Q
stringlengths
4
3.96k
A
stringlengths
1
3k
Result
stringclasses
4 values
If \( k \) is a field of characteristic \( p \), and \( G \) is a finite \( p \) -group, then the group ring \( k\left\lbrack G\right\rbrack \) is quasilocal. In particular, taking \( k \) finite and \( G \) noncommutative, there exist finite noncommutative quasilocal rings.
To see how this example works out, define \( \epsilon : k\left\lbrack G\right\rbrack \rightarrow k \) via \( \epsilon \left( {\sum {x}_{i}{g}_{i}}\right) = \) \( \sum {x}_{i};\epsilon \) is called the augmentation map, and is a ring homomorphism onto with kernel \( M = \left\{ {\sum {x}_{i}{g}_{i} : \sum {x}_{i} = 0}\right\} \) . Now \( k\left\lbrack G\right\rbrack /M \approx k \) is a field, so it suffices to check that \( J\left( {k\left\lbrack G\right\rbrack }\right) = M \) . Since \( M \) is a maximal left ideal, \( M \supset J\left( {k\left\lbrack G\right\rbrack }\right) \), so to get \( M \subset J\left( {k\left\lbrack G\right\rbrack }\right) \) it suffices to check that \( M \) consists of quasiregular elements. But \( k\left\lbrack G\right\rbrack \) is also a \( k \) -algebra, and \( M \) has a vector-space basis \( \{ g - 1 : g \in G, g \neq 1\} \), each element of which is nilpotent: \( \left| G\right| = {p}^{n} \Rightarrow {\left( g - 1\right) }^{{p}^{n}} = {g}^{{p}^{n}} - 1 = 0 \) since \( k \) has characteristic \( p \) . A theorem of Wedderburn (see Herstein [32, pp. 56-58]) asserts that if an ideal in a finite-dimensional algebra over a field has a basis consisting of nilpotent elements, then the ideal must consist of nilpotent elements. But nilpotent elements are left quasiregular:\n\n\[ \left( {1 - x + {x}^{2} - {x}^{3} + \cdots }\right) \left( {1 + x}\right) = 1. \]
Yes
Lemma 9.35 Suppose \( R \) is quasilocal with maximal ideal \( M \) and quotient division ring \( D = R/M \) . Suppose \( B \) is a finitely generated left \( R \) module, and \( \pi : F \rightarrow B \) is a projective cover as described in Proposition 9.33, with \( K = \ker \pi \) . Then\n\n\[ \n{\operatorname{Tor}}_{1}\left( {D, B}\right) \approx K/{MK} \n\]\n\nand\n\n\[ \n{\operatorname{Ext}}^{1}\left( {B, D}\right) \approx \operatorname{Hom}\left( {K, D}\right) \n\]
Proof: \( 0 \rightarrow K \rightarrow F \rightarrow B \rightarrow 0 \) is short exact, so we have from the long exact sequence for Tor:\n\n\[ \n0 \rightarrow {\operatorname{Tor}}_{1}\left( {D, B}\right) \rightarrow D \otimes K \rightarrow D \otimes F \rightarrow D \otimes B \rightarrow 0.\n\]\n\nNow\n\n\[ \nD \otimes K = \left( {R/M}\right) \otimes K \approx K/{MK} \n\]\n\nand\n\n\[ \nD \otimes F = \left( {R/M}\right) \otimes F \approx F/{MF} \n\]\n\nby Proposition 2.2(b). But \( D \otimes K \rightarrow D \otimes F \) then becomes \( K/{MK} \rightarrow \) \( F/{MF} \), which is zero since \( K \subset {MF} \) (Proposition 9.33). Hence, \( {\operatorname{Tor}}_{1}\left( {D, B}\right) \) \( \approx K/{MK} \) .\n\nAs for \( {\mathrm{{Ext}}}^{1} \), we have from the long exact sequence for Ext:\n\n\[ \n0 \rightarrow \operatorname{Hom}\left( {B, D}\right) \rightarrow \operatorname{Hom}\left( {F, D}\right) \rightarrow \operatorname{Hom}\left( {K, D}\right) \rightarrow {\operatorname{Ext}}^{1}\left( {B, D}\right) \rightarrow 0.\n\]\n\nIf \( f \in \operatorname{Hom}\left( {F, D}\right) \), then for all \( m \in M, f\left( {mx}\right) = {mf}\left( x\right) = 0 \), since \( {mD} = 0 \) . That is, any \( f \in \operatorname{Hom}\left( {F, D}\right) \) restricts to zero on \( {MF} \supset K \), so \( \operatorname{Hom}\left( {F, D}\right) \rightarrow \) \( \operatorname{Hom}\left( {K, D}\right) \) is the zero map and \( {\operatorname{Ext}}^{1}\left( {B, D}\right) \approx \operatorname{Hom}\left( {K, D}\right) \) .
Yes
Lemma 9.36 Suppose \( R \) is quasilocal with maximal ideal \( M \) and quotient division ring \( D = R/M \) . Then for any \( B \in {}_{R}\mathbf{M},{\operatorname{Hom}}_{R}\left( {B, D}\right) \approx \) \( {\operatorname{Hom}}_{D}\left( {B/{MB}, D}\right) \) .
Proof: As in the proof of Lemma 9.35, if \( f \in {\operatorname{Hom}}_{R}\left( {B, D}\right) \), then for \( m \in M, x \in B \), we have \( f\left( {mx}\right) = {mf}\left( x\right) = 0 \), since \( f\left( x\right) \in R/M \) . Thus, \( f \) restricts to zero on \( {MB} \), so restriction from \( \operatorname{Hom}\left( {B, D}\right) \) to \( \operatorname{Hom}\left( {{MB}, D}\right) \) is the zero map. Applying \( \operatorname{Hom}\left( {\bullet, D}\right) \) to \( 0 \rightarrow {MB} \rightarrow B \rightarrow B/{MB} \rightarrow 0 \) yields exactness of\n\n\[ 0 \rightarrow {\operatorname{Hom}}_{R}\left( {B/{MB}, D}\right) \rightarrow {\operatorname{Hom}}_{R}\left( {B, D}\right) \overset{0}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {{MB}, D}\right) ,\]\n\nso that \( {\operatorname{Hom}}_{R}\left( {B, D}\right) \approx {\operatorname{Hom}}_{R}\left( {B/{MB}, D}\right) = {\operatorname{Hom}}_{D}\left( {B/{MB}, D}\right) \), since \( B/{MB} \) and \( D \) are \
Yes
Theorem 9.37 (Universality of D) Suppose \( R \) is quasilocal and left Noetherian with maximal ideal \( M \) and quotient division ring \( D = R/M \) . Let \( B \) be a nonzero finitely generated left \( R \) -module. Then \( {\operatorname{Tor}}_{n}\left( {D, B}\right) \) is nonzero for \( 0 \leq n \leq \mathrm{P} - \dim \left( B\right) \), and the dual of \( {\operatorname{Tor}}_{n}\left( {D, B}\right) \) as a left vector space over \( D \) is \( {\operatorname{Ext}}^{n}\left( {B, D}\right) \) . In particular, the left global dimension of \( R \) is equal both to the flat dimension of \( D \) as a right \( R \) -module and the injective dimension of \( D \) as a left \( R \) -module.
Proof: The claim is that if \( n \leq \mathrm{P} \) -dim \( B \), then \( {\operatorname{Tor}}_{n}\left( {D, B}\right) \neq 0 \) and the dual of \( {\operatorname{Tor}}_{n}\left( {D, B}\right) \) as a left vector space over \( D \) is \( {\operatorname{Ext}}^{n}\left( {B, D}\right) \) . This is by induction on \( n \) . The \( n = 0 \) case is just\n\n\[ \n{\operatorname{Tor}}_{0}\left( {D, B}\right) \approx \left( {R/M}\right) \otimes B \approx B/{MB} \neq 0 \n\]\n\nby Proposition 2.2(b) and Nakayama's lemma. Furthermore,\n\n\[ \n{\operatorname{Ext}}^{0}\left( {B, D}\right) \approx {\operatorname{Hom}}_{R}\left( {B, D}\right) \approx {\operatorname{Hom}}_{D}\left( {B/{MB}, D}\right) \n\]\n\nby Lemma 9.36.\n\nFor \( n > 0 \), let \( \pi : F \rightarrow B \) be a projective cover as described in Lemma 9.35. Then by Lemma 9.35, for P-dim \( B \geq 1 \) we get \( K \neq 0 \), so that \( K/{MK} \neq 0 \) by Nakayama’s lemma. But then \( {\operatorname{Tor}}_{1}\left( {D, B}\right) \neq 0 \) and \( {\operatorname{Ext}}^{1}\left( {B, D}\right) \) is its dual by Lemmas 9.35 and 9.36. As for the induction step \( n - 1 \mapsto n \), when \( n > 1 \) observe that\n\n\[ \n{\operatorname{Tor}}_{n}\left( {D, B}\right) \approx {\operatorname{Tor}}_{n - 1}\left( {D, K}\right) \neq 0\text{ for }n - 1 \leq \mathrm{P}\text{-dim }K \n\]\n\nby the long exact sequence for Tor and the induction hypothesis. But P-dim \( K = \) P-dim \( B - 1 \) by Exercise 2, Chapter 4. Furthermore, \( {\operatorname{Ext}}^{n}\left( {B, D}\right) \) \( \approx {\operatorname{Ext}}^{n - 1}\left( {K, D}\right) \) is the dual of \( {\operatorname{Tor}}_{n - 1}\left( {D, K}\right) \) by the long exact sequence for Ext and the induction hypothesis.\n\nFinally, since \( {\operatorname{Tor}}_{n}\left( {D, B}\right) \neq 0 \) for all \( n \leq \mathrm{P} \) -dim \( B \), the flat dimension of \( D \) as a right \( R \) -module must be \( \geq \mathrm{P} \) -dim \( B \) . Letting \( B \) float and using the global dimension theorem, the flat dimension of \( D \) as a right \( R \) -module is \( \geq \) LG-dim \( R = \mathrm{W} \) -dim \( R \) . The situation for the injective dimension of \( D \) as a left \( R \) -module is similar.
Yes
Corollary 9.38 Suppose \( R \) is quasilocal and left and right Noetherian with maximal ideal \( M \) and quotient division ring \( D = R/M \) . Then all dimensions (left/right and flat/projective/injective) of \( D \) are equal to the left global dimension of \( R \), and \( {\operatorname{Tor}}_{n}\left( {D, D}\right) \) and \( {\operatorname{Ext}}^{n}\left( {D, D}\right) \) are nonzero for \( 0 \leq n \leq \mathrm{{LG}} \) -dim \( R \) .
Proof: Theorem 9.37 applies on both sides, giving left/right, flat/injective dimensions \( = \mathrm{{LG}} - \dim R = \mathrm{{RG}} - \dim R = \mathrm{W} - \dim R \) by Corollary 4.21. Since projective dimension \( = \) flat dimension by Proposition 4.20 itself, we have the dimensional result. The rest is now direct from Theorem 9.37.
No
Proposition 9.39 Suppose \( R \) is quasilocal and left Noetherian with maximal ideal \( M \) . Suppose \( \exists x \in M \) with \( x \neq 0 \) but \( {xM} = 0 \) . Then every finitely generated nonprojective left \( R \) -module has infinite projective dimension.
Proof: Suppose not. Suppose some finitely generated \( B \in {}_{R}\mathbf{M} \) has finite projective dimension and is not projective. We can replace \( B \) with \( K \), where \( F \) is free and \( 0 \rightarrow K \rightarrow F \rightarrow B \rightarrow 0 \) is short exact, reducing the dimension if \( n > 1 \), so without loss of generality we may assume that \( \mathrm{P} \) -dim \( B = 1 \) . Let \( \pi : F \rightarrow B \) be a projective cover as described in Proposition 9.33 with \( K = \ker \pi \) . Then P-dim \( B \leq 1 \Rightarrow K \) is projective by the projective dimension theorem, while P-dim \( B > 0 \Rightarrow K \neq 0 \) . But \( K \subset {MF} \), so \( {xK} \subset x{MF} = 0 \) . But \( {xK} \neq 0 \) when \( K \) is free and nonzero since \( 0 \neq x \in {xR} \) , a contradiction since all projective left \( R \) -modules are free (Corollary 9.34).
Yes
Example 37 \( \mathbb{R} = \) real numbers. Set\n\n\[ R = \left\{ {f\left( {t, x, y}\right) \in \mathbb{R}\left( {t, x, y}\right) : f\left( {t,{e}^{-1/{t}^{2}},{e}^{-1/{t}^{4}}}\right) }\right. \text{extends}\n\n\[ \text{to a}{C}^{\infty }\text{function near 0}\} \text{.} \]
Suppose \( f\left( {t, x, y}\right) \in \mathbb{R}\left\lbrack {t, x, y}\right\rbrack \), the polynomial ring, with \( f\left( {t, x, y}\right) \neq 0 \) . There is a lowest power \( n \) of \( y \) that appears so that one may write\n\n\[ f\left( {t, x, y}\right) = {y}^{n}\left( {g\left( {t, x}\right) + {y\phi }\left( {t, x, y}\right) }\right) \]\n\nwith \( g\left( {t, x}\right) \neq 0 \) . There is a lowest power \( m \) of \( x \) that appears in \( g\left( {t, x}\right) \) so that one may write\n\n\[ g\left( {t, x}\right) = {x}^{m}\left( {h\left( t\right) + {x\psi }\left( {t, x}\right) }\right) \]\n\nwith \( h\left( t\right) \neq 0 \) . Finally, \( h\left( t\right) = {t}^{l}\left( {a + {t\theta }\left( t\right) }\right) \) for some \( l \) and \( a \neq 0 \) . Thus,\n\n\[ f\left( {t, x, y}\right) = {y}^{n}\left( {g\left( {t, x}\right) + {y\phi }\left( {t, x, y}\right) }\right) \]\n\n\[ = {y}^{n}\left( {{x}^{m}\left( {h\left( t\right) + {x\phi }\left( {t, x}\right) }\right) + {y\phi }\left( {t, x, y}\right) }\right) \]\n\n\[ = {y}^{n}\left( {{x}^{m}\left( {{t}^{l}\left( {a + {t\theta }\left( t\right) }\right) + {x\psi }\left( {t, x}\right) }\right) + {y\phi }\left( {t, x, y}\right) }\right) \]\n\n\[ = {y}^{n}{x}^{m}\left( {{t}^{l}\left( {a + {t\theta }\left( t\right) }\right) + {x\psi }\left( {t, x}\right) + {x}^{-m}{y\phi }\left( {t, x, y}\right) }\right) \]\n\n\[ = {y}^{n}{x}^{m}{t}^{l}\left( {a + {t\theta }\left( t\right) + {t}^{-l}{x\psi }\left( {t, x}\right) + {t}^{-l}{x}^{-m}{y\phi }\left( {t, x, y}\right) }\right) \]\n\n\[ = {y}^{n}{x}^{m}{t}^{l} \cdot U\left( {t, x, y}\right) \]\n\nwhere \( U\left( {t, x, y}\right) \) is a unit in \( R \) . Hence, by dividing, we get that any nonzero \( f\left( {t, x, y}\right) \in \mathbb{R}\left( {t, x, y}\right) \) can be written as \( f\left( {t, x, y}\right) = {t}^{l}{x}^{m}{y}^{n} \cdot U\left( {t, x, y}\right) \) ; \( l, m, n \in \mathbb{Z} \) and \( U\left( {t, x, y}\right) \) a unit in \( R \) . Thus, \( f\left( {t, x, y}\right) \in R \) if and only if one of the following holds:\n\n\[ \text{i)}n > 0\text{, or} \]\n\nii) \( n = 0 \) and \( m > 0 \), or\n\niii) \( n = m = 0 \) and \( l \geq 0 \) .
Yes
Proposition. The ring \( {\mathbf{Z}}_{p} \) is a principal ideal domain. More precisely, its ideals are the principal ideals \( \{ 0\} \) and \( {p}^{k}{\mathbf{Z}}_{p}\left( {k \in \mathbf{N}}\right) \) .
Proof. Let \( I \neq \{ 0\} \) be a nonzero ideal of \( {\mathbf{Z}}_{p} \) and \( 0 \neq a \in I \) an element of minimal order, say \( k = v\left( a\right) < \infty \) . Write \( a = {p}^{k}u \) with a \( p \) -adic unit \( u \) . Hence \( {p}^{k} = \) \( {u}^{-1}a \in I \) and \( \left( {p}^{k}\right) = {p}^{k}{\mathbf{Z}}_{p} \subset I \) . Conversely, for any \( b \in I \) let \( w = v\left( b\right) \geq k \) and write\n\n\[ b = {p}^{w}{u}^{\prime } = {p}^{k} \cdot {p}^{w - k}{u}^{\prime } \in {p}^{k}{\mathbf{Z}}_{p}. \]\n\nThis shows that \( I \subset {p}^{k}{\mathbf{Z}}_{p} \) .
Yes
Proposition 1. The discrete subgroups of \( \mathbf{R} \) are the subgroups\n\n\[ a\mathbf{Z}\;\left( {0 \leq a \in \mathbf{R}}\right) . \]
Proof. Let \( H \neq \{ 0\} \) be a nontrivial discrete subgroup, hence closed by (3.2). Consider any nonzero \( h \) in \( H \), so that \( 0 < \left| h\right| \left( { = \pm h}\right) \in H \) . The intersection \( H \cap \) \( \left\lbrack {0,\left| h\right| }\right\rbrack \) is compact and discrete, hence finite, and there is a smallest positive element \( a \in H \) . Obviously, \( \mathbf{Z} \cdot a \subset H \) . In fact, this inclusion is an equality. Indeed, if we take any \( b \in H \) and assume (without loss of generality) \( b > 0 \), we can write\n\n\[ b = {ma} + r\;\left( {m \in \mathbf{N},0 \leq r < a}\right) \]\n\n(take for \( m \) the integral part of \( b/a \) ). Since \( r = b - {ma} \in H \) and \( 0 \leq r < a \) , we must have \( r = 0 \) by construction. This proves \( b = {ma} \in \mathbf{Z} \cdot a \), and hence the reverse inclusion \( H \subset \mathbf{Z} \cdot a \) .
Yes
Proposition 2. Any nondiscrete subgroup of \( \mathbf{R} \) is dense.
Proof. Let \( H \subset \mathbf{R} \) be a nondiscrete subgroup. Then there exists a sequence of distinct elements \( {h}_{n} \in H \) with \( {h}_{n} \rightarrow h \in H \) . Hence \( {\varepsilon }_{n} = \left| {{h}_{n} - h}}\right| \in H \) and \( {\varepsilon }_{n} \rightarrow 0 \) . Since \( H \) is an additive subgroup, we must also have \( \mathbf{Z} \cdot {\varepsilon }_{n} \subset H \) (for all \( n \geq 0 \) ), and the subgroup \( H \) is dense in \( \mathbf{R} \) .
No
Corollary 1. The quotient of \( {\mathbf{Z}}_{p} \) by a closed subgroup \( H \neq \{ 0\} \) is discrete.
Proof. Indeed, discrete subgroups are closed: We have a complete list of these (being closed in \( {\mathbf{Z}}_{p} \) compact, a discrete subgroup is finite hence trivial). Alternatively, if a subgroup \( H \) contains a nonzero element \( h \), it contains all multiples of \( h \) , and hence \( H \supset \mathbf{N} \cdot h \) . In particular, \( H \ni {p}^{n}h \rightarrow 0\left( {n \rightarrow \infty }\right) \) . Since the elements \( {p}^{n}h \) are distinct, \( H \) is not discrete.
No
Corollary 2. The only discrete subgroup of the additive group \( {\mathbf{Z}}_{p} \) is the trivial subgroup \( \{ 0\} \) .
Proof. Indeed, discrete subgroups are closed: We have a complete list of these (being closed in \( {\mathbf{Z}}_{p} \) compact, a discrete subgroup is finite hence trivial). Alternatively, if a subgroup \( H \) contains a nonzero element \( h \), it contains all multiples of \( h \) , and hence \( H \supset \mathbf{N} \cdot h \) . In particular, \( H \ni {p}^{n}h \rightarrow 0\left( {n \rightarrow \infty }\right) \) . Since the elements \( {p}^{n}h \) are distinct, \( H \) is not discrete.
Yes
Corollary 1. The topological group \( {\mathbf{Z}}_{p} \) is a completion of the additive group \( \mathbf{Z} \) equipped with the induced topology.
