text
stringlengths 68
2.01k
| label
int64 0
1
|
|---|---|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Geometric methods (including applications of algebraic geometry) applied to coding theory, Applications to coding theory and cryptography of arithmetic geometry, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Ascher, Kenneth; Turchet, Amos, A fibered power theorem for pairs of log general type, Algebra Number Theory, 1937-0652, 10, 7, 1581\textendash 1600 pp., (2016) Families, moduli, classification: algebraic theory, Surfaces of general type, Birational automorphisms, Cremona group and generalizations, Rational points
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Zucconi, F.: Surfaces with canonical map of degree three and K 2 = 3p g, Osaka J. Math., 34 (1997), 411--428 Families, moduli, classification: algebraic theory, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Schütt, Quintic surfaces with maximum and other Picard numbers, J. Math. Soc. Japan 63 pp 1187-- (2011) Surfaces of general type, \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture, Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture), Automorphisms of surfaces and higher-dimensional varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type DOI: 10.1081/AGB-100106775 Surfaces of general type, Divisors, linear systems, invertible sheaves, Structure of families (Picard-Lefschetz, monodromy, etc.), Fibrations, degenerations in algebraic geometry, Families, moduli, classification: algebraic theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Manetti, M., \textit{degenerate double covers of the projective plane}, New trends in algebraic geometry, Warwick, 1996, 255-281, (1999), Cambridge University Press, Cambridge Coverings in algebraic geometry, Surfaces of general type, Families, moduli, classification: algebraic theory, Projective techniques in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Dedieu, T.; Perroni, F.: The fundamental group of a quotient of a product of curves. J. group theory 15, No. 3, 439-453 (2012) Homotopy theory and fundamental groups in algebraic geometry, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Bauer, I. C.; Pignatelli, R., Surfaces with \textit{K}2 = 8, \textit{p}_{\textit{g}} = 4 and canonical involution, \textit{Osaka J. Math.}, 46, 3, 799-820, (2009) Surfaces of general type, Families, moduli, classification: algebraic theory, Automorphisms of surfaces and higher-dimensional varieties
| 1
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Structure of modular groups and generalizations; arithmetic groups, Cohomology of arithmetic groups
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Families, fibrations in algebraic geometry, Families, moduli, classification: algebraic theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Automorphisms of surfaces and higher-dimensional varieties, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Frapporti, D., Mixed quasi-étale surfaces, new surfaces of general type with \(p_g = 0\) and their fundamental group, Collectanea Mathematica, 64, 3, 293-311, (2013) Surfaces of general type, Computational aspects of algebraic surfaces, Computational aspects in algebraic geometry, Fundamental groups and their automorphisms (group-theoretic aspects), Generators, relations, and presentations of groups, Variational aspects of group actions in infinite-dimensional spaces
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Enumerative problems (combinatorial problems) in algebraic geometry, Plane and space curves
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Hyperbolic and Kobayashi hyperbolic manifolds, Compact complex surfaces
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Park, H.; Shin, D.; Urzúa, G., A simply connected numerical Campedelli surface with an involution, Math. Ann., 357, 31-49, (2013) Surfaces of general type, Families, moduli, classification: algebraic theory, Singularities of surfaces or higher-dimensional varieties, Symplectic manifolds (general theory)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Canonero, G., Serpico, M.E.: Superficie canoniche di genere \(4\). Atti Accad. Ligure Sc. Lett., Series VI \textbf{VII}, 289-295 (2004) Surfaces of general type, Special surfaces, Projective techniques in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Barja M A. Numerical bounds of canonical varieties. Osaka J Math, 2000, 37: 701--718 Surfaces of general type, \(3\)-folds
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Automorphisms of surfaces and higher-dimensional varieties, Surfaces of general type, Birational automorphisms, Cremona group and generalizations
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Alexander Grothendieck, \textit{Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2)}, Documents Mathématiques (Paris), 4, Société Mathématique de France, Paris, 2005, S.G.A. du Bois Marie, 1962, Augmenté d'un exposé de Michèle Raynaud. With a preface and edited by Yves Laszlo, Revised reprint of the 1968 French original. MR 2171939 (2006f:14004) Surfaces of general type, Modular and Shimura varieties, Cycles and subschemes
