Q
stringlengths
4
3.96k
A
stringlengths
1
3k
Result
stringclasses
4 values
Example 1.4.5. Suppose\n\n\[ f\left( x\right) = \left\{ \begin{array}{ll} {3x} + 5, & \text{ if }x \leq 1 \\ {10} - {2x}, & \text{ if }x > 1 \end{array}\right. \]\n\nIf \( \epsilon \) is a positive infinitesimal, then
\[ f\left( {1 + \epsilon }\right) = 3\left( {1 + \epsilon }\right) + 5 = 8 + {3\epsilon } \simeq 8 = f\left( 1\right) ,\]\n\nso \( f \) is continuous from the right at \( x = 1 \), and\n\n\[ f\left( {1 - \epsilon }\right) = 3\left( {1 - \epsilon }\right) + 5 = 8 - {3\epsilon } \simeq 8 = f\left( 1\right) ,\]\n\nso \( f \) is continuous from the left at \( x = 1 \) as well. Hence \( f \) is continuous at \( x = 1 \) .
Yes
Suppose that both \( f \) and \( g \) are continuous at the real number \( c \) and we let \( s\left( x\right) = f\left( x\right) + g\left( x\right) \) . If \( \epsilon \) is any infinitesimal, then
\[ s\left( {c + \epsilon }\right) = f\left( {c + \epsilon }\right) + g\left( {c + \epsilon }\right) \simeq f\left( c\right) + g\left( c\right) = s\left( c\right) ,\] and so \( s \) is also continuous at \( c \) .
Yes
Since\n\n\[ \n{\left( x + \epsilon \right) }^{3} = {x}^{3} + 3{x}^{2}\epsilon + {3x}{\epsilon }^{2} + {\epsilon }^{3} \simeq {x}^{3} \n\]\n\nfor any real number \( x \) and any infinitesimal \( \epsilon \), it follows that \( g\left( x\right) = {x}^{3} \) is continuous on \( \left( {-\infty ,\infty }\right) \) .
From the previous theorems, it then follows that\n\n\[ \nh\left( x\right) = 5{x}^{2} + 3{x}^{3} \n\]\n\nis continuous on \( \left( {-\infty ,\infty }\right) \) .
No
The function \( f\left( x\right) = {x}^{2} \) attains neither a maximum nor a minimum value on the interval \( \left( {0,1}\right) \) .
Indeed, given any point \( a \) in \( \left( {0,1}\right), f\left( x\right) > f\left( a\right) \) whenever \( a < x < 1 \) and \( f\left( x\right) < f\left( a\right) \) whenever \( 0 < x < a \) .
Yes
Example 1.5.9. Let\n\n\[ f\\left( x\\right) = \\left\\{ \\begin{array}{ll} \\frac{1}{x}, & \\text{ if } - 1 \\leq x < 0\\text{ or }0 < x \\leq 1, \\\\ 0, & \\text{ if }x = 0. \\end{array}\\right.\n\]\n\nSee Figure 1.5.5. Then \( f \) does not have a maximum value: if \( a \\leq 0 \), then \( f\\left( x\\right) > f\\left( a\\right) \) for any \( x > 0 \), and if \( a > 0 \), then \( f\\left( x\\right) > f\\left( a\\right) \) whenever \( 0 < x < a \) . Similarly, \( f \) has no minimum value: if \( a \\geq 0 \), then \( f\\left( x\\right) < f\\left( a\\right) \) for any \( x < 0 \) , and if \( a < 0 \), then \( f\\left( x\\right) < f\\left( a\\right) \) whenever \( a < x < 0 \) .
The problem this time is that \( f \) is not continuous at \( x = 0 \). Indeed, if \( \\epsilon \) is an infinitesimal, then \( f\\left( \\epsilon \\right) \) is infinite, and, hence, not infinitesimally close to \( f\\left( 0\\right) = 0 \) .
Yes
If \( y = {x}^{2} \), then, for any nonzero infinitesimal \( {dx} \)
\[ {dy} = {\left( x + dx\right) }^{2} - {x}^{2} = \left( {{x}^{2} + {2xdx} + {\left( dx\right) }^{2}}\right) - {x}^{2} = \left( {{2x} + {dx}}\right) {dx}. \] Hence \[ \frac{dy}{dx} = {2x} + {dx} \simeq {2x} \] and so the derivative of \( y \) with respect to \( x \) is \[ \frac{dy}{dx} = {2x} \]
Yes
If \( f\left( x\right) = {4x} \), then, for any nonzero infinitesimal \( {dx} \)
\n\[ \frac{f\left( {x + {dx}}\right) - f\left( x\right) }{dx} = \frac{4\left( {x + {dx}}\right) - {4x}}{dx} = \frac{4dx}{dx} = 4. \] \nHence \( {f}^{\prime }\left( x\right) = 4 \) . Note that this implies that \( f\left( x\right) \) has a constant rate of change: every change of one unit in \( x \) results in a change of 4 units in \( f\left( x\right) \) .
Yes
If \( y = {x}^{2} \), then we saw above that \( \frac{dy}{dx} = {2x} \) . Hence the rate of change of \( y \) with respect to \( x \) when \( x = 3 \) is
\[ {\left. \frac{dy}{dx}\right| }_{x = 3} = \left( 2\right) \left( 3\right) = 6 \]
Yes
If \( f\left( x\right) = {x}^{\frac{2}{3}} \), then for any infinitesimal \( {dx} \) ,
\[ f\left( {0 + {dx}}\right) - f\left( 0\right) = f\left( {dx}\right) = {\left( dx\right) }^{\frac{2}{3}}, \] which is infinitesimal. Hence \( f \) is continuous at \( x = 0 \). Now if \( {dx} \neq 0 \), then \[ \frac{f\left( {0 + {dx}}\right) - f\left( 0\right) }{dx} = \frac{{\left( dx\right) }^{\frac{2}{3}}}{dx} = \frac{1}{{\left( dx\right) }^{\frac{1}{3}}}. \] Since this is infinite, \( f \) does not have a derivative at \( x = 0 \). In particular, this shows that a function may be continuous at a point, but not differentiable at that point.
Yes
If \( f\left( x\right) = \sqrt{x} \), then, as we have seen above, for any \( x > 0 \) and any nonzero infinitesimal \( {dx} \),
\[ f\left( {x + {dx}}\right) - f\left( x\right) = \sqrt{x + {dx}} - \sqrt{x} \] \[ = \left( {\sqrt{x + {dx}} - \sqrt{x}}\right) \frac{\sqrt{x + {dx}} + \sqrt{x}}{\sqrt{x + {dx}} + \sqrt{x}} \] \[ = \frac{\left( {x + {dx}}\right) - x}{\sqrt{x + {dx}} + \sqrt{x}} \] \[ = \frac{dx}{\sqrt{x + {dx}} + \sqrt{x}}. \] It now follows that \[ \frac{f\left( {x + {dx}}\right) - f\left( x\right) }{dx} = \frac{1}{\sqrt{x + {dx}} + \sqrt{x}} \simeq \frac{1}{\sqrt{x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}. \] Thus \[ {f}^{\prime }\left( x\right) = \frac{1}{2\sqrt{x}}. \]
Yes
The function \( f\left( x\right) = \sqrt{x} \) is differentiable on \( \left( {0,\infty }\right) \) .
Note that \( f \) is not differentiable at \( x = 0 \) since \( f\left( {0 + {dx}}\right) = f\left( {dx}\right) \) is not defined for all infinitesimals \( {dx} \).
Yes
Theorem 1.7.2. If \( f \) and \( g \) are both differentiable and \( s\left( x\right) = f\left( x\right) + g\left( x\right) \) , then
\[ {s}^{\prime }\left( x\right) = {f}^{\prime }\left( x\right) + {g}^{\prime }\left( x\right) \]
Yes
If \( y = {x}^{2} + \sqrt{x} \), then, using our results from the previous section,
\[ \frac{dy}{dx} = \frac{d}{dx}\left( {x}^{2}\right) + \frac{d}{dx}\left( \sqrt{x}\right) = {2x} + \frac{1}{2\sqrt{x}}. \]
Yes
Theorem 1.7.3. If \( c \) is a real constant, \( f \) is differentiable, and \( g\left( x\right) = {cf}\left( x\right) \) , then
\[ {g}^{\prime }\left( x\right) = c{f}^{\prime }\left( x\right) \]
Yes
Example 1.7.3. If \( y = 5{x}^{2} \), then
\n\[ \frac{dy}{dx} = 5\frac{d}{dx}\left( {x}^{2}\right) = 5\left( {2x}\right) = {10x}. \]
Yes
Theorem 1.7.4. If \( f \) and \( g \) are both differentiable and \( p\left( x\right) = f\left( x\right) g\left( x\right) \), then
\[ {p}^{\prime }\left( x\right) = f\left( x\right) {g}^{\prime }\left( x\right) + g\left( x\right) {f}^{\prime }\left( x\right) . \]
Yes
We may use the product rule to find a formula for the derivative of a positive integer power of \( x \) .
We first note that if \( y = x \), then, for any infinitesimal \( {dx} \), \[ {dy} = \left( {x + {dx}}\right) - x = {dx} \] and so, if \( {dx} \neq 0 \), \[ \frac{dy}{dx} = \frac{dx}{dx} = 1 \] Thus we have \[ \frac{d}{dx}x = 1 \] (1.7.18) as we should expect, since \( y = x \) implies that \( y \) changes at exactly the same rate as \( x \). Using the product rule, it now follows that \[ \frac{d}{dx}{x}^{2} = \frac{d}{dx}\left( {x \cdot x}\right) = x\frac{d}{dx}x + x\frac{d}{dx}x = x + x = {2x}, \] (1.7.19) in agreement with a previous example. Next, we have \[ \frac{d}{dx}{x}^{3} = x\frac{d}{dx}{x}^{2} + {x}^{2}\frac{d}{dx}x = 2{x}^{2} + {x}^{2} = 3{x}^{2} \] (1.7.20) and \[ \frac{d}{dx}{x}^{4} = x\frac{d}{dx}{x}^{3} + {x}^{3}\frac{d}{dx}x = 3{x}^{3} + {x}^{3} = 4{x}^{3}. \] (1.7.21) At this point we might suspect that for any integer \( n \geq 1 \), \[ \frac{d}{dx}{x}^{n} = n{x}^{n - 1} \] (1.7.22) This is in fact true, and follows easily from an inductive argument: Suppose we have shown that for any \( k < n \), \[ \frac{d}{dx}{x}^{k} = k{x}^{k - 1}. \] (1.7.23) Then \[ \frac{d}{dx}{x}^{n} = x\frac{d}{dx}{x}^{n - 1} + {x}^{n - 1}\frac{d}{dx}x \] \[ = x\left( {\left( {n - 1}\right) {x}^{n - 2}}\right) + {x}^{n - 1} \] \[ = n{x}^{n - 1}\text{.} \] (1.7.24) We call this result the power rule.
