code
stringlengths
195
7.9k
space_complexity
stringclasses
6 values
time_complexity
stringclasses
7 values
# Python3 program to check children # sum property # Helper class that allocates a new # node with the given data and None # left and right pointers. class newNode: def __init__(self, data): self.data = data self.left = None self.right = None # returns 1 if children sum property # holds for the given node and both # of its children def isSumProperty(node): # left_data is left child data and # right_data is for right child data left_data = 0 right_data = 0 # If node is None or it's a leaf # node then return true if(node == None or (node.left == None and node.right == None)): return 1 else: # If left child is not present then # 0 is used as data of left child if(node.left != None): left_data = node.left.data # If right child is not present then # 0 is used as data of right child if(node.right != None): right_data = node.right.data # if the node and both of its children # satisfy the property return 1 else 0 if((node.data == left_data + right_data) and isSumProperty(node.left) and isSumProperty(node.right)): return 1 else: return 0 # Driver Code if __name__ == '__main__': root = newNode(10) root.left = newNode(8) root.right = newNode(2) root.left.left = newNode(3) root.left.right = newNode(5) root.right.right = newNode(2) # Function call if(isSumProperty(root)): print("The given tree satisfies the", "children sum property ") else: print("The given tree does not satisfy", "the children sum property ") # This code is contributed by PranchalK
logn
linear
# Python program to check if two nodes in a binary # tree are cousins # A Binary Tree Node class Node: # Constructor to create a new Binary Tree def __init__(self, data): self.data = data self.left = None self.right = None def isSibling(root, a , b): # Base Case if root is None: return 0 return ((root.left == a and root.right ==b) or (root.left == b and root.right == a)or isSibling(root.left, a, b) or isSibling(root.right, a, b)) # Recursive function to find level of Node 'ptr' in # a binary tree def level(root, ptr, lev): # Base Case if root is None : return 0 if root == ptr: return lev # Return level if Node is present in left subtree l = level(root.left, ptr, lev+1) if l != 0: return l # Else search in right subtree return level(root.right, ptr, lev+1) # Returns 1 if a and b are cousins, otherwise 0 def isCousin(root,a, b): # 1. The two nodes should be on the same level in # the binary tree # The two nodes should not be siblings(means that # they should not have the same parent node if ((level(root,a,1) == level(root, b, 1)) and not (isSibling(root, a, b))): return 1 else: return 0 # Driver program to test above function root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.left.right.right = Node(15) root.right.left = Node(6) root.right.right = Node(7) root.right.left.right = Node(8) node1 = root.left.right node2 = root.right.right print ("Yes" if isCousin(root, node1, node2) == 1 else "No") # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
linear
linear
# Python program to check if all leaves are at same level # A binary tree node class Node: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # Recursive function which check whether all leaves are at # same level def checkUtil(root, level): # Base Case if root is None: return True # If a tree node is encountered if root.left is None and root.right is None: # When a leaf node is found first time if check.leafLevel == 0 : check.leafLevel = level # Set first leaf found return True # If this is not first leaf node, compare its level # with first leaf's level return level == check.leafLevel # If this is not first leaf node, compare its level # with first leaf's level return (checkUtil(root.left, level+1)and checkUtil(root.right, level+1)) def check(root): level = 0 check.leafLevel = 0 return (checkUtil(root, level)) # Driver program to test above function root = Node(12) root.left = Node(5) root.left.left = Node(3) root.left.right = Node(9) root.left.left.left = Node(1) root.left.right.left = Node(2) if(check(root)): print "Leaves are at same level" else: print "Leaves are not at same level" # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
linear
linear
# Python3 program to check if all leaf nodes # are at same level of binary tree INT_MAX = 2**31 INT_MIN = -2**31 # Tree Node # returns a new tree Node class newNode: def __init__(self, data): self.data = data self.left = self.right = None # return true if all leaf nodes are # at same level, else false def checkLevelLeafNode(root) : if (not root) : return 1 # create a queue for level # order traversal q = [] q.append(root) result = INT_MAX level = 0 # traverse until the queue is empty while (len(q)): size = len(q) level += 1 # traverse for complete level while(size > 0 or len(q)): temp = q[0] q.pop(0) # check for left child if (temp.left) : q.append(temp.left) # if its leaf node if(not temp.left.right and not temp.left.left): # if it's first leaf node, # then update result if (result == INT_MAX): result = level # if it's not first leaf node, # then compare the level with # level of previous leaf node elif (result != level): return 0 # check for right child if (temp.right) : q.append(temp.right) # if it's leaf node if (not temp.right.left and not temp.right.right): # if it's first leaf node till now, # then update the result if (result == INT_MAX): result = level # if it is not the first leaf node, # then compare the level with level # of previous leaf node elif(result != level): return 0 size -= 1 return 1 # Driver Code if __name__ == '__main__': # construct a tree root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.right = newNode(4) root.right.left = newNode(5) root.right.right = newNode(6) result = checkLevelLeafNode(root) if (result) : print("All leaf nodes are at same level") else: print("Leaf nodes not at same level") # This code is contributed by SHUBHAMSINGH10
linear
linear
# Python3 program to check if there # exist an edge whose removal creates # two trees of same size # utility function to create a new node class newNode: def __init__(self, x): self.data = x self.left = self.right = None # To calculate size of tree # with given root def count(root): if (root == None): return 0 return (count(root.left) + count(root.right) + 1) # This function returns true if there # is an edge whose removal can divide # the tree in two halves n is size of tree def checkRec(root, n): # Base cases if (root == None): return False # Check for root if (count(root) == n - count(root)): return True # Check for rest of the nodes return (checkRec(root.left, n) or checkRec(root.right, n)) # This function mainly uses checkRec() def check(root): # Count total nodes in given tree n = count(root) # Now recursively check all nodes return checkRec(root, n) # Driver code if __name__ == '__main__': root = newNode(5) root.left = newNode(1) root.right = newNode(6) root.left.left = newNode(3) root.right.left = newNode(7) root.right.right = newNode(4) if check(root): print("YES") else: print("NO") # This code is contributed by PranchalK
linear
quadratic
# Python3 program to check if there exist # an edge whose removal creates two trees # of same size class Node: def __init__(self, x): self.key = x self.left = None self.right = None # To calculate size of tree with # given root def count(node): if (node == None): return 0 return (count(node.left) + count(node.right) + 1) # This function returns size of tree rooted # with given root. It also set "res" as true # if there is an edge whose removal divides # tree in two halves.n is size of tree def checkRec(root, n): global res # Base case if (root == None): return 0 # Compute sizes of left and right children c = (checkRec(root.left, n) + 1 + checkRec(root.right, n)) # If required property is true for # current node set "res" as true if (c == n - c): res = True # Return size return c # This function mainly uses checkRec() def check(root): # Count total nodes in given tree n = count(root) # Initialize result and recursively # check all nodes # bool res = false; checkRec(root, n) # Driver code if __name__ == '__main__': res = False root = Node(5) root.left = Node(1) root.right = Node(6) root.left.left = Node(3) root.right.left = Node(7) root.right.right = Node(4) check(root) if res: print("YES") else: print("NO") # This code is contributed by mohit kumar 29
linear
linear
# Python3 program to check if two Leaf # Traversal of Two Binary Trees is same or not # Binary Tree node class Node: def __init__(self, x): self.data = x self.left = self.right = None def isLeaf(self): return (self.left == None and self.right == None) # Returns true of leaf traversal of # two trees is same, else false def isSame(root1, root2): # Create empty stacks. These stacks are going # to be used for iterative traversals. s1 = [] s2 = [] s1.append(root1) s2.append(root2) # Loop until either of two stacks # is not empty while (len(s1) != 0 or len(s2) != 0): # If one of the stacks is empty means other # stack has extra leaves so return false if (len(s1) == 0 or len(s2) == 0): return False temp1 = s1.pop(-1) while (temp1 != None and not temp1.isLeaf()): # append right and left children of temp1. # Note that right child is inserted # before left if (temp1.right != None): s1.append(temp1. right) if (temp1.left != None): s1.append(temp1.left) temp1 = s1.pop(-1) # same for tree2 temp2 = s2.pop(-1) while (temp2 != None and not temp2.isLeaf()): if (temp2.right != None): s2.append(temp2.right) if (temp2.left != None): s2.append(temp2.left) temp2 = s2.pop(-1) # If one is None and other is not, # then return false if (temp1 == None and temp2 != None): return False if (temp1 != None and temp2 == None): return False # If both are not None and data is # not same return false if (temp1 != None and temp2 != None): if (temp1.data != temp2.data): return False # If control reaches this point, # all leaves are matched return True # Driver Code if __name__ == '__main__': # Let us create trees in above example 1 root1 = Node(1) root1.left = Node(2) root1.right = Node(3) root1.left.left = Node(4) root1.right.left = Node(6) root1.right.right = Node(7) root2 = Node(0) root2.left = Node(1) root2.right = Node(5) root2.left.right = Node(4) root2.right.left = Node(6) root2.right.right = Node(7) if (isSame(root1, root2)): print("Same") else: print("Not Same") # This code is contributed by pranchalK
nlogn
linear
# Python3 program to find deepest # left leaf Binary search Tree # Helper function that allocates a # new node with the given data and # None left and right pairs. class getNode: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # function to check whether a binary # tree is a full binary tree or not def isFullBinaryTree( root) : # if tree is empty if (not root) : return True # queue used for level order # traversal q = [] # append 'root' to 'q' q.append(root) # traverse all the nodes of the # binary tree level by level # until queue is empty while (not len(q)): # get the pointer to 'node' # at front of queue node = q[0] q.pop(0) # if it is a leaf node then continue if (node.left == None and node.right == None): continue # if either of the child is not None # and the other one is None, then # binary tree is not a full binary tee if (node.left == None or node.right == None): return False # append left and right childs # of 'node' on to the queue 'q' q.append(node.left) q.append(node.right) # binary tree is a full binary tee return True # Driver Code if __name__ == '__main__': root = getNode(1) root.left = getNode(2) root.right = getNode(3) root.left.left = getNode(4) root.left.right = getNode(5) if (isFullBinaryTree(root)) : print("Yes" ) else: print("No") # This code is contributed by # Shubham Singh(SHUBHAMSINGH10)
constant
linear
""" Program to check if a given Binary Tree is balanced like a Red-Black Tree """ # Helper function that allocates a new # node with the given data and None # left and right pointers. class newNode: # Construct to create a new node def __init__(self, key): self.data = key self.left = None self.right = None # Returns returns tree if the Binary # tree is balanced like a Red-Black # tree. This function also sets value # in maxh and minh (passed by # reference). maxh and minh are set # as maximum and minimum heights of root. def isBalancedUtil(root, maxh, minh) : # Base case if (root == None) : maxh = minh = 0 return True lmxh=0 # To store max and min # heights of left subtree lmnh=0 # To store max and min # heights of right subtree rmxh, rmnh=0,0 # Check if left subtree is balanced, # also set lmxh and lmnh if (isBalancedUtil(root.left, lmxh, lmnh) == False) : return False # Check if right subtree is balanced, # also set rmxh and rmnh if (isBalancedUtil(root.right, rmxh, rmnh) == False) : return False # Set the max and min heights of # this node for the parent call maxh = max(lmxh, rmxh) + 1 minh = min(lmnh, rmnh) + 1 # See if this node is balanced if (maxh <= 2 * minh) : return True return False # A wrapper over isBalancedUtil() def isBalanced(root) : maxh, minh =0,0 return isBalancedUtil(root, maxh, minh) # Driver Code if __name__ == '__main__': root = newNode(10) root.left = newNode(5) root.right = newNode(100) root.right.left = newNode(50) root.right.right = newNode(150) root.right.left.left = newNode(40) if (isBalanced(root)): print("Balanced") else: print("Not Balanced") # This code is contributed by # Shubham Singh(SHUBHAMSINGH10)
linear
linear
MAX = 100 # class for a tree node class Node: def __init__(self): self.key = ' ' self.left = None self.right = None # A utility function to create a new BST node def newNode(item): temp = Node() temp.key = item return temp # A utility function to store inorder traversal of tree rooted # with root in an array arr[]. Note that i is passed as reference def storeInorder(root, i): if (root == None): return '$' res = storeInorder(root.left, i) res += root.key res += storeInorder(root.right, i) return res # A utility function to store preorder traversal of tree rooted # with root in an array arr[]. Note that i is passed as reference def storePreOrder(root, i): if (root == None): return '$' res = root.key res += storePreOrder(root.left, i) res += storePreOrder(root.right, i) return res # This function returns true if S is a subtree of T, otherwise false def isSubtree(T, S): # base cases if (S == None): return True if (T == None): return False # Store Inorder traversals of T and S in inT[0..m-1] # and inS[0..n-1] respectively m = 0 n = 0 inT = storeInorder(T, m) inS = storeInorder(S, n) # If inS[] is not a substring of inT[], return false res = True if inS in inT: res = True else: res = False if(res == False): return res # Store Preorder traversals of T and S in preT[0..m-1] # and preS[0..n-1] respectively m = 0 n = 0 preT = storePreOrder(T, m) preS = storePreOrder(S, n) # If preS[] is not a substring of preT[], return false # Else return true if preS in preT: return True else: return False # Driver program to test above function T = newNode('a') T.left = newNode('b') T.right = newNode('d') T.left.left = newNode('c') T.right.right = newNode('e') S = newNode('a') S.left = newNode('b') S.left.left = newNode('c') S.right = newNode('d') if (isSubtree(T, S)): print("Yes: S is a subtree of T") else: print("No: S is NOT a subtree of T") # This code is contributed by rj13to.
