code
stringlengths
195
7.9k
space_complexity
stringclasses
6 values
time_complexity
stringclasses
7 values
# Python3 program to implement # flood fill algorithm # Dimensions of paint screen M = 8 N = 8 # A recursive function to replace # previous color 'prevC' at '(x, y)' # and all surrounding pixels of (x, y) # with new color 'newC' and def floodFillUtil(screen, x, y, prevC, newC): # Base cases if (x < 0 or x >= M or y < 0 or y >= N or screen[x][y] != prevC or screen[x][y] == newC): return # Replace the color at (x, y) screen[x][y] = newC # Recur for north, east, south and west floodFillUtil(screen, x + 1, y, prevC, newC) floodFillUtil(screen, x - 1, y, prevC, newC) floodFillUtil(screen, x, y + 1, prevC, newC) floodFillUtil(screen, x, y - 1, prevC, newC) # It mainly finds the previous color on (x, y) and # calls floodFillUtil() def floodFill(screen, x, y, newC): prevC = screen[x][y] if(prevC==newC): return floodFillUtil(screen, x, y, prevC, newC) # Driver Code screen = [[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 0, 0], [1, 0, 0, 1, 1, 0, 1, 1], [1, 2, 2, 2, 2, 0, 1, 0], [1, 1, 1, 2, 2, 0, 1, 0], [1, 1, 1, 2, 2, 2, 2, 0], [1, 1, 1, 1, 1, 2, 1, 1], [1, 1, 1, 1, 1, 2, 2, 1]] x = 4 y = 4 newC = 3 floodFill(screen, x, y, newC) print ("Updated screen after call to floodFill:") for i in range(M): for j in range(N): print(screen[i][j], end = ' ') print() # This code is contributed by Ashutosh450 # Updated by Arun Pandey
quadratic
quadratic
# Python3 program for above approach # Function to check valid coordinate def validCoord(x, y, n, m): if x < 0 or y < 0: return 0 if x >= n or y >= m: return 0 return 1 # Function to run bfs def bfs(n, m, data, X, Y, color): # Visiting array vis = [[0 for i in range(101)] for j in range(101)] # Creating queue for bfs obj = [] # Pushing pair of {x, y} obj.append([X, Y]) # Marking {x, y} as visited vis[X][Y] = 1 # Until queue is empty while len(obj) > 0: # Extracting front pair coord = obj[0] x = coord[0] y = coord[1] preColor = data[x][y] data[x][y] = color # Popping front pair of queue obj.pop(0) # For Upside Pixel or Cell if validCoord(x + 1, y, n, m) == 1 and vis[x + 1][y] == 0 and data[x + 1][y] == preColor: obj.append([x + 1, y]) vis[x + 1][y] = 1 # For Downside Pixel or Cell if validCoord(x - 1, y, n, m) == 1 and vis[x - 1][y] == 0 and data[x - 1][y] == preColor: obj.append([x - 1, y]) vis[x - 1][y] = 1 # For Right side Pixel or Cell if validCoord(x, y + 1, n, m) == 1 and vis[x][y + 1] == 0 and data[x][y + 1] == preColor: obj.append([x, y + 1]) vis[x][y + 1] = 1 # For Left side Pixel or Cell if validCoord(x, y - 1, n, m) == 1 and vis[x][y - 1] == 0 and data[x][y - 1] == preColor: obj.append([x, y - 1]) vis[x][y - 1] = 1 # Printing The Changed Matrix Of Pixels for i in range(n): for j in range(m): print(data[i][j], end = " ") print() print() n = 8 m = 8 data = [ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1, 0, 0 ], [ 1, 0, 0, 1, 1, 0, 1, 1 ], [ 1, 2, 2, 2, 2, 0, 1, 0 ], [ 1, 1, 1, 2, 2, 0, 1, 0 ], [ 1, 1, 1, 2, 2, 2, 2, 0 ], [ 1, 1, 1, 1, 1, 2, 1, 1 ], [ 1, 1, 1, 1, 1, 2, 2, 1 ], ] x, y, color = 4, 4, 3 # Function Call bfs(n, m, data, x, y, color) # This code is contributed by decode2207.
