text
stringlengths 2
1.42k
| label
int64 0
1
|
|---|---|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. rank 2 bundles; moduli of stable bundles; rational varieties
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Classification; Algebraic varieties; Proceedings; Symposium; Kyoto; RIMS
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. open del Pezzo surface of degree 4; algebraic Brauer class; restriction; corestriction; non-cyclic Brauer class; explicit evaluation of Brauer classes
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of Brauer groups; rational function fields over global fields; Ulm invariants B. Fein, M.M. Schacher and J. Sonn, Brauer groups of rational function fields, Bull. Amer. Math. Soc. 1, 766-768.
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. complex suspension theorem; Lawson homology; generalized cycle map; joins of algebraic cycles; integral currents; Thom isomorphisms; generalized flag varieties; compact hermitian symmetric spaces; reductive group action Lima-Filho P.: On the generalized cycle map. J. Differ. Geom. 38, 105--130 (1993)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. unirationality of threefolds; toric surface
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. canonical singularities; birational classification; contraction theorem; terminal singularities; extremal ray; existence of flips J. Kollár and S. Mori,Birational Geometry of Algebraic Varieties, Cambridge Univ. Press, to appear.
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic moduli of abelian varieties; rational and unirational varieties; Jacobians; Prym varieties; families Verra A.: On the universal principally polarized abelian variety of dimension 4. In: Curves and abelian varieties, Proceedings of Internation Conference at Athens, Georgia, 2007, Contemporary Mathematics, vol. 345, pp. 253--274 (2008)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. conjugates of equivariant holomorphic maps of symmetric domains; arithmetic varieties; Kuga fiber variety Lee, Pacific J. Math. 149 pp 127-- (1991)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebroid varieties; transversality; resolution of singularities
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties A. Szenes and M. Vergne, \textit{Toric reduction and a conjecture of Batyrev and Materov}, \textit{Invent. Math.}\textbf{158} (2004) 453 [math/0306311].
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. representations of fundamental groups of manifolds; character varieties; hyperbolic geometry; geometric structures
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. quantum special linear groups; quantum matrix bialgebras; rings of quantum coinvariants; quantum Grassmannians; presentations; quantum Schubert varieties; coactions R. Fioresi and C. Hacon, Quantum coinvariant theory for the quantum special linear group and quantum Schubert varieties. J. Algebra 242 (2001), 433-446.
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; toric real structures Delaunay, C.: Real structures on smooth compact toric surfaces. In: Goldman, R., Krasuaskas, R. (eds.) Topics in algebraic geometry and geometric modeling, Contemp. Math., vol. 334, pp 267--290. Providence, RI: Amer. Math. Soc. (2003)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. unipotent rank; toric rank; abelian rank; Néron model of an abelian variety Edixhoven, Bas, On the prime-to-\(p\) part of the groups of connected components of Néron models, Special issue in honour of Frans Oort. Compositio Math., 0010-437X, 97, 1-2, 29-49, (1995)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. moduli problems of real algebraic geometry; Torelli mapping; principally polarized real abelian varieties Seppälä M., Math. Z. 201 pp 151-- (1989)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. moduli space of stable curves; homotopy type of moduli space; Satake compactification of the Siegel modular varieties; period mapping; Riemann surfaces; period matrices
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. singular foliations of toric type; Newton polygon
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. chiral rings; mirror symmetry; toric varieties Mavlyutov, A. R.: On the chiral ring of Calabi-Yau hypersurfaces in toric varieties. Compositio Math., 138, 289--336 (2003)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. 2-adic valuations of ratio of products of factorials; parity of degrees of determinantal varieties; subspaces of real skew symmetric matrices; subspaces of real rectangular matrices; parity of number of plane partitions; parity of number of symplectic tableaux Beauville, A.: Surfaces algébriques complexes, Astérisque 54, Soc. Math. de France (1978)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. frequent representations of finite groups; unitary representations; varieties of representations V. I. Arnold, ''Frequent Representations,'' Moscow Math. J. 3(4), 1209--1221 (2003).
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebra of endomorphisms of an abelian variety; non-algebraizable complex tori Oort, F.; Zarhin, Yu.G.: Endomorphism algebras of complex tori. Math. ann. 303, 11-29 (1995)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. deformation theory; finite group schemes; abelian varieties; Newton polygons; automorphisms of algebraic curves
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; numerical equivalence
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Peaucellier representation; classification of plane quadrilaterals
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. abelian varieties; Galois groups of n-torsion points; 1-motives K. A. Ribet, Cohomological realization of a family of \(1\)-motives , J. Number Theory 25 (1987), no. 2, 152-161.