linear
linear
# Python3 program to check if two # trees are mirror of each other # A binary tree node class Node: def __init__(self, data): self.data = data self.left = None self.right = None # Given two trees, return true # if they are mirror of each other def areMirror(a, b): # Base case : Both empty if a is None and b is None: return True # If only one is empty if a is None or b is None: return False # Both non-empty, compare them # recursively. Note that in # recursive calls, we pass left # of one tree and right of other tree return (a.data == b.data and areMirror(a.left, b.right) and areMirror(a.right , b.left)) # Driver code root1 = Node(1) root2 = Node(1) root1.left = Node(2) root1.right = Node(3) root1.left.left = Node(4) root1.left.right = Node(5) root2.left = Node(3) root2.right = Node(2) root2.right.left = Node(5) root2.right.right = Node(4) if areMirror(root1, root2): print ("Yes") else: print ("No") # This code is contributed by AshishR
logn
linear
# Python3 implementation to check whether # the two binary trees are mirrors of each # other or not # Utility function to create and return # a new node for a binary tree class newNode: def __init__(self, data): self.data = data self.left = self.right = None # function to check whether the two binary # trees are mirrors of each other or not def areMirrors(root1, root2): st1 = [] st2 = [] while (1): # iterative inorder traversal of 1st tree # and reverse inorder traversal of 2nd tree while (root1 and root2): # if the corresponding nodes in the # two traversal have different data # values, then they are not mirrors # of each other. if (root1.data != root2.data): return "No" st1.append(root1) st2.append(root2) root1 = root1.left root2 = root2.right # if at any point one root becomes None and # the other root is not None, then they are # not mirrors. This condition verifies that # structures of tree are mirrors of each other. if (not (root1 == None and root2 == None)): return "No" if (not len(st1) == 0 and not len(st2) == 0): root1 = st1[-1] root2 = st2[-1] st1.pop(-1) st2.pop(-1) # we have visited the node and its left # subtree. Now, it's right subtree's turn root1 = root1.right # we have visited the node and its right # subtree. Now, it's left subtree's turn root2 = root2.left # both the trees have been # completely traversed else: break # trees are mirrors of each other return "Yes" # Driver Code if __name__ == '__main__': # 1st binary tree formation root1 = newNode(1) # 1 root1.left = newNode(3) # / \ root1.right = newNode(2) # 3 2 root1.right.left = newNode(5)# / \ root1.right.right = newNode(4) # 5 4 # 2nd binary tree formation root2 = newNode(1) # 1 root2.left = newNode(2) # / \ root2.right = newNode(3) # 2 3 root2.left.left = newNode(4)# / \ root2.left.right = newNode(5)# 4 5 print(areMirrors(root1, root2)) # This code is contributed by pranchalK
linear
linear
# Python3 program to program to check if a # given Binary Tree is symmetric or not # Helper function that allocates a new # node with the given data and None # left and right pairs. class newNode: # Constructor to create a new node def __init__(self, key): self.key = key self.left = None self.right = None # function to check if a given # Binary Tree is symmetric or not def isSymmetric( root) : # if tree is empty if (root == None) : return True # If it is a single tree node, # then it is a symmetric tree. if(not root.left and not root.right): return True q = [] # Add root to queue two times so that # it can be checked if either one # child alone is NULL or not. q.append(root) q.append(root) # To store two nodes for checking # their symmetry. leftNode = 0 rightNode = 0 while(not len(q)): # Remove first two nodes to # check their symmetry. leftNode = q[0] q.pop(0) rightNode = q[0] q.pop(0) # if both left and right nodes # exist, but have different # values-. inequality, return False if(leftNode.key != rightNode.key): return False # append left child of left subtree # node and right child of right # subtree node in queue. if(leftNode.left and rightNode.right) : q.append(leftNode.left) q.append(rightNode.right) # If only one child is present # alone and other is NULL, then # tree is not symmetric. elif (leftNode.left or rightNode.right) : return False # append right child of left subtree # node and left child of right subtree # node in queue. if(leftNode.right and rightNode.left): q.append(leftNode.right) q.append(rightNode.left) # If only one child is present # alone and other is NULL, then # tree is not symmetric. elif(leftNode.right or rightNode.left): return False return True # Driver Code if __name__ == '__main__': # Let us construct the Tree # shown in the above figure root = newNode(1) root.left = newNode(2) root.right = newNode(2) root.left.left = newNode(3) root.left.right = newNode(4) root.right.left = newNode(4) root.right.right = newNode(3) if (isSymmetric(root)) : print("The given tree is Symmetric") else: print("The given tree is not Symmetric") # This code is contributed by # Shubham Singh(SHUBHAMSINGH10)
logn
linear
''' A binary tree node has key, pointer to left child and a pointer to right child ''' class Node: def __init__(self, key): self.key=key self.left = None self.right = None # To create a newNode of tree and return pointer def newNode(key): temp = Node(key) return temp # Takes two parameters - same initially and # calls recursively def printMiddleLevelUtil(a, b): # Base case e if (a == None or b == None): return; # Fast pointer has reached the leaf so print # value at slow pointer if ((b.left == None) and (b.right == None)): print(a.key, end=' ') return; # Recursive call # root.left.left and root.left.right will # print same value # root.right.left and root.right.right # will print same value # So we use any one of the condition if (b.left.left): printMiddleLevelUtil(a.left, b.left.left); printMiddleLevelUtil(a.right, b.left.left); else: printMiddleLevelUtil(a.left, b.left); printMiddleLevelUtil(a.right, b.left); # Main printing method that take a Tree as input def printMiddleLevel(node): printMiddleLevelUtil(node, node); # Driver program to test above functions if __name__=='__main__': n1 = newNode(1); n2 = newNode(2); n3 = newNode(3); n4 = newNode(4); n5 = newNode(5); n6 = newNode(6); n7 = newNode(7); n2.left = n4; n2.right = n5; n3.left = n6; n3.right = n7; n1.left = n2; n1.right = n3; printMiddleLevel(n1); # This code is contributed by rutvik_56
logn
linear
# Python3 program to print the longest # leaf to leaf path # Tree node structure used in the program MAX_PATH_SIZE = 1000 class Node: def __init__(self, x): self.data = x self.left = None self.right = None # Prints given root to leafAllpaths # with underscores def printPath(size): global Allpaths # Find the minimum horizontal distance # value in current root to leafAllpaths minimum_Hd = 10**19 p = [] # Find minimum horizontal distance for it in range(size): p = Allpaths[it] minimum_Hd = min(minimum_Hd, p[0]) # Print the root to leafAllpaths with "_" # that indicate the related position for it in range(size): # Current tree node p = Allpaths[it] noOfUnderScores = abs(p[0] - minimum_Hd) # Print underscore for i in range(noOfUnderScores): print(end = "_ ") # Print current key print(p[1]) print("==============================") # A utility function print all path from root to leaf # working of this function is similar to function of # "Print_vertical_order" : Print paths of binary tree # in vertical order # https://www.geeksforgeeks.org/print-binary-tree-vertical-order-set-2/ def printAllPathsUtil(root, HD, order): # Base case global Allpaths if (root == None): return # Leaf node if (root.left == None and root.right == None): # Add leaf node and then print path Allpaths[order] = [HD, root.data] printPath(order + 1) return # Store current path information Allpaths[order] = [HD, root.data] # Call left sub_tree printAllPathsUtil(root.left, HD - 1, order + 1) # Call left sub_tree printAllPathsUtil(root.right, HD + 1, order + 1) def printAllPaths(root): global Allpaths # Base case if (root == None): return printAllPathsUtil(root, 0, 0) # Driver code if __name__ == '__main__': Allpaths = [ [0, 0] for i in range(MAX_PATH_SIZE)] root = Node('A') root.left = Node('B') root.right = Node('C') root.left.left = Node('D') root.left.right = Node('E') root.right.left = Node('F') root.right.right = Node('G') printAllPaths(root) # This code is contributed by mohit kumar 29
logn
constant
# Recursive Python3 program to print # odd level nodes # Utility method to create a node class newNode: def __init__(self, data): self.data = data self.left = self.right = None def printOddNodes(root, isOdd = True): # If empty tree if (root == None): return # If current node is of odd level if (isOdd): print(root.data, end = " ") # Recur for children with isOdd # switched. printOddNodes(root.left, not isOdd) printOddNodes(root.right, not isOdd) # Driver code if __name__ == '__main__': root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(4) root.left.right = newNode(5) printOddNodes(root) # This code is contributed by PranchalK
linear
linear
# Iterative Python3 program to print odd # level nodes # A Binary Tree Node # Utility function to create a # new tree Node class newNode: def __init__(self, data): self.data = data self.left = self.right = None # Iterative method to do level order # traversal line by line def printOddNodes(root) : # Base Case if (root == None): return # Create an empty queue for # level order traversal q = [] # Enqueue root and initialize # level as odd q.append(root) isOdd = True while (1) : # nodeCount (queue size) indicates # number of nodes at current level. nodeCount = len(q) if (nodeCount == 0) : break # Dequeue all nodes of current level # and Enqueue all nodes of next level while (nodeCount > 0): node = q[0] if (isOdd): print(node.data, end = " ") q.pop(0) if (node.left != None) : q.append(node.left) if (node.right != None) : q.append(node.right) nodeCount -= 1 isOdd = not isOdd # Driver Code if __name__ == '__main__': root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(4) root.left.right = newNode(5) printOddNodes(root) # This code is contributed # by SHUBHAMSINGH10
linear
linear
# Python3 program to find the all # full nodes in a given binary tree # Binary Tree Node """ utility that allocates a newNode with the given key """ class newNode: # Construct to create a newNode def __init__(self, key): self.data = key self.left = None self.right = None # Traverses given tree in Inorder # fashion and prints all nodes that # have both children as non-empty. def findFullNode(root) : if (root != None) : findFullNode(root.left) if (root.left != None and root.right != None) : print(root.data, end = " ") findFullNode(root.right) # Driver Code if __name__ == '__main__': root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(4) root.right.left = newNode(5) root.right.right = newNode(6) root.right.left.right = newNode(7) root.right.right.right = newNode(8) root.right.left.right.left = newNode(9) findFullNode(root) # This code is contributed by # Shubham Singh(SHUBHAMSINGH10)
linear
linear
# Python3 Program to print sum of all # the elements of a binary tree # Binary Tree Node class newNode: # Utility function to create a new node def __init__(self, key): self.key = key self.left = None self.right = None # Function to find sum of all the element def sumBT(root): # sum variable to track the sum of # all variables. sum = 0 q = [] # Pushing the first level. q.append(root) # Pushing elements at each level from # the tree. while len(q) > 0: temp = q.pop(0) # After popping each element from queue # add its data to the sum variable. sum += temp.key if (temp.left != None): q.append(temp.left) if temp.right != None: q.append(temp.right) return sum # Driver Code if __name__ == '__main__': root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(4) root.left.right = newNode(5) root.right.left = newNode(6) root.right.right = newNode(7) root.right.left.right = newNode(8) print("Sum of all elements in the binary tree is: ", sumBT(root)) # This code is contributed by # Abhijeet Kumar(abhijeet19403)
linear
linear
# Python3 implementation to find the Sum of # all the parent nodes having child node x # function to get a new node class getNode: def __init__(self, data): # put in the data self.data = data self.left = self.right = None # function to find the Sum of all the # parent nodes having child node x def SumOfParentOfX(root, Sum, x): # if root == None if (not root): return # if left or right child of root is 'x', # then add the root's data to 'Sum' if ((root.left and root.left.data == x) or (root.right and root.right.data == x)): Sum[0] += root.data # recursively find the required parent # nodes in the left and right subtree SumOfParentOfX(root.left, Sum, x) SumOfParentOfX(root.right, Sum, x) # utility function to find the Sum of all # the parent nodes having child node x def SumOfParentOfXUtil(root, x): Sum = [0] SumOfParentOfX(root, Sum, x) # required Sum of parent nodes return Sum[0] # Driver Code if __name__ == '__main__': # binary tree formation root = getNode(4) # 4 root.left = getNode(2) # / \ root.right = getNode(5) # 2 5 root.left.left = getNode(7) # / \ / \ root.left.right = getNode(2) # 7 2 2 3 root.right.left = getNode(2) root.right.right = getNode(3) x = 2 print("Sum = ", SumOfParentOfXUtil(root, x)) # This code is contributed by PranchalK
linear
linear
# Python3 program to find sum of # all left leaves from collections import deque # A binary tree node class Node: def __init__(self, x): self.key = x self.left = None self.right = None # Return the sum of left leaf nodes def sumOfLeftLeaves(root): if (root == None): return 0 # A queue of pairs to do bfs traversal # and keep track if the node is a left # or right child if boolean value # is true then it is a left child. q = deque() q.append([root, 0]) sum = 0 # Do bfs traversal while (len(q) > 0): temp = q[0][0] is_left_child = q[0][1] q.popleft() # If temp is a leaf node and # left child of its parent if (not temp.left and not temp.right and is_left_child): sum = sum + temp.key # If it is not leaf then # push its children nodes # into queue if (temp.left): # Boolean value is true # here because it is left # child of its parent q.append([temp.left, 1]) if (temp.right): # Boolean value is false # here because it is # right child of its parent q.append([temp.right, 0]) return sum # Driver Code if __name__ == '__main__': root = Node(20) root.left = Node(9) root.right = Node(49) root.right.left = Node(23) root.right.right = Node(52) root.right.right.left = Node(50) root.left.left = Node(5) root.left.right = Node(12) root.left.right.right = Node(12) print("Sum of left leaves is", sumOfLeftLeaves(root)) # This code is contributed by mohit kumar 29
linear
linear
# Python Code to find sum of nodes on the longest path from root to leaf node # using level order traversal # Building a tree node having left and right pointers set to null initially class Node: def __init__(self, element): self.data = element self.left = None self.right = None # To store current Node,it's level and sum in the path class Element: def __init__(self, data, level, sum): self.data = data self.level = level self.sum = sum class Solution: def longestPathLeaf(self, root): # maxSumLevel stores maximum sum so far in the path # maxLevel stores maximum level so far maxSumLevel = root.data maxLevel = 0 # queue to implement level order traversal que = [] # Each element variable stores the current Node, it's level, sum in the path e = Element(root, 0, root.data) # push the root element que.append(e) # do level order traversal on the tree while len(que) != 0: front = que[0] curr = front.data del que[0] # if the level of current front element is greater than the maxLevel so far then update maxSum if front.level > maxLevel: maxSumLevel = front.sum maxLevel = front.level # if another path competes then update if the sum is greater than the previous path of same height elif front.level == maxLevel and front.sum > maxSumLevel: maxSumLevel = front.sum # push the left element if exists if curr.left != None: e = Element(curr.left, front.level+1, curr.left.data+front.sum) que.append(e) # push the right element if exists if curr.right != None: e = Element(curr.right, front.level+1, curr.right.data+front.sum) que.append(e) # return the answer return maxSumLevel # Helper function if __name__ == '__main__': s = Solution() root = Node(4) root.left = Node(2) root.right = Node(5) root.left.left = Node(7) root.left.right = Node(1) root.right.left = Node(2) root.right.right = Node(3) root.left.right.left = Node(6) print(s.longestPathLeaf(root)) # This code is contributed by Tapesh(tapeshdua420)
linear
linear
# Python program to find maximumpath sum between two leaves # of a binary tree INT_MIN = -2**32 # A binary tree node class Node: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # Utility function to find maximum sum between any # two leaves. This function calculates two values: # 1) Maximum path sum between two leaves which are stored # in res # 2) The maximum root to leaf path sum which is returned # If one side of root is empty, then it returns INT_MIN def maxPathSumUtil(root, res): # Base Case if root is None: return 0 # if root is leaf node we can return root.data if not root.left and not root.right: return root.data # Find maximumsum in left and right subtree. Also # find maximum root to leaf sums in left and right # subtrees ans store them in ls and rs ls = maxPathSumUtil(root.left, res) rs = maxPathSumUtil(root.right, res) # If both left and right children exist if root.left is not None and root.right is not None: # update result if needed res[0] = max(res[0], ls + rs + root.data) # Return maximum possible value for root being # on one side return max(ls, rs) + root.data # If any of the two children is empty, return # root sum for root being on one side if root.left is None: return rs + root.data else: return ls + root.data # The main function which returns sum of the maximum # sum path betwee ntwo leaves. THis function mainly # uses maxPathSumUtil() def maxPathSum(root): res = [INT_MIN] res1 = maxPathSumUtil(root, res) # we have to check if root.left is None or root.right is None # for ex:- 10 # / \ # None -5 # this will return INT_MIN but answer is 5 which is res1 if root.left and root.right: return res[0] return max(res[0], res1) # Driver program to test above function root = Node(-15) root.left = Node(5) root.right = Node(6) root.left.left = Node(-8) root.left.right = Node(1) root.left.left.left = Node(2) root.left.left.right = Node(6) root.right.left = Node(3) root.right.right = Node(9) root.right.right.right = Node(0) root.right.right.right.left = Node(4) root.right.right.right.right = Node(-1) root.right.right.right.right.left = Node(10) print("Max pathSum of the given binary tree is", maxPathSum(root)) # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
linear