Yes
When \( n = {34} \), the power rule shows that
\[ \frac{d}{dx}{x}^{34} = {34}{x}^{33} \]
Yes
Example 1.7.6. If \( f\left( x\right) = {14}{x}^{5} \), then, combining the power rule with our result for constant multiples,
\[ {f}^{\prime }\left( x\right) = {14}\left( {5{x}^{4}}\right) = {70}{x}^{4}. \]
Yes
If \( n < 0 \) is an integer, then
\( \frac{d}{dx}{x}^{n} = \frac{d}{dx}\left( \frac{1}{{x}^{-n}}\right) = - \frac{1}{{x}^{-{2n}}} \cdot \left( {-n{x}^{-n - 1}}\right) = n{x}^{n - 1}. \)
Yes
If \( f\left( x\right) = 3{x}^{2} - \frac{5}{{x}^{7}} \) then find \( f'\left( x\right) \).
then \( f\left( x\right) = 3{x}^{2} - 5{x}^{-7} \), and so \[ {f}^{\prime }\left( x\right) = {6x} + {35}{x}^{-8} = {6x} + \frac{35}{{x}^{8}}. \]
Yes
Theorem 1.7.8. If \( f \) and \( g \) are differentiable, \( g\left( x\right) \neq 0 \), and\n\n\[ q\left( x\right) = \frac{f\left( x\right) }{g\left( x\right) } \]\n\n(1.7.36)\n\nthen\n\n\[ {q}^{\prime }\left( x\right) = \frac{g\left( x\right) {f}^{\prime }\left( x\right) - f\left( x\right) {g}^{\prime }\left( x\right) }{{\left( g\left( x\right) \right) }^{2}}. \]\n\n\( \left( {1.7.37}\right) \)
\[ {q}^{\prime }\left( x\right) = \frac{g\left( x\right) {f}^{\prime }\left( x\right) - f\left( x\right) {g}^{\prime }\left( x\right) }{{\left( g\left( x\right) \right) }^{2}}. \]
Yes
If\n\n\[ f\left( x\right) = \frac{3{x}^{2} - {6x} + 4}{{x}^{2} + 1} \]\n\nthen\n\n\[ {f}^{\prime }\left( x\right) = \frac{\left( {{x}^{2} + 1}\right) \left( {{6x} - 6}\right) - \left( {3{x}^{2} - {6x} + 4}\right) \left( {2x}\right) }{{\left( {x}^{2} + 1\right) }^{2}} \]
\n\n\[ = \frac{6{x}^{3} - 6{x}^{2} + {6x} - 6 - 6{x}^{3} + {12}{x}^{2} - {8x}}{{\left( {x}^{2} + 1\right) }^{2}} \]\n\n\[ = \frac{6{x}^{2} - {2x} - 6}{{\left( {x}^{2} + 1\right) }^{2}}. \]
Yes
Example 1.7.12. We may use either 1.7.30 or 1.7.37 to differentiate\n\n\[ y = \frac{5}{{x}^{2} + 1}. \]
In either case, we obtain\n\n\[ \frac{dy}{dx} = - \frac{5}{{\left( {x}^{2} + 1\right) }^{2}}\frac{d}{dx}\left( {{x}^{2} + 1}\right) = - \frac{10x}{{\left( {x}^{2} + 1\right) }^{2}}. \]
Yes
Theorem 1.7.9. If \( y \) is a differentiable function of \( u \) and \( u \) is a differentiable function of \( x \), then\n\n\[ \frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \]
Not that if we let \( y = f\left( u\right), u = g\left( x\right) \), and\n\n\[ h\left( x\right) = f \circ g\left( x\right) = f\left( {g\left( x\right) }\right) ,\]\n\nthen\n\n\[ \frac{dy}{dx} = {h}^{\prime }\left( x\right) ,\frac{dy}{du} = {f}^{\prime }\left( {g\left( x\right) }\right) ,\text{ and }\frac{du}{dx} = {g}^{\prime }\left( x\right) .\]\n\nHence we may also express the chain rule in the form\n\n\[ {h}^{\prime }\left( x\right) = {f}^{\prime }\left( {g\left( x\right) }\right) {g}^{\prime }\left( x\right) .\]
Yes
If \( y = 3{u}^{2} \) and \( u = {2x} + 1 \), then
\n\[ \frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = \left( {6u}\right) \left( 2\right) = {12u} = {24x} + {12}. \]\n\nWe may verify this result by first finding \( y \) directly in terms of \( x \), namely,\n\n\[ y = 3{u}^{2} = 3{\left( 2x + 1\right) }^{2} = 3\left( {4{x}^{2} + {4x} + 1}\right) = {12}{x}^{2} + {12x} + 3, \]\n\nand then differentiating directly:\n\n\[ \frac{dy}{dx} = \frac{d}{dx}\left( {{12}{x}^{2} + {12x} + 3}\right) = {24x} + {12}. \]
Yes
If \( h\left( x\right) = \sqrt{{x}^{2} + 1} \), then \( h\left( x\right) = f\left( {g\left( x\right) }\right) \) where \( f\left( x\right) = \sqrt{x} \) and \( g\left( x\right) = {x}^{2} + 1 \).
Since\n\n\[ \n{f}^{\prime }\left( x\right) = \frac{1}{2\sqrt{x}}\text{ and }{g}^{\prime }\left( x\right) = {2x}, \n\]\n\nit follows that\n\n\[ \n{h}^{\prime }\left( x\right) = {f}^{\prime }\left( {g\left( x\right) }\right) {g}^{\prime }\left( x\right) = \frac{1}{2\sqrt{{x}^{2} + 1}} \cdot {2x} = \frac{x}{\sqrt{{x}^{2} + 1}}. \n\]
Yes
Example 1.7.16. With \( n = {10} \) and \( g\left( x\right) = {x}^{2} + 3 \), we have
\[ \frac{d}{dx}{\left( {x}^{2} + 3\right) }^{10} = {10}{\left( {x}^{2} + 3\right) }^{9}\left( {2x}\right) = {20x}{\left( {x}^{2} + 3\right) }^{9}. \]
Yes
If \( f\left( x\right) = \frac{15}{{\left( {x}^{4} + 5\right) }^{2}} \), then what is \( f'(x) \)?
then we may apply the previous result with \( n = - 2 \) and \( g\left( x\right) = {x}^{4} + 5 \) to obtain\n\n\[ {f}^{\prime }\left( x\right) = - {30}{\left( {x}^{4} + 5\right) }^{-3}\left( {4{x}^{3}}\right) = - \frac{{120}{x}^{3}}{{\left( {x}^{4} + 5\right) }^{3}}. \]
Yes
Example 1.7.18. With \( r = \frac{1}{2} \) in the previous theorem, we have
\[ \frac{d}{dx}\sqrt{x} = \frac{1}{2}{x}^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}} \] in agreement with our earlier direct computation.
Yes
If \( y = {x}^{\frac{2}{3}} \), then
\n\[ \frac{dy}{dx} = \frac{2}{3}{x}^{-\frac{1}{3}} = \frac{2}{3{x}^{\frac{1}{3}}}. \]\n\nNote that \( \frac{dy}{dx} \) is not defined at \( x = 0 \), in agreement with our earlier result showing that \( y \) is not differentiable at 0 .
Yes
If \( f\left( x\right) = \sqrt{{x}^{2} + 1} \)
\[ {f}^{\prime }\left( x\right) = \frac{1}{2}{\left( {x}^{2} + 1\right) }^{-\frac{1}{2}}\left( {2x}\right) = \frac{x}{\sqrt{{x}^{2} + 1}}. \]
Yes
Example 1.7.21. If\n\n\\[ \n g\\left( t\\right) = \\frac{1}{{t}^{4} + 5} \n\\]\n\nthen
\\[ \n {g}^{\\prime }\\left( t\\right) = \\left( {-1}\\right) {\\left( {t}^{4} + 5\\right) }^{-2}\\left( {4{t}^{3}}\\right) = - \\frac{4{t}^{3}}{{\\left( {t}^{4} + 5\\right) }^{2}}. \n\\]
Yes
Using the chain rule,
\[ \frac{d}{dx}\cos \left( {4x}\right) = - \sin \left( {4x}\right) \frac{d}{dt}\left( {4x}\right) = - 4\sin \left( {4x}\right) . \]
Yes
If \( f\left( t\right) = {\sin }^{2}\left( t\right) \), then, again using the chain rule,
\[ {f}^{\prime }\left( t\right) = 2\sin \left( t\right) \frac{d}{dt}\sin \left( t\right) = 2\sin \left( t\right) \cos \left( t\right) . \]
Yes
If \( g\left( x\right) = \cos \left( {x}^{2}\right) \), then
\[ {g}^{\prime }\left( x\right) = - \sin \left( {x}^{2}\right) \left( {2x}\right) = - {2x}\cos \left( {x}^{2}\right) . \]
Yes
Example 1.7.25. If \( f\left( x\right) = {\sin }^{3}\left( {4x}\right) \), then, using the chain rule twice,
\[ {f}^{\prime }\left( x\right) = 3{\sin }^{2}\left( {4x}\right) \frac{d}{dx}\sin \left( {4x}\right) = {12}{\sin }^{2}\left( {4x}\right) \cos \left( {4x}\right) . \]
Yes
If \( f\left( x\right) = {x}^{5} - 6{x}^{2} + 5 \), then
\[ {f}^{\prime }\left( x\right) = 5{x}^{4} - {12x} \]\n\nIn particular, \( {f}^{\prime }\left( {-\frac{1}{2}}\right) = \frac{101}{16} \), and so the equation of the line tangent to the graph of \( f \) at \( x = - \frac{1}{2} \) is\n\n\[ y = \frac{101}{6}\left( {x + \frac{1}{2}}\right) + \frac{111}{32}. \]
Yes
Theorem 1.9.1. If \( f \) is differentiable on \( \left( {a, b}\right) \) and attains a maximum, or a minimum, value at \( c \), then \( {f}^{\prime }\left( c\right) = 0 \) .
Now suppose \( f \) is continuous on \( \left\lbrack {a, b}\right\rbrack \), differentiable on \( \left( {a, b}\right) \), and \( f\left( a\right) = \) \( f\left( b\right) \) . If \( f \) is a constant function, then \( {f}^{\prime }\left( c\right) = 0 \) for all \( c \) in \( \left( {a, b}\right) \) . If \( f \) is not constant, then there is a point \( c \) in \( \left( {a, b}\right) \) at which \( f \) attains either a maximum or a minimum value, and so \( {f}^{\prime }\left( c\right) = 0 \) .
No
Theorem 1.9.2. If \( f \) is continuous on \( \left\lbrack {a, b}\right\rbrack \), differentiable on \( \left( {a, b}\right) \), and \( f\left( a\right) = \) \( f\left( b\right) \), then there is a real number \( c \) in \( \left( {a, b}\right) \) for which \( {f}^{\prime }\left( c\right) = 0 \) .
More generally, suppose \( f \) is continuous on \( \left\lbrack {a, b}\right\rbrack \) and differentiable on \( \left( {a, b}\right) \). Let \[ g\left( x\right) = f\left( x\right) - \frac{f\left( b\right) - f\left( a\right) }{b - a}\left( {x - a}\right) - f\left( a\right) . \] Note that \( g\left( x\right) \) is the difference between \( f\left( x\right) \) and the corresponding \( y \) value on the line passing through \( \left( {a, f\left( a\right) }\right) \) and \( \left( {b, f\left( b\right) }\right) \) . Moroever, \( g \) is continuous on \( \left\lbrack {a, b}\right\rbrack \), differentiable on \( \left( {a, b}\right) \), and \( g\left( a\right) = 0 = g\left( b\right) \) . Hence Rolle’s theorem applies to \( g \), so there must exist a point \( c \) in \( \left( {a, b}\right) \) for which \( {g}^{\prime }\left( c\right) = 0 \) . Now \[ {g}^{\prime }\left( c\right) = {f}^{\prime }\left( x\right) - \frac{f\left( b\right) - f\left( a\right) }{b - a}, \] so we must have \[ 0 = {g}^{\prime }\left( c\right) = {f}^{\prime }\left( c\right) - \frac{f\left( b\right) - f\left( a\right) }{b - a}. \] That is, \[ {f}^{\prime }\left( c\right) = \frac{f\left( b\right) - f\left( a\right) }{b - a}, \] which is our desired connection between instantaneous and average rates of change, known as the mean-value theorem.