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Brauer groups of elliptic curves; torsion; group of rational points; non-dyadic elliptic curve
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. resolution of singularities; uniformization; desingularization; non-algebraically closed field V. Cossart, Uniformisation et désingularisation des surfaces d'apr` es Zariski, in Res- olution of singularities (Obergurgl, 1997), 239-258, Progr. Math., 181, Birkhäuser, Basel.
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Weierstrass \(n\)-semigroup; smooth curve; semigroup of non-gaps; non-special line bundle
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. combinatorial truncation; Arthur trace formula; convex polytopes; toric varieties
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Kazhdan-Lusztig conjecture; symmetrizable Kac-Moody Lie algebras; \({\mathcal D}\)-modules; flag variety; representations; geometry of Schubert varieties; Kazhdan-Lusztig polynomials; mixed Hodge modules O.J. Ganor, \textit{Supersymmetric interactions of a six-dimensional self-dual tensor and fixed-shape second quantized strings}, \textit{Phys. Rev.}\textbf{D 97} (2018) 041901 [arXiv:1710.06880] [INSPIRE].
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Mordell conjecture; Rational points; Seminar; Bonn/Germany; Wuppertal/Germany; proof of Tate conjecture; proof of Shafarevich conjecture; proof of the Mordell conjecture; logarithmic singularities; compactification of the moduli space of abelian varieties; modular height of an abelian variety; p-divisible groups; intersection theory on arithmetic surfaces; Riemann- Roch theorem; Hodge index theorem; rational points G. FALTINGS - G. WÜSTHOLZ, Rational points, Aspects of Math., Vieweg, 1986. Zbl0636.14019 MR863887
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. lattice polytopes; toric varieties; Fano varieties; centrally symmetric polytopes B. Nill, \textit{Classification of pseudo-symmetric simplicial reflexive polytopes}, in Algebraic and Geometric Combinatorics, Contemp. Math. 423, AMS, 2006, pp. 269--282, .
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. affine semigroups; binomial ideals; toric varieties Barile M., Morales M., Thoma A.: Set-theoretic complete intersections on binomials. Proc. Amer. Math. Soc. 130, 1893--1903 (2001)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. non-Archimedean geometry; tropicalization; huber adic spaces; limits of tropicalizations T. Foster , 'Introduction to adic tropicalization', Proceedings of the Simons Symposium on Non-Archimedean and Tropical Geometry, to appear 2016 (eds M. Baker and S. Payne; Springer), arXiv: 1506.00726.
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. affine spaces; quotients; torus actions; matroid; toric quiver varieties T. Hausel and B. Sturmfels, \textit{Toric hyper-Kähler varieties}, \textit{Doc. Math.}\textbf{7} (2002) 495 [math/0203096].
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. convex polytopes; quasiaffine algebraic varieties; manifolds of; combinatorial type; projective configuration Mnëv, N. E., On manifolds of combinatorial types of projective configurations and convex polyhedra, J. Sov. Math., 32, 335-337, (1985)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. morphism of complex algebraic varieties; local topological type
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Fano varieties; quantum cohomology; mirror symmetry; Dubrovin's conjecture; gamma class; apery constant; derived category of coherent sheaves; exceptional collection; Landau-Ginzburg model
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. moduli space of curves and abelian varieties; geodesics; Prym locus; Jacobian locus; generalized Prym varieties; admissible coverings
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Abel prize; cohomology of number fields; abelian varieties
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. quartic surfaces; singularities; tangent planes; classification of quartics