linear
# Python3 program to print all paths # with sum k # utility function to print contents of # a vector from index i to it's end def printVector(v, i): for j in range(i, len(v)): print(v[j], end=" ") print() # Binary Tree Node """ utility that allocates a newNode with the given key """ class newNode: # Construct to create a newNode def __init__(self, key): self.data = key self.left = None self.right = None # This function prints all paths # that have sum k def printKPathUtil(root, path, k): # empty node if (not root): return # add current node to the path path.append(root.data) # check if there's any k sum path # in the left sub-tree. printKPathUtil(root.left, path, k) # check if there's any k sum path # in the right sub-tree. printKPathUtil(root.right, path, k) # check if there's any k sum path that # terminates at this node # Traverse the entire path as # there can be negative elements too f = 0 for j in range(len(path) - 1, -1, -1): f += path[j] # If path sum is k, print the path if (f == k): printVector(path, j) # Remove the current element # from the path path.pop(-1) # A wrapper over printKPathUtil() def printKPath(root, k): path = [] printKPathUtil(root, path, k) # Driver Code if __name__ == '__main__': root = newNode(1) root.left = newNode(3) root.left.left = newNode(2) root.left.right = newNode(1) root.left.right.left = newNode(1) root.right = newNode(-1) root.right.left = newNode(4) root.right.left.left = newNode(1) root.right.left.right = newNode(2) root.right.right = newNode(5) root.right.right.right = newNode(2) k = 5 printKPath(root, k) # This code is contributed by # Shubham Singh(SHUBHAMSINGH10)
logn
linear
# Python3 program to find if there is a # subtree with given sum # Binary Tree Node """ utility that allocates a newNode with the given key """ class newnode: # Construct to create a newNode def __init__(self, key): self.data = key self.left = None self.right = None # function to check if there exist any # subtree with given sum # cur_sum -. sum of current subtree # from ptr as root # sum_left -. sum of left subtree from # ptr as root # sum_right -. sum of right subtree # from ptr as root def sumSubtreeUtil(ptr,cur_sum,sum): # base condition if (ptr == None): cur_sum[0] = 0 return False # Here first we go to left sub-tree, # then right subtree then first we # calculate sum of all nodes of subtree # having ptr as root and assign it as cur_sum # cur_sum = sum_left + sum_right + ptr.data # after that we check if cur_sum == sum sum_left, sum_right = [0], [0] x=sumSubtreeUtil(ptr.left, sum_left, sum) y=sumSubtreeUtil(ptr.right, sum_right, sum) cur_sum[0] = (sum_left[0] + sum_right[0] + ptr.data) return ((x or y)or (cur_sum[0] == sum)) # Wrapper over sumSubtreeUtil() def sumSubtree(root, sum): # Initialize sum of subtree with root cur_sum = [0] return sumSubtreeUtil(root, cur_sum, sum) # Driver Code if __name__ == '__main__': root = newnode(8) root.left = newnode(5) root.right = newnode(4) root.left.left = newnode(9) root.left.right = newnode(7) root.left.right.left = newnode(1) root.left.right.right = newnode(12) root.left.right.right.right = newnode(2) root.right.right = newnode(11) root.right.right.left = newnode(3) sum = 22 if (sumSubtree(root, sum)) : print("Yes" ) else: print("No") # This code is contributed by # Shubham Singh(SHUBHAMSINGH10)
logn
linear
# Python3 implementation to count subtrees # that Sum up to a given value x # class to get a new node class getNode: def __init__(self, data): # put in the data self.data = data self.left = self.right = None # function to count subtrees that # Sum up to a given value x def countSubtreesWithSumX(root, count, x): # if tree is empty if (not root): return 0 # Sum of nodes in the left subtree ls = countSubtreesWithSumX(root.left, count, x) # Sum of nodes in the right subtree rs = countSubtreesWithSumX(root.right, count, x) # Sum of nodes in the subtree # rooted with 'root.data' Sum = ls + rs + root.data # if true if (Sum == x): count[0] += 1 # return subtree's nodes Sum return Sum # utility function to count subtrees # that Sum up to a given value x def countSubtreesWithSumXUtil(root, x): # if tree is empty if (not root): return 0 count = [0] # Sum of nodes in the left subtree ls = countSubtreesWithSumX(root.left, count, x) # Sum of nodes in the right subtree rs = countSubtreesWithSumX(root.right, count, x) # if tree's nodes Sum == x if ((ls + rs + root.data) == x): count[0] += 1 # required count of subtrees return count[0] # Driver Code if __name__ == '__main__': # binary tree creation # 5 # / \ # -10 3 # / \ / \ # 9 8 -4 7 root = getNode(5) root.left = getNode(-10) root.right = getNode(3) root.left.left = getNode(9) root.left.right = getNode(8) root.right.left = getNode(-4) root.right.right = getNode(7) x = 7 print("Count =", countSubtreesWithSumXUtil(root, x)) # This code is contributed by PranchalK
logn
linear
# Python3 program to find if there is # a subtree with given sum # Structure of a node of binary tree class Node: def __init__(self, data): self.data = data self.left = None self.right = None # Function to get a new node def getNode(data): # Allocate space newNode = Node(data) return newNode count = 0 ptr = None # Utility function to count subtrees that # sum up to a given value x def countSubtreesWithSumXUtil(root, x): global count, ptr l = 0 r = 0 if (root == None): return 0 l += countSubtreesWithSumXUtil(root.left, x) r += countSubtreesWithSumXUtil(root.right, x) if (l + r + root.data == x): count += 1 if (ptr != root): return l + root.data + r return count # Driver code if __name__ == '__main__': ''' binary tree creation 5 / \ -10 3 / \ / \ 9 8 -4 7 ''' root = getNode(5) root.left = getNode(-10) root.right = getNode(3) root.left.left = getNode(9) root.left.right = getNode(8) root.right.left = getNode(-4) root.right.right = getNode(7) x = 7 ptr = root print("Count = " + str(countSubtreesWithSumXUtil( root, x))) # This code is contributed by pratham76
logn
linear
# Python3 Implementation to find the maximum Spiral Sum # Structure of a node in binary tree class Node: def __init__(self, data): self.data = data self.left = None self.right = None # function to find the maximum sum contiguous subarray # implementing kadane's algorithm def maxSum(Arr): currSum = maxSum = 0 for element in Arr: currSum = max(currSum + element, element) maxSum = max(maxSum, currSum) return maxSum # function to find maximum spiral sum def maxSpiralSum(root): # if tree is empty if not root: return 0 # create two stacks to stopre alternative levels stack_s1 = [] # from levels right to left stack_s2 = [] # from levels left to right # store spiral order traversal in Arr Arr = [] stack_s1.append(root) # traversing tree in spiral form # until there are elements in any one # of the stack while stack_s1 or stack_s2: # traverse current level from s1 and # push node of next level to s2 while stack_s1: temp = stack_s1.pop() # append temp-> data to Arr Arr.append(temp.data) if temp.right: stack_s2.append(temp.right) if temp.left: stack_s2.append(temp.left) # traverse current level from s2 and # push node of next level to s1 while stack_s2: temp = stack_s2.pop() # append temp-> data to Arr Arr.append(temp.data) if temp.left: stack_s1.append(temp.left) if temp.right: stack_s1.append(temp.right) return maxSum(Arr) # Driver code if __name__ == "__main__": root = Node(-2) root.left = Node(-3) root.right = Node(4) root.left.left = Node(5) root.left.right = Node(1) root.right.left = Node(-2) root.right.right = Node(-1) root.left.left.left = Node(-3) root.right.right.right = Node(2) print("Maximum Spiral Sum is : ", maxSpiralSum(root)) # This code is contributed by # Mayank Chaudhary (chaudhary_19)
linear
linear
# Python3 implementation to find the sum # of leaf node at minimum level from collections import deque # Structure of a node in binary tree class Node: def __init__(self, data): self.data = data self.left = None self.right = None # function to find the sum of leaf nodes # at minimum level def sumOfLeafNodesAtLeafLevel(root): # if tree is empty if not root: return 0 # if there is only root node if not root.left and not root.right: return root.data # Queue used for level order traversal Queue = deque() sum = f = 0 # push root node in the queue Queue.append(root) while not f: # count no. of nodes present at current level nc = len(Queue) # traverse current level nodes while nc: top = Queue.popleft() # if node is leaf node if not top.left and not top.right: sum += top.data # set flag = 1 to signify that # we have encountered the minimum level f = 1 else: # if top's left or right child exist # push them to Queue if top.left: Queue.append(top.left) if top.right: Queue.append(top.right) nc -= 1 # return the sum return sum # Driver code if __name__ == "__main__": # binary tree creation root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.left = Node(6) root.right.right = Node(7) root.left.right.left = Node(8) root.right.left.right = Node(9) print("Sum = ", sumOfLeafNodesAtLeafLevel(root)) # This code is contributed by # Mayank Chaudhary (chaudhary_19)
linear
linear
# Python3 implementation of above approach # Structure of a node in binary tree class Node: def __init__(self, data): self.data = data self.left = None self.right = None mp = dict() def solve(root,level): if(root == None): return if root.left == None and root.right == None : try: mp[level].append(root.data) except: mp[level] = [root.data] solve(root.left, level+1) solve(root.right, level+1) def minLeafSum(root): solve(root, 0) sum = 0 for x, i in enumerate(sorted(mp)): for j in mp[i]: sum += j return sum # Driver code if __name__ == "__main__": # binary tree creation root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.left = Node(6) root.right.right = Node(7) print("Sum = ", minLeafSum(root)) # This code is contributed by # Abhijeet Kumar(abhijeet19403)
linear
linear
# Python3 program to find if # there is a root to sum path # A binary tree node class Node: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None """ Given a tree and a sum, return true if there is a path from the root down to a leaf, such that adding up all the values along the path equals the given sum. Strategy: subtract the node value from the sum when recurring down, and check to see if the sum is 0 when you run out of tree. """ # s is the sum def hasPathSum(node, s): ans = 0 subSum = s - node.data # If we reach a leaf node and sum becomes 0, then # return True if(subSum == 0 and node.left == None and node.right == None): return True # Otherwise check both subtrees if node.left is not None: ans = ans or hasPathSum(node.left, subSum) if node.right is not None: ans = ans or hasPathSum(node.right, subSum) return ans # Driver's Code if __name__ == "__main__": s = 21 root = Node(10) root.left = Node(8) root.right = Node(2) root.left.right = Node(5) root.left.left = Node(3) root.right.left = Node(2) # Function call if hasPathSum(root, s): print("There is a root-to-leaf path with sum %d" % (s)) else: print("There is no root-to-leaf path with sum %d" % (s)) # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
logn
linear
# Python program to find sum of all paths from root to leaves # A Binary tree node class Node: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # Returns sums of all root to leaf paths. The first parameter is root # of current subtree, the second paramete"r is value of the number # formed by nodes from root to this node def treePathsSumUtil(root, val): # Base Case if root is None: return 0 # Update val val = (val*10 + root.data) # If current node is leaf, return the current value of val if root.left is None and root.right is None: return val # Recur sum of values for left and right subtree return (treePathsSumUtil(root.left, val) + treePathsSumUtil(root.right, val)) # A wrapper function over treePathSumUtil() def treePathsSum(root): # Pass the initial value as 0 as ther is nothing above root return treePathsSumUtil(root, 0) # Driver function to test above function root = Node(6) root.left = Node(3) root.right = Node(5) root.left.left = Node(2) root.left.right = Node(5) root.right.right = Node(4) root.left.right.left = Node(7) root.left.right.right = Node(4) print ("Sum of all paths is", treePathsSum(root)) # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
linear
linear
# Python program to find sum of all paths from root to leaves # A Binary tree node class Node: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None def treePathsSumUtil(root, currPath, allPath): # Base Case if root is None: return # append the root data in string format in currPath currPath.append(str(root.data)) # if we found a leaf node we copy the currPath to allPath if root.left is None and root.right is None: allPath.append(currPath.copy()) # traverse in the left subtree treePathsSumUtil(root.left, currPath, allPath) # traverse in the right subtree treePathsSumUtil(root.right, currPath, allPath) # remove the current element from the path del currPath[-1] def treePathsSum(root): # store all the root to leaf path in allPath allPath = [] treePathsSumUtil(root, [], allPath) # store the sum s = 0 for pathNumber in allPath: # join the pathNumbers to convert them into the number to calculate sum k = "".join(pathNumber) s += int(k) return s # Driver function to test above function root = Node(6) root.left = Node(3) root.right = Node(5) root.left.left = Node(2) root.left.right = Node(5) root.right.right = Node(4) root.left.right.left = Node(7) root.left.right.right = Node(4) print("Sum of all paths is", treePathsSum(root)) # this code is contributed by Vivek Maddeshiya
linear
quadratic
"""Find root of tree where children sum for every node id is given""" def findRoot(arr, n) : # Every node appears once as an id, and # every node except for the root appears # once in a sum. So if we subtract all # the sums from all the ids, we're left # with the root id. root = 0 for i in range(n): root += (arr[i][0] - arr[i][1]) return root # Driver Code if __name__ == '__main__': arr = [[1, 5], [2, 0], [3, 0], [4, 0], [5, 5], [6, 5]] n = len(arr) print(findRoot(arr, n)) # This code is contributed # by SHUBHAMSINGH10
constant
linear
# Python code to find LCA of given # two nodes in a tree maxn = 100005 # the graph g = [[] for i in range(maxn)] # level of each node level = [0] * maxn e = [] l = [] h = [0] * maxn # the segment tree st = [0] * (5 * maxn) # adding edges to the graph(tree) def add_edge(u: int, v: int): g[u].append(v) g[v].append(u) # assigning level to nodes def levelling(src: int): for i in range(len(g[src])): des = g[src][i] if not level[des]: level[des] = level[src] + 1 leveling(des) visited = [False] * maxn # storing the dfs traversal # in the array e def dfs(src: int): e.append(src) visited[src] = True for i in range(len(g[src])): des = g[src][i] if not visited[des]: dfs(des) e.append(src) # making the array l def setting_l(n: int): for i in range(len(e)): l.append(level[e[i]]) # making the array h def setting_h(n: int): for i in range(n + 1): h[i] = -1 for i in range(len(e)): # if is already stored if h[e[i]] == -1: h[e[i]] = i # Range minimum query to return the index # of minimum in the subarray L[qs:qe] def RMQ(ss: int, se: int, qs: int, qe: int, i: int) -> int: global st if ss > se: return -1 # out of range if se < qs or qe < ss: return -1 # in the range if qs <= ss and se <= qe: return st[i] mid = (se + ss) >> 1 stt = RMQ(ss, mid, qs, qe, 2 * i + 1) en = RMQ(mid + 1, se, qs, qe, 2 * i + 2) if stt != -1 and en != -1: if l[stt] < l[en]: return stt return en elif stt != -1: return stt elif en != -1: return en # constructs the segment tree def segmentTreeConstruction(ss: int, se: int, i: int): if ss > se: return if ss == se: # leaf st[i] = ss return mid = (ss + se) >> 1 segmentTreeConstruction(ss, mid, 2 * i + 1) segmentTreeConstruction(mid + 1, se, 2 * i + 2) if l[st[2 * i + 1]] < l[st[2 * i + 2]]: st[i] = st[2 * i + 1] else: st[i] = st[2 * i + 2] # Function to get LCA def LCA(x: int, y: int) -> int: if h[x] > h[y]: x, y = y, x return e[RMQ(0, len(l) - 1, h[x], h[y], 0)] # Driver Code if __name__ == "__main__": # n=number of nodes in the tree # q=number of queries to answer n = 15 q = 5 # making the tree # /* # 1 # / | \ # 2 3 4 # | \ # 5 6 # / | \ # 8 7 9 (right of 5) # / | \ | \ # 10 11 12 13 14 # | # 15 # */ add_edge(1, 2) add_edge(1, 3) add_edge(1, 4) add_edge(3, 5) add_edge(4, 6) add_edge(5, 7) add_edge(5, 8) add_edge(5, 9) add_edge(7, 10) add_edge(7, 11) add_edge(7, 12) add_edge(9, 13) add_edge(9, 14) add_edge(12, 15) level[1] = 1 leveling(1) dfs(1) setting_l(n) setting_h(n) segmentTreeConstruction(0, len(l) - 1, 0) print(LCA(10, 15)) print(LCA(11, 14)) # This code is contributed by # sanjeev2552
linear
nlogn
# Python3 program to find maximum difference # between node and its ancestor _MIN = -2147483648 _MAX = 2147483648 # Helper function that allocates a new # node with the given data and None left # and right pointers. class newNode: # Constructor to create a new node def __init__(self, key): self.key = key self.left = None self.right = None """ Recursive function to calculate maximum ancestor-node difference in binary tree. It updates value at 'res' to store the result. The returned value of this function is minimum value in subtree rooted with 't' """ def maxDiffUtil(t, res): """ Returning Maximum value if node is not there (one child case) """ if (t == None): return _MAX, res """ If leaf node then just return node's value """ if (t.left == None and t.right == None): return t.key, res """ Recursively calling left and right subtree for minimum value """ a, res = maxDiffUtil(t.left, res) b, res = maxDiffUtil(t.right, res) val = min(a, b) """ Updating res if (node value - minimum value from subtree) is bigger than res """ res = max(res, t.key - val) """ Returning minimum value got so far """ return min(val, t.key), res """ This function mainly calls maxDiffUtil() """ def maxDiff(root): # Initialising result with minimum value res = _MIN x, res = maxDiffUtil(root, res) return res """ Helper function to print inorder traversal of binary tree """ def inorder(root): if (root): inorder(root.left) prf("%d ", root.key) inorder(root.right) # Driver Code if __name__ == '__main__': """ Let us create Binary Tree shown in above example """ root = newNode(8) root.left = newNode(3) root.left.left = newNode(1) root.left.right = newNode(6) root.left.right.left = newNode(4) root.left.right.right = newNode(7) root.right = newNode(10) root.right.right = newNode(14) root.right.right.left = newNode(13) print(maxDiff(root)) # This code is contributed by # Shubham Singh(SHUBHAMSINGH10)
linear