To make the completion process explicit, let us observe that if \( x = \mathop{\sum }\limits_{{i \geq 0}}{a}_{i}{p}^{i} \) is a \( p \) -adic number, then\n\n\[ \n{x}_{n} = \mathop{\sum }\limits_{{0 \leq i < n}}{a}_{i}{p}^{i} \in \mathbf{N} \n\]\n\ndefines a Cauchy sequence converging to \( x \) .
No
Proposition 1. Let \( K \) be a valued field. For the topology defined by the metric \( d\left( {x, y}\right) = \left| {x - y}\right|, K \) is a topological field.
Proof. The map \( \left( {x, y}\right) \mapsto x - y \) is continuous. Let us check that the map \( \left( {x, y}\right) \mapsto \) \( x{y}^{-1} \) is continuous on \( {K}^{ \times } \times {K}^{ \times } \) . We have\n\n\[ \frac{x + h}{y + k} - \frac{x}{y} = \frac{{hy} - {kx}}{y\left( {y + k}\right) } \]\n\nHence if \( y \neq 0 \) is fixed, \( \left| k\right| < \left| y\right| /2 \), and \( c = \max \left( {\left| x\right| ,\left| y\right| }\right) \),\n\n\[ \left| {\frac{x + h}{y + k} - \frac{x}{y}}\right| < {2c}\frac{\left| h\right| + \left| k\right| }{\left| {y}^{2}\right| } \rightarrow 0\;\left( {\left| h\right| ,\left| k\right| \rightarrow 0}\right) . \]\n\nThis proves that \( K \) is a topological field.
Yes
Proposition 2. Let \( K \) be a valued field. Then the completion \( \widehat{K} \) of \( K \) is again a valued field.
Proof. The completion \( \widehat{K} \) is obviously a topological ring, and inversion is continuous over the subset of invertible elements. We have to show that the completion is a field. Let \( \left( {x}_{n}\right) \) be a Cauchy sequence in \( K \) that defines a nonzero element of the completion \( \widehat{K} \) . This means that the sequence \( \left| {x}_{n}\right| \) does not converge to zero. There is a positive \( \varepsilon > 0 \) together with an index \( N \) such that \( \left| {x}_{n}\right| > \varepsilon \) for all \( n \geq N \) . The sequence \( {\left( 1/{x}_{n}\right) }_{n \geq N} \) is also a Cauchy sequence\n\n\[ \left| {\frac{1}{{x}_{n}} - \frac{1}{{x}_{m}}}\right| = \left| \frac{{x}_{n} - {x}_{m}}{{x}_{n}{x}_{m}}\right| \leq {\varepsilon }^{-2}\left| {{x}_{n} - {x}_{m}}\right| \rightarrow 0\;\left( {n, m \rightarrow \infty }\right) .\n\]\n\nThe sequence \( {\left( 1/{x}_{n}\right) }_{n \geq N} \) (completed with 1 ’s for \( n < N \) ) defines an inverse of the original sequence \( \left( {x}_{n}\right) \) in the completion \( \widehat{K} \) .
Yes
Proposition 1. A projective limit of nonempty compact spaces is nonempty and compact.
Proof. Let \( \left( {{K}_{n},{\varphi }_{n}}\right) \) be a projective system consisting of compact spaces. The product of the \( {K}_{n} \) is a compact space (Tychonoff’s theorem), and the projective limit is a closed subspace of this compact space. Hence \( \lim {K}_{n} \) is compact. Define\n\n\[ \n{K}_{n}^{\prime } = {\varphi }_{n}\left( {K}_{n + 1}\right) \supset {K}_{n}^{\prime \prime } = {\varphi }_{n}\left( {{\varphi }_{n + 1}\left( {K}_{n + 2}\right) }\right) \left( { = {\varphi }_{n}\left( {K}_{n + 1}^{\prime }\right) }\right) \supset \cdots .\n\] \n\nThese subsets are compact and nonempty. Their intersection \( {L}_{n} \) is not empty in the compact space \( {K}_{n} \) . Moreover, \( {\varphi }_{n}\left( {L}_{n + 1}\right) = {L}_{n} \), and the restriction of the maps \( {\varphi }_{n} \) to the subsets \( {L}_{n} \) leads to a projective system having surjective transition mappings. By the corollary in (4.3), this system has a nonempty limit (with surjective projections). Since \( \mathop{\lim }\limits_{ \leftarrow }{L}_{n} \subset \mathop{\lim }\limits_{ \leftarrow }{K}_{n} \), the proof is complete.
Yes
Proposition 2. In a projective limit \( E = \mathop{\lim }\limits_{ \leftarrow }{E}_{n} \) of topological spaces, a basis of the topology is furnished by the sets \( {\psi }_{n}^{-1}\left( {U}_{n}\right) \), where \( n \geq 0 \) and \( {U}_{n} \) is an arbitrary open set in \( {E}_{n} \) .
Proof. We take a family \( x = \left( {x}_{i}\right) \) in the projective limit and show that the mentioned open sets containing \( x \) form a basis of neighborhoods of this point. If we take two open sets \( {V}_{n} \subset {E}_{n} \) and \( {V}_{n - 1} \subset {E}_{n - 1} \), the conjunction of the conditions \( {x}_{n} \in {V}_{n} \) and \( {x}_{n - 1} \in {V}_{n - 1} \) means that\n\n\[ \n{\psi }_{n}\left( x\right) = {x}_{n} \in {V}_{n} \cap {\varphi }_{n - 1}^{-1}\left( {V}_{n - 1}\right) .\n\]\n\nCall \( {U}_{n} \) the open set \( {V}_{n} \cap {\varphi }_{n - 1}^{-1}\left( {V}_{n - 1}\right) \) of \( {E}_{n} \) . Then the preceding condition is still equivalent to \( x \in {\psi }_{n}^{-1}\left( {U}_{n}\right) \) . By induction, one can show that a basic open set in the product - say \( \mathop{\prod }\limits_{{n \leq N}}{V}_{n} \times \mathop{\prod }\limits_{{n > N}}{E}_{n} \) - has an intersection with the projective limit of the form \( {\psi }_{N}^{-1}\left( {U}_{N}\right) \) for some open set \( {U}_{N} \subset {E}_{N} \) .
Yes
Proposition 3. Let \( A \) be a subset of a projective limit \( E = \lim {E}_{n} \) of topological spaces. Then the closure \( \bar{A} \) of \( A \) is given by\n\n\[ \bar{A} = \mathop{\bigcap }\limits_{{n \geq 0}}{\psi }_{n}^{-1}\left( \overline{{\psi }_{n}\left( A\right) }\right) \]
Proof. It is clear that \( A \) is contained in the above mentioned intersection, and that this intersection is closed. Hence \( \bar{A} \) is also contained in the intersection. Conversely, if \( b \) lies in the intersection, let us show that \( b \) is in the closure of \( A \) . Let \( V \) be a neighborhood of \( b \) . Without loss of generality, we can assume that \( V \) is of the form \( {\psi }_{n}^{-1}\left( {U}_{n}\right) \) for some open set \( {U}_{n} \subset {E}_{n} \) . Hence \( {\psi }_{n}\left( b\right) \subset {U}_{n} \) . Since by assumption \( b \in {\psi }_{n}^{-1}\left( \overline{{\psi }_{n}\left( A\right) }\right) \), we have \( {\psi }_{n}\left( b\right) \in \overline{{\psi }_{n}\left( A\right) } \), and the open set \( {U}_{n} \) containing \( b \) must meet \( {\psi }_{n}\left( A\right) \) : There is a point \( a \in A \) with \( {\psi }_{n}\left( a\right) \in {U}_{n} \) . This shows that\n\n\[ a \in A \cap {\psi }_{n}^{-1}\left( {U}_{n}\right) \]\n\nIn particular, this intersection is nonempty, and the given neighborhood of \( b \) indeed meets \( A \) .
Yes
Proposition 1. When \( p \) is an odd prime, the group of roots of unity in the field \( {\mathbf{Q}}_{p} \) is \( {\mu }_{p - 1} \) .
Proof. We have to prove that the reduction homomorphism \( \varepsilon : \mu \left( {\mathbf{Q}}_{p}\right) \rightarrow {\mathbf{F}}_{p}^{ \times } \) is bijective. It is surjective by Hensel’s lemma. So assume that \( \zeta = 1 + {pt} \in \ker \varepsilon \) \( \left( {t \in {\mathbf{Z}}_{p}}\right) \) is a root of unity, say \( \zeta \) has order \( n \geq 1 \) ,\n\n\[ \n{\zeta }^{n} = {\left( 1 + pt\right) }^{n} = 1 \n\]\n\nHence \( {npt} + \left( \begin{array}{l} n \\ 2 \end{array}\right) {p}^{2}{t}^{2} + \cdots + {p}^{n}{t}^{n} = 0 \), or\n\n\[ \nt\left( {n + \left( \begin{array}{l} n \\ 2 \end{array}\right) {pt} + \cdots + {p}^{n - 1}{t}^{n - 1}}\right) = 0. \n\]\n\nThis shows that \( t = 0 \) (when \( p \nmid n \) ) or \( p \mid n \) . In the second case, replace \( \zeta \) by \( {\zeta }^{p} \) and \( n \) by \( n/p \) : Starting the same computation, we see that \( t = 0 \) or \( {p}^{2} \mid n \) (original \( n) \), and so on. Finally, we are reduced to the case \( n = p \) . In this case, the above equation is simply\n\n\[ \nt\left( {p + \left( \begin{array}{l} p \\ 2 \end{array}\right) {pt} + \cdots + {p}^{p - 1}{t}^{p - 1}}\right) = 0, \n\]\n\nand since \( p \geq 3 \) ,\n\n\[ \np + \left( \begin{array}{l} p \\ 2 \end{array}\right) {pt} + \cdots + {p}^{p - 1}{t}^{p - 1} = p + {p}^{2}\left( \cdots \right) \neq 0. \n\]\n\nThis proves that \( t = 0 \) in all cases and \( \zeta = 1 \) .
Yes
Proposition 2. The group of roots of unity in the field \( {\mathbf{Q}}_{2} \) is \( {\mu }_{2} = \{ \pm 1\} \) .
Proof. We have\n\n\[ \n- 1 = 1 + 2 + {2}^{2} + \cdots \in 1 + 2{\mathbf{Z}}_{2} \n\] \n\nand \n\n\[ \n\{ \pm 1\} = {\mu }_{2} \subset {\mathbf{Z}}_{2}^{ \times } = 1 + 2{\mathbf{Z}}_{2} \n\] \n\nOn the other hand, \( {\mathbf{F}}_{2}^{ \times } = \{ 1\} \), and the only roots of unity in \( {\mathbf{Z}}_{2}^{ \times } \) have order a power of 2. But -1 is not a square of \( {\mathbf{Z}}_{2}^{ \times } \) (6.6), and there is no fourth root of 1 in \( {\mathbf{Q}}_{2} \) .
Yes
Proposition 1. For each positive integer \( m \geq 1 \) prime to \( p \) the solenoid \( {\mathbf{S}}_{p} \) has a unique cyclic subgroup \( {C}_{m} \) of order \( m \) .
Proof. Let us denote temporarily by \( {C}_{m}^{n} \) the cyclic subgroup of order \( m \) of the circle \( \mathbf{R}/{p}^{n}\mathbf{Z} \) (it is the subgroup \( {m}^{-1}\mathbf{Z}/{p}^{n}\mathbf{Z} \) ). Since the transition maps\n\n\[ \n{\varphi }_{n} : \mathbf{R}/{p}^{n + 1}\mathbf{Z} \rightarrow \mathbf{R}/{p}^{n}\mathbf{Z} \n\]\n\nhave a kernel of order \( p \) prime to \( m \) (by assumption), they induce isomorphisms \( {C}_{m}^{n + 1} \rightarrow {C}_{m}^{n} \) . The projective limit of this constant sequence is the cyclic subgroup \( {C}_{m} \subset {\mathbf{S}}_{p} \) . To prove uniqueness, let us consider any homomorphism \( \sigma : \mathbf{Z}/m\mathbf{Z} \rightarrow \) \( {\mathbf{S}}_{p} \) . The composite\n\n\[ \n{\psi }_{n} \circ \sigma : \mathbf{Z}/m\mathbf{Z} \rightarrow {\mathbf{S}}_{p} \rightarrow \mathbf{R}/{p}^{n}\mathbf{Z} \n\]\n\nhas an image in the unique cyclic subgroup \( {C}_{m}^{n} \) of the circle \( \mathbf{R}/{p}^{n}\mathbf{Z} \) . Hence \( \sigma \) has an image in \( {C}_{m} \), and this concludes the proof.
Yes
Proposition 2. The p-adic solenoid \( {S}_{p} \) has no p-torsion.
Proof. Let \( \sigma : \mathbf{Z}/p\mathbf{Z} \rightarrow {\mathbf{S}}_{p} \) be any homomorphism of a cyclic group of order \( p \) into the solenoid. I claim that all composites\n\n\[ \n{\varphi }_{n} \circ {\psi }_{n + 1} \circ \sigma : \mathbf{Z}/p\mathbf{Z} \rightarrow {\mathbf{S}}_{p} \rightarrow \mathbf{R}/{p}^{n + 1}\mathbf{Z} \rightarrow \mathbf{R}/{p}^{n}\mathbf{Z}\n\]\n\nare trivial. Indeed, the composite\n\n\[ \n{\psi }_{n + 1} \circ \sigma : \mathbf{Z}/p\mathbf{Z} \rightarrow {\mathbf{S}}_{p} \rightarrow \mathbf{R}/{p}^{n + 1}\mathbf{Z}\n\]\n\nmust have an image in the unique cyclic subgroup of order \( p \) of the circle \( \mathbf{R}/{p}^{n + 1}\mathbf{Z} \) , and this subgroup is precisely the kernel of the connecting homomorphism \( {\varphi }_{n} \) and \( {\psi }_{n} \circ \sigma = {\varphi }_{n}\left( {{\psi }_{n + 1} \circ \sigma }\right) \) . Consequently, there is no element of order \( p \) in \( {\mathbf{S}}_{p} \) (and a fortiori no element of order \( {p}^{k} \) for \( k \geq 1 \) in \( {\mathbf{S}}_{p} \) ).
Yes
Corollary 1. The solenoid can also be viewed as a quotient of \( \\mathbf{R} \\times {\\mathbf{Z}}_{p} \) by the discrete subgroup \( {\\Delta }_{\\mathbf{Z}} = \\{ \\left( {m, - m}\\right) : m \\in \\mathbf{Z}\\} \)
Proof. Since the restriction of the sum homomorphism \( f : \\mathbf{R} \\times {\\mathbf{Q}}_{p} \\rightarrow {\\mathbf{S}}_{p} \) to the subgroup \( \\mathbf{R} \\times {\\mathbf{Z}}_{p} \) is already surjective, this restriction gives a (topological and algebraic) isomorphism\n\n\[ {f}^{\\prime } : \\left( {\\mathbf{R} \\times {\\mathbf{Z}}_{p}}\\right) /\\ker {f}^{\\prime } \\cong {\\mathbf{Z}}_{p}. \]\n\nBut\n\n\[ \\ker {f}^{\\prime } = \\left( {\\ker f}\\right) \\cap \\left( {\\mathbf{R} \\times {\\mathbf{Z}}_{p}}\\right) = {\\Delta }_{\\mathbf{Z}} = \\{ \\left( {m, - m}\\right) : m \\in \\mathbf{Z}\\} . \]
Yes
Corollary 2. The solenoid can also be viewed as a quotient of the topological space \( \left\lbrack {0,1}\right\rbrack \times {\mathbf{Z}}_{p} \) by the equivalence relation identifying \( \left( {1, x}\right) \) to \( \left( {0, x + 1}\right) \;\left( {x \in {\mathbf{Z}}_{p}}\right) .
Proof. This follows immediately from the previous corollary, since the restriction of the sum homomorphism to \( \left\lbrack {0,1}\right\rbrack \times {\mathbf{Z}}_{p} \) is already surjective, whereas its restriction to \( \lbrack 0,1) \times {\mathbf{Z}}_{p} \) is bijective.
Yes
Proposition 1. Let \( U \) be any proper subset of the circle \( \mathbf{R}/\mathbf{Z} \) . Then the subspace \( {\psi }^{-1}\left( U\right) \subset {\mathbf{S}}_{p} \) of the solenoid is homeomorphic to \( U \times {\mathbf{Z}}_{p} \) . The map
\[ \left( {t, x}\right) = \left( {t - \left\lbrack t\right\rbrack, x + \left\lbrack t\right\rbrack }\right) \mapsto \left( {0, x + \left\lbrack t\right\rbrack }\right) \] furnishes by restriction a continuous retraction of \( {\psi }^{-1}\left( \left\lbrack {0,\eta }\right\rbrack \right) \subset {\mathbf{S}}_{p} \) onto the neutral fiber \( {\mathbf{Z}}_{p} \subset {\mathbf{S}}_{p}\left( {0 < \eta < 1}\right) \) .
No
Proposition 2. The solenoid \( {\mathbf{S}}_{p} \) is an indecomposable compact connected topological space.
Proof. Let us take two compact connected subsets \( A \) and \( B \) covering \( {\mathbf{S}}_{p} \) . We have to show that if \( A \neq {\mathbf{S}}_{p} \), then \( B = {\mathbf{S}}_{p} \) . Thus we assume \( A \neq {\mathbf{S}}_{p} \) from now on: \( B \neq \varnothing \) . Since we have\n\n\[ K = \mathop{\bigcap }\limits_{{n \geq 1}}{\psi }_{n}^{-1}\left( {{\psi }_{n}\left( K\right) }\right) \]\n\nfor every compact set \( K \), the assumption \( A \neq {\mathbf{S}}_{p} \) leads to \( {\psi }_{n}\left( A\right) \neq \mathbf{R}/{p}^{n}\mathbf{Z} \) for some integer \( n = {n}_{0} \) and hence also for all integers \( n \geq {n}_{0} \) (the transition maps \( {\varphi }_{m} \) are surjective). It will suffice to show \( {\psi }_{n}\left( B\right) = \mathbf{R}/{p}^{n}\mathbf{Z} \) for all \( n \geq {n}_{0} \) . Take such an \( n \) and an element \( b \in B \) . Then\n\n\[ {\varphi }_{n}^{-1}\left( b\right) \subset \mathbf{R}/{p}^{n + 1}\mathbf{Z} \]\n\nhas cardinality \( p \geq 2 \), and the restriction of \( {\varphi }_{n} \) to the connected set\n\n\[ C = {\varphi }_{n}^{-1}{\psi }_{n}\left( B\right) = {\psi }_{n + 1}\left( B\right) \]\n\nis not injective. The proof will be complete as soon as the following statement (in which the situation and notation are simplified) is established.\n\nLet \( a > 1 \) be any integer, \( \varphi : \mathbf{R}/a\mathbf{Z} \rightarrow \mathbf{R}/\mathbf{Z} \) the canonical projection, and \( {Ca} \) connected subset of \( \mathbf{R}/a\mathbf{Z} \) containing two distinct points \( s \neq t \) with \( \varphi \left( s\right) = \varphi \left( t\right) \) . Then \( \varphi \left( C\right) = \mathbf{R}/\mathbf{Z} \) .\n\nIn terms of the restriction \( {\left. \varphi \right| }_{C} \) of the map \( \varphi \) to \( C \), we have to prove\n\n\[ {\left. \varphi \right| }_{C}\text{ not injective } \Rightarrow {\left. \varphi \right| }_{C}\text{ surjective } \]\n\nunder the stated assumptions. It is obviously enough to do so when \( C \neq \mathbf{R}/a\mathbf{Z} \) . In this case, take a point \( P \notin C \subset \mathbf{R}/a\mathbf{Z} \) and consider a stereographic projection from the point \( P \) of the circle \( \mathbf{R}/a\mathbf{Z} \) onto a line \( \mathbf{R} \) . This is a homeomorphism\n\n\[ f : \mathbf{R}/a\mathbf{Z} - \{ P\} \overset{ \sim }{ \rightarrow }\mathbf{R}. \]\n\nThe image \( f\left( C\right) \) of the subset \( C \) is a connected subset of the real line containing the images of two different congruent points mod \( \mathbf{Z} \) . Since any connected set in the real line is an interval, this proves that \( f\left( C\right) \) contains the whole interval \( J \) linking these two different congruent points. Hence \( C \) contains a whole arc \( I \) of the circle having image \( \varphi \left( I\right) = \mathbf{R}/\mathbf{Z} \) .
Yes
Lemma 1. (a) Any point of a ball is a center of the ball.
