text
stringlengths
2
1.42k
label
int64
0
1
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Systèmes différentiels; Singularités; C.I.R.M.; Colloque; Luminy/France; differential systems; singularities
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Schubert calculus; complete quadrics Finat, J. A., A combinatorial presentation of the variety of complete quadrics. Preprint 1985.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Chevalley groups; principal congruence subgroups; local-global principle; dilation principle Apte, H; Stepanov, A, Local-global principle for congruence subgroups of Chevalley groups, Central Europ. J. Math., 12, 801-812, (2014)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) theta characteristics; spin curves; moduli of spin curves Kusner, R., Schmitt, N.: The spinor representation of minimal surfaces. arXiv:dg-ga/9512003v1 (1995)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) J. Moulin Ollagnier, ''Algebraic closure of a rational function,'' Qual. Theory Dyn. Syst. 5(2), 285--300 (2004).
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) tropical curves; real rational curves; enumerative geometry; Welschinger invariants; Caporaso-Harris formula --------, Welschinger invariants of small non-toric del Pezzo surfaces, J. Europ. Math. Soc. 15 (2013), 539--594.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Gromov-Witten; Donaldson-Thomas; toric Calabi-Yau 3-orbifolds; orbifold topological vertex; local toric surfaces Ross, D., Zong, Z.: Two-partition cyclic Hodge integrals and loop Schur functions (2014). arXiv:1401.2217
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) triangle singularity; Kleinian singularity; Fuchsian singularity; weighted projective line; vector bundle; singularity category; Cohen-Macaulay module; stable category; ADE-chain; Nakayama algebra; Happel-Seidel symmetry D. Kussin, H. Lenzing, and H. Meltzer, \emph{Triangle singularities, {ADE}-chains, and weighted projective lines}, Adv. Math. \textbf{237} (2013), 194--251. \MR{3028577}
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) adjoint line bundle; global generation; 5-fold; multiplier ideal; critical variety
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) magnetic fluxes; orientability of space; torsion cycles; homology
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Seidel long exact sequence; Calabi-Yau manifolds; Lagrangian submanifolds; Floer cohomology Oh, Y-G, Seidel's long exact sequence on Calabi-Yau manifolds, Kyoto J. Math., 51, 687-765, (2011)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) higher dimensional class field theory; curves over a \(p\)-adic field; Milnor \(K\)-theory T. Hiranouchi, Class field theory for open curves over \(p\)-adic fields , Math. Z. 266 (2010), 107-113.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) normal generation of line bundles; normal presentation of line bundles on a smooth curve; hyperelliptic curves; degree; embedding Lange H., Martens G.: Normal generation and presentation of line bundles of low degree on curves. J. Reine. Angew 356, 1--18 (1985)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) oscillatory integral; Newton diagram Ikromov, I.A.; Müller, D., On adapted coordinate systems, Trans. amer. math. soc., 363, 6, 2821-2848, (2011), MR2775788 (2012g:58074)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Rabin signature; Rabin cryptosystem Elia, M; Schipani, D, On the rabin signature, J. Discrete Math. Sci. Cryptogr., 16, 367-378, (2013)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) pseudoquaternion homeomorphism; fundamental theorem of projective geometry
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) integral points; Lang's conjecture; canonical height; Szpiro's conjecture; discriminant; bound for the number of torsion points on elliptic curves [10]M. Hindry and J. H. Silverman, The canonical height and integral points on elliptic curves, Invent. Math. 93 (1988), 419--450.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Schubert varieties; singularities
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) real algebraic curves; Kadomtsev-Petviashvili equations; Schottky's problem; symmetric Riemann surfaces
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) dual curves; characteristic 2; invariant theory; supersingularity Wall C.T.C. (1995) Quartic curves in characteristic 2. Math. Proc. Cambridge Philos. Soc. 117, 393--414