linear
# Python3 program to count # number of ways to color # a N node skewed tree with # k colors such that parent # and children have different # colors. # fast_way is recursive # method to calculate power def fastPow(N, K): if (K == 0): return 1; temp = fastPow(N, int(K / 2)); if (K % 2 == 0): return temp * temp; else: return N * temp * temp; def countWays(N, K): return K * fastPow(K - 1, N - 1); # Driver Code N = 3; K = 3; print(countWays(N, K)); # This code is contributed by mits
constant
logn
# Python Program to calculate size of the tree iteratively # Node Structure class newNode: def __init__(self,data): self.data = data self.left = self.right = None # Return size of tree def sizeoftree(root): if root == None: return 0 q = [] q.append(root) count = 1 while(len(q) != 0): root = q.pop(0) if(root.left): q.append(root.left) count += 1 if(root.right): q.append(root.right) count += 1 return count # Driver Program root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(4) root.left.right = newNode(5) print(sizeoftree(root)) # This is code is contributed by simranjenny84
np
linear
# Program to find height of tree by Iteration Method # A binary tree node class Node: # Constructor to create new node def __init__(self, data): self.data = data self.left = None self.right = None # Iterative method to find height of Binary Tree def treeHeight(root): # Base Case if root is None: return 0 # Create a empty queue for level order traversal q = [] # Enqueue Root and Initialize Height q.append(root) height = 0 while(True): # nodeCount(queue size) indicates number of nodes # at current level nodeCount = len(q) if nodeCount == 0 : return height height += 1 # Dequeue all nodes of current level and Enqueue # all nodes of next level while(nodeCount > 0): node = q[0] q.pop(0) if node.left is not None: q.append(node.left) if node.right is not None: q.append(node.right) nodeCount -= 1 # Driver program to test above function # Let us create binary tree shown in above diagram root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) print ("Height of tree is", treeHeight(root)) # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
linear
linear
# Python 3 program to find # height of complete binary # tree from total nodes. import math def height(N): return math.ceil(math.log2(N + 1)) - 1 # driver node N = 6 print(height(N)) # This code is contributed by # Smitha Dinesh Semwal
constant
constant
# Program to find height of the tree considering # only even level leaves. # Helper class that allocates a new node with the # given data and None left and right pointers. class newNode: def __init__(self, data): self.data = data self.left = None self.right = None def heightOfTreeUtil(root, isEven): # Base Case if (not root): return 0 if (not root.left and not root.right): if (isEven): return 1 else: return 0 # left stores the result of left subtree, # and right stores the result of right subtree left = heightOfTreeUtil(root.left, not isEven) right = heightOfTreeUtil(root.right, not isEven) #If both left and right returns 0, it means # there is no valid path till leaf node if (left == 0 and right == 0): return 0 return (1 + max(left, right)) def heightOfTree(root): return heightOfTreeUtil(root, False) # Driver Code if __name__ == '__main__': # Let us create binary tree shown # in above diagram root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(4) root.left.right = newNode(5) root.left.right.left = newNode(6) print("Height of tree is", heightOfTree(root)) # This code is contributed by PranchalK
linear
linear
""" Python3 program to check if a tree is height-balanced """ # A binary tree Node class Node: # Constructor to create a new Node def __init__(self, data): self.data = data self.left = None self.right = None # function to find height of binary tree def height(root): # base condition when binary tree is empty if root is None: return 0 return max(height(root.left), height(root.right)) + 1 # function to check if tree is height-balanced or not def isBalanced(root): # Base condition if root is None: return True # for left and right subtree height lh = height(root.left) rh = height(root.right) # allowed values for (lh - rh) are 1, -1, 0 if (abs(lh - rh) <= 1) and isBalanced( root.left) is True and isBalanced(root.right) is True: return True # if we reach here means tree is not # height-balanced tree return False # Driver function to test the above function root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.left.left.left = Node(8) if isBalanced(root): print("Tree is balanced") else: print("Tree is not balanced") # This code is contributed by Shweta Singh
linear
quadratic
# Python3 program to find the diameter of binary tree # A binary tree node class Node: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # The function Compute the "height" of a tree. Height is the # number of nodes along the longest path from the root node # down to the farthest leaf node. def height(node): # Base Case : Tree is empty if node is None: return 0 # If tree is not empty then height = 1 + max of left # height and right heights return 1 + max(height(node.left), height(node.right)) # Function to get the diameter of a binary tree def diameter(root): # Base Case when tree is empty if root is None: return 0 # Get the height of left and right sub-trees lheight = height(root.left) rheight = height(root.right) # Get the diameter of left and right sub-trees ldiameter = diameter(root.left) rdiameter = diameter(root.right) # Return max of the following tree: # 1) Diameter of left subtree # 2) Diameter of right subtree # 3) Height of left subtree + height of right subtree +1 return max(lheight + rheight + 1, max(ldiameter, rdiameter)) # Driver Code if __name__ == "__main__": """ Constructed binary tree is 1 / \ 2 3 / \ 4 5 """ root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) # Function Call print(diameter(root)) # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
linear
quadratic
# Python3 program to find the diameter of a binary tree # A binary tree Node class Node: # Constructor to create a new Node def __init__(self, data): self.data = data self.left = self.right = None # utility class to pass height object class Height: def __init(self): self.h = 0 # Optimised recursive function to find diameter # of binary tree def diameterOpt(root, height): # to store height of left and right subtree lh = Height() rh = Height() # base condition- when binary tree is empty if root is None: height.h = 0 return 0 # ldiameter --> diameter of left subtree # rdiameter --> diameter of right subtree # height of left subtree and right subtree is obtained from lh and rh # and returned value of function is stored in ldiameter and rdiameter ldiameter = diameterOpt(root.left, lh) rdiameter = diameterOpt(root.right, rh) # height of tree will be max of left subtree # height and right subtree height plus1 height.h = max(lh.h, rh.h) + 1 # return maximum of the following # 1)left diameter # 2)right diameter # 3)left height + right height + 1 return max(lh.h + rh.h + 1, max(ldiameter, rdiameter)) # function to calculate diameter of binary tree def diameter(root): height = Height() return diameterOpt(root, height) # Driver Code if __name__ == "__main__": root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) """ Constructed binary tree is 1 / \ 2 3 / \ 4 5 """ print("The diameter of the binary tree is:", end=" ") # Function Call print(diameter(root)) # This code is contributed by Shweta Singh(shweta44)
linear
linear
# Simple Python3 program to find diameter # of a binary tree. class newNode: def __init__(self, data): self.data = data self.left = self.right = None # Function to find height of a tree def height(root, ans): if (root == None): return 0 left_height = height(root.left, ans) right_height = height(root.right, ans) # update the answer, because diameter # of a tree is nothing but maximum # value of (left_height + right_height + 1) # for each node ans[0] = max(ans[0], 1 + left_height + right_height) return 1 + max(left_height, right_height) # Computes the diameter of binary # tree with given root. def diameter(root): if (root == None): return 0 ans = [-999999999999] # This will store # the final answer height_of_tree = height(root, ans) return ans[0] # Driver code if __name__ == '__main__': root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(4) root.left.right = newNode(5) print("Diameter is", diameter(root)) # This code is contributed by PranchalK
logn
linear
# Python3 program to find closest # value in Binary search Tree _MIN = -2147483648 _MAX = 2147483648 # Helper function that allocates a new # node with the given data and None # left and right pointers. class newnode: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # utility function to return level # of given node def getDeepestRightLeafNode(root) : if (not root): return None # create a queue for level # order traversal q = [] q.append(root) result = None # traverse until the queue is empty while (len(q)): temp = q[0] q.pop(0) if (temp.left): q.append(temp.left) # Since we go level by level, the last # stored right leaf node is deepest one if (temp.right): q.append(temp.right) if (not temp.right.left and not temp.right.right): result = temp.right return result # Driver Code if __name__ == '__main__': # create a binary tree root = newnode(1) root.left = newnode(2) root.right = newnode(3) root.left.right = newnode(4) root.right.left = newnode(5) root.right.right = newnode(6) root.right.left.right = newnode(7) root.right.right.right = newnode(8) root.right.left.right.left = newnode(9) root.right.right.right.right = newnode(10) result = getDeepestRightLeafNode(root) if result: print("Deepest Right Leaf Node ::", result.data) else: print("No result, right leaf not found") # This code is contributed by # Shubham Singh(SHUBHAMSINGH10)
linear
linear
"""Python3 program to find value of the deepest node in a given binary tree""" # A Binary Tree Node # Utility function to create a # new tree node class newNode: # Constructor to create a newNode def __init__(self, data): self.data= data self.left = None self.right = None self.visited = False # maxLevel : keeps track of maximum # level seen so far. # res : Value of deepest node so far. # level : Level of root def find(root, level, maxLevel, res): if (root != None): level += 1 find(root.left, level, maxLevel, res) # Update level and rescue if (level > maxLevel[0]): res[0] = root.data maxLevel[0] = level find(root.right, level, maxLevel, res) # Returns value of deepest node def deepestNode(root) : # Initialize result and max level res = [-1] maxLevel = [-1] # Updates value "res" and "maxLevel" # Note that res and maxLen are passed # by reference. find(root, 0, maxLevel, res) return res[0] # Driver Code if __name__ == '__main__': root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(4) root.right.left = newNode(5) root.right.right = newNode(6) root.right.left.right = newNode(7) root.right.right.right = newNode(8) root.right.left.right.left = newNode(9) print(deepestNode(root)) # This code is contributed by # SHUBHAMSINGH10
linear
linear
# A Python3 program to find value of the # deepest node in a given binary tree by method 3 from collections import deque class new_Node: def __init__(self, key): self.data = key self.left = self.right = None def deepestNode(root): if root == None: return 0 q = deque() q.append(root) node = None while len(q) != 0: node = q.popleft() if node.left is not None: q.append(node.left) if node.right is not None: q.append(node.right) return node.data # Driver Code if __name__ == '__main__': root = new_Node(1) root.left = new_Node(2) root.right = new_Node(3) root.left.left = new_Node(4) root.right.left = new_Node(5) root.right.right = new_Node(6) root.right.left.right = new_Node(7) root.right.right.right = new_Node(8) root.right.left.right.left = new_Node(9) # Calculating height of tree levels = deepestNode(root) # Printing the deepest node print(levels) # This code is contributed by Aprajita Chhawi
linear
linear
# Python3 program to find deepest # left leaf Binary search Tree _MIN = -2147483648 _MAX = 2147483648 # Helper function that allocates a new # node with the given data and None # left and right pointers. class newnode: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # utility function to return deepest # left leaf node def getDeepestLeftLeafNode(root) : if (not root): return None # create a queue for level # order traversal q = [] q.append(root) result = None # traverse until the queue is empty while (len(q)): temp = q[0] q.pop(0) if (temp.left): q.append(temp.left) if (not temp.left.left and not temp.left.right): result = temp.left # Since we go level by level, # the last stored right leaf # node is deepest one if (temp.right): q.append(temp.right) return result # Driver Code if __name__ == '__main__': # create a binary tree root = newnode(1) root.left = newnode(2) root.right = newnode(3) root.left.Left = newnode(4) root.right.left = newnode(5) root.right.right = newnode(6) root.right.left.right = newnode(7) root.right.right.right = newnode(8) root.right.left.right.left = newnode(9) root.right.right.right.right = newnode(10) result = getDeepestLeftLeafNode(root) if result: print("Deepest Left Leaf Node ::", result.data) else: print("No result, Left leaf not found") # This code is contributed by # Shubham Singh(SHUBHAMSINGH10)
linear
linear
# Python program to find the maximum width of # binary tree using Level Order Traversal. # A binary tree node class Node: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # Function to get the maximum width of a binary tree def getMaxWidth(root): maxWidth = 0 h = height(root) # Get width of each level and compare the # width with maximum width so far for i in range(1, h+1): width = getWidth(root, i) if (width > maxWidth): maxWidth = width return maxWidth # Get width of a given level def getWidth(root, level): if root is None: return 0 if level == 1: return 1 elif level > 1: return (getWidth(root.left, level-1) + getWidth(root.right, level-1)) # UTILITY FUNCTIONS # Compute the "height" of a tree -- the number of # nodes along the longest path from the root node # down to the farthest leaf node. def height(node): if node is None: return 0 else: # compute the height of each subtree lHeight = height(node.left) rHeight = height(node.right) # use the larger one return (lHeight+1) if (lHeight > rHeight) else (rHeight+1) # Driver code root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.right = Node(8) root.right.right.left = Node(6) root.right.right.right = Node(7) """ Constructed binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 """ # Function call print ("Maximum width is %d" % (getMaxWidth(root))) # This code is contributed by Naveen Aili
constant
quadratic
# Python program to find the maximum width of binary # tree using Level Order Traversal with queue. from _collections import deque # A binary tree node class Node: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # Function to get the maximum width of a binary tree def getMaxWidth(root): # base case if root is None: return 0 q = deque() maxWidth = 0 q.append(root) while q: # Get the size of queue when the level order # traversal for one level finishes count = len(q) # Update the maximum node count value maxWidth = max(count, maxWidth) while (count is not 0): count = count-1 temp = q.popleft() if temp.left is not None: q.append(temp.left) if temp.right is not None: q.append(temp.right) return maxWidth # Driver program to test above function root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.right = Node(8) root.right.right.left = Node(6) root.right.right.right = Node(7) """ Constructed binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 """ # Function call print ("Maximum width is %d" % (getMaxWidth(root))) # This code is contributed by Naveen Aili
constant
linear
# Python program to find the maximum width of # binary tree using Preorder Traversal. # A binary tree node class Node: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # Function to get the maximum width of a binary tree def getMaxWidth(root): h = height(root) # Create an array that will store count of nodes at each level count = [0] * h level = 0 # Fill the count array using preorder traversal getMaxWidthRecur(root, count, level) # Return the maximum value from count array return getMax(count, h) # A function that fills count array with count of nodes at every # level of given binary tree def getMaxWidthRecur(root, count, level): if root is not None: count[level] += 1 getMaxWidthRecur(root.left, count, level+1) getMaxWidthRecur(root.right, count, level+1) # UTILITY FUNCTIONS # Compute the "height" of a tree -- the number of # nodes along the longest path from the root node # down to the farthest leaf node. def height(node): if node is None: return 0 else: # compute the height of each subtree lHeight = height(node.left) rHeight = height(node.right) # use the larger one return (lHeight+1) if (lHeight > rHeight) else (rHeight+1) # Return the maximum value from count array def getMax(count, n): max = count[0] for i in range(1, n): if (count[i] > max): max = count[i] return max # Driver program to test above function root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.right = Node(8) root.right.right.left = Node(6) root.right.right.right = Node(7) """ Constructed binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 """ print ("Maximum width is %d" % (getMaxWidth(root))) # This code is contributed by Naveen Aili
logn
linear
# Python code to find vertical # width of a binary tree class Node: def __init__(self, data): self.data = data self.left = self.right = None # Function to fill hd in set. def fillSet(root, s, hd): if (not root): return fillSet(root.left, s, hd - 1) s.add(hd) fillSet(root.right, s, hd + 1) def verticalWidth(root): s = set() # Third parameter is horizontal # distance fillSet(root, s, 0) return len(s) if __name__ == '__main__': # Creating the above tree root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.left = Node(6) root.right.right = Node(7) root.right.left.right = Node(8) root.right.right.right = Node(9) print(verticalWidth(root)) # This code is contributed by PranchalK
linear
linear