Proof. (a) If \( b \in {B}_{ < r}\left( a\right) \), then \( d\left( {a, b}\right) < r \) and\n\n\[ x \in {B}_{ < r}\left( a\right) \Leftrightarrow d\left( {x, a}\right) < r\overset{d\left( {a, b}\right) < r}{ \Leftrightarrow }d\left( {x, b}\right) < r \Leftrightarrow x \in {B}_{ < r}\left( b\right) \]\n\nproving \( {B}_{ < r}\left( a\right) = {B}_{ < r}\left( b\right) \) . The case of a dressed ball is similar.
Yes
Lemma 3. (a) The spheres \( {S}_{r}\left( a\right) \left( {r > 0}\right) \) are both open and closed.
Proof. (a) The spheres are closed in all metric spaces, since the distance function \( x \mapsto d\left( {x, a}\right) \) is continuous. A sphere of positive radius is open in an ultrametric space by part \( \left( c\right) \) of the previous lemma.
No
Lemma 4. (a) A sequence \( {\left( {x}_{n}\right) }_{n \geq 0} \) with \( d\left( {{x}_{n},{x}_{n + 1}}\right) \rightarrow 0\left( {n \rightarrow \infty }\right) \) is a Cauchy sequence.
Proof. (a) Observe that if \( d\left( {{x}_{n},{x}_{n + 1}}\right) < \varepsilon \) for all \( n \geq N \), then also\n\n\[ d\left( {{x}_{n},{x}_{n + m}}\right) \leq \mathop{\max }\limits_{{0 \leq i < m}}d\left( {{x}_{n + i},{x}_{n + i + 1}}\right) < \varepsilon \]\n\nfor all \( n \geq N \) and \( m \geq 0 \) .
No
Theorem 1 (Eisenstein). Let \( f\left( X\right) \in {\mathbf{Z}}_{p}\left\lbrack X\right\rbrack \) be a monic polynomial of degree \( n \geq 1 \) with \( f\left( X\right) \equiv {X}^{n}{\;\operatorname{mod}\;p}, f\left( 0\right) ≢ 0{\;\operatorname{mod}\;{p}^{2}} \) . In other words,\n\n\[ f\left( X\right) = {X}^{n} + {a}_{n - 1}{X}^{n - 1} + \cdots + {a}_{0}, \]\n\n\[ \operatorname{ord}\left( {a}_{i}\right) \geq 1\left( {0 \leq i \leq n - 1}\right) ,\;\operatorname{ord}\left( {a}_{0}\right) = 1. \]\n\nThen \( f \) is irreducible in the rings \( {\mathbf{Z}}_{p}\left\lbrack X\right\rbrack \) and \( {\mathbf{Q}}_{p}\left\lbrack X\right\rbrack \) .
Proof. Take a factorization \( f = g \cdot h \) in \( {\mathbf{Z}}_{p}\left\lbrack X\right\rbrack \) - or in \( {\mathbf{Q}}_{p}\left\lbrack X\right\rbrack \) ; this is the same by an elementary lemma attributed to Gauss - say\n\n\[ g = {b}_{\ell }{X}^{\ell } + \cdots + {b}_{0},\;h = {c}_{m}{X}^{m} + \cdots + {c}_{0}. \]\n\nHence\n\n\[ \ell + m = n,\;{b}_{\ell }{c}_{m} = 1,\;{b}_{0}{c}_{0} = {a}_{0}. \]\n\nSince \( {a}_{0} \) is not divisible by \( {p}^{2}, p \) can divide only one of the two coefficients \( {b}_{0} \) and \( {c}_{0} \) . Without loss of generality we can assume that \( p \) divides \( {c}_{0} \) but \( p \) does not divide \( {b}_{0} \) . Consider now all these polynomials mod \( p \) . By assumption \( \widetilde{f} = {X}^{n} \) is a monomial, so that its factorization \( \widetilde{f} = \widetilde{g} \cdot \widetilde{h} \) must be a product of monomials and \( \widetilde{h} = \widetilde{{c}_{0}} \) is a constant. Considering that \( {b}_{\ell }{c}_{m} = 1 \), the only possibility now is \( m = 0 \) and a trivial factorization.\n\nThe preceding argument \( {\;\operatorname{mod}\;p} \) can be made directly on the coefficients. Let \( r \geq 1 \) be the smallest power of \( X \) in \( h \) having a coefficient not divisible by \( p \) :\n\n\[ p\text{does not divide}{c}_{r}\text{but}p\text{divides}{c}_{r - 1},{c}_{r - 2},\ldots ,{c}_{0}.\text{ }\]\n\nThe coefficient of \( {X}^{r} \) in the product of \( g \) and \( h \) is\n\n\[ {a}_{r} = {b}_{0}{c}_{r} + {b}_{1}{c}_{r - 1} + {b}_{2}{c}_{r - 2} + \cdots = {b}_{0}{c}_{r} + p\left( \cdots \right) . \]\n\nSince \( {b}_{0}{c}_{r} \) is not divisible by \( p \), the preceding equality shows that \( p \) does not divide \( {a}_{r} \) either. By assumption, this shows that \( r = n \) . Summing up,\n\n\[ n = m + \ell \geq m \geq r = n \]\n\nimplies \( m = n \) and \( \ell = 0 \) . The factorization \( g \cdot h \) of \( f \) is necessarily trivial.
Yes
Theorem 2. Let \( K \) be a finite, totally ramified extension of \( {\mathbf{Q}}_{p} \). Then \( K \) is generated by a root of an Eisenstein polynomial.
Proof. The maximal ideal \( P \) of the subring \( R = {B}_{ \leq 1} \) of \( K \) is principal and generated by an element \( \pi \) with \( {\left| \pi \right| }^{e} = \left| p\right| \). Since \( n = \left\lbrack {K : {\mathbf{Q}}_{p}}\right\rbrack = e \) by assumption, the linearly independent powers \( {\left( {\pi }^{i}\right) }_{0 \leq i < e} \) generate \( K \) and \( K = {\mathbf{Q}}_{p}\left\lbrack \pi \right\rbrack \). The irreducible polynomial of this element can be factored (in a Galois extension of \( {\mathbf{Q}}_{p} \) containing \( K \) ) as\n\n\[ f\left( X\right) = \mathop{\prod }\limits_{\sigma }\left( {X - {\pi }^{\sigma }}\right) = {X}^{e} + \mathop{\sum }\limits_{{0 < i < e}}{a}_{i}{X}^{i} \pm \mathop{\prod }\limits_{\sigma }{\pi }^{\sigma }.\]\n\nThe constant term has absolute value \( \left| {{\Pi }_{\sigma }{\pi }^{\sigma }}\right| = {\left| \pi \right| }^{e} = \left| p\right| \) (by (3.3) all automor-phisms \( \sigma \) are isometric), whereas the intermediate coefficients \( {a}_{i} \) satisfy \( \left| {a}_{i}\right| < 1 \)\n\n(each is divisible by one \( {\pi }^{\sigma } \) at least, and \( {a}_{i} \in {\mathbf{Z}}_{p} \)). Hence these intermediate coefficients are in \( p{\mathbf{Z}}_{p} \) as required: \( f \) is an Eisenstein polynomial.
Yes
Proposition 1. Let \( K \) be any ultrametric extension of \( {\mathbf{Q}}_{p} \) . Then\n\n\[ \n{\mu }_{{p}^{\infty }}\left( K\right) = \mu \left( K\right) \cap \left( {1 + M}\right) .\n\]
Proof. First, if \( \zeta \in \mu \left( K\right) \) has order a power of \( p \), denote by \( \widetilde{\zeta } = \varepsilon \left( \zeta \right) \in k \) its reduction. Then\n\n\[ \n{\zeta }^{{p}^{f}} = 1 \Rightarrow {\widetilde{\zeta }}^{{p}^{f}} = \widetilde{1} \in k \Rightarrow \widetilde{\zeta } = \widetilde{1} \Rightarrow \zeta \in 1 + M,\n\]\n\nsince the field \( k \) has characteristic \( p \) . Conversely, if \( \zeta \in 1 + M \) has order \( n > 1 \) , write \( \zeta = 1 + \xi \) with \( 0 \neq \left| \xi \right| < 1 \) . Then\n\n\[ \n1 = {\left( 1 + \xi \right) }^{n} = 1 + {n\xi } + \cdots + {\xi }^{n} = 1 + \xi \left( {n + {\xi \alpha }}\right)\n\]\n\nimplies \( n + {\xi \alpha } = 0 \), and\n\n\[ \n\left| n\right| = \left| {\xi \alpha }\right| \leq \left| \xi \right| < 1\n\]\n\nimplies \( p \mid n \) . If \( n \neq p \), we can replace \( \zeta \) by \( {\zeta }^{p} \), which has order \( n/p > 1 \), and iterate the procedure. Eventually, we see that \( n \) is a power of \( p \) .
Yes
Proposition 2. Assume that the extension \( K \) of \( {\mathbf{Q}}_{p} \) is complete with residue field \( k \) algebraic over \( {\mathbf{F}}_{p} \) . Then we have a split exact sequence\n\n\[\n\\left( 1\\right) \\rightarrow {\\mu }_{{p}^{\\infty }}\\left( K\\right) \\rightarrow \\mu \\left( K\\right) \\rightarrow {k}^{ \\times } \\rightarrow \\left( 1\\right) .\n\]\n\nIf the residue field is finite, say \( f = \\left\\lbrack {k : {\\mathbf{F}}_{p}}\\right\\rbrack < \\infty \), then the cyclic group \( {\\mu }_{\\left( p\\right) }\\left( K\\right) \) has order \( {p}^{f} - 1 \) .
Proof. Let \( \\varepsilon : \\mu \\rightarrow {k}^{ \\times } \) be the group homomorphism obtained by restriction of the reduction (ring) homomorphism \( A \\rightarrow A/M \) . It will be enough to show that \( \\varepsilon \) induces an isomorphism \( {\\mu }_{\\left( p\\right) }\\left( K\\right) \\cong {k}^{ \\times } \) . By the preceding proposition, the reduction map induces an isomorphism of \( {\\mu }_{\\left( p\\right) }\\left( K\\right) \) into \( {k}^{ \\times } \) . We have to prove that it is surjective. Let \( \\alpha \\in {k}^{ \\times } \) and replace \( k \) by the finite field \( {\\mathbf{F}}_{p}\\left( \\alpha \\right) \\cong {\\mathbf{F}}_{q} \) so that \( \\alpha \) is a root of unity of order prime to \( p \), dividing \( m = q - 1 = \\# \\left( {k}^{ \\times }\\right) \) . Choose an element \( a \\in A \) in the coset \( \\alpha \\left( {\\;\\operatorname{mod}\\;M}\\right) \) and consider the solutions \( x \) of the following problem:\n\n\[\n{X}^{m} - 1 = 0\\text{ with }x \\equiv a\\;\\left( {\\;\\operatorname{mod}\\;M}\\right) \\text{ (i.e.,}\\varepsilon \\left( x\\right) = \\alpha \\text{). }\n\]\n\nSince \( m \) is prime to \( p \), and \( K \) is complete, Hensel’s lemma (1.4) can be applied, and this furnishes an element \( x \) in \( {K}^{ \\times } \) with \( {x}^{m} = 1 \) ; hence \( x \\in {\\mu }_{\\left( p\\right) }\\left( K\\right) \) and \( \\varepsilon \\left( x\\right) = \\varepsilon \\left( a\\right) = \\alpha . \n\nThis proves that - when the residue field \( k \) is algebraic - the restriction of the reduction mod \( M \) is an isomorphism \( {\\mu }_{\\left( p\\right) }\\left( K\\right) \\overset{ \\sim }{ \\rightarrow }{k}^{ \\times } \) .
Yes
Corollary 1. If the ramification index \( e = e\left( K\right) \) is finite, then the group \( {\mu }_{{p}^{\infty }}\left( K\right) \) of roots of unity in \( K \) having order a power of \( p \) is finite. More precisely,\n\n\[ \n\# \left( {{\mu }_{{p}^{\infty }}\left( K\right) }\right) \leq \frac{e}{1 - 1/p}.\n\]
Proof. In general, if the field \( K \) has a root of order \( {p}^{t} \), the preceding theorem shows that the ramification index \( e \) is a multiple of \( \varphi \left( {p}^{t}\right) = {p}^{t} - {p}^{t - 1} \) . Hence\n\n\[ \n{p}^{t}\left( {1 - 1/p}\right) \leq e\n\]\n\nThis gives a bound for the order \( {p}^{t} \leq {ep}/\left( {p - 1}\right) \), and\n\n\[ \n\# \left( {{\mu }_{{p}^{\infty }}\left( K\right) }\right) \leq \frac{ep}{p - 1}.\n\]\n\nObserve that the result of this corollary is valid for any valued field \( K \) of characteristic 0, provided that its absolute value extends the \( p \) -adic one on \( \mathbf{Q} \) .
Yes
Corollary 2. The group of roots of unity in \( {\mathbf{Q}}_{p} \) is precisely\n\n\[ \mu \left( {\mathbf{Q}}_{p}\right) = {\mu }_{\left( p\right) }\left( {\mathbf{Q}}_{p}\right) = {\mu }_{p - 1}\;p\text{ odd prime,}\]\n\n\[ \mu \left( {\mathbf{Q}}_{2}\right) = {\mu }_{2}\left( {\mathbf{Q}}_{2}\right) = \{ \pm 1\} \]
Example. Let \( K \) be the extension generated over \( {\mathbf{Q}}_{p} \) by a primitive \( p \) th root of unity and \( {K}^{\prime } \) the extension of \( K \) generated by a primitive root of unity of order \( {p}^{2} \) . Both extensions are totally ramified. The degrees of these cyclotomic extensions are determined by the previous theory, and a diagram summarizes the situation. ![8de98b3f-6e61-44c2-87ac-3ae6d0d00e0d_126_0.jpg](images/8de98b3f-6e61-44c2-87ac-3ae6d0d00e0d_126_0.jpg)\n\nThe element \( \pi = {\zeta }_{p} - 1 \) has absolute value \( \left| \pi \right| = {\left| p\right| }^{1/\left( {p - 1}\right) } \) generating the group of values \( \left| {K}^{ \times }\right| : P = {\pi R} \subset R \subset K = {\mathbf{Q}}_{p}\left( {\zeta }_{p}\right) \) . Similarly, the element \( {\pi }^{\prime } = {\zeta }_{{p}^{2}} - 1 \) has absolute value \( \left| {\pi }^{\prime }\right| = {\left| p\right| }^{1/p\left( {p - 1}\right) } \) generating the group of values \( \left| {K}^{\prime \times }\right| \) :\n\n\[ {P}^{\prime } = {\pi }^{\prime }{R}^{\prime } \subset {R}^{\prime } \subset {K}^{\prime } = {\mathbf{Q}}_{p}\left( {\zeta }_{{p}^{2}}\right) . \]
No
Corollary 1. The balls \( {B}_{r}\left( {r > 0}\right) \) make up a fundamental system of neighborhoods of 0 in \( K \) . In particular,\n\n\[ \n{a}^{n} \rightarrow 0\text{ in }K \Leftrightarrow m\left( a\right) < 1.\n\]
Proof. If \( V \) is any compact neighborhood of 0 in \( K \), put \( r = \mathop{\max }\limits_{V}m\left( x\right) \) in order to have \( V \subset {B}_{r} \) . Since 0 is not in the closure of \( {B}_{r} - V \), the minimum \( {r}^{\prime } \) of \( m\left( x\right) \) on the closure \( \Omega \) of \( {B}_{r} - V \) is positive; for \( 0 < {r}^{\prime \prime } < {r}^{\prime } \) it is clear that \( {B}_{{r}^{\prime \prime }} \subset V \) .
Yes
Corollary 2. Any discrete subfield of \( K \) is finite.
Proof. Let \( F \) be a discrete subfield of \( K \) . Choose any \( a \in K \) with \( m\left( a\right) > 1 \) . Then we have \( m\left( {a}^{-n}\right) = m{\left( a\right) }^{-n} \rightarrow 0 \), whence \( {a}^{-n} \rightarrow 0 \), and since \( F \) is discrete it shows \( a \notin F \) . This proves \( F \subset {B}_{1} \) . But we know that \( F \) is closed (I.3.2). Thus \( F \) is compact and discrete, hence finite.
Yes
Theorem 1. A one-dimensional topological vector space \( V \) over \( K \) is isomorphic as a topological vector space to \( K \) . More precisely, for each \( 0 \neq v \in V \) , the map \( a \mapsto {av} : K \rightarrow V \) is a bijective linear homeomorphism.
Proof. Fix \( 0 \neq v \in V \) . The one-to-one linear map \( a \mapsto {av} : K \rightarrow V \) is continuous, since \( V \) is a topological vector space over \( K \) . We have to show the continuity of the inverse, namely\n\n\[ \n\forall \varepsilon > 0\exists U\text{ neighborhood of }0\text{ in }V\text{ such that }{av} \in U \Rightarrow \left| a\right| < \varepsilon .\n\]\n\nWe proceed as follows. If \( \varepsilon > 0 \) is chosen, we take \( b \in K \) with \( 0 < \left| b\right| \leq \varepsilon \) and a balanced neighborhood \( U \) of 0 in \( V \) such that \( U ∌ {bv} \neq 0 \) (this is possible, since we assume that \( V \) is Hausdorff). Now, if \( {av} \in U \), then\n\n\[ \n{bv} = \frac{b}{a} \cdot \underset{ \in U}{\underbrace{aa}} \notin U\underset{U\text{ balanced }}{ \Rightarrow }\left| \frac{b}{a}\right| > 1 \Rightarrow \left| a\right| < \left| b\right| \leq \varepsilon .\n\]
Yes
Theorem 2. Assume that the field \( K \) is complete. Then a finite-dimensional topological vector space \( V \) over \( K \) is isomorphic as a topological vector space to a Cartesian product \( {K}^{d} \) . More precisely, for any basis \( \left( {e}_{i}\right) \) of \( V \), the linear map\n\n\[ \left( {\lambda }_{i}\right) \mapsto \mathop{\sum }\limits_{i}{\lambda }_{i}{e}_{i} : {K}^{d} \rightarrow V \]\n\nis an isomorphism of topological vector spaces.
Proof. We proceed by induction on the dimension of the vector space \( V \) : The dimension-1 case is covered by the first theorem. Assume that the statement is true up to dimension \( d - 1 \) . If \( {\dim }_{K}V = d \), select a basis \( {e}_{1},\ldots ,{e}_{d} \) of \( V \) and consider the linear span \( W \) of the first \( d - 1{e}_{i} \) . By the induction assumption, the space \( W \) is isomorphic to \( {K}^{d - 1} \) and hence complete and closed in \( V \) . The linear form\n\n\[ \varphi : \mathop{\sum }\limits_{i}{\lambda }_{i}{e}_{i} \mapsto {\lambda }_{d}, V \rightarrow K \]\n\nis continuous, since its kernel \( \ker \left( \varphi \right) = W \) is closed. The one-to-one linear map\n\n\[ {K}^{d} = {K}^{d - 1} \times K\overset{ \approx }{ \rightarrow }W \times K{e}_{d}\overset{\text{ sum }}{ \rightarrow }V \]\n\nis continuous. Its inverse is\n\n\[ x \mapsto \left( {x - \varphi \left( x\right) {e}_{d},\varphi \left( x\right) {e}_{d}}\right) \]\n\nand hence is also continuous.
Yes
Theorem 1 (Krasner’s Lemma). Let \( K \subset {\mathbf{Q}}_{p}^{a} \) be a finite extension of \( {\mathbf{Q}}_{p} \) and let \( a \in {\mathbf{Q}}_{p}^{a} \) (so that \( a \) is algebraic over \( {\mathbf{Q}}_{p} \) ). Denote by \( {a}^{\sigma } \) the conjugates of a over \( K \) and put \( r = \mathop{\min }\limits_{{{a}^{\sigma } \neq a}}\left| {{a}^{\sigma } - a}\right| \) . Then every element \( b \in {B}_{ < r}\left( {a;{\mathbf{Q}}_{p}^{a}}\right) \) generates (over \( K \) ) an extension containing \( K\left( a\right) \) .