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) C. Liedtke, \(Lectures on Supersingular K3 Surfaces and the Crystalline Torelli Theorem\), preprint (2014)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Brauer groups of fields of invariants; Galois cohomology; Artin-Mumford group of the field of rational functions Bogomolov F.A., Brauer groups of fields of invariants of algebraic groups, Math. USSR-Sb., 1990, 66(1), 285--299
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) pencil of lines; Hessian pair; Hessian duad; Cremona self-tansformations; del Pezzo quintic surface Edge, WL, A pencil of four-nodal plane sextics, Math. Proc. Cambridge Philos. Soc., 89, 413-421, (1981)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Higgs bundles; quiver bundles; indefinite unitary group; wall-crossing; birationality of moduli Gothen, PB; Nozad, A., Birationality of moduli spaces of twisted \({\mathrm U}(p, q)\)-Higgs bundles, Revista Matemática Complutense, 30, 91-128, (2017)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) transcendental algebraic geometry; algebraic cycles; Chow groups; Hodge theory; Lefschetz pencils; Bloch-Beilinson conjecture; Torelli theorems C. Voisin, \textit{Hodge Theory and Complex Algebraic Geometry}, Vol. 1, Cambridge Studies in Advanced Mathematics, Vol. 76, Cambridge University Press, Cambridge, 2007.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) theta functions
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) finite field; \(n\)-dimensional linear space; covering with cosets
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) isolated singularity; Milnor number; Tjurina number; multiplicity
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) 10.1007/s00013-005-1275-4
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) instable vectors; geometric invariant theory; Hilbert-Mumford-criterion; one parameter subgroup Peter Slodowy, Die Theorie der optimalen Einparameteruntergruppen für instabile Vektoren, Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., vol. 13, Birkhäuser, Basel, 1989, pp. 115 -- 131 (German).
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) flag manifold; cohomology theory of Schubert varieties
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Hilbert's tenth problem; elliptic curve; Mazur's conjecture; diophantine definition B. Poonen, ''Hilbert's Tenth Problem and Mazur's Conjecture for Large Subrings of \(\mathbb{Q}\),'' J. Am. Math. Soc. 16(4), 981--990 (2003).
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) toric variety; weighted projective space; projective normality; integral polytope
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) derived category; exceptional collections; Lagrangian Grassmannian
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Ohsawa-Kollar-type vanishing theorem; Harmonic integrals
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Derenthal, U., Janda, F.: Gaussian rational points on a singular cubic surface. In: Torsors, étale homotopy and applications to rational points, volume 405 of London Math. Soc. Lecture Note Ser., pp. 210-230. Cambridge Univ. Press, Cambridge (2013)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) space-filling curves; \(\alpha\)-dense curves Mora, G. and Mira, J.A. (2003), ''Alpha-dense curves in infinite dimensional spaces'', International Journal of Pure and Applied Mathematics, Vol. 5 No. 4, pp. 437-49.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) homogeneous spaces; rational points; non-abelian cohomology; finite simple groups
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) QRT maps; genus of curves; dynamical systems
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Viehweg's hyperbolicity conjecture; log general type; log cotangent bundle; foliation; movable curve class; slope semi-stability
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) stability conditions; quasimap descendant invariants; Gromov-Witten invariants; wall-crossing; toric varieties; semi-positive GIT quotients; mirror symmetry
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) textbook (functions of complex variables); Riemann surfaces; harmonic functions; uniformization; functions of several complex variables; abelian functions; modular forms Freitag B., Complex Analysis (2009)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) abstract elliptic function fields; automorphisms; meromorphisms; addition theorem Hasse, H.: Zur theorie der abstrakte elliptischen funktionenkörper. II. automorphismen und meromorphismen. Das additionstheorem. J. reine angrew. Math. 175, 69-88 (1936)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) T. Masuda and H. Suzuki, Periods and prepotential of N\ =\ 2 SU(2) supersymmetric Yang-Mills theory with massive hypermultiplets, Int. J. Mod. Phys. A 12 (1997) 3413 [ hep-th/9609066 ] [ INSPIRE ].
