \left( {{Ax}, y}\right) = \mathop{\sum }\limits_{{j = 1}}^{n}{\left( Ax\right) }_{j}{\bar{y}}_{j} = \mathop{\sum }\limits_{{j = 1}}^{n}\mathop{\sum }\limits_{{k = 1}}^{n}{a}_{jk}{x}_{k}{\bar{y}}_{j} \]\n\n\[ = \mathop{\sum }\limits_{{k = 1}}^{n}\mathop{\sum }\limits_{{j = 1}}^{n}{x}_{k}\overline{{a}_{kj}^{ * }{y}_{j}} = \mathop{\sum }\limits_{{k = 1}}^{n}{x}_{k}\overline{{A}^{ * }{y}_{k}} = \left( {x,{A}^{ * }y}\right) ,\]\n\nwhere we have used that \( {a}_{kj}^{ * } = \overline{{a}_{jk}} \) .
Yes
The eigenvalues of a Hermitian \( n \times n \) matrix are real, and the eigenvectors form an orthogonal basis in \( {\mathbb{C}}^{n} \) .
Proof. If \( A \) is Hermitian, i.e., if \( A = {A}^{ * } \), then the matrix \( \widetilde{A} \mathrel{\text{:=}} {Q}^{ * }{AQ} \) from Theorem 3.27 is also Hermitian, since\n\n\[ \n{\widetilde{A}}^{ * } = {\left( {Q}^{ * }AQ\right) }^{ * } = {Q}^{ * }{A}^{ * }{Q}^{* * } = {Q}^{ * }{AQ} = \widetilde{A}.\n\]\n\nTherefore, in this case the upper triangular matrix \( \widetilde{A} \) must be diagonal; i.e.,\n\n\[ \n\widetilde{A} = D \mathrel{\text{:=}} \operatorname{diag}\left( {{\lambda }_{1},\ldots ,{\lambda }_{n}}\right)\n\]\n\nSince from \( {Q}^{ * }{AQ} = D \) it follows that \( {AQ} = {QD} \), we can conclude that the columns of \( Q = \left( {{u}_{1},\ldots ,{u}_{n}}\right) \) satisfy \( A{u}_{j} = {\lambda }_{j}{u}_{j}, j = 1,\ldots, n \) . Hence the eigenvectors of a Hermitian matrix form an orthogonal basis in \( {\mathbb{C}}^{n} \) . Because of\n\n\[ \n{\lambda }_{j} = \left( {A{u}_{j},{u}_{j}}\right) = \left( {{u}_{j}, A{u}_{j}}\right) = \overline{\left( A{u}_{j},{u}_{j}\right) } = {\bar{\lambda }}_{j},\n\]\n\nthe eigenvalues of Hermitian matrices are real.
Yes
For an \( n \times n \) matrix \( A \) we have\n\n\[ \parallel A{\parallel }_{2} = \sqrt{\rho \left( {{A}^{ * }A}\right) } \]\n\nIf \( A \) is Hermitian, then\n\n\[ \parallel A{\parallel }_{2} = \rho \left( A\right) \]
Proof. From Lemma 3.28 we have that\n\n\[ \parallel {Ax}{\parallel }_{2}^{2} = \left( {{Ax},{Ax}}\right) = \left( {x,{A}^{ * }{Ax}}\right) \]\n\nfor all \( x \in {\mathbb{C}}^{n} \) . Hence the Hermitian matrix \( {A}^{ * }A \) is positive semidefinite and therefore has \( n \) orthonormal eigenvectors\n\n\[ {A}^{ * }A{u}_{j} = {\mu }_{j}^{2}{u}_{j},\;j = 1,\ldots, n \]\n\nwith real nonnegative eigenvalues. We use the orthonormal basis of eigenvectors and represent \( x \in {\mathbb{C}}^{n} \) by\n\n\[ x = \mathop{\sum }\limits_{{j = 1}}^{n}{\alpha }_{j}{u}_{j} \]\n\nand have\n\n\[ \parallel x{\parallel }_{2}^{2} = \left( {x, x}\right) = \left( {\mathop{\sum }\limits_{{j = 1}}^{n}{\alpha }_{j}{u}_{j},\mathop{\sum }\limits_{{k = 1}}^{n}{\alpha }_{k}{u}_{k}}\right) = \mathop{\sum }\limits_{{j = 1}}^{n}{\left| {\alpha }_{j}\right| }^{2} \]\n\nand\n\n\[ \parallel {Ax}{\parallel }_{2}^{2} = \left( {{Ax},{Ax}}\right) = \left( {x,{A}^{ * }{Ax}}\right) = \left( {\mathop{\sum }\limits_{{j = 1}}^{n}{\alpha }_{j}{u}_{j},\mathop{\sum }\limits_{{k = 1}}^{n}{\mu }_{k}^{2}{\alpha }_{k}{u}_{k}}\right) = \mathop{\sum }\limits_{{j = 1}}^{n}{\mu }_{j}^{2}{\left| {\alpha }_{j}\right| }^{2}. \]\n\nFrom this we obtain that\n\n\[ \parallel {Ax}{\parallel }_{2}^{2} \leq \rho \left( {{A}^{ * }A}\right) \parallel x{\parallel }_{2}^{2}, \]\n\nwhence\n\n\[ \parallel A{\parallel }_{2}^{2} \leq \rho \left( {{A}^{ * }A}\right) \]\n\nfollows. On the other hand, if we choose \( j \) such that \( {\mu }_{j}^{2} = \rho \left( {{A}^{ * }A}\right) \), then we\n\nhave that\n\n\[ \parallel A{\parallel }_{2}^{2} = {\left\lbrack \mathop{\sup }\limits_{{\parallel x{\parallel }_{2} = 1}}\parallel Ax{\parallel }_{2}\right\rbrack }^{2} \geq {\begin{Vmatrix}A{u}_{j}\end{Vmatrix}}_{2}^{2} = \left( {{u}_{j},{A}^{ * }A{u}_{j}}\right) = {\mu }_{j}^{2} = \rho \left( {{A}^{ * }A}\right) . \]\n\nThis concludes the proof of \( \parallel A{\parallel }_{2} = \sqrt{\rho \left( {{A}^{ * }A}\right) } \) . If \( A \) is Hermitian, then \( {A}^{ * }A = {A}^{2} \), whence \( \rho \left( {{A}^{ * }A}\right) = \rho \left( {A}^{2}\right) = {\left\lbrack \rho \left( A\right) \right\rbrack }^{2} \) follows.
Yes
Theorem 3.32 For each norm on \( {\mathbb{C}}^{n} \) and each \( n \times n \) matrix \( A \) we have that\n\n\[ \rho \left( A\right) \leq \parallel A\parallel \]\n\nConversely, to each matrix \( A \) and each \( \varepsilon > 0 \) there exists a norm on \( {\mathbb{C}}^{n} \) such that\n\n\[ \parallel A\parallel \leq \rho \left( A\right) + \varepsilon \]
Proof. Let \( \lambda \) be an eigenvalue of \( A \) with eigenvector \( u \) . We may assume that \( \parallel u\parallel = 1 \) . Then the first part of the theorem follows from\n\n\[ \parallel A\parallel = \mathop{\sup }\limits_{{\parallel x\parallel = 1}}\parallel {Ax}\parallel \geq \parallel {Au}\parallel = \parallel {\lambda u}\parallel = \left| \lambda \right| .\n\nFor the second part, by Theorem 3.27 there exists a unitary matrix \( Q \)\n\nsuch that\n\[ B = {Q}^{ * }{AQ} = \left( \begin{matrix} {b}_{11} & {b}_{12} & {b}_{13} & . & . & {b}_{1n} \\ & {b}_{22} & {b}_{23} & . & . & {b}_{2n} \\ & & {b}_{33} & . & . & {b}_{3n} \\ . & . & . & . & . & . \\ & & & & & {b}_{nn} \end{matrix}\right)\n\nis upper triangular. Because of \( \det \left( {{\lambda I} - A}\right) = \det \left( {{\lambda I} - B}\right) \), the eigenvalues of \( A \) are given by \( {\lambda }_{j} = {b}_{jj}, j = 1,\ldots, n \) . We set\n\n\[ b \mathrel{\text{:=}} \mathop{\max }\limits_{{1 \leq j \leq k \leq n}}\left| {b}_{jk}\right| \]\n\nand\n\n\[ \delta \mathrel{\text{:=}} \min \left( {1,\frac{\varepsilon }{\left( {n - 1}\right) b}}\right) \]\n\nand define the diagonal matrix\n\n\[ D \mathrel{\text{:=}} \operatorname{diag}\left( {1,\delta ,{\delta }^{2},\ldots ,{\delta }^{n - 1}}\right) \]\n\nwith the inverse\n\n\[ {D}^{-1} = \operatorname{diag}\left( {1,{\delta }^{-1},{\delta }^{-2},\ldots ,{\delta }^{-n + 1}}\right) .\n\nThen for \( C \mathrel{\text{:=}} {D}^{-1}{BD} \) we have that\n\n\[ C = \left( \begin{matrix} {b}_{11} & \delta {b}_{12} & {\delta }^{2}{b}_{13} & . & . & {\delta }^{n - 1}{b}_{1n} \\ & {b}_{22} & \delta {b}_{23} & . & . & {\delta }^{n - 2}{b}_{2n} \\ & & {b}_{33} & . & . & {\delta }^{n - 3}{b}_{3n} \\ . & . & . & . & . & . \\ & & & & & {b}_{nn} \end{matrix}\right) \]\n\nSince \( \delta \leq 1 \), by Theorem 3.26, we can estimate\n\n\[ \parallel C{\parallel }_{\infty } \leq \mathop{\max }\limits_{{j = 1,\ldots, n}}\left| {b}_{jj}\right| + \left( {n - 1}\right) {\delta b} \leq \rho \left( A\right) + \varepsilon .\n\nAfter setting \( V \mathrel{\text{:=}} {QD} \) we define a norm on \( {\mathbb{C}}^{n} \) by \( \parallel x\parallel \mathrel{\text{:=}} {\begin{Vmatrix}{V}^{-1}x\end{Vmatrix}}_{\infty } \) . Using \( C = {V}^{-1}{AV} \) we now obtain\n\n\[ \parallel {Ax}\parallel = {\begin{Vmatrix}{V}^{-1}Ax\end{Vmatrix}}_{\infty } = {\begin{Vmatrix}C{V}^{-1}x\end{Vmatrix}}_{\infty } \leq \parallel C{\parallel }_{\infty }{\begin{Vmatrix}{V}^{-1}x\end{Vmatrix}}_{\infty } = \parallel C{\parallel }_{\infty }\parallel x\parallel \]\n\nfor all \( x \in {\mathbb{C}}^{n} \) . Hence\n\n\[ \parallel A\parallel \leq \parallel C{\parallel }_{\infty } \leq \rho \left( A\right) + \varepsilon \]\n\nand the proof is finished.
Yes
Theorem 3.34 Every convergent sequence is a Cauchy sequence.
Proof. Let \( {x}_{n} \rightarrow x, n \rightarrow \infty \) . Then, for \( \varepsilon > 0 \) there exists \( N\left( \varepsilon \right) \in \mathbb{N} \) such that \( \begin{Vmatrix}{{x}_{n} - x}\end{Vmatrix} < \varepsilon /2 \) for all \( n \geq N\left( \varepsilon \right) \) . Now the triangle inequality yields\n\n\[ \begin{Vmatrix}{{x}_{n} - {x}_{m}}\end{Vmatrix} = \begin{Vmatrix}{{x}_{n} - x + x - {x}_{m}}\end{Vmatrix} \leq \begin{Vmatrix}{{x}_{n} - x}\end{Vmatrix} + \begin{Vmatrix}{x - {x}_{m}}\end{Vmatrix} < \varepsilon \]\n\nfor all \( n, m \geq N\left( \varepsilon \right) \) .
Yes
Example 3.36 The linear space \( C\left\lbrack {a, b}\right\rbrack \) furnished with the maximum norm\n\n\[ \parallel f{\parallel }_{\infty } \mathrel{\text{:=}} \mathop{\max }\limits_{{x \in \left\lbrack {a, b}\right\rbrack }}\left| {f\left( x\right) }\right| \]\n\nis a Banach space.
Proof. The norm axioms (N1)-(N3) are trivially satisfied. The triangle inequality follows from\n\n\[ \parallel f + g{\parallel }_{\infty } = \mathop{\max }\limits_{{x \in \left\lbrack {a, b}\right\rbrack }}\left| {\left( {f + g}\right) \left( x\right) }\right| = \left| {\left( {f + g}\right) \left( {x}_{0}\right) }\right| \leq \left| {f\left( {x}_{0}\right) }\right| + \left| {g\left( {x}_{0}\right) }\right| \]\n\n\[ \leq \mathop{\max }\limits_{{x \in \left\lbrack {a, b}\right\rbrack }}\left| {f\left( x\right) }\right| + \mathop{\max }\limits_{{x \in \left\lbrack {a, b}\right\rbrack }}\left| {g\left( x\right) }\right| = \parallel f{\parallel }_{\infty } + \parallel g{\parallel }_{\infty } \]\n\nfor some \( {x}_{0} \in \left\lbrack {a, b}\right\rbrack \) . Since the condition \( {\begin{Vmatrix}{f}_{n} - f\end{Vmatrix}}_{\infty } < \varepsilon \) is equivalent to \( \left| {{f}_{n}\left( x\right) - f\left( x\right) }\right| < \varepsilon \) for all \( x \in \left\lbrack {a, b}\right\rbrack \), convergence of a sequence of continuous functions in the maximum norm is equivalent to uniform convergence on \( \left\lbrack {a, b}\right\rbrack \) . Since the Cauchy criterion is sufficient for uniform convergence of a sequence of continuous functions to a continuous limit function, the space \( C\left\lbrack {a, b}\right\rbrack \) is complete with respect to the maximum norm.
Yes
The linear space \( C\left\lbrack {a, b}\right\rbrack \) equipped with the \( {L}_{1} \) norm\n\n\[ \parallel f{\parallel }_{1} \mathrel{\text{:=}} {\int }_{a}^{b}\left| {f\left( x\right) }\right| {dx} \]\n\nis not complete.
The norm axioms are trivially satisfied. Without loss of generality we take \( \left\lbrack {a, b}\right\rbrack = \left\lbrack {0,2}\right\rbrack \) and choose\n\n\[ {f}_{n}\left( x\right) \mathrel{\text{:=}} \left\{ \begin{array}{ll} {x}^{n}, & 0 \leq x \leq 1 \\ 1, & 1 \leq x \leq 2 \end{array}\right. \]\n\nThen for \( m > n \) we have that\n\n\[ {\begin{Vmatrix}{f}_{n} - {f}_{m}\end{Vmatrix}}_{1} = {\int }_{0}^{1}\left( {{x}^{n} - {x}^{m}}\right) {dx} \leq \frac{1}{n + 1} \rightarrow 0,\;n \rightarrow \infty ,\]\n\nand therefore \( \left( {f}_{n}\right) \) is a Cauchy sequence. Now we assume that \( \left( {f}_{n}\right) \) converges with respect to the \( {L}_{1} \) norm to a continuous function \( f \) ; i.e.,\n\n\[ {\begin{Vmatrix}{f}_{n} - f\end{Vmatrix}}_{1} \rightarrow 0,\;n \rightarrow \infty . \]\n\nThen\n\n\[ {\int }_{0}^{1}\left| {f\left( x\right) }\right| {dx} \leq {\int }_{0}^{1}\left| {f\left( x\right) - {x}^{n}}\right| {dx} + {\int }_{0}^{1}{x}^{n}{dx} \leq {\begin{Vmatrix}f - {f}_{n}\end{Vmatrix}}_{1} + \frac{1}{n + 1} \rightarrow 0 \]\nfor \( n \rightarrow \infty \), whence \( f\left( x\right) = 0 \) follows for \( 0 \leq x \leq 1 \) . Furthermore, we have\n\n\[ {\int }_{1}^{2}\left| {f\left( x\right) - 1}\right| {dx} = {\int }_{1}^{2}\left| {f\left( x\right) - {f}_{n}\left( x\right) }\right| {dx} \leq {\begin{Vmatrix}f - {f}_{n}\end{Vmatrix}}_{1} \rightarrow 0,\;n \rightarrow \infty . \]\n\nThis implies that \( f\left( x\right) = 1 \) for \( 1 \leq x \leq 2 \), and we have a contradiction, since \( f \) is continuous.
Yes
Example 3.38 The linear space \( C\left\lbrack {a, b}\right\rbrack \) equipped with the \( {L}_{2} \) norm\n\n\[ \n\parallel f{\parallel }_{2} \mathrel{\text{:=}} {\left( {\int }_{a}^{b}{\left| f\left( x\right) \right| }^{2}dx\right) }^{1/2} \n\]\n\nis not complete.
Proof. The norm is generated by the scalar product\n\n\[ \n\left( {f, g}\right) \mathrel{\text{:=}} {\int }_{a}^{b}f\left( x\right) g\left( x\right) {dx}. \n\]\n\nConsidering the same sequence as in Example 3.37, it can be seen that \( C\left\lbrack {a, b}\right\rbrack \) also is not complete with respect to the \( {L}_{2} \) norm. Again note that the space \( {L}^{2}\left\lbrack {a, b}\right\rbrack \) of measurable and Lebesgue square-integrable real-valued functions is complete with respect to the \( {L}_{2} \) norm (see \( \left\lbrack {5,{51},{59}}\right\rbrack \) ).
Yes
Theorem 3.39 Each finite-dimensional normed space is a Banach space.
Proof. Let \( X \) be finite-dimensional with basis \( {u}_{1},\ldots ,{u}_{n} \) and assume that \( \left( {x}_{\nu }\right) \) is a Cauchy sequence in \( X \) . We represent\n\n\[ \n{x}_{\nu } = \mathop{\sum }\limits_{{j = 1}}^{n}{\alpha }_{j\nu }{u}_{j} \n\] \n\nand recall from Theorem 3.8 that there exists \( C > 0 \) such that \n\n\[ \n\mathop{\max }\limits_{{j = 1,\ldots, n}}\left| {{\alpha }_{j\nu } - {\alpha }_{j\mu }}\right| \leq C\begin{Vmatrix}{{x}_{\nu } - {x}_{\mu }}\end{Vmatrix} \n\] \n\nfor all \( \nu ,\mu \in \mathbb{N} \) . Hence for \( j = 1,\ldots, n \) the \( \left( {\alpha }_{j\nu }\right) \) are Cauchy sequences in \( \mathbb{C} \) . Therefore, there exist \( {\alpha }_{1},\ldots ,{\alpha }_{n} \) such that \( {\alpha }_{j\nu } \rightarrow {\alpha }_{j},\nu \rightarrow \infty \), for \( j = 1,\ldots, n \), since the Cauchy criterion is sufficient for convergence in \( \mathbb{C} \) . Then we have convergence, \n\n\[ \n{x}_{\nu } \rightarrow x \mathrel{\text{:=}} \mathop{\sum }\limits_{{j = 1}}^{n}{\alpha }_{j}{u}_{j} \in X,\;\nu \rightarrow \infty , \n\] \n\nand the proof is finished.
Yes
Theorem 3.44 Each contraction operator has at most one fixed point.
Proof. Assume that \( x \) and \( y \) are two different fixed points of the contraction operator \( A \) . Then\n\n\[ 0 \neq \parallel x - y\parallel = \parallel {Ax} - {Ay}\parallel \leq q\parallel x - y\parallel \]\n\nwhence \( 1 \leq q \) follows. This is a contradiction to the fact that \( A \) is a contraction operator.
Yes
Theorem 3.45 (Banach) Let \( U \) be a complete subset of a normed space \( X \) and let \( A : U \rightarrow U \) be a contraction operator. Then \( A \) has a unique fixed point.
Proof. Starting from an arbitrary element \( {x}_{0} \in U \) we define a sequence \( \left( {x}_{n}\right) \) in \( U \) by the recursion\n\n\[ \n{x}_{n + 1} \mathrel{\text{:=}} A{x}_{n},\;n = 0,1,2,\ldots \n\]\n\nThen we have\n\n\[ \n\begin{Vmatrix}{{x}_{n + 1} - {x}_{n}}\end{Vmatrix} = \begin{Vmatrix}{A{x}_{n} - A{x}_{n - 1}}\end{Vmatrix} \leq q\begin{Vmatrix}{{x}_{n} - {x}_{n - 1}}\end{Vmatrix}, \n\]\n\nand from this we deduce by induction that\n\n\[ \n\begin{Vmatrix}{{x}_{n + 1} - {x}_{n}}\end{Vmatrix} \leq {q}^{n}\begin{Vmatrix}{{x}_{1} - {x}_{0}}\end{Vmatrix},\;n = 1,2,\ldots \n\]\n\nHence, for \( m > n \), by the triangle inequality and the geometric series it follows that\n\n\[ \n\begin{Vmatrix}{{x}_{n} - {x}_{m}}\end{Vmatrix} \leq \begin{Vmatrix}{{x}_{n} - {x}_{n + 1}}\end{Vmatrix} + \begin{Vmatrix}{{x}_{n + 1} - {x}_{n + 2}}\end{Vmatrix} + \cdots + \begin{Vmatrix}{{x}_{m - 1} - {x}_{m}}\end{Vmatrix} \n\]\n\n(3.12)\n\n\[ \n\leq \left( {{q}^{n} + {q}^{n + 1} + \cdots + {q}^{m - 1}}\right) \begin{Vmatrix}{{x}_{1} - {x}_{0}}\end{Vmatrix} \leq \frac{{q}^{n}}{1 - q}\begin{Vmatrix}{{x}_{1} - {x}_{0}}\end{Vmatrix}. \n\]\n\nSince \( {q}^{n} \rightarrow 0, n \rightarrow \infty \), this implies that \( \left( {x}_{n}\right) \) is a Cauchy sequence, and therefore because \( U \) is complete there exists an element \( x \in U \) such that \( {x}_{n} \rightarrow x, n \rightarrow \infty \) . Finally, the continuity of \( A \) from Remark 3.42 yields\n\n\[ \nx = \mathop{\lim }\limits_{{n \rightarrow \infty }}{x}_{n + 1} = \mathop{\lim }\limits_{{n \rightarrow \infty }}A{x}_{n} = {Ax} \n\]\n\ni.e., \( x \) is a fixed point of \( A \) . That this fixed point is unique we have already settled by Theorem 3.44.