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type DOI: 10.3836/tjm/1270128196 Singularities of surfaces or higher-dimensional varieties, Surfaces of general type, Global theory and resolution of singularities (algebro-geometric aspects)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Campana, F.: Fibres multiples sur LES surfaces : aspects geométriques, hyperboliques et arithmétiques, Manuscripta math. 117, No. 4, 429-461 (2005) Surfaces of general type, \(3\)-folds, Rational points, Fibrations, degenerations in algebraic geometry, \(n\)-folds (\(n>4\))
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Catanese, F., Canonical surfaces of higher degree, (2016) Surfaces of general type, Families, moduli, classification: algebraic theory, Low codimension problems in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type (Equivariant) Chow groups and rings; motives, \(K3\) surfaces and Enriques surfaces, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type (Equivariant) Chow groups and rings; motives, Local ground fields in algebraic geometry, \(K3\) surfaces and Enriques surfaces, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Bauer, I., Garion, S., Vdovina, A. (eds.): Beauville surfaces and groups, Proceedings of a conference in Newcastle (2012) Proceedings, conferences, collections, etc. pertaining to algebraic geometry, Families, moduli, classification: algebraic theory, Surfaces of general type, Automorphisms of surfaces and higher-dimensional varieties, Coverings of curves, fundamental group, Simple groups: alternating groups and groups of Lie type, Finite nilpotent groups, \(p\)-groups, Representations of groups as automorphism groups of algebraic systems, Proceedings of conferences of miscellaneous specific interest
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Park, H., Park, J., Shin, D.: A complex surface of general type with \(p_g=0,\, K^2=2\) and \(H_1=\mathbb{Z}/4\mathbb{Z}\). Trans. Amer. Math. Soc. (2013) arXiv:1012.5871 Surfaces of general type, Families, moduli, classification: algebraic theory, Singularities of surfaces or higher-dimensional varieties, Symplectic manifolds (general theory)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Coverings in algebraic geometry, Surfaces of general type, Topology of surfaces (Donaldson polynomials, Seiberg-Witten invariants), Topological aspects of complex manifolds, Families, moduli, classification: algebraic theory, Singularities of surfaces or higher-dimensional varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Families, moduli, classification: algebraic theory, \(K3\) surfaces and Enriques surfaces, Surfaces of general type, Homotopy theory and fundamental groups in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, \(3\)-folds, Obstruction theory in algebraic topology, Vector bundles on surfaces and higher-dimensional varieties, and their moduli
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type DOI: 10.4064/cm108-2-4 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials, Vector bundles on surfaces and higher-dimensional varieties, and their moduli, Special varieties, Fibrations, degenerations in algebraic geometry, Vanishing theorems in algebraic geometry, de Rham cohomology and algebraic geometry, Surfaces of general type, Automorphisms of surfaces and higher-dimensional varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Tsai, I-Hsun: Dominant morphisms on surfaces of general type modulo biholomorphic equivalence. Internat. math. Res. notices, No. 3, 101-111 (1997) Rational and birational maps, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Xiao G. (1990). On abelian automorphism group of a surface of general type. Invent. Math. 102(3): 619--631 Surfaces of general type, Automorphisms of surfaces and higher-dimensional varieties, Birational automorphisms, Cremona group and generalizations
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Barker, N.W., Boston, N., Peyerimhoff, N., Vdovina. A.: Regular algebraic surfaces, Ramification Structures Projective Planes. In: Bauer, I., Garion, S., Vdovina, A. (eds.) Beauville Surfaces and Groups, Springer Proceedings in Mathematics & Statistics, vol. 123, pp. 15-33. Springer. (2015). 10.1007/978-3-319-13862-6_2 Surfaces of general type, Group actions on varieties or schemes (quotients), Buildings and the geometry of diagrams
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Divisors, linear systems, invertible sheaves