Proof. Take any algebraic element \( b \) such that \( a \notin K\left( b\right) \) . Since we are in characteristic 0, Galois theory asserts that there is a conjugate \( {a}^{\sigma } \neq a \) of \( a \) over \( K\left( b\right) \) (the automorphism \( \sigma \) fixes \( K\left( b\right) \) elementwise) and we can estimate the distance of \( a \) to \( b \) as follows:\n\n\[ \left| {b - {a}^{\sigma }}\right| = \left| {\left( b - a\right) }^{\sigma }\right| = \left| {b - a}\right| \]\n\n\[ \left| {a - {a}^{\sigma }}\right| \leq \max \left( {\left| {a - b}\right| ,\left| {b - {a}^{\sigma }}\right| }\right) = \left| {b - a}\right| . \]\n\nThis shows that\n\n\[ \left| {b - a}\right| \geq \left| {a - {a}^{\sigma }}\right| \geq r. \]\n\nHence if \( b \in {B}_{ < r}\left( a\right) \), namely \( \left| {b - a}\right| < r \), we have\n\n\[ a \in K\left( b\right) ,\;K\left( a\right) \subset K\left( b\right) . \]
Yes
Theorem 2 (Continuity of Roots of Equations). Let \( K \) be a finite extension of the p-adic field \( {\mathbf{Q}}_{p} \) and fix an algebraic element \( a \in {\mathbf{Q}}_{p}^{a} \) of degree \( n \) over \( K \) corresponding to a monic irreducible polynomial \( f \in K\left\lbrack X\right\rbrack \) (of degree \( n \) ). There is a positive \( \varepsilon \) such that any monic polynomial \( g \in K\left\lbrack X\right\rbrack \) of degree \( n \) with \( \parallel g - f\parallel < \varepsilon \) has a root \( b \in K\left( a\right) \) also generating this field: \( K\left( b\right) = K\left( a\right) \) .
Proof. Let us factorize the polynomial \( g \) in the algebraic closure \( {\mathbf{Q}}_{p}^{a} \) of \( K \), say \( g\left( X\right) = \Pi \left( {X - {b}_{i}}\right) \), and evaluate it at the root \( a \) of \( f \) :\n\n\[ \n\prod \left( {a - {b}_{i}}\right) = g\left( a\right) = g\left( a\right) - f\left( a\right) .\n\]\n\nWith \( M = \mathop{\max }\limits_{{0 \leq i \leq n}}\left( {\left| a\right| }^{i}\right) = \max \left( {1,{\left| a\right| }^{n}}\right) \) we can estimate\n\n\[ \n\prod \left| {a - {b}_{i}}\right| = \left| {g\left( a\right) - f\left( a\right) }\right| \leq \parallel g - f\parallel \cdot M,\n\]\n\nhence for one index \( i \) at least,\n\n\[ \n\left| {a - {b}_{i}}\right| \leq \parallel g - f{\parallel }^{1/n} \cdot {M}^{1/n}.\n\]\n\nBy the preceding theorem, if \( \varepsilon > 0 \) is chosen small enough, then \( \parallel g - f\parallel < \varepsilon \) will imply \( K\left( {b}_{i}\right) \supset K\left( a\right) \) for some \( i \) . But the degree of \( {b}_{i} \) is less than or equal to \( n \), since it is a root of the \( n \) th degree polynomial \( g \in K\left\lbrack X\right\rbrack \) . This proves \( K\left( {b}_{i}\right) = \) \( K\left( a\right) \) .
Yes
Corollary 1. Let \( f \in K\left\lbrack X\right\rbrack \) be a monic irreducible polynomial, \( a \in {\mathbf{Q}}_{p}^{a} \) a root of \( f \), and \( {\left( {g}_{i}\right) }_{i \in \mathbf{N}} \) a sequence of monic polynomials with coefficients in \( K \) of the same degree as \( f \) . If \( {g}_{i} \rightarrow f \) (coefficientwise), there is a sequence \( \left( {x}_{i}\right) \) of roots of these polynomials such that \( {x}_{i} \in K\left( a\right) \) for large \( i \) and \( {x}_{i} \rightarrow a \) .
Proof. As soon as \( \begin{Vmatrix}{{g}_{i} - f}\end{Vmatrix} < \varepsilon \) is small enough, the above result is applicable and shows that \( \left| {a - {x}_{i}}\right| \) is small for at least one root \( {x}_{i} \) of \( {g}_{i} \) . More precisely, the inequality\n\n\[ \left| {a - {x}_{i}}\right| \leq {\begin{Vmatrix}{g}_{i} - f\end{Vmatrix}}^{1/n} \cdot {M}^{1/n} \]\n\nshows that \( \left| {a - {x}_{i}}\right| \rightarrow 0 \), and the convergence \( {x}_{i} \rightarrow a \) in \( K\left( a\right) \) follows.
Yes
Corollary 2. The algebraic closure \( {\mathbf{Q}}_{p}^{a} \) of \( {\mathbf{Q}}_{p} \) is a separable metric space.
Proof. Take \( a \in {\mathbf{Q}}_{p}^{a} \) and let \( f \) be its minimal polynomial over \( {\mathbf{Q}}_{p} \). Since \( \mathbf{Q} \) is dense in \( {\mathbf{Q}}_{p} \), we can find monic polynomials \( g \in \mathbf{Q}\left\lbrack X\right\rbrack \) as close to \( f \) as we want. If we choose a sequence \( {g}_{n} \rightarrow f \), the continuity principle for the roots shows that \( a \) is a limit of roots \( {x}_{n} \) of the polynomials \( {g}_{n} \). This shows that the algebraic closure of \( \mathbf{Q} \) is dense in \( {\mathbf{Q}}_{p}^{a} \). But this algebraic closure is a countable field since the set of polynomials of fixed degree with coefficients in the countable field \( \mathbf{Q} \) is countable.
Yes
Proposition 2. Let \( K \) be a nondiscrete ultrametric field and put\n\n\[ A = \{ x \in K : \\left| x\\right| \\leq 1\} : \\text{ maximal subring of }K \]\n\n\[ M = \{ x \in K : \\left| x\\right| < 1\} : \\text{ maximal ideal of }A\\text{. } \]\n\nThen, either \( M \) is principal, or \( M = {M}^{2} \) and the ring \( A \) is not Noetherian.
Proof. By hypothesis \( \\Gamma = \\left| {K}^{ \\times }\\right| \\neq \\{ 1\\} \), and either \( \\Gamma \\cap \\left( {0,1}\\right) \) has a maximal element \( \\theta \) or it has a sequence tending to 1 . In the first case we can choose \( \\pi \\in M \) with \( \\left| \\pi \\right| = \\theta \), and \( M = {\\pi A} \) is principal. In the second case, for each \( x \\in M \), namely \( \\left| x\\right| < 1 \), we can find an element \( y \) such that \( \\left| x\\right| < \\left| y\\right| < 1 \), so that\n\n\[ x = y \\cdot \\left( {x/y}\\right) \\in {M}^{2}. \]\n\nSince \( y \) and \( x/y \) belong to \( M \), this shows that \( x \\in {M}^{2} \), and we have proved \( M = {M}^{2} \) . In this last case, the subgroup \( \\Gamma = \\left| {K}^{ \\times }\\right| \) is dense in \( {\\mathbf{R}}_{ > 0} \), and all the ideals\n\n\[ {I}_{r} = {B}_{ \\leq r} = {B}_{ \\leq r}\\left( {0;K}\\right) = \\{ x \\in K : \\left| x\\right| \\leq r\\} \]\n\nfor \( r \\in \\Gamma \\cap \\left( {0,1}\\right) \) are distinct: The ring \( A \) is not Noetherian.
Yes
Proposition 3. With the same notation as before:\n\n(a) If \( K \) is algebraically closed, so is the residue field \( k \) .\n\n(b) If \( L \) is an algebraic extension of \( K \), the residue field \( {k}_{L} \) of \( L \) is also an algebraic extension of the residue field \( k \) of \( K \) .
Proof. In any ultrametric field, \( \left| \xi \right| > 1,\left| {a}_{i}\right| \leq 1\left( {i < n}\right) \) implies\n\n\[ \left| {\xi }^{n}\right| > \left| {\xi }^{i}\right| \geq \left| {{a}_{i}{\xi }^{i}}\right| \;\left( {i < n}\right) ,\]\n\n\[ {\left| \xi \right| }^{n} > \left| {\mathop{\sum }\limits_{{i < n}}{a}_{i}{\xi }^{i}}\right| \]\n\nand hence\n\n\[ \left| {{\xi }^{n} + \mathop{\sum }\limits_{{i < n}}{a}_{i}{\xi }^{i}}\right| = {\left| \xi \right| }^{n} > 1 \]\n\n\[ {\xi }^{n} + \mathop{\sum }\limits_{{i < n}}{a}_{i}{\xi }^{i} \neq 0 \]\n\nThis proves that any root of a monic polynomial having coefficients \( \left| {a}_{i}\right| \leq 1 \) belongs to the closed unit ball \( \left| x\right| \leq 1 \) .\n\n(a) Let \( {X}^{n} + \mathop{\sum }\limits_{{i < n}}{\alpha }_{i}{X}^{i} \in k\left\lbrack X\right\rbrack \) be a monic polynomial of degree \( n \geq 1 \) . Choose liftings \( {a}_{i} \in A \) of the coefficients, i.e., \( {\alpha }_{i} = {a}_{i}\left( {\;\operatorname{mod}\;M}\right) \), and consider the monic polynomial\n\n\[ {X}^{n} + \mathop{\sum }\limits_{{i < n}}{a}_{i}{X}^{i} \in A\left\lbrack X\right\rbrack \]\n\nSince the field \( K \) is algebraically closed, this polynomial has a root \( x \in K \) . By the preliminary observation, \( x \in A \) and \( x{\;\operatorname{mod}\;M} \) is a root of the reduced polynomial \( {X}^{n} + \mathop{\sum }\limits_{{i < n}}{\alpha }_{i}{X}^{i} \) . This proves that \( k \) is algebraically closed.\n\n(b) Let \( 0 \neq \xi \in {k}_{L} \) and choose a representative \( x \in {A}_{L} - {M}_{L} \) of the coset \( \xi \neq 0 : \left| x\right| = 1 \) . By assumption, this element is algebraic over \( K \), and hence \( x \) satisfies a nontrivial polynomial equation\n\n\[ \mathop{\sum }\limits_{{i \leq n}}{a}_{i}{x}^{n} = 0\;\left( {n \geq 1,{a}_{i} \in K}\right) .\n\nBy the principle of competitivity, at least two monomials have maximal competing absolute values\n\n\[ \left| {a}_{i}\right| = \left| {{a}_{i}{x}^{i}}\right| = \left| {{a}_{j}{x}^{j}}\right| = \left| {a}_{j}\right| \;\text{ for some }i < j.\n\nDividing by \( {a}_{i} \), we obtain a polynomial equation with coefficients \( \left| {a}_{k}^{\prime }\right| \leq 1,{a}_{k}^{\prime } \in A \) and at least two of them not in \( M \) . By reduction \( {\;\operatorname{mod}\;M} \) we get a nontrivial polynomial equation satisfied by \( \xi \) .
Yes
Proposition 1. The subset \( \mathcal{J} = {\varphi }^{-1}\left( 0\right) \) is a maximal ideal of the ring \( R \), and the field \( {\Omega }_{p} = R/\mathcal{J} \) is an extension of the field \( {\mathbf{Q}}_{p}^{a} \) .
Proof. Let us show that each element \( \alpha \notin \mathcal{J} \) is invertible \( {\;\operatorname{mod}\;\mathcal{J}} \) . But if \( \alpha = \left( {\alpha }_{n}\right) \) is not in the ideal \( \mathcal{J} \), the limit \( r = \varphi \left( \alpha \right) > 0 \) does not vanish, so we can find a subset \( A \in \mathcal{U} \) such that \( r/2 < \left| {\alpha }_{i}\right| < {2r}\left( {i \in A}\right) \) . Define a sequence \( \beta = \left( {\beta }_{i}\right) \) by\n\n\[ \n{\beta }_{i} = \frac{1}{{\alpha }_{i}}\text{ for }i \in A\;\text{ and }\;{\beta }_{i} = 0\text{ for }i \notin A.\n\]\n\nSince \( \left| {\beta }_{i}\right| < 2/r\left( {i \in A}\right) \), the sequence \( \beta \) is bounded \( \beta \leq 2/r \) and \( \beta \in R \) . By construction \( 1 - {\alpha \beta } \) vanishes on the set \( A \), hence \( 1 - {\alpha \beta } \in \mathcal{J} \) . This shows that \( \alpha {\;\operatorname{mod}\;\mathcal{J}} \) is invertible in the quotient \( {\Omega }_{p} \) . Consequently, the quotient is a field, and \( \mathcal{J} \) a maximal ideal of \( R \) . Finally, constant sequences provide an embedding \( {\mathbf{Q}}_{p}^{a} \rightarrow {\Omega }_{p} \)
Yes
Proposition 2. The absolute value \( {\left. \mid .\right| }_{\Omega } \) coincides with the quotient norm of \( R/\mathcal{J} \), namely for \( a = \left( {\alpha {\;\operatorname{mod}\;\mathcal{J}}}\right) \), \[ {\left| a\right| }_{\Omega } = \parallel \alpha {\;\operatorname{mod}\;\mathcal{J}}{\parallel }_{R/\mathcal{J}} \mathrel{\text{:=}} \mathop{\inf }\limits_{{\beta \in \mathcal{J}}}\parallel \alpha - \beta \parallel . \]
Proof. We have \( \mathop{\lim }\limits_{\mathcal{U}}\left| {\gamma }_{i}\right| \leq \sup \left| {\gamma }_{i}\right| \left( {\gamma \in R}\right) \), and hence \[ \mathop{\lim }\limits_{\mathcal{U}}\left| {\alpha }_{i}\right| = \mathop{\lim }\limits_{\mathcal{U}}\left| {{\alpha }_{i} - {\beta }_{i}}\right| \leq \sup \left| {{\alpha }_{i} - {\beta }_{i}}\right| \;\left( {\beta \in \mathcal{J}}\right) , \] \[ {\left| a\right| }_{\Omega } \leq \parallel \alpha - \beta \parallel \;\left( {\beta \in \mathcal{J}}\right) . \] This proves \[ {\left| a\right| }_{\Omega } \leq \parallel a{\parallel }_{R/\mathcal{J}} \] Conversely, if \( a = \alpha {\;\operatorname{mod}\;\mathcal{J}} \), then for any subset \( A \in \mathcal{U} \) we can define the sequence \( \beta = \left( {\beta }_{i}\right) \) as \( {\beta }_{i} = 0\left( {i \in A}\right) \) and \( {\beta }_{i} = {\alpha }_{i}\left( {i/ \in A}\right) \) so that \( \beta \in \mathcal{J} \) and \( \parallel \alpha - \beta \parallel = \) \( \mathop{\sup }\limits_{{i \in A}}\left| {\alpha }_{i}\right| \) and \[ \parallel a{\parallel }_{R/\mathcal{J}} \leq \mathop{\inf }\limits_{{A \in \mathcal{U}}}\mathop{\sup }\limits_{{i \in A}}\left| {\alpha }_{i}\right| = \lim \sup \left| {\alpha }_{i}\right| = \mathop{\lim }\limits_{\mathcal{U}}\left| {\alpha }_{i}\right| = {\left| a\right| }_{\Omega }. \] From now on we shall simply write \( \left| a\right| = {\left| a\right| }_{\Omega } \) for either the absolute value on the field \( {\Omega }_{p} \) or the quotient norm in \( R/\mathcal{J} \) .
Yes
Proposition 3. We have\n\n\[ \left| {\Omega }_{p}^{ \times }\right| = {\mathbf{R}}_{ > 0} \]
Proof. This is a simple consequence of the fact that \( \left| {\mathbf{Q}}_{p}^{a}\right| \) is dense in \( {\mathbf{R}}_{ \geq 0} \) . Indeed, each positive real number \( r \) is limit of a sequence \( \left( {r}_{n}\right) \) of elements \( {r}_{n} \in \left| {\mathbf{Q}}_{p}^{a}\right| \), say \( {r}_{n} = \left| {\alpha }_{n}\right| \left( {{\alpha }_{n} \in {\mathbf{Q}}_{p}^{a}}\right) \), so that the sequence \( \alpha \) is bounded and defines an element \( a \) in the quotient \( {\Omega }_{p} \) with \( \left| a\right| = r \) .
Yes
Theorem 2. Let \( \Omega \) be any algebraically closed extension of \( {\mathbf{Q}}_{p} \) and \( K \subset \Omega \) any complete subfield. Select an algebraic element \( a\left( { \in \Omega }\right) \) over \( K \) and denote by \( {a}^{\sigma } \) its conjugates over \( K \) . Let \( r = \mathop{\min }\limits_{{{a}^{\sigma } \neq a}}\left| {{a}^{\sigma } - a}\right| \) . Then every algebraic element \( b \) over \( K, b \in {B}_{ < r}\left( a\right) \), generates with \( K \) an extension containing \( K\left( a\right) \) .
Proof. We can proceed as in (1.5), since we now have uniqueness of the extension of absolute values for finite extensions of \( K \) . For any algebraic element \( b \) such that \( a \notin K\left( b\right), a \) has a conjugate \( {a}^{\sigma } \neq a \) over \( K\left( b\right) \) (the automorphism \( \sigma \) leaves all elements of \( K\left( b\right) \) fixed), and\n\n\[ \left| {b - {a}^{\sigma }}\right| = \left| {\left( b - a\right) }^{\sigma }\right| = \left| {b - a}\right| \]\n\n\[ \left| {a - {a}^{\sigma }}\right| \leq \max \left( {\left| {a - b}\right| ,\left| {b - {a}^{\sigma }}\right| }\right) = \left| {b - a}\right| . \]\n\nHence\n\n\[ \left| {b - a}\right| \geq \left| {a - {a}^{\sigma }}\right| \geq r. \]\n\nTaking the contrapositive, \( \left| {b - a}\right| < r \Rightarrow a \in K\left( b\right) \) and \( K\left( a\right) \subset K\left( b\right) \) .
Yes
Proposition 1. The group \( 1 + {\mathbf{M}}_{p} \) is divisible. For each \( m \geq 2 \) prime to \( p \), it is uniquely \( m \) -divisible.
Proof. It is enough to prove that the group \( 1 + {\mathbf{M}}_{p} \) is \( p \) -divisible and uniquely \( m \) -divisible for each \( m \) prime to \( p \) .\n\n(1) Let \( 1 + t \in 1 + {\mathbf{M}}_{p} \) and select a root \( x \in {\mathbf{C}}_{p} \) of \( {X}^{p} - \left( {1 + t}\right) \) : this is possible, since this field is algebraically closed. Since \( {\left| x\right| }^{p} = \left| {x}^{p}\right| = \left| {1 + t}\right| = 1 \), we have \( \left| x\right| = 1 : x \in \mathbf{U}\left( 1\right) \) . Now\n\n\[{\left( x{\;\operatorname{mod}\;{\mathbf{M}}_{p}}\right) }^{p} = {x}^{p}{\;\operatorname{mod}\;{\mathbf{M}}_{p}} = 1 \in k\]\n\nimplies \( x{\;\operatorname{mod}\;{\mathbf{M}}_{p}} = 1 \), since \( k \) has characteristic \( p \) . This proves \( x = 1 + s \in \) \( 1 + {\mathbf{M}}_{p} \) .\n\n(2) Let \( 1 + t \in 1 + {\mathbf{M}}_{p} \) and select a positive integer \( m \) prime to \( p \) . We are looking for a root of the polynomial \( f\left( X\right) = {X}^{m} - \left( {1 + t}\right) \) . We already have an approximate root \( y = 1 \) for which the derivative \( m{X}^{m - 1} \) does not vanish \( {\;\operatorname{mod}\;{\mathbf{M}}_{p}} \) ( \( p \) does not divide \( m \) ):\n\n\[f\left( y\right) = 1 - \left( {1 + t}\right) = - t,{f}^{\prime }\left( y\right) = m,\left| {{f}^{\prime }\left( y\right) }\right| = 1.\]\n\nThus we have \( \left| {f\left( y\right) /{f}^{\prime }{\left( y\right) }^{2}}\right| = \left| {-t}\right| < 1 \), and Hensel’s lemma (II.1.5) is applicable: There is a unique root of \( f \) in the open ball of center 1 and radius 1 .\n\nIn fact, for each \( \zeta \in {\mu }_{m} \subset {\mu }_{\left( p\right) } \subset {\mathbf{F}}_{{p}^{\infty }}^{ \times } \), there is one root \( x \) of \( f \) with \( x \equiv \zeta \) (mod \( {\mathbf{M}}_{p} \) ). These \( m \) roots of \( f \) are all the roots of this polynomial, and for each given \( \zeta \in {\mu }_{m} \) there can be only one root of \( f \) congruent to this root of unity \( \zeta \) .