Yes
Theorem 3.46 Let \( A \) be a contraction operator with contraction constant \( q \) mapping a complete subset \( U \) of a normed space \( X \) into itself. Then the successive approximations\n\n\[ \n{x}_{n + 1} \mathrel{\text{:=}} A{x}_{n},\;n = 0,1,2,\ldots ,\n\]\n\nwith arbitrary \( {x}_{0} \in U \) converge to the unique fixed point \( x \) of \( A \) . We have the a priori error estimate\n\n\[ \n\begin{Vmatrix}{{x}_{n} - x}\end{Vmatrix} \leq \frac{{q}^{n}}{1 - q}\begin{Vmatrix}{{x}_{1} - {x}_{0}}\end{Vmatrix}\n\]\nand the a posteriori error estimate\n\n\[ \n\begin{Vmatrix}{{x}_{n} - x}\end{Vmatrix} \leq \frac{q}{1 - q}\begin{Vmatrix}{{x}_{n} - {x}_{n - 1}}\end{Vmatrix}\n\]\n\nfor all \( n \in \mathbb{N} \) .
Proof. The a priori error estimate follows from (3.12) by passing to the limit \( m \rightarrow \infty \) . The a posteriori estimate follows from the a priori estimate applied with starting element \( {x}_{0} = {x}_{n - 1} \) .
Yes
Theorem 3.48 Let \( B : X \rightarrow X \) be a bounded linear operator on a Banach space \( X \) with \( \parallel B\parallel < 1 \), and let \( I : X \rightarrow X \) denote the identity operator. Then \( I - B \) is bijective; i.e., for each \( z \in X \) the equation\n\n\[ x - {Bx} = z \]\n\nhas a unique solution \( x \in X \) . The successive approximations\n\n\[ {x}_{n + 1} \mathrel{\text{:=}} B{x}_{n} + z,\;n = 0,1,2,\ldots ,\]\n\nwith arbitrary \( {x}_{0} \in X \) converge to this solution, and we have the a priori\n\nestimate\n\[ \begin{Vmatrix}{{x}_{n} - x}\end{Vmatrix} \leq \frac{\parallel B{\parallel }^{n}}{1 - \parallel B\parallel }\begin{Vmatrix}{{x}_{1} - {x}_{0}}\end{Vmatrix} \]\n\nand the a posteriori estimate\n\n\[ \begin{Vmatrix}{{x}_{n} - x}\end{Vmatrix} \leq \frac{\parallel B\parallel }{1 - \parallel B\parallel }\begin{Vmatrix}{{x}_{n} - {x}_{n - 1}}\end{Vmatrix} \]\n\nfor all \( n \in \mathbb{N} \) . Furthermore, the inverse operator \( {\left( I - B\right) }^{-1} \) is bounded by\n\n\[ \begin{Vmatrix}{\left( I - B\right) }^{-1}\end{Vmatrix} \leq \frac{1}{1 - \parallel B\parallel }.\]
Proof. For fixed, but arbitrary, \( z \in X \) we define the operator \( A : X \rightarrow X \) by\n\n\[ {Ax} \mathrel{\text{:=}} {Bx} + z,\;x \in X. \]\n\nThen we have\n\n\[ \parallel {Ax} - {Ay}\parallel = \parallel B\left( {x - y}\right) \parallel \leq \parallel B\parallel \parallel x - y\parallel \]\n\nfor all \( x, y \in X \) ; i.e., \( A \) is a contraction with contraction number \( q = \parallel B\parallel \) . Now the statements of the theorem can be deduced from Theorem 3.46.\n\nWith the starting element \( {x}_{0} = z \) the successive approximations lead to\n\n\[ {x}_{n} = \mathop{\sum }\limits_{{k = 0}}^{n}{B}^{k}z \]\n\nwith the iterated operators \( {B}^{k} : X \rightarrow X \) defined recursively by \( {B}^{0} \mathrel{\text{:=}} I \) and \( {B}^{k} \mathrel{\text{:=}} B{B}^{k - 1} \) for \( k \in \mathbb{N} \) . Hence, in view of Remark 3.25, we have\n\n\[ \begin{Vmatrix}{x}_{n}\end{Vmatrix} \leq \mathop{\sum }\limits_{{k = 0}}^{n}\begin{Vmatrix}{{B}^{k}z}\end{Vmatrix} \leq \mathop{\sum }\limits_{{k = 0}}^{n}\parallel B{\parallel }^{k}\parallel z\parallel \leq \frac{\parallel z\parallel }{1 - \parallel B\parallel }, \]\n\nand therefore, since \( {x}_{n} \rightarrow {\left( I - B\right) }^{-1}z, n \rightarrow \infty \), it follows that\n\n\[ \begin{Vmatrix}{{\left( I - B\right) }^{-1}z}\end{Vmatrix} \leq \frac{\parallel z\parallel }{1 - \parallel B\parallel } \]\n\nfor all \( z \in X \) .
Yes
Theorem 3.50 Let \( U \) be a finite-dimensional subspace of a normed space \( X \) . Then for every element in \( X \) there exists a best approximation with respect to \( U \) .
Proof. Let \( w \in X \) and choose a minimizing sequence \( \left( {u}_{n}\right) \) for \( w \) ; i.e., \( {u}_{n} \in U \) satisfies\n\n\[\n\begin{Vmatrix}{w - {u}_{n}}\end{Vmatrix} \rightarrow d \mathrel{\text{:=}} \mathop{\inf }\limits_{{u \in U}}\parallel w - u\parallel ,\;n \rightarrow \infty .\n\]\n\nBecause of \( \begin{Vmatrix}{u}_{n}\end{Vmatrix} \leq \begin{Vmatrix}{w - {u}_{n}}\end{Vmatrix} + \parallel w\parallel \) the sequence \( \left( {u}_{n}\right) \) is bounded. By Theorem 3.11 the sequence \( \left( {u}_{n}\right) \) contains a convergent subsequence \( \left( {u}_{n\left( \ell \right) }\right) \) with limit \( v \in U \) . Then\n\n\[\n\parallel w - v\parallel = \mathop{\lim }\limits_{{\ell \rightarrow \infty }}\begin{Vmatrix}{w - {u}_{n\left( \ell \right) }}\end{Vmatrix} = d\n\]\n\ncompletes the proof.
Yes
Theorem 3.51 Let \( U \) be a linear subspace of a pre-Hilbert space \( X \) . An element \( v \) is a best approximation to \( w \in X \) with respect to \( U \) if and only if\n\n\[ \left( {w - v, u}\right) = 0 \]\n\n(3.13)\n\nfor all \( u \in U \), i.e., if and only if \( w - v \bot U \) . To each \( w \in X \) there exists at most one best approximation with respect to \( U \) .
Proof. We begin by noting the equality\n\n\[ \parallel w - u{\parallel }^{2} = \parallel w - v{\parallel }^{2} + 2\operatorname{Re}\left( {w - v, v - u}\right) + \parallel v - u{\parallel }^{2}, \]\n\n(3.14)\n\nwhich is valid for all \( u, v \in U \) . From this, sufficiency of the condition (3.13) is obvious, since \( U \) is a linear subspace.\n\nTo establish the necessity we assume that \( v \) is a best approximation and \( \left( {w - v,{u}_{0}}\right) \neq 0 \) for some \( {u}_{0} \in U \) . Then, since \( U \) is a linear subspace, we may assume that \( \left( {w - v,{u}_{0}}\right) \in \mathbb{R} \) . Choosing\n\n\[ u = v + \frac{\left( w - v,{u}_{0}\right) }{{\begin{Vmatrix}{u}_{0}\end{Vmatrix}}^{2}}{u}_{0} \]\n\nfrom (3.14) we arrive at\n\n\[ \parallel w - u{\parallel }^{2} = \parallel w - v{\parallel }^{2} - \frac{{\left( w - v,{u}_{0}\right) }^{2}}{{\begin{Vmatrix}{u}_{0}\end{Vmatrix}}^{2}} < \parallel w - v{\parallel }^{2}, \]\n\nwhich contradicts the fact that \( v \) is a best approximation of \( w \) .\n\nFinally, assume that \( {v}_{1} \) and \( {v}_{2} \) are best approximations. Then from (3.13) it follows that \( \left( {w - {v}_{1},{v}_{1} - {v}_{2}}\right) = 0 = \left( {w - {v}_{2},{v}_{1} - {v}_{2}}\right) \) . This implies \( \left( {{v}_{1} - {v}_{2},{v}_{1} - {v}_{2}}\right) = 0 \), whence \( {v}_{1} = {v}_{2} \) follows.
Yes
Theorem 3.52 Let \( U \) be a complete linear subspace of a pre-Hilbert space \( X \) . Then to each element \( w \in X \) there exists a unique best approximation with respect to \( U \) . The operator \( P : X \rightarrow U \) mapping \( w \in X \) onto its best approximation is a bounded linear operator with the properties\n\n\[ \n{P}^{2} = P\;\text{ and }\;\parallel P\parallel = 1.\n\]\n\nIt is called the orthogonal projection from \( X \) onto \( U \) .
Proof. Choose a sequence \( \left( {u}_{n}\right) \) with\n\n\[ \n{\begin{Vmatrix}w - {u}_{n}\end{Vmatrix}}^{2} \leq {d}^{2} + \frac{1}{n},\;n \in \mathbb{N},\n\]\n\n(3.15)\n\nwhere \( d \mathrel{\text{:=}} \mathop{\inf }\limits_{{u \in U}}\parallel w - u\parallel \) . Then\n\n\[ \n\parallel \left( {w - {u}_{n}}\right) + \left( {w - {u}_{m}}\right) {\parallel }^{2} + \parallel {u}_{n} - {u}_{m}{\parallel }^{2} = 2\parallel w - {u}_{n}{\parallel }^{2} + 2\parallel w - {u}_{m}{\parallel }^{2}\n\]\n\n\[ \n\leq 4{d}^{2} + \frac{2}{n} + \frac{2}{m}\n\]\n\nfor all \( n, m \in \mathbb{N} \), and since \( \frac{1}{2}\left( {{u}_{n} + {u}_{m}}\right) \in U \), it follows that\n\n\[ \n{\begin{Vmatrix}{u}_{n} - {u}_{m}\end{Vmatrix}}^{2} \leq 4{d}^{2} + \frac{2}{n} + \frac{2}{m} - 4{\begin{Vmatrix}w - \frac{1}{2}\left( {u}_{n} + {u}_{m}\right) \end{Vmatrix}}^{2} \leq \frac{2}{n} + \frac{2}{m}.\n\]\n\nHence, \( \left( {u}_{n}\right) \) is a Cauchy sequence, and since \( U \) is complete, there exists an element \( v \in U \) such that \( {u}_{n} \rightarrow v, n \rightarrow \infty \) . Passing to the limit \( n \rightarrow \infty \) in (3.15) shows that \( v \) is a best approximation of \( w \) with respect to \( U \) . Uniqueness of the best approximation follows from Theorem 3.51.\n\nTrivially, we have \( {Pu} = u \) for all \( u \in U \), and this implies \( {P}^{2} = P \) . From (3.13) it can be deduced that \( P \) is a linear operator and that\n\n\[ \n\parallel w{\parallel }^{2} = \parallel {Pw}{\parallel }^{2} + \parallel w - {Pw}{\parallel }^{2} \geq \parallel {Pw}{\parallel }^{2}\n\]\n\nfor all \( w \in X \) . Therefore, \( P \) is bounded with \( \parallel P\parallel \leq 1 \) . From Remark 3.25 and \( {P}^{2} = P \) it follows that \( \parallel P\parallel \geq 1 \), which concludes the proof.
Yes
Corollary 3.53 Let \( U \) be a finite-dimensional linear subspace of a pre-Hilbert space \( X \) with basis \( {u}_{1},\ldots ,{u}_{n} \) . The linear combination\n\n\[ v = \mathop{\sum }\limits_{{k = 1}}^{n}{\alpha }_{k}{u}_{k} \]\n\nis the best approximation to \( w \in X \) with respect to \( U \) if and only if the coefficients \( {\alpha }_{1},\ldots ,{\alpha }_{n} \) satisfy the normal equations\n\n\[ \mathop{\sum }\limits_{{k = 1}}^{n}{\alpha }_{k}\left( {{u}_{k},{u}_{j}}\right) = \left( {w,{u}_{j}}\right) ,\;j = 1,\ldots, n. \]\n\n(3.16)
Proof. The normal equations (3.16) obviously are equivalent to (3.13).
No
Corollary 3.54 Let \( U \) be a finite-dimensional linear subspace of a pre-Hilbert space \( X \) with orthonormal basis \( {u}_{1},\ldots ,{u}_{n} \) . Then the orthogonal projection operator is given by\n\n\[ \n{Pw} = \mathop{\sum }\limits_{{k = 1}}^{n}\left( {w,{u}_{k}}\right) {u}_{k},\;w \in X.\n\]
Proof. This is trivial from either the orthogonality condition of Theorem 3.51 or the normal equations of Corollary 3.53.
No
Theorem 4.1 Let \( B \) be an \( n \times n \) matrix. Then the successive approximations\n\n\[ \n{x}_{\nu + 1} \mathrel{\text{:=}} B{x}_{\nu } + z,\;\nu = 0,1,2,\ldots ,\n\]\n\nconverge for each \( z \in {\mathbb{C}}^{n} \) and each \( {x}_{0} \in {\mathbb{C}}^{n} \) if and only if\n\n\[ \n\rho \left( B\right) < 1\n\]\n\nfor the spectral radius of \( B \) .
Proof. If \( \rho \left( B\right) < 1 \), then by Theorem 3.32 there exists a norm \( \parallel \cdot \parallel \) on \( {\mathbb{C}}^{n} \) such that \( \parallel B\parallel < 1 \) . Now convergence follows from Theorem 3.48 together with the equivalence of all norms on \( {\mathbb{C}}^{n} \) according to Theorem 3.8.\n\nConversely, suppose that convergence holds. If we assume that \( \rho \left( B\right) \geq 1 \) , then there exists an eigenvalue \( \lambda \) of \( B \) with \( \left| \lambda \right| \geq 1 \) . Let \( x \) denote an associated eigenvector. Then the successive iterations for the right-hand side \( z = x \) and the starting element \( {x}_{0} = x \) lead to the divergent sequence \( {x}_{\nu } = \left( {\mathop{\sum }\limits_{{k = 0}}^{\nu }{\lambda }^{k}}\right) x \) . This is a contradiction.
Yes
Theorem 4.2 Assume that the matrix \( A = \left( {a}_{jk}\right) \) satisfies\n\n\[ \n{q}_{\infty } \mathrel{\text{:=}} \mathop{\max }\limits_{{j = 1,\ldots, n}}\mathop{\sum }\limits_{\substack{{k = 1} \\ {k \neq j} }}^{n}\left| \frac{{a}_{jk}}{{a}_{jj}}\right| < 1 \n\]\n\n(4.1)\n\nor\n\n\[ \n{q}_{1} \mathrel{\text{:=}} \mathop{\max }\limits_{{k = 1,\ldots, n}}\mathop{\sum }\limits_{\substack{{j = 1} \\ {j \neq k} }}^{n}\left| \frac{{a}_{jk}}{{a}_{jj}}\right| < 1 \n\]\n\n(4.2)\n\nor\n\n\[ \n{q}_{2} \mathrel{\text{:=}} {\left( \mathop{\sum }\limits_{\substack{{j, k = 1} \\ {j \neq k} }}^{n}{\left| \frac{{a}_{jk}}{{a}_{jj}}\right| }^{2}\right) }^{1/2} < 1 \n\]\n\n(4.3)\n\nThen the Jacobi method, or method of simultaneous displacements,\n\n\[ \n{x}_{\nu + 1, j} = - \mathop{\sum }\limits_{\substack{{k = 1} \\ {k \neq j} }}^{n}\frac{{a}_{jk}}{{a}_{jj}}{x}_{\nu, k} + \frac{{y}_{j}}{{a}_{jj}},\;j = 1,\ldots, n,\;\nu = 0,1,2,\ldots , \n\]\n\nconverges for each \( y \in {\mathbb{C}}^{n} \) and each \( {x}_{0} \in {\mathbb{C}}^{n} \) to the the unique solution of \( {Ax} = y \) (in any norm on \( {\mathbb{C}}^{n} \) ). For \( \mu = 1,2,\infty \), if \( {q}_{\mu } < 1 \), we have the a priori error estimate\n\n\[ \n{\begin{Vmatrix}{x}_{\nu } - x\end{Vmatrix}}_{\mu } \leq \frac{{q}_{\mu }^{\nu }}{1 - {q}_{\mu }}{\begin{Vmatrix}{x}_{1} - {x}_{0}\end{Vmatrix}}_{\mu } \n\]\n\nand the a posteriori error estimate\n\n\[ \n{\begin{Vmatrix}{x}_{\nu } - x\end{Vmatrix}}_{\mu } \leq \frac{{q}_{\mu }}{1 - {q}_{\mu }}{\begin{Vmatrix}{x}_{\nu } - {x}_{\nu - 1}\end{Vmatrix}}_{\mu } \n\]\n\nfor all \( \nu \in \mathbb{N} \) .
Proof. The Jacobi matrix \( - {D}^{-1}\left( {{A}_{L} + {A}_{R}}\right) \) has diagonal entries zero and off-diagonal entries \( - {a}_{jk}/{a}_{jj} \) . Hence by Theorem 3.26 we have\n\n\[ \n{\begin{Vmatrix}-{D}^{-1}\left( {A}_{L} + {A}_{R}\right) \end{Vmatrix}}_{\infty } = {q}_{\infty } \n\]\n\n\[ \n{\begin{Vmatrix}-{D}^{-1}\left( {A}_{L} + {A}_{R}\right) \end{Vmatrix}}_{1} = {q}_{1} \n\]\n\n\[ \n{\begin{Vmatrix}-{D}^{-1}\left( {A}_{L} + {A}_{R}\right) \end{Vmatrix}}_{2} \leq {q}_{2} \n\]\n\nNow the assertion follows from Theorem 3.48.
Yes
Theorem 4.3 Assume that the matrix \( A = \left( {a}_{jk}\right) \) fulfills the Sassenfeld criterion\n\n\[ p \mathrel{\text{:=}} \mathop{\max }\limits_{{j = 1,\ldots, n}}{p}_{j} < 1 \]\n\nwhere the numbers \( {p}_{j} \) are recursively defined by\n\n\[ {p}_{1} \mathrel{\text{:=}} \mathop{\sum }\limits_{{k = 2}}^{n}\left| \frac{{a}_{1k}}{{a}_{11}}\right| ,\;{p}_{j} \mathrel{\text{:=}} \mathop{\sum }\limits_{{k = 1}}^{{j - 1}}\left| \frac{{a}_{jk}}{{a}_{jj}}\right| {p}_{k} + \mathop{\sum }\limits_{{k = j + 1}}^{n}\left| \frac{{a}_{jk}}{{a}_{jj}}\right| ,\;j = 2,\ldots, n. \]\n\nThen the Gauss-Seidel method, or method of successive displacements,\n\n\[ {x}_{\nu + 1, j} = - \mathop{\sum }\limits_{{k = 1}}^{{j - 1}}\frac{{a}_{jk}}{{a}_{jj}}{x}_{\nu + 1, k} - \mathop{\sum }\limits_{{k = j + 1}}^{n}\frac{{a}_{jk}}{{a}_{jj}}{x}_{\nu, k} + \frac{{y}_{j}}{{a}_{jj}}, j = 1,\ldots, n,\nu = 0,1,2,\ldots ,\]\n\nconverges for each \( y \in {\mathbb{C}}^{n} \) and each \( {x}_{0} \in {\mathbb{C}}^{n} \) to the the unique solution of \( {Ax} = y \) (in any norm on \( {\mathbb{C}}^{n} \) ). We have the a priori error estimate\n\n\[ {\begin{Vmatrix}{x}_{\nu } - x\end{Vmatrix}}_{\infty } \leq \frac{{p}^{\nu }}{1 - p}{\begin{Vmatrix}{x}_{1} - {x}_{0}\end{Vmatrix}}_{\infty } \]\n\nand the a posteriori error estimate\n\n\[ {\begin{Vmatrix}{x}_{\nu } - x\end{Vmatrix}}_{\infty } \leq \frac{p}{1 - p}{\begin{Vmatrix}{x}_{\nu } - {x}_{\nu - 1}\end{Vmatrix}}_{\infty } \]\n\nfor all \( \nu \in \mathbb{N} \) .
Proof. Consider the equation\n\n\[ \left( {D + {A}_{L}}\right) x = - {A}_{R}z \]\n\nfor \( z \in {\mathbb{C}}^{n} \) with \( \parallel z{\parallel }_{\infty } = 1 \), that is,\n\n\[ {x}_{j} = - \mathop{\sum }\limits_{{k = 1}}^{{j - 1}}\frac{{a}_{jk}}{{a}_{jj}}{x}_{k} - \mathop{\sum }\limits_{{k = j + 1}}^{n}\frac{{a}_{jk}}{{a}_{jj}}{z}_{k},\;j = 1,\ldots, n. \]\n\nBy induction, this implies that \( \left| {x}_{j}\right| \leq {p}_{j} \) for \( j = 1,\ldots, n \), and therefore \( \parallel x{\parallel }_{\infty } \leq p \) . Hence we have\n\n\[ {\begin{Vmatrix}{\left( D + {A}_{L}\right) }^{-1}{A}_{R}\end{Vmatrix}}_{\infty } \leq p \]\n\nand the assertion of the theorem follows from Theorem 3.48.
Yes
Example 4.5 The tridiagonal matrix\n\n\[ A = \left( \begin{array}{rrrrrr} 2 & - 1 & & & & \\ - 1 & 2 & - 1 & & & \\ & - 1 & 2 & - 1 & & \\ & \cdot & \cdot & \cdot & \cdot & \cdot \\ & & & - 1 & 2 & - 1 \\ & & & & - 1 & 2 \end{array}\right) \] from Example 2.1 is not strictly row-diagonally dominant, but it satisfies the Sassenfeld criterion.
Proof. Obviously, \( {q}_{\infty } = 1 \) ; i.e.,(4.1) is not fulfilled. We have the recursion\n\n\[ {p}_{1} = \frac{1}{2},\;{p}_{j} = \frac{1}{2}{p}_{j - 1} + \frac{1}{2},\;j = 2,\ldots, n - 1,\;{p}_{n} = \frac{1}{2}{p}_{n - 1}. \]\n\nFrom this, by induction, it follows that\n\n\[ {p}_{j} = 1 - \frac{1}{{2}^{j}},\;j = 1,\ldots, n - 1,\;{p}_{n} = \frac{1}{2} - \frac{1}{{2}^{n}}. \]\n\nTherefore,\n\n\[ p = 1 - \frac{1}{{2}^{n - 1}} < 1 \]\n\nand this implies convergence of the Gauss-Seidel iterations by Theorem 4.3.