Yes
Consider the function \( f\left( x\right) = {x}^{3} - {3x} + 1 \) on the interval \( \left\lbrack {0,2}\right\rbrack \) . By the mean-value theorem, there must exist at least one point \( c \) in \( \left\lbrack {0,2}\right\rbrack \) for which \[ {f}^{\prime }\left( c\right) = \frac{f\left( 2\right) - f\left( 0\right) }{2 - 0} = \frac{3 - 1}{2} = 1. \]
Now \( {f}^{\prime }\left( x\right) = 3{x}^{2} - 3 \), so \( {f}^{\prime }\left( c\right) = 1 \) implies \( 3{c}^{2} - 3 = 1 \) . Hence \( c = \sqrt{\frac{4}{3}} \) . Note that this implies that the tangent line to the graph of \( f \) at \( x = \sqrt{\frac{4}{3}} \) is parallel to the line through the endpoints of the graph of \( f \), that is, the points \( \left( {0,1}\right) \) and \( \left( {2,3}\right) \) . See Figure 1.9.1.
Yes
Let \( f\left( x\right) = 2{x}^{3} - 3{x}^{2} - {12x} + 1 \) . Then
\[ {f}^{\prime }\left( x\right) = 6{x}^{2} - {6x} - {12} = 6\left( {{x}^{2} - x - 2}\right) = 6\left( {x - 2}\right) \left( {x + 1}\right) . \] Hence \( {f}^{\prime }\left( x\right) = 0 \) when \( x = - 1 \) and when \( x = 2 \) . Now \( x - 2 < 0 \) for \( x < 2 \) and \( x - 2 > 0 \) for \( x > 2 \), while \( x + 1 < 0 \) for \( x < - 1 \) and \( x + 1 > 0 \) when \( x > - 1 \) . Thus \( {f}^{\prime }\left( x\right) > 0 \) when \( x < - 1 \) and when \( x > 2 \), and \( {f}^{\prime }\left( x\right) < 0 \) when \( - 1 < x < 2 \) . It follows that \( f \) is increasing on the intervals \( \left( {-\infty , - 1}\right) \) and \( \left( {2,\infty }\right) \), and decreasing on the interval \( \left( {-1,2}\right) \) .
Yes
Let \( f\left( x\right) = x + 2\sin \left( x\right) \). Then \( {f}^{\prime }\left( x\right) = 1 + 2\cos \left( x\right) \), and so \( {f}^{\prime }\left( x\right) < 0 \) when, and only when,
\[ \cos \left( x\right) < - \frac{1}{2} \] For \( 0 \leq x \leq {2\pi } \), this occurs when, and only when, \[ \frac{2\pi }{3} < x < \frac{4\pi }{3} \] Since the cosine function has period \( {2\pi } \), if follows that \( {f}^{\prime }\left( x\right) < 0 \) when, and only when, \( x \) is in an interval of the form \[ \left( {\frac{2\pi }{3} + {2\pi n},\frac{4\pi }{3} + {2\pi n}}\right) \] for \( n = 0, \pm 1, \pm 2,\ldots \) Hence \( f \) is decreasing on these intervals and increasing on intervals of the form \[ \left( {-\frac{2\pi }{3} + {2\pi n},\frac{2\pi }{3} + {2\pi n}}\right) \]
Yes
Theorem 1.10.1. If \( f \) is a continuous function on a closed and bounded interval \( \left\lbrack {a, b}\right\rbrack \), then the maximum and minimum values of \( f \) occur at either (1) stationary points in the open interval \( \left( {a, b}\right) ,\left( 2\right) \) singular points in the open interval \( \left( {a, b}\right) \) , or (3) the endpoints of \( \left\lbrack {a, b}\right\rbrack \) .
Hence we have the following procedure for optimizing a continuous function \( f \) on an interval \( \left\lbrack {a, b}\right\rbrack \) :\n\n(1) Find all stationary and singular points of \( f \) in the open interval \( \left( {a, b}\right) \) .\n\n(2) Evaluate \( f \) at all stationary and singular points of \( \left( {a, b}\right) \), and at the endpoints \( a \) and \( b \) .\n\n(3) The maximum value of \( f \) is the largest value found in step (2) and the minimum value of \( f \) is the smallest value found in step (2).
Yes
Consider the function \( g\left( t\right) = t - 2\cos \left( t\right) \) defined on the interval \( \left\lbrack {0,{2\pi }}\right\rbrack \) .
\[ {g}^{\prime }\left( t\right) = 1 + 2\sin \left( t\right) \] and so \( {g}^{\prime }\left( t\right) = 0 \) when \[ \sin \left( t\right) = - \frac{1}{2} \] For \( t \) in the open interval \( \left( {0,{2\pi }}\right) \), this means that either \[ t = \frac{7\pi }{6} \] or \[ t = \frac{11\pi }{6} \] That is, the stationary points of \( g \) in \( \left( {0,{2\pi }}\right) \) are \( \frac{7\pi }{6} \) and \( \frac{11\pi }{6} \) . Note that \( g \) is differentiable at all points in \( \left( {0,{2\pi }}\right) \), and so there are no singular points of \( g \) in \( \left( {0,{2\pi }}\right) \) . Hence to identify the extreme values of \( g \) we need evaluate only \[ g\left( 0\right) = - 2 \] \[ g\left( \frac{7\pi }{6}\right) = \frac{7\pi }{6} + \sqrt{3} \approx {5.39724} \] \[ g\left( \frac{11\pi }{6}\right) = \frac{11\pi }{6} - \sqrt{3} \approx {4.02753} \] and \[ g\left( {2\pi }\right) = {2\pi } - 2 \approx {4.28319}. \] Thus \( g \) has a maximum value of \( {5.39724} \) at \( t = \frac{7\pi }{6} \) and a minimum value of -2 at \( t = 0 \) .
Yes
Suppose we inscribe a rectangle \( R \) inside the ellipse \( E \) with equation\n\n\[ 4{x}^{2} + {y}^{2} = {16} \]\n\nas shown in Figure 1.10.2. If we let \( \left( {x, y}\right) \) be the coordinates of the upper right-hand corner of \( R \), then the area of \( R \) is\n\n\[ A = \left( {2x}\right) \left( {2y}\right) = {4xy}. \]\n\nSince \( \left( {x, y}\right) \) is a point on the upper half of the ellipse, we have\n\n\[ y = \sqrt{{16} - 4{x}^{2}} = 2\sqrt{4 - {x}^{2}} \]\n\nand so\n\n\[ A = {8x}\sqrt{4 - {x}^{2}}. \]\n\nNow suppose we wish to find the dimensions of \( R \) which maximize its area. That is, we want to find the maximum value of \( A \) on the interval \( \left\lbrack {0,2}\right\rbrack \) .
Now\n\n\[ \frac{dA}{dx} = {8x} \cdot \frac{-{2x}}{2\sqrt{4 - {x}^{2}}} + 8\sqrt{4 - {x}^{2}} = \frac{-8{x}^{2} + 8\left( {4 - {x}^{2}}\right) }{\sqrt{4 - {x}^{2}}} = \frac{{32} - {16}{x}^{2}}{\sqrt{4 - {x}^{2}}}. \]\n\nHence \( \frac{dA}{dx} = 0 \), for \( x \) in \( \left( {0,2}\right) \), when \( {32} - {16}{x}^{2} = 0 \), that is, when \( x = \sqrt{2} \). Thus the maximum value of \( A \) must occur at \( x = 0, x = \sqrt{2} \), or \( x = 2 \). Evaluating, we have\n\n\[ {\left. A\right| }_{x = 0} = 0 \]\n\n\[ {\left. A\right| }_{x = \sqrt{2}} = 8\sqrt{2}\sqrt{2} = {16} \]\n\nand\n\n\[ {\left. A\right| }_{x = 2} = 0 \]\n\nHence the rectangle \( R \) inscribed in \( E \) with the largest area has area 16 when \( x = \sqrt{2} \) and \( y = 2\sqrt{2} \). That is, \( R \) is \( 2\sqrt{2} \) by \( 4\sqrt{2} \).
Yes
Consider the problem of finding the extreme values of\n\n\[ y = 4{x}^{2} + \frac{1}{x} \]\n\non the interval \( \left( {0,\infty }\right) \) .
Since\n\n\[ \frac{dy}{dx} = {8x} - \frac{1}{{x}^{2}} \]\n\nwe see that \( \frac{dy}{dx} < 0 \) when, and only when,\n\n\[ {8x} < \frac{1}{{x}^{2}} \]\n\nThis is equivalent to\n\n\[ {x}^{3} < \frac{1}{8} \]\n\nso \( \frac{dy}{dx} < 0 \) on \( \left( {0,\infty }\right) \) when, and only when, \( 0 < x < \frac{1}{2} \). Similarly, we see that \( \frac{dy}{dx} > 0 \) when, and only when, \( x > \frac{1}{2} \). Thus \( y \) is a decreasing function of \( x \) on the interval \( \left( {0,\frac{1}{2}}\right) \) and an increasing function of \( x \) on the interval \( \left( {\frac{1}{2},\infty }\right) \), and so must have an minimum value at \( x = \frac{1}{2} \). Note, however, that \( y \) does not have a maximum value: given any \( x = c \), if \( c < \frac{1}{2} \) we may find a larger value for \( y \) by using any \( 0 < x < c \), and if \( c > \frac{1}{2} \) we may find a larger value for \( y \) by using any \( x > c \). Thus we conclude that \( y \) has a minimum value of 3 at \( x = \frac{1}{2} \), but does not have a maximum value.
Yes
Consider the problem of finding the shortest distance from the point \( A = \left( {0,1}\right) \) to the parabola \( P \) with equation \( y = {x}^{2} \) . If \( \left( {x, y}\right) \) is a point on \( P \) (see Figure 1.10.4), then the distance from \( A \) to \( \left( {x, y}\right) \) is\n\n\[ D = \sqrt{{\left( x - 0\right) }^{2} + {\left( y - 1\right) }^{2}} = \sqrt{{x}^{2} + {\left( {x}^{2} - 1\right) }^{2}}.\]
Our problem then is to find the minimum value of \( D \) on the interval \( \left( {-\infty ,\infty }\right) \) . However, to make the problem somewhat easier to work with, we note that, since \( D \) is always a positive value, finding the minimum value of \( D \) is equivalent to finding the minimum value of \( {D}^{2} \) . So letting\n\n\[ z = {D}^{2} = {x}^{2} + {\left( {x}^{2} - 1\right) }^{2} = {x}^{2} + {x}^{4} - 2{x}^{2} + 1 = {x}^{4} - {x}^{2} + 1,\]\n\nour problem becomes that of finding the minimum value of \( z \) on \( \left( {-\infty ,\infty }\right) \) . Now\n\n\[ \frac{dz}{dx} = 4{x}^{3} - {2x} \]\n\nso \( \frac{dz}{dx} = 0 \) when, and only when,\n\n\[ 0 = 4{x}^{3} - {2x} = {2x}\left( {2{x}^{2} - 1}\right) ,\]\n\nthat is, when, and only when, \( x = - \frac{1}{\sqrt{2}}, x = 0 \), or \( x = \frac{1}{\sqrt{2}} \) . Now \( {2x} < 0 \) when \( - \infty < x < 0 \) and \( {2x} > 0 \) when \( 0 < x < \infty \), whereas \( 2{x}^{2} - 1 < 0 \) when \( - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}} \) and \( 2{x}^{2} - 1 > 0 \) either when \( x < - \frac{1}{\sqrt{2}} \) or when \( x > \frac{1}{\sqrt{2}} \) . Taking the product of \( {2x} \) and \( 2{x}^{2} - 1 \), we see that \( \frac{dz}{dx} < 0 \) when \( x < - \frac{1}{\sqrt{2}} \) and when \( 0 < x < \frac{1}{\sqrt{2}} \), and \( \frac{dz}{dx} > 0 \) when \( - \frac{1}{\sqrt{2}} < x < 0 \) and when \( x > \frac{1}{\sqrt{2}} \) . It follows that \( z \) is a decreasing function of \( x \) on \( \left( {-\infty , - \frac{1}{\sqrt{2}}}\right) \) and on \( \left( {0,\frac{1}{\sqrt{2}}}\right) \), and is an increasing function of \( x \) on \( \left( {-\frac{1}{\sqrt{2}},0}\right) \) and on \( \left( {\frac{1}{\sqrt{2}},\infty }\right) \) .\n\nIt now follows that \( z \) has a local minimum of \( \frac{3}{4} \) at \( x = - \frac{1}{\sqrt{2}} \), a local maximum of 1 at \( x = 0 \), and another local minimum of \( \frac{3}{4} \) at \( x = \frac{1}{\sqrt{2}} \) . Note that \( \frac{3}{4} \) is the minimum value of \( z \) both on the the interval \( \left( {-\infty ,0}\right) \) and on the interval \( \left( {0,\infty }\right) \) ; since \( z \) has a local maximum of 1 at \( x = 0 \), it follows that \( \frac{3}{4} \) is in fact the minimum value of \( z \) on \( \left( {-\infty ,\infty }\right) \) . Hence we may conclude that the minimum distance from \( A \) to \( P \) is \( \frac{\sqrt{3}}{2} \), and the points on \( P \) closest to \( A \) are \( \left( {-\frac{1}{\sqrt{2}},\frac{1}{2}}\right) \) and \( \left( {\frac{1}{\sqrt{2}},\frac{1}{2}}\right) \) . Note, however, that \( z \) does not have a maximum value, even though it has a local maximum value at \( x = 0 \) .