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) flag domains; Levi curvature; normal bundles
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) rational points; Shimura curves; QM-abelian surfaces; Galois representations
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) d-gonal curve of genus g; nodes; rational surfaces; unirational Hurwitz spaces Enrico Arbarello and Maurizio Cornalba. Footnotes to a paper of {B}eniamino {S}egre: ``{O}n the modules of polygonal curves and on a complement to the {R}iemann existence theorem'' ({I}talian) [{M}ath. {A}nn. 100 (1928), 537--551; {J}buch 54, 685]. Math. Ann., 256(3):341--362, 1981. The number of \(g{1}{d}\)'s on a general \(d\)-gonal curve, and the unirationality of the Hurwitz spaces of \(4\)-gonal and \(5\)-gonal curves. DOI 10.1007/BF01679702; zbl 0454.14023; MR0626954
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) elliptic curves; mappings; isogenies; orders of elliptic curves; \(j\)-invariants
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) existence of positive real zeros; existence of global minimizers; multivariate Descartes' rule of signs; coercive polynomial; Birch's theorem
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Egyptian fraction; hollow polytope; lattice-free set; lattice polytope; maximality
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Chen ranks; 1-formal group; Koszul module; metabelian group; resonance variety; Alexander module; lower central series; virtually nilpotent group; Torelli group; Kähler group
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Mirković-Vilonen basis; dual canonical basis
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) integral regulator; higher Chow groups; algebraic cycles; Abel-Jacobi map
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) finite fields; forms in many variables; hypersurface; nonsingular zero; polynomials
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) birational geometry; hypersurfaces; unirationality
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Seifert forms; Hodge numbers; Milnor fibration; linking pairings; Blanchfield pairings
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) finite generation of invariant algebra; Hilbert's fourteenth problem; Popov-Pommerening conjecture Tan, L., \textit{some recent developments in the Popov-pommerening conjecture}, Group actions and invariant theory, 207-220, (1989), American Mathematical Society, Providence, RI
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) rational function field; automorphism group; Ree group; Hasse-Weil bound Pedersen, J.P.: A function field related to the Ree group. In: Coding Theory and Algebraic Geometry, Lecture Notes in Mathematics, vol. 1518, pp. 122--132. Springer, Berlin (1992)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) theta series; slopes; Siegel modular form; Fourier-Jacobi expansion; Schottky's polynomial; moduli space Salvati Manni, R.: Modular forms of the fourth degree. (Remark on a paper of Harris and Morrison). Proc. Conf., Trento/Italy 1990, Lect. Notes Math., vol. 1515, pp. 106--111 (1992)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) orbifolds; Galois correspondences; profinite fundamental groups DOI: 10.1080/00927879408824968
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) compactification; logarithmic irrational pencil; fundamental groups Catanese, F., Lönne, M., Perroni, F.: Genus stabilization for moduli of curves with symmetries. arXiv:1301.4409 (to appear in Algebraic Geometry)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) McCallum, Explicit methods in number theory: rational points and Diophantine equations (2012)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) curves over finite fields; many rational points; computer program Roland Auer, Curves over finite fields with many rational points obtained by ray class field extensions, Algorithmic number theory (Leiden, 2000) Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 127 -- 134.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) simple singularities; deformation theory; bibliography; platonic solids; Dynkin diagram; moduli spaces Greuel, G.-M., Deformation und klassifikation von singularitäten und moduln, 177-238, (1992), Stuttgart
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algorithms; computation in the Jacobian of a hyperelliptic curve D. G. Cantor, \textit{Computing in the Jacobian of a hyperelliptic curve}, Math. Comp., 48 (1987), pp. 95--101, .