# Python program to determine whether # vertical level l of binary tree # is sorted or not. from collections import deque from sys import maxsize INT_MIN = -maxsize # Structure of a tree node. class Node: def __init__(self, key): self.key = key self.left = None self.right = None # Helper function to determine if # vertical level l of given binary # tree is sorted or not. def isSorted(root: Node, level: int) -> bool: # If root is null, then the answer is an # empty subset and an empty subset is # always considered to be sorted. if root is None: return True # Variable to store previous # value in vertical level l. prevVal = INT_MIN # Variable to store current level # while traversing tree vertically. currLevel = 0 # Variable to store current node # while traversing tree vertically. currNode = Node(0) # Declare queue to do vertical order # traversal. A pair is used as element # of queue. The first element in pair # represents the node and the second # element represents vertical level # of that node. q = deque() # Insert root in queue. Vertical level # of root is 0. q.append((root, 0)) # Do vertical order traversal until # all the nodes are not visited. while q: currNode = q[0][0] currLevel = q[0][1] q.popleft() # Check if level of node extracted from # queue is required level or not. If it # is the required level then check if # previous value in that level is less # than or equal to value of node. if currLevel == level: if prevVal <= currNode.key: prevVal = currNode.key else: return False # If left child is not NULL then push it # in queue with level reduced by 1. if currNode.left: q.append((currNode.left, currLevel - 1)) # If right child is not NULL then push it # in queue with level increased by 1. if currNode.right: q.append((currNode.right, currLevel + 1)) # If the level asked is not present in the # given binary tree, that means that level # will contain an empty subset. Therefore answer # will be true. return True # Driver Code if __name__ == "__main__": # /* # 1 # / \ # 2 5 # / \ # 7 4 # / # 6 # */ root = Node(1) root.left = Node(2) root.right = Node(5) root.left.left = Node(7) root.left.right = Node(4) root.left.right.left = Node(6) level = -1 if isSorted(root, level): print("Yes") else: print("No") # This code is contributed by # sanjeev2552
linear
linear
# Python3 program to determine whether # binary tree is level sorted or not. from queue import Queue # Function to create new tree node. class newNode: def __init__(self, key): self.key = key self.left = self.right = None # Function to determine if given binary # tree is level sorted or not. def isSorted(root): # to store maximum value of previous # level. prevMax = -999999999999 # to store minimum value of current # level. minval = None # to store maximum value of current # level. maxval = None # to store number of nodes in current # level. levelSize = None # queue to perform level order traversal. q = Queue() q.put(root) while (not q.empty()): # find number of nodes in current # level. levelSize = q.qsize() minval = 999999999999 maxval = -999999999999 # traverse current level and find # minimum and maximum value of # this level. while (levelSize > 0): root = q.queue[0] q.get() levelSize -= 1 minval = min(minval, root.key) maxval = max(maxval, root.key) if (root.left): q.put(root.left) if (root.right): q.put(root.right) # if minimum value of this level # is not greater than maximum # value of previous level then # given tree is not level sorted. if (minval <= prevMax): return 0 # maximum value of this level is # previous maximum value for # next level. prevMax = maxval return 1 # Driver Code if __name__ == '__main__': # # 1 # / # 4 # \ # 6 # / \ # 8 9 # / \ # 12 10 root = newNode(1) root.left = newNode(4) root.left.right = newNode(6) root.left.right.left = newNode(8) root.left.right.right = newNode(9) root.left.right.left.left = newNode(12) root.left.right.right.right = newNode(10) if (isSorted(root)): print("Sorted") else: print("Not sorted") # This code is contributed by PranchalK
linear
linear
# Python program to count leaf nodes in Binary Tree # A Binary tree node class Node: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # Function to get the count of leaf nodes in binary tree def getLeafCount(node): if node is None: return 0 if(node.left is None and node.right is None): return 1 else: return getLeafCount(node.left) + getLeafCount(node.right) # Driver program to test above function root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) print ("Leaf count of the tree is %d" %(getLeafCount(root))) #This code is contributed by Nikhil Kumar Singh(nickzuck_007)
logn
linear
# Python3 program to count total number # of non-leaf nodes in a binary tree # class that allocates a new node with the #given data and None left and right pointers. class newNode: def __init__(self,data): self.data = data self.left = self.right = None # Computes the number of non-leaf # nodes in a tree. def countNonleaf(root): # Base cases. if (root == None or (root.left == None and root.right == None)): return 0 # If root is Not None and its one of # its child is also not None return (1 + countNonleaf(root.left) + countNonleaf(root.right)) # Driver Code if __name__ == '__main__': root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(4) root.left.right = newNode(5) print(countNonleaf(root)) # This code is contributed by PranchalK
logn
linear
# Python program to count # half nodes in a Binary Tree # using iterative approach # A node structure class Node: # A utility function to create a new node def __init__(self ,key): self.data = key self.left = None self.right = None # Iterative Method to count half nodes of binary tree def gethalfCount(root): # Base Case if root is None: return 0 # Create an empty queue for level order traversal queue = [] # Enqueue Root and initialize count queue.append(root) count = 0 #initialize count for half nodes while(len(queue) > 0): node = queue.pop(0) # if it is half node then increment count if node.left is not None and node.right is None or node.left is None and node.right is not None: count = count+1 #Enqueue left child if node.left is not None: queue.append(node.left) # Enqueue right child if node.right is not None: queue.append(node.right) return count #Driver Program to test above function root = Node(2) root.left = Node(7) root.right = Node(5) root.left.right = Node(6) root.left.right.left = Node(1) root.left.right.right = Node(11) root.right.right = Node(9) root.right.right.left = Node(4) print "%d" %(gethalfCount(root))
linear
linear
# Python program to count half nodes in a binary tree # A node structure class newNode: def __init__(self, data): self.data = data self.left = self.right = None # Function to get the count of half Nodes in a binary tree def gethalfCount(root): if root == None: return 0 res = 0 if(root.left == None and root.right != None) or \ (root.left != None and root.right == None): res += 1 res += (gethalfCount(root.left) + \ gethalfCount(root.right)) return res # Driver program ''' 2 / \ 7 5 \ \ 6 9 / \ / 1 11 4 Let us create Binary Tree shown in above example ''' root = newNode(2) root.left = newNode(7) root.right = newNode(5) root.left.right = newNode(6) root.left.right.left = newNode(1) root.left.right.right = newNode(11) root.right.right = newNode(9) root.right.right.left = newNode(4) print(gethalfCount(root)) # This code is contributed by simranjenny84
linear
linear
# Python program to count # full nodes in a Binary Tree # using iterative approach # A node structure class Node: # A utility function to create a new node def __init__(self ,key): self.data = key self.left = None self.right = None # Iterative Method to count full nodes of binary tree def getfullCount(root): # Base Case if root is None: return 0 # Create an empty queue for level order traversal queue = [] # Enqueue Root and initialize count queue.append(root) count = 0 #initialize count for full nodes while(len(queue) > 0): node = queue.pop(0) # if it is full node then increment count if node.left is not None and node.right is not None: count = count+1 # Enqueue left child if node.left is not None: queue.append(node.left) # Enqueue right child if node.right is not None: queue.append(node.right) return count # Driver Program to test above function root = Node(2) root.left = Node(7) root.right = Node(5) root.left.right = Node(6) root.left.right.left = Node(1) root.left.right.right = Node(11) root.right.right = Node(9) root.right.right.left = Node(4) print(getfullCount(root))
linear
linear
# Python program to count full # nodes in a Binary Tree class newNode(): def __init__(self, data): self.data = data self.left = None self.right = None # Function to get the count of # full Nodes in a binary tree def getfullCount(root): if (root == None): return 0 res = 0 if (root.left and root.right): res += 1 res += (getfullCount(root.left) + getfullCount(root.right)) return res # Driver code if __name__ == '__main__': """ 2 / \ 7 5 \ \ 6 9 / \ / 1 11 4 Let us create Binary Tree as shown """ root = newNode(2) root.left = newNode(7) root.right = newNode(5) root.left.right = newNode(6) root.left.right.left = newNode(1) root.left.right.right = newNode(11) root.right.right = newNode(9) root.right.right.left = newNode(4) print(getfullCount(root)) # This code is contributed by SHUBHAMSINGH10
linear
linear
#! /usr/bin/env python3 # connect nodes at same level using level order traversal import sys class Node: def __init__(self, data): self.data = data self.left = None self.right = None self.nextRight = None def __str__(self): return '{}'.format(self.data) def printLevelByLevel(root): # print level by level if root: node = root while node: print('{}'.format(node.data), end=' ') node = node.nextRight print() if root.left: printLevelByLevel(root.left) else: printLevelByLevel(root.right) def inorder(root): if root: inorder(root.left) print(root.data, end=' ') inorder(root.right) def connect(root): # set nextRight of all nodes of a tree queue = [] queue.append(root) # null marker to represent end of current level queue.append(None) # do level order of tree using None markers while queue: p = queue.pop(0) if p: # next element in queue represents # next node at current level p.nextRight = queue[0] # pus left and right children of current node if p.left: queue.append(p.left) if p.right: queue.append(p.right) else if queue: queue.append(None) def main(): """Driver program to test above functions. Constructed binary tree is 10 / \ 8 2 / \ 3 90 """ root = Node(10) root.left = Node(8) root.right = Node(2) root.left.left = Node(3) root.right.right = Node(90) # Populates nextRight pointer in all nodes connect(root) # Let us check the values of nextRight pointers print("Following are populated nextRight pointers in \n" "the tree (-1 is printed if there is no nextRight) \n") if(root.nextRight != None): print("nextRight of %d is %d \n" %(root.data,root.nextRight.data)) else: print("nextRight of %d is %d \n" %(root.data,-1)) if(root.left.nextRight != None): print("nextRight of %d is %d \n" %(root.left.data,root.left.nextRight.data)) else: print("nextRight of %d is %d \n" %(root.left.data,-1)) if(root.right.nextRight != None): print("nextRight of %d is %d \n" %(root.right.data,root.right.nextRight.data)) else: print("nextRight of %d is %d \n" %(root.right.data,-1)) if(root.left.left.nextRight != None): print("nextRight of %d is %d \n" %(root.left.left.data,root.left.left.nextRight.data)) else: print("nextRight of %d is %d \n" %(root.left.left.data,-1)) if(root.right.right.nextRight != None): print("nextRight of %d is %d \n" %(root.right.right.data,root.right.right.nextRight.data)) else: print("nextRight of %d is %d \n" %(root.right.right.data,-1)) print() if __name__ == "__main__": main() # This code is contributed by Ram Basnet
linear
linear
# Iterative program to connect all the adjacent nodes at the same level in a binary tree class newnode: def __init__(self, data): self.data = data self.left = self.right = self.nextRight = None # setting right pointer to next right node # 10 ----------> NULL # / \ # 8 --->2 --------> NULL # / # 3 ----------------> NULL def connect(root): # Base condition if root is None: return # Create an empty queue like level order traversal queue = [] queue.append(root) while len(queue) != 0: # size indicates no. of nodes at current level size = len(queue) # for keeping track of previous node prev = newnode(None) for i in range(size): temp = queue.pop(0) if temp.left: queue.append(temp.left) if temp.right: queue.append(temp.right) if prev != None: prev.nextRight = temp prev = temp prev.nextRight = None # Driver Code if __name__ == '__main__': # Constructed binary tree is # 10 # / \ # 8 2 # / # 3 root = newnode(10) root.left = newnode(8) root.right = newnode(2) root.left.left = newnode(3) # Populates nextRight pointer in all nodes connect(root) # Let us check the values of nextRight pointers print("Following are populated nextRight", "pointers in the tree (-1 is printed", "if there is no nextRight)") print("nextRight of", root.data, "is ", end="") if root.nextRight: print(root.nextRight.data) else: print(-1) print("nextRight of", root.left.data, "is ", end="") if root.left.nextRight: print(root.left.nextRight.data) else: print(-1) print("nextRight of", root.right.data, "is ", end="") if root.right.nextRight: print(root.right.nextRight.data) else: print(-1) print("nextRight of", root.left.left.data, "is ", end="") if root.left.left.nextRight: print(root.left.left.nextRight.data) else: print(-1) # This code is contributed by Vivek Maddeshiya
linear
linear
# Python3 implementation to find the # level having Maximum number of Nodes # Importing Queue from queue import Queue # Helper class that allocates a new # node with the given data and None # left and right pointers. class newNode: def __init__(self, data): self.data = data self.left = None self.right = None # function to find the level # having Maximum number of Nodes def maxNodeLevel(root): if (root == None): return -1 q = Queue() q.put(root) # Current level level = 0 # Maximum Nodes at same level Max = -999999999999 # Level having Maximum Nodes level_no = 0 while (1): # Count Nodes in a level NodeCount = q.qsize() if (NodeCount == 0): break # If it is Maximum till now # Update level_no to current level if (NodeCount > Max): Max = NodeCount level_no = level # Pop complete current level while (NodeCount > 0): Node = q.queue[0] q.get() if (Node.left != None): q.put(Node.left) if (Node.right != None): q.put(Node.right) NodeCount -= 1 # Increment for next level level += 1 return level_no # Driver Code if __name__ == '__main__': # binary tree formation root = newNode(2) # 2 root.left = newNode(1) # / \ root.right = newNode(3) # 1 3 root.left.left = newNode(4) # / \ \ root.left.right = newNode(6) # 4 6 8 root.right.right = newNode(8) # / root.left.right.left = newNode(5)# 5 print("Level having Maximum number of Nodes : ", maxNodeLevel(root)) # This code is contributed by Pranchalk
linear
linear
# Python program to print largest value # on each level of binary tree INT_MIN = -2147483648 # Helper function that allocates a new # node with the given data and None left # and right pointers. class newNode: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # function to find largest values def largestValueInEachLevel(root): if (not root): return q = [] nc = 10 max = 0 q.append(root) while (1): # node count for the current level nc = len(q) # if true then all the nodes of # the tree have been traversed if (nc == 0): break # maximum element for the current # level max = INT_MIN while (nc): # get the front element from 'q' front = q[0] # remove front element from 'q' q = q[1:] # if true, then update 'max' if (max < front.data): max = front.data # if left child exists if (front.left): q.append(front.left) # if right child exists if (front.right != None): q.append(front.right) nc -= 1 # print maximum element of # current level print(max, end=" ") # Driver Code if __name__ == '__main__': """ Let us construct the following Tree 4 / \ 9 2 / \ \ 3 5 7 """ root = newNode(4) root.left = newNode(9) root.right = newNode(2) root.left.left = newNode(3) root.left.right = newNode(5) root.right.right = newNode(7) # Function call largestValueInEachLevel(root) # This code is contributed # Shubham Singh(SHUBHAMSINGH10)
constant
linear
# Python3 program to find closest # value in Binary search Tree _MIN = -2147483648 _MAX = 2147483648 # Helper function that allocates a new # node with the given data and None # left and right pointers. class getnode: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # utility function to return level # of given node def getlevel(root, data): q = [] level = 1 q.append(root) # extra None is appended to keep track # of all the nodes to be appended # before level is incremented by 1 q.append(None) while (len(q)): temp = q[0] q.pop(0) if (temp == None) : if len(q) == 0: return 0 if (q[0] != None): q.append(None) level += 1 else : if (temp.data == data) : return level if (temp.left): q.append(temp.left) if (temp.right) : q.append(temp.right) return 0 # Driver Code if __name__ == '__main__': # create a binary tree root = getnode(20) root.left = getnode(10) root.right = getnode(30) root.left.left = getnode(5) root.left.right = getnode(15) root.left.right.left = getnode(12) root.right.left = getnode(25) root.right.right = getnode(40) # return level of node level = getlevel(root, 30) if level != 0: print("level of node 30 is", level) else: print("node 30 not found") level = getlevel(root, 12) if level != 0: print("level of node 12 is", level) else: print("node 12 not found") level = getlevel(root, 25) if level != 0: print("level of node 25 is", level) else: print("node 25 not found") level = getlevel(root, 27) if level != 0: print("level of node 27 is", level) else: print("node 27 not found") # This code is contributed by # Shubham Singh(SHUBHAMSINGH10)
linear
linear
# Python program to remove all half nodes # A binary tree node class Node: # Constructor for creating a new node def __init__(self , data): self.data = data self.left = None self.right = None # For inorder traversal def printInorder(root): if root is not None: printInorder(root.left) print (root.data,end=" ") printInorder(root.right) # Removes all nodes with only one child and returns # new root(note that root may change) def RemoveHalfNodes(root): if root is None: return None # Recur to left tree root.left = RemoveHalfNodes(root.left) # Recur to right tree root.right = RemoveHalfNodes(root.right) # if both left and right child is None # the node is not a Half node if root.left is None and root.right is None: return root # If current nodes is a half node with left child # None then it's right child is returned and # replaces it in the given tree if root.left is None: new_root = root.right temp = root root = None del(temp) return new_root if root.right is None: new_root = root.left temp = root root = None del(temp) return new_root return root # Driver Program root = Node(2) root.left = Node(7) root.right = Node(5) root.left.right = Node(6) root.left.right.left = Node(1) root.left.right.right = Node(11) root.right.right = Node(9) root.right.right.left = Node(4) print ("Inorder traversal of given tree") printInorder(root) NewRoot = RemoveHalfNodes(root) print ("\nInorder traversal of the modified tree") printInorder(NewRoot) # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
constant