Yes
Assume that the Jacobi matrix \( B \mathrel{\text{:=}} - {D}^{-1}\left( {{A}_{L} + {A}_{R}}\right) \) has real eigenvalues and spectral radius less than one. Then the spectral radius of the iteration matrix\n\n\[ I - \omega {D}^{-1}A = \left( {1 - \omega }\right) I - \omega {D}^{-1}\left( {{A}_{L} + {A}_{R}}\right) \]\n\nfor the Jacobi method with relaxation becomes minimal for the relaxation parameter\n\n\[ {\omega }_{\mathrm{{opt}}} = \frac{2}{2 - {\lambda }_{\max } - {\lambda }_{\min }} \]\n\nand has spectral radius\n\n\[ \rho \left( {I - {\omega }_{\text{opt }}{D}^{-1}A}\right) = \frac{{\lambda }_{\max } - {\lambda }_{\min }}{2 - {\lambda }_{\max } - {\lambda }_{\min }}, \]\n\nwhere \( {\lambda }_{\min } \) and \( {\lambda }_{\max } \) denote the smallest and the largest eigenvalue of \( B \) , respectively. In the case \( {\lambda }_{\min } \neq - {\lambda }_{\max } \) the convergence of the Jacobi method with optimal relaxation parameter is faster than the convergence of the Jacobi method without relaxation.
Proof. For \( \omega > 0 \) the equation \( {Bu} = {\lambda u} \) is equivalent to\n\n\[ \left\lbrack {\left( {1 - \omega }\right) I + {\omega B}}\right\rbrack u = \left\lbrack {1 - \omega + {\omega \lambda }}\right\rbrack u. \]\n\nHence the eigenvalues \( \lambda \) of \( B \) correspond to the eigenvalues \( 1 - \omega + {\omega \lambda } \) of \( \left( {1 - \omega }\right) I + {\omega B} \) . Therefore, the eigenvalues of \( \left( {1 - \omega }\right) I + {\omega B} \) are real, and\n\nthe smallest eigenvalue of \( \left( {1 - \omega }\right) I + {\omega B} \) is given by \( 1 - \omega + \omega {\lambda }_{\min } \) and the largest by \( 1 - \omega + \omega {\lambda }_{\max } \) . Obviously, the spectral radius becomes minimal if the smallest and the largest eigenvalue are of opposite sign and have the same absolute value, i.e., if\n\n\[ 1 - {\omega }_{\mathrm{{opt}}} + {\omega }_{\mathrm{{opt}}}{\lambda }_{\min } = - 1 + {\omega }_{\mathrm{{opt}}} - {\omega }_{\mathrm{{opt}}}{\lambda }_{\max } \]\n\nFrom this, elementary algebra yields the optimal parameter \( {\omega }_{\text{opt }} \) and the spectral radius \( \rho \left( {I - {\omega }_{\text{opt }}{D}^{-1}A}\right) \) as stated in the theorem.
Yes
Theorem 4.11 (Kahan) A necessary condition for the SOR method to be convergent is that \( 0 < \omega < 2 \) .
Proof. Since the eigenvalues \( {\mu }_{1},\ldots ,{\mu }_{n} \) of \( B\left( \omega \right) \) are the zeros of the characteristic polynomial, they satisfy\n\n\[ \mathop{\prod }\limits_{{j = 1}}^{n}{\mu }_{j} = \det B\left( \omega \right) \]\n\n(where multiple eigenvalues are repeated according to their algebraic multiplicity). From this, by the multiplication rules for determinants and since \( D + \omega {A}_{L} \) and \( \left( {1 - \omega }\right) D - \omega {A}_{R} \) are triangular matrices, it follows that\n\n\[ \mathop{\prod }\limits_{{j = 1}}^{n}{\mu }_{j} = \det {\left( D + \omega {A}_{L}\right) }^{-1}\det \left\lbrack {\left( {1 - \omega }\right) D - \omega {A}_{R}}\right\rbrack = {\left( 1 - \omega \right) }^{n}. \]\n\nThis now implies\n\n\[ \rho \left\lbrack {B\left( \omega \right) }\right\rbrack \geq \left| {1 - \omega }\right| \]\n\nand from Theorem 4.1 we conclude the necessity of \( 0 < \omega < 2 \) for convergence.
Yes
Theorem 4.12 (Ostrowski) If \( A \) is Hermitian and positive definite, then the SOR method converges for all \( {x}_{0} \in {\mathbb{C}}^{n} \), all \( y \in {\mathbb{C}}^{n} \), and all \( 0 < \omega < 2 \) to the unique solution of \( {Ax} = y \) .
Proof. Let \( \mu \) be an eigenvalue of \( B\left( \omega \right) \) with eigenvector \( x \) ; i.e., \[ \left\lbrack {\left( {1 - \omega }\right) D - \omega {A}_{R}}\right\rbrack x = \mu \left( {D + \omega {A}_{L}}\right) x. \] With the aid of \[ \left( {2 - \omega }\right) D - {\omega A} - \omega \left( {{A}_{R} - {A}_{L}}\right) = 2\left\lbrack {\left( {1 - \omega }\right) D - \omega {A}_{R}}\right\rbrack \] and \[ \left( {2 - \omega }\right) D + {\omega A} - \omega \left( {{A}_{R} - {A}_{L}}\right) = 2\left\lbrack {D + \omega {A}_{L}}\right\rbrack \] we deduce that \[ \left\lbrack {\left( {2 - \omega }\right) D - {\omega A} - \omega \left( {{A}_{R} - {A}_{L}}\right) }\right\rbrack x = \mu \left\lbrack {\left( {2 - \omega }\right) D + {\omega A} - \omega \left( {{A}_{R} - {A}_{L}}\right) }\right\rbrack x. \] Taking the Euclidean scalar product with \( x \), it now follows that \[ \mu = \frac{\left( {2 - \omega }\right) d - {\omega a} + {i\omega s}}{\left( {2 - \omega }\right) d + {\omega a} + {i\omega s}} \] where we have set \[ a \mathrel{\text{:=}} \left( {{Ax}, x}\right) ,\;d \mathrel{\text{:=}} \left( {{Dx}, x}\right) ,\;s \mathrel{\text{:=}} i\left( {{A}_{R}x - {A}_{L}x, x}\right) . \] Since \( A \) is positive definite, we have \( a > 0 \) and \( d > 0 \), and since \( A \) is Hermitean, \( s \) is real. From \[ \left| {\left( {2 - \omega }\right) d - {\omega a}}\right| < \left| {\left( {2 - \omega }\right) d + {\omega a}}\right| \] for \( 0 < \omega < 2 \) we now can conclude that \( \left| \mu \right| < 1 \) for \( 0 < \omega < 2 \) . Hence convergence of the SOR method for \( 0 < \omega < 2 \) follows from Theorem 4.1. \( ▱ \)
Yes
Corollary 4.16 Under the assumptions of Theorem 4.15 the Gauss-Seidel method converges twice as fast as the Jacobi method.
Proof. From (4.8) we observe that \( \mu = {\lambda }^{2} \) for \( \omega = 1 \) ; i.e., we have\n\n\[ \rho \left\lbrack {B\left( 1\right) }\right\rbrack = {\left\{ \rho \left\lbrack -{D}^{-1}\left( {A}_{L} + {A}_{R}\right) \right\rbrack \right\} }^{2} \]\n\nfor the spectral radii of the Gauss-Seidel matrix \( B\left( 1\right) \) and the Jacobi matrix \( - {D}^{-1}\left( {{A}_{L} + {A}_{R}}\right) \) . Now the statement follows from the observation that by the a priori estimate of Theorem 3.48 the number \( N \) of iterations required for a desired accuracy is inversely proportional to the modulus of the logarithm of the spectral radius; i.e.,\n\n\[ \frac{N\left( \text{ Gauss-Seidel }\right) }{N\left( \text{ Jacobi }\right) } \approx \frac{\ln \rho \left\lbrack {-{D}^{-1}\left( {{A}_{L} + {A}_{R}}\right) }\right\rbrack }{\ln \rho \left\lbrack {B\left( 1\right) }\right\rbrack } = \frac{1}{2}, \]\n\nand this proves the assertion.
Yes
For the tridiagonal matrix \( A \) from Example 4.5 we have\n\n\[ \frac{N\left( \mathrm{{SOR}}\right) }{N\left( \mathrm{{Jacobi}}\right) } \approx \frac{\pi }{4\left( {n + 1}\right) } \] \n\nfor the optimal relaxation parameter.
Proof. Using the trigonometric addition theorem\n\n\[ \frac{1}{2}\sin \frac{{\pi j}\left( {k - 1}\right) }{n + 1} + \frac{1}{2}\sin \frac{{\pi j}\left( {k + 1}\right) }{n + 1} = \cos \frac{\pi j}{n + 1}\sin \frac{\pi jk}{n + 1}, \] \n\nit can be seen that the Jacobi matrix\n\n\[ - {D}^{-1}\left( {{A}_{L} + {A}_{R}}\right) = \frac{1}{2}\left( \begin{matrix} 0 & 1 & & & & \\ 1 & 0 & 1 & & & \\ & 1 & 0 & 1 & & \\ & \cdot & \cdot & \cdot & \cdot & \cdot \\ & & & 1 & 0 & 1 \\ & & & & 1 & 0 \end{matrix}\right) \] \n\ncorresponding to Example 4.5 has the eigenvalues\n\n\[ {\lambda }_{j} = \cos \frac{\pi j}{n + 1},\;j = 1,\ldots, n \] \n\nand associated eigenvectors \( {v}_{j} \) with components\n\n\[ {v}_{j, k} = \sin \frac{\pi jk}{n + 1},\;k = 1,\ldots, n,\;j = 1,\ldots, n. \] \n\nHence,\n\n\[ \Lambda = \rho \left\lbrack {-{D}^{-1}\left( {{A}_{L} + {A}_{R}}\right) }\right\rbrack = \cos \frac{\pi }{n + 1} \approx 1 - \frac{{\pi }^{2}}{2{\left( n + 1\right) }^{2}} \] \n\nand\n\n\[ - \ln \rho \left\lbrack {-{D}^{-1}\left( {{A}_{L} + {A}_{R}}\right) }\right\rbrack \approx \frac{{\pi }^{2}}{2{\left( n + 1\right) }^{2}}. \] \n\nFrom Theorem 4.15 we obtain\n\n\[ {\omega }_{\text{opt }} = \frac{2}{1 + \sin \frac{\pi }{n + 1}} \] \n\nand\n\n\[ \rho \left\lbrack {B\left( {\omega }_{\text{opt }}\right) }\right\rbrack = \frac{1 - \sin \frac{\pi }{n + 1}}{1 + \sin \frac{\pi }{n + 1}} \approx 1 - \frac{2\pi }{n + 1}, \] \n\nwhence\n\n\[ - \ln \rho \left\lbrack {B\left( {\omega }_{\mathrm{{opt}}}\right) }\right\rbrack \approx \frac{2\pi }{n + 1} \] \n\nfollows. This concludes the proof.
Yes
Theorem 4.18 For the spectral radius of \( T \) we have that \( \rho \left( T\right) = {0.5} \) ; i.e., the two-grid iterations converge.
Proof. We note that from (4.18) and (4.19), with \( h \) replaced by \( {2h} \), we have\n\nthat\n\[ \n{A}^{\left( 2h\right) }{v}_{j}^{\left( 2h\right) } = \frac{1}{{h}^{2}}{\sin }^{2}\left( {\pi jh}\right) {v}_{j}^{\left( 2h\right) } = \frac{4}{{h}^{2}}{c}_{j}^{2}{s}_{j}^{2}{v}_{j}^{\left( 2h\right) }, \n\]\n\nwhence\n\n\[ \n{\left\lbrack {A}^{\left( 2h\right) }\right\rbrack }^{-1}{v}_{j}^{\left( 2h\right) } = \frac{{h}^{2}}{4{c}_{j}^{2}{s}_{j}^{2}}{v}_{j}^{\left( 2h\right) },\;j = 1,\ldots ,\frac{n - 1}{2}, \n\]\n\nfollows. From this, using (4.20)-(4.22) and \( {R}^{\left( h\right) }{v}_{\frac{n + 1}{2}}^{\left( h\right) } = 0 \), it can be derived\n\nthat\n\[ \n\left( \begin{matrix} T{v}_{j}^{\left( h\right) } \\ T{v}_{n + 1 - j}^{\left( h\right) } \end{matrix}\right) = {s}_{j}^{2}{c}_{j}^{2}\left( \begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right) \left( \begin{matrix} {v}_{j}^{\left( h\right) } \\ {v}_{n + 1 - j}^{\left( h\right) } \end{matrix}\right) \n\]\n\n(4.24)\n\nfor \( j = 1,\ldots ,\frac{n - 1}{2} \) and\n\n\[ \nT{v}_{\frac{n + 1}{2}}^{\left( h\right) } = \frac{1}{2}{v}_{\frac{n + 1}{2}}^{\left( h\right) }. \n\]\n\n(4.25)\n\nSince the matrix\n\n\[ \nQ = \left( \begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right) \n\]\n\nhas the eigenvalues 0 and 2, from (4.24) and (4.25) it can be seen that the matrix \( T \) has the eigenvalues\n\n\[ \n2{s}_{j}^{2}{c}_{j}^{2} = \frac{1}{2}{\sin }^{2}{\pi jh},\;j = 1,\ldots ,\frac{n + 1}{2}, \n\]\n\nand the eigenvalue zero of multiplicity \( \frac{n - 1}{2} \) . This implies the assertion on the spectral radius of \( T \) .
Yes
We consider the best approximation of a given continuous function \( f : \left\lbrack {0,1}\right\rbrack \rightarrow \mathbb{R} \) by a polynomial \[ p\left( x\right) = \mathop{\sum }\limits_{{k = 0}}^{n}{\alpha }_{k}{x}^{k} \] of degree \( n \) in the least squares sense, i.e., with respect to the \( {L}_{2} \) norm.
Using the monomials \( x \mapsto {x}^{k}, k = 0,1,\ldots, n \), as a basis of the subspace \( {P}_{n} \subset C\left\lbrack {0,1}\right\rbrack \) of polynomials of degree less than or equal to \( n \) (see Theorem 8.2), from Corollary 3.53 and the integrals \[ {\int }_{0}^{1}{x}^{j}{x}^{k}{dx} = \frac{1}{j + k + 1} \] it follows that the coefficients \( {\alpha }_{0},\ldots ,{\alpha }_{n} \) of the best approximation are uniquely determined by the normal equations \[ \mathop{\sum }\limits_{{k = 0}}^{n}\frac{1}{j + k + 1}{\alpha }_{k} = {\int }_{0}^{1}f\left( x\right) {x}^{j}{dx},\;j = 0,\ldots, n. \]
Yes
Theorem 5.3 Let \( X \) and \( Y \) be Banach spaces, let \( A : X \rightarrow Y \) be a bounded linear operator with a bounded inverse \( {A}^{-1} : Y \rightarrow X \) and let \( {A}^{\delta } : X \rightarrow Y \) be a bounded linear operator such that \( \begin{Vmatrix}{A}^{-1}\end{Vmatrix}\begin{Vmatrix}{{A}^{\delta } - A}\end{Vmatrix} < 1 \) . Assume that \( x \) and \( {x}^{\delta } \) are solutions of the equations\n\n\[ \n{Ax} = y \n\]\n\n(5.2)\n\nand\n\n\[ \n{A}^{\delta }{x}^{\delta } = {y}^{\delta } \n\]\n\n(5.3)\n\nrespectively. Then\n\n\[ \n\frac{\begin{Vmatrix}{x}^{\delta } - x\end{Vmatrix}}{\parallel x\parallel } \leq \frac{\operatorname{cond}\left( A\right) }{1 - \operatorname{cond}\left( A\right) \frac{\begin{Vmatrix}{A}^{\delta } - A\end{Vmatrix}}{\parallel A\parallel }}\left\{ {\frac{\begin{Vmatrix}{y}^{\delta } - y\end{Vmatrix}}{\parallel y\parallel } + \frac{\begin{Vmatrix}{A}^{\delta } - A\end{Vmatrix}}{\parallel A\parallel }.}\right\} \n\]
Proof. Writing \( {A}^{\delta } = A\left\lbrack {I + {A}^{-1}\left( {{A}^{\delta } - A}\right) }\right\rbrack \), by Theorem 3.48 we observe that the inverse operator \( {\left\lbrack {A}^{\delta }\right\rbrack }^{-1} = {\left\lbrack I + {A}^{-1}\left( {A}^{\delta } - A\right) \right\rbrack }^{-1}{A}^{-1} \) exists and is bounded by\n\n\[ \n\begin{Vmatrix}{\left\lbrack {A}^{\delta }\right\rbrack }^{-1}\end{Vmatrix} \leq \frac{\begin{Vmatrix}{A}^{-1}\end{Vmatrix}}{1 - \begin{Vmatrix}{A}^{-1}\end{Vmatrix}\begin{Vmatrix}{{A}^{\delta } - A}\end{Vmatrix}}. \n\]\n\n(5.4)\n\nFrom (5.2) and (5.3) we find that\n\n\[ \n{A}^{\delta }\left( {{x}^{\delta } - x}\right) = {y}^{\delta } - y - \left( {{A}^{\delta } - A}\right) x \n\]\n\nwhence\n\n\[ \n{x}^{\delta } - x = {\left\lbrack {A}^{\delta }\right\rbrack }^{-1}\left\{ {{y}^{\delta } - y - \left( {{A}^{\delta } - A}\right) x}\right\} \n\]\n\nfollows. Now we can estimate\n\n\[ \n\begin{Vmatrix}{{x}^{\delta } - x}\end{Vmatrix} \leq \begin{Vmatrix}{\left\lbrack {A}^{\delta }\right\rbrack }^{-1}\end{Vmatrix}\left\{ {\begin{Vmatrix}{{y}^{\delta } - y}\end{Vmatrix} + \begin{Vmatrix}{{A}^{\delta } - A}\end{Vmatrix}\parallel x\parallel }\right\} \n\]\n\nand insert (5.4) to obtain\n\n\[ \n\frac{\begin{Vmatrix}{x}^{\delta } - x\end{Vmatrix}}{\parallel x\parallel } \leq \frac{\operatorname{cond}\left( A\right) }{1 - \begin{Vmatrix}{A}^{-1}\end{Vmatrix}\begin{Vmatrix}{{A}^{\delta } - A}\end{Vmatrix}}\left\{ {\frac{\begin{Vmatrix}{y}^{\delta } - y\end{Vmatrix}}{\parallel A\parallel \parallel x\parallel } + \frac{\begin{Vmatrix}{A}^{\delta } - A\end{Vmatrix}}{\parallel A\parallel }}\right\} . \n\]\n\nFrom this the assertion follows with the aid of \( \parallel A\parallel \parallel x\parallel \geq \parallel y\parallel \) .
Yes
Theorem 5.4 Let \( A \) be an \( m \times n \) matrix of rank \( r \) . Then there exist nonnegative numbers\n\n\[ \n{\mu }_{1} \geq {\mu }_{2} \geq \cdots \geq {\mu }_{r} > {\mu }_{r + 1} = \cdots = {\mu }_{n} = 0 \n\]\n\nand orthonormal vectors \( {u}_{1},\ldots ,{u}_{n} \in {\mathbb{C}}^{n} \) and \( {v}_{1},\ldots ,{v}_{m} \in {\mathbb{C}}^{m} \) such that\n\n\[ \nA{u}_{j} = {\mu }_{j}{v}_{j},\;{A}^{ * }{v}_{j} = {\mu }_{j}{u}_{j},\;j = 1,\ldots, r, \n\]\n\n\[ \nA{u}_{j} = 0,\;j = r + 1,\ldots, n \n\]\n\n(5.5)\n\n\[ \n{A}^{ * }{v}_{j} = 0,\;j = r + 1,\ldots, m. \n\]\n\nFor each \( x \in {\mathbb{C}}^{n} \) we have the singular value decomposition\n\n\[ \n{Ax} = \mathop{\sum }\limits_{{j = 1}}^{r}{\mu }_{j}\left( {x,{u}_{j}}\right) {v}_{j} \n\]\n\n(5.6)\n\nEach system \( \left( {{\mu }_{j},{u}_{j},{v}_{j}}\right) \) with these properties is called a singular system of the matrix \( A \) .
Proof. The Hermitian and semipositive definite matrix \( {A}^{ * }A \) of rank \( r \) has \( n \) orthonormal eigenvectors \( {u}_{1},\ldots ,{u}_{n} \) with nonnegative eigenvalues\n\n\[ \n{A}^{ * }A{u}_{j} = {\mu }_{j}^{2}{u}_{j},\;j = 1,\ldots, n \n\]\n\n(5.7)\n\nwhich we may assume to be ordered according to \( {\mu }_{1} \geq {\mu }_{2} \geq \cdots \geq {\mu }_{r} > 0 \) and \( {\mu }_{r + 1} = \cdots = {\mu }_{n} = 0 \) . We define\n\n\[ \n{v}_{j} \mathrel{\text{:=}} \frac{1}{{\mu }_{j}}A{u}_{j},\;j = 1,\ldots, r. \n\]\n\nThen, using (5.7) we have\n\n\[ \n\left( {{v}_{j},{v}_{k}}\right) = \frac{1}{{\mu }_{j}{\mu }_{k}}\left( {A{u}_{j}, A{u}_{k}}\right) = \frac{1}{{\mu }_{j}{\mu }_{k}}\left( {{u}_{j},{A}^{ * }A{u}_{k}}\right) = {\delta }_{jk},\;j, k = 1,\ldots, r, \n\]\n\nwhere \( {\delta }_{jk} = 1 \) for \( k = j \), and \( {\delta }_{jk} = 0 \) for \( k \neq j \) . Further, we compute that \( {A}^{ * }{v}_{j} = {\mu }_{j}{u}_{j}, j = 1,\ldots, r \), and hence the first line of (5.5) is proven. The second line of (5.5) is a consequence of \( N\left( A\right) = N\left( {{A}^{ * }A}\right) \) .\n\nIf \( r < m \), by the Gram-Schmidt orthogonalization procedure from Theorem 3.18 we can extend \( {v}_{1},\ldots ,{v}_{r} \) to an orthonormal basis \( {v}_{1},\ldots ,{v}_{m} \) of \( {\mathbb{C}}^{m} \) . Since \( {A}^{ * } \) has rank \( r \), we have \( \dim N\left( {A}^{ * }\right) = m - r \) . From this we can conclude the third line of (5.5).\n\nSince the \( {u}_{1},\ldots ,{u}_{n} \) form an orthonormal basis of \( {\mathbb{C}}^{n} \), we can represent\n\n\[ \nx = \mathop{\sum }\limits_{{j = 1}}^{n}\left( {x,{u}_{j}}\right) {u}_{j} \n\]\n\nand (5.6) follows by applying \( A \) and observing (5.5).\n\nClearly, we can rewrite the equations (5.5) in the form\n\n\[ \nA = {VD}{U}^{ * }, \n\]\n\n(5.8)\n\nwhere \( U = \left( {{u}_{1},\ldots ,{u}_{n}}\right) \) and \( V = \left( {{v}_{1},\ldots ,{v}_{m}}\right) \) are unitary \( n \times n \) and \( m \times m \) matrices, respectively, and where \( D \) is an \( m \times n \) diagonal matrix with entries \( {d}_{jj} = {\mu }_{j} \) for \( j = 1,\ldots, r \) and \( {d}_{jk} = 0 \) otherwise.