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type J. Keum: Projective surfaces with many nodes ; in Algebraic Geometry in East Asia--Seoul 2008, Adv. Stud. Pure Math. 60 , Math. Soc. Japan, Tokyo, 2010, 245-257. Singularities of surfaces or higher-dimensional varieties, Rational and ruled surfaces, \(K3\) surfaces and Enriques surfaces, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Rational points, Global ground fields in algebraic geometry, Families, moduli, classification: algebraic theory, Automorphisms of surfaces and higher-dimensional varieties, Subvarieties of abelian varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type K. KONNO, 1-2-3 theorem for curves on algebraic surface, J. reine. angew. Math., 533 (2001), pp. 171-205. Zbl0965.14004 MR1823868 Divisors, linear systems, invertible sheaves, Surfaces of general type, Special divisors on curves (gonality, Brill-Noether theory)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Minimal model program (Mori theory, extremal rays), Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type DOI: 10.2748/tmj/1178207417 Families, moduli of curves (analytic), Families, moduli of curves (algebraic), Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type DOI: 10.1307/mmj/1310667979 Surfaces of general type, Automorphisms of surfaces and higher-dimensional varieties, Divisors, linear systems, invertible sheaves
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type M. Mendes Lopes, R. Pardini, G. P. Pirola, Continuous families of divisors, paracanonical systems and a new inequality for varieties of maximal Albanese dimension. \textit{Geom. Topol.}\textbf{17} (2013), 1205-1223. MR3070524 Zbl 1316.14016 Divisors, linear systems, invertible sheaves, Surfaces of general type, Deformations of submanifolds and subspaces
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Families, moduli, classification: algebraic theory, Fibrations, degenerations in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Divisors, linear systems, invertible sheaves, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Zhang, L., Surfaces with \(p\)\_{}\{g\} = \(q\) = 1, \(K\)2 = 7 and non-birational bicanonical maps, Geom. Dedicata, 177, 293-306, (2015) Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Configurations and arrangements of linear subspaces, Homotopy theory and fundamental groups in algebraic geometry, Surfaces of general type, Computational aspects of algebraic surfaces, Braid groups; Artin groups, Relations with arrangements of hyperplanes, Arrangements of points, flats, hyperplanes (aspects of discrete geometry), Singularities of curves, local rings
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Gao, Y, A note on finite abelian covers, Sci China Math, 54, 1333-1342, (2010) Coverings in algebraic geometry, Ramification problems in algebraic geometry, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type F. Catanese, Q.E.D. for algebraic varieties , with an appendix by S. Rollenske, J. Differential Geom. 77 (2007), 43-75. Families, moduli, classification: algebraic theory, Surfaces of general type, Fibrations, degenerations in algebraic geometry, Rational and birational maps
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Hypersurfaces and algebraic geometry, Divisors, linear systems, invertible sheaves, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Böhning, C.; Graf Von Bothmer, H.-C.; Sosna, P., \textit{on the Jordan-Hölder property for geometric derived categories}, Adv. Math., 256, 479-492, (2014) Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Ashikaga, T.; Konno, K., Algebraic surfaces of general type with \(c_1^2 = 3 p_g - 7\), Tohoku Math. J., 42, 517-536, (1990) Surfaces of general type, Algebraic moduli problems, moduli of vector bundles, Families, moduli, classification: algebraic theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Families, moduli, classification: algebraic theory, Singularities of surfaces or higher-dimensional varieties, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Vector bundles on surfaces and higher-dimensional varieties, and their moduli, Algebraic moduli problems, moduli of vector bundles, Surfaces of general type, Topology of surfaces (Donaldson polynomials, Seiberg-Witten invariants)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Automorphisms of surfaces and higher-dimensional varieties, Surfaces of general type, Finite ground fields in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Automorphisms of surfaces and higher-dimensional varieties, Surfaces of general type, Families, fibrations in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Free nonabelian groups, Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations, Generators, relations, and presentations of groups, Surfaces of general type, Conjugacy classes for groups
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Vector bundles on surfaces and higher-dimensional varieties, and their moduli, Rational and ruled surfaces, Elliptic surfaces, elliptic or Calabi-Yau fibrations, \(K3\) surfaces and Enriques surfaces, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Y. Lee, Bicanonical pencil of a determinantal Barlow surface, Trans. Amer. Math. Soc., to appear. CMP 99:17 Surfaces of general type, Determinantal varieties, Families, moduli, classification: algebraic theory, Special Riemannian manifolds (Einstein, Sasakian, etc.)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Werner, C., Surfaces of general type with \textit{K}2 = 2\textit{ {\(\chi\)}}-1, \textit{Kyoto J. Math.}, 55, 1, 29-41, (2015) Surfaces of general type, Families, moduli, classification: algebraic theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Fibrations, degenerations in algebraic geometry, Families, moduli of curves (analytic), de Rham cohomology and algebraic geometry, Fundamental groups and their automorphisms (group-theoretic aspects), General geometric structures on low-dimensional manifolds