Yes
Proposition 2. For \( x \in {\mathbf{C}}_{p} \) we have\n\n\[ x \in 1 + {\mathbf{M}}_{p} \Leftrightarrow {x}^{{p}^{n}} \rightarrow 1\;\left( {n \rightarrow \infty }\right) . \]
Proof. If \( x = 1 + t \in 1 + {\mathbf{M}}_{p} \), the sequence\n\n\[ {x}^{{p}^{n}} - 1 = {\left( 1 + t\right) }^{{p}^{n}} - 1 \]\n\ntends to 0 by the fundamental inequality (4.3) (second form). Conversely, assume that \( {x}^{{p}^{n}} \rightarrow 1 \) (for some \( x \in {\mathbf{C}}_{p} \) ) and take an integer \( n \) such that \( {x}^{{p}^{n}} \) belongs to the open neighborhood \( 1 + {\mathbf{M}}_{p} \) of 1 in \( {\mathbf{C}}_{p} \) . Since we have proved in (4.1) that there is a torsion-free subgroup \( \Gamma \left( { \cong {p}^{\mathbf{Q}}}\right) \) of \( {\mathbf{C}}_{p}^{ \times } \) and a direct-product decomposition\n\n\[ {\mathbf{C}}_{p}^{ \times } = \Gamma \cdot {\mu }_{\left( p\right) } \cdot \left( {1 + {\mathbf{M}}_{p}}\right) \]\n\nwe see that \( x \in {\mu }_{\left( p\right) } \cdot \left( {1 + {\mathbf{M}}_{p}}\right) \) . The first component \( \zeta \) of \( x \) is trivial simply because it has an order prime to \( p \) :\n\n\[ {x}^{{p}^{n}} \in 1 + {\mathbf{M}}_{p} \Rightarrow {\zeta }^{{p}^{n}} = 1 \Rightarrow \zeta = 1. \]\n\nObserve that the convergent sequence \( {\left( {x}^{{p}^{n}}\right) }_{n \geq 0} \) is eventually constant precisely when \( x \) is a \( p \) th power root of unity\n\n\[ x \in {\mu }_{{p}^{\infty }} \subset 1 + {\mathbf{M}}_{p} \]
Yes
Corollary 1. Let \( \mathcal{U} \) be an ultrafilter on a set \( X \) . If \( {A}_{1},\ldots ,{A}_{n} \) is a finite family of subsets of \( X \) such that \( \mathop{\bigcup }\limits_{{1 \leq i \leq n}}{A}_{i} \in \mathcal{U} \), then there exists at least one index \( i \) for which \( {A}_{i} \in \mathcal{U} \) .
Proof. It is enough to prove the assertion for two subsets (by induction). If \( A \notin \mathcal{U} \) and \( B \notin \mathcal{U} \), we infer from the above criterion that \( {A}^{c} \in \mathcal{U},{B}^{c} \in \mathcal{U} \) ; hence \( {\left( A \cup B\right) }^{c} = {A}^{c} \cap {B}^{c} \in \mathcal{U} \), and \( A \cup B \notin \mathcal{U} \) .
Yes
Corollary 2. Let \( f : X \rightarrow Y \) and let \( \mathcal{U} \) be an ultrafilter on the set \( X \) . Then \( f\left( \mathcal{U}\right) \) is an ultrafilter on \( f\left( X\right) \) and a basis of an ultrafilter on \( Y \) .
Proof. It is enough to prove the assertion when \( f \) is surjective. For any \( A \subset Y \) , either \( {f}^{-1}\left( A\right) \) or \( {f}^{-1}{\left( A\right) }^{c} = {f}^{-1}\left( {A}^{c}\right) \) belongs to \( \mathcal{U} \) ; hence\n\n\[ \n\text{either}A = f\left( {{f}^{-1}\left( A\right) }\right) \text{or}{A}^{c} = f\left( {{f}^{-1}\left( {A}^{c}\right) }\right) \text{belongs to}\mathcal{U}\text{.} \n\]\n\nBy the criterion, \( f\left( \mathcal{U}\right) \) is an ultrafilter on \( Y \) .
Yes
Corollary 1. If a polynomial \( f \in \mathbf{Q}\left\lbrack x\right\rbrack \) takes integral values on \( \mathbf{N} \), it also takes integral values on \( \mathbf{Z} \) .
Proof. It is enough to check this property for the basis of \( L \) consisting of the binomial polynomials. If \( x = - m \) is a negative integer, then\n\n\[ \left( \begin{matrix} - m \\ i \end{matrix}\right) = - m\left( {-m - 1}\right) \cdots \left( {-m - i + 1}\right) /i! = {\left( -1\right) }^{i}\left( \begin{matrix} m + i - 1 \\ i \end{matrix}\right) \in \mathbf{Z}. \]\n\nHence the \( \left( \begin{array}{l} \cdot \\ i \end{array}\right) \) and all \( f \in L \) define functions \( \mathbf{Z} \rightarrow \mathbf{Z} \) .
Yes
Corollary 2. If a polynomial of degree \( d \geq 0 \) (with rational coefficients) takes integral values on \( d + 1 \) consecutive integers, then it takes integral values on all integers.
Proof. Let \( f \) take integral values on the integers \( a, a + 1,\ldots, a + d \) and consider its translate \( g\left( x\right) = f\left( {x - a}\right) \) which takes integral values on the first integers \( 0,1,\ldots, d \) . Hence the first iterated differences of \( g \) at the origin are also integers, and if \( f \) is a polynomial of degree \( d \), so is \( g \) . The expansion \( g = \mathop{\sum }\limits_{{i \leq d}}{\nabla }^{i}g\left( 0\right) \left( \begin{matrix} . \\ i \end{matrix}\right) \) shows that \( g \in L \) .
No
Proposition 2. The indefinite-sum and finite-difference operators are linked by the formulas\n\n\[ \nabla \circ S = \mathrm{{id}},\;S \circ \nabla = \mathrm{{id}} - {P}_{0},\;\nabla \circ S - S \circ \nabla = {P}_{0}. \]
The identity \( S\left( {\nabla f}\right) = f - f\left( 0\right) \cdot 1 \) gives a first-order limited expansion of \( f \) if we only rewrite it \( f = f\left( 0\right) \cdot 1 + S\left( {\nabla f}\right) \) . This point of view has been generalized by van Hamme.
No
Theorem 2. Let \( f : \mathbf{N} \rightarrow {\mathbf{C}}_{p} \) be any map and define \( {a}_{k} = {\nabla }^{k}f\left( 0\right) \) . Then the following properties are equivalent:\n\n(i) \( \left| {a}_{k}\right| \rightarrow 0 \) when \( k \rightarrow \infty \) .\n\n(ii) The Mahler series \( \mathop{\sum }\limits_{{k \geq 0}}{a}_{k}\left( \begin{array}{l} \cdot \\ k \end{array}\right) \) converges uniformly.\n\n(iii) \( f \) admits a continuous extension to \( {\mathbf{Z}}_{p} \rightarrow {\mathbf{C}}_{p} \) .\n\n(iv) \( f \) is uniformly continuous (for the p-adic topology on \( \mathbf{N} \) ).\n\n(v) \( \begin{Vmatrix}{{\nabla }^{k}f}\end{Vmatrix} \rightarrow 0 \) when \( k \rightarrow \infty \) .
Proof. Here is a complete scheme of implications.\n\n\( \left( i\right) \Rightarrow \left( {ii}\right) \) We have\n\n\[ \left| {{a}_{k}\left( \begin{array}{l} x \\ k \end{array}\right) }\right| \leq \left| {a}_{k}\right| \begin{Vmatrix}\left( \begin{array}{l} \cdot \\ k \end{array}\right) \end{Vmatrix} = \left| {a}_{k}\right| \;\left( {x \in {\mathbf{Z}}_{p}}\right) ,\]\n\nhence the uniform convergence if \( \left| {a}_{k}\right| \rightarrow 0 \) .\n\n(ii) \( \Rightarrow \) (iii) This is the basic property of uniform convergence reviewed in (3.1).\n\n(iii) \( \Leftrightarrow \) (iv) On a compact metric space, any continuous function is uniformly continuous.\n\n(iii) \( \Rightarrow \left( v\right) \) Apply the Mahler theorem to the continuous extension of \( f \) to \( {\mathbf{Z}}_{p} \) (still denoted by \( f \) ):\n\n\[ f = \mathop{\sum }\limits_{{k \geq 0}}{a}_{k}\left( \begin{array}{l} \cdot \\ k \end{array}\right) \;\left( {{a}_{k} = {\nabla }^{k}f\left( 0\right) }\right) .\n\nSince \( \nabla \left( \begin{array}{l} \cdot \\ k \end{array}\right) = \left( \begin{matrix} \cdot \\ k - 1 \end{matrix}\right) \), we have\n\n\[ \nabla f = \mathop{\sum }\limits_{{k \geq 1}}{a}_{k}\left( \begin{matrix} \cdot \\ k - 1 \end{matrix}\right) \]\n\nand by induction\n\n\[ {\nabla }^{j}f = \mathop{\sum }\limits_{{k \geq j}}{a}_{k}\left( \begin{matrix} \cdot \\ k - j \end{matrix}\right) \]\n\nBy the same theorem\n\n\[ \begin{Vmatrix}{{\nabla }^{j}f}\end{Vmatrix} = \mathop{\sup }\limits_{{k \geq j}}\left| {a}_{k}\right| \rightarrow 0. \]\n\nIn particular, \( \left| {a}_{j}\right| = \left| {{\nabla }^{j}f\left( 0\right) }\right| \leq \begin{Vmatrix}{{\nabla }^{j}f}\end{Vmatrix} \rightarrow 0 \) ; hence \( \left( v\right) \Rightarrow \left( i\right) \) .
Yes
Corollary 1. Any continuous \( f : {\mathbf{Z}}_{p} \rightarrow {\mathbf{C}}_{p} \) has limited Mahler expansions
\[ f = f\left( 0\right) + \nabla f\left( 0\right) \cdot \left( \begin{array}{l} . \\ 1 \end{array}\right) + {\nabla }^{2}f\left( 0\right) \cdot \left( \begin{array}{l} . \\ 2 \end{array}\right) + \cdots \] \[ + {\nabla }^{n}f\left( 0\right) \cdot \left( \begin{matrix} \cdot \\ n \end{matrix}\right) + {R}_{n + 1}f\;\left( {n \geq 1}\right) \] with the van Hamme form of the remainder \[ {R}_{n + 1}f = {\nabla }^{n + 1}f\underline{ * }\left( \begin{array}{l} \cdot \\ n \end{array}\right) ,\;\begin{Vmatrix}{{R}_{n + 1}f}\end{Vmatrix} \leq \begin{Vmatrix}{{\nabla }^{n + 1}f}\end{Vmatrix} \rightarrow 0\;\left( {n \rightarrow \infty }\right) . \] Proof. The announced formulas hold on \( \mathbf{N} \) by the preceding section. Taking \( g = \) \( \left( \cdot \right) \) in \( \parallel f * g\parallel \leq \parallel f\parallel \parallel g\parallel \), we see that they extend continuously to \( {\mathbf{Z}}_{p} \) by the proposition.
Yes
For any continuous function \( f : {\mathbf{Z}}_{p} \rightarrow {\mathbf{C}}_{p} \), the indefinite sum \( {Sf} = f\underline{ * }1 \) of \( f \) extends continuously to \( {\mathbf{Z}}_{p} \) . More precisely, if \( f = \mathop{\sum }\limits_{{k \geq 0}}{a}_{k}\left( {}_{k}^{ \cdot }\right) \) is the Mahler expansion of \( f \), then
\[ {Sf} = 1 * f = \mathop{\sum }\limits_{{k \geq 0}}{a}_{k}\left( \begin{matrix} \cdot \\ k + 1 \end{matrix}\right) ,\parallel {Sf}\parallel = \parallel f\parallel . \]\n\nProof. We have noticed that\n\n\[ S\left( \begin{array}{l} \cdot \\ k \end{array}\right) = 1\underline{ * }\left( \begin{array}{l} \cdot \\ k \end{array}\right) = \left( \begin{matrix} \cdot \\ k + 1 \end{matrix}\right) \]\n\nwhence the result.
Yes
Corollary 3. The only linear form \( \varphi : C\left( {{\mathbf{Z}}_{p};K}\right) \rightarrow K \) that is invariant under translation is the trivial one \( \varphi = 0 \) .
Proof. In fact, we prove that if \( \varphi \left( F\right) = \varphi \left( {F}_{1}\right) \) for all \( F \in C\left( {{\mathbf{Z}}_{p};K}\right) \), where \( {F}_{1}\left( x\right) = \) \( F\left( {x + 1}\right) \), then \( \varphi = 0 \) . Indeed, take any \( f \in C\left( {{\mathbf{Z}}_{p};K}\right) \) . There exists an \( F \in \) \( C\left( {{\mathbf{Z}}_{p};K}\right) \) with \( f = \nabla F = {F}_{1} - F \) (take \( F = {Sf} \) ), and thus\n\n\[ \varphi \left( f\right) = \varphi \left( {{F}_{1} - F}\right) = \varphi \left( {F}_{1}\right) - \varphi \left( F\right) = 0. \]
Yes
Corollary 4. Let \( \sigma : {\mathbf{Z}}_{p} \rightarrow {\mathbf{Z}}_{p}, x \mapsto - 1 - x \), be the canonical involution (I.1.2). Then \( S\left( {f \circ \sigma }\right) \left( x\right) = - {Sf}\left( {-x}\right) \) .
Proof. For integers \( n, m \geq 1 \) we have\n\n\[ \n{Sf}\left( {n + m}\right) - {Sf}\left( n\right) = f\left( n\right) + \cdots + f\left( {n + m - 1}\right) .\n\] \n\nBy density of the integers \( n \geq 1 \) in \( {\mathbf{Z}}_{p} \) and continuity of both sides, we get more generally\n\n\[ \n{Sf}\left( {x + m}\right) - {Sf}\left( x\right) = f\left( x\right) + \cdots + f\left( {x + m - 1}\right) \;\left( {x \in {\mathbf{Z}}_{p}}\right) .\n\] \n\nTake now \( x = - m \) in this equality:\n\n\[ \n{Sf}\left( 0\right) - {Sf}\left( {-m}\right) = f\left( {-m}\right) + \cdots + f\left( {-1}\right)\n\] \n\n\[ \n= f\left( {\sigma \left( {m - 1}\right) }\right) + \cdots + f\left( {\sigma \left( 0\right) }\right)\n\] \n\n\[ \n= S\left( {f \circ \sigma }\right) \left( m\right) \text{.}\n\] \n\nSince \( {Sf}\left( 0\right) = 0 \), the result follows.
Yes
Corollary 2. Let \( E \) be a Banach space. Then the sum map \( {E}^{\left( I\right) } \rightarrow E \) has a unique continuous extension \( \sum : {c}_{0}\left( {I;E}\right) \rightarrow E \) .
Proof. The sum \( x = \left( {x}_{i}\right) \mapsto \mathop{\sum }\limits_{{i \in I}}{x}_{i} : {E}^{\left( I\right) } \rightarrow E \) is a contracting linear map\n\n\[ \begin{Vmatrix}{\mathop{\sum }\limits_{{i \in I}}{x}_{i}}\end{Vmatrix} \leq \mathop{\sup }\limits_{i}\begin{Vmatrix}{x}_{i}\end{Vmatrix} = \parallel x\parallel \;\left( {x \in {E}^{\left( I\right) }}\right) .\n\]\n\nIt has a unique continuous extension \( \sum \) . This extension is also a contracting linear map by density and continuity. Hence we have more generally\n\n\[ \begin{Vmatrix}{\mathop{\sum }\limits_{{i \in I}}{x}_{i}}\end{Vmatrix} \leq \mathop{\sup }\limits_{i}\begin{Vmatrix}{x}_{i}\end{Vmatrix} = \parallel x\parallel \;\left( {x \in {c}_{0}\left( {I;E}\right) }\right) .\n\]\n\nThis sum \( \sum \) can be computed using any ordering of the index set \( I \) and any grouping \( I = \mathop{\coprod }\limits_{i}{I}_{j} \) : The equality for families with finite support extends by continuity to the completion \( {c}_{0}\left( {I;E}\right) \) (cf. (II.1.2)).
Yes
Corollary 2. Let \( E \) be a Banach space. Then the sum map \( {E}^{\left( I\right) } \rightarrow E \) has a unique continuous extension \( \sum : {c}_{0}\left( {I;E}\right) \rightarrow E \) .
Proof. The sum \( x = \left( {x}_{i}\right) \mapsto \mathop{\sum }\limits_{{i \in I}}{x}_{i} : {E}^{\left( I\right) } \rightarrow E \) is a contracting linear map\n\n\[ \begin{Vmatrix}{\mathop{\sum }\limits_{{i \in I}}{x}_{i}}\end{Vmatrix} \leq \mathop{\sup }\limits_{i}\begin{Vmatrix}{x}_{i}\end{Vmatrix} = \parallel x\parallel \;\left( {x \in {E}^{\left( I\right) }}\right) .\n\]\n\nIt has a unique continuous extension \( \sum \) . This extension is also a contracting linear map by density and continuity. Hence we have more generally\n\n\[ \begin{Vmatrix}{\mathop{\sum }\limits_{{i \in I}}{x}_{i}}\end{Vmatrix} \leq \mathop{\sup }\limits_{i}\begin{Vmatrix}{x}_{i}\end{Vmatrix} = \parallel x\parallel \;\left( {x \in {c}_{0}\left( {I;E}\right) }\right) .\n\]\n\nThis sum \( \sum \) can be computed using any ordering of the index set \( I \) and any grouping \( I = \mathop{\coprod }\limits_{i}{I}_{j} \) : The equality for families with finite support extends by continuity to the completion \( {c}_{0}\left( {I;E}\right) \) (cf. (II.1.2)).
Yes
Corollary 3 (Universal Property of Direct Sums). Let \( {\varepsilon }_{j} \) denote the canonical injection of a factor into the direct sum \( {E}_{j} \rightarrow {\bigoplus }_{i \in I}{E}_{i} \subset \mathop{\bigoplus }\limits_{{i \in I}}{E}_{i} \). Then for each Banach space \( E \) and family \( \left( {f}_{j}\right) \) consisting of linear contractions \( {f}_{j} : {E}_{j} \rightarrow E \), there is a unique linear contraction \( f \) such that the following diagram is commutative:\n\n\[ {E}_{j}\;\overset{{\varepsilon }_{j}}{ \rightarrow }\;{\bigoplus }_{i \in I}{E}_{i}\; \subset \;{\widehat{\bigoplus }}_{i \in I}{E}_{i} \]\n\n\[ {f}_{j} \searrow \; \downarrow \oplus {f}_{i}\; \swarrow f \]\n\n\( E \)
Proof. Under the assumptions made,\n\n\[ \left( {x}_{i}\right) \mapsto \left( {{f}_{i}{x}_{i}}\right) : {\widehat{\bigoplus }}_{i \in I}{E}_{i} \rightarrow {c}_{0}\left( {I;E}\right) \]\n\n is a linear contracting map, and composition with the sum \( \sum \) yields the unique solution to the factorization problem\n\n\[ f = \sum \circ \left( {f}_{i}\right) ,\;{fx} = \mathop{\sum }\limits_{i}{f}_{i}{x}_{i}. \]
Yes
Proposition 1. If \( F \) is complete, then \( L\left( {E;F}\right) \) is also complete.
Proof. Let \( \left( {T}_{n}\right) \) be a Cauchy sequence in \( L\left( {E;F}\right) \) . For each \( x \in E,\left( {{T}_{n}\left( x\right) }\right) \) is a Cauchy sequence in the complete space \( F \), and hence has a limit \( {Tx} \) which obviously depends linearly on \( x \in E \) . This defines a linear map \( T : E \rightarrow F \) . Let \( \varepsilon > 0 \) be given. There exists an integer \( {N}_{\varepsilon } \) such that \( \begin{Vmatrix}{{T}_{n} - {T}_{m}}\end{Vmatrix} \leq \varepsilon \) for all\n\n\( n, m \geq {N}_{\varepsilon } \) . Letting \( m \rightarrow \infty \) we deduce \( \begin{Vmatrix}{{Tx} - {T}_{m}x}\end{Vmatrix} \leq \varepsilon \parallel x\parallel \) for all \( n, m \geq {N}_{\varepsilon } \) . This proves that the operator \( T - {T}_{m} \) is continuous (bounded); hence \( T = {T}_{m} + \) \( \left( {T - {T}_{m}}\right) \) is continuous. Moreover, \( \begin{Vmatrix}{T - {T}_{m}}\end{Vmatrix} \leq \varepsilon \) when \( m \geq {N}_{\varepsilon } \) . This shows that \( \begin{Vmatrix}{T - {T}_{m}}\end{Vmatrix} \rightarrow 0,{T}_{m} \rightarrow T\left( {m \rightarrow \infty }\right) \), and everything is proved.