Yes
Using \( a = 2 \) and \( b = 1 \) ,(1.11.1) becomes, after multiplying both sides of the equation by 4 ,\n\n\[ \n{x}^{2} + 4{y}^{2} = 4 \n\]
Differentiating both sides of this equation by \( x \), and remembering to use the chain rule when differentiating \( {y}^{2} \), we obtain\n\n\[ \n{2x} + {8y}\frac{dy}{dx} = 0 \n\]\n\nSolving for \( \frac{dy}{dx} \), we have\n\n\[ \n\frac{dy}{dx} = - \frac{x}{4y} \n\]\n\nwhich is defined whenever \( y \neq 0 \) (corresponding to the points \( \left( {-2,0}\right) \) and \( \left( {2,0}\right) \) , at which, as we saw above, the slope of the tangent lines is undefined). For\n\nexample, we have\n\n\[ \n{\left. \frac{dy}{dx}\right| }_{\left( {x, y}\right) = \left( {1,\frac{\sqrt{3}}{2}}\right) } = - \frac{1}{2\sqrt{3}} \n\]\n\nand so the equation of the line tangent to the ellipse at the point \( \left( {1,\frac{\sqrt{3}}{2}}\right) \) is\n\n\[ \ny = - \frac{1}{2\sqrt{3}}\left( {x - 1}\right) + \frac{\sqrt{3}}{2}. \n\]\n\nSee Figure 1.11.2.
Yes
Consider the hyperbola \( H \) with equation\n\n\[ \n{x}^{2} - {4xy} + {y}^{2} = 4 \n\]
Differentiating both sides of the equation, remembering to treat \( y \) as a function of \( x \), we have\n\n\[ \n{2x} - {4x}\frac{dy}{dx} - {4y} + {2y}\frac{dy}{dx} = 0. \n\]\n\nSolving for \( \frac{dy}{dx} \), we see that\n\n\[ \n\frac{dy}{dx} = \frac{{4y} - {2x}}{{2y} - {4x}} = \frac{{2y} - x}{y - {2x}}. \n\]\n\nFor example,\n\n\[ \n{\left. \frac{dy}{dx}\right| }_{\left( {x, y}\right) = \left( {2,0}\right) } = \frac{2}{4} = \frac{1}{2}. \n\]\n\nHence the equation of the line tangent to \( H \) at \( \left( {2,0}\right) \) is\n\n\[ \ny = \frac{1}{2}\left( {x - 2}\right) \n\]
Yes
Suppose oil is being poured onto the surface of a calm body of water. As the oil spreads out, it forms a right circular cylinder whose volume is\n\n\[ V = \pi {r}^{2}h \]\n\nwhere \( r \) and \( h \) are, respectively, the radius and height of the cylinder. Now suppose the oil is being poured out at a rate of 10 cubic centimeters per second and that the height remains a constant 0.25 centimeters. Then the volume of the cylinder is increasing at a rate of 10 cubic centimeters per second, so\n\n\[ \frac{dV}{dt} = {10}{\mathrm{\;{cm}}}^{3}/\mathrm{{sec}} \]\n\nat any time \( t \) .
Now with \( h = {0.25} \),\n\n\[ V = {0.25\pi }{r}^{2} \]\n\nso\n\n\[ \frac{dV}{dt} = \frac{1}{2}{\pi r}\frac{dr}{dt} \]\n\nHence\n\n\[ \frac{dr}{dt} = \frac{2}{\pi r}\frac{dV}{dt} = \frac{20}{\pi r}\mathrm{\;{cm}}/\mathrm{{sec}}. \]\n\nFor example, if \( r = {10} \) centimeters at some time \( t = {t}_{0} \), then\n\n\[ {\left. \frac{dr}{dt}\right| }_{t = {t}_{0}} = \frac{20}{10\pi } = \frac{2}{\pi } \approx {0.6366}\mathrm{\;{cm}}/\mathrm{{sec}}. \]
Yes
Suppose ship \( A \), headed due north at 20 miles per hour, and ship \( B \), headed due east at 30 miles per hour, both pass through the same point \( P \) in the ocean, ship \( A \) at noon and ship \( B \) two hours later (see Figure 1.11.4). If we let \( x \) denote the distance from \( A \) to \( {Pt} \) hours after noon, \( y \) denote the distance from \( B \) to \( {Pt} \) hours after noon, and \( z \) denote the distance from \( A \) to \( {Bt} \) hours after noon, then, by the Pythagorean theorem,\n\n\[ \n{z}^{2} = {x}^{2} + {y}^{2} \n\]
Differentiating this equation with respect to \( t \), we find\n\n\[ \n{2z}\frac{dz}{dt} = {2x}\frac{dx}{dt} + {2y}\frac{dy}{dt} \n\]\n\nor\n\n\[ \nz\frac{dz}{dt} = x\frac{dx}{dt} + y\frac{dy}{dt} \n\]\n\nFor example, at 4 in the afternoon, that is, when \( t = 4 \), we know that\n\n\[ \nx = \left( 4\right) \left( {20}\right) = {80}\text{miles,} \n\]\n\n\[ \ny = \left( 2\right) \left( {30}\right) = {60}\text{miles,} \n\]\n\nand\n\n\[ \nz = \sqrt{{80}^{2} + {60}^{2}} = {100}\text{ miles,} \n\]\n\nso\n\n\[ \n{100}\frac{dz}{dt} = {80}\frac{dx}{dt} + {60}\frac{dy}{dt}\text{ miles/hour. } \n\]\n\nSince at any time \( t \) ,\n\n\[ \n\frac{dx}{dt} = {20}\text{ miles }/\text{ hour } \n\]\n\nand\n\n\[ \n\frac{dy}{dt} = {30}\text{ miles }/\text{ hour,} \n\]\n\nwe have\n\n\[ \n{\left. \frac{dz}{dt}\right| }_{t = 4} = \frac{\left( {80}\right) \left( {20}\right) + \left( {60}\right) \left( {30}\right) }{100} = {34}\text{ miles/hour. } \n\]
Yes
If \( y = 4{x}^{5} - 3{x}^{2} + 4 \), then
\[ \frac{dy}{dx} = {20}{x}^{4} - {6x} \] and so \[ \frac{{d}^{2}y}{d{x}^{2}} = {80}{x}^{3} - 6 \]
Yes
If\n\n\[ f\\left( x\\right) = \\frac{1}{x} \]\n\nthen\n\n\[ {f}^{\\prime }\\left( x\\right) = - \\frac{1}{{x}^{2}} \]
\[ {f}^{\\prime \\prime }\\left( x\\right) = \\frac{2}{{x}^{3}} \]\n\n\[ {f}^{\\prime \\prime \\prime }\\left( x\\right) = - \\frac{6}{{x}^{4}} \]\n\nand\n\n\[ {f}^{\\left( 4\\right) }\\left( x\\right) = \\frac{24}{{x}^{5}}. \]
No
If \( f\left( x\right) = 2{x}^{3} - 3{x}^{2} - {12x} + 1 \), then
\[ {f}^{\prime }\left( x\right) = 6{x}^{2} - {6x} - {12} \] and \[ {f}^{\prime \prime }\left( x\right) = {12x} - 6 \] Hence \( {f}^{\prime \prime }\left( x\right) < 0 \) when \( x < \frac{1}{2} \) and \( {f}^{\prime \prime }\left( x\right) > 0 \) when \( x > \frac{1}{2} \), and so the graph of \( f \) is concave downward on the interval \( \left( {-\infty ,\frac{1}{2}}\right) \) and concave upward on the interval \( \left( {\frac{1}{2},\infty }\right) \) .
Yes
If \( f\left( x\right) = {x}^{4} - {x}^{3} \), then
\[ {f}^{\prime }\left( x\right) = 4{x}^{3} - 3{x}^{2} = {x}^{2}\left( {{4x} - 3}\right) \] and \[ {f}^{\prime \prime }\left( x\right) = {12}{x}^{2} - {6x} = {6x}\left( {{2x} - 1}\right) . \] Hence \( f \) has stationary points \( x = 0 \) and \( x = \frac{3}{4} \) . Since \[ {f}^{\prime \prime }\left( 0\right) = 0 \] and \[ {f}^{\prime \prime }\left( \frac{3}{4}\right) = \frac{9}{4} > 0 \] we see that \( f \) has a local minimum at \( x = \frac{3}{4} \) . Although the second derivative test tells us nothing about the nature of the critical point \( x = 0 \), we know, since \( f \) has a local minimum at \( x = \frac{3}{4} \), that \( f \) is decreasing on \( \left( {0,\frac{3}{4}}\right) \) and increasing on \( \left( {\frac{3}{4},\infty }\right) \) . Moreover, since \( {4x} - 3 < 0 \) for all \( x < 0 \), it follows that \( {f}^{\prime }\left( x\right) < 0 \) for all \( x < 0 \), and so \( f \) is also decreasing on \( \left( {-\infty ,0}\right) \) . Hence \( f \) has neither a local maximum nor a local minimum at \( x = 0 \) . Finally, since \( {f}^{\prime \prime }\left( x\right) < 0 \) for \( 0 < x < \frac{1}{2} \) and \( {f}^{\prime \prime }\left( x\right) > 0 \) for all other \( x \), we see that the graph of \( f \) is concave downward on the interval \( \left( {0,\frac{1}{2}}\right) \) and concave upward on the intervals \( \left( {-\infty ,0}\right) \) and \( \left( {\frac{1}{2},\infty }\right) \) . See Figure 1.12.2.
Yes
If \( f\left( x\right) = 3{x}^{2} \), then \( F\left( x\right) = {x}^{3} \) is an integral of \( f \) on \( \left( {-\infty ,\infty }\right) \) since \( {F}^{\prime }\left( x\right) = 3{x}^{2} \) for all \( x \).