linear
# Python3 program to find the length of longest # path with same values in a binary tree. # Helper function that allocates a # new node with the given data and # None left and right pointers. class newNode: def __init__(self, data): self.val = data self.left = self.right = None # Function to print the longest path # of same values def length(node, ans): if (not node): return 0 # Recursive calls to check for subtrees left = length(node.left, ans) right = length(node.right, ans) # Variables to store maximum lengths # in two directions Leftmax = 0 Rightmax = 0 # If curr node and it's left child has same value if (node.left and node.left.val == node.val): Leftmax += left + 1 # If curr node and it's right child has same value if (node.right and node.right.val == node.val): Rightmax += right + 1 ans[0] = max(ans[0], Leftmax + Rightmax) return max(Leftmax, Rightmax) # Driver function to find length of # longest same value path def longestSameValuePath(root): ans = [0] length(root, ans) return ans[0] # Driver code if __name__ == '__main__': # Let us construct a Binary Tree # 4 # / \ # 4 4 # / \ \ # 4 9 5 root = None root = newNode(4) root.left = newNode(4) root.right = newNode(4) root.left.left = newNode(4) root.left.right = newNode(9) root.right.right = newNode(5) print(longestSameValuePath(root)) # This code is contributed by PranchalK
logn
linear
# Python3 program to find distance of # a given node from root. # A class to create a new Binary # Tree Node class newNode: def __init__(self, item): self.data = item self.left = self.right = None # Returns -1 if x doesn't exist in tree. # Else returns distance of x from root def findDistance(root, x): # Base case if (root == None): return -1 # Initialize distance dist = -1 # Check if x is present at root or # in left subtree or right subtree. if (root.data == x): return dist + 1 else: dist = findDistance(root.left, x) if dist >= 0: return dist + 1 else: dist = findDistance(root.right, x) if dist >= 0: return dist + 1 return dist # Driver Code if __name__ == '__main__': root = newNode(5) root.left = newNode(10) root.right = newNode(15) root.left.left = newNode(20) root.left.right = newNode(25) root.left.right.right = newNode(45) root.right.left = newNode(30) root.right.right = newNode(35) print(findDistance(root, 45)) # This code is contributed by PranchalK
constant
linear
# Python3 program to print right sibling # of a node # A class to create a new Binary # Tree Node class newNode: def __init__(self, item, parent): self.data = item self.left = self.right = None self.parent = parent # Method to find right sibling def findRightSibling(node, level): if (node == None or node.parent == None): return None # GET Parent pointer whose right child is not # a parent or itself of this node. There might # be case when parent has no right child, but, # current node is left child of the parent # (second condition is for that). while (node.parent.right == node or (node.parent.right == None and node.parent.left == node)): if (node.parent == None): return None node = node.parent level -= 1 # Move to the required child, where # right sibling can be present node = node.parent.right # find right sibling in the given subtree # (from current node), when level will be 0 while (level < 0): # Iterate through subtree if (node.left != None): node = node.left else if (node.right != None): node = node.right else: # if no child are there, we cannot # have right sibling in this path break level += 1 if (level == 0): return node # This is the case when we reach 9 node # in the tree, where we need to again # recursively find the right sibling return findRightSibling(node, level) # Driver Code if __name__ == '__main__': root = newNode(1, None) root.left = newNode(2, root) root.right = newNode(3, root) root.left.left = newNode(4, root.left) root.left.right = newNode(6, root.left) root.left.left.left = newNode(7, root.left.left) root.left.left.left.left = newNode(10, root.left.left.left) root.left.right.right = newNode(9, root.left.right) root.right.right = newNode(5, root.right) root.right.right.right = newNode(8, root.right.right) root.right.right.right.right = newNode(12, root.right.right.right) # passing 10 res = findRightSibling(root.left.left.left.left, 0) if (res == None): print("No right sibling") else: print(res.data) # This code is contributed by PranchalK
constant
linear
# Python3 program to find next right of a # given key using preorder traversal # class to create a new tree node class newNode: def __init__(self, key): self.key = key self.left = self.right = None # Function to find next node for given node # in same level in a binary tree by using # pre-order traversal def nextRightNode(root, k, level, value_level): # return None if tree is empty if (root == None): return None # if desired node is found, set # value_level to current level if (root.key == k): value_level[0] = level return None # if value_level is already set, then # current node is the next right node elif (value_level[0]): if (level == value_level[0]): return root # recurse for left subtree by increasing # level by 1 leftNode = nextRightNode(root.left, k, level + 1, value_level) # if node is found in left subtree, # return it if (leftNode): return leftNode # recurse for right subtree by # increasing level by 1 return nextRightNode(root.right, k, level + 1, value_level) # Function to find next node of given node # in the same level in given binary tree def nextRightNodeUtil(root, k): value_level = [0] return nextRightNode(root, k, 1, value_level) # A utility function to test above functions def test(root, k): nr = nextRightNodeUtil(root, k) if (nr != None): print("Next Right of", k, "is", nr.key) else: print("No next right node found for", k) # Driver Code if __name__ == '__main__': # Let us create binary tree given in the # above example root = newNode(10) root.left = newNode(2) root.right = newNode(6) root.right.right = newNode(5) root.left.left = newNode(8) root.left.right = newNode(4) test(root, 10) test(root, 2) test(root, 6) test(root, 5) test(root, 8) test(root, 4) # This code is contributed by PranchalK
constant
linear
# Python3 Program to find Tilt of # Binary Tree # class that allocates a new node # with the given data and # None left and right pointers. class newNode: def __init__(self, data): self.val = data self.left = self.right = None # Recursive function to calculate # Tilt of whole tree def traverse(root, tilt): if (not root): return 0 # Compute tilts of left and right subtrees # and find sums of left and right subtrees left = traverse(root.left, tilt) right = traverse(root.right, tilt) # Add current tilt to overall tilt[0] += abs(left - right) # Returns sum of nodes under # current tree return left + right + root.val # Driver function to print Tilt # of whole tree def Tilt(root): tilt = [0] traverse(root, tilt) return tilt[0] # Driver code if __name__ == '__main__': # Let us construct a Binary Tree # 4 # / \ # 2 9 # / \ \ # 3 5 7 root = None root = newNode(4) root.left = newNode(2) root.right = newNode(9) root.left.left = newNode(3) root.left.right = newNode(8) root.right.right = newNode(7) print("The Tilt of whole tree is", Tilt(root)) # This code is contributed by PranchalK
linear
linear
# Python3 program to find averages of # all levels in a binary tree. # Helper function that allocates a # new node with the given data and # None left and right pointers. class newNode: def __init__(self, data): self.data = data self.left = self.right = None def inorder(node, m): if (not node): return "" Str = "(" Str += inorder(node.left, m) Str += str(node.data) Str += inorder(node.right, m) Str += ")" # Subtree already present (Note that # we use unordered_map instead of # unordered_set because we want to print # multiple duplicates only once, consider # example of 4 in above subtree, it # should be printed only once. if (Str in m and m[Str] == 1): print(node.data, end = " ") if Str in m: m[Str] += 1 else: m[Str] = 1 return Str # Wrapper over inorder() def printAllDups(root): m = {} inorder(root, m) # Driver code if __name__ == '__main__': root = None root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(4) root.right.left = newNode(2) root.right.left.left = newNode(4) root.right.right = newNode(4) printAllDups(root) # This code is contributed by PranchalK
quadratic
quadratic
# Python3 program to find largest three # elements in a binary tree. # Helper function that allocates a new # Node with the given data and None # left and right pointers. class newNode: def __init__(self, data): self.data = data self.left = None self.right = None # function to find three largest element def threelargest(root, first, second, third): if (root == None): return # if data is greater than first large # number update the top three list if (root.data > first[0]): third[0] = second[0] second[0] = first[0] first[0] = root.data # if data is greater than second large # number and not equal to first update # the bottom two list elif (root.data > second[0] and root.data != first[0]): third[0] = second[0] second[0] = root.data # if data is greater than third large # number and not equal to first & second # update the third highest list elif (root.data > third[0] and root.data != first[0] and root.data != second[0]): third[0] = root.data threelargest(root.left, first, second, third) threelargest(root.right, first, second, third) # Driver Code if __name__ == '__main__': root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(4) root.left.right = newNode(5) root.right.left = newNode(4) root.right.right = newNode(5) first = [0] second = [0] third = [0] threelargest(root, first, second, third) print("three largest elements are", first[0], second[0], third[0]) # This code is contributed by PranchalK
constant
linear
# Python3 program to print DFS traversal # from a given graph from collections import defaultdict # This class represents a directed graph using # adjacency list representation class Graph: # Constructor def __init__(self): # default dictionary to store graph self.graph = defaultdict(list) # function to add an edge to graph def addEdge(self, u, v): self.graph[u].append(v) # A function used by DFS def DFSUtil(self, v, visited): # Mark the current node as visited # and print it visited.add(v) print(v, end=' ') # Recur for all the vertices # adjacent to this vertex for neighbour in self.graph[v]: if neighbour not in visited: self.DFSUtil(neighbour, visited) # The function to do DFS traversal. It uses # recursive DFSUtil() def DFS(self, v): # Create a set to store visited vertices visited = set() # Call the recursive helper function # to print DFS traversal self.DFSUtil(v, visited) # Driver's code # Create a graph given # in the above diagram if __name__ == "__main__": g = Graph() g.addEdge(0, 1) g.addEdge(0, 2) g.addEdge(1, 2) g.addEdge(2, 0) g.addEdge(2, 3) g.addEdge(3, 3) print("Following is DFS from (starting from vertex 2)") # Function call g.DFS(2) # This code is contributed by Neelam Yadav
linear
linear
'''Python3 program to print DFS traversal for complete graph''' from collections import defaultdict # this class represents a directed graph using adjacency list representation class Graph: # Constructor def __init__(self): # default dictionary to store graph self.graph = defaultdict(list) # Function to add an edge to graph def addEdge(self, u, v): self.graph[u].append(v) # A function used by DFS def DFSUtil(self, v, visited): # Mark the current node as visited and print it visited.add(v) print(v, end=" ") # recur for all the vertices adjacent to this vertex for neighbour in self.graph[v]: if neighbour not in visited: self.DFSUtil(neighbour, visited) # The function to do DFS traversal. It uses recursive DFSUtil def DFS(self): # create a set to store all visited vertices visited = set() # call the recursive helper function to print DFS traversal starting from all # vertices one by one for vertex in self.graph: if vertex not in visited: self.DFSUtil(vertex, visited) # Driver's code # create a graph given in the above diagram if __name__ == "__main__": print("Following is Depth First Traversal \n") g = Graph() g.addEdge(0, 1) g.addEdge(0, 2) g.addEdge(1, 2) g.addEdge(2, 0) g.addEdge(2, 3) g.addEdge(3, 3) # Function call g.DFS() # Improved by Dheeraj Kumar
linear
linear
# Python3 program to find a mother vertex in O(V+E) time from collections import defaultdict # This class represents a directed graph using adjacency list # representation class Graph: def __init__(self, vertices): self.V = vertices # No. of vertices self.graph = defaultdict(list) # default dictionary # A recursive function to print DFS starting from v def DFSUtil(self, v, visited): # Mark the current node as visited and print it visited[v] = True # Recur for all the vertices adjacent to this vertex for i in self.graph[v]: if visited[i] == False: self.DFSUtil(i, visited) # Add w to the list of v def addEdge(self, v, w): self.graph[v].append(w) # Returns a mother vertex if exists. Otherwise returns -1 def findMother(self): # visited[] is used for DFS. Initially all are # initialized as not visited visited = [False]*(self.V) # To store last finished vertex (or mother vertex) v = 0 # Do a DFS traversal and find the last finished # vertex for i in range(self.V): if visited[i] == False: self.DFSUtil(i, visited) v = i # If there exist mother vertex (or vertices) in given # graph, then v must be one (or one of them) # Now check if v is actually a mother vertex (or graph # has a mother vertex). We basically check if every vertex # is reachable from v or not. # Reset all values in visited[] as false and do # DFS beginning from v to check if all vertices are # reachable from it or not. visited = [False]*(self.V) self.DFSUtil(v, visited) if any(i == False for i in visited): return -1 else: return v # Driver code if __name__ == '__main__': g = Graph(7) g.addEdge(0, 1) g.addEdge(0, 2) g.addEdge(1, 3) g.addEdge(4, 1) g.addEdge(6, 4) g.addEdge(5, 6) g.addEdge(5, 2) g.addEdge(6, 0) # Function call print("A mother vertex is " + str(g.findMother())) # This code is contributed by Neelam Yadav
linear
linear
# Python 3 program to count all paths # from a source to a destination. # A directed graph using adjacency # list representation class Graph: def __init__(self, V): self.V = V self.adj = [[] for i in range(V)] def addEdge(self, u, v): # Add v to u’s list. self.adj[u].append(v) # Returns count of paths from 's' to 'd' def countPaths(self, s, d): # Mark all the vertices # as not visited visited = [False] * self.V # Call the recursive helper # function to print all paths pathCount = [0] self.countPathsUtil(s, d, visited, pathCount) return pathCount[0] # A recursive function to print all paths # from 'u' to 'd'. visited[] keeps track # of vertices in current path. path[] # stores actual vertices and path_index # is current index in path[] def countPathsUtil(self, u, d, visited, pathCount): visited[u] = True # If current vertex is same as # destination, then increment count if (u == d): pathCount[0] += 1 # If current vertex is not destination else: # Recur for all the vertices # adjacent to current vertex i = 0 while i < len(self.adj[u]): if (not visited[self.adj[u][i]]): self.countPathsUtil(self.adj[u][i], d, visited, pathCount) i += 1 visited[u] = False # Driver Code if __name__ == '__main__': # Create a graph given in the # above diagram g = Graph(4) g.addEdge(0, 1) g.addEdge(0, 2) g.addEdge(0, 3) g.addEdge(2, 0) g.addEdge(2, 1) g.addEdge(1, 3) s = 2 d = 3 # Function call print(g.countPaths(s, d)) # This code is contributed by PranchalK
linear
np
# Python3 Program to determine level # of each node and print level import queue # function to determine level of # each node starting from x using BFS def printLevels(graph, V, x): # array to store level of each node level = [None] * V marked = [False] * V # create a queue que = queue.Queue() # enqueue element x que.put(x) # initialize level of source # node to 0 level[x] = 0 # marked it as visited marked[x] = True # do until queue is empty while (not que.empty()): # get the first element of queue x = que.get() # traverse neighbors of node x for i in range(len(graph[x])): # b is neighbor of node x b = graph[x][i] # if b is not marked already if (not marked[b]): # enqueue b in queue que.put(b) # level of b is level of x + 1 level[b] = level[x] + 1 # mark b marked[b] = True # display all nodes and their levels print("Nodes", " ", "Level") for i in range(V): print(" ", i, " --> ", level[i]) # Driver Code if __name__ == '__main__': # adjacency graph for tree V = 8 graph = [[] for i in range(V)] graph[0].append(1) graph[0].append(2) graph[1].append(3) graph[1].append(4) graph[1].append(5) graph[2].append(5) graph[2].append(6) graph[6].append(7) # call levels function with source as 0 printLevels(graph, V, 0) # This code is contributed by PranchalK
linear
linear