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Jacobian of a hyperplane section of a surface; endomorphisms of abelian varieties; Albanese variety; linear system Ciliberto, C., van~der Geer, G.: On the Jacobian of a hyperplane section of a surface. In: Classification of Irregular Varieties (Trento, 1990). Lecture Notes in Mathematics, vol. 1515, pp. 33-40, Springer, Berlin (1992)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. affine varieties; plane curves; projective varieties; morphisms; resolution of singularities; Riemann-Roch theorem Fulton, William, Algebraic curves. {A}n introduction to algebraic geometry, (2008)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. constructing minimal models; relative anticanonical model; contraction theorem; cone theorem; flip conjecture; termination conjecture; toric varieties Shokurov, V.V.: Numerical geometry of algebraic varieties. Proc. ICM 1986 (to appear)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. moduli space of principally polarized abelian varieties; irreducible components Yu C.-F.: Irreducibility of the Siegel moduli spaces with parahoric level structure. Int. Math. Res. Not. 48, 2593--2597 (2004)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. moduli; varieties of general type; coarse moduli Kovács, Sándor J., Young Person's guide to moduli of higher dimensional varietiesalgebraic geometry. {P}art 2, Proc. Sympos. Pure Math., 80, 711-743, (2009)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. existence of abelian varieties of small dimensions; endomorphism algebra; one-parameter family of polarized abelian varieties OORT (F.) and VAN DER PUT (M.) . - A construction of simple abelian varieties , Compositio Math., t. 67, n^\circ 1, 1988 , p 103-120. Numdam | MR 89j:14025 | Zbl 0656.14024
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. irreducibility of the family of all plane curves of given degree; nodes; quasi-ordinary singularity; Severi varieties; fans Ziv Ran, Families of plane curves and their limits: Enriques' conjecture and beyond, Ann. of Math. (2) 130 (1989), 121-157 Zbl0704.14018 MR1005609
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. unirationality of moduli space of 5-dimensional principally; polarized abelian varieties; Prym moduli space parametrizing double covers of curves of; genus 6; nets of quadrics; theta characteristic; Prym moduli space parametrizing double covers of curves of genus 6 R. Donagi, The unirationality of
\[
\mathcal{A}_{5}
\]
. Ann. Math. 119, 269--307 (1984)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Siegel moduli space; moduli space of abelian varieties; coarse moduli spaces; Satake compactification; toroidal compactification Chai C.L. , Siegel moduli schemes and their compactifications over C , in: Arithmetic Geometry, Cornell, Silverman , Springer , 1986 . MR 861978 | Zbl 0603.14027
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of \(k\)-very ample line bundles; 3-secant lines M. Andreatta. Surfaces of sectional genus 8 with no tresecant lines.Arch. Math., 60:85--95, 1993
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Jacobian varieties; curves of genus three J. Romero-Valencia and A.G. Zamora, Explicit constructions for genus 3 Jacobians, Preprint (2009), arXiv:math/0904.4537v1[math.AG].
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Segre classes; Chern classes; embeddings in a product of projective spaces; embeddings of abelian varieties; scroll [L] Lanteri A.--Turrini C.: Some formulas concerning non-singular algebraic varieties embedded in some ambient variety. Atti Accad. Naz. Lincei (8)69, 463--474 (1980)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Calabi-Yau manifold; Sasaki manifold; Einstein metric; Ricci-flat manifold; toric varieties Van Coevering, C., Examples of asymptotically conical Ricci-flat Kähler manifolds, Math. Z., 267, 1-2, 465-496, (2011)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. universal Gröbner basis; toric ideals; toric varieties; convex polytopes Sturmfels B (1996) Gröbner bases and Convex Polytopes, vol 8. American Mathematical Society, Providence
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. universal algebraic geometry; free modules over Lie algebras; free semimodules over semirings; semi-inner automorphisms; varieties of universal algebras; congruences of finitely generated free algebras; automorphism groups; free Lie modules Katsov, Y.; Lipyanski, R.; Plotkin, B., Automorphisms of categories of free modules, free semimodules, and free Lie modules, Comm. Algebra, 35, 931-952, (2007)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. theory of motives; algebraic fundamental groups; moduli spaces; anabelian varieties; birational geometry; Galois group actions Grothendieck A., Brief an Faltings (27/06/1983), Geometric Galois action 1 (Luminy 1995), London Math. Soc. Lecture Note Ser. 242, Cambridge University Press, Cambridge (1997), 49-58.