However, note that \( F \) is not the only integral of \( f \) : for other examples, both \( G\left( x\right) = {x}^{3} + 4 \) and \( H\left( x\right) = {x}^{3} + {15} \) are integrals of \( f \) as well. Indeed, since the derivative of a constant is 0 the function \( L\left( x\right) = {x}^{3} + c \) is an integral of \( f \) for any constant \( c \) .
Yes
Since\n\n\[ \frac{d}{dx}\left( {\frac{3}{2}{x}^{2} + {4x}}\right) = {3x} + 4 \]\n\nany integral of \( f\left( x\right) = {3x} + 4 \) must be of the form
\n\n\[ F\left( x\right) = \frac{3}{2}{x}^{2} + {4x} + c \]\n\nfor some constant \( c \) .
Yes
Since\n\n\[ \frac{d}{dx}\left( {4{x}^{3} - \sin \left( x\right) }\right) = {12}{x}^{2} - \cos \left( x\right) ,\]
it follows that\n\n\[ \int \left( {{12}{x}^{2} - \cos \left( x\right) }\right) {dx} = 4{x}^{3} - \sin \left( x\right) + c, \]
Yes
Suppose we wish to find the integral \( F\\left( x\\right) \) of \( f\\left( x\\right) = 5{x}^{2} - 7 \) for which \( F\\left( 1\\right) = {10} \).
Now\n\n\\[ \n\\int \\left( {5{x}^{2} - 7}\\right) {dx} = \\frac{5}{3}{x}^{3} - {7x} + c \n\\]\n\nso\n\n\\[ \nF\\left( x\\right) = \\frac{5}{3}{x}^{3} - {7x} + c \n\\]\n\nfor some constant \( c \). Now we want\n\n\\[ \n{10} = F\\left( 1\\right) = \\frac{5}{3} - 7 + c \n\\]\n\nso we must have\n\n\\[ \nc = {10} + 7 - \\frac{5}{3} = \\frac{46}{3}. \n\\]\n\nHence the desired integral is\n\n\\[ \nF\\left( x\\right) = \\frac{5}{3}{x}^{3} - {7x} + \\frac{46}{3}. \n\\]
Yes
Suppose the velocity of an object oscillating at the end of a spring is\n\n\[ v\left( t\right) = - {20}\sin \left( {5t}\right) \text{centimeters/second.} \]\n\nIf \( x\left( t\right) \) is the position of the object at time \( t \), then
\[ x\left( t\right) = - \int {20}\sin \left( {5t}\right) {dt} = 4\cos \left( {5t}\right) + c\text{ centimeters } \]\n\nfor some constant \( c \) . If in addition we know that the object was initially 4 centimeters from the origin, that is, that \( x\left( 0\right) = 4 \), then we would have\n\n\[ 4 = x\left( 0\right) = 4 + c. \]\n\nHence we would have \( c = 0 \), and so\n\n\[ x\left( t\right) = 4\cos \left( {5t}\right) \text{ centimeters } \]\n\ncompletely specifies the position of the object at time \( t \) .
Yes
In an earlier example, we had \( v\left( t\right) = - {20}\sin \left( {5t}\right) \) centimeters per second and \( x\left( 0\right) = 4 \) centimeters. To approximate \( x\left( 2\right) \), we will divide \( \left\lbrack {0,2}\right\rbrack \) into four equal subintervals, each of length 0.5.
That is, we will take\n\n\[ \n{t}_{0} = {0.0},{t}_{1} = {0.5},{t}_{2} = 1,{t}_{3} = {1.5},{t}_{4} = 2\text{,}\n\]\n\nand\n\n\[ \n\Delta {t}_{1} = {0.5},\Delta {t}_{2} = {0.5},\Delta {t}_{3} = {0.5},\Delta {t}_{4} = {0.5}\text{.}\n\]\n\nGood choices for points to evaluate \( v\left( t\right) \) are the midpoints of the subintervals. In this case, that means we should take\n\n\[ \n{t}_{1}^{ * } = {0.25},{t}_{2}^{ * } = {0.75},{t}_{3}^{ * } = {1.25},{t}_{4}^{ * } = {1.75}\text{.}\n\]\n\nThen we have\n\n\[ \nx\left( 2\right) \approx x\left( 0\right) + v\left( {0.25}\right) \Delta {t}_{1} + v\left( {0.75}\right) \Delta {t}_{2} + v\left( {1.25}\right) \Delta {t}_{3} + v\left( {1.75}\right) \Delta {t}_{4}\n\]\n\n\[ \n= 4 - {20}\sin \left( {1.25}\right) \left( {0.5}\right) - {20}\sin \left( {3.75}\right) \left( {0.5}\right) - {20}\sin \left( {6.25}\right) \left( {0.5}\right)\n\]\n\n\[ \n- {20}\sin \left( {8.75}\right) \left( {0.5}\right)\n\]\n\n\[ \n\approx - {5.6897}\n\]\n\nNote that, from our earlier work, we know that the exact answer is\n\n\[ \nx\left( 2\right) = 4\cos \left( {10}\right) \approx - {3.3563}.\n\]
Yes
From the observation that\n\n\[ f\left( x\right) = \frac{1}{1 + {x}^{2}} \]\n\nis increasing on \( \left( {-\infty ,0\rbrack \text{and decreasing on}\lbrack 0,\infty }\right) \), it is easy to see that\n\n\[ \frac{1}{2} \leq \frac{1}{1 + {x}^{2}} \leq 1 \]\n\nfor all \( x \) in \( \left\lbrack {-1,1}\right\rbrack \) . Hence\n\n\[ 1 \leq {\int }_{-1}^{1}\frac{1}{1 + {x}^{2}}{dx} \leq 2 \]
We will eventually see, in Example 2.6.20, that\n\n\[ {\int }_{-1}^{1}\frac{1}{1 + {x}^{2}}{dx} = \frac{\pi }{2} \approx {1.5708}. \]
No
If \( \alpha \) is any infinitesimal, than \( \alpha \sim o\left( 1\right) \)
since \( \frac{\alpha }{1} = \alpha \) is an infinitesimal.
Yes
If \( \epsilon \) is any nonzero infinitesimal, then \( {\epsilon }^{2} \sim o\left( \epsilon \right) \)
\[ \frac{{\epsilon }^{2}}{\epsilon } = \epsilon \simeq 0 \]
Yes
Theorem 2.4.1. Suppose \( B \) is a function that for any real numbers \( a < b \) in an open interval \( I \) assigns a value \( B\left( {a, b}\right) \) and satisfies\n\n- for any \( a < c < b \) in \( I, B\left( {a, b}\right) = B\left( {a, c}\right) + B\left( {c, b}\right) \), and\n\n- for some continuous function \( h \) and any nonzero infinitesimal \( {dx} \),\n\n\[ B\left( {x, x + {dx}}\right) - h\left( x\right) {dx} \sim o\left( {dx}\right) \]\n\nfor any \( x \) in \( I \) .\n\nThen\n\n\[ B\left( {a, b}\right) = {\int }_{a}^{b}h\left( x\right) {dx} \]\n\nfor any real numbers \( a \) and \( b \) in \( I \) .
We will look at several applications of definite integrals in the next section. For now, we note how this theorem provides a method for evaluating integrals. Namely, given a function \( f \) which is differentiable on an open interval \( I \), define, for every \( a < b \) in \( I \),\n\n\[ B\left( {a, b}\right) = f\left( b\right) - f\left( a\right) .\n\nThen, for any \( a, b \), and \( c \) in \( I \) with \( a < c < b \),\n\n\[ B\left( {a, b}\right) = f\left( b\right) - f\left( a\right) \]\n\n\[ = \left( {f\left( b\right) - f\left( c\right) }\right) + \left( {f\left( c\right) - f\left( a\right) }\right) \]\n\n\[ = B\left( {a, c}\right) + B\left( {c, b}\right) \text{.} \]\n\nMoreover, for any infinitesimal \( {dx} \) and any \( x \) in \( I \),\n\n\[ \frac{B\left( {x, x + {dx}}\right) }{dx} = \frac{f\left( {x + {dx}}\right) - f\left( x\right) }{dx} \simeq {f}^{\prime }\left( x\right) ,\]\n\nfrom which it follows that\n\n\[ \frac{B\left( {x, x + {dx}}\right) - {f}^{\prime }\left( x\right) {dx}}{dx} \]\n\n is an infinitesimal. Hence\n\n\[ B\left( {x,{dx}}\right) - {f}^{\prime }\left( x\right) {dx} \sim o\left( {dx}\right) ,\]\n\nand so it follows from Theorem 2.4.1 that\n\n\[ f\left( b\right) - f\left( a\right) = B\left( {a, b}\right) = {\int }_{a}^{b}{f}^{\prime }\left( x\right) {dx}. \]
Yes
To evaluate\n\n\[ \n{\int }_{0}^{1}{xdx} \n\]
we first note that \( g\left( x\right) = x \) is the derivative of \( f\left( x\right) = \frac{1}{2}{x}^{2} \) . Hence, by Theorem 2.4.2,\n\n\[ \n{\int }_{0}^{1}{xdx} = f\left( 1\right) - f\left( 0\right) = \frac{1}{2} - 0 = \frac{1}{2} \n\]
Yes
Since\n\n\[ \int {x}^{2}{dx} = \frac{1}{3}{x}^{3} + c \]
we have\n\n\[ {\int }_{1}^{2}{x}^{2}{dx} = {\left. \frac{1}{3}{x}^{3}\right| }_{1}^{2} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}. \]
Yes
Example 2.4.5. Since\n\n\\[ \n\\int - {20}\\sin \\left( {5x}\\right) {dx} = 4\\cos \\left( {5x}\\right) + c, \n\\]\n\nwe have\n\n\\[ \n{\\int }_{0}^{2\\pi } - {20}\\sin \\left( {5t}\\right) {dt} = {\\left. 4\\cos \\left( 5t\\right) \\right| }_{0}^{2\\pi } = 4 - 4 = 0. \n\\]
\\[ \n{\\int }_{0}^{2\\pi } - {20}\\sin \\left( {5t}\\right) {dt} = {\\left. 4\\cos \\left( 5t\\right) \\right| }_{0}^{2\\pi } = 4 - 4 = 0. \n\\]
Yes
Let \( A \) be the area of the region \( R \) bounded by the curves with equations \( y = {x}^{2} \) and \( y = x + 2 \) . Note that these curves intersect when \( {x}^{2} = x + 2 \), that is when\n\n\[ 0 = {x}^{2} - x - 2 = \left( {x + 1}\right) \left( {x - 2}\right) . \]\n\nHence they intersect at the points \( \left( {-1,1}\right) \) and \( \left( {2,4}\right) \), and so \( R \) is the region in the plane bounded above by the curve \( y = x + 2 \), below by the curve \( y = {x}^{2} \), on the right by \( x = - 1 \), and on the left by \( x = 2 \) . See Figure 2.5.2. Thus we have\n\n\[ A = {\int }_{-1}^{2}\left( {x + 2 - {x}^{2}}\right) {dx} \]