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type X. Lu and K. Zuo, On the slope of hyperelliptic fibrations with positive relative irregularity, Trans. Amer. Math. Soc., to appear. Fibrations, degenerations in algebraic geometry, Families, moduli of curves (algebraic), Families, fibrations in algebraic geometry, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, \(K3\) surfaces and Enriques surfaces
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Finite nilpotent groups, \(p\)-groups, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type DOI: 10.2140/pjm.2005.219.83 Surfaces of general type, Special surfaces, Families, moduli of curves (algebraic)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type N. Boston, A survey of Beauville \textit{p}-groups, Beauville Surfaces and Groups, Springer Proc. Math. Stat. 123, Springer, Cham (2015), 35-40. Finite nilpotent groups, \(p\)-groups, Surfaces of general type, Group actions on varieties or schemes (quotients), Generators, relations, and presentations of groups, Conjugacy classes for groups
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Divisors, linear systems, invertible sheaves
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Coverings in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Pirola, GP, Surfaces with \(p_g=q=3\), Manuscr. Math., 108, 163-170, (2002) Families, moduli, classification: algebraic theory, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Cai, J.-X.; Liu, W.; Zhang, L., Automorphisms of surfaces of general type with \(q \geq 2\) acting trivially in cohomology, Compos. Math., 149, 10, 1667-1684, (2013) Automorphisms of surfaces and higher-dimensional varieties, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Surfaces in Euclidean and related spaces
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type G. Urzúa, \textit{Identifying neighbors of stable surfaces}, Annali della Scuola Normale Superiore di Pisa, to appear. arXiv:1310.4353 [math.AG]. Surfaces of general type, Deformations of singularities, Singularities of surfaces or higher-dimensional varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Families, moduli, classification: algebraic theory, Vector bundles on surfaces and higher-dimensional varieties, and their moduli
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Calabi-Yau manifolds (algebro-geometric aspects), Syzygies, resolutions, complexes and commutative rings, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Chen, J; Hacon, C, A surface of general type with \(p_g=q=2\) and \(K^2=5\), Pacific. J. Math., 223, 219-228, (2006) Surfaces of general type, Divisors, linear systems, invertible sheaves, Subvarieties of abelian varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Families, moduli, classification: algebraic theory, Moduli, classification: analytic theory; relations with modular forms
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Decker, Wolfram; Schreyer, Frank-Olaf, Varieties, Gröbner Bases and Algebraic Curves, (2011) Surfaces of general type, Symbolic computation and algebraic computation, Adjunction problems
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Rational points, Surfaces of general type, Heights
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type F. Bogomolov and B. de Oliveira, ''Hyperbolicity of nodal hypersurfaces,'' J. Reine Angew. Math., 596 (2006), 89--101. Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials, Hyperbolic and Kobayashi hyperbolic manifolds, Global theory of complex singularities; cohomological properties, Surfaces of general type, Hypersurfaces and algebraic geometry, Singularities of surfaces or higher-dimensional varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Ciliberto, C; Flamini, F; Zaidenberg, M, Gaps for geometric genera, Arch. Math. (Basel), 106, 531-541, (2016) Projective techniques in algebraic geometry, Varieties of low degree, Divisors, linear systems, invertible sheaves, Surfaces of general type, Hypersurfaces and algebraic geometry, Hyperbolic and Kobayashi hyperbolic manifolds
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Families, moduli, classification: algebraic theory, Minimal model program (Mori theory, extremal rays), Surfaces of general type, Singularities of surfaces or higher-dimensional varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Rito, C., On surfaces with \(p\)\_{}\{g\} = \(q\) = 1 and non-ruled bicanonical involution, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 6, 81-102, (2007) Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type B. Bolognese, J. Huizenga, Y. Lin, E. Riedl, B. Schmidt, M. Woolf, and X. Zhao, Nef cones of Hilbert schemes of points on surfaces, Algebra Number Theory 10 (2016), 907--930. Parametrization (Chow and Hilbert schemes), Minimal model program (Mori theory, extremal rays), Surfaces of general type, Vector bundles on surfaces and higher-dimensional varieties, and their moduli