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Brauer group of a toric variety; finite distributive lattice; Brauer group functor
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. cohomology of modular varieties; congruence subgroups of Sp(4,Z); levels; zeta functions
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. idempotent relations; periodic points; twists of varieties
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. resolutions of quotient spaces; pluri-toric resolutions; McKay correspondence
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. semi-abelian varieties; Néron models; group of components; tame ramification; Weil restrictions; Tate curves; Jacobian varieties; swan conductor
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; computational algebraic geometry; point estimation; symbolic computation
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. non-reduced moduli space; surfaces of general type; Kuranishi space; existence of a (-2)-curve Konno K. Certain algebraic surfaces with non-reduced moduli space. Portugal Math, 2000, 57: 169--178
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Shimura varieties; congruence relations; moduli spaces of abelian varieties; p-divisible groups Bültel, O.; Wedhorn, T., \textit{congruence relations for Shimura varieties associated to some unitary groups}, J. Inst. Math. Jussieu, 5, 229-261, (2006)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Prym-Tyurin varieties; correspondence of a curve; Jacobian; subvariety of abelian variety; de Franchis' theorem; number of morphisms onto curves \beginbarticle \bauthor\binitsC. \bsnmBirkenhake and \bauthor\binitsH. \bsnmLange, \batitleThe exponent of an Abelian subvariety, \bjtitleMath. Ann. \bvolume290 (\byear1991), page 801-\blpage814. \endbarticle \OrigBibText C. Birkenhake and H. Lange. The exponent of an abelian subvariety. Math. Ann. , 290:801-814, 1991. \endOrigBibText \bptokstructpyb \endbibitem
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic cycles; Chow groups; motives; \(K3\) surfaces; cubic hypersurfaces; Fano varieties of lines; Franchetta conjecture; hyper-Kähler varieties; Beauville ``splitting property'' conjecture; multiplicative Chow-Künneth decomposition
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Weyl groups; reflection representations; algebraic monoids; toric varieties; orbits; Betti numbers L.E. Renner, Weyl groups, descent systems and Betti numbers, Rocky Mountain J. Math., in press.
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Abelian varieties; isogenies; points of finite order; Tate modules; complex multiplication Zarhin, {\relax Yu. G}., Abelian varieties over fields of finite characteristic, Cent. Eur. J. Math., 12, 659-674, (2014)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. secant line; multisecant line; Castelnuovo-Mumford regularity; varieties of minimal degree Marie-Amélie Bertin, On singular varieties having an extremal secant line, Comm. Algebra 34 (2006), no. 3, 893 -- 909.
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; Calabi-Yau hypersurfaces; Calabi-Yau 3-folds; mirror symmetry; mixed Hodge structures R.P. Horja, \textit{Hypergeometric functions and mirror symmetry in toric varieties}, math/9912109.
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of quartics; singularity Degtyarëv, A.I.: Classification of Quartics Having a Nonsimple Singular Point. II. Topology of Manifolds and Varieties, Advances in Soviet Mathematics, vol. 18, pp. 23-54. American Mathematical Society, Providence (1994)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Secant varieties; Segre-Veronese varieties; Non-defectivity Abo H.: On non-defectivity of certain Segre-Veronese varieties. J. Symb. Comput. 45, 1254--1269 (2010)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. automorphism; varieties of general type; volume Christopher D. Hacon, James McKernan & Chenyang Xu, ``On the birational automorphisms of varieties of general type'', Ann. Math.177 (2013) no. 3, p. 1077-1111
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. bound states for weakly attractive \(\delta^{\prime}\)-interactions; non-closed curves; spectrum of Schrödinger operator Jex, M.; Lotoreichik, V., J. Math. Phys., 57, 022101, (2016)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric Fano varieties; equivariant birational maps; embedding an abelian surface; weak-Fano toric varieties; deformations H. Sato, Studies on toric Fano varieties , Tohoku Math Pub., 23, Tohoku Univ., Sendai, 2002.
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. adjunction theory; special varieties; non-degenerate quadratic singularities Beltrametti, M.C., Lanteri, A., Sommese, A.J.: Adjunction and singular loci of hyperplane sections. J. Math. Soc. Jpn. (2014)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. pseudo-convex varieties; mixed Hodge structures; purity theorems; perverse sheaves; vanishing theorem of Kodaira; theorem of Lefschetz; filtered de Rham complex of a rational singularity Navarro-Aznar V., Sur la théorie de Hodge des variétés algébriques à singularités isolées, Systèmes Différentiels et Singularités (Luminy 1983), Astérisque 130, Société Mathématique de France, Paris (1985), 272-307.
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. families of \(K3\) surfaces; coupling of weight systems; duality of Picard lattices; toric hypersurfaces determined by lattice polytopes
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. dimension types; indecomposables of arbitrary quivers; finite representation type; extended Dynkin diagram; indecomposable representations; positive roots; Tits form; tame; Kac's theorem; affine varieties; orbits; simple roots; reflections; Dynkin quiver; root system H. Kraft and Ch. Riedtmann, Geometry of representations of quivers, Representations of algebras (Durham, 1985) London Math. Soc. Lecture Note Ser., vol. 116, Cambridge Univ. Press, Cambridge, 1986, pp. 109 -- 145.