\[ = {\left. \left( \frac{1}{2}{x}^{2} + 2x - \frac{1}{3}{x}^{3}\right) \right| }_{-1}^{2} \]\n\n\[ = \left( {2 + 4 - \frac{8}{3}}\right) - \left( {\frac{1}{2} - 2 + \frac{1}{3}}\right) \]\n\n\[ = \frac{9}{2}\text{.} \]
Yes
If \( A \) is the area of the region \( R \) beneath the graph of \( y = \sin \left( x\right) \) over the interval \( \left\lbrack {0,\pi }\right\rbrack \)
\[ A = {\int }_{0}^{\pi }\sin \left( x\right) {dx} = - {\left. \cos \left( x\right) \right| }_{0}^{\pi } = 1 + 1 = 2. \]
Yes
Example 2.5.4. The unit sphere \( S \), with center at the origin, is the set of all points \( \left( {x, y, z}\right) \) satisfying \( {x}^{2} + {y}^{2} + {z}^{2} = 1 \) (see Figure 2.5.7). For a fixed value of \( z \) between -1 and 1, the cross section \( R\left( z\right) \) of \( S \) perpendicular to the \( z \) -axis is the set of points \( \left( {x, y}\right) \) satisfying the equation \( {x}^{2} + {y}^{2} = 1 - {z}^{2} \) . That is, \( R\left( z\right) \) is a circle with radius \( \sqrt{1 - {z}^{2}} \) . Hence \( R\left( z\right) \) has area
\[ A\left( z\right) = \pi \left( {1 - {z}^{2}}\right) \] If \( V \) is the volume of \( S \), it now follows that \[ V = {\int }_{-1}^{1}\pi \left( {1 - {z}^{2}}\right) {dx} \] \[ = {\left. \pi \left( z - \frac{1}{3}{z}^{3}\right) \right| }_{-1}^{1} \] \[ = \pi \left( {\frac{2}{3} + \frac{2}{3}}\right) \] \[ = \frac{4\pi }{3}\text{.} \]
Yes
Let \( T \) be the region bounded by the \( z \) -axis and the graph of \( z = {x}^{2} \) for \( 0 \leq x \leq 1 \) . Let \( B \) be the three-dimensional body created by rotating \( T \) about the \( z \) -axis. See Figure 2.5.8. If \( R\left( z\right) \) is a cross section of \( B \) perpendicular to the \( z \) -axis, then \( R\left( z\right) \) is a circle with radius \( \sqrt{z} \) . Thus, if \( A\left( z\right) \) is the area of \( R\left( z\right) \), we have\n\n\[ A\left( z\right) = {\pi z}. \]
If \( V \) is the volume of \( B \), then\n\n\[ V = {\int }_{0}^{1}{\pi zdz} = {\left. \pi \frac{{z}^{2}}{2}\right| }_{0}^{1} = \frac{\pi }{2}. \]
Yes
Example 2.5.6. Let \( T \) be the region bounded by the graphs of \( z = {x}^{4} \) and \( x = {x}^{2} \) for \( 0 \leq x \leq 1 \) . Let \( B \) be the three-dimensional body created by rotating \( T \) about the \( z \) -axis. See Figure 2.5.9. If \( R\left( z\right) \) is a cross section of \( B \) perpendicular to the \( z \) -axis, then \( R\left( z\right) \) is the region between the circles with radii \( {z}^{\frac{1}{4}} \) and \( \sqrt{z} \) , an annulus. Hence if \( A\left( z\right) \) is the area of \( R\left( z\right) \), then
\[ A\left( z\right) = \pi {\left( {z}^{\frac{1}{4}}\right) }^{2} - \pi {\left( \sqrt{z}\right) }^{2} = \pi \left( {\sqrt{z} - z}\right) . \] If \( V \) is the volume of \( B \), then \[ V = {\int }_{0}^{1}\pi \left( {\sqrt{z} - z}\right) {dz} = {\left. \pi \left( \frac{2}{3}{z}^{\frac{3}{2}} - \frac{1}{2}{z}^{2}\right) \right| }_{0}^{1} = \pi \left( {\frac{2}{3} - \frac{1}{2}}\right) = \frac{\pi }{6}. \]
Yes
Let \( C \) be the graph of \( f\left( x\right) = {x}^{\frac{3}{2}} \) over the interval \( \left\lbrack {0,1}\right\rbrack \) (see Figure 2.5.11) and let \( L \) be the length of \( C \) . Since \( {f}^{\prime }\left( x\right) = \frac{3}{2}\sqrt{x} \), we have\n\n\[ L = {\int }_{0}^{1}\sqrt{1 + \frac{9}{4}x}{dx} \]
Now\n\[ \int \sqrt{x}{dx} = \frac{2}{3}{x}^{\frac{3}{2}} + c \]\nso we might expect an integral of \( \sqrt{1 + \frac{9}{4}} \) to be\n\n\[ \frac{2}{3}{\left( 1 + \frac{9}{4}x\right) }^{\frac{3}{2}} + c \]\n\nHowever,\n\n\[ \frac{d}{dx}\frac{2}{3}{\left( 1 + \frac{9}{4}x\right) }^{\frac{3}{2}} = \frac{9}{4}\sqrt{1 + \frac{9}{4}x} \]\n\nand so, dividing our original guess by \( \frac{9}{4} \), we have\n\n\[ \int \sqrt{1 + \frac{9}{4}x}{dx} = \frac{8}{27}{\left( 1 + \frac{9}{4}x\right) }^{\frac{3}{2}} + c, \]\n\nwhich may be verified by differentiation. Hence\n\n\[ L = {\int }_{0}^{1}\sqrt{1 + \frac{9}{4}x}{dx} \]\n\n\[ = {\left. \frac{8}{27}{\left( 1 + \frac{9}{4}x\right) }^{\frac{3}{2}}\right| }_{0}^{1} \]\n\n\[ = \frac{8}{27}\left( {\frac{{13}\sqrt{13}}{8} - 1}\right) \]\n\n\[ = \frac{{13}\sqrt{13} - 8}{27} \]\n\n\[ \approx {1.4397}\text{.} \]
Yes
Example 2.5.8. Let \( C \) be the graph of \( f\left( x\right) = {x}^{2} \) over the interval \( \left\lbrack {0,1}\right\rbrack \) (see Figure 2.5.12) and let \( L \) be the length of \( C \) . Since \( {f}^{\prime }\left( x\right) = {2x} \) ,
\[ L = {\int }_{0}^{1}\sqrt{1 + 4{x}^{2}}{dx} \]\n\nHowever, we do not have the tools at this time to evaluate this definite integral exactly. Still, we may use (2.5.24) to find an approximation for \( L \) . For example, if we take \( N = {100} \) in (2.5.24), then \( {\Delta x} = {0.01} \) and\n\n\[ \Delta {y}_{i} = f\left( {0.01i}\right) - f\left( {{0.01}\left( {i - 1}\right) }\right) \]\n\n\[ = {\left( {0.01}i\right) }^{2} - {\left( {0.01}\left( i - 1\right) \right) }^{2} \]\n\n\[ = {0.0001}\left( {{i}^{2} - \left( {{i}^{2} - {2i} + 1}\right) }\right) \]\n\n\[ = {0.0001}\left( {{2i} - 1}\right) \]\n\n\( \left( {2.5.29}\right) \)\n\nfor \( i = 1,2,\ldots, N \), and so\n\n\[ L \approx \mathop{\sum }\limits_{{i = 1}}^{{100}}\sqrt{{\left( \Delta x\right) }^{2} + {\left( \Delta {y}_{i}\right) }^{2}} \approx {1.4789}. \]\n\n![0082a627-46a4-4524-996b-e0e9e5c4008f_97_0.jpg](images/0082a627-46a4-4524-996b-e0e9e5c4008f_97_0.jpg)\n\nFigure 2.5.12: Graph of \( y = {x}^{2} \) over \( \left\lbrack {0,1}\right\rbrack \)
No
To evaluate\n\n\[ \int {2x}\sqrt{1 + {x}^{2}}{dx} \]
let\n\n\[ u = 1 + {x}^{2} \]\n\n\[ {du} = {2xdx}\text{.} \]\n\nThen\n\n\[ \int {2x}\sqrt{1 + {x}^{2}}{dx} = \int \sqrt{u}{du} = \frac{2}{3}{u}^{\frac{3}{2}} + c = \frac{2}{3}{\left( 1 + {x}^{2}\right) }^{\frac{3}{2}} + c. \]
Yes
To evaluate\n\n\[ \int x\sin \left( {x}^{2}\right) {dx} \]
let\n\n\[ u = {x}^{2} \]\n\n\[ {du} = {2xdx} \]\n\nNote that in this case we cannot make a direct substitution of \( u \) and \( {du} \) since \( {du} = {2xdx} \) does not appear as part of the integral. However, \( {du} \) differs from \( {xdx} \) by only a constant factor, and we may rewrite \( {du} = {2xdx} \) as\n\n\[ \frac{1}{2}{du} = {xdx} \]\n\nNow we may perform the change of variable:\n\n\[ \int x\sin \left( u\right) {dx} = \frac{1}{2}\int \sin \left( u\right) {du} = - \frac{1}{2}\cos \left( u\right) + c = - \frac{1}{2}\cos \left( {x}^{2}\right) + c. \]
Yes
Note that we could evaluate the integral\n\n\[ \int \cos \left( {4x}\right) {dx} \]
using the substitution\n\n\[ u = {4x} \]\n\n\[ {du} = {4dx} \]\n\nwhich gives us\n\n\[ \int \cos \left( {4x}\right) {dx} = \frac{1}{4}\int \cos \left( u\right) {du} = \frac{1}{4}\sin \left( u\right) + c = \frac{1}{4}\sin \left( {4x}\right) + c. \]
Yes
To evaluate\n\n\[ \int {\cos }^{2}\left( {5x}\right) \sin \left( {5x}\right) {dx} \]
let\n\n\[ u = \cos \left( {5x}\right) \]\n\n\[ {du} = - 5\sin \left( {5x}\right) {dx} \]\n\nThen\n\n\[ \int {\cos }^{2}\left( {5x}\right) \sin \left( {5x}\right) {dx} = - \frac{1}{5}\int {u}^{2}{du} = - \frac{1}{15}{u}^{3} + c = - \frac{1}{15}{\cos }^{3}\left( {5x}\right) + c. \]
Yes
To evaluate\n\n\[ \n{\int }_{0}^{1}\frac{x}{\sqrt{1 + {x}^{2}}}{dx} \n\]
let\n\n\[ \nu = 1 + {x}^{2} \]\n\n\[ {du} = {2xdx}\text{.} \]\n\nNote that when \( x = 0, u = 1 \), and when \( x = 1, u = 2 \) . Hence\n\n\[ \n{\int }_{0}^{1}\frac{x}{\sqrt{1 + {x}^{2}}}{dx} = \frac{1}{2}{\int }_{1}^{2}\frac{1}{\sqrt{u}}{du} = {\left. \sqrt{u}\right| }_{1}^{2} = \sqrt{2} - 1. \n\]
Yes
To evaluate\n\n\[ \n{\int }_{0}^{\frac{\pi }{4}}{\cos }^{2}\left( {2x}\right) \sin \left( {2x}\right) {dx} \n\]