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Derived categories of sheaves, dg categories, and related constructions in algebraic geometry, Rationality questions in algebraic geometry, Surfaces of general type, Brauer groups of schemes, Simple, semisimple Jordan algebras, Derived categories, triangulated categories
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Catanese, F.: Moduli of surfaes of general type. Algebraic geometryopen problems (Ravello, 1982), 90-112, Lecture Notes in Math., \textbf{997}, Springer, Berlin (1983) Rational and ruled surfaces, Surfaces of general type, Global theory and resolution of singularities (algebro-geometric aspects), Geometric methods (including applications of algebraic geometry) applied to coding theory, Singularities of surfaces or higher-dimensional varieties, Applications to coding theory and cryptography of arithmetic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Böhning, Christian; Graf von Bothmer, Hans-Christian; Sosna, Pawel, On the derived category of the classical godeaux surface, Adv. Math., 243, 203-231, (2013) Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type González-Diez, Gabino; Jaikin-Zapirain, Andrei, The absolute Galois group acts faithfully on regular dessins and on Beauville surfaces, Proc. Lond. Math. Soc. (3), 111, 4, 775-796, (2015) Arithmetic aspects of dessins d'enfants, Belyĭ theory, Surfaces of general type, Special surfaces, Ordinary representations and characters, Limits, profinite groups, Automorphisms of infinite groups, Coverings of curves, fundamental group, Compact Riemann surfaces and uniformization, Families, moduli, classification: algebraic theory, Dessins d'enfants theory
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Miles Reid, Infinitesimal view of extending a hyperplane section --- deformation theory and computer algebra, Algebraic geometry (L'Aquila, 1988) Lecture Notes in Math., vol. 1417, Springer, Berlin, 1990, pp. 214 -- 286. Formal methods and deformations in algebraic geometry, Computational aspects of algebraic curves, Computational aspects of algebraic surfaces, Surfaces of general type, Local deformation theory, Artin approximation, etc.
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type \textsc{T. Ekedahl}, \textit{Canonical models of surfaces of general type in positive characteristic}, Publ. Math. IHÉS no.~67 (1988), 97--144. DOI 10.1007/BF02699128; zbl 0674.14028; MR0972344 Surfaces of general type, Divisors, linear systems, invertible sheaves
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Cohomology of arithmetic groups, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Rémy, Bertrand, Covolume des groupes \(S\)-arithmétiques et faux plans projectifs [d'après Mumford, Prasad, Klingler, Yeung, Prasad-Yeung], Séminaire Bourbaki. Vol. 2007/2008, Astérisque, 978-285629-269-3, 0303-1179, 326, Exp. No. 984, vii, 83-129 (2010), (2009) Discrete subgroups of Lie groups, Surfaces of general type, Linear algebraic groups over global fields and their integers, Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects), Differential geometry of symmetric spaces
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Catanese, F., Lönne, M., Wajnryb, B.: Moduli spaces and braid monodromy types of bidouble covers of the quadric. Geom. Topol. \textbf{15}, 351-396 (2011). 10.2140/gt.2011.15.351. URL: http://www.msp.warwick.ac.uk/gt/2011/15-01/p010.xhtml Structure of families (Picard-Lefschetz, monodromy, etc.), Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type, Families, moduli, classification: algebraic theory, Fibrations, degenerations in algebraic geometry
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Mistretta, E. P. F., Standard isotrivial fibrations with \(p\)\_{}\{g\} = \(q\) = 1, II. J. Pure Appl. Algebra, 214, 344-369, (2010) Surfaces of general type, Group actions on varieties or schemes (quotients)
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Bauer, I, Bloch's conjecture for inoue surfaces with \(p_g=0\), \(K^2=7\), Proc. Am. Math. Soc., 142, 3335-3342, (2014) Algebraic cycles, Surfaces of general type, Automorphisms of surfaces and higher-dimensional varieties
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type Variation of Hodge structures (algebro-geometric aspects), Stacks and moduli problems, Minimal model program (Mori theory, extremal rays), Families, moduli, classification: algebraic theory, Moduli, classification: analytic theory; relations with modular forms, Surfaces of general type
| 0
|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Surfaces of general type B. Fairbairn, Recent work on Beauville surfaces, structures and groups, Groups St Andrews 2013, London Math. Soc. Lecture Note Ser. 422, Cambridge University Press, Cambridge (2015), 225-241. Surfaces of general type
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.