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) involutive monoidal category; enriched category; Fell bundle; spaceoid; noncommutative geometry
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) deformations of tetragonal canonical curves; projective extensions; complete intersections on scrolls; rolling deformations; \(K3\) surfaces Stevens J., Rolling factors deformations and extensions of canonical curves, Doc. Math. 6 (2001), 185-226, electronic.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) higher Chow groups; motivic homology R. Joshua, Intersection theory on algebraic stacks. I, II, K-theory 27 (2002), no. 2, 134-195 and no. 3, 197-244.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) split octonion algebra; automorphism group; Lie group of type \(G_2\); symmetric rooms; Bruhat-Tits buildings; standard apartment; Arakelov bundles; invariant flag
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) modular cusp forms; \(p\)-adic wavelets; theta functions; \( L \)-functions
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) families; algebraic moduli; theta functions; Schottky problem; special curves and curves of low genus
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Galois representations; varieties over local ground fields; étale cohomology; motivic Galois representations; elliptic curves J. Coates, R. Sujatha and J.-P. Wintenberger, On the Euler-Poincaré characteristics of finite dimensional \(p\)-adic Galois representations, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 107-143.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) uniform Artin-Rees property; relation type O\(###\)Carroll, L.; Planas-Vilanova, F., Irreducible affine space curves and the uniform Artin-Rees property on the prime spectrum, J. Algebra, 320, 3339-3344, (2008)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) derivations; monomial ideals; multiplier ideals Tadesse, Y., Derivations preserving a monomial ideal, Proc. Amer. Math. Soc., 137, 2935-2942, (2009)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) polynomial mapping; affine space; proper mapping Aliashvili, T, Geometry and topology of proper polynomial mappings, J. Math. Sci., 160, 679-692, (2009)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) elliptic curve; abelian variety; Birch--Swinnerton-Dyer conjecture; parity conjecture; root number T. Dokchitser and V. Dokchitser, ''On the Birch-Swinnerton-Dyer quotients modulo squares,'' Ann. of Math., vol. 172, iss. 1, pp. 567-596, 2010.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Grassmannian; Chern classes; codimension one; codimension two
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) proper holomorphic maps of strictly pseudoconvex domains into polydiscs and balls; continuous extension to the boundary; Hakim-Sibony-Løw construction of inner functions; proper holomorphic embedding Løw, E., Embeddings and proper holomorphic maps of strictly pseudoconvex domains into polydiscs and balls, Math. Z., 190, 401-410, (1985)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Abelian surfaces; Complex multiplication; Genus 2 curves Goren, E.; Lauter, K., \textit{genus 2 curves with complex multiplication}, Int. Math. Res. Not. IMRN, 2012, 1068-1142, (2012)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) mixed Hodge structure; Feynman integral; Symanzik polynomial Vanhove, P., The physics and the mixed Hodge structure of Feynman integrals, Proc. Symp. Pure Math., 88, 161-194, (2014)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) equivariant homology; weight filtration; real algebraic varieties; group action; additive invariants F. Priziac, Equivariant weight filtration for real algebraic varieties with action, J. Math. Soc. Japan (to appear).
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) elliptic curves; computational number theory; invariant theory DOI: 10.1016/j.jalgebra.2008.04.007
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Hitchin systems; gluing subschemes; integrable systems; singular algebraic curves; \(r\)-matrix
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) dual graphs; Hilbert schemes; Kontsevich moduli spaces of stable maps; stacks Harris, J; Roth, M; Starr, J, Rational curves on hypersurfaces of low degree, J. Reine Angew. Math., 571, 73-106, (2004)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) intersection cohomology; small resolution for any Schubert cell Zelevinskiĭ, A. V.: Small resolutions of singularities of Schubert varieties. Funct. anal. Appl. 17, No. 2, 142-144 (1983)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Calabi program; deformation theory; global analysis; toric variety; extremal metrics [24] Yann Rollin &aCarl Tipler, &Deformations of extremal toric manifolds'', preprint 2013, math.DG/1201MR~32
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) theta divisor; principally polarized abelian varieties; Andreotti-Mayer loci; intermediate Jacobians; cubic threefolds; Chow ring; cohomology ring S. Grushevsky and K. Hulek, Geometry of theta divisors--A survey, A celebration of algebraic geometry, Clay Math. Proc. 18, American Mathematical Society, Providence (2013), 361-390.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) transformation group; semialgebraic set; orbit space
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Semaev polynomials; elliptic curves; point decomposition problem; discrete logarithm problem Karabina, K., Point decomposition problem in binary elliptic curves, (International Conference on Information Security and Cryptology, (2015), Springer International Publishing)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) orthogonal and symplectic bundles; parabolic structure; Einstein-Hermitian connection Biswas, I.; Majumder, S.; Wong, M. L.: Orthogonal and symplectic parabolic bundles, J. geom. Phys. 61, 1462-1475 (2011)
0