Yes
Theorem 5.5 Let \( A \) be an \( m \times n \) matrix of rank \( r \) with singular system \( \left( {{\mu }_{j},{u}_{j},{v}_{j}}\right) \). The linear system\n\n\[ \n{Ax} = y \n\]\n\n(5.9)\n\nis solvable if and only if\n\n\[ \n\left( {y, z}\right) = 0 \n\]\n\n\( \left( {5.10}\right) \)\n\nfor all \( z \in {\mathbb{C}}^{m} \) with \( {A}^{ * }z = 0 \). In this case a solution of (5.9) is given by\n\n\[ \n{x}_{0} = \mathop{\sum }\limits_{{j = 1}}^{r}\frac{1}{{\mu }_{j}}\left( {y,{v}_{j}}\right) {u}_{j} \n\]\n\n(5.11)
Proof. Let \( x \) be a solution of (5.9) and let \( {A}^{ * }z = 0 \). Then\n\n\[ \n\left( {y, z}\right) = \left( {{Ax}, z}\right) = \left( {x,{A}^{ * }z}\right) = 0. \n\]\n\nThis implies the necessity of condition (5.10) for the solvability of (5.9).\n\nConversely, assume that (5.10) is satisfied. In terms of the orthonormal basis \( {v}_{1},\ldots ,{v}_{m} \) of \( {\mathbb{C}}^{m} \) condition (5.10) implies that\n\n\[ \ny = \mathop{\sum }\limits_{{j = 1}}^{r}\left( {y,{v}_{j}}\right) {v}_{j} \n\]\n\n(5.12)\n\nsince \( {A}^{ * }{v}_{j} = 0 \) for \( j = r + 1,\ldots, m \). For the vector \( {x}_{0} \) defined by (5.11) we have that\n\n\[ \nA{x}_{0} = \mathop{\sum }\limits_{{j = 1}}^{r}\left( {y,{v}_{j}}\right) {v}_{j} \n\]\n\nIn view of (5.12) this implies that \( A{x}_{0} = y \), and the proof is complete.
Yes
Theorem 5.7 Let \( A \) be an \( m \times n \) matrix of rank \( r \) with singular system \( \left( {{\mu }_{j},{u}_{j},{v}_{j}}\right) \) and let \( \alpha > 0 \) . Then for each \( y \in {\mathbb{C}}^{m} \) the linear system\n\n\[ \n\alpha {x}_{\alpha } + {A}^{ * }A{x}_{\alpha } = {A}^{ * }y \n\]\n\n(5.18)\n\nis uniquely solvable, and the solution is given by\n\n\[ \n{x}_{\alpha } = \mathop{\sum }\limits_{{j = 1}}^{r}\frac{{\mu }_{j}}{\alpha + {\mu }_{j}^{2}}\left( {y,{v}_{j}}\right) {u}_{j} \n\]\n\n(5.19)
Proof. For \( \alpha > 0 \) the matrix \( {\alpha I} + {A}^{ * }A \) is positive definite and therefore nonsingular. Since\n\n\[ \n\alpha {u}_{j} + {A}^{ * }A{u}_{j} = \left( {\alpha + {\mu }_{j}^{2}}\right) {u}_{j} \n\]\n\na singular system for the matrix \( {\alpha I} + {A}^{ * }A \) is given by \( \left( {\alpha + {\mu }_{j}^{2},{u}_{j},{u}_{j}}\right) \) , \( j = 1,\ldots, n \) . Now the assertion follows from Theorem 5.5 with the aid of \( \left( {{A}^{ * }y,{u}_{j}}\right) = \left( {y, A{u}_{j}}\right) \) and using (5.5).
Yes
Corollary 5.8 Under the assumptions of Theorem 5.7 we have convergence:\n\n\[ \mathop{\lim }\limits_{{\alpha \rightarrow 0}}{\left( \alpha I + {A}^{ * }A\right) }^{-1}{A}^{ * }y = {A}^{ \dagger }y. \]
Proof. This is obvious from (5.13) and (5.19).
No
Theorem 5.9 Let \( A \) be an \( m \times n \) matrix and let \( \alpha > 0 \) . Then for each \( y \in {\mathbb{C}}^{m} \) there exists a unique \( {x}_{\alpha } \in {\mathbb{C}}^{n} \) such that\n\n\[ \n{\begin{Vmatrix}A{x}_{\alpha } - y\end{Vmatrix}}_{2}^{2} + \alpha {\begin{Vmatrix}{x}_{\alpha }\end{Vmatrix}}_{2}^{2} = \mathop{\inf }\limits_{{x \in {\mathbb{C}}^{n}}}\left\{ {\parallel {Ax} - y{\parallel }_{2}^{2} + \alpha \parallel x{\parallel }_{2}^{2}}\right\} .\n\]\n\n\( \left( {5.20}\right) \)\n\nThe minimizing vector \( {x}_{\alpha } \) is given by the unique solution of the linear system (5.18).
Proof. (Compare to the proof of Theorem 3.51.) We first note the relation\n\n\[ \n\parallel {Ax} - y{\parallel }_{2}^{2} + \alpha \parallel x{\parallel }_{2}^{2} = \parallel A{x}_{\alpha } - y{\parallel }_{2}^{2} + \alpha \parallel {x}_{\alpha }{\parallel }_{2}^{2}\n\]\n\n\[ \n+ 2\operatorname{Re}\left( {x - {x}_{\alpha },\alpha {x}_{\alpha } + {A}^{ * }A{x}_{\alpha } - {A}^{ * }y}\right)\n\]\n\n(5.21)\n\n\[ \n+ {\begin{Vmatrix}Ax - A{x}_{\alpha }\end{Vmatrix}}_{2}^{2} + \alpha {\begin{Vmatrix}x - {x}_{\alpha }\end{Vmatrix}}_{2}^{2}\n\]\n\nwhich is valid for all \( x,{x}_{\alpha } \in {\mathbb{C}}^{n} \) . From this it is obvious that the solution \( {x}_{\alpha } \) of (5.18) satisfies (5.20).\n\nConversely, let \( {x}_{\alpha } \) be a solution of (5.20) and assume that\n\n\[ \n\alpha {x}_{\alpha } + {A}^{ * }A{x}_{\alpha } \neq {A}^{ * }y.\n\]\n\nThen, setting \( z \mathrel{\text{:=}} \alpha {x}_{\alpha } + {A}^{ * }A{x}_{\alpha } - {A}^{ * }y \), for \( x \mathrel{\text{:=}} {x}_{\alpha } - {\varepsilon z} \) with \( \varepsilon \in \mathbb{R} \) from (5.21) we have\n\n\[ \n\parallel {Ax} - y{\parallel }_{2}^{2} + \alpha \parallel x{\parallel }_{2}^{2} = {\begin{Vmatrix}A{x}_{\alpha } - y\end{Vmatrix}}_{2}^{2} + \alpha {\begin{Vmatrix}{x}_{\alpha }\end{Vmatrix}}_{2}^{2} - {2\varepsilon a} + {\varepsilon }^{2}b,\n\]\n\nwhere\n\n\[ \na \mathrel{\text{:=}} \parallel z{\parallel }_{2}^{2}\;\text{ and }\;b \mathrel{\text{:=}} \parallel {Az}{\parallel }_{2}^{2} + \alpha \parallel z{\parallel }_{2}^{2}\n\]\n\nare both positive. By choosing \( \varepsilon = a/b \) we obtain\n\n\[ \n\parallel {Ax} - y{\parallel }_{2}^{2} + \alpha \parallel x{\parallel }_{2}^{2} < {\begin{Vmatrix}A{x}_{\alpha } - y\end{Vmatrix}}_{2}^{2} + \alpha \parallel x{\parallel }_{2}^{2},\n\]\n\nwhich contradicts (5.20).
Yes
Theorem 5.10 Let \( A \) be an \( m \times n \) matrix and let \( y \in A\left( {\mathbb{C}}^{n}\right) ,{y}^{\delta } \in {\mathbb{C}}^{m} \) satisfy\n\n\[ \n{\begin{Vmatrix}{y}^{\delta } - y\end{Vmatrix}}_{2} \leq \delta < {\begin{Vmatrix}{y}^{\delta }\end{Vmatrix}}_{2}\n\]\n\nfor \( \delta > 0 \) . Then there exists a unique \( \alpha = \alpha \left( \delta \right) > 0 \) such that the unique solution \( {x}_{\alpha } \) of (5.23) satisfies\n\n\[ \n{\begin{Vmatrix}A{x}_{\alpha } - {y}^{\delta }\end{Vmatrix}}_{2} = \delta\n\]\n\n\( \left( {5.24}\right) \)\n\nThis discrecancy principle for Tikhonov regularization is regular in the sense that if the error level \( \delta \) tends to zero, then\n\n\[ \n{x}_{\alpha } \rightarrow {A}^{ \dagger }y,\;\delta \rightarrow 0.\n\]\n\n(5.25)
Proof. We have to show that the function \( F : \left( {0,\infty }\right) \rightarrow \mathbb{R} \) defined by\n\n\[ \nF\left( \alpha \right) \mathrel{\text{:=}} {\begin{Vmatrix}A{x}_{\alpha } - {y}^{\delta }\end{Vmatrix}}_{2}^{2} - {\delta }^{2}\n\]\n\nhas a unique zero. In terms of a singular system, from the representation (5.19) we find that\n\n\[ \nF\left( \alpha \right) = \mathop{\sum }\limits_{{j = 1}}^{m}\frac{{\alpha }^{2}}{{\left( \alpha + {\mu }_{j}^{2}\right) }^{2}}{\left| \left( {y}^{\delta },{v}_{j}\right) \right| }^{2} - {\delta }^{2}.\n\]\n\nTherefore, \( F \) is continuous and strictly monotonically increasing with the limits \( F\left( \alpha \right) \rightarrow - {\delta }^{2} < 0,\alpha \rightarrow 0 \), and \( F\left( \alpha \right) \rightarrow {\begin{Vmatrix}{y}^{\delta }\end{Vmatrix}}_{2}^{2} - {\delta }^{2} > 0,\alpha \rightarrow \infty \) . Hence, \( F \) has exactly one zero \( \alpha = \alpha \left( \delta \right) \) .\n\nNote that the condition \( {\begin{Vmatrix}{y}^{\delta } - y\end{Vmatrix}}_{2} \leq \delta < {\begin{Vmatrix}{y}^{\delta }\end{Vmatrix}}_{2} \) implies that \( y \neq 0 \) . Using (5.23), (5.24), and the triangle inequality we can estimate\n\n\[ \n{\begin{Vmatrix}{y}^{\delta }\end{Vmatrix}}_{2} - \delta = {\begin{Vmatrix}{y}^{\delta }\end{Vmatrix}}_{2} - {\begin{Vmatrix}A{x}_{\alpha } - {y}^{\delta }\end{Vmatrix}}_{2} \leq {\begin{Vmatrix}A{x}_{\alpha }\end{Vmatrix}}_{2}\n\]\nand\n\n\[ \n\alpha {\begin{Vmatrix}A{x}_{\alpha }\end{Vmatrix}}_{2} = {\begin{Vmatrix}A{A}^{ * }\left( {y}^{\delta } - A{x}_{\alpha }\right) \end{Vmatrix}}_{2} \leq {\begin{Vmatrix}A{A}^{ * }\end{Vmatrix}}_{2}\delta .\n\]\n\nCombining these two inequalities and using \( {\begin{Vmatrix}{y}^{\delta }\end{Vmatrix}}_{2} \geq \parallel y{\parallel }_{2} - \delta \) yields\n\n\[ \n\alpha \leq \frac{{\begin{Vmatrix}A{A}^{ * }\end{Vmatrix}}_{2}\delta }{\parallel y{\parallel }_{2} - {2\delta }}.\n\]\n\nThis implies that \( \alpha \rightarrow 0,\delta \rightarrow 0 \) . Now the convergence (5.25) follows from the representations (5.13) for \( {A}^{ \dagger }y \) and (5.19) for \( {x}_{\alpha } \) (with \( y \) replaced by \( \left. {y}^{\delta }\right) \) and the fact that \( {\begin{Vmatrix}{y}^{\delta } - y\end{Vmatrix}}_{2} \rightarrow 0,\delta \rightarrow 0 \) .
Yes
Theorem 6.1 Let \( D \subset \mathbb{R} \) be a closed interval and let \( f : D \rightarrow D \) be a continuously differentiable function with the property\n\n\[ q \mathrel{\text{:=}} \mathop{\sup }\limits_{{x \in D}}\left| {{f}^{\prime }\left( x\right) }\right| < 1 \]\n\nThen the equation \( f\left( x\right) = x \) has a unique solution \( x \in D \), and the successive approximations\n\n\[ {x}_{\nu + 1} \mathrel{\text{:=}} f\left( {x}_{\nu }\right) ,\;\nu = 0,1,2,\ldots ,\]\n\nwith arbitrary \( {x}_{0} \in D \) converge to this solution. We have the a priori error\nestimate\n\[ \left| {{x}_{\nu } - x}\right| \leq \frac{{q}^{\nu }}{1 - q}\left| {{x}_{1} - {x}_{0}}\right| \]\n\nand the a posteriori error estimate\n\n\[ \left| {{x}_{\nu } - x}\right| \leq \frac{q}{1 - q}\left| {{x}_{\nu } - {x}_{\nu - 1}}\right| \]\n\nfor all \( \nu \in \mathbb{N} \) .
Proof. Equipped with the norm \( \parallel \cdot \parallel = \left| \cdot \right| \) the space \( \mathbb{R} \) is complete. By the mean value theorem, for \( x, y \in D \) with \( x < y \), we have that\n\n\[ f\left( x\right) - f\left( y\right) = {f}^{\prime }\left( \xi \right) \left( {x - y}\right) \]\n\nfor some intermediate point \( \xi \in \left( {x, y}\right) \) . Hence\n\n\[ \left| {f\left( x\right) - f\left( y\right) }\right| \leq \mathop{\sup }\limits_{{\xi \in D}}\left| {{f}^{\prime }\left( \xi \right) }\right| \left| {x - y}\right| = q\left| {x - y}\right| \]\n\nwhich is also valid for \( x, y \in D \) with \( x \geq y \) . Therefore, \( f \) is a contraction, and the assertion follows from the Banach fixed point Theorem 3.46.
Yes
Theorem 6.2 Let \( x \) be a fixed point of a continuously differentiable function \( f \) such that \( \left| {{f}^{\prime }\left( x\right) }\right| < 1 \) . Then the method of successive approximations \( {x}_{\nu + 1} \mathrel{\text{:=}} f\left( {x}_{\nu }\right) \) is locally convergent; i.e., there exists a neighborhood \( B \) of the fixed point \( x \) such that the successive approximations converge to \( x \) for all \( {x}_{0} \in B \) .
Proof. Since \( {f}^{\prime } \) is continuous and \( \left| {{f}^{\prime }\left( x\right) }\right| < 1 \), there exist constants \( 0 < q < 1 \) and \( \delta > 0 \) such that \( \left| {{f}^{\prime }\left( y\right) }\right| \leq q \) for all \( y \in B \mathrel{\text{:=}} \left\lbrack {x - \delta, x + \delta }\right\rbrack \) . Then we have that\n\n\[ \left| {f\left( y\right) - x}\right| = \left| {f\left( y\right) - f\left( x\right) }\right| \leq q\left| {y - x}\right| \leq \left| {y - x}\right| \leq \delta \]\n\nfor all \( y \in B \) ; i.e., \( f \) maps \( B \) into itself and is a contraction \( f : B \rightarrow B \) . Now the statement of the theorem follows from Theorem 6.1.
Yes
In order to describe a division by iteration, for \( a > 0 \) we consider the function \( f : \mathbb{R} \rightarrow \mathbb{R} \) given by \( f\left( x\right) \mathrel{\text{:=}} {2x} - a{x}^{2} \) . The graph of this function is a parabola with maximum value \( 1/a \) attained at \( 1/a \) . By solving the quadratic equation \( f\left( x\right) = x \) it can be seen that \( f \) has the fixed points \( x = 0 \) and \( x = 1/a \) . Obviously, \( f \) maps the open interval \( \left( {0,2/a}\right) \) into \( \left( {0,1/a}\right) \) . Since \( {f}^{\prime }\left( x\right) = 2\left( {1 - {ax}}\right) \), we have \( {f}^{\prime }\left( 0\right) = 2 \) and \( {f}^{\prime }\left( {1/a}\right) = 0 \) .
From the the property \( x < f\left( x\right) < 1/a \), which is valid for \( 0 < x < 1/a \) , it follows that the sequence \( {x}_{\nu + 1} \mathrel{\text{:=}} 2{x}_{\nu } - a{x}_{\nu }^{2} \) is monotonicly increasing and bounded. Hence, the successive approximations converge to the fixed point \( x = 1/a \) for arbitrarily chosen \( {x}_{0} \in \left( {0,2/a}\right) \) . Figure 6.2 illustrates the convergence. The numerical results are for \( a = 2 \) and two different starting points, \( {x}_{0} = {0.3} \) and \( {x}_{0} = {0.4} \) .
Yes
For computing the square root of a positive real number \( a \) by an iterative method we consider the function \( f : \left( {0,\infty }\right) \rightarrow \left( {0,\infty }\right) \) given by\n\n\[ f\left( x\right) \mathrel{\text{:=}} \frac{1}{2}\left( {x + \frac{a}{x}}\right) . \]
By solving the quadratic equation \( f\left( x\right) = x \) it can be seen that \( f \) has the fixed point \( x = \sqrt{a} \) . By the arithmetic geometric mean inequality we have that \( f\left( x\right) > \sqrt{a} \) for \( x > 0 \) ; i.e., \( f \) maps the open interval \( \left( {0,\infty }\right) \) into \( \lbrack \sqrt{a},\infty ) \), and therefore it maps the closed interval \( \lbrack \sqrt{a},\infty ) \) into itself. From\n\n\[ {f}^{\prime }\left( x\right) = \frac{1}{2}\left( {1 - \frac{a}{{x}^{2}}}\right) \]\n\nit follows that\n\n\[ q \mathrel{\text{:=}} \mathop{\sup }\limits_{{\sqrt{a} \leq x < \infty }}\left| {{f}^{\prime }\left( x\right) }\right| = \frac{1}{2}. \]\n\nHence \( f : \lbrack \sqrt{a},\infty ) \rightarrow \lbrack \sqrt{a},\infty ) \) is a contraction. Therefore, by Theorem 6.1 the successive approximations\n\n\[ {x}_{\nu + 1} \mathrel{\text{:=}} \frac{1}{2}\left( {{x}_{\nu } + \frac{a}{{x}_{\nu }}}\right) ,\;\nu = 0,1,\ldots ,\]\n\nconverge to the square root \( \sqrt{a} \) for each \( {x}_{0} > 0 \), and we have the a posteriori error estimate\n\n\[ \left| {\sqrt{a} - {x}_{\nu }}\right| \leq \left| {{x}_{\nu } - {x}_{\nu - 1}}\right| \]
Yes
Example 6.5 Consider the function \( f : \left\lbrack {0,1}\right\rbrack \rightarrow \left\lbrack {0,1}\right\rbrack \) given by\n\n\[ f\left( x\right) \mathrel{\text{:=}} \cos x. \]\n\nHere we have\n\n\[ q = \mathop{\sup }\limits_{{0 \leq x \leq 1}}\left| {{f}^{\prime }\left( x\right) }\right| = \sin 1 < 1 \]
and Theorem 6.1 implies that the successive approximations \( {x}_{\nu + 1} \mathrel{\text{:=}} \cos {x}_{\nu } \) converge to the unique solution \( x \) of \( \cos x = x \) for each \( {x}_{0} \in \left\lbrack {0,1}\right\rbrack \) . Table 6.1 illustrates the convergence, which is notably slower than in the two previous examples.
Yes
Example 6.6 The function \( h : \left( {0,1}\right) \rightarrow \left( {-\infty ,\infty }\right) \) given by \( h\left( x\right) \mathrel{\text{:=}} x + \ln x \) is strictly monotonically increasing with limits \( \mathop{\lim }\limits_{{x \rightarrow 0}}h\left( x\right) = - \infty \) and \( \mathop{\lim }\limits_{{x \rightarrow \infty }}h\left( x\right) = \infty \) . Therefore, the function \( f\left( x\right) \mathrel{\text{:=}} - \ln x \) has a unique fixed point \( x \) . Since this fixed point must satisfy \( 0 < x < 1 \), the derivative
\[ \left| {{f}^{\prime }\left( x\right) }\right| = \frac{1}{x} > 1 \] implies that \( f \) is not contracting in a neighborhood of the fixed point. However, we can still design a convergent scheme because \( x = - \ln x \) is equivalent to \( {e}^{-x} = x \) . We consider the inverse function \[ g\left( x\right) \mathrel{\text{:=}} {e}^{-x} \] of \( f \), which has derivative \( \left| {{g}^{\prime }\left( x\right) }\right| = {e}^{-x} < 1 \) at the fixed point, so that we can apply Theorem 6.2. Obviously, for each \( 0 < a < 1/e \) the exponential function \( g \) maps the interval \( \left\lbrack {a,1}\right\rbrack \) into itself. Since \[ q = \mathop{\sup }\limits_{{a \leq x \leq 1}}\left| {{g}^{\prime }\left( x\right) }\right| = {e}^{-a} < 1 \] by Theorem 6.1 it follows that for arbitrary \( {x}_{0} > 0 \) the successive approximations \( {x}_{\nu + 1} = {e}^{-{x}_{\nu }} \) converge to the unique solution of \( x = {e}^{-x} \) .