let\n\n\[ \nu = \cos \left( {2x}\right) \]\n\n\[ {du} = - 2\sin \left( {2x}\right) {dx} \]\n\nThen \( u = 1 \) when \( x = 0 \) and \( u = 0 \) when \( x = \frac{\pi }{4} \), so\n\n\[ \n{\int }_{0}^{\frac{\pi }{4}}{\cos }^{2}\left( {2x}\right) \sin \left( {2x}\right) {dx} = - \frac{1}{2}{\int }_{1}^{0}{u}^{2}{du}. \n\]\n\nNote that, after making the change of variable, the upper limit of integration is less than the lower limit of integration, a situation not covered by our definition of the definite integral or our statement of the fundamental theorem of calculus. However, the result on substitutions above shows that we will obtain the correct result if we apply the fundamental theorem as usual. Moreover, this points toward an extension of our definition: if \( b < a \), then we should have\n\n\[ \n{\int }_{a}^{b}f\left( x\right) {dx} = - {\int }_{b}^{a}f\left( x\right) {dx} \n\]\n\n(2.6.6)\n\nwhich is consistent with both the fundamental theorem of calculus and with the definition of the definite integral (since, if \( b < a,{dx} = \frac{b - a}{N} < 0 \) for any positive infinite integer \( N \) ). With this, we may finish the evaluation:\n\n\[ \n{\int }_{0}^{\frac{\pi }{4}}{\cos }^{2}\left( {2x}\right) \sin \left( {2x}\right) {dx} = - \frac{1}{2}{\int }_{1}^{0}{u}^{2}{du} = {\left. \frac{1}{2}{\int }_{0}^{1}{u}^{2}du = \frac{{u}^{3}}{6}\right| }_{0}^{1} = \frac{1}{6}. \n\]
Yes
Consider the integral\n\n\[ \int x\cos \left( x\right) {dx} \]
If we let \( u = x \) and \( {dv} = \cos \left( x\right) {dx} \), then \( {du} = {dx} \) and we may let \( v = \sin \left( x\right) \) . Note that we have some choice for \( v \) since the only requirement is that it is an integral of \( \cos \left( x\right) \) . Using (2.6.10), we have\n\n\[ \int x\sin \left( x\right) {dx} = {uv} - \int {vdu} = x\sin \left( x\right) - \int \sin \left( x\right) {dx} = x\sin \left( x\right) + \cos \left( x\right) + c. \]
No
To evaluate\n\n\[ \n{\int }_{0}^{\pi }{x}^{2}\sin \left( x\right) {dx} \n\]
let\n\n\[ \nu = {x}^{2}\;{dv} = \sin \left( x\right) {dx} \]\n\n\[ {du} = {2xdx}\;v = - \cos \left( x\right) . \]\n\nThen, using (2.6.11),\n\n\[ {\int }_{0}^{\pi }{x}^{2}\sin \left( x\right) {dx} = - {\left. {x}^{2}\cos \left( x\right) \right| }_{0}^{\pi } + {\int }_{0}^{\pi }{2x}\cos \left( x\right) {dx} = {\pi }^{2} + {\int }_{0}^{\pi }{2x}\cos \left( x\right) {dx}. \]\n\nNote that the final integral is simpler than the integral with which we started, but still requires another integration by parts to finish the evaluation. Namely, if we now let\n\n\[ u = {2x}\;{dv} = \cos \left( x\right) \]\n\n\[ {du} = {2dx}\;v = \sin \left( x\right) , \]\n\nwe have\n\n\[ {\int }_{0}^{\pi }{x}^{2}\sin \left( x\right) {dx} = {\left. {\pi }^{2} + 2x\sin \left( x\right) \right| }_{0}^{\pi } - {\int }_{0}^{\pi }2\sin \left( x\right) {dx} \]\n\n\[ = {\pi }^{2} + \left( {0 - 0}\right) + {\left. 2\cos \left( x\right) \right| }_{0}^{\pi } \]\n\n\[ = {\pi }^{2} - 2 - 2 \]\n\n\[ = {\pi }^{2} - 4\text{.} \]
Yes
To evaluate\n\n\[ \n{\int }_{0}^{1}x\sqrt{1 + x}{dx} \n\]
let\n\n\[ \nu = x \]\n\n\[ {dv} = \sqrt{1 + x}{dx} \]\n\n\[ {du} = {dx}\;v = \frac{2}{3}{\left( 1 + x\right) }^{\frac{3}{2}}. \]\n\nThen\n\n\[ {\int }_{0}^{1}x\sqrt{1 + x}{dx} = {\left. \frac{2}{3}x{\left( 1 + x\right) }^{\frac{3}{2}}\right| }_{0}^{1} - \frac{2}{3}{\int }_{0}^{1}{\left( 1 + x\right) }^{\frac{3}{2}}{dx} \]\n\n\[ = {\left. \frac{4\sqrt{2}}{3} - \frac{4}{15}{\left( 1 + x\right) }^{\frac{5}{2}}\right| }_{0}^{1} \]\n\n\[ = \frac{4\sqrt{2}}{3} - \frac{{16}\sqrt{2} - 4}{15} \]\n\n\[ = \frac{4\sqrt{2} + 4}{15}\text{. } \]\n
Yes
To evaluate the integral\n\n\[ \n{\int }_{0}^{\pi }{\sin }^{2}\left( x\right) {dx} \n\]
we will use the half-angle formula:\n\n\[ \n{\sin }^{2}\left( x\right) = \frac{1 - \cos \left( {2x}\right) }{2}. \n\]\n\n\( \left( {2.6.12}\right) \)\n\nThen\n\n\[ \n{\int }_{0}^{\pi }{\sin }^{2}\left( x\right) {dx} = \frac{1}{2}{\int }_{0}^{\pi }\left( {1 - \cos \left( {2x}\right) }\right) {dx} \n\]\n\n\[ \n= {\left. \frac{1}{2}x\right| }_{0}^{\pi } - {\left. \frac{1}{4}\sin \left( 2x\right) \right| }_{0}^{\pi } \n\]\n\n\[ \n= \frac{\pi }{2} \n\]
Yes
Example 2.6.11. Using 2.6.13 twice, we have\n\n\\[ \n{\\int }_{0}^{\\pi }{\\cos }^{4}\\left( {3x}\\right) {dx} = {\\int }_{0}^{\\pi }{\\left( {\\cos }^{2}\\left( 3x\\right) \\right) }^{2}{dx} \n\\]\n
\n\\[ \n= {\\int }_{0}^{\\pi }{\\left( \\frac{1}{2}\\left( 1 + \\cos \\left( 6x\\right) \\right) \\right) }^{2}{dx} \n\\]\n\n\\[ \n= \\frac{1}{4}{\\int }_{0}^{\\pi }\\left( {1 + 2\\cos \\left( {6x}\\right) + {\\cos }^{2}\\left( {6x}\\right) }\\right) {dx} \n\\]\n\n\\[ \n= {\\left. \\frac{1}{4}x\\right| }_{0}^{\\pi } + {\\left. \\frac{1}{12}\\sin \\left( 6x\\right) \\right| }_{0}^{\\pi } + \\frac{1}{8}{\\int }_{0}^{\\pi }\\left( {1 + \\cos \\left( {12x}\\right) }\\right) {dx} \n\\]\n\n\\[ \n= {\\left. \\frac{\\pi }{4} + \\frac{1}{8}x\\right| }_{0}^{\\pi } + {\\left. \\frac{1}{96}\\sin \\left( {12}x\\right) \\right| }_{0}^{\\pi } \n\\]\n\n\\[ \n= \\frac{3\\pi }{8}\\text{. } \n\\]\n
Yes
Suppose \( n \geq 2 \) is an integer and we wish to evaluate\n\n\[ \n{\int }_{0}^{\pi }{\sin }^{n}\left( x\right) {dx} \n\]
We begin with an integration by parts: if we let\n\n\[ \nu = {\sin }^{n - 1}\left( x\right) \;{dv} = \sin \left( x\right) {dx} \]\n\n\[ {du} = \left( {n - 1}\right) {\sin }^{n - 2}\left( x\right) \cos \left( x\right) {dx}\;v = - \cos \left( x\right) ,\]\n\nthen\n\n\[ {\int }_{0}^{\pi }{\sin }^{n}\left( x\right) {dx} = - {\left. {\sin }^{n - 1}\left( x\right) \cos \left( x\right) \right| }_{0}^{\pi } + \left( {n - 1}\right) {\int }_{0}^{\pi }{\sin }^{n - 2}\left( x\right) {\cos }^{2}\left( x\right) {dx} \]\n\n\[ = \left( {n - 1}\right) {\int }_{0}^{\pi }{\sin }^{n - 2}\left( x\right) {\cos }^{2}\left( x\right) {dx}. \]\n\nNow \( {\cos }^{2}\left( x\right) = 1 - {\sin }^{2}\left( x\right) \), so we have\n\n\[ {\int }_{0}^{\pi }{\sin }^{n}\left( x\right) {dx} = \left( {n - 1}\right) {\int }_{0}^{\pi }{\sin }^{n - 2}\left( x\right) \left( {1 - {\sin }^{2}\left( x\right) }\right) {dx} \]\n\n\[ = \left( {n - 1}\right) {\int }_{0}^{\pi }{\sin }^{n - 2}\left( x\right) {dx} - \left( {n - 1}\right) {\int }_{0}^{\pi }{\sin }^{n}\left( x\right) {dx}. \]\n\nNotice that \( {\int }_{0}^{\pi }{\sin }^{n}\left( x\right) {dx} \) occurs on both sides of this equation. Hence we may solve for this quantity, first obtaining\n\n\[ n{\int }_{0}^{\pi }{\sin }^{n}\left( x\right) {dx} = \left( {n - 1}\right) {\int }_{0}^{\pi }{\sin }^{n - 2}\left( x\right) {dx} \]\n\nand then\n\n\[ {\int }_{0}^{\pi }{\sin }^{n}\left( x\right) {dx} = \frac{n - 1}{n}{\int }_{0}^{\pi }{\sin }^{n - 2}\left( x\right) {dx}. \]
Yes
Example 2.6.13. An alternative to using a reduction formula in the last example begins with noting that\n\n\[ \n{\int }_{0}^{\pi }{\sin }^{5}\left( x\right) {dx} = {\int }_{0}^{\pi }{\sin }^{4}\left( x\right) \sin \left( x\right) {dx} \n\]
\[ \n= {\int }_{0}^{\pi }{\left( {\sin }^{2}\left( x\right) \right) }^{2}\sin \left( x\right) {dx} \n\]\n\n\[ \n= {\int }_{0}^{\pi }{\left( 1 - {\cos }^{2}\left( x\right) \right) }^{2}\sin \left( x\right) {dx} \n\]\n\n\[ \n= {\int }_{0}^{\pi }\left( {1 - 2{\cos }^{2}\left( x\right) + {\cos }^{4}\left( x\right) }\right) \sin \left( x\right) {dx}. \n\]\n\nThe latter integral may now be evaluated using the change of variable\n\n\[ \nu = \cos \left( x\right) \]\n\n\[ {du} = - \sin \left( x\right) {dx} \]\n\ngiving us\n\n\[ \n{\int }_{0}^{\pi }{\sin }^{5}\left( x\right) {dx} = - {\int }_{1}^{-1}\left( {1 - 2{u}^{2} + {u}^{4}}\right) {du} \n\]\n\n\[ \n= {\int }_{-1}^{1}\left( {1 - 2{u}^{2} + {u}^{4}}\right) {du} \n\]\n\n\[ \n= {\left. \left( u - \frac{2}{3}{u}^{3} + \frac{1}{5}{u}^{5}\right) \right| }_{-1}^{1} \n\]\n\n\[ \n= \left( {1 - \frac{2}{3} + \frac{1}{5}}\right) - \left( {-1 + \frac{2}{3} - \frac{1}{5}}\right) \n\]\n\n\[ \n= \frac{16}{15} \n\]\n\nas we saw above.