Yes
Proposition 2. The topological dual of the space \( {c}_{0}\left( {I;E}\right) \) is canonically isomorphic as a normed space to \( {l}^{\infty }\left( {I;{E}^{\prime }}\right) \) .
Proof. If \( \varphi \) is a continuous linear form on \( {c}_{0}\left( {I;E}\right) \), we let \( {\varphi }_{i} = \varphi \circ {\varepsilon }_{i} \) denote the restriction of \( \varphi \) to the \( i \) th factor \( E \) in \( {c}_{0}\left( {I;E}\right) \) (families having a zero component for all indices except \( i \) ). Since \( \begin{Vmatrix}{\varphi }_{i}\end{Vmatrix} \leq \parallel \varphi \parallel \), we get a bounded family \( \left( {\varphi }_{i}\right) \in {l}^{\infty }\left( {I;{E}^{\prime }}\right) \) . Conversely, if \( \left( {\varphi }_{i}\right) \in {l}^{\infty }\left( {I;{E}^{\prime }}\right) \), we can define a linear form \( \varphi = \sum {\varphi }_{i} \) on \( {c}_{0}\left( {I;E}\right) \) by the formula \( \left( {a}_{i}\right) \mapsto \mathop{\sum }\limits_{i}{\varphi }_{i}\left( {a}_{i}\right) \) (a summable series, since the sequence \( {\varphi }_{i} \) is bounded and \( \left. {\begin{Vmatrix}{a}_{i}\end{Vmatrix} \rightarrow 0}\right) \) . Both maps\n\n\[ \n\varphi \mapsto \left( {\varphi \circ {\varepsilon }_{i}}\right) ,\;\left( {\varphi }_{i}\right) \mapsto \sum {\varphi }_{i} \n\]\n\nare linear and decrease norms. Hence they are inverse isometries.\n\nIn other words, the bilinear map\n\n\[ \n\left( {\left( {a}_{i}\right) ,\left( {\varphi }_{i}\right) }\right) \mapsto \mathop{\sum }\limits_{i}{\varphi }_{i}\left( {a}_{i}\right) ,\;{c}_{0}\left( {I;E}\right) \times {l}^{\infty }\left( {I;{E}^{\prime }}\right) \rightarrow K \n\]\n\nis a duality pairing that proves the proposition.
Yes
Proposition 1. Assume that \( E \) admits a normal basis and fix an isomorphism \( {c}_{0}\left( J\right) \cong E \) . Then the map\n\n\[ \nL\left( {E;F}\right) \rightarrow {l}^{\infty }\left( {J;F}\right)\n\]\n\ndefined above is an isometric isomorphism.
Proof. We have already seen that \( \begin{Vmatrix}{\left( {\mathbf{f}}_{j}\right) }_{J}\end{Vmatrix} \leq \parallel T\parallel \) . Conversely,\n\n\[ \n\mathbf{x} = \mathop{\sum }\limits_{j}{x}_{j}{\mathbf{e}}_{j} \Rightarrow T\left( \mathbf{x}\right) = \mathop{\sum }\limits_{j}{x}_{j}{\mathbf{f}}_{j}\text{ (this sum converges!),}\n\]\n\n\[ \n\parallel T\left( \mathbf{x}\right) \parallel \leq \mathop{\sup }\limits_{j}\begin{Vmatrix}{{x}_{j}{\mathbf{f}}_{j}}\end{Vmatrix} \leq \mathop{\sup }\limits_{j}\left| {x}_{j}\right| \mathop{\sup }\limits_{j}\begin{Vmatrix}{\mathbf{f}}_{j}\end{Vmatrix} = \parallel x\parallel \mathop{\sup }\limits_{j}\begin{Vmatrix}{\mathbf{f}}_{j}\end{Vmatrix}\n\]\n\nwhence \( \parallel T\parallel \leq \mathop{\sup }\limits_{j}\begin{Vmatrix}{\mathbf{f}}_{j}\end{Vmatrix} = \begin{Vmatrix}{\left( {\mathbf{f}}_{j}\right) }_{J}\end{Vmatrix} \) . Observe that for any choice of bounded family \( {\mathbf{f}}_{j} \in F \), there is a \( T \in L\left( {E;F}\right) \) with \( T{e}_{j} = {\mathbf{f}}_{j}\left( {j \in J}\right) \), so that the map \( L\left( {E;F}\right) \rightarrow {l}^{\infty }\left( {J;F}\right) \) is surjective.
Yes
Proposition 3. When \( E = {c}_{0}\left( J\right) \) and \( F = {c}_{0}\left( I\right) \), we can make canonical identifications\n\n\[ L\left( {E;F}\right) = {l}^{\infty }\left( {J;{c}_{0}\left( I\right) }\right) \subset {l}^{\infty }\left( {I;{E}^{\prime }}\right) = {l}^{\infty }\left( {I;{l}^{\infty }\left( J\right) }\right) \cong {l}^{\infty }\left( {I \times J}\right) . \]\n\nIn other words, when normal bases are chosen, continuous linear maps \( E \rightarrow F \) are represented by bounded matrices with columns in \( {c}_{0}\left( I\right) \cong F \) .
More particularly, if \( T \) is continuous and of rank less than or equal to 1, we can write\n\n\[ T\left( \mathbf{x}\right) = \varphi \left( \mathbf{x}\right) \mathbf{a} = {\left( \varphi \left( \mathbf{x}\right) {a}_{i}\right) }_{I} \]\n\nfor some \( \varphi \in {E}^{\prime } \) . In this case, \( {\varphi }_{i}\left( \mathbf{x}\right) = \varphi \left( \mathbf{x}\right) {a}_{i},\begin{Vmatrix}{\varphi }_{i}\end{Vmatrix} = \left| {a}_{i}\right| \parallel \varphi \parallel \rightarrow 0 \) . This proves that the image of \( T \) belongs to the closed subspace \( {c}_{0}\left( {I;{E}^{\prime }}\right) \) . By linearity, the same property will hold for any continuous linear map \( T \) of finite rank:\n\n\[ {L}_{\mathrm{{fr}}}\left( {E;{c}_{0}\left( I\right) }\right) \rightarrow {c}_{0}\left( {I;{E}^{\prime }}\right) : T \mapsto \left( {\varphi }_{i}\right) . \]
Yes
Let us consider the delta operator\n\n\\[ \nabla = {\nabla }_{ + } = \tau - 1 = {e}^{D} - 1 = \varphi \\left( D\\right) ,\\]\n\nfor which\n\n\\[ z = \varphi \\left( u\\right) = {e}^{u} - 1,\\;{e}^{u} = z + 1,\\;u = \\log \\left( {1 + z}\\right) = {\\varphi }^{-1}\\left( z\\right) .\\]
We have\n\n\\[ \exp \\left( {x{\\varphi }^{-1}\\left( z\\right) }\\right) = \exp \\left( {x\\log \\left( {1 + z}\\right) }\\right) = {\\left( 1 + z\\right) }^{x}\\]\n\n\\[ = \\mathop{\\sum }\\limits_{{n \\geq 0}}\\left( \\begin{array}{l} x \\\\ n \\end{array}\\right) {z}^{n} = \\mathop{\\sum }\\limits_{{n \\geq 0}}{\\left( x\\right) }_{n}\\frac{{z}^{n}}{n!}.\\]
Yes
Let \( f : {\mathbf{Z}}_{p} \rightarrow {\mathbf{Z}}_{p} \) be the continuous function defined by\n\n\[ \n x = \mathop{\sum }\limits_{{n \geq 0}}{a}_{n}{p}^{n} \mapsto f\left( x\right) = \mathop{\sum }\limits_{{n \geq 0}}{a}_{n}{p}^{2n}.\n\]\n\nThen \( f \) is differentiable at all points \( x \in {\mathbf{Z}}_{p} \) with \( {f}^{\prime }\left( x\right) = 0 \) .
Again \( {f}^{\prime } = 0 \in {\mathcal{C}}^{1} \) , but \( f \) is injective, and hence far from being locally constant.
Yes
Proposition 1. Let \( f : X \rightarrow K \) be strictly differentiable at a point \( a \in X \) with \( {f}^{\prime }\left( a\right) \neq 0 \) . Then there is a neighborhood \( V \) of \( a \) in \( X \) such that the restriction of \( f/{f}^{\prime }\left( a\right) \) to \( V \) is isometric.
Proof. Since \( f \in {S}^{1}\left( a\right) \), for each \( \varepsilon > 0 \) there is a neighborhood \( {V}_{\varepsilon } \) of \( a \) for which\n\n\[ \left| {{\Phi f}\left( {x, y}\right) - {f}^{\prime }\left( a\right) }\right| < \varepsilon \text{ if }x \in {V}_{\varepsilon }\text{ and }y \in {V}_{\varepsilon }.\]\n\nLet us take \( \varepsilon = \left| {{f}^{\prime }\left( a\right) }\right| \left( { \neq 0\text{by assumption}}\right) \) and \( V \) the corresponding neighborhood. Then\n\n\[ \left| {{\Phi f}\left( {x, y}\right) - {f}^{\prime }\left( a\right) }\right| < \left| {{f}^{\prime }\left( a\right) }\right| \neq 0\text{, if }\left( {x, y}\right) \in V \times V \]\n\nand there is a competition between the terms \( {\Phi f}\left( {x, y}\right) \) and \( {f}^{\prime }\left( a\right) \)\n\n\[ \left| {{\Phi f}\left( {x, y}\right) }\right| = \left| {{f}^{\prime }\left( a\right) }\right| \text{ for }\left( {x, y}\right) \in V \times V.\]\n\nHence \( \left| {f\left( x\right) - f\left( y\right) }\right| = \left| {{f}^{\prime }\left( a\right) }\right| \cdot \left| {x - y}\right| \) for \( \left( {x, y}\right) \in V \times V \) .
Yes
Proposition 2. For \( f : X \rightarrow K \), the following properties are equivalent:\n\n(i) \( f \in {S}^{1}\left( a\right) \) for all \( a \in X \) .\n\n(ii) The function \( {\Phi f} \), initially defined only on \( X \times X - {\Delta }_{X} \), admits a continuous extension \( \widetilde{\Phi } \) to \( X \times X \) .\n\n(iii) \( f \) is differentiable at each point \( a \in X \) and there is a continuous function \( \alpha \) on \( X \times X \) vanishing on \( {\Delta }_{X} \) with\n\n\[ f\left( y\right) = f\left( x\right) + \left( {y - x}\right) {f}^{\prime }\left( x\right) + \left( {y - x}\right) \alpha \left( {x, y}\right) \;\left( {x, y \in X}\right) . \]
Proof. The implication \( \left( i\right) \Rightarrow \left( {ii}\right) \) is given by the double limit theorem, which we recall: Let \( {X}_{0} \) be a dense subset of a topological space \( X, Y \) a metric space, and \( f \) a continuous map \( {X}_{0} \rightarrow Y \) such that for each \( x \in X \)\n\n\[ z \in {X}_{0}\text{and}z \rightarrow x\text{implies}f\left( z\right) \text{has a limit}g\left( x\right) \in Y\text{.} \]\n\nThen the extension \( g : X \rightarrow Y \) is continuous. (More generally, the conclusion is valid when the target space \( Y \) is a regular space, i.e., a topological space in which every point has a fundamental system of neighborhoods consisting of closed sets.)\n\nThe implication \( \left( {ii}\right) \Rightarrow \left( i\right) \) is obvious.\n\nFinally, if \( {\Phi f} \) has a continuous extension \( \widetilde{\Phi } \), it has a unique one by the density of \( X \times X - {\Delta }_{X} \) in \( X \times X \) . Since we can write\n\n\[ f\left( y\right) = f\left( x\right) + \left( {y - x}\right) {\Phi f}\left( {x, y}\right) \]\n\n\[ = f\left( x\right) + \left( {y - x}\right) {f}^{\prime }\left( x\right) + \left( {y - x}\right) \left\lbrack \underset{\alpha \left( {x, y}\right) }{\underbrace{{\Phi f}\left( {x, y}\right) - {f}^{\prime }\left( x\right) }}\right\rbrack \]\n\nit is obvious that \( \left( {ii}\right) \Leftrightarrow \left( {iii}\right) \) .
Yes
Proposition 1. If \( f \in {S}^{2}\left( a\right) \), then \( f \in {S}^{1}\left( a\right) \) .
Proof. Let us take two pairs \( \left( {x, y}\right) \) and \( \left( {z, t}\right) \in X \times X - {\Delta }_{X} \) in the vicinity of \( \left( {a, a}\right) \) and estimate the difference\n\n\[ \n{\Phi f}\left( {x, y}\right) - {\Phi f}\left( {z, t}\right) = {\Phi f}\left( {x, y}\right) - {\Phi f}\left( {z, y}\right) + {\Phi f}\left( {z, y}\right) - {\Phi f}\left( {z, t}\right) \n\]\n\n\[ \n= \left( {x - z}\right) {\Phi }_{2}f\left( {x, z, y}\right) + \left( {y - t}\right) {\Phi }_{2}f\left( {y, t, z}\right) . \n\]\n\nIf we assume \( f \in {S}^{2}\left( a\right) \), then \( {\Phi }_{2}f \) will remain bounded in a neighborhood of \( \left( {a, a, a}\right) \), say \( \left| {{\Phi }_{2}f}\right| \leq M \), when the three variables of \( {\Phi }_{2}f \) are close enough to \( a \) . In particular if \( x, y, z \), and \( t \) are near enough to \( a \), we have\n\n\[ \n\left| {{\Phi f}\left( {x, y}\right) - {\Phi f}\left( {z, t}\right) }\right| \leq M\max \left( {\left| {x - z}\right| ,\left| {y - t}\right| }\right) , \n\]\n\na quantity that tends to zero when \( \left( {x, y}\right) \) and \( \left( {z, t}\right) \) tend to \( \left( {a, a}\right) \) . Since the target of \( {\Phi f} \) is a complete space, the Cauchy criterion is valid and shows that this function \( {\Phi f} \) has a limit as \( \left( {x, y}\right) \rightarrow \left( {a, a}\right) \) .
Yes
Proposition 2. If \( f \in {S}^{2} \), then \( {f}^{\prime } \in {S}^{1} \) .
Proof. We have to prove that the difference quotients\n\n\[ \Phi \left( {f}^{\prime }\right) \left( {x, y}\right) = \frac{{f}^{\prime }\left( x\right) - {f}^{\prime }\left( y\right) }{x - y} \]\n\nhave a continuous extension across the diagonal of \( X \times X \) . By assumption, there is a continuous function \( {\widetilde{\Phi }}_{2} \) that extends \( {\Phi }_{2}f \) to \( X \times X \times X \), and we have\n\n\[ {\Phi f}\left( {x, z}\right) - {\Phi f}\left( {y, z}\right) = \left( {x - y}\right) \cdot {\widetilde{\Phi }}_{2}\left( {x, y, z}\right) . \]\n\nIn this expression we let \( z \rightarrow x \) . We know that \( {\Phi f}\left( {x, z}\right) \) tends to \( {f}^{\prime }\left( x\right) \) and\n\n\[ {f}^{\prime }\left( x\right) - {\Phi f}\left( {y, x}\right) = \left( {x - y}\right) \cdot {\widetilde{\Phi }}_{2}\left( {x, y, x}\right) . \]\nSince the order of the variables in \( {\Phi f},{\Phi }_{2}f \), and \( {\widetilde{\Phi }}_{2} \) is irrelevant, we can write\n\n\[ {f}^{\prime }\left( x\right) = {\Phi f}\left( {x, y}\right) + \left( {x - y}\right) \cdot {\widetilde{\Phi }}_{2}\left( {x, x, y}\right) ,\]\n\nand interchanging \( x \) and \( y \) ,\n\n\[ {f}^{\prime }\left( y\right) = {\Phi f}\left( {y, x}\right) + \left( {y - x}\right) \cdot {\widetilde{\Phi }}_{2}\left( {y, y, x}\right) . \]\n\nSubtracting these expressions, we obtain\n\n\[ {f}^{\prime }\left( x\right) - {f}^{\prime }\left( y\right) = \left( {x - y}\right) \left\lbrack {{\widetilde{\Phi }}_{2}\left( {x, x, y}\right) + {\widetilde{\Phi }}_{2}\left( {x, y, y}\right) }\right\rbrack \]\n\n\[ \Phi {f}^{\prime }\left( {x, y}\right) = {\widetilde{\Phi }}_{2}\left( {x, x, y}\right) + {\widetilde{\Phi }}_{2}\left( {x, y, y}\right) . \]\n\nThis shows that \( \Phi {f}^{\prime } \) admits a continuous extension to \( X \times X : {f}^{\prime } \in {S}^{1} \) . Moreover,\n\n\[ {f}^{\prime \prime }\left( a\right) = {\left( {f}^{\prime }\right) }^{\prime }\left( a\right) = \Phi {f}^{\prime }\left( {a, a}\right) = 2{\widetilde{\Phi }}_{2}\left( {a, a, a}\right) . \]
Yes
Corollary 1. Let \( f \in \operatorname{Lip}\left( {\mathbf{Z}}_{p}\right) \) and \( f = \sum {c}_{n}\left( \begin{array}{l} \cdot \\ n \end{array}\right) \) its Mahler expansion. Then \[ \parallel {\Phi f}\parallel = \mathop{\sup }\limits_{{n \geq 1}}{\kappa }_{n}\left| {c}_{n}\right| < \infty . \]
The number \( \parallel {\Phi f}\parallel \) does not define a norm on the vector space \( \operatorname{Lip}\left( {\mathbf{Z}}_{p}\right) \) because \( {\Phi f} \) vanishes for constant functions: It is only a seminorm. In order to have a norm, we take \[ \parallel f{\parallel }_{1} = \sup \left( {\left| {f\left( 0\right) }\right| ,\parallel {\Phi f}\parallel }\right) . \] Since \( f\left( 0\right) = {c}_{0} \), we define in an ad hoc way the value \( {\kappa }_{0} = 1 \) in order to have \[ \parallel f{\parallel }_{1} = \mathop{\sup }\limits_{{n \geq 0}}{\kappa }_{n}\left| {c}_{n}\right| \]
Yes
Corollary 2. Let \( f \in \operatorname{Lip}\left( {\mathbf{Z}}_{p}\right) \) and \( {Sf} \) its indefinite sum. Then \( {Sf} \in \operatorname{Lip}\left( {\mathbf{Z}}_{p}\right) \) and \[ \parallel f{\parallel }_{1} \leq \parallel {Sf}{\parallel }_{1} \leq p\parallel f{\parallel }_{1} \]
Proof. We have \[ \parallel f{\parallel }_{1} = \mathop{\sup }\limits_{{n \geq 0}}{\kappa }_{n}\left| {a}_{n}\right| \] \[ \parallel {Sf}{\parallel }_{1} = \mathop{\sup }\limits_{{n \geq 1}}{\kappa }_{n}\left| {a}_{n - 1}\right| \] by Corollary 2 in (IV.3.5). Now observe that \[ {\kappa }_{n - 1} \leq {\kappa }_{n} \leq p{\kappa }_{n - 1} \] whence the assertion.
Yes
Example 1. Let the Mahler coefficients \( {c}_{k} \) of a continuous function \( f \) be\n\n\[ \n{c}_{k} = \left\{ \begin{array}{ll} {p}^{j} & \text{ if }k = {p}^{j}, \\ 0 & \text{ if }k\text{ is not a power of }p, \end{array}\right. \n\]\n\nso that\n\n\[ \n\left| {{c}_{k}/k}\right| \text{takes alternatively values 0 and 1 .} \n\]\n\nHence \( \left| {{c}_{k}/k}\right| \) does not tend to 0, thereby proving that \( f \) is not differentiable at the origin.
But \( {\Phi f} \) is bounded, since \( k\left| {c}_{k}\right| \) (taking values 0 and 1 only) is bounded.
No
Proposition 1. The unit ball in \( K\{ X\} \) is uniformly equicontinuous. More precisely, \( K\{ X\} \subset \operatorname{Lip}\left( A\right) \) and \( \parallel {\Phi f}\parallel \leq \parallel f{\parallel }_{1} \leq \parallel f\parallel \) for \( f \in K\{ X\} \) . In particular,
Proof. Write \( f = \sum {a}_{n}{X}^{n} \), so that\n\n\[ f\left( x\right) - f\left( y\right) = \mathop{\sum }\limits_{{n \geq 0}}{a}_{n}\left( {{x}^{n} - {y}^{n}}\right) = \left( {x - y}\right) \mathop{\sum }\limits_{{n \geq 1}}{a}_{n}\left( {{x}^{n - 1} + \cdots + {y}^{n - 1}}\right) .\n\]\n\nIf \( \left| x\right| \leq 1 \) and \( \left| y\right| \leq 1 \), the ultrametric inequality gives \( \left| {{x}^{n - 1} + \cdots + {y}^{n - 1}}\right| \leq 1 \) , and the result follows.