Yes
Theorem 6.8 Let \( D \subset {\mathbb{R}}^{n} \) be closed and convex (with a nonempty interior) and let \( f : D \rightarrow D \) be a continuous mapping. Assume further that \( f \) is continuously differentiable in the interior of \( D \) and that its Jacobian can be continuously extended to all of \( D \) such that\n\n\[ \mathop{\sup }\limits_{{x \in D}}\begin{Vmatrix}{{f}^{\prime }\left( x\right) }\end{Vmatrix} < 1 \]\n\nin some norm \( \parallel \cdot \parallel \) on \( {\mathbb{R}}^{n} \) . Then the equation \( f\left( x\right) = x \) has a unique solution \( x \in D \), and the successive approximations\n\n\[ {x}_{\nu + 1} \mathrel{\text{:=}} f\left( {x}_{\nu }\right) ,\;\nu = 0,1,2,\ldots ,\]\n\nconverge for each \( {x}_{0} \in D \) to this fixed point. We have the a priori error estimate\n\n\[ \begin{Vmatrix}{{x}_{\nu } - x}\end{Vmatrix} \leq \frac{{q}^{\nu }}{1 - q}\begin{Vmatrix}{{x}_{1} - {x}_{0}}\end{Vmatrix} \]\n\nand the a posteriori error estimate\n\n\[ \begin{Vmatrix}{{x}_{\nu } - x}\end{Vmatrix} \leq \frac{q}{1 - q}\begin{Vmatrix}{{x}_{\nu } - {x}_{\nu - 1}}\end{Vmatrix} \]\n\nfor all \( \nu \in \mathbb{N} \) .
Proof. By the mean value Theorem 6.7 the mapping \( f : D \rightarrow D \) is a contraction.\n\nBy Theorem 3.26 we have that each of the conditions\n\n\[ \mathop{\sup }\limits_{{x \in D}}\mathop{\max }\limits_{{j = 1,\ldots, n}}\mathop{\sum }\limits_{{k = 1}}^{n}\left| {\frac{\partial {f}_{j}}{\partial {x}_{k}}\left( x\right) }\right| < 1 \]\n\n\[ \mathop{\sup }\limits_{{x \in D}}\mathop{\max }\limits_{{k = 1,\ldots, n}}\mathop{\sum }\limits_{{j = 1}}^{n}\left| {\frac{\partial {f}_{j}}{\partial {x}_{k}}\left( x\right) }\right| < 1 \]\n\n\[ \mathop{\sup }\limits_{{x \in D}}{\left\lbrack \mathop{\sum }\limits_{{j, k = 1}}^{n}{\left| \frac{\partial {f}_{j}}{\partial {x}_{k}}\left( x\right) \right| }^{2},\right\rbrack }^{1/2} < 1 \]\n\nensures convergence of the successive approximations in Theorem 6.8.
Yes
Theorem 6.14 Let \( D \subset {\mathbb{R}}^{n} \) be open and convex and let \( f : D \rightarrow {\mathbb{R}}^{n} \) be continuously differentiable. Assume that for some norm \( \parallel \cdot \parallel \) on \( {\mathbb{R}}^{n} \) and some \( {x}_{0} \in D \) the following conditions hold:\n\n(a) \( f \) satisfies\n\n\[ \begin{Vmatrix}{{f}^{\prime }\left( x\right) - {f}^{\prime }\left( y\right) }\end{Vmatrix} \leq \gamma \parallel x - y\parallel \]\n\nfor all \( x, y \in D \) and some constant \( \gamma > 0 \).\n\n(b) The Jacobian matrix \( {f}^{\prime }\left( x\right) \) is nonsingular for all \( x \in D \), and there exists a constant \( \beta > 0 \) such that\n\n\[ \begin{Vmatrix}{\left\lbrack {f}^{\prime }\left( x\right) \right\rbrack }^{-1}\end{Vmatrix} \leq \beta ,\;x \in D. \]\n\n(c) For the constants\n\n\[ \alpha \mathrel{\text{:=}} \begin{Vmatrix}{{\left\lbrack {f}^{\prime }\left( {x}_{0}\right) \right\rbrack }^{-1}f\left( {x}_{0}\right) }\end{Vmatrix}\;\text{ and }\;q \mathrel{\text{:=}} {\alpha \beta \gamma } \]\n\nthe inequality\n\n\[ q < \frac{1}{2} \]\n\nis satisfied.\n\n(d) For \( r \mathrel{\text{:=}} {2\alpha } \) the closed ball \( B\left\lbrack {{x}_{0}, r}\right\rbrack \mathrel{\text{:=}} \left\{ {x : \begin{Vmatrix}{x - {x}_{0}}\end{Vmatrix} \leq r}\right\} \) is contained in \( D \).\n\nThen \( f \) has a unique zero \( {x}^{ * } \) in \( B\left\lbrack {{x}_{0}, r}\right\rbrack \). Starting with \( {x}_{0} \) the Newton iteration\n\n\[ {x}_{\nu + 1} \mathrel{\text{:=}} {x}_{\nu } - {\left\lbrack {f}^{\prime }\left( {x}_{\nu }\right) \right\rbrack }^{-1}f\left( {x}_{\nu }\right) ,\;\nu = 0,1,\ldots ,\]\n\n(6.4)\n\nis well-defined. The sequence \( \left( {x}_{\nu }\right) \) converges to the zero \( {x}^{ * } \) of \( f \), and we have the error estimate\n\n\[ \begin{Vmatrix}{{x}_{\nu } - {x}^{ * }}\end{Vmatrix} \leq {2\alpha }{q}^{{2}^{\nu } - 1},\;\nu = 0,1,\ldots \]\n
Proof. 1. Let \( x, y, z \in D \). From the proof of Theorem 6.7 we know that\n\n\[ f\left( y\right) - f\left( x\right) = {\int }_{0}^{1}{f}^{\prime }\left\lbrack {{\lambda x} + \left( {1 - \lambda }\right) y}\right\rbrack \left( {y - x}\right) {d\lambda }.\]\n\nHence\n\n\[ f\left( y\right) - f\left( x\right) - {f}^{\prime }\left( z\right) \left( {y - x}\right) = {\int }_{0}^{1}\left\{ {{f}^{\prime }\left\lbrack {{\lambda x} + \left( {1 - \lambda }\right) y}\right\rbrack - {f}^{\prime }\left( z\right) }\right\} \left( {y - x}\right) {d\lambda },\]\n\nand estimating with the aid of (6.1) and condition (a) we find that\n\n\[ \begin{Vmatrix}{f\left( y\right) - f\left( x\right) - {f}^{\prime }\left( z\right) \left( {y - x}\right) }\end{Vmatrix} \]\n\n\[ \leq \gamma \parallel y - x\parallel {\int }_{0}^{1}\parallel \lambda \left( {x - z}\right) + \left( {1 - \lambda }\right) \left( {y - z}\right) \parallel {d\lambda } \]\n\n\[ \leq \frac{\gamma }{2}\parallel y - x\parallel \{ \parallel x - z\parallel + \parallel y - z\parallel \} \]\n\nChoosing \( z = x \) shows that\n\n\[ \begin{Vmatrix}{f\left( y\right) - f\left( x\right) - {f}^{\prime }\left( x\right) \left( {y - x}\right) }\end{Vmatrix} \leq \frac{\gamma }{2}\parallel y - x{\parallel }^{2} \]\n\n(6.5)\n\nfor all \( x, y \in D \), and choosing \( z = {x}_{0} \) yields\n\n\[ \begin{Vmatrix}{f\left( y\right) - f\left( x\right) - {f}^{\prime }\left( {x}_{0}\right) \left( {y - x}\right) }\end{Vmatrix} \leq {r\gamma }\parallel y - x\parallel \]\n\n(6.6)\n\nfor all \( x, y \in B\left\lbrack {{x}_{0}, r}\right\rbrack \).\n\n2. We proceed by proving through induction that\n\n\[ \begin{Vmatrix}{{x}_{\nu } - {x}_{0}}\end{Vmatrix} \leq r\;\text{ and }\;\begin{Vmatrix}{{x}_{\nu } - {x}_{\nu - 1}}\end{Vmatrix} \leq \alpha {q}^{{2}^{\nu - 1} - 1},\;\nu = 1,2,\ldots .\]\n\n(6.7)\n\nThis is valid for \( \nu = 1 \), since\n\n\[ \begin{Vmatrix}{{x}_{1} - {x}_{0}}\end{Vmatrix} = \begin{Vmatrix}{{\left\lbrack {f}^{\prime }\left( {x}_{0}\right) \right\rbrack }^{-1}f\left( {x}_{0}\right) }\end{Vmatrix} = \alpha = \frac{r}{2} < r \]\n\nas a consequence of conditions (c)
Yes
Corollary 6.15 Let \( D \subset {\mathbb{R}}^{n} \) be open and let \( f : D \rightarrow {\mathbb{R}}^{n} \) be twice continuously differentiable, and assume that \( {x}^{ * } \) is a zero of \( f \) such that the Jacobian \( {f}^{\prime }\left( {x}^{ * }\right) \) is nonsingular. Then Newton’s method is locally convergent; i.e., there exists a neighborhood \( B \) of the zero \( {x}^{ * } \) such that the Newton iterations converge to \( {x}^{ * } \) for all \( {x}_{0} \in B \) .
Proof. Since \( f \) is twice continuously differentiable, by the mean value Theorem 6.7 applied to the components of \( {f}^{\prime } \) there exists \( \gamma > 0 \) such that\n\n\[ \begin{Vmatrix}{{f}^{\prime }\left( x\right) - {f}^{\prime }\left( y\right) }\end{Vmatrix} \leq \gamma \parallel x - y\parallel \]\n\nfor all \( x, y \) in some closed ball \( B\left\lbrack {{x}^{ * },\rho }\right\rbrack \) centered at \( {x}^{ * } \) . We write\n\n\[ {f}^{\prime }\left( x\right) = {f}^{\prime }\left( {x}^{ * }\right) \left\{ {I + {\left\lbrack {f}^{\prime }\left( {x}^{ * }\right) \right\rbrack }^{-1}\left\lbrack {{f}^{\prime }\left( x\right) - {f}^{\prime }\left( {x}^{ * }\right) }\right\rbrack }\right\} \]\n\nand deduce from the above estimate and Theorem 3.48 that the radius \( \rho \) of \( B\left\lbrack {{x}^{ * },\rho }\right\rbrack \) can be chosen such that \( {f}^{\prime }\left( x\right) \) is nonsingular on \( B\left\lbrack {{x}^{ * },\rho }\right\rbrack \) and \( \parallel {\left\lbrack {f}^{\prime }\left( {x}^{ * }\right) \right\rbrack }^{-1}\parallel \leq \beta \) for all \( x \in B\left\lbrack {{x}^{ * },\rho }\right\rbrack \) and some constant \( \beta > 0. \)\n\nSince \( f \) is continuous, \( f\left( {x}^{ * }\right) = 0 \) implies that there exists \( \delta < \rho /2 \) such that\n\n\[ \begin{Vmatrix}{f\left( {x}_{0}\right) }\end{Vmatrix} < \min \left\{ {\frac{\rho }{4\beta },\frac{1}{2{\beta }^{2}\gamma }}\right\} \]\n\nfor all \( \begin{Vmatrix}{{x}_{0} - {x}^{ * }}\end{Vmatrix} < \delta \) . Then, after setting \( \alpha \mathrel{\text{:=}} \begin{Vmatrix}{{\left\lbrack {f}^{\prime }\left( {x}_{0}\right) \right\rbrack }^{-1}f\left( {x}_{0}\right) }\end{Vmatrix} \) we have the inequalities\n\n\[ {\alpha \beta \gamma } \leq \begin{Vmatrix}{f\left( {x}_{0}\right) }\end{Vmatrix}{\beta }^{2}\gamma < \frac{1}{2} \]\n\nand\n\n\[ {2\alpha } \leq {2\beta }\begin{Vmatrix}{f\left( {x}_{0}\right) }\end{Vmatrix} < \frac{\rho }{2}. \]\n\nHence for the open and convex ball \( B\left( {{x}^{ * },\rho }\right) \) and for each \( {x}_{0} \) with \( \begin{Vmatrix}{{x}_{0} - {x}^{ * }}\end{Vmatrix} < \delta \) the assumptions of Theorem 6.14 are satisfied.
Yes
Corollary 6.16 Let \( f : \left( {a, b}\right) \rightarrow \mathbb{R} \) be twice continuously differentiable and assume that \( {x}^{ * } \) is a simple zero of \( f \) . Then Newton’s method is locally convergent.
Proof. For simple zeros we have \( {f}^{\prime }\left( {x}^{ * }\right) \neq 0 \).
No
Theorem 6.20 Under the assumptions of Theorem 6.14 Newton's method converges quadratically.
Proof. Using condition (b) of Theorem 6.14 and the inequality (6.5) we can estimate\n\n\[ \n\begin{Vmatrix}{{x}^{ * } - {x}_{\nu + 1}}\end{Vmatrix} = \begin{Vmatrix}{{x}^{ * } - {x}_{\nu } + {\left\lbrack {f}^{\prime }\left( {x}_{\nu }\right) \right\rbrack }^{-1}f\left( {x}_{\nu }\right) }\end{Vmatrix}\n\]\n\n\[ \n\leq \begin{Vmatrix}{\left\lbrack {f}^{\prime }\left( {x}_{\nu }\right) \right\rbrack }^{-1}\end{Vmatrix}\begin{Vmatrix}{f\left( {x}^{ * }\right) - f\left( {x}_{\nu }\right) - {f}^{\prime }\left( {x}_{\nu }\right) \left( {{x}^{ * } - {x}_{\nu }}\right) }\end{Vmatrix}\n\]\n\n\[ \n\leq \frac{\beta \gamma }{2}{\begin{Vmatrix}{x}^{ * } - {x}_{\nu }\end{Vmatrix}}^{2}\n\]\n\nsince \( f\left( {x}^{ * }\right) = 0 \) .
Yes
Theorem 6.21 Under the assumptions of Theorem 6.14 the simplified Newton method converges linearly to the unique zero of \( f \) in \( B\left\lbrack {{x}_{0}, r}\right\rbrack \) .
Proof. Recall that the function\n\n\[ g\left( x\right) \mathrel{\text{:=}} x - {\left\lbrack {f}^{\prime }\left( {x}_{0}\right) \right\rbrack }^{-1}f\left( x\right) \]\n\ndefined in the proof of Theorem 6.14 is a contraction. We show that \( g \) maps \( B\left\lbrack {{x}_{0}, r}\right\rbrack \) into itself. For this we write\n\n\[ {x}_{0} - g\left( x\right) = {\left\lbrack {f}^{\prime }\left( {x}_{0}\right) \right\rbrack }^{-1}\left\{ {f\left( x\right) - f\left( {x}_{0}\right) - {f}^{\prime }\left( {x}_{0}\right) \left( {x - {x}_{0}}\right) + f\left( {x}_{0}\right) }\right\} .\n\nThen estimating with the help of conditions (b), (c) and (d) and the inequality (6.5) we obtain\n\n\[ \begin{Vmatrix}{g\left( x\right) - {x}_{0}}\end{Vmatrix} \leq \frac{\beta \gamma }{2}{\begin{Vmatrix}x - {x}_{0}\end{Vmatrix}}^{2} + \alpha \leq 2{\alpha }^{2}{\beta \gamma } + \alpha = \left( {{2q} + 1}\right) \alpha < {2\alpha } = r \]\n\nfor all \( x \) with \( \begin{Vmatrix}{x - {x}_{0}}\end{Vmatrix} \leq r \) . Now the statement of the theorem follows from the Banach fixed point Theorem 3.46.
Yes
For the polynomial \( p\left( x\right) \mathrel{\text{:=}} {x}^{3} - {x}^{2} + {3x} - 5 \) the Horner scheme
<table><thead><tr><th>\( z \)</th><th>1</th><th>-1</th><th>3</th><th>- 5</th></tr></thead><tr><td>2</td><td>1</td><td>1</td><td>5</td><td>5</td></tr><tr><td>2</td><td>1</td><td>3</td><td>11</td><td></td></tr><tr><td>2</td><td>1</td><td>5</td><td></td><td></td></tr><tr><td>2</td><td>1</td><td></td><td></td><td></td></tr></table>\n\nfor \( z = 2 \) leads to \( p\left( 2\right) = 5,{p}^{\prime }\left( 2\right) = {11},{p}^{\prime \prime }\left( 2\right) = {10},{p}^{\prime \prime \prime }\left( 2\right) = 6 \).
Yes
Theorem 7.3 (Rayleigh) Let \( A \) be a Hermitian \( n \times n \) matrix with eigenvalues\n\n\[ \n{\lambda }_{1} \geq {\lambda }_{2} \geq \cdots \geq {\lambda }_{n}\n\]\n\n(where multiple eigenvalues occur according to their multiplicity) and corresponding orthonormal eigenvectors \( {x}_{1},{x}_{2},\ldots ,{x}_{n} \) . Then\n\n\[ \n{\lambda }_{j} = \mathop{\max }\limits_{\substack{{x \in {V}_{j}} \\ {x \neq 0} }}\frac{\left( Ax, x\right) }{\left( x, x\right) },\;j = 1,\ldots, n\n\]\n\nwhere the subspaces \( {V}_{1},\ldots ,{V}_{n} \) are defined by \( {V}_{1} \mathrel{\text{:=}} {\mathbb{C}}^{n} \) and\n\n\[ \n{V}_{j} \mathrel{\text{:=}} \left\{ {x \in {\mathbb{C}}^{n} : \left( {x,{x}_{k}}\right) = 0, k = 1,\ldots, j - 1}\right\} ,\;j = 2,\ldots, n.\n\]
Proof. Let \( x \in {V}_{j} \) with \( x \neq 0 \) . Then\n\n\[ \nx = \mathop{\sum }\limits_{{k = j}}^{n}\left( {x,{x}_{k}}\right) {x}_{k}\;\text{ and }\;\mathop{\sum }\limits_{{k = j}}^{n}{\left| \left( x,{x}_{k}\right) \right| }^{2} = \left( {x, x}\right) .\n\]\n\nHence\n\n\[ \n{Ax} = \mathop{\sum }\limits_{{k = j}}^{n}{\lambda }_{k}\left( {x,{x}_{k}}\right) {x}_{k}\n\]\n\nand\n\n\[ \n\left( {{Ax}, x}\right) = \mathop{\sum }\limits_{{k = j}}^{n}{\lambda }_{k}{\left| \left( x,{x}_{k}\right) \right| }^{2} \leq {\lambda }_{j}\mathop{\sum }\limits_{{k = j}}^{n}{\left| \left( x,{x}_{k}\right) \right| }^{2} = {\lambda }_{j}\left( {x, x}\right) .\n\]\n\nThis implies\n\n\[ \n\mathop{\sup }\limits_{\substack{{x \in {V}_{j}} \\ {x \neq 0} }}\frac{\left( Ax, x\right) }{\left( x, x\right) } \leq {\lambda }_{j}\n\]\n\nand the statement follows from \( \left( {A{x}_{j},{x}_{j}}\right) = {\lambda }_{j} \) and \( {x}_{j} \in {V}_{j} \) .
Yes
Theorem 7.4 (Courant) Let \( A \) be a Hermitian \( n \times n \) matrix with eigenvalues\n\n\[ \n{\lambda }_{1} \geq {\lambda }_{2} \geq \cdots \geq {\lambda }_{n} \n\]\n\n(where multiple eigenvalues occur according to their multiplicity). Then\n\n\[ \n{\lambda }_{j} = \mathop{\min }\limits_{{{U}_{j} \in {M}_{j}}}\mathop{\max }\limits_{\substack{{x \in {U}_{j}} \\ {x \neq 0} }}\frac{\left( Ax, x\right) }{\left( x, x\right) },\;j = 1,\ldots, n \n\]\n\nwhere \( {M}_{j} \) denotes the set of all subspaces \( {U}_{j} \subset {\mathbb{C}}^{n} \) of dimension \( n + 1 - j \) .
Proof. First we note that because of\n\n\[ \n\mathop{\sup }\limits_{\substack{{x \in {U}_{j}} \\ {x \neq 0} }}\frac{\left( Ax, x\right) }{\left( x, x\right) } = \mathop{\sup }\limits_{\substack{{x \in {U}_{j}} \\ {\left( {x, x}\right) = 1} }}\left( {{Ax}, x}\right) \n\]\n\nand the continuity of the function \( x \mapsto \left( {{Ax}, x}\right) \), the supremum is attained; i.e., the maximum exists.\n\nBy \( {x}_{1},{x}_{2},\ldots ,{x}_{n} \) we denote orthonormal eigenvectors corresponding to the eigenvalues \( {\lambda }_{1} \geq {\lambda }_{2} \geq \cdots \geq {\lambda }_{n} \) . First, we show that for a given subspace \( {U}_{j} \) of dimension \( n + 1 - j \) there exists a vector \( x \in {U}_{j} \) such that\n\n\[ \n\left( {x,{x}_{k}}\right) = 0,\;k = j + 1,\ldots, n. \n\]\n\n(7.1)\n\nLet \( {z}_{1},\ldots ,{z}_{n + 1 - j} \) be a basis of \( {U}_{j} \) . Then we can represent each \( x \in {U}_{j} \) by\n\n\[ \nx = \mathop{\sum }\limits_{{i = 1}}^{{n + 1 - j}}{a}_{i}{z}_{i} \n\]\n\n(7.2)\n\nIn order to guarantee (7.1), the \( n + 1 - j \) coefficients \( {a}_{1},\ldots ,{a}_{n + 1 - j} \) must satisfy the \( n - j \) linear equations\n\n\[ \n\mathop{\sum }\limits_{{i = 1}}^{{n + 1 - j}}{a}_{i}\left( {{z}_{i},{x}_{k}}\right) = 0,\;k = j + 1,\ldots, n. \n\]\n\nThis underdetermined system always has a nontrivial solution. For the corresponding \( x \) given by (7.2) we have \( x \neq 0 \), and from\n\n\[ \nx = \mathop{\sum }\limits_{{k = 1}}^{j}\left( {x,{x}_{k}}\right) {x}_{k} \n\]\n\nwe obtain that\n\n\[ \n\left( {{Ax}, x}\right) = \mathop{\sum }\limits_{{k = 1}}^{j}{\lambda }_{k}{\left| \left( x,{x}_{k}\right) \right| }^{2} \geq {\lambda }_{j}\mathop{\sum }\limits_{{k = 1}}^{j}{\left| \left( x,{x}_{k}\right) \right| }^{2} = {\lambda }_{j}\left( {x, x}\right) , \n\]\n\nwhence\n\n\[ \n\mathop{\max }\limits_{\substack{{x \in {U}_{j}} \\ {x \neq 0} }}\frac{\left( Ax, x\right) }{\left( x, x\right) } \geq {\lambda }_{j} \n\]\n\nfollows.\n\nOn the other hand, for the subspace\n\n\[ \n{U}_{j} = \left\{ {x \in {\mathbb{C}}^{n} : \left( {x,{x}_{k}}\right) = 0, k = 1,\ldots, j - 1}\right\} \n\]\n\nof dimension \( n + 1 - j \), by Theorem 7.3 we have the equality\n\n\[ \n\mathop{\max }\limits_{\substack{{x \in {U}_{j}} \\ {x \neq 0} }}\frac{\left( Ax, x\right) }{\left( x, x\right) } = {\lambda }_{j} \n\]\n\nand the proof is finished.