Yes
To evaluate\n\n\[ \n{\int }_{0}^{\pi }\sin \left( {2x}\right) \cos \left( {3x}\right) {dx} \n\]
we first note that, using (2.6.18) with \( a = 2 \) and \( b = 3 \) ,\n\n\[ \n\sin \left( {2x}\right) \cos \left( {3x}\right) = \frac{1}{2}\left( {\sin \left( {5x}\right) + \sin \left( {-x}\right) }\right) = \frac{1}{2}\left( {\sin \left( {5x}\right) - \sin \left( x\right) }\right) .\n\]\n\nHence\n\n\[ \n{\int }_{0}^{\pi }\sin \left( {2x}\right) \cos \left( {3x}\right) {dx} = \frac{1}{2}{\int }_{0}^{\pi }\sin \left( {5x}\right) {dx} - \frac{1}{2}{\int }_{0}^{\pi }\sin \left( x\right) {dx} \n\]\n\n\[ \n= - {\left. \frac{1}{10}\cos \left( 5x\right) \right| }_{0}^{\pi } + {\left. \frac{1}{2}\cos \left( x\right) \right| }_{0}^{\pi } \n\]\n\n\[ \n= \left( {\frac{1}{10} + \frac{1}{10}}\right) + \left( {-\frac{1}{2} - \frac{1}{2}}\right) \n\]\n\n\[ \n= - \frac{4}{5}\text{. } \n\]
Yes
To evaluate\n\n\[ \n{\int }_{0}^{\pi }\sin \left( {3x}\right) \sin \left( {5x}\right) {dx} \n\]
we first note that, using (2.6.22) with \( a = 3 \) and \( b = 5 \) ,\n\n\[ \n\sin \left( {3x}\right) \sin \left( {5x}\right) = \frac{1}{2}\left( {\cos \left( {-{2x}}\right) - \cos \left( {8x}\right) }\right) = \frac{1}{2}\left( {\cos \left( {2x}\right) - \cos \left( {8x}\right) }\right) .\n\]\n\nNote that we would have the same identity if we had chosen \( a = 5 \) and \( b = 3 \) . Then\n\n\[ \n{\int }_{0}^{\pi }\sin \left( {3x}\right) \sin \left( {5x}\right) {dx} = \frac{1}{2}{\int }_{0}^{\pi }\cos \left( {2x}\right) {dx} - \frac{1}{2}{\int }_{0}^{\pi }\cos \left( {8x}\right) {dx}\n\]\n\n\[ \n= {\left. \frac{1}{4}\sin \left( 2x\right) \right| }_{0}^{\pi } - {\left. \frac{1}{16}\sin \left( 8x\right) \right| }_{0}^{\pi }\n\]\n\n\[ \n= 0\text{.} \n\]
Yes
To evaluate\n\n\[ \n{\\int }_{0}^{\\frac{\\pi }{2}}\\cos \\left( {3x}\\right) \\cos \\left( {5x}\\right) {dx} \n\]
we note that, using (2.6.24) with \( a = 3 \) and \( b = 5 \) ,\n\n\[ \n\\cos \\left( {3x}\\right) \\cos \\left( {5x}\\right) = \\frac{1}{2}\\left( {\\cos \\left( {8x}\\right) + \\cos \\left( {-{2x}}\\right) }\\right) = \\frac{1}{2}\\left( {\\cos \\left( {8x}\\right) + \\cos \\left( {2x}\\right) }\\right) .\n\]\n\nHence\n\n\[ \n{\\int }_{0}^{\\frac{\\pi }{2}}\\cos \\left( {3x}\\right) \\cos \\left( {5x}\\right) {dx} = \\frac{1}{2}{\\int }_{0}^{\\frac{\\pi }{2}}\\cos \\left( {8x}\\right) {dx} + \\frac{1}{2}{\\int }_{0}^{\\frac{\\pi }{2}}\\cos \\left( {2x}\\right) {dx}\n\]\n\n\[ \n= {\\left. \\frac{1}{16}\\sin \\left( 8x\\right) \\right| }_{0}^{\\frac{\\pi }{2}} - {\\left. \\frac{1}{4}\\sin \\left( 2x\\right) \\right| }_{0}^{\\frac{\\pi }{2}}\n\]\n\n\[ \n= 0\\text{.}\n\]
Yes
Since the graph of \( y = \sqrt{1 - {x}^{2}} \) for \( 0 \leq x \leq 1 \) is one-quarter of the circle \( {x}^{2} + {y}^{2} = 1 \) (see Figure 2.6.1), we know that\n\n\[{\int }_{0}^{1}\sqrt{1 - {x}^{2}}{dx} = \frac{\pi }{4}\]
We will now see how to use a change of variable to evaluate this integral using the fundamental theorem. The idea is to make use of the trigonometric identity \( 1 - {\sin }^{2}\left( z\right) = {\cos }^{2}\left( z\right) \) . That is, suppose we let \( x = \sin \left( z\right) \) for \( 0 \leq z \leq \frac{\pi }{2} \) . Then\n\n\[ \sqrt{1 - {x}^{2}} = \sqrt{1 - {\sin }^{2}\left( z\right) } = \sqrt{{\cos }^{2}\left( z\right) } = \left| {\cos \left( z\right) }\right| = \cos \left( z\right) ,\]\n\nwhere the final equality follows since \( \cos \left( z\right) \geq 0 \) for \( 0 \leq z \leq \frac{\pi }{2} \) . Now\n\n\[ {dx} = \cos \left( z\right) {dz} \]\n\nso we have\n\n\[ {\int }_{0}^{1}\sqrt{1 - {x}^{2}}{dx} = {\int }_{0}^{\frac{\pi }{2}}\cos \left( z\right) \cos \left( z\right) {dz} \]\n\n\[ = {\int }_{0}^{\frac{\pi }{2}}{\cos }^{2}\left( z\right) {dz} \]\n\n\[ = \frac{1}{2}{\int }_{0}^{\frac{\pi }{2}}\left( {1 + \cos \left( {2z}\right) }\right) {dz} \]\n\n\[ = {\left. \frac{1}{2}z\right| }_{0}^{\frac{\pi }{2}} + {\left. \frac{1}{4}\sin \left( 2z\right) \right| }_{0}^{\frac{\pi }{2}} \]\n\n\[ = \frac{\pi }{4} \]\n\nas we expected.
Yes
Let \( C \) be the circle with equation \( {x}^{2} + {y}^{2} = 1 \) and let \( L \) be the length of the shorter arc of \( C \) between \( \left( {-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}}\right) \) and \( \left( {\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}}\right) \) (see Figure 2.6.2). Since the circumference of \( C \) is \( {2\pi } \) and this arc is one-fourth of the circumference of \( C \), we should have \( L = \frac{\pi }{2} \) . We will now show that this agrees with (2.5.28), the formula we derived for computing arc length.
Now \( y = \sqrt{1 - {x}^{2}} \), so\n\n\[ \frac{dy}{dx} = \frac{1}{2}{\left( 1 - {x}^{2}\right) }^{-\frac{1}{2}}\left( {-{2x}}\right) = - \frac{x}{\sqrt{1 - {x}^{2}}}. \]\n\nHence\n\n\[ \sqrt{1 + {\left( \frac{dy}{dx}\right) }^{2}} = \sqrt{1 + \frac{{x}^{2}}{1 - {x}^{2}}} = \sqrt{\frac{1 - {x}^{2} + {x}^{2}}{1 - {x}^{2}}} = \frac{1}{\sqrt{1 - {x}^{2}}}. \]\n\nHence, by (2.5.28),\n\n\[ L = {\int }_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}}\frac{1}{\sqrt{1 - {x}^{2}}}{dx} \]\n\nIf we let\n\n\[ x = \sin \left( z\right) \]\n\n\[ {dx} = \cos \left( z\right) {dz} \]\n\nthen\n\n\[ L = {\int }_{-\frac{\pi }{4}}^{\frac{\pi }{4}}\frac{1}{\sqrt{1 - {\sin }^{2}\left( z\right) }}\cos \left( z\right) {dz} \]\n\n\[ = {\int }_{-\frac{\pi }{4}}^{\frac{\pi }{4}}\frac{\cos \left( z\right) }{\sqrt{{\cos }^{2}\left( z\right) }}{dz} \]\n\n\[ = {\int }_{-\frac{\pi }{4}}^{\frac{\pi }{4}}\frac{\cos \left( z\right) }{\cos \left( z\right) }{dz} \]\n\n\[ = {\int }_{-\frac{\pi }{4}}^{\frac{\pi }{4}}{dz} \]\n\n\[ = \frac{\pi }{2}\text{. } \]
Yes
Example 2.6.20. For a simpler example of the change of variable used in the previous example, consider the integral\n\n\\[ \n{\\int }_{-1}^{1}\\frac{1}{1 + {x}^{2}}{dx} \n\\]\n\nthe area under the curve\n\n\\[ \ny = \\frac{1}{1 + {x}^{2}} \n\\]\n\nover the interval \\( \\left\\lbrack {-1,1}\\right\\rbrack \\) (see Figure 2.6.3).
If we let\n\n\\[ \nx = \\tan \\left( z\\right) \n\\]\n\n\\[ \n{dx} = {\\sec }^{2}\\left( z\\right) {dz} \n\\]\n\nand note that \\( \\tan \\left( {-\\frac{\\pi }{4}}\\right) = - 1 \\) and \\( \\tan \\left( \\frac{\\pi }{4}\\right) = 1 \\), then\n\n\\[ \n{\\int }_{-1}^{1}\\frac{1}{1 + {x}^{2}}{dx} = {\\int }_{-\\frac{\\pi }{4}}^{\\frac{\\pi }{4}}\\frac{1}{1 + {\\tan }^{2}\\left( z\\right) }{\\sec }^{2}\\left( z\\right) {dz} \n\\]\n\n\\[ \n= {\\int }_{-\\frac{\\pi }{4}}^{\\frac{\\pi }{4}}\\frac{{\\sec }^{2}\\left( z\\right) }{{\\sec }^{2}\\left( z\\right) }{dz} \n\\]\n\n\\[ \n= {\\int }_{-\\frac{\\pi }{4}}^{\\frac{\\pi }{4}}{dz} \n\\]\n\n\\[ \n= \\frac{\\pi }{2} \n\\]
Yes
If \( f\left( t\right) = {e}^{5t} \), then \( f \) is the composition of \( h\left( t\right) = {5t} \) and \( g\left( u\right) = {e}^{u} \) . Hence, using the chain rule,
\[ {f}^{\prime }\left( t\right) = {g}^{\prime }\left( {h\left( t\right) }\right) {h}^{\prime }\left( t\right) = {e}^{5t} \cdot 5 = 5{e}^{5t}. \]
Yes
Example 2.7.2. If \( f\left( x\right) = 6{e}^{-{x}^{2}} \), then
\[ {f}^{\prime }\left( x\right) = - {12x}{e}^{-{x}^{2}}. \]
Yes
\[ {\int }_{0}^{1}{e}^{-t}{dt} = - {\left. {e}^{-t}\right| }_{0}^{1} = - {e}^{-1} + {e}^{0} = 1 - {e}^{-1} \approx {0.6321}. \]
\[ {\int }_{0}^{1}{e}^{-t}{dt} = - {\left. {e}^{-t}\right| }_{0}^{1} = - {e}^{-1} + {e}^{0} = 1 - {e}^{-1} \approx {0.6321}. \]
Yes
To evaluate\n\n\[ \int x{e}^{-{x}^{2}}{dx} \]
we will use the change of variable\n\n\[ u = - {x}^{2} \]\n\n\[ {du} = - {2xdx} \]\n\nThen\n\n\[ \int x{e}^{-2}{dx} = - \frac{1}{2}\int {e}^{u}{du} = - \frac{1}{2}{e}^{u} + c = - \frac{1}{2}{e}^{-{x}^{2}} + c. \]
No
To evaluate\n\n\\[ \n\\int x{e}^{-{2x}}{dx} \n\\]
we will use integration by parts:\n\n\\[ \nu = x\\;{dv} = {e}^{-{2x}}{dx} \n\\]\n\n\\[ \n{du} = {dx}\\;v = - \\frac{1}{2}{e}^{-{2x}}. \n\\]\n\nThen\n\n\\[ \n\\int x{e}^{-{2x}}{dx} = - \\frac{1}{2}x{e}^{-{2x}} + \\frac{1}{2}\\int {e}^{-{2x}}{dx} = - \\frac{1}{2}x{e}^{-{2x}} - \\frac{1}{4}{e}^{-{2x}} + c. \n\\]
Yes