Yes
Proposition 2. If \( f \in K\{ X\} \), then\n\n\[ \left| {f\left( {x + y}\right) - f\left( x\right) - f\left( y\right) + f\left( 0\right) }\right| \leq \parallel f\parallel \cdot \left| {xy}\right| \;\left( {\left| x\right| \leq 1,\left| y\right| \leq 1}\right) .
Proof. With the same notation as before,\n\n\[ \left. {f\left( {x + y}\right) - f\left( x\right) - f\left( y\right) + f\left( 0\right) = \mathop{\sum }\limits_{{n \geq 2}}{a}_{n}\left( {{\left( x + y\right) }^{n} - {x}^{n} - {y}^{n}}\right) }\right) ,\n\nwhence the result, since each term \( {\left( x + y\right) }^{n} - {x}^{n} - {y}^{n} \) is divisible by \( {xy} \) .
Yes
Theorem 1. Let \( f \in K\{ X\} \) . Then \( f \) defines a strictly differentiable function on the unit ball \( A \) of \( K : f \in {S}^{1}\left( A\right) \) . The derivative of \( f \) is given by the restricted formal power series\n\n\[ \n{f}^{\prime } = {\left. \Phi f\right| }_{\Delta } = \mathop{\sum }\limits_{{n \geq 1}}n{a}_{n}{X}^{n - 1} \in K\{ X\} .\n\]
It is easy to give more precise estimates for the convergence:\n\n\[ \n{\Phi f}\left( {x, y}\right) - \mathop{\sum }\limits_{{n \geq 1}}n{a}_{n}{\xi }^{n - 1} = \mathop{\sum }\limits_{{n \geq 1}}{a}_{n}\left( {{x}^{n} - {y}^{n}}\right) /\left( {x - y}\right) - \mathop{\sum }\limits_{{n \geq 1}}n{a}_{n}{\xi }^{n - 1}\n\]\n\n\[ \n= \mathop{\sum }\limits_{{n \geq 1}}{a}_{n}\left( {{x}^{n - 1} + \cdots + {y}^{n - 1} - n{\xi }^{n - 1}}\right) \rightarrow 0\n\]\n\nwhen \( \left( {x, y}\right) \rightarrow \left( {\xi ,\xi }\right) \) . In fact,\n\n\[ \n\left( {{x}^{n - 1} + \cdots + {y}^{n - 1} - n{\xi }^{n - 1}}\right) = \mathop{\sum }\limits_{{i + j = n - 1}}\left( {{x}^{i}{y}^{j} - {\xi }^{n - 1}}\right) ,\n\]\n\nand by (2.3),\n\n\[ \n\left| {{x}^{i}{y}^{j} - {\xi }^{n - 1}}\right| = \left| {{x}^{i}{y}^{j} - {\xi }^{i}{\xi }^{j}}\right|\n\]\n\n\[ \n\leq \max \left( {\left| {x}^{i}\right| \left| {{y}^{j} - {\xi }^{j}}\right| ,\left| {{x}^{i} - {\xi }^{i}}\right| \left| {\xi }^{j}\right| }\right)\n\]\n\n\[ \n\leq \max \left( {\left| {y - \xi }\right| ,\left| {x - \xi }\right| }\right) \;\left( {x, y,\xi \in A}\right) .\n\]\n\nWe have obtained\n\n\[ \n\left| {{\Phi f}\left( {x, y}\right) - {f}^{\prime }\left( \xi \right) }\right| \leq \parallel f\parallel \cdot \max \left( {\left| {y - \xi }\right| ,\left| {x - \xi }\right| }\right) .\n\]
Yes
Theorem 2. A restricted formal power series \( f = \sum {a}_{n}{X}^{n} \) defines a twice strictly differentiable function on the unit ball \( A \) of \( K : f \in {S}^{2}\left( A\right) \) .
Proof. As we have seen in the proof of the preceding theorem,\n\n\[ \n{\Phi f}\left( {x, y}\right) = \mathop{\sum }\limits_{{n \geq 1}}{a}_{n}\mathop{\sum }\limits_{{i + j = n - 1}}{x}^{i}{y}^{j} = {a}_{1} + {a}_{2}\left( {x + y}\right) + \cdots , \n\] \n\nand hence, for distinct \( x, y, z \) , \n\n\[ \n{\Phi }_{2}f\left( {x, y, z}\right) = \frac{{\Phi f}\left( {x, z}\right) - {\Phi f}\left( {y, z}\right) }{x - y} \n\] \n\n\[ \n= \mathop{\sum }\limits_{{n \geq 2}}{a}_{n}\mathop{\sum }\limits_{{i + j = n - 1}}\frac{{x}^{i} - {y}^{i}}{x - y}{z}^{j} \n\] \n\n\[ \n= \mathop{\sum }\limits_{{n \geq 2}}{a}_{n}\mathop{\sum }\limits_{{k + \ell + m = n - 2}}{x}^{k}{y}^{\ell }{z}^{m} \n\] \n\nSince \( \left| {a}_{n}\right| \rightarrow 0 \), this series converges uniformly on \( A \times A \times A \) and represents a continuous extension of \( {\Phi }_{2}f \) .
Yes
Proposition 1. For \( \left| x\right| < {r}_{p} \) we have\n\n\[ \left| {\log \left( {1 + x}\right) }\right| = \left| x\right| ,\;\left| {\exp \left( x\right) }\right| = 1,\;\left| {1 - \exp \left( x\right) }\right| = \left| x\right| . \]
Proof. For \( k \geq 1 \) we have \( {S}_{p}\left( k\right) \geq 1 \) and hence \( {\operatorname{ord}}_{p}\left( {k!}\right) \leq \left( {k - 1}\right) /\left( {p - 1}\right) \) . We infer\n\n\[ \left| k\right| \geq \left| {k!}\right| \geq {\left| p\right| }^{\frac{k - 1}{p - 1}} = {r}_{p}^{k - 1}, \]\n\n\[ \left| {{x}^{k}/k}\right| \leq \left| {{x}^{k}/k!}\right| \leq {\left( \left| x\right| /{r}_{p}\right) }^{k - 1} \cdot \left| x\right| < \left| x\right| < 1 \]\n\nfor \( k \geq 2 \) and \( 0 < \left| x\right| < {r}_{p} \) . Hence the absolute values of the terms in the series\n\n\[ 1 + x + \mathop{\sum }\limits_{{k \geq 2}}\frac{{x}^{k}}{k!} = \exp \left( x\right) \]\n\n\[ x + \mathop{\sum }\limits_{{k \geq 2}}{\left( -1\right) }^{k - 1}\frac{{x}^{k}}{k} = \log \left( {1 + x}\right) \]\n\nare strictly smaller than the first ones. By the ultrametric character of the absolute value, the strongest (we underline it!) wins:\n\n\[ \exp \left( x\right) = \underline{1} + x + \mathop{\sum }\limits_{{k \geq 2}}\cdots \Rightarrow \left| {\exp \left( x\right) }\right| = 1, \]\n\n\[ \exp \left( x\right) - 1 = \underline{x} + \mathop{\sum }\limits_{{k \geq 2}}\cdots \Rightarrow \left| {\exp \left( x\right) - 1}\right| = \left| x\right| , \]\n\n\[ \log \left( {1 + x}\right) = \underline{x} + \mathop{\sum }\limits_{{k \geq 2}}\cdots \Rightarrow \left| {\log \left( {1 + x}\right) }\right| = \left| x\right| \]\n\nif \( \left| x\right| < {r}_{p} \) .
Yes
Proposition 2. For two indeterminates \( X \) and \( Y \), we have the following formal identities:\n\n\[ \exp \left( {X + Y}\right) = \exp \left( X\right) \cdot \exp \left( Y\right) \]
Proof. The first identity is easily obtained if we observe that the product of two monomials \( {X}^{i}/i \) ! and \( {Y}^{j}/j \) ! is\n\n\[ \frac{{X}^{i}{Y}^{j}}{i!j!} = \left( \begin{matrix} i + j \\ i \end{matrix}\right) \frac{{X}^{i}{Y}^{j}}{\left( {i + j}\right) !}. \]\n\nGrouping the terms with \( i + j = n \) leads to a sum \( {\left( X + Y\right) }^{n}/n \) !.
No
For \( \left| x\right| < {r}_{p} \) and \( \left| y\right| < {r}_{p} \) we have\n\n\[ \exp \left( {x + y}\right) = \exp \left( x\right) \cdot \exp \left( y\right) \]\n\n\[ \log \exp \left( x\right) = x \]\n\n\[ \exp \log \left( {1 + x}\right) = 1 + x. \]
Proof. Observe first that if \( {a}_{n} \) and \( {b}_{n} \rightarrow 0 \), then the family \( {\left( {a}_{n}{b}_{m}\right) }_{n, m \geq 0} \) is summable. In particular, its sum is independent of the way terms are grouped before summing. Hence the first identity holds as soon as the variables \( x \) and \( y \) are in the domain of convergence of the \( p \) -adic exponential\n\n\[ \exp \left( x\right) \cdot \exp \left( y\right) = \exp \left( {x + y}\right) .\n\nLet us check the second identity: We have to show that it is legitimate to substitute a value \( x \in {\mathbf{C}}_{p},\left| x\right| < {r}_{p} \) in the formal identity\n\n\[ X = \log {e}^{X} = \log \left( {1 + e\left( X\right) }\right) \]\n\nwhere\n\n\[ e\left( X\right) = \mathop{\sum }\limits_{{n \geq 1}}\frac{{X}^{n}}{n!} = {e}^{X} - 1 \]\n\nThe substitution in the sum can be made by addition of two contributions:\n\n\[ x = {\left\lbrack \mathop{\sum }\limits_{{n \leq N}}\frac{{\left( -1\right) }^{n - 1}}{n}e{\left( X\right) }^{n}\right\rbrack }_{X = x} + {\left\lbrack \mathop{\sum }\limits_{{m > N}}\frac{{\left( -1\right) }^{m - 1}}{m}e{\left( X\right) }^{m}\right\rbrack }_{X = x}. \]\n\nIn the first finite sum, the substitution can obviously be made in each term according to\n\n\[ {\left. e{\left( X\right) }^{n}\right| }_{X = x} = {\left( x + \frac{{x}^{2}}{2!} + \cdots \right) }^{n} = e{\left( x\right) }^{n}\;\left( {\left| x\right| < {r}_{p}}\right) .\n\nSince \( \left| {e\left( x\right) }\right| = \left| x\right| < {r}_{p} < 1 \), we have\n\n\[ \mathop{\sum }\limits_{{n \leq N}}\frac{{\left( -1\right) }^{n - 1}}{n}e{\left( x\right) }^{n} \rightarrow \log \left( {1 + e\left( x\right) }\right) = \log {e}^{x}\;\left( {N \rightarrow \infty }\right) .\n\nThe proof of the second identity will be completed if we show that the second contribution is arbitrarily small (for large \( N \) ). But when \( \left| x\right| < {r}_{p} \), each monomial appearing in the computation of \( e\left( x\right) \) satisfies \( \left| {{x}^{i}/i!}\right| < {r}_{p} \) (because \( i \geq 1 \) ), and each monomial appearing in the computation of \( e{\left( x\right) }^{m} \) has an absolute value less than \( {r}_{p}^{m} \) . All individual monomials appearing in the evaluation of the second contribution \( \mathop{\sum }\limits_{{m > N}}\cdots \) have an absolute value smaller than\n\n\[ \mathop{\sup }\limits_{{m > N}}\left| \frac{{\left( -1\right) }^{m - 1}}{m}\right| {r}_{p}^{m} \]\n\nSince the power series for the logarithm converges, it is possible to choose \( N \) large enough to ensure that all \( \left| {1/m}\right| {r}_{p}^{m}\left( {m > N}\right) \) are arbitrarily small and that the same holds for their sum (independently of the groupings made to compute it). Again, the verification of the third identity is similar.
Yes
Proposition 1. (a) For \( f \in {S}^{1}\left( {\mathbf{Z}}_{p}\right) \) we have\n\n\[ \left| {{\int }_{{\mathbf{Z}}_{p}}f\left( x\right) {dx}}\right| \leq p\parallel f{\parallel }_{1} \]\n\n(b) If \( {f}_{n} \rightarrow f \) in \( {S}^{1} \), namely \( {\begin{Vmatrix}{f}_{n} - f\end{Vmatrix}}_{1} \rightarrow 0 \), then\n\n\[ {\int }_{{\mathbf{Z}}_{p}}{f}_{n}\left( x\right) {dx} \rightarrow {\int }_{{\mathbf{Z}}_{p}}f\left( x\right) {dx} \]
Proof. By definition,\n\n\[ \left| {{\int }_{{\mathbf{Z}}_{p}}f\left( x\right) {dx}}\right| = \left| {{\left( Sf\right) }^{\prime }\left( 0\right) }\right| \leq \parallel {Sf}{\parallel }_{1} = \sup \left( {\parallel {\Phi Sf}\parallel ,\left| {{Sf}\left( 0\right) }\right| }\right) ,\]\n\nso that \( \left( a\right) \) follows from Corollary 2 in (1.5):\n\n\[ \parallel {Sf}{\parallel }_{1} \leq p\parallel f{\parallel }_{1}. \]\n\n(b) is a consequence of \( \left( a\right) \) .
Yes
Proposition 2. For \( f \in {S}^{1}\left( {\mathbf{Z}}_{p}\right) \) we have\n\n\[{\int }_{{\mathbf{Z}}_{p}}\nabla f\left( x\right) {dx} = {f}^{\prime }\left( 0\right)\]
Proof. By definition,\n\n\[{\int }_{{\mathbf{Z}}_{p}}\nabla f\left( x\right) {dx} = {\left( S\nabla f\right) }^{\prime }\left( 0\right) = {\left( f - f\left( 0\right) \right) }^{\prime }\left( 0\right) = {f}^{\prime }\left( 0\right) ,\]\n\nsince \( S\nabla f = f - f\left( 0\right) \) (Proposition 2 of (IV.1.5)).
Yes
Proposition 1. Let \( {P}_{0} : f \mapsto f\left( 0\right) \cdot 1 \) be the projection of \( {S}^{1}\left( {\mathbf{Z}}_{p}\right) \) onto constants. Then the following relations hold:\n\n(a) \( {S\tau } = {\tau S} - {P}_{0} \).\n\n(b) DS commutes with all translations \( {\tau }_{x} \).\n\n(c) \( {SD} = {DS} - {P}_{0}{DS} \).
Proof. By definition, for integers \( n \geq 1 \),\n\n\[ S\left( {\tau f}\right) \left( n\right) = \mathop{\sum }\limits_{{0 \leq j < n}}{\tau f}\left( j\right) = \mathop{\sum }\limits_{{0 \leq j < n}}f\left( {j + 1}\right) \]\n\n\[ = \mathop{\sum }\limits_{{0 < i \leq n}}f\left( i\right) = {Sf}\left( {n + 1}\right) - f\left( 0\right) = {\tau Sf}\left( n\right) - f\left( 0\right) ,\]\n\nwhich proves \( {S\tau } = {\tau S} - {P}_{0} \) (by density of the integers \( n \geq 1 \) in \( {\mathbf{Z}}_{p} \) and continuity of the functions in question). On the other hand, differentiation of the function \( {S\tau f} = {\tau Sf} - f\left( 0\right) \) leads to \( {DS\tau f} = {D\tau Sf} = {\tau DSf} \). Moreover, recall that \( \nabla {Sf} = f \) but \( S\nabla f = f - f\left( 0\right) \) (IV.1.5). In other words,\n\n\[ \nabla S = \mathrm{{id}},\;S\nabla = \mathrm{{id}} - {P}_{0} \]\n\nWe infer\n\n\[ {SD} = {SD}\nabla S = S\nabla {DS} = {DS} - {P}_{0}{DS}. \]\n\nThe proposition is proved.
Yes
Proposition 3. Let \( f \in {S}^{2}\left( {\mathbf{Z}}_{p}\right) \subset {S}^{1}\left( {\mathbf{Z}}_{p}\right) \) and define \( F\left( x\right) = {\int }_{{\mathbf{Z}}_{p}}f\left( {x + t}\right) {dt} \). Then \( F \in {S}^{1}\left( {\mathbf{Z}}_{p}\right) \) and\n\n\[ \n{F}^{\prime }\left( x\right) = {\int }_{{\mathbf{Z}}_{p}}{f}^{\prime }\left( {x + t}\right) {dt} \n\]
Proof. By Proposition 2 of (1.3),\n\n\[ \nf \in {S}^{2}\left( {\mathbf{Z}}_{p}\right) \; \Rightarrow \;{f}^{\prime } \in {S}^{1}\left( {\mathbf{Z}}_{p}\right) \n\]\n\nso that\n\n\[ \nG\left( x\right) = {\int }_{{\mathbf{Z}}_{p}}{f}^{\prime }\left( {x + t}\right) {dt} \n\]\n\ndefines a function \( G \in {S}^{1}\left( {\mathbf{Z}}_{p}\right) \). Moreover, by Proposition 2 (a),\n\n\[ \n{\int }_{{\mathbf{Z}}_{p}}{f}^{\prime }\left( {x + t}\right) {dt} = {\left( S{f}^{\prime }\right) }^{\prime }\left( x\right) = \left( {DSDf}\right) \left( x\right) , \n\]\n\nwhich proves \( G = {DSDf} \). Now by the first proposition \( {SD} = {DS} - {P}_{0}{DS} \) and\n\n\[ \nG = D\left( {{DS} - {P}_{0}{DS}}\right) f = {DDSf} = {\left( Sf\right) }^{\prime \prime } = {F}^{\prime }, \n\]\n\nbecause \( F = {\left( Sf\right) }^{\prime } \).
Yes
Proposition 4. Let \( \\sigma \) denote the involution (I.1.2) \( x \\mapsto - 1 - x \) of \( {\\mathbf{Z}}_{p} \) . Then\n\n\[ \n{\\int }_{{\\mathbf{Z}}_{p}}\\left( {f \\circ \\sigma }\\right) {dx} = {\\int }_{{\\mathbf{Z}}_{p}}{fdx} \n\]
Proof. We have seen that\n\n\[ \n{\\int }_{{\\mathbf{Z}}_{p}}{fdx} = {\\left( Sf\\right) }^{\\prime }\\left( 0\\right) = \\mathop{\\lim }\\limits_{{h \\rightarrow 0}}\\frac{{Sf}\\left( h\\right) }{h}. \n\]\n\nLet us take \( h = - {p}^{n}\\left( {n \\rightarrow \\infty }\\right) \) . Hence\n\n\[ \n{\\left( Sf\\right) }^{\\prime }\\left( 0\\right) = \\mathop{\\lim }\\limits_{{n \\rightarrow \\infty }}\\frac{{Sf}\\left( {-{p}^{n}}\\right) }{-{p}^{n}} = \\mathop{\\lim }\\limits_{{n \\rightarrow \\infty }}\\frac{-{Sf}\\left( {-{p}^{n}}\\right) }{{p}^{n}}. \n\]\n\nBut by the Corollary 4 in (IV.3.5),\n\n\[ \n- {Sf}\\left( {-{p}^{n}}\\right) = S\\left( {f \\circ \\sigma }\\right) \\left( {p}^{n}\\right) \n\]\n\nwhence the result \( {\\left( Sf\\right) }^{\\prime }\\left( 0\\right) = {\\left( S\\left( f \\circ \\sigma \\right) \\right) }^{\\prime }\\left( 0\\right) \) .