Yes
Corollary 7.5 Let \( A \) and \( B \) be two Hermitian \( n \times n \) matrices with eigenvalues \( {\lambda }_{1}\left( A\right) \geq {\lambda }_{2}\left( A\right) \geq \cdots \geq {\lambda }_{n}\left( A\right) \) and \( {\lambda }_{1}\left( B\right) \geq {\lambda }_{2}\left( B\right) \geq \cdots \geq {\lambda }_{n}\left( B\right) \) . Then\n\n\[ \n\left| {{\lambda }_{j}\left( A\right) - {\lambda }_{j}\left( B\right) }\right| \leq \parallel A - B\parallel ,\;j = 1,\ldots, n \n\] \n\nfor any norm \( \parallel \cdot \parallel \) on \( {\mathbb{C}}^{n} \) .
Proof. From the Cauchy-Schwarz inequality we have that\n\n\[ \n\left( {{Ax} - {Bx}, x}\right) \leq \parallel \left( {A - B}\right) x{\parallel }_{2}\parallel x{\parallel }_{2} \leq \parallel A - B{\parallel }_{2}\parallel x{\parallel }_{2}^{2} \n\] \n\nand hence\n\n\[ \n\left( {{Ax}, x}\right) \leq \left( {{Bx}, x}\right) + \parallel A - B{\parallel }_{2}\parallel x{\parallel }_{2}^{2}. \n\] \n\nBy the Courant minimum maximum principle of Theorem 7.4 this implies\n\n\[ \n{\lambda }_{j}\left( A\right) \leq {\lambda }_{j}\left( B\right) + \parallel A - B{\parallel }_{2},\;j = 1\ldots, n. \n\] \n\nInterchanging the roles of \( A \) and \( B \), we also have that\n\n\[ \n{\lambda }_{j}\left( B\right) \leq {\lambda }_{j}\left( A\right) + \parallel B - A{\parallel }_{2},\;j = 1\ldots, n, \n\] \n\nand therefore\n\n\[ \n\left| {{\lambda }_{j}\left( A\right) - {\lambda }_{j}\left( B\right) }\right| \leq \parallel A - B{\parallel }_{2},\;j = 1,\ldots, n. \n\] \n\nNow the statement follows from\n\n\[ \n\parallel A - B{\parallel }_{2} = \rho \left( {A - B}\right) \leq \parallel A - B\parallel \n\] \n\nwhich is a consequence of Theorems 3.31 and 3.32.
Yes
Corollary 7.6 For the eigenvalues \( {\lambda }_{1} \geq {\lambda }_{2} \geq \cdots \geq {\lambda }_{n} \) of a Hermitian \( n \times n \) matrix \( A = \left( {a}_{jk}\right) \) we have that\n\n\[ \n{\left| {\lambda }_{i} - {a}_{ii}^{\prime }\right| }^{2} \leq \mathop{\sum }\limits_{\substack{{j, k = 1} \\ {j \neq k} }}^{n}{\left| {a}_{jk}\right| }^{2},\;i = 1,\ldots, n \n\]\n\nwhere the elements \( {a}_{11}^{\prime },\ldots ,{a}_{nn}^{\prime } \) represent a permutation of the diagonal elements \( {a}_{11},\ldots ,{a}_{nn} \) of \( A \) such that \( {a}_{11}^{\prime } \geq {a}_{22}^{\prime } \geq \cdots \geq {a}_{nn}^{\prime } \) .
Proof. Use \( B = \operatorname{diag}\left( {a}_{jj}^{\prime }\right) \) and \( \parallel \cdot \parallel = \parallel \cdot {\parallel }_{2} \) in the preceding corollary.
No
Theorem 7.7 (Gerschgorin) Let \( A = \left( {a}_{jk}\right) \) be a complex \( n \times n \) matrix and define the disks\n\n\[ \n{G}_{j} \mathrel{\text{:=}} \left\{ {\lambda \in \mathbb{C} : \left| {\lambda - {a}_{jj}}\right| \leq \mathop{\sum }\limits_{\substack{{k = 1} \\ {k \neq j} }}^{n}\left| {a}_{jk}\right| }\right\} ,\;j = 1,\ldots, n, \n\] \n\nand \n\n\[ \n{G}_{j}^{ * } \mathrel{\text{:=}} \left\{ {\lambda \in \mathbb{C} : \left| {\lambda - {a}_{jj}}\right| \leq \mathop{\sum }\limits_{\substack{{k = 1} \\ {k \neq j} }}^{n}\left| {a}_{kj}\right| }\right\} ,\;j = 1,\ldots, n. \n\] \n\nThen the eigenvalues \( \lambda \) of \( A \) satisfy \n\n\[ \n\lambda \in \mathop{\bigcup }\limits_{{j = 1}}^{n}{G}_{j} \cap \mathop{\bigcup }\limits_{{j = 1}}^{n}{G}_{j}^{ * } \n\]
Proof. Assume that \( {Ax} = {\lambda x} \) and \( \parallel x{\parallel }_{\infty } = 1 \), and for \( x = {\left( {x}_{1},\ldots ,{x}_{n}\right) }^{T} \) choose \( j \) such that \( \left| {x}_{j}\right| = \parallel x{\parallel }_{\infty } = 1 \) . Then \n\n\[ \n\left| {\lambda - {a}_{jj}}\right| = \left| {\left( {\lambda - {a}_{jj}}\right) {x}_{j}}\right| = \left| {\mathop{\sum }\limits_{\substack{{k = 1} \\ {k \neq j} }}^{n}{a}_{jk}{x}_{k}}\right| \leq \mathop{\sum }\limits_{\substack{{k = 1} \\ {k \neq j} }}^{n}\left| {a}_{jk}\right| \n\] \n\nand therefore \n\n\[ \n\lambda \in \mathop{\bigcup }\limits_{{j = 1}}^{n}{G}_{j} \n\] \n\nSince the eigenvalues of \( {A}^{ * } \) are the complex conjugate of the eigenvalues of \( A \) (see Problem 7.3) we also have that \n\n\[ \n\lambda \in \mathop{\bigcup }\limits_{{j = 1}}^{n}{G}_{j}^{ * } \n\] \n\nand the theorem is proven.
Yes
Lemma 7.8 The Frobenius norm\n\n\\[ \n\\parallel A{\\parallel }_{F} \\mathrel{\\text{:=}} {\\left( \\mathop{\\sum }\\limits_{{j, k = 1}}^{n}{\\left| {a}_{jk}\\right| }^{2}\\right) }^{1/2}\n\\]\n\nof an \\( n \\times n \\) matrix \\( A = \\left( {a}_{jk}\\right) \\) is invariant with respect to unitary transformations.
Proof. The trace\n\n\\[ \n\\operatorname{tr}A \\mathrel{\\text{:=}} \\mathop{\\sum }\\limits_{{j = 1}}^{n}{a}_{jj}\n\\]\n\nof a matrix \\( A \\) is commutative; i.e., \\( \\operatorname{tr}{AB} = \\operatorname{tr}{BA} \\) . This follows from\n\n\\[ \n\\mathop{\\sum }\\limits_{{j = 1}}^{n}{\\left( AB\\right) }_{jj} = \\mathop{\\sum }\\limits_{{j = 1}}^{n}\\mathop{\\sum }\\limits_{{k = 1}}^{n}{a}_{jk}{b}_{kj} = \\mathop{\\sum }\\limits_{{k = 1}}^{n}\\mathop{\\sum }\\limits_{{j = 1}}^{n}{b}_{kj}{a}_{jk} = \\mathop{\\sum }\\limits_{{k = 1}}^{n}{\\left( BA\\right) }_{kk}.\n\\]\n\nIn particular, we have that\n\n\\[ \n\\operatorname{tr}A{A}^{ * } = \\mathop{\\sum }\\limits_{{j = 1}}^{n}\\mathop{\\sum }\\limits_{{k = 1}}^{n}{a}_{jk}{a}_{kj}^{ * } = \\mathop{\\sum }\\limits_{{j = 1}}^{n}\\mathop{\\sum }\\limits_{{k = 1}}^{n}{\\left| {a}_{jk}\\right| }^{2}.\n\\]\n\nTherefore, for each unitary matrix \\( Q \\) it follows that\n\n\\[ \n\\parallel {Q}^{ * }{AQ}{\\parallel }_{F}^{2} = \\mathrm{{tr}}\\left( {{Q}^{ * }{AQ}{Q}^{ * }{A}^{ * }Q}\\right) = \\mathrm{{tr}}\\left( {{Q}^{ * }A{A}^{ * }Q}\\right) = \\mathrm{{tr}}\\left( {A{A}^{ * }Q{Q}^{ * }}\\right) = \\parallel A{\\parallel }_{F}^{2},\n\\]\n\nand the lemma is proven.
Yes
Corollary 7.9 The eigenvalues of an \( n \times n \) matrix \( A \) (counted repeatedly according to their algebraic multiplicity) satisfy Schur's inequality\n\n\[ \mathop{\sum }\limits_{{j = 1}}^{n}{\left| {\lambda }_{j}\right| }^{2} \leq \parallel A{\parallel }_{F}^{2} \]\n\nEquality holds if and only if the matrix \( A \) is normal, i.e., if \( A{A}^{ * } = {A}^{ * }A \) .
Proof. By Theorem 3.27 there exists a unitary matrix \( Q \) such that \( R \mathrel{\text{:=}} {Q}^{ * }{AQ} \) is an upper triangular matrix. Hence\n\n\[ \parallel A{\parallel }_{F}^{2} = \parallel R{\parallel }_{F}^{2} = \mathop{\sum }\limits_{{j = 1}}^{n}{\left| {\lambda }_{j}\right| }^{2} + \mathop{\sum }\limits_{{j = 1}}^{n}\mathop{\sum }\limits_{{k = j + 1}}^{n}{\left| {r}_{jk}\right| }^{2}, \]\n\n(7.3)\n\nsince the diagonal elements of \( R = \left( {r}_{jk}\right) \) coincide with the eigenvalues of the similar matrices \( R \) and \( A \) . Now Schur’s inequality follows immediately from (7.3).\n\nFor the discussion of the case of equality, we first note that any unitary transformation of a normal matrix is again normal. This is a consequence of the identity\n\n\[ {Q}^{ * }{AQ}{\left( {Q}^{ * }AQ\right) }^{ * } - {\left( {Q}^{ * }AQ\right) }^{ * }{Q}^{ * }{AQ} = {Q}^{ * }\left( {A{A}^{ * } - {A}^{ * }A}\right) Q. \]\n\nIf equality holds in Schur’s inequality, then (7.3) implies that \( R \) is a diagonal matrix. Hence \( R \), and therefore \( A \), is normal.\n\nConversely, if \( A \) is normal, then the upper triangular matrix \( R \) must also be normal. Now, from\n\n\[ {\left( R{R}^{ * }\right) }_{jj} = \mathop{\sum }\limits_{{k = 1}}^{n}{r}_{jk}{r}_{kj}^{ * } = \mathop{\sum }\limits_{{k = j}}^{n}{\left| {r}_{jk}\right| }^{2} \]\n\nand\n\n\[ {\left( {R}^{ * }R\right) }_{jj} = \mathop{\sum }\limits_{{k = 1}}^{n}{r}_{jk}^{ * }{r}_{kj} = \mathop{\sum }\limits_{{k = 1}}^{j}{\left| {r}_{kj}\right| }^{2} \]\n\nwe conclude that\n\n\[ \mathop{\sum }\limits_{{k = j}}^{n}{\left| {r}_{jk}\right| }^{2} = \mathop{\sum }\limits_{{k = 1}}^{j}{\left| {r}_{kj}\right| }^{2},\;j = 1,\ldots, n. \]\n\nThis implies \( {r}_{jk} = 0 \) for \( j < k \), i.e., \( R \) is a diagonal matrix, and from (7.3) we deduce that equality holds in Schur’s inequality if \( A \) is normal.
Yes
Lemma 7.10 Normal matrices \( A \) satisfy\n\n\[ \mathop{\sum }\limits_{{j = 1}}^{n}{\left| {\lambda }_{j}\right| }^{2} = \mathop{\sum }\limits_{{j = 1}}^{n}{\left| {a}_{jj}\right| }^{2} + {\left\lbrack N\left( A\right) \right\rbrack }^{2}. \]
Proof. This follows from Corollary 7.9.
No
Lemma 7.11 For each pair \( j < k \) and each \( \varphi \in \mathbb{R} \) the matrix\n\n\[ U = \left( \begin{matrix} 1 & & & & & \\ & \cdot & & & & \\ & & \cos \varphi & & - \sin \varphi & \\ & & & \cdot & & \\ & & \sin \varphi & & \cos \varphi & \\ & & & & & \cdot \\ & & & & & 1 \end{matrix}\right) ,\]\n\nwhich coincides with the identity matrix except for \( {u}_{jj} = {u}_{kk} = \cos \varphi \) and \( {u}_{kj} = - {u}_{jk} = \sin \varphi \) (and which describes a rotation in the \( {x}_{j}{x}_{k} \) -plane) is unitary.
Proof. This follows from\n\n\[ \left( \begin{matrix} \cos \varphi & - \sin \varphi \\ \sin \varphi & \cos \varphi \end{matrix}\right) \left( \begin{matrix} \cos \varphi & \sin \varphi \\ - \sin \varphi & \cos \varphi \end{matrix}\right) = \left( \begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \]\n\nand\n\n\[ \left( \begin{matrix} \cos \varphi & \sin \varphi \\ - \sin \varphi & \cos \varphi \end{matrix}\right) \left( \begin{matrix} \cos \varphi & - \sin \varphi \\ \sin \varphi & \cos \varphi \end{matrix}\right) = \left( \begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) . \]
Yes
Lemma 7.12 Let \( A \) be a real symmetric matrix and let \( U \) be the unitary matrix of Lemma 7.11. Then \( B = {U}^{ * }{AU} \) is also real and symmetric and has the entries\n\n\[ \n{b}_{jj} = {a}_{jj}{\cos }^{2}\varphi + {a}_{jk}\sin {2\varphi } + {a}_{kk}{\sin }^{2}\varphi \]\n\n\[ \n{b}_{kk} = {a}_{jj}{\sin }^{2}\varphi - {a}_{jk}\sin {2\varphi } + {a}_{kk}{\cos }^{2}\varphi \]\n\n\[ \n{b}_{jk} = {b}_{kj} = {a}_{jk}\cos {2\varphi } + \frac{1}{2}\left( {{a}_{kk} - {a}_{jj}}\right) \sin {2\varphi } \]\n\n\[ \n{b}_{ij} = {b}_{ji} = {a}_{ij}\cos \varphi + {a}_{ik}\sin \varphi ,\;i \neq j, k, \]\n\n\[ \n{b}_{ik} = {b}_{ki} = - {a}_{ij}\sin \varphi + {a}_{ik}\cos \varphi ,\;i \neq j, k, \]\n\n\[ \n{b}_{il} = {a}_{il},\;i, l \neq j, k \]\n\ni.e., the matrix \( B \) differs from \( A \) only in the \( j \) th and \( k \) th rows and columns.
Proof. The matrix \( B \) is real, since \( A \) and \( U \) are real, and it is symmetric, since the unitary transformation of a Hermitian matrix is again Hermitian. Elementary calculations show that\n\n\[ \n\left( \begin{matrix} \cos \varphi & \sin \varphi \\ - \sin \varphi & \cos \varphi \end{matrix}\right) \left( \begin{matrix} {a}_{jj} & {a}_{jk} \\ {a}_{kj} & {a}_{kk} \end{matrix}\right) \left( \begin{matrix} \cos \varphi & - \sin \varphi \\ \sin \varphi & \cos \varphi \end{matrix}\right) = \left( \begin{matrix} {b}_{jj} & {b}_{jk} \\ {b}_{kj} & {b}_{kk} \end{matrix}\right) \]\n\nwith \( {b}_{jj},{b}_{jk},{b}_{kj} \), and \( {b}_{kk} \) as stated in the theorem. For \( i \neq j, k \) we have that\n\n\[ \n{b}_{ij} = \mathop{\sum }\limits_{{r, s = 1}}^{n}{u}_{is}^{ * }{a}_{sr}{u}_{rj} = {a}_{ij}{u}_{jj} + {a}_{ik}{u}_{kj} = {a}_{ij}\cos \varphi + {a}_{ik}\sin \varphi \]\n\nand\n\n\[ \n{b}_{ik} = \mathop{\sum }\limits_{{r, s = 1}}^{n}{u}_{is}^{ * }{a}_{sr}{u}_{rk} = {a}_{ij}{u}_{jk} + {a}_{ik}{u}_{kk} = - {a}_{ij}\sin \varphi + {a}_{ik}\cos \varphi . \]\n\nFinally, we have\n\n\[ \n{b}_{il} = \mathop{\sum }\limits_{{r, s = 1}}^{n}{u}_{is}^{ * }{a}_{sr}{u}_{rl} = {a}_{il} \]\n\nfor \( i, l \neq j, k \) .
Yes
Lemma 7.13 For\n\n\[ \tan {2\varphi } = \frac{2{a}_{jk}}{{a}_{jj} - {a}_{kk}},\;{a}_{jj} \neq {a}_{kk}, \]\n\n\[ \varphi = \frac{\pi }{4},\;{a}_{jj} = {a}_{kk}, \]\n\nthe transformation of Lemma 7.12 annihilates the elements\n\n\[ {b}_{jk} = {b}_{kj} = 0 \]\n\nand reduces the off-diagonal elements according to\n\n\[ {\left\lbrack N\left( B\right) \right\rbrack }^{2} = {\left\lbrack N\left( A\right) \right\rbrack }^{2} - 2{a}_{jk}^{2}. \]
Proof. \( {b}_{jk} = {b}_{kj} = 0 \) follows immediately from Lemma 7.12. Applying Lemma 7.8 to the matrices\n\n\[ \left( \begin{matrix} {a}_{jj} & {a}_{jk} \\ {a}_{kj} & {a}_{kk} \end{matrix}\right) \;\mathrm{{and}}\;\left( \begin{matrix} {b}_{jj} & {b}_{jk} \\ {b}_{kj} & {b}_{kk} \end{matrix}\right) \]\n\nyields\n\n\[ {a}_{jj}^{2} + 2{a}_{jk}^{2} + {a}_{kk}^{2} = {b}_{jj}^{2} + {b}_{kk}^{2}. \]\n\nFrom this, with the aid of Lemmas 7.8 and 7.12 we find that\n\n\[ {\left\lbrack N\left( B\right) \right\rbrack }^{2} = \parallel B{\parallel }_{F}^{2} - \mathop{\sum }\limits_{{i = 1}}^{n}{b}_{ii}^{2} = \parallel A{\parallel }_{F}^{2} - \mathop{\sum }\limits_{{i = 1}}^{n}{b}_{ii}^{2} \]\n\n\[ = {\left\lbrack N\left( A\right) \right\rbrack }^{2} + \mathop{\sum }\limits_{{i = 1}}^{n}\left( {{a}_{ii}^{2} - {b}_{ii}^{2}}\right) = {\left\lbrack N\left( A\right) \right\rbrack }^{2} - 2{a}_{jk}^{2}, \]\n\nwhich completes the proof.
Yes
Theorem 7.14 The classical Jacobi method converges; i.e., the sequence \( \left( {A}_{\nu }\right) \) converges to a diagonal matrix with the eigenvalues of \( A \) as diagonal elements.
Proof. For one step of the Jacobi method, from\n\n\[ \n{\left\lbrack N\left( A\right) \right\rbrack }^{2} \leq \left( {{n}^{2} - n}\right) \mathop{\max }\limits_{\substack{{i, l = 1,\ldots, n} \\ {i \neq l} }}{a}_{il}^{2} \n\]\n\nwe obtain that\n\n\[ \n{a}_{jk}^{2} \geq \frac{{\left\lbrack N\left( A\right) \right\rbrack }^{2}}{n\left( {n - 1}\right) } \n\]\n\nfor the nondiagonal element \( {a}_{jk} \) with largest modulus. Hence, from Lemma 7.13 we deduce that\n\n\[ \n{\left\lbrack N\left( B\right) \right\rbrack }^{2} = {\left\lbrack N\left( A\right) \right\rbrack }^{2} - 2{a}_{jk}^{2} \leq {q}^{2}{\left\lbrack N\left( A\right) \right\rbrack }^{2}, \n\]\n\nwhere\n\n\[ \nq \mathrel{\text{:=}} {\left( 1 - \frac{2}{n\left( {n - 1}\right) }\right) }^{1/2}. \n\]\n\nFor the sequence \( \left( {A}_{\nu }\right) \) this implies that\n\n\[ \nN\left( {A}_{\nu }\right) \leq {q}^{\nu }N\left( {A}_{0}\right) \n\]\n\nfor all \( \nu \in \mathbb{N} \), whence \( N\left( {A}_{\nu }\right) \rightarrow 0,\nu \rightarrow \infty \), since \( q < 1 \) .
Yes
For the matrix\n\n\[ A = \left( \begin{array}{rrr} 2 & - 1 & 0 \\ - 1 & 2 & - 1 \\ 0 & - 1 & 2 \end{array}\right) \]\n\nthe first six transformed matrices for the classical Jacobi method are given by
\[ {A}_{1} = \left( \begin{array}{rrr} {1.0000} & {0.0000} & - {0.7071} \\ {0.0000} & {3.0000} & - {0.7071} \\ - {0.7071} & - {0.7071} & {2.0000} \end{array}\right) \]\n\n\[ {A}_{2} = \left( \begin{array}{rrr} {0.6340} & - {0.3251} & {0.0000} \\ - {0.3251} & {3.0000} & - {0.6280} \\ {0.0000} & - {0.6280} & {2.3660} \end{array}\right) \]\n\n\[ {A}_{3} = \left( \begin{array}{rrr} {0.6340} & - {0.2768} & - {0.1704} \\ - {0.2768} & {3.3864} & {0.0000} \\ - {0.1704} & {0.0000} & {1.9796} \end{array}\right) \]\n\n\[ {A}_{4} = \left( \begin{array}{rrr} {0.6064} & {0.0000} & - {0.1695} \\ {0.0000} & {3.4140} & {0.0169} \\ - {0.1695} & {0.0169} & {1.9796} \end{array}\right) \]\n\n\[ {A}_{5} = \left( \begin{matrix} {0.5858} & {0.0020} & {0.0000} \\ {0.0020} & {3.4140} & {0.0168} \\ {0.0000} & {0.0168} & {2.0002} \end{matrix}\right) ,\]\n\n\[ {A}_{6} = \left( \begin{array}{rrr} {0.5858} & {0.0020} & - {0.0000} \\ {0.0020} & {3.4142} & {0.0000} \\ - {0.0000} & {0.0000} & {2.0000} \end{array}\right) \]\n\nThe exact eigenvalues of \( A \) are \( {\lambda }_{1} = 2 + \sqrt{2},{\lambda }_{2} = 2,{\lambda }_{3} = 2 - \sqrt{2} \) .