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. combinatorial identities; root systems; inverse Euclidean transform; Plancherel measure; symmetric spaces of the non-compact type
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. existence of local solutions; non-Archimedean differential equations; differential operators in positive characteristic; Tannakian fundamental groups; rigid geometry; differential Galois theory
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. surfaces of general type; Calabi-Yau threefolds; covering; varieties of minimal degree; canonical ring Gallego F.J., Purnaprajna B.P. (2003). On the canonical rings of covers of surfaces of minimal degree. Trans. Amer. Math. Soc. 355:2715--2732
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; toric code; monomially equivalent; minimum distance
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic monoids; algebraic semigroups; idempotents; toric varieties Brion, M., On algebraic semigroups and monoids, II, \textit{Semigroup Forum}, 88, 1, 250-272, (2014)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Calabi-Yau 3-folds; mirror manifolds; Gorenstein toric Fano varieties; complete intersections; gravitational quantum cohomology V.V. Batyrev, I. Ciocan-Fontanine, B. Kim and D. van Straten, \textit{Conifold Transitions and Mirror Symmetry for Calabi-Yau Complete Intersections in Grassmannians}, \textit{Nucl. Phys.}\textbf{B 514} (1998) 640 [alg-geom/9710022].
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. exact cohomology sequence; degree of non-exactness; integration over analytic cycles; compact complex manifold minus a point; cohomology sequences [05] Ofman, S.:d? d? etd?-cohomologies d'une variété compacte privée d'un point. Bull. Soc. Math. France113, 241-254 (1985)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. \(K\)-stability; toric varieties; constant scalar curvature Kähler metrics
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. local non-Archimedean ground field; rigid analytic varieties; maximal orders; Drinfeld elliptic modules; formal modules; Drinfeld covering; Weil pairing Alain Genestier, Espaces symétriques de Drinfeld, Astérisque 234 (1996), ii+124 (French, with French summary).
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. flag varieties; toric varieties; Coxeter matroids; retractions
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. commutative cancellative torsion-free monoid; monoid ring; \(K\)-homotopy invariance; multiplicative action; nilpotence conjecture; toric variety; local-global patching; Mayer-Vietoris sequence for singular varieties; excision; pyramidal descent; big Witt vectors; nil-\(K\)-theory Joseph Gubeladze, Higher \?-theory of toric varieties, \?-Theory 28 (2003), no. 4, 285 -- 327.
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. degenerations of modules; singularities; modules varieties Skowroński, A.; Zwara, G.: Derived equivalences of selfinjective algebras preserve singularities. Manuscripta math. 112, 221-230 (2003)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of polarized threefolds; very ample line bundles D'Ambros, P., Bipolarized threefolds with hyperelliptic curve sections, Ann. Univ. Ferrara. Sez. VII, XLV, 75-86, (1999)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. varieties of Picard type; Picard modular forms; moduli spaces of principally polarized abelian varieties; Hermitian forms; Hermitian modular group --, On Picard modular forms.Math. Nachr. 184 (1997), 259--273.
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. group actions on varieties; toric varieties; Newton polytopes; mirror symmetry Stapledon, A, Representations on the cohomology of hypersurfaces and mirror symmetry, Adv. Math., 226, 5268-5297, (2011)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. cluster algebras; cluster varieties; toric degenerations
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. non-isolated singularity; Milnor number; codimension of the Jacobian ideal; de Rham complex; constructible sheaves of vanishing cycles; Hodge filtration M. Kapranov, On DG-modules over the de Rham complex and the vanishing cycles functor, Algebraic geometry (Chicago, 1989), Lect. Notes in Math. 1479, Springer, 1991, p. 57-86
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric Calabi-Yau; mirror curve; Gromov-Witten invariants; Eynard-Orantin recursion; Hodge integral; spectral curve of a matrix model Bouchard, V; Catuneanu, A; Marchal, O; Sułkowski, P, The remodeling conjecture and the Faber-pandharipande formula, Lett. Math. Phys., 103, 59-77, (2013)
| 0
|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Schubert varieties; cohomology of line bundles; semisimple algebraic groups; Frobenius splitting Lauritzen, N.; Thomsen, J. F., Line bundles on Bott-Samelson varieties, J. Algebraic Geom., 13, 461-473, (2004)
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.