Yes
The radius of convergence of \( f = \mathop{\sum }\limits_{{n \geq 0}}{a}_{n}{X}^{n} \) is\n\n\[ \n{r}_{f} = \frac{1}{\mathop{\lim }\limits_{{n \geq 0}}{\left| {a}_{n}\right| }^{1/n}} = \frac{1}{\mathop{\limsup }\limits_{{n \rightarrow \infty }}{\left| {a}_{n}\right| }^{1/n}}.\n\]
Proof. Define \( {r}_{f} \) by the Hadamard formula. If \( \left| x\right| > {r}_{f} \) (this can happen only if \( {r}_{f} < \infty \) !), we have\n\n\[ \n\mathop{\lim }\limits_{{n \rightarrow \infty }}\mathop{\sup }\limits_{{k \geq n}}\left| x\right| {\left| {a}_{k}\right| }^{1/k} = \left| x\right| \cdot \mathop{\lim }\limits_{{n \rightarrow \infty }}\mathop{\sup }\limits_{{k \geq n}}{\left| {a}_{k}\right| }^{1/k} = \left| x\right| \cdot \frac{1}{{r}_{f}} > 1.\n\]\n\nHence the decreasing sequence \( \mathop{\sup }\limits_{{k \geq n}}\left| x\right| {\left| {a}_{k}\right| }^{1/k} \) is greater than 1, and for infinitely many values of \( k \geq 0 \) we have \( \left| {a}_{k}\right| {\left| x\right| }^{k} > 1 \), namely, the general term \( {a}_{k}{x}^{k} \) of the series does not tend to zero: The series \( \sum {a}_{k}{x}^{k} \) diverges. Conversely, if \( \left| x\right| < {r}_{f} \) (this can happen only if \( {r}_{f} > 0 \) !) we can choose \( \left| x\right| < r < {r}_{f} \), and from\n\n\[ \n\mathop{\lim }\limits_{{n \rightarrow \infty }}\mathop{\sup }\limits_{{k \geq n}}r{\left| {a}_{k}\right| }^{1/k} = r \cdot \mathop{\lim }\limits_{{n \rightarrow \infty }}\mathop{\sup }\limits_{{k \geq n}}{\left| {a}_{k}\right| }^{1/k} < 1\n\]\n\nwe infer that for some large \( N \)\n\n\[ \n\mathop{\sup }\limits_{{k \geq N}}r{\left| {a}_{k}\right| }^{1/k} < 1\n\]\n\nHence \( \left| {a}_{k}\right| {r}^{k} < 1 \) for all \( k \geq N \) and\n\n\[ \n\left| {{a}_{k}{x}^{k}}\right| = \left| {a}_{k}\right| {r}^{k}{\left( \frac{\left| x\right| }{r}\right) }^{k} < \frac{{\left| x\right| }^{k}}{{r}^{k}} \searrow 0\;\left( {k \rightarrow \infty }\right) .\n\]\n\nThis shows that the general term of the series \( \sum {a}_{k}{x}^{k} \) tends to zero, and the series converges.
Yes
Proposition 2. Let \( f \) and \( g \) be two convergent power series. Their product \( {fg} \) (computed formally ) is a convergent power series, and more precisely, the radius of convergence of \( {fg} \) is greater than or equal to \( \min \left( {{r}_{f},{r}_{g}}\right) \) . Moreover, the numerical evaluation of the power series \( {fg} \) can be made according to the usual rule\n\n\[ \left( {fg}\right) \left( x\right) = f\left( x\right) g\left( x\right) \;\left( {\left| x\right| < \min \left( {{r}_{f},{r}_{g}}\right) }\right) . \]
Proof. All statements are consequences of (V.2.2).
No
For any polynomial \( f \), the radius of convergence of the composite \( f \circ g \) is \( \geq {r}_{g} \) and \[ \left( {f \circ g}\right) \left( x\right) = f\left( {g\left( x\right) }\right) \;\left( {\left| x\right| < {r}_{g}}\right) .
Proof. If \( \left| x\right| < {r}_{g} \), taking \( f = g \) in the preceding proposition, we obtain \( {g}^{2}\left( x\right) = \) \( g{\left( x\right) }^{2} \) and by induction \( {g}^{n}\left( x\right) = g{\left( x\right) }^{n}\left( {n \geq 0}\right) \) . Taking linear combinations of these equalities, we deduce \[ \left( {f \circ g}\right) \left( x\right) = f\left( {g\left( x\right) }\right) \;\left( {\left| x\right| < {r}_{g}}\right) \] for any polynomial \( f \) .
No
Proposition 3. The radius of convergence of \( f = \mathop{\sum }\limits_{{n \geq 0}}{a}_{n}{X}^{n} \) and of its derivative \( {Df} = \mathop{\sum }\limits_{{n \geq 1}}n{a}_{n}{X}^{n - 1} \) are the same: \( {r}_{f} = {r}_{Df} \) .
Proof. Let us prove this proposition when the field is either an extension of \( {\mathbf{Q}}_{p} \) or an extension of \( \mathbf{R} \) with the normalized absolute value. We know that\n\n\[ \frac{1}{n} \leq \left| n\right| \leq n\;\left( {n \in \mathbf{N}}\right) \]\n\nand also\n\n\[ {n}^{\pm 1/n} \rightarrow 1\;\left( {n \rightarrow \infty }\right) . \]\n\nThis proves\n\n\[ {\overline{\lim }}_{n \rightarrow \infty }{\left| n{a}_{n}\right| }^{1/\left( {n - 1}\right) } = {\overline{\lim }}_{n \rightarrow \infty }{\left| n{a}_{n}\right| }^{1/n} = {\overline{\lim }}_{n \rightarrow \infty }{\left| {a}_{n}\right| }^{1/n}, \]\n\nwhich concludes the proof.
Yes
Theorem 1. Let \( f\left( X\right) = \mathop{\sum }\limits_{{n \geq 0}}{a}_{n}{X}^{n} \) be a formal power series. The following properties are equivalent:\n\n(i) \( \exists g \in K\left\lbrack \left\lbrack X\right\rbrack \right\rbrack \) with \( g\left( 0\right) = 0 \) and \( \left( {f \circ g}\right) \left( X\right) = X \) .\n\n(ii) \( {a}_{0} = f\left( 0\right) = 0 \) and \( {a}_{1} = {f}^{\prime }\left( 0\right) \neq 0 \) .\n\nWhen they are satisfied, there is a unique formal power series \( g \) as required by (i), and this formal power series also satisfies \( \left( {g \circ f}\right) \left( X\right) = X \) .
Proof. \( \left( i\right) \Rightarrow \left( {ii}\right) \) If \( g\left( X\right) = \mathop{\sum }\limits_{{m \geq 1}}{b}_{m}{X}^{m} \), then the identity \( \left( {f \circ g}\right) \left( X\right) = X \) can be written more explicitly as\n\n\[ \mathop{\sum }\limits_{{n \geq 0}}{a}_{n}g{\left( X\right) }^{n} = {a}_{0} + {a}_{1}{b}_{1}X + {X}^{2}\left( \cdots \right) = X. \]\n\nIn particular, \( {a}_{0} = 0 \) and \( {a}_{1}{b}_{1} = 1 \) ; hence \( {a}_{1} \neq 0 \).\n\n(ii) \( \Rightarrow \) (i) The equality \( \left( {f \circ g}\right) \left( X\right) = X \) requires that \( {a}_{1}{b}_{1} = 1 \) and that the coefficient of \( {X}^{n} \) in \( {a}_{1}g\left( X\right) + \cdots + {a}_{n}g{\left( X\right) }^{n} \) vanishes (for \( n \geq 2 \) ) (indeed, the coefficient of \( {X}^{n} \) in \( {a}_{m}g{\left( X\right) }^{m} \), whenever \( m > n \), vanishes). This coefficient of \( {X}^{n} \) is determined by an expression\n\n\[ {a}_{1}{b}_{n} + {P}_{n}\left( {{a}_{2},\ldots ,{a}_{n};{b}_{1},\ldots ,{b}_{n - 1}}\right) \]\n\nwith known polynomials \( {P}_{n} \) having integral coefficients (not that it matters, but these polynomials are linear in the first variables \( {a}_{i} \) ; cf. (V.4.2)). The hypothesis \( {a}_{1} \neq 0 \in K \) makes it possible to choose iteratively the coefficients \( {b}_{n} \) according to\n\n\[ {b}_{n} = - {a}_{1}^{-1}{P}_{n}\left( {{a}_{2},\ldots ,{a}_{n};{b}_{1},\ldots ,{b}_{n - 1}}\right) \;\left( {n \geq 2}\right) . \]\n\nThese choices furnish the required inverse formal power series \( g \).\n\nFinally, if \( f \) satisfies (ii) and \( g \) is chosen as in (i), then \( {b}_{0} = 0 \) and \( {b}_{1} = \) \( 1/{a}_{1} \neq 0 \), so that we may apply \( \left( i\right) \) to \( g \) and choose a formal power series \( h \) with \( \left( {g \circ h}\right) \left( X\right) = X \) . The associativity of composition shows that\n\n\[ h\left( X\right) = \left( \underset{\text{id }}{\underbrace{f \circ g}}\right) \circ h\left( X\right) = f \circ \left( \underset{\text{id }}{\underbrace{g \circ h}}\right) \left( X\right) = f\left( X\right) . \]\n\nThis proves \( g \circ f\left( X\right) = g \circ h\left( X\right) = X \) .
Yes
Theorem 2 (Chain Rule). Let \( f \) and \( g \) be two formal power series with \( g\left( 0\right) = 0 \) . Then the formal derivative of \( f \circ g \) is given by\n\n\[ D\left( {f \circ g}\right) \left( Y\right) = {Df}\left( X\right) {Dg}\left( Y\right) = {Df}\left( {g\left( Y\right) }\right) {Dg}\left( Y\right) . \]
Proof. Fix the power series \( g \) and let \( f \) vary in \( K\left\lbrack \left\lbrack X\right\rbrack \right\rbrack \) . Then\n\n\[ \omega \left( f\right) \geq k \Rightarrow \omega \left( {f \circ g}\right) \geq k \Rightarrow \omega \left( {D\left( {f \circ g}\right) }\right) \geq k - 1 \]\n\nas well as\n\n\[ \omega \left( f\right) \geq k \Rightarrow \omega \left( {Df}\right) \geq k - 1 \Rightarrow \omega \left\lbrack {{Df}\left( {g\left( Y\right) }\right) {Dg}\left( Y\right) }\right\rbrack \geq k - 1. \]\n\nThe identity \( D\left( {f \circ g}\right) \left( Y\right) = {Df}\left( {g\left( Y\right) }\right) {Dg}\left( Y\right) \), valid on the dense subspace of polynomials \( f \in K\left\lbrack X\right\rbrack \), extends by continuity to \( f \in K\left\lbrack \left\lbrack X\right\rbrack \right\rbrack \) .
Yes
Proposition 1. When \( \left| {K}^{ \times }\right| \) is dense in \( {\mathbf{R}}_{ > 0} \) and \( f \in K\{ X\} \), the Gauss norm of \( f \) and the sup norm of the function defined by \( f \) on the unit ball \( A \) of \( K \) coincide.
Proof. The Gauss norm of \( f \) is \( {M}_{1}f \), and the inequality\n\n\[ \mathop{\sup }\limits_{{\left| x\right| \leq 1}}\left| {f\left( x\right) }\right| \leq {M}_{1}f \]\n\nholds in general. With our assumption, we can choose a sequence \( {x}_{n} \in K \) with \( \left| {x}_{n}\right| \) regular and \( \left| {x}_{n}\right| \nearrow 1 \) ; hence we have\n\n\[ {M}_{1}f = \mathop{\sup }\limits_{{r \nearrow 1}}{M}_{r}f\overset{!}{ \leq }\mathop{\sup }\limits_{{x \in A}}\left| {f\left( x\right) }\right| \]
Yes
Proposition 2. When \( r > 0 \) is fixed, \( f \mapsto {M}_{r}\left( f\right) \) is an ultrametric norm on the subspace consisting of formal power series \( f\left( X\right) = \sum {a}_{n}{X}^{n} \) such that \( \left| {a}_{n}\right| {r}^{n} \rightarrow 0\left( {n \rightarrow \infty }\right) \) . This norm is multiplicative, i.e., \( {M}_{r}\left( {f\bar{g}}\right) = {M}_{r}\left( f\right) {M}_{r}\left( g\right) \) when \( f \) and \( g \) belong to this subspace.
Proof. If \( f \neq 0 \), then one \( {a}_{n} \) at least is nonzero, and \( {M}_{r}\left( f\right) \geq \left| {a}_{n}\right| {r}^{n} > 0 \), since \( r > 0 \) . Hence \( {M}_{r} \) is a norm on the subspace considered. Moreover, the equality\n\n\[ \n{M}_{r}\left( {fg}\right) = {M}_{r}\left( f\right) {M}_{r}\left( g\right) \n\]\n\nis true if \( r \) is a regular radius for \( f, g \), and \( {fg} \), since it is the common value (V.2.2)\n\n\[ \n\left| {{fg}\left( x\right) }\right| = \left| {f\left( x\right) }\right| \left| {g\left( x\right) }\right| \;\left( {\left| x\right| = r, x \in {\Omega }_{p}}\right) . \n\]\n\nThe general result follows by density of regular values and continuity of the maps\n\n\[ \nr \mapsto {M}_{r}\left( f\right) ,\;r \mapsto {M}_{r}\left( g\right) ,\;r \mapsto {M}_{r}\left( {fg}\right) . \n\]
Yes
Example 2. Let us treat the case of the power series\n\n\\[ \nf\left( X\right) = \log \left( {1 + X}\right) = \mathop{\sum }\limits_{{n \geq 1}}\frac{{\left( -1\right) }^{n - 1}}{n}{X}^{n}. \n\\]\n\nWe have\n\n\\[ \n{\operatorname{ord}}_{p}{a}_{n} = 0\text{ if }1 \leq n < p,\;{\operatorname{ord}}_{p}{a}_{p} = - 1, \n\\]\n\nand\n\n\\[ \n- 1 \leq {\operatorname{ord}}_{p}{a}_{n} \leq 0\text{ if }p < n < {p}^{2},\;\ldots . \n\\]
The Newton polygon of the logarithm\n\nThe vertices of the Newton polygon are the points\n\n\\[ \n{P}_{1} = \left( {1,0}\right) ,\;{P}_{p} = \left( {p, - 1}\right) ,\;{P}_{{p}^{2}} = \left( {{p}^{2}, - 2}\right) ,\;{P}_{{p}^{3}} = \left( {{p}^{3}, - 3}\right) ,\ldots . \n\\]\n\nThe successive slopes of the sides are\n\n\\[ \n\frac{-1}{p - 1} > \frac{-1}{{p}^{2} - p} > \frac{-1}{{p}^{3} - {p}^{2}} > \cdots \;\left( { \rightarrow 0}\right) . \n\\]\n\nThey correspond to critical radii\n\n\\[ \n{p}^{-\frac{1}{p - 1}} < {p}^{-\frac{1}{{p}^{2} - p}} < {p}^{-\frac{1}{{p}^{3} - {p}^{2}}} < \cdots \;\left( { \rightarrow 1}\right) , \n\\]\n\nand we recognize the sequence\n\n\\[ \n{r}_{p} = {\left| p\right| }^{\frac{1}{p - 1}} < {r}_{p}^{\prime } = {r}_{p}^{1/p} < {r}_{p}^{\prime \prime } = {r}_{p}^{1/{p}^{2}} < \cdots \;\left( { \rightarrow 1}\right) . \n\\]\n\nBetween two consecutive critical radii, the absolute value of the logarithm coincides with the absolute value of the dominant monomial. We already know that\n\n\\[ \n\left| {\log \left( {1 + x}\right) }\right| = \left| x\right| \;\left( {0 \leq \left| x\right| < {r}_{p}}\right) , \n\\]\n\n- the isometry domain of log (inverted by exp) - and see further that\n\n\\[ \n{r}_{p} < \left| {\log \left( {1 + x}\right) }\right| = \left| \frac{{x}^{p}}{p}\right| = p{\left| x\right| }^{p} < p{r}_{p}\;\left( {{r}_{p} < \left| x\right| < {r}_{p}^{\prime }}\right) , \n\\]\n\nwhere \\( {r}_{p}^{\prime } = {r}_{p}^{1/p} \\) is the next critical radius. Quite generally,\n\n\\[ \n{p}^{j - 1}{r}_{p} < \left| {\log \left( {1 + x}\right) }\right| = \left| \frac{{x}^{{p}^{j}}}{{p}^{j}}\right| = {p}^{j}{\left| x\right| }^{{p}^{j}} < {p}^{j}{r}_{p} \n\\]\n\nfor\n\n\\[ \n{r}_{p}^{1/{p}^{j - 1}} < \left| x\right| < {r}_{p}^{1/{p}^{j}} \n\\]\n\nHere we see how \\( \left| {\log \left( {1 + x}\right) }\right| \\) increases: We already knew by (V.4.4) that it can be arbitrarily large, since \\( \log : 1 + {\mathbf{M}}_{p} \rightarrow {\mathbf{C}}_{p} \\) is surjective. On the other hand, the zeros of \\( \log \left( {1 + x}\right) \\) can occur only when \\( \left| x\right| \\) is equal to a critical radius. This gives an independent proof of (II.4.4) for the estimates of \\( \left| {\zeta - 1}\right| \\) when \\( \zeta \in {\mu }_{{p}^{\infty }} \\) .
Yes
Theorem 1. Let \( K \) be a complete and algebraically closed extension of \( {\mathbf{Q}}_{p} \) and \( f = \sum {a}_{n}{X}^{n} \in K\left\lbrack \left\lbrack X\right\rbrack \right\rbrack \) a nonzero convergent power series. If \( f \) has a critical radius \( r < {r}_{f} \), then \( f \) has a zero on the critical sphere of radius \( r \) in \( K \) . More precisely, if \( \mu < v \) are the extreme indices for which \( \left| {a}_{n}\right| {r}^{n} = {M}_{r}f \), then \( f \) has exactly \( v - \mu \) zeros (counting multiplicities) on the critical sphere \( \left| x\right| = r \) of \( K \) : There is a polynomial \( P \in K\left\lbrack X\right\rbrack \) of degree \( v - \mu \) and a convergent power series \( g \in K\left\lbrack \left\lbrack X\right\rbrack \right\rbrack \) with
Proof. The result is trivial if \( r = 0 \), so we assume \( r > 0 \) from now on. Recall that \( \left| {a}_{\mu }\right| {r}^{\mu } = \left| {a}_{v}\right| {r}^{v},{r}^{v - \mu } = \left| {{a}_{\mu }/{a}_{v}}\right| \in \left| {K}^{ \times }\right| \) . Since \( K \) is algebraically closed, there is an element \( a \in K \) with \( \left| a\right| = r \) . Replace \( f \) by \( {f}_{a}\left( X\right) = f\left( {aX}\right) \) having \( r = 1 \) as critical radius. This converts \( f \) into a series having a radius of convergence \( {r}_{{f}_{a}} = {r}_{f}/\left| a\right| > 1 \), and in particular, \( {f}_{a} \in K\{ X\} \) . We can similarly replace \( f \) by the multiple \( f/{a}_{v} \) and assume \( \left| {a}_{\mu }\right| = \left| {a}_{v}\right| = {M}_{r}f = 1 \) (and \( {a}_{v} = 1 \) ). To sum up, it is sufficient to study the normalized situation
Yes
Theorem 2. Let \( K \) be a complete extension of \( {\mathbf{Q}}_{p} \) in \( {\Omega }_{p} \) and \( f \in K\left\lbrack \left\lbrack X\right\rbrack \right\rbrack a \) nonzero convergent power series.\n\n(a) If \( f\left( a\right) = 0 \) for some \( a \in {\Omega }_{p},\left| a\right| < {r}_{f} \), then \( a \) is algebraic over \( K \) .
Proof. (a) If \( f \) has a zero \( a \) on the sphere \( \left| x\right| = r \) in \( {\mathbf{C}}_{p} \) (or \( {\Omega }_{p} \) ), then \( r \) is a critical radius, and the preceding theorem shows that \( f \) has \( v - \mu \) roots in \( {\Omega }_{p} \) (counting multiplicities). If \( \sigma \) is a \( K \) -automorphism of \( {\Omega }_{p} \), it is continuous and isometric (III.3.2):\n\n\[ f\left( {a}^{\sigma }\right) = f{\left( a\right) }^{\sigma } = 0,\;\left| {a}^{\sigma }\right| = \left| a\right| = r. \]\n\nHence \( a \) has a finite number of conjugates contained in the finite set of roots of \( f \) on the sphere \( \left| x\right| = r \) of \( {\Omega }_{p} \) . By Galois theory, this proves that \( a \) is algebraic over \( K \) . The same argument shows that the product \( P = \mathop{\prod }\limits_{\xi }\left( {X - \xi }\right) \in {K}^{a}\left\lbrack X\right\rbrack \) extended over all roots of \( f \) having absolute value \( r \) (all multiplicities counted) has coefficients fixed by all \( K \) -automorphisms of \( {K}^{a} \) and hence coefficients in \( K \) . This is a monic polynomial \( P \in K\left\lbrack X\right\rbrack \) of degree \( v - \mu \) .
Yes