Yes
An \( n \times n \) matrix \( A \) is diagonalizable if and only if it has \( n \) linearly independent eigenvectors.
Assume that \( {C}^{-1}{AC} = D \), where \( D = \operatorname{diag}\left( {{\lambda }_{1},\ldots ,{\lambda }_{n}}\right) \), is diagonal. Then \( D{e}_{j} = {\lambda }_{j}{e}_{j}, j = 1,\ldots, n \), with the canonical orthonormal basis \( {e}_{1},\ldots ,{e}_{n} \) of \( {\mathbb{C}}^{n} \) . This implies that the vectors \( {x}_{j} \mathrel{\text{:=}} C{e}_{j}, j = 1,\ldots, n \), are eigenvectors of \( A \), since\n\n\[ A{x}_{j} = {AC}{e}_{j} = {CD}{e}_{j} = C{\lambda }_{j}{e}_{j} = {\lambda }_{j}{x}_{j}. \]\n\nThe vectors \( {x}_{1},\ldots ,{x}_{n} \) are linearly independent because \( C \) is nonsingular and the \( {e}_{1},\ldots ,{e}_{n} \) are linearly independent.\n\nConversely, assume that \( {x}_{1},\ldots ,{x}_{n} \) are \( n \) linearly independent eigenvectors of \( A \) for the eigenvalues \( {\lambda }_{1},\ldots ,{\lambda }_{n} \) . Then the matrix \( C = \left( {{x}_{1},\ldots ,{x}_{n}}\right) \) formed by the eigenvectors as columns is nonsingular, and we have that\n\n\[ {AC} = \left( {A{x}_{1},\ldots, A{x}_{n}}\right) = \left( {{\lambda }_{1}{x}_{1},\ldots ,{\lambda }_{n}{x}_{n}}\right) = {CD}, \]\n\nwhere \( D = \operatorname{diag}\left( {{\lambda }_{1},\ldots ,{\lambda }_{n}}\right) \) . Hence \( {C}^{-1}{AC} = D \) .
Yes
Theorem 7.19 Assume that \( A \) is a diagonalizable \( n \times n \) matrix with eigenvalues\n\n\[ \n\\left| {\\lambda }_{1}\\right| > \\left| {\\lambda }_{2}\\right| > \\cdots > \\left| {\\lambda }_{n}\\right| \n\]\n\nand corresponding eigenvectors \( {x}_{1},{x}_{2},\\ldots ,{x}_{n} \), and set\n\n\[ \n{T}_{m} \\mathrel{\\text{:=}} \\mathrm{{span}}\\{ {x}_{1},\\ldots ,{x}_{m}\\} \\;\\text{ and }\\;{U}_{m} \\mathrel{\\text{:=}} \\mathrm{{span}}\\{ {x}_{m + 1},\\ldots ,{x}_{n}\\} \n\]\n\nfor \( m = 1,\\ldots, n - 1 \) . Let \( {q}_{10},\\ldots ,{q}_{n0} \) be an orthonormal basis of \( {\\mathbb{C}}^{n} \) and let the subspaces\n\n\[ \n{S}_{m} \\mathrel{\\text{:=}} \\operatorname{span}\\left\\{ {{q}_{10},\\ldots ,{q}_{m0}}\\right\\} \n\]\n\nsatisfy\n\n\[ \n{S}_{m} \\cap {U}_{m} = \\{ 0\\} ,\\;m = 1,\\ldots, n - 1.\n\]\n\nAssume that for each \( \\nu \\in \\mathbb{N} \) we have constructed an orthonormal system \( {q}_{1\\nu },\\ldots ,{q}_{n\\nu } \) with the property\n\n\[ \n{A}^{\\nu }{S}_{m} = \\operatorname{span}\\left\\{ {{q}_{1\\nu },\\ldots ,{q}_{m\\nu }}}\\right\\} ,\\;m = 1,\\ldots, n - 1,\n\]\n\nand define \( {\\widetilde{Q}}_{\\nu } = \\left( {{q}_{1\\nu },\\ldots ,{q}_{n\\nu }}\\right) \) . Then for the sequence of matrices \( {A}_{\\nu } = \\left( {a}_{{jk},\\nu }\\right) \\; \\) given \\;{by}\n\n\[ \n{A}_{\\nu + 1} \\mathrel{\\text{:=}} {\\widetilde{Q}}_{\\nu }^{ * }A{\\widetilde{Q}}_{\\nu }\n\]\n\nwe have convergence:\n\n\[ \n\\mathop{\\lim }\\limits_{{\\nu \\rightarrow \\infty }}{a}_{{jk},\\nu } = 0,\\;1 < k < j \\leq n\n\]\n\nand\n\n\[ \n\\mathop{\\lim }\\limits_{{\\nu \\rightarrow \\infty }}{a}_{{jj},\\nu } = {\\lambda }_{j},\\;j = 1,\\ldots, n.\n\]
Proof. 1. Without loss of generality we may assume that \( {\\begin{Vmatrix}{x}_{j}\\end{Vmatrix}}_{2} = 1 \) for \( j = 1,\\ldots, n \) . From Lemma 7.18 it follows that\n\n\[ \n{\\begin{Vmatrix}{P}_{{A}^{\\nu }{S}_{m}} - {P}_{{T}_{m}}\\end{Vmatrix}}_{2} \\leq M{r}^{\\nu },\\;m = 1,\\ldots, n - 1,\\;\\nu \\in \\mathbb{N},\n\]\n\nfor some constant \( M \) and\n\n\[ \nr \\mathrel{\\text{:=}} \\mathop{\\max }\\limits_{{m = 1,\\ldots, n - 1}}\\left| \\frac{{\\lambda }_{m + 1}}{{\\lambda }_{m}}\\right| < 1\n\]\n\nFrom this, for the projections\n\n\[ \n{w}_{m\\nu } \\mathrel{\\text{:=}} {P}_{{A}^{\\nu }{S}_{m}}{x}_{m},\\;m = 1,\\ldots, n - 1,\n\]\n\nand \( {w}_{n\\nu } \\mathrel{\\text{:=}} {x}_{n} \), we conclude that\n\n\[ \n{\\begin{Vmatrix}{w}_{m\\nu } - {x}_{m}\\end{Vmatrix}}_{2} \\leq M{r}^{\\nu },\\;m = 1,\\ldots, n,\\;\\nu \\in \\mathbb{N}.\n\]\n\nFor sufficiently large \( \\nu \) the vectors \( {w}_{1\\nu },\\ldots ,{w}_{n\\nu } \) are linearly independent, and we have that\n\n\[ \n\\operatorname{span}\\left\\{ {{w}_{1\\nu },\\ldots ,{w}_{m\\nu }}}\\right\\} = {A}^{\\nu }{S}_{m},\\;m = 1,\\ldots, n - 1.\n\]\n\nTo prove this we assume to the contrary that the vectors \( {w}_{1\\nu },\\ldots ,{w}_{n\\nu } \) are not linearly independent for all sufficiently large \( \\nu \) . Then there exists a sequence \( {\\nu }_{\\ell } \) such that the vectors \( {w}_{1{\\nu }_{\\ell }},\\ldots ,{w}_{n{\\nu }_{\\ell }} \) are linearly dependent for each \( \\ell \\in \\mathbb{N} \) . Hence there exist complex numbers \( {\\alpha }_{1\\ell },\\ldots ,{\\alpha }_{n\\ell } \) such that\n\n\[ \n\\mathop{\\sum }\\limits_{{k = 1}}^{n}{\\alpha }_{k\\ell }{w}_{k{n}_{\\ell }} = 0\\;\\text{ and }\\;\\mathop{\\sum }\\limits_{{k = 1}}^{n}{\\left| {\\alpha }_{k\\ell }\\right| }^{2} = 1\n\]\n\nBy the Bolzano-Weierstrass theorem, without loss of generality, we may assume that\n\n\[ \n{\\alpha }_{k\\ell } \\rightarrow {\\alpha }_{k},\\;\\ell \\rightarrow \\infty ,\\;k = 1,\\ldots, n.\n\]\n\nPassing to the limit \( \\ell \\rightarrow \\infty \) in (7.18) with the aid of (7.17) now leads to\n\n\[ \n\\mathop{\\sum }\\limits_{{k = 1}}^{n}{\\alpha }_{k}{x}_{k} = 0\\;\\text{ and }\\;\\mathop{\\sum }\\limits_{{k = 1}}^{n}{\\left| {\\alpha }_{k}\\right| }^{2} = 1\n\]\n\nwhich contradicts the linear independence of the eigenvectors \( {x}_{1},\\ldots ,{x}_{n} \) . 2. We orthonormalize by setting \( {\\widetilde{p}}_{1} \\mathrel{\\text{:=}} {x}_{1} \) and\n\n\[ \n{\\widetilde{p}}_{m} \\mathrel{\\text{:=}} {x}_{m} - {P}_{{T}_{m - 1}}{x}_{m},\\;m = 2,\\ldots, n,\n\]\n\n\[ \n{p}_{m} \\mathrel{\\text{:=}} \\frac{{\\widetilde{p}}_{m}}{{\\begin{Vmatrix}{\\widetilde{p}}_{m}\\end{Vmatrix}}_{2}},\\;m = 1,\\ldots, n,\n\]
Yes
Theorem 7.20 (QR algorithm) Let \( A \) be a diagonalizable matrix with eigenvalues\n\n\[ \left| {\lambda }_{1}\right| > \left| {\lambda }_{2}\right| > \cdots > \left| {\lambda }_{n}\right| \]\n\nand corresponding eigenvectors \( {x}_{1},{x}_{2},\ldots ,{x}_{n} \), and assume that\n\n\[ \operatorname{span}\left\{ {{e}_{1},\ldots ,{e}_{m}}\right\} \cap \operatorname{span}\left\{ {{x}_{m + 1},\ldots ,{x}_{n}}\right\} = \{ 0\} \]\n\n(7.24)\n\nfor \( m = 1,\ldots, n - 1 \) . Starting with \( {A}_{1} = A \), construct a sequence \( \left( {A}_{\nu }\right) \) by determining a QR decomposition\n\n\[ {A}_{\nu } = {Q}_{\nu }{R}_{\nu } \]\n\nand setting\n\n\[ {A}_{\nu + 1} \mathrel{\text{:=}} {R}_{\nu }{Q}_{\nu } \]\n\nfor \( \nu = 0,1,2,\ldots \) Then for \( {A}_{\nu } = \left( {a}_{{jk},\nu }\right) \) we have convergence:\n\n\[ \mathop{\lim }\limits_{{\nu \rightarrow \infty }}{a}_{{jk},\nu } = 0,\;1 < k < j \leq n \]\n\nand\n\n\[ \mathop{\lim }\limits_{{\nu \rightarrow \infty }}{a}_{{jj},\nu } = {\lambda }_{j},\;j = 1,\ldots, n. \]
Proof. This is just a special case of Theorem 7.19.
Yes
Example 7.23 Let\n\n\[ A = \\left( \\begin{matrix} {a}_{1} & {c}_{2} & & & & \\\\ {c}_{2} & {a}_{2} & {c}_{3} & & & \\\\ & {c}_{3} & {a}_{3} & {c}_{4} & & \\\\ & & \\cdot & \\cdot & \\cdot & \\\\ & & & {c}_{n - 1} & {a}_{n - 1} & {c}_{n} \\\\ & & & & {c}_{n} & {a}_{n} \\end{matrix}\\right) \]\n\nbe a symmetric tridiagonal matrix. Denote by \( {A}_{k} \) the \( k \\times k \) submatrix consisting of the first \( k \) rows and columns of \( A \), and let \( {p}_{k} \) denote the characteristic polynomial of \( {A}_{k} \). Then we have the recurrence relations\n\n\[ {p}_{k}\\left( \\lambda \\right) = \\left( {{a}_{k} - \\lambda }\\right) {p}_{k - 1}\\left( \\lambda \\right) - {c}_{k}^{2}{p}_{k - 2}\\left( \\lambda \\right) ,\\;k = 2,\\ldots, n, \]\n\n(7.25)\n\nand\n\n\[ {p}_{k}^{\\prime }\\left( \\lambda \\right) = \\left( {{a}_{k} - \\lambda }\\right) {p}_{k - 1}^{\\prime }\\left( \\lambda \\right) - {c}_{k}^{2}{p}_{k - 2}^{\\prime }\\left( \\lambda \\right) - {p}_{k - 1}\\left( \\lambda \\right) ,\\;k = 2,\\ldots, n, \]\n\n(7.26)\n\nstarting with \( {p}_{0}\\left( \\lambda \\right) = 1 \) and \( {p}_{1}\\left( \\lambda \\right) = {a}_{1} - \\lambda \).
Proof. The recursion (7.25) follows by expanding \( \\det \\left( {{A}_{k} - {\\lambda I}}\\right) \) with respect to the last column, and (7.26) is obtained by differentiating (7.25).
Yes
Theorem 8.1 For \( n \in \mathbb{N} \cup \{ 0\} \), each polynomial in \( {P}_{n} \) that has more than \( n \) (complex) zeros, where each zero is counted repeatedly according to its multiplicity, must vanish identically; i.e., all its coefficients must be equal to zero.
Proof. Obviously, the statement is true for \( n = 0 \) . Assume that it has been proven for some \( n \geq 0 \) . By using the binomial formula for \( {x}^{k} = {\left\lbrack \left( x - z\right) + z\right\rbrack }^{k} \) we can rewrite the polynomial \( p \in {P}_{n + 1} \) in the form\n\n\[ p\left( x\right) = \mathop{\sum }\limits_{{k = 1}}^{{n + 1}}{b}_{k}{\left( x - z\right) }^{k} + {b}_{0} \]\n\nwith the coefficients \( {b}_{0},{b}_{1},\ldots ,{b}_{n + 1} \) depending on \( {a}_{0},{a}_{1},\ldots ,{a}_{n + 1} \) and \( z \) . If \( z \) is a zero of \( p \), then we must have \( {b}_{0} = 0 \), and this implies that \( p\left( x\right) = \left( {x - z}\right) q\left( x\right) \) with \( q \in {P}_{n} \) . Obviously, \( q \) has more than \( n \) zeros, since \( p \) has more than \( n + 1 \) zeros. Hence, by the induction assumption, \( q \) must vanish identically, and this implies that \( p \) vanishes identically.
Yes
Theorem 8.2 The monomials \( {u}_{k}\left( x\right) \mathrel{\text{:=}} {x}^{k}, k = 0,\ldots, n \), are linearly independent.
Proof. In order to prove this, assume that\n\n\[ \mathop{\sum }\limits_{{k = 0}}^{n}{a}_{k}{u}_{k} = 0 \]\n\nthat is,\n\n\[ \mathop{\sum }\limits_{{k = 0}}^{n}{a}_{k}{x}^{k} = 0,\;x \in \left\lbrack {a, b}\right\rbrack \]\n\nThen the polynomial with coefficients \( {a}_{0},{a}_{1},\ldots ,{a}_{n} \) has more than \( n \) distinct zeros, and from Theorem 8.1 it follows that all the coefficients must be zero.
Yes
Theorem 8.3 Given \( n + 1 \) distinct points \( {x}_{0},\ldots ,{x}_{n} \in \left\lbrack {a, b}\right\rbrack \) and \( n + 1 \) values \( {y}_{0},\ldots ,{y}_{n} \in \mathbb{R} \), there exists a unique polynomial \( {p}_{n} \in {P}_{n} \) with the property\n\n\[ \n{p}_{n}\left( {x}_{j}\right) = {y}_{j},\;j = 0,\ldots, n.\n\]
Proof. We note that \( {\ell }_{k} \in {P}_{n} \) for \( k = 0,\ldots, n \) and that the equations\n\n\[ \n{\ell }_{k}\left( {x}_{j}\right) = {\delta }_{jk},\;j, k = 0,\ldots, n\n\]\n\nhold, where \( {\delta }_{jk} = 1 \) for \( k = j \), and \( {\delta }_{jk} = 0 \) for \( k \neq j \) . It follows that \( {p}_{n} \) given by (8.2) is in \( {P}_{n} \), and it fulfills the required interpolation conditions \( {p}_{n}\left( {x}_{j}\right) = {y}_{j}, j = 0,\ldots, n \) .\n\nTo prove uniqueness of the interpolation polynomial we assume that \( {p}_{n,1},{p}_{n,2} \in {P}_{n} \) are two polynomials satisfying (8.1). Then the difference \( {p}_{n} \mathrel{\text{:=}} {p}_{n,1} - {p}_{n,2} \) satisfies \( {p}_{n}\left( {x}_{j}\right) = 0, j = 0,\ldots, n \) ; i.e., the polynomial \( {p}_{n} \in {P}_{n} \) has \( n + 1 \) zeros and therefore by Theorem 8.1 must be identically zero. This implies that \( {p}_{n,1} = {p}_{n,2} \) .
Yes
Lemma 8.6 The divided differences satisfy the relation\n\n\[ \n{D}_{j}^{k} = \mathop{\sum }\limits_{{m = j}}^{{j + k}}{y}_{m}\mathop{\prod }\limits_{\substack{{i = j} \\ {i \neq m} }}^{{j + k}}\frac{1}{{x}_{m} - {x}_{i}},\;j = 0,\ldots, n - k,\;k = 1,\ldots, n. \n\]\n\n(8.4)
Proof. We proceed by induction with respect to the order \( k \) . Trivially,(8.4) holds for \( k = 1 \) . We assume that (8.4) has been proven for order \( k - 1 \) for some \( k \geq 2 \) . Then, using Definition 8.4, the induction assumption, and the identity\n\n\[ \n\frac{1}{{x}_{j + k} - {x}_{j}}\left\{ {\frac{1}{{x}_{m} - {x}_{j + k}} - \frac{1}{{x}_{m} - {x}_{j}}}\right\} = \frac{1}{\left( {{x}_{m} - {x}_{j + k}}\right) \left( {{x}_{m} - {x}_{j}}\right) }, \n\]\n\nwe obtain\n\n\[ \n{D}_{j}^{k} = \frac{1}{{x}_{j + k} - {x}_{j}}\left\{ {\mathop{\sum }\limits_{{m = j + 1}}^{{j + k}}{y}_{m}\mathop{\prod }\limits_{\substack{{i = j + 1} \\ {i \neq m} }}^{{j + k}}\frac{1}{{x}_{m} - {x}_{i}} - \mathop{\sum }\limits_{{m = j}}^{{j + k - 1}}{y}_{m}\mathop{\prod }\limits_{\substack{{i = j} \\ {i \neq m} }}^{{j + k - 1}}\frac{1}{{x}_{m} - {x}_{i}}}\right\} \n\]\n\n\[ \n= \frac{1}{{x}_{j + k} - {x}_{j}}\mathop{\sum }\limits_{{m = j + 1}}^{{j + k - 1}}{y}_{m}\left\{ {\frac{1}{{x}_{m} - {x}_{j + k}} - \frac{1}{{x}_{m} - {x}_{j}}}\right\} \mathop{\prod }\limits_{\substack{{i = j + 1} \\ {i \neq m} }}^{{j + k - 1}}\frac{1}{{x}_{m} - {x}_{i}} \n\]\n\n\[ \n+ {y}_{j + k}\mathop{\prod }\limits_{{i = j}}^{{j + k - 1}}\frac{1}{{x}_{j + k} - {x}_{i}} + {y}_{j}\mathop{\prod }\limits_{{i = j + 1}}^{{j + k}}\frac{1}{{x}_{j} - {x}_{i}} = \mathop{\sum }\limits_{{m = j}}^{{j + k}}{y}_{m}\mathop{\prod }\limits_{\substack{{i = j} \\ {i \neq m} }}^{{j + k}}\frac{1}{{x}_{m} - {x}_{i}} \n\]\n\ni.e.,(8.4) also holds for order \( k \) .
Yes
Theorem 8.7 In the Newton representation, for \( n \geq 1 \) the uniquely determined interpolation polynomial \( {p}_{n} \) of Theorem 8.3 is given by\n\n\[ \n{p}_{n}\left( x\right) = {y}_{0} + \mathop{\sum }\limits_{{k = 1}}^{n}{D}_{0}^{k}\mathop{\prod }\limits_{{i = 0}}^{{k - 1}}\left( {x - {x}_{i}}\right) .\n\]\n\n(8.5)
Proof. We denote the right-hand side of (8.5) by \( {\widetilde{p}}_{n} \) and establish \( {p}_{n} = {\widetilde{p}}_{n} \) by induction with respect to the degree \( n \) . For \( n = 1 \) the representation (8.5) is correct. We assume that (8.5) has been proven for degree \( n - 1 \) for some \( n \geq 2 \) and consider the difference \( {d}_{n} \mathrel{\text{:=}} {p}_{n} - {\widetilde{p}}_{n} \) . Since\n\n\[ \n{d}_{n}\left( x\right) = {p}_{n}\left( x\right) - {\widetilde{p}}_{n - 1}\left( x\right) - {D}_{0}^{n}\mathop{\prod }\limits_{{i = 0}}^{{n - 1}}\left( {x - {x}_{i}}\right) ,\n\]\n\nas a consequence of Theorem 8.3 and Lemma 8.6 the coefficient of \( {x}^{n} \) in the polynomial \( {d}_{n} \) vanishes; i.e., \( {d}_{n} \in {P}_{n - 1} \) . Using the induction assumption, we have that\n\n\[ \n{\widetilde{p}}_{n - 1}\left( {x}_{j}\right) = {y}_{j} = {p}_{n}\left( {x}_{j}\right) ,\;j = 0,\ldots, n - 1,\n\]\n\nand therefore\n\n\[ \n{d}_{n}\left( {x}_{j}\right) = 0,\;j = 0,\ldots, n - 1.\n\]\n\nHence, by Theorem 8.1 it follows that \( {d}_{n} = 0 \), and therefore \( {p}_{n} = {\widetilde{p}}_{n} \) .