# Python3 program to find out path in # a rectangle containing circles. import math import queue # Function to find out if there is # any possible path or not. def isPossible(m, n, k, r, X, Y): # Take an array of m*n size and # initialize each element to 0. rect = [[0] * n for i in range(m)] # Now using Pythagorean theorem find if a # cell touches or within any circle or not. for i in range(m): for j in range(n): for p in range(k): if (math.sqrt((pow((X[p] - 1 - i), 2) + pow((Y[p] - 1 - j), 2))) <= r): rect[i][j] = -1 # If the starting cell comes within # any circle return false. if (rect[0][0] == -1): return False # Now use BFS to find if there # is any possible path or not. # Initialize the queue which holds # the discovered cells whose neighbors # are not discovered yet. qu = queue.Queue() rect[0][0] = 1 qu.put([0, 0]) # Discover cells until queue is not empty while (not qu.empty()): arr = qu.get() elex = arr[0] eley = arr[1] # Discover the eight adjacent nodes. # check top-left cell if ((elex > 0) and (eley > 0) and (rect[elex - 1][eley - 1] == 0)): rect[elex - 1][eley - 1] = 1 v = [elex - 1, eley - 1] qu.put(v) # check top cell if ((elex > 0) and (rect[elex - 1][eley] == 0)): rect[elex - 1][eley] = 1 v = [elex - 1, eley] qu.put(v) # check top-right cell if ((elex > 0) and (eley < n - 1) and (rect[elex - 1][eley + 1] == 0)): rect[elex - 1][eley + 1] = 1 v = [elex - 1, eley + 1] qu.put(v) # check left cell if ((eley > 0) and (rect[elex][eley - 1] == 0)): rect[elex][eley - 1] = 1 v = [elex, eley - 1] qu.put(v) # check right cell if ((eley < n - 1) and (rect[elex][eley + 1] == 0)): rect[elex][eley + 1] = 1 v = [elex, eley + 1] qu.put(v) # check bottom-left cell if ((elex < m - 1) and (eley > 0) and (rect[elex + 1][eley - 1] == 0)): rect[elex + 1][eley - 1] = 1 v = [elex + 1, eley - 1] qu.put(v) # check bottom cell if ((elex < m - 1) and (rect[elex + 1][eley] == 0)): rect[elex + 1][eley] = 1 v = [elex + 1, eley] qu.put(v) # check bottom-right cell if ((elex < m - 1) and (eley < n - 1) and (rect[elex + 1][eley + 1] == 0)): rect[elex + 1][eley + 1] = 1 v = [elex + 1, eley + 1] qu.put(v) # Now if the end cell (i.e. bottom right cell) # is 1(reachable) then we will send true. return (rect[m - 1][n - 1] == 1) # Driver Code if __name__ == '__main__': # Test case 1 m1 = 5 n1 = 5 k1 = 2 r1 = 1 X1 = [1, 3] Y1 = [3, 3] # Function call if (isPossible(m1, n1, k1, r1, X1, Y1)): print("Possible") else: print("Not Possible") # Test case 2 m2 = 5 n2 = 5 k2 = 2 r2 = 1 X2 = [1, 1] Y2 = [2, 3] # Function call if (isPossible(m2, n2, k2, r2, X2, Y2)): print("Possible") else: print("Not Possible") # This code is contributed by PranchalK
quadratic
quadratic
# Python3 program to print all paths of # source to destination in given graph from typing import List from collections import deque # Utility function for printing # the found path in graph def printpath(path: List[int]) -> None: size = len(path) for i in range(size): print(path[i], end = " ") print() # Utility function to check if current # vertex is already present in path def isNotVisited(x: int, path: List[int]) -> int: size = len(path) for i in range(size): if (path[i] == x): return 0 return 1 # Utility function for finding paths in graph # from source to destination def findpaths(g: List[List[int]], src: int, dst: int, v: int) -> None: # Create a queue which stores # the paths q = deque() # Path vector to store the current path path = [] path.append(src) q.append(path.copy()) while q: path = q.popleft() last = path[len(path) - 1] # If last vertex is the desired destination # then print the path if (last == dst): printpath(path) # Traverse to all the nodes connected to # current vertex and push new path to queue for i in range(len(g[last])): if (isNotVisited(g[last][i], path)): newpath = path.copy() newpath.append(g[last][i]) q.append(newpath) # Driver code if __name__ == "__main__": # Number of vertices v = 4 g = [[] for _ in range(4)] # Construct a graph g[0].append(3) g[0].append(1) g[0].append(2) g[1].append(3) g[2].append(0) g[2].append(1) src = 2 dst = 3 print("path from src {} to dst {} are".format( src, dst)) # Function for finding the paths findpaths(g, src, dst, v) # This code is contributed by sanjeev2552
quadratic
quadratic
# Python3 program to find minimum edge # between given two vertex of Graph import queue # function for finding minimum # no. of edge using BFS def minEdgeBFS(edges, u, v, n): # visited[n] for keeping track # of visited node in BFS visited = [0] * n # Initialize distances as 0 distance = [0] * n # queue to do BFS. Q = queue.Queue() distance[u] = 0 Q.put(u) visited[u] = True while (not Q.empty()): x = Q.get() for i in range(len(edges[x])): if (visited[edges[x][i]]): continue # update distance for i distance[edges[x][i]] = distance[x] + 1 Q.put(edges[x][i]) visited[edges[x][i]] = 1 return distance[v] # function for addition of edge def addEdge(edges, u, v): edges[u].append(v) edges[v].append(u) # Driver Code if __name__ == '__main__': # To store adjacency list of graph n = 9 edges = [[] for i in range(n)] addEdge(edges, 0, 1) addEdge(edges, 0, 7) addEdge(edges, 1, 7) addEdge(edges, 1, 2) addEdge(edges, 2, 3) addEdge(edges, 2, 5) addEdge(edges, 2, 8) addEdge(edges, 3, 4) addEdge(edges, 3, 5) addEdge(edges, 4, 5) addEdge(edges, 5, 6) addEdge(edges, 6, 7) addEdge(edges, 7, 8) u = 0 v = 5 print(minEdgeBFS(edges, u, v, n)) # This code is contributed by PranchalK
linear
linear
# Python3 code to find minimum steps to reach # to specific cell in minimum moves by Knight class cell: def __init__(self, x=0, y=0, dist=0): self.x = x self.y = y self.dist = dist # checks whether given position is # inside the board def isInside(x, y, N): if (x >= 1 and x <= N and y >= 1 and y <= N): return True return False # Method returns minimum step to reach # target position def minStepToReachTarget(knightpos, targetpos, N): # all possible movements for the knight dx = [2, 2, -2, -2, 1, 1, -1, -1] dy = [1, -1, 1, -1, 2, -2, 2, -2] queue = [] # push starting position of knight # with 0 distance queue.append(cell(knightpos[0], knightpos[1], 0)) # make all cell unvisited visited = [[False for i in range(N + 1)] for j in range(N + 1)] # visit starting state visited[knightpos[0]][knightpos[1]] = True # loop until we have one element in queue while(len(queue) > 0): t = queue[0] queue.pop(0) # if current cell is equal to target # cell, return its distance if(t.x == targetpos[0] and t.y == targetpos[1]): return t.dist # iterate for all reachable states for i in range(8): x = t.x + dx[i] y = t.y + dy[i] if(isInside(x, y, N) and not visited[x][y]): visited[x][y] = True queue.append(cell(x, y, t.dist + 1)) # Driver Code if __name__ == '__main__': N = 30 knightpos = [1, 1] targetpos = [30, 30] # Function call print(minStepToReachTarget(knightpos, targetpos, N)) # This code is contributed by # Kaustav kumar Chanda
quadratic
quadratic
# Python program to detect cycle # in a graph from collections import defaultdict class Graph(): def __init__(self,vertices): self.graph = defaultdict(list) self.V = vertices def addEdge(self,u,v): self.graph[u].append(v) def isCyclicUtil(self, v, visited, recStack): # Mark current node as visited and # adds to recursion stack visited[v] = True recStack[v] = True # Recur for all neighbours # if any neighbour is visited and in # recStack then graph is cyclic for neighbour in self.graph[v]: if visited[neighbour] == False: if self.isCyclicUtil(neighbour, visited, recStack) == True: return True elif recStack[neighbour] == True: return True # The node needs to be popped from # recursion stack before function ends recStack[v] = False return False # Returns true if graph is cyclic else false def isCyclic(self): visited = [False] * (self.V + 1) recStack = [False] * (self.V + 1) for node in range(self.V): if visited[node] == False: if self.isCyclicUtil(node,visited,recStack) == True: return True return False g = Graph(4) g.addEdge(0, 1) g.addEdge(0, 2) g.addEdge(1, 2) g.addEdge(2, 0) g.addEdge(2, 3) g.addEdge(3, 3) if g.isCyclic() == 1: print "Graph contains cycle" else: print "Graph doesn't contain cycle" # Thanks to Divyanshu Mehta for contributing this code
linear
linear
# Python Program to detect cycle in an undirected graph from collections import defaultdict # This class represents a undirected # graph using adjacency list representation class Graph: def __init__(self, vertices): # No. of vertices self.V = vertices # No. of vertices # Default dictionary to store graph self.graph = defaultdict(list) # Function to add an edge to graph def addEdge(self, v, w): # Add w to v_s list self.graph[v].append(w) # Add v to w_s list self.graph[w].append(v) # A recursive function that uses # visited[] and parent to detect # cycle in subgraph reachable from vertex v. def isCyclicUtil(self, v, visited, parent): # Mark the current node as visited visited[v] = True # Recur for all the vertices # adjacent to this vertex for i in self.graph[v]: # If the node is not # visited then recurse on it if visited[i] == False: if(self.isCyclicUtil(i, visited, v)): return True # If an adjacent vertex is # visited and not parent # of current vertex, # then there is a cycle elif parent != i: return True return False # Returns true if the graph # contains a cycle, else false. def isCyclic(self): # Mark all the vertices # as not visited visited = [False]*(self.V) # Call the recursive helper # function to detect cycle in different # DFS trees for i in range(self.V): # Don't recur for u if it # is already visited if visited[i] == False: if(self.isCyclicUtil (i, visited, -1)) == True: return True return False # Create a graph given in the above diagram g = Graph(5) g.addEdge(1, 0) g.addEdge(1, 2) g.addEdge(2, 0) g.addEdge(0, 3) g.addEdge(3, 4) if g.isCyclic(): print("Graph contains cycle") else: print("Graph doesn't contain cycle ") g1 = Graph(3) g1.addEdge(0, 1) g1.addEdge(1, 2) if g1.isCyclic(): print("Graph contains cycle") else: print("Graph doesn't contain cycle ") # This code is contributed by Neelam Yadav
linear
linear
# Python program to detect cycle in # a directed graph from collections import defaultdict class Graph(): def __init__(self, V): self.V = V self.graph = defaultdict(list) def addEdge(self, u, v): self.graph[u].append(v) def DFSUtil(self, u, color): # GRAY : This vertex is being processed (DFS # for this vertex has started, but not # ended (or this vertex is in function # call stack) color[u] = "GRAY" for v in self.graph[u]: if color[v] == "GRAY": return True if color[v] == "WHITE" and self.DFSUtil(v, color) == True: return True color[u] = "BLACK" return False def isCyclic(self): color = ["WHITE"] * self.V for i in range(self.V): if color[i] == "WHITE": if self.DFSUtil(i, color) == True: return True return False # Driver program to test above functions g = Graph(4) g.addEdge(0, 1) g.addEdge(0, 2) g.addEdge(1, 2) g.addEdge(2, 0) g.addEdge(2, 3) g.addEdge(3, 3) print ("Graph contains cycle" if g.isCyclic() == True\ else "Graph doesn't contain cycle") # This program is contributed by Divyanshu Mehta
linear
linear
# Python3 program to check if there # is a cycle of total odd weight # This function returns true if the current subpart # of the forest is two colorable, else false. def twoColorUtil(G, src, N, colorArr): # Assign first color to source colorArr[src] = 1 # Create a queue (FIFO) of vertex numbers and # enqueue source vertex for BFS traversal q = [src] # Run while there are vertices in queue # (Similar to BFS) while len(q) > 0: u = q.pop(0) # Find all non-colored adjacent vertices for v in range(0, len(G[u])): # An edge from u to v exists and # destination v is not colored if colorArr[G[u][v]] == -1: # Assign alternate color to this # adjacent v of u colorArr[G[u][v]] = 1 - colorArr[u] q.append(G[u][v]) # An edge from u to v exists and destination # v is colored with same color as u elif colorArr[G[u][v]] == colorArr[u]: return False return True # This function returns true if graph # G[V][V] is two colorable, else false def twoColor(G, N): # Create a color array to store colors assigned # to all vertices. Vertex number is used as index # in this array. The value '-1' of colorArr[i] # is used to indicate that no color is assigned # to vertex 'i'. The value 1 is used to indicate # first color is assigned and value 0 indicates # second color is assigned. colorArr = [-1] * N # As we are dealing with graph, the input might # come as a forest, thus start coloring from a # node and if true is returned we'll know that # we successfully colored the subpart of our # forest and we start coloring again from a new # uncolored node. This way we cover the entire forest. for i in range(N): if colorArr[i] == -1: if twoColorUtil(G, i, N, colorArr) == False: return False return True # Returns false if an odd cycle is present else true # int info[][] is the information about our graph # int n is the number of nodes # int m is the number of informations given to us def isOddSum(info, n, m): # Declaring adjacency list of a graph # Here at max, we can encounter all the # edges with even weight thus there will # be 1 pseudo node for each edge G = [[] for i in range(2*n)] pseudo, pseudo_count = n+1, 0 for i in range(0, m): # For odd weight edges, we # directly add it in our graph if info[i][2] % 2 == 1: u, v = info[i][0], info[i][1] G[u].append(v) G[v].append(u) # For even weight edges, we break it else: u, v = info[i][0], info[i][1] # Entering a pseudo node between u---v G[u].append(pseudo) G[pseudo].append(u) G[v].append(pseudo) G[pseudo].append(v) # Keeping a record of number # of pseudo nodes inserted pseudo_count += 1 # Making a new pseudo node for next time pseudo += 1 # We pass number graph G[][] and total number # of node = actual number of nodes + number of # pseudo nodes added. return twoColor(G, n+pseudo_count) # Driver function if __name__ == "__main__": # 'n' correspond to number of nodes in our # graph while 'm' correspond to the number # of information about this graph. n, m = 4, 3 info = [[1, 2, 12], [2, 3, 1], [4, 3, 1], [4, 1, 20]] # This function break the even weighted edges in # two parts. Makes the adjacency representation # of the graph and sends it for two coloring. if isOddSum(info, n, m) == True: print("No") else: print("Yes") # This code is contributed by Rituraj Jain
linear
quadratic
# Python3 program to implement Union-Find # with union by rank and path compression. # set parent of every node to itself # and size of node to one def initialize(n): global Arr, size for i in range(n + 1): Arr[i] = i size[i] = 1 # Each time we follow a path, find # function compresses it further # until the path length is greater # than or equal to 1. def find(i): global Arr, size # while we reach a node whose # parent is equal to itself while (Arr[i] != i): Arr[i] = Arr[Arr[i]] # Skip one level i = Arr[i] # Move to the new level return i # A function that does union of two # nodes x and y where xr is root node # of x and yr is root node of y def _union(xr, yr): global Arr, size if (size[xr] < size[yr]): # Make yr parent of xr Arr[xr] = Arr[yr] size[yr] += size[xr] else: # Make xr parent of yr Arr[yr] = Arr[xr] size[xr] += size[yr] # The main function to check whether # a given graph contains cycle or not def isCycle(adj, V): global Arr, size # Iterate through all edges of graph, # find nodes connecting them. # If root nodes of both are same, # then there is cycle in graph. for i in range(V): for j in range(len(adj[i])): x = find(i) # find root of i y = find(adj[i][j]) # find root of adj[i][j] if (x == y): return 1 # If same parent _union(x, y) # Make them connect return 0 # Driver Code MAX_VERTEX = 101 # Arr to represent parent of index i Arr = [None] * MAX_VERTEX # Size to represent the number of nodes # in subgraph rooted at index i size = [None] * MAX_VERTEX V = 3 # Initialize the values for array # Arr and Size initialize(V) # Let us create following graph # 0 # | \ # | \ # 1-----2 # Adjacency list for graph adj = [[] for i in range(V)] adj[0].append(1) adj[0].append(2) adj[1].append(2) # call is_cycle to check if it # contains cycle if (isCycle(adj, V)): print("Graph contains Cycle.") else: print("Graph does not contain Cycle.") # This code is contributed by PranchalK
constant
logn
# Python3 program to find number of magical # indices in the given array. # Function to count number of magical # indices. def solve(A, n) : cnt = 0 # Array to store parent node of # traversal. parent = [None] * (n + 1) # Array to determine whether current node # is already counted in the cycle. vis = [None] * (n + 1) # Initialize the arrays. for i in range(0, n+1): parent[i] = -1 vis[i] = 0 for i in range(0, n): j = i # Check if current node is already # traversed or not. If node is not # traversed yet then parent value # will be -1. if (parent[j] == -1) : # Traverse the graph until an # already visited node is not # found. while (parent[j] == -1) : parent[j] = i j = (j + A[j] + 1) % n # Check parent value to ensure # a cycle is present. if (parent[j] == i) : # Count number of nodes in # the cycle. while (vis[j]==0) : vis[j] = 1 cnt = cnt + 1 j = (j + A[j] + 1) % n return cnt # Driver code A = [ 0, 0, 0, 2 ] n = len(A) print (solve(A, n)) # This code is contributed by Manish Shaw # (manishshaw1)
linear
linear
# Python program to print topological sorting of a DAG from collections import defaultdict # Class to represent a graph class Graph: def __init__(self, vertices): self.graph = defaultdict(list) # dictionary containing adjacency List self.V = vertices # No. of vertices # function to add an edge to graph def addEdge(self, u, v): self.graph[u].append(v) # A recursive function used by topologicalSort def topologicalSortUtil(self, v, visited, stack): # Mark the current node as visited. visited[v] = True # Recur for all the vertices adjacent to this vertex for i in self.graph[v]: if visited[i] == False: self.topologicalSortUtil(i, visited, stack) # Push current vertex to stack which stores result stack.append(v) # The function to do Topological Sort. It uses recursive # topologicalSortUtil() def topologicalSort(self): # Mark all the vertices as not visited visited = [False]*self.V stack = [] # Call the recursive helper function to store Topological # Sort starting from all vertices one by one for i in range(self.V): if visited[i] == False: self.topologicalSortUtil(i, visited, stack) # Print contents of the stack print(stack[::-1]) # return list in reverse order # Driver Code if __name__ == '__main__': g = Graph(6) g.addEdge(5, 2) g.addEdge(5, 0) g.addEdge(4, 0) g.addEdge(4, 1) g.addEdge(2, 3) g.addEdge(3, 1) print("Following is a Topological Sort of the given graph") # Function Call g.topologicalSort() # This code is contributed by Neelam Yadav
linear
linear
# Python program to print topological sorting of a DAG from collections import defaultdict # Class to represent a graph class Graph: def __init__(self, vertices): self.graph = defaultdict(list) # dictionary containing adjacency List self.V = vertices # No. of vertices # function to add an edge to graph def addEdge(self, u, v): self.graph[u].append(v) # neighbors generator given key def neighbor_gen(self, v): for k in self.graph[v]: yield k # non recursive topological sort def nonRecursiveTopologicalSortUtil(self, v, visited, stack): # working stack contains key and the corresponding current generator working_stack = [(v, self.neighbor_gen(v))] while working_stack: # get last element from stack v, gen = working_stack.pop() visited[v] = True # run through neighbor generator until it's empty for next_neighbor in gen: if not visited[next_neighbor]: # not seen before? # remember current work working_stack.append((v, gen)) # restart with new neighbor working_stack.append( (next_neighbor, self.neighbor_gen(next_neighbor))) break else: # no already-visited neighbor (or no more of them) stack.append(v) # The function to do Topological Sort. def nonRecursiveTopologicalSort(self): # Mark all the vertices as not visited visited = [False]*self.V # result stack stack = [] # Call the helper function to store Topological # Sort starting from all vertices one by one for i in range(self.V): if not(visited[i]): self.nonRecursiveTopologicalSortUtil(i, visited, stack) # Print contents of the stack in reverse stack.reverse() print(stack) # Driver code if __name__ == "__main__": g = Graph(6) g.addEdge(5, 2) g.addEdge(5, 0) g.addEdge(4, 0) g.addEdge(4, 1) g.addEdge(2, 3) g.addEdge(3, 1) # Function call print("The following is a Topological Sort of the given graph") g.nonRecursiveTopologicalSort() # This code was based of Neelam Yadav's code, modified by Suhail Alnahari, Python-ified by Matthias Urlichhs
linear
linear
# class to represent a graph object class Graph: # Constructor def __init__(self, edges, N): # A List of Lists to represent an adjacency list self.adjList = [[] for _ in range(N)] # stores in-degree of a vertex # initialize in-degree of each vertex by 0 self.indegree = [0] * N # add edges to the undirected graph for (src, dest) in edges: # add an edge from source to destination self.adjList[src].append(dest) # increment in-degree of destination vertex by 1 self.indegree[dest] = self.indegree[dest] + 1 # Recursive function to find # all topological orderings of a given DAG def findAllTopologicalOrders(graph, path, discovered, N): # do for every vertex for v in range(N): # proceed only if in-degree of current node is 0 and # current node is not processed yet if graph.indegree[v] == 0 and not discovered[v]: # for every adjacent vertex u of v, # reduce in-degree of u by 1 for u in graph.adjList[v]: graph.indegree[u] = graph.indegree[u] - 1 # include current node in the path # and mark it as discovered path.append(v) discovered[v] = True # recur findAllTopologicalOrders(graph, path, discovered, N) # backtrack: reset in-degree # information for the current node for u in graph.adjList[v]: graph.indegree[u] = graph.indegree[u] + 1 # backtrack: remove current node from the path and # mark it as undiscovered path.pop() discovered[v] = False # print the topological order if # all vertices are included in the path if len(path) == N: print(path) # Print all topological orderings of a given DAG def printAllTopologicalOrders(graph): # get number of nodes in the graph N = len(graph.adjList) # create an auxiliary space to keep track of whether vertex is discovered discovered = [False] * N # list to store the topological order path = [] # find all topological ordering and print them findAllTopologicalOrders(graph, path, discovered, N) # Driver code if __name__ == '__main__': # List of graph edges as per above diagram edges = [(5, 2), (5, 0), (4, 0), (4, 1), (2, 3), (3, 1)] print("All Topological sorts") # Number of nodes in the graph N = 6 # create a graph from edges graph = Graph(edges, N) # print all topological ordering of the graph printAllTopologicalOrders(graph) # This code is contributed by Priyadarshini Kumari
linear
quadratic
# A Python program to print topological sorting of a graph # using indegrees from collections import defaultdict # Class to represent a graph class Graph: def __init__(self, vertices): self.graph = defaultdict(list) # dictionary containing adjacency List self.V = vertices # No. of vertices # function to add an edge to graph def addEdge(self, u, v): self.graph[u].append(v) # The function to do Topological Sort. def topologicalSort(self): # Create a vector to store indegrees of all # vertices. Initialize all indegrees as 0. in_degree = [0]*(self.V) # Traverse adjacency lists to fill indegrees of # vertices. This step takes O(V + E) time for i in self.graph: for j in self.graph[i]: in_degree[j] += 1 # Create an queue and enqueue all vertices with # indegree 0 queue = [] for i in range(self.V): if in_degree[i] == 0: queue.append(i) # Initialize count of visited vertices cnt = 0 # Create a vector to store result (A topological # ordering of the vertices) top_order = [] # One by one dequeue vertices from queue and enqueue # adjacents if indegree of adjacent becomes 0 while queue: # Extract front of queue (or perform dequeue) # and add it to topological order u = queue.pop(0) top_order.append(u) # Iterate through all neighbouring nodes # of dequeued node u and decrease their in-degree # by 1 for i in self.graph[u]: in_degree[i] -= 1 # If in-degree becomes zero, add it to queue if in_degree[i] == 0: queue.append(i) cnt += 1 # Check if there was a cycle if cnt != self.V: print ("There exists a cycle in the graph") else : # Print topological order print (top_order) g = Graph(6) g.addEdge(5, 2); g.addEdge(5, 0); g.addEdge(4, 0); g.addEdge(4, 1); g.addEdge(2, 3); g.addEdge(3, 1); print ("Following is a Topological Sort of the given graph") g.topologicalSort() # This code is contributed by Neelam Yadav
linear
linear
# A Python3 program for Prim's Minimum Spanning Tree (MST) algorithm. # The program is for adjacency matrix representation of the graph import sys # Library for INT_MAX class Graph(): def __init__(self, vertices): self.V = vertices self.graph = [[0 for column in range(vertices)] for row in range(vertices)] # A utility function to print the constructed MST stored in parent[] def printMST(self, parent): print("Edge \tWeight") for i in range(1, self.V): print(parent[i], "-", i, "\t", self.graph[i][parent[i]]) # A utility function to find the vertex with # minimum distance value, from the set of vertices # not yet included in shortest path tree def minKey(self, key, mstSet): # Initialize min value min = sys.maxsize for v in range(self.V): if key[v] < min and mstSet[v] == False: min = key[v] min_index = v return min_index # Function to construct and print MST for a graph # represented using adjacency matrix representation def primMST(self): # Key values used to pick minimum weight edge in cut key = [sys.maxsize] * self.V parent = [None] * self.V # Array to store constructed MST # Make key 0 so that this vertex is picked as first vertex key[0] = 0 mstSet = [False] * self.V parent[0] = -1 # First node is always the root of for cout in range(self.V): # Pick the minimum distance vertex from # the set of vertices not yet processed. # u is always equal to src in first iteration u = self.minKey(key, mstSet) # Put the minimum distance vertex in # the shortest path tree mstSet[u] = True # Update dist value of the adjacent vertices # of the picked vertex only if the current # distance is greater than new distance and # the vertex in not in the shortest path tree for v in range(self.V): # graph[u][v] is non zero only for adjacent vertices of m # mstSet[v] is false for vertices not yet included in MST # Update the key only if graph[u][v] is smaller than key[v] if self.graph[u][v] > 0 and mstSet[v] == False and key[v] > self.graph[u][v]: key[v] = self.graph[u][v] parent[v] = u self.printMST(parent) # Driver's code if __name__ == '__main__': g = Graph(5) g.graph = [[0, 2, 0, 6, 0], [2, 0, 3, 8, 5], [0, 3, 0, 0, 7], [6, 8, 0, 0, 9], [0, 5, 7, 9, 0]] g.primMST() # Contributed by Divyanshu Mehta
linear
quadratic
# Python program for Kruskal's algorithm to find # Minimum Spanning Tree of a given connected, # undirected and weighted graph # Class to represent a graph class Graph: def __init__(self, vertices): self.V = vertices # No. of vertices self.graph = [] # to store graph # function to add an edge to graph def addEdge(self, u, v, w): self.graph.append([u, v, w]) # A utility function to find set of an element i # (truly uses path compression technique) def find(self, parent, i): if parent[i] != i: # Reassignment of node's parent to root node as # path compression requires parent[i] = self.find(parent, parent[i]) return parent[i] # A function that does union of two sets of x and y # (uses union by rank) def union(self, parent, rank, x, y): # Attach smaller rank tree under root of # high rank tree (Union by Rank) if rank[x] < rank[y]: parent[x] = y elif rank[x] > rank[y]: parent[y] = x # If ranks are same, then make one as root # and increment its rank by one else: parent[y] = x rank[x] += 1 # The main function to construct MST using Kruskal's # algorithm def KruskalMST(self): result = [] # This will store the resultant MST # An index variable, used for sorted edges i = 0 # An index variable, used for result[] e = 0 # Step 1: Sort all the edges in # non-decreasing order of their # weight. If we are not allowed to change the # given graph, we can create a copy of graph self.graph = sorted(self.graph, key=lambda item: item[2]) parent = [] rank = [] # Create V subsets with single elements for node in range(self.V): parent.append(node) rank.append(0) # Number of edges to be taken is equal to V-1 while e < self.V - 1: # Step 2: Pick the smallest edge and increment # the index for next iteration u, v, w = self.graph[i] i = i + 1 x = self.find(parent, u) y = self.find(parent, v) # If including this edge doesn't # cause cycle, then include it in result # and increment the index of result # for next edge if x != y: e = e + 1 result.append([u, v, w]) self.union(parent, rank, x, y) # Else discard the edge minimumCost = 0 print("Edges in the constructed MST") for u, v, weight in result: minimumCost += weight print("%d -- %d == %d" % (u, v, weight)) print("Minimum Spanning Tree", minimumCost) # Driver's code if __name__ == '__main__': g = Graph(4) g.addEdge(0, 1, 10) g.addEdge(0, 2, 6) g.addEdge(0, 3, 5) g.addEdge(1, 3, 15) g.addEdge(2, 3, 4) # Function call g.KruskalMST() # This code is contributed by Neelam Yadav # Improved by James Graça-Jones
linear
nlogn
# Python3 program to solve N Queen # Problem using backtracking global N N = 4 def printSolution(board): for i in range(N): for j in range(N): print(board[i][j], end = " ") print() # A utility function to check if a queen can # be placed on board[row][col]. Note that this # function is called when "col" queens are # already placed in columns from 0 to col -1. # So we need to check only left side for # attacking queens def isSafe(board, row, col): # Check this row on left side for i in range(col): if board[row][i] == 1: return False # Check upper diagonal on left side for i, j in zip(range(row, -1, -1), range(col, -1, -1)): if board[i][j] == 1: return False # Check lower diagonal on left side for i, j in zip(range(row, N, 1), range(col, -1, -1)): if board[i][j] == 1: return False return True def solveNQUtil(board, col): # base case: If all queens are placed # then return true if col >= N: return True # Consider this column and try placing # this queen in all rows one by one for i in range(N): if isSafe(board, i, col): # Place this queen in board[i][col] board[i][col] = 1 # recur to place rest of the queens if solveNQUtil(board, col + 1) == True: return True # If placing queen in board[i][col # doesn't lead to a solution, then # queen from board[i][col] board[i][col] = 0 # if the queen can not be placed in any row in # this column col then return false return False # This function solves the N Queen problem using # Backtracking. It mainly uses solveNQUtil() to # solve the problem. It returns false if queens # cannot be placed, otherwise return true and # placement of queens in the form of 1s. # note that there may be more than one # solutions, this function prints one of the # feasible solutions. def solveNQ(): board = [ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0] ] if solveNQUtil(board, 0) == False: print ("Solution does not exist") return False printSolution(board) return True # Driver Code solveNQ() # This code is contributed by Divyanshu Mehta
quadratic
np
""" Python3 program to solve N Queen Problem using backtracking """ N = 4 """ ld is an array where its indices indicate row-col+N-1 (N-1) is for shifting the difference to store negative indices """ ld = [0] * 30 """ rd is an array where its indices indicate row+col and used to check whether a queen can be placed on right diagonal or not""" rd = [0] * 30 """column array where its indices indicates column and used to check whether a queen can be placed in that row or not""" cl = [0] * 30 """ A utility function to print solution """ def printSolution(board): for i in range(N): for j in range(N): print(board[i][j], end = " ") print() """ A recursive utility function to solve N Queen problem """ def solveNQUtil(board, col): """ base case: If all queens are placed then return True """ if (col >= N): return True """ Consider this column and try placing this queen in all rows one by one """ for i in range(N): """ Check if the queen can be placed on board[i][col] """ """ A check if a queen can be placed on board[row][col]. We just need to check ld[row-col+n-1] and rd[row+coln] where ld and rd are for left and right diagonal respectively""" if ((ld[i - col + N - 1] != 1 and rd[i + col] != 1) and cl[i] != 1): """ Place this queen in board[i][col] """ board[i][col] = 1 ld[i - col + N - 1] = rd[i + col] = cl[i] = 1 """ recur to place rest of the queens """ if (solveNQUtil(board, col + 1)): return True """ If placing queen in board[i][col] doesn't lead to a solution, then remove queen from board[i][col] """ board[i][col] = 0 # BACKTRACK ld[i - col + N - 1] = rd[i + col] = cl[i] = 0 """ If the queen cannot be placed in any row in this column col then return False """ return False """ This function solves the N Queen problem using Backtracking. It mainly uses solveNQUtil() to solve the problem. It returns False if queens cannot be placed, otherwise, return True and prints placement of queens in the form of 1s. Please note that there may be more than one solutions, this function prints one of the feasible solutions.""" def solveNQ(): board = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]] if (solveNQUtil(board, 0) == False): printf("Solution does not exist") return False printSolution(board) return True # Driver Code solveNQ() # This code is contributed by SHUBHAMSINGH10
linear
np
# Python3 program for the above approach # Number of vertices in the graph # define 4 4 # check if the colored # graph is safe or not def isSafe(graph, color): # check for every edge for i in range(4): for j in range(i + 1, 4): if (graph[i][j] and color[j] == color[i]): return False return True # /* This function solves the m Coloring # problem using recursion. It returns # false if the m colours cannot be assigned, # otherwise, return true and prints # assignments of colours to all vertices. # Please note that there may be more than # one solutions, this function prints one # of the feasible solutions.*/ def graphColoring(graph, m, i, color): # if current index reached end if (i == 4): # if coloring is safe if (isSafe(graph, color)): # Print the solution printSolution(color) return True return False # Assign each color from 1 to m for j in range(1, m + 1): color[i] = j # Recur of the rest vertices if (graphColoring(graph, m, i + 1, color)): return True color[i] = 0 return False # /* A utility function to print solution */ def printSolution(color): print("Solution Exists:" " Following are the assigned colors ") for i in range(4): print(color[i], end=" ") # Driver code if __name__ == '__main__': # /* Create following graph and # test whether it is 3 colorable # (3)---(2) # | / | # | / | # | / | # (0)---(1) # */ graph = [ [0, 1, 1, 1], [1, 0, 1, 0], [1, 1, 0, 1], [1, 0, 1, 0], ] m = 3 # Number of colors # Initialize all color values as 0. # This initialization is needed # correct functioning of isSafe() color = [0 for i in range(4)] # Function call if (not graphColoring(graph, m, 0, color)): print("Solution does not exist") # This code is contributed by mohit kumar 29
linear
quadratic
# Python3 program for solution of M Coloring # problem using backtracking class Graph(): def __init__(self, vertices): self.V = vertices self.graph = [[0 for column in range(vertices)] for row in range(vertices)] # A utility function to check # if the current color assignment # is safe for vertex v def isSafe(self, v, colour, c): for i in range(self.V): if self.graph[v][i] == 1 and colour[i] == c: return False return True # A recursive utility function to solve m # coloring problem def graphColourUtil(self, m, colour, v): if v == self.V: return True for c in range(1, m + 1): if self.isSafe(v, colour, c) == True: colour[v] = c if self.graphColourUtil(m, colour, v + 1) == True: return True colour[v] = 0 def graphColouring(self, m): colour = [0] * self.V if self.graphColourUtil(m, colour, 0) == None: return False # Print the solution print("Solution exist and Following are the assigned colours:") for c in colour: print(c, end=' ') return True # Driver Code if __name__ == '__main__': g = Graph(4) g.graph = [[0, 1, 1, 1], [1, 0, 1, 0], [1, 1, 0, 1], [1, 0, 1, 0]] m = 3 # Function call g.graphColouring(m) # This code is contributed by Divyanshu Mehta
linear
quadratic
# Python3 program for the above approach from queue import Queue class node: color = 1 edges = set() def canPaint(nodes, n, m): # Create a visited array of n # nodes, initialized to zero visited = [0 for _ in range(n+1)] # maxColors used till now are 1 as # all nodes are painted color 1 maxColors = 1 # Do a full BFS traversal from # all unvisited starting points for _ in range(1, n + 1): if visited[_]: continue # If the starting point is unvisited, # mark it visited and push it in queue visited[_] = 1 q = Queue() q.put(_) # BFS Travel starts here while not q.empty(): top = q.get() # Checking all adjacent nodes # to "top" edge in our queue for _ in nodes[top].edges: # IMPORTANT: If the color of the # adjacent node is same, increase it by 1 if nodes[top].color == nodes[_].color: nodes[_].color += 1 # If number of colors used shoots m, # return 0 maxColors = max(maxColors, max( nodes[top].color, nodes[_].color)) if maxColors > m: print(maxColors) return 0 # If the adjacent node is not visited, # mark it visited and push it in queue if not visited[_]: visited[_] = 1 q.put(_) return 1 # Driver code if __name__ == "__main__": n = 4 graph = [[0, 1, 1, 1], [1, 0, 1, 0], [1, 1, 0, 1], [1, 0, 1, 0]] # Number of colors m = 3 # Create a vector of n+1 # nodes of type "node" # The zeroth position is just # dummy (1 to n to be used) nodes = [] for _ in range(n+1): nodes.append(node()) # Add edges to each node as # per given input for _ in range(n): for __ in range(n): if graph[_][__]: # Connect the undirected graph nodes[_].edges.add(_) nodes[__].edges.add(__) # Function call print(canPaint(nodes, n, m)) # This code is contributed by harshitkap00r
linear
linear