Yes
Given \( n + 1 \) distinct points \( {x}_{0},\ldots ,{x}_{n} \in \left\lbrack {a, b}\right\rbrack \) and \( n + 1 \) values \( {y}_{0},\ldots ,{y}_{n} \in \mathbb{R} \), the uniquely determined interpolation polynomials \( {p}_{i}^{k} \in {P}_{k}, i = 0,\ldots, n - k, k = 0,\ldots, n \), with the interpolation property\n\n\[ {p}_{i}^{k}\left( {x}_{j}\right) = {y}_{j},\;j = i,\ldots, i + k \]\n\nsatisfy the recursive relation\n\n\[ {p}_{i}^{0}\left( x\right) = {y}_{i} \]\n\n\[ {p}_{i}^{k}\left( x\right) = \frac{\left( {x - {x}_{i}}\right) {p}_{i + 1}^{k - 1}\left( x\right) - \left( {x - {x}_{i + k}}\right) {p}_{i}^{k - 1}\left( x\right) }{{x}_{i + k} - {x}_{i}},\;k = 1,\ldots, n. \]\n\n(8.6)
Proof. We again proceed by induction with respect to the degree \( k \) . Obviously, the statement is true for \( k = 1 \) . Assume that the assertion has been proven for degree \( k - 1 \) for some \( k \geq 2 \) . Then the right-hand side of (8.6) describes a polynomial \( p \in {P}_{k} \), and by the induction assumption we find that the interpolation conditions\n\n\[ p\left( {x}_{j}\right) = \frac{\left( {{x}_{j} - {x}_{i}}\right) {y}_{j} - \left( {{x}_{j} - {x}_{i + k}}\right) {y}_{j}}{{x}_{i + k} - {x}_{i}} = {y}_{j},\;j = i + 1,\ldots, i + k - 1, \]\n\nas well as \( p\left( {x}_{i}\right) = {y}_{i} \) and \( p\left( {x}_{i + k}\right) = {y}_{i + k} \) are fulfilled.
Yes
Theorem 8.9 Given \( n + 1 \) distinct points \( {x}_{0},\ldots ,{x}_{n} \in \left\lbrack {a, b}\right\rbrack \) and \( n + 1 \) values \( {y}_{0},\ldots ,{y}_{n} \in \mathbb{R} \), the uniquely determined interpolation polynomials \( {p}_{i}^{k} \in {P}_{k}, i = 0,\ldots, n - k, k = 0,\ldots, n \), with the interpolation property\n\n\[ \n{p}_{i}^{k}\left( {x}_{j}\right) = {y}_{j},\;j = i,\ldots, i + k \n\]\n\nsatisfy the recursive relation\n\n\[ \n{p}_{i}^{0}\left( x\right) = {y}_{i} \n\]\n\n\[ \n{p}_{i}^{k}\left( x\right) = \frac{\left( {x - {x}_{i}}\right) {p}_{i + 1}^{k - 1}\left( x\right) - \left( {x - {x}_{i + k}}\right) {p}_{i}^{k - 1}\left( x\right) }{{x}_{i + k} - {x}_{i}},\;k = 1,\ldots, n. \n\]\n\n(8.6)
Proof. We again proceed by induction with respect to the degree \( k \) . Obviously, the statement is true for \( k = 1 \) . Assume that the assertion has been proven for degree \( k - 1 \) for some \( k \geq 2 \) . Then the right-hand side of (8.6) describes a polynomial \( p \in {P}_{k} \), and by the induction assumption we find that the interpolation conditions\n\n\[ \np\left( {x}_{j}\right) = \frac{\left( {{x}_{j} - {x}_{i}}\right) {y}_{j} - \left( {{x}_{j} - {x}_{i + k}}\right) {y}_{j}}{{x}_{i + k} - {x}_{i}} = {y}_{j},\;j = i + 1,\ldots, i + k - 1, \n\]\n\nas well as \( p\left( {x}_{i}\right) = {y}_{i} \) and \( p\left( {x}_{i + k}\right) = {y}_{i + k} \) are fulfilled.
Yes
Theorem 8.10 Let \( f : \left\lbrack {a, b}\right\rbrack \rightarrow \mathbb{R} \) be \( \left( {n + 1}\right) \) -times continuously differentiable. Then the remainder \( {R}_{n}f \mathrel{\text{:=}} f - {L}_{n}f \) for polynomial interpolation with \( n + 1 \) distinct points \( {x}_{0},\ldots ,{x}_{n} \in \left\lbrack {a, b}\right\rbrack \) can be represented in the form\n\n\[ \left( {{R}_{n}f}\right) \left( x\right) = \frac{{f}^{\left( n + 1\right) }\left( \xi \right) }{\left( {n + 1}\right) !}\mathop{\prod }\limits_{{j = 0}}^{n}\left( {x - {x}_{j}}\right) ,\;x \in \left\lbrack {a, b}\right\rbrack ,\]\n\n(8.8)\n\nfor some \( \xi \in \left\lbrack {a, b}\right\rbrack \) depending on \( x \) .
Proof. Since (8.8) is trivially satisfied if \( x \) coincides with one of the interpolation points \( {x}_{0},\ldots ,{x}_{n} \), we need be concerned only with the case where \( x \) does not coincide with one of the interpolation points. We define\n\n\[ {q}_{n + 1}\left( x\right) \mathrel{\text{:=}} \mathop{\prod }\limits_{{j = 0}}^{n}\left( {x - {x}_{j}}\right) \]\n\nand, keeping \( x \) fixed, consider \( g : \left\lbrack {a, b}\right\rbrack \rightarrow \mathbb{R} \) given by\n\n\[ g\left( y\right) \mathrel{\text{:=}} f\left( y\right) - \left( {{L}_{n}f}\right) \left( y\right) - {q}_{n + 1}\left( y\right) \frac{f\left( x\right) - \left( {{L}_{n}f}\right) \left( x\right) }{{q}_{n + 1}\left( x\right) },\;y \in \left\lbrack {a, b}\right\rbrack . \]\n\nBy the assumption on \( f \), the function \( g \) is also \( \left( {n + 1}\right) \) -times continuously differentiable. Obviously, \( g \) has at least \( n + 2 \) zeros, namely \( x \) and \( {x}_{0},\ldots ,{x}_{n} \) . Then, by Rolle’s theorem the derivative \( {g}^{\prime } \) has at least \( n + 1 \) zeros. Repeating the argument, by induction we deduce that the derivative \( {g}^{\left( n + 1\right) } \) has at least one zero in \( \left\lbrack {a, b}\right\rbrack \), which we denote by \( \xi \) . For this zero we have that\n\n\[ 0 = {f}^{\left( n + 1\right) }\left( \xi \right) - \left( {n + 1}\right) !\frac{\left( {{R}_{n}f}\right) \left( x\right) }{{q}_{n + 1}\left( x\right) }, \]\n\nand from this we obtain (8.8).
Yes
The linear interpolation is given by\n\n\\[ \n\\left( {{L}_{1}f}\\right) \\left( x\\right) = \\frac{1}{h}\\left\\lbrack {f\\left( {x}_{0}\\right) \\left( {{x}_{1} - x}\\right) + f\\left( {x}_{1}\\right) \\left( {x - {x}_{0}}\\right) }\\right\\rbrack \n\\]\n\nwith the step width \\( h = {x}_{1} - {x}_{0} \\) . For the polynomial \\( {q}_{2}\\left( x\\right) = \\left( {x - {x}_{0}}\\right) \\left( {x - {x}_{1}}\\right) \\)\n\nwe have that\n\n\\[ \n\\mathop{\\max }\\limits_{{x \\in \\left\\lbrack {{x}_{0},{x}_{1}}\\right\\rbrack }}\\left| {{q}_{2}\\left( x\\right) }\\right| = \\frac{{h}^{2}}{4}.\n\\]
Therefore, by Corollary 8.11, the error occurring in linear interpolation of a twice continuously differentiable function \\( f \\) can be estimated by\n\n\\[ \n\\left| {\\left( {{R}_{1}f}\\right) \\left( x\\right) }\\right| \\leq \\frac{{h}^{2}}{8}\\mathop{\\max }\\limits_{{y \\in \\left\\lbrack {{x}_{0},{x}_{1}}\\right\\rbrack }}\\left| {{f}^{\\prime \\prime }\\left( y\\right) }\\right| ,\\;x \\in \\left\\lbrack {{x}_{0},{x}_{1}}\\right\\rbrack .\n\\]
Yes
Example 8.13 Let \( f\left( x\right) \mathrel{\text{:=}} \sin x \) and let \( {x}_{0},\ldots ,{x}_{n} \in \left\lbrack {0,\pi }\right\rbrack \) be \( n + 1 \) distinct points. Since
\[ \left| {{f}^{\left( n + 1\right) }\left( x\right) }\right| \leq 1,\;x \in \left\lbrack {0,\pi }\right\rbrack \] and \[ \left| {{q}_{n + 1}\left( x\right) }\right| \leq {\pi }^{n + 1},\;x \in \left\lbrack {0,\pi }\right\rbrack \] by Corollary 8.11, we have the estimate \[ \left| {\left( {{R}_{n}f}\right) \left( x\right) }\right| \leq \frac{{\pi }^{n + 1}}{\left( {n + 1}\right) !},\;x \in \left\lbrack {0,\pi }\right\rbrack \] Hence the sequence \( \left( {{L}_{n}f}\right) \) of interpolation polynomials converges to the interpolated function \( f \) uniformly on \( \left\lbrack {0,\pi }\right\rbrack \) as \( n \rightarrow \infty \) .
Yes
Theorem 8.16 (Marcinkiewicz) For each function \( f \in C\left\lbrack {a, b}\right\rbrack \) there exists a sequence of interpolation points \( \left( {x}_{j}^{\left( n\right) }\right), j = 0,\ldots, n, n = 0,1,\ldots \) , such that the sequence \( \left( {{L}_{n}f}\right) \) of interpolation polynomials \( {L}_{n}f \in {P}_{n} \) with \( \left( {{L}_{n}f}\right) \left( {x}_{j}^{\left( n\right) }\right) = f\left( {x}_{j}^{\left( n\right) }\right), j = 0,\ldots, n \), converges to \( f \) uniformly on \( \left\lbrack {a, b}\right\rbrack \) .
Proof. The proof relies on the Weierstrass approximation theorem and the Chebyshev alternation theorem. The Weierstrass approximation theorem (see [16]) ensures that for each \( f \in C\left\lbrack {a, b}\right\rbrack \) there exists a sequence of polynomials \( {p}_{n} \in {P}_{n} \) such that \( {\begin{Vmatrix}{p}_{n} - f\end{Vmatrix}}_{\infty } \rightarrow 0 \) as \( n \rightarrow \infty \) . As a consequence of the Chebyshev alternation theorem from approximation theory (see [16]), for the uniquely determined best approximation \( {\widetilde{p}}_{n} \) to \( f \) in the maximum norm with respect to \( {P}_{n} \), the error \( {\widetilde{p}}_{n} - f \) has at least \( n + 1 \) zeros in \( \left\lbrack {a, b}\right\rbrack \) . Then taking the sequence of these zeros as the sequence of interpolation points implies the statement of the theorem.
Yes
Theorem 8.17 (Faber) For each sequence of interpolation points \( \left( {x}_{j}^{\left( n\right) }\right) \) there exists a function \( f \in C\left\lbrack {a, b}\right\rbrack \) such that the sequence \( \left( {{L}_{n}f}\right) \) of interpolation polynomials \( {L}_{n}f \in {P}_{n} \) does not converge to \( f \) uniformly on \( \left\lbrack {a, b}\right\rbrack \) .
Proof. This is a consequence of the uniform boundedness principle, Theorem 12.7. It implies that from the convergence of the sequence \( \left( {{L}_{n}f}\right) \) for all \( f \in C\left\lbrack {a, b}\right\rbrack \) it follows that there must exist a constant \( C > 0 \) such that \( {\begin{Vmatrix}{L}_{n}\end{Vmatrix}}_{\infty } \leq C \) for all \( n \in \mathbb{N} \) . Then the statement of the theorem is obtained by showing that the interpolation operator \( {L}_{n} \) satisfies \( {\begin{Vmatrix}{L}_{n}\end{Vmatrix}}_{\infty } \geq c\ln n \) for all \( n \in \mathbb{N} \) and some \( c > 0 \) (see [16]).
Yes
Theorem 8.18 Given \( n + 1 \) distinct points \( {x}_{0},\ldots ,{x}_{n} \in \left\lbrack {a, b}\right\rbrack \) and \( {2n} + 2 \) values \( {y}_{0},\ldots ,{y}_{n} \in \mathbb{R} \) and \( {y}_{0}^{\prime },\ldots ,{y}_{n}^{\prime } \in \mathbb{R} \), there exists a unique polynomial \( {p}_{{2n} + 1} \in {P}_{{2n} + 1} \) with the property\n\n\[ \n{p}_{{2n} + 1}\left( {x}_{j}\right) = {y}_{j},\;{p}_{{2n} + 1}^{\prime }\left( {x}_{j}\right) = {y}_{j}^{\prime },\;j = 0,\ldots, n.\n\]\n\n(8.10)
This Hermite interpolation polynomial is given by\n\n\[ \n{p}_{{2n} + 1} = \mathop{\sum }\limits_{{k = 0}}^{n}\left\lbrack {{y}_{k}{H}_{k}^{0} + {y}_{k}^{\prime }{H}_{k}^{1}}\right\rbrack\n\]\n\n(8.11)\n\nwith the Hermite factors\n\n\[ \n{H}_{k}^{0}\left( x\right) \mathrel{\text{:=}} \left\lbrack {1 - 2{\ell }_{k}^{\prime }\left( {x}_{k}\right) \left( {x - {x}_{k}}\right) }\right\rbrack {\left\lbrack {\ell }_{k}\left( x\right) \right\rbrack }^{2},\;{H}_{k}^{1}\left( x\right) \mathrel{\text{:=}} \left( {x - {x}_{k}}\right) {\left\lbrack {\ell }_{k}\left( x\right) \right\rbrack }^{2}\n\]\n\nexpressed in terms of the Lagrange factors from Theorem 8.3.\n\nProof. Obviously, the polynomial \( {p}_{{2n} + 1} \) belongs to \( {P}_{{2n} + 1} \), since the Hermite factors have degree \( {2n} + 1 \) . From (8.3), by elementary calculations it can be seen that (see Problem 8.7)\n\n\[ \n{H}_{k}^{0}\left( {x}_{j}\right) = {H}_{k}^{1\prime }\left( {x}_{j}\right) = {\delta }_{jk}\n\]\n\n\[ \nj, k = 0,\ldots, n.\text{.}\n\]\n\n(8.12)\n\n\[ \n{H}_{k}^{0\prime }\left( {x}_{j}\right) = {H}_{k}^{1}\left( {x}_{j}\right) = 0\n\]\nFrom this it follows that the polynomial (8.11) satisfies the Hermite interpolation property (8.10).\n\nTo prove uniqueness of the Hermite interpolation polynomial we assume that \( {p}_{{2n} + 1,1},{p}_{{2n} + 1,2} \in {P}_{{2n} + 1} \) are two polynomials having the interpolation property (8.10). Then the difference \( {p}_{{2n} + 1} \mathrel{\text{:=}} {p}_{{2n} + 1,1} - {p}_{{2n} + 1,2} \) satisfies\n\n\[ \n{p}_{{2n} + 1}\left( {x}_{j}\right) = {p}_{{2n} + 1}^{\prime }\left( {x}_{j}\right) = 0,\;j = 0,\ldots, n\n\]\n\ni.e., the polynomial \( {p}_{{2n} + 1} \in {P}_{{2n} + 1} \) has \( n + 1 \) zeros of order two and therefore, by Theorem 8.1, must be identically equal to zero. This implies that \( {p}_{{2n} + 1,1} = {p}_{{2n} + 1,2} \)
Yes
Theorem 8.21 A trigonometric polynomial in \( {T}_{n} \) that has more than \( {2n} \) distinct zeros in the periodicity interval \( \lbrack 0,{2\pi }) \) must vanish identically; i.e., all its coefficients must be equal to zero.
Proof. We consider a trigonometric polynomial \( q \in {T}_{n} \) of the form\n\n\[ q\left( t\right) = \frac{{a}_{0}}{2} + \mathop{\sum }\limits_{{k = 1}}^{n}\left\lbrack {{a}_{k}\cos {kt} + {b}_{k}\sin {kt}}\right\rbrack \]\n\n(8.14)\n\nSetting \( {b}_{0} = 0 \) ,\n\n\[ {\gamma }_{k} \mathrel{\text{:=}} \frac{1}{2}\left( {{a}_{k} - i{b}_{k}}\right) ,\;{\gamma }_{-k} \mathrel{\text{:=}} \frac{1}{2}\left( {{a}_{k} + i{b}_{k}}\right) ,\;k = 0,\ldots, n, \]\n\n(8.15)\n\nand using Euler's formula\n\n\[ {e}^{it} = \cos t + i\sin t \]\n\nwe can rewrite (8.14) in the complex form\n\n\[ q\left( t\right) = \mathop{\sum }\limits_{{k = - n}}^{n}{\gamma }_{k}{e}^{ikt} \]\n\n(8.16)\n\nTherefore, substituting \( z = {e}^{it} \) and setting\n\n\[ p\left( z\right) \mathrel{\text{:=}} \mathop{\sum }\limits_{{k = - n}}^{n}{\gamma }_{k}{z}^{n + k} \]\n\nwe have the relation\n\n\[ q\left( t\right) = {z}^{-n}p\left( z\right) \]\n\nNow assume that the trigonometric polynomial \( q \in {T}_{n} \) has more than \( {2n} \) distinct zeros in the interval \( \lbrack 0,{2\pi }) \) . Then the algebraic polynomial \( p \in {P}_{2n} \) has more than \( {2n} \) distinct zeros lying on the unit circle in the complex plane, since the function \( t \mapsto {e}^{it} \) maps \( \lbrack 0,{2\pi }) \) bijectively onto the unit circle. By Theorem 8.1, the algebraic polynomial \( p \) must be identically zero, and now (8.15) implies that also \( q \) must be identically zero.
Yes
Theorem 8.22 The cosine functions \( {c}_{k}\left( t\right) \mathrel{\text{:=}} \cos {kt}, k = 0,1,\ldots, n \), and the sine functions \( {s}_{k}\left( t\right) \mathrel{\text{:=}} \sin {kt}, k = 1,\ldots, n \), are linearly independent in the function space \( C\left\lbrack {0,{2\pi }}\right\rbrack \) .
Proof. To prove this, assume that\n\n\[ \mathop{\sum }\limits_{{k = 0}}^{n}{a}_{k}{c}_{k} + \mathop{\sum }\limits_{{k = 1}}^{n}{b}_{k}{s}_{k} = 0 \]\n\nthat is,\n\n\[ \mathop{\sum }\limits_{{k = 0}}^{n}{a}_{k}\cos {kt} + \mathop{\sum }\limits_{{k = 1}}^{n}{b}_{k}\sin {kt} = 0,\;t \in \left\lbrack {0,{2\pi }}\right\rbrack . \]\n\nThen the trigonometric polynomial with coefficients \( {a}_{0},\ldots ,{a}_{n} \) and \( {b}_{1},\ldots ,{b}_{n} \) has more than \( {2n} \) distinct zeros in \( \lbrack 0,{2\pi }) \), and from Theorem 8.21 it follows that all the coefficients must be zero. Note that this linear independence also can be deduced from Theorem 3.17.
Yes
Theorem 8.23 Given \( {2n} + 1 \) distinct points \( {t}_{0},\ldots ,{t}_{2n} \in \lbrack 0,{2\pi }) \) and \( {2n} + 1 \) values \( {y}_{0},\ldots ,{y}_{2n} \in \mathbb{R} \), there exists a uniquely determined trigonometric polynomial \( {q}_{n} \in {T}_{n} \) with the property\n\n\[ \n{q}_{n}\left( {t}_{j}\right) = {y}_{j},\;j = 0,\ldots ,{2n}.\n\]
Proof. The function \( {q}_{n} \) belongs to \( {T}_{n} \), since the Lagrange factors are trigonometric polynomials of degree \( n \) . The latter is a consequence of\n\n\[ \n\sin \frac{t - {t}_{0}}{2}\sin \frac{t - {t}_{1}}{2} = \frac{1}{2}\cos \frac{{t}_{1} - {t}_{0}}{2} - \frac{1}{2}\cos \left( {t - \frac{{t}_{1} + {t}_{0}}{2}}\right)\n\]\n\ni.e., each of the functions \( {\ell }_{k} \) is a product of \( n \) trigonometric polynomials of degree one. As in Theorem 8.3, we have \( {\ell }_{k}\left( {x}_{j}\right) = {\delta }_{jk} \) for \( j, k = 0,\ldots ,{2n} \) , which shows that \( {q}_{n} \) indeed solves the trigonometric interpolation problem.\n\nUniqueness of the trigonometric interpolation polynomial follows analogously to the proof of Theorem 8.3 with the aid of Theorem 8.21.
Yes
Theorem 8.24 There exists a unique trigonometric polynomial\n\n\[ \n{q}_{n}\left( t\right) = \frac{{a}_{0}}{2} + \mathop{\sum }\limits_{{k = 1}}^{n}\left\lbrack {{a}_{k}\cos {kt} + {b}_{k}\sin {kt}}\right\rbrack \n\]\n\nsatisfying the interpolation property\n\n\[ \n{q}_{n}\left( \frac{2\pi j}{{2n} + 1}\right) = {y}_{j},\;j = 0,\ldots ,{2n}. \n\]
Its coefficients are given by\n\n\[ \n{a}_{k} = \frac{2}{{2n} + 1}\mathop{\sum }\limits_{{j = 0}}^{{2n}}{y}_{j}\cos \frac{2\pi jk}{{2n} + 1},\;k = 0,\ldots, n, \n\]\n\n\[ \n{b}_{k} = \frac{2}{{2n} + 1}\mathop{\sum }\limits_{{j = 0}}^{{2n}}{y}_{j}\sin \frac{2\pi jk}{{2n} + 1},\;k = 1,\ldots, n. \n\]
Yes
Theorem 8.25 There exists a unique trigonometric polynomial\n\n\[ \n{q}_{n}\left( t\right) = \frac{{a}_{0}}{2} + \mathop{\sum }\limits_{{k = 1}}^{{n - 1}}\left\lbrack {{a}_{k}\cos {kt} + {b}_{k}\sin {kt}}\right\rbrack + \frac{{a}_{n}}{2}\cos {nt} \n\]\n\nsatisfying the interpolation property\n\n\[ \n{q}_{n}\left( \frac{\pi j}{n}\right) = {y}_{j},\;j = 0,\ldots ,{2n} - 1. \n\]
Its coefficients are given by\n\n\[ \n{a}_{k} = \frac{1}{n}\mathop{\sum }\limits_{{j = 0}}^{{{2n} - 1}}{y}_{j}\cos \frac{\pi jk}{n},\;k = 0,\ldots, n \n\]\n\n\[ \n{b}_{k} = \frac{1}{n}\mathop{\sum }\limits_{{j = 0}}^{{{2n} - 1}}{y}_{j}\sin \frac{\pi jk}{n},\;k = 1,\ldots, n - 1. \n\]
Yes