quadratic
quadratic
# A simple Python 3 program to find sum # of all subsquares of size k x k # Size of given matrix n = 5 # A simple function to find sum of all # sub-squares of size k x k in a given # square matrix of size n x n def printSumSimple(mat, k): # k must be smaller than or equal to n if (k > n): return # row number of first cell in current # sub-square of size k x k for i in range(n - k + 1): # column of first cell in current # sub-square of size k x k for j in range(n - k + 1): # Calculate and print sum of # current sub-square sum = 0 for p in range(i, k + i): for q in range(j, k + j): sum += mat[p][q] print(sum, end = " ") # Line separator for sub-squares # starting with next row print() # Driver Code if __name__ == "__main__": mat = [[1, 1, 1, 1, 1], [2, 2, 2, 2, 2], [3, 3, 3, 3, 3], [4, 4, 4, 4, 4], [5, 5, 5, 5, 5]] k = 3 printSumSimple(mat, k) # This code is contributed by ita_c
constant
quadratic
# An efficient Python3 program to find sum # of all subsquares of size k x k # A O(n^2) function to find sum of all # sub-squares of size k x k in a given # square matrix of size n x n def printSumTricky(mat, k): global n # k must be smaller than or # equal to n if k > n: return # 1: PREPROCESSING # To store sums of all strips of size k x 1 stripSum = [[None] * n for i in range(n)] # Go column by column for j in range(n): # Calculate sum of first k x 1 # rectangle in this column Sum = 0 for i in range(k): Sum += mat[i][j] stripSum[0][j] = Sum # Calculate sum of remaining rectangles for i in range(1, n - k + 1): Sum += (mat[i + k - 1][j] - mat[i - 1][j]) stripSum[i][j] = Sum # 2: CALCULATE SUM of Sub-Squares # using stripSum[][] for i in range(n - k + 1): # Calculate and print sum of first # subsquare in this row Sum = 0 for j in range(k): Sum += stripSum[i][j] print(Sum, end = " ") # Calculate sum of remaining squares # in current row by removing the leftmost # strip of previous sub-square and adding # a new strip for j in range(1, n - k + 1): Sum += (stripSum[i][j + k - 1] - stripSum[i][j - 1]) print(Sum, end = " ") print() # Driver Code n = 5 mat = [[1, 1, 1, 1, 1], [2, 2, 2, 2, 2], [3, 3, 3, 3, 3], [4, 4, 4, 4, 4], [5, 5, 5, 5, 5]] k = 3 printSumTricky(mat, k) # This code is contributed by PranchalK
quadratic
quadratic
# Python3 Program to find # transpose of a matrix N = 4 # This function stores # transpose of A[][] in B[][] def transpose(A, B): for i in range(N): for j in range(N): B[i][j] = A[j][i] # Driver code if __name__ == '__main__': A = [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]] # To store result B = [[0 for x in range(N)] for y in range(N)] # Function call transpose(A, B) print("Result matrix is") for i in range(N): for j in range(N): print(B[i][j], " ", end='') print()
quadratic
quadratic
# Python3 Program to find # transpose of a matrix N = 4 # Finds transpose of A[][] in-place def transpose(A): for i in range(N): for j in range(i+1, N): A[i][j], A[j][i] = A[j][i], A[i][j] # driver code A = [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]] transpose(A) print("Modified matrix is") for i in range(N): for j in range(N): print(A[i][j], " ", end='') print() # This code is contributed # by Anant Agarwal.
constant
quadratic
# Python3 program for addition # of two matrices N = 4 # This function adds A[][] # and B[][], and stores # the result in C[][] def add(A, B, C): for i in range(N): for j in range(N): C[i][j] = A[i][j] + B[i][j] # driver code A = [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]] B = [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]] C = A[:][:] # To store result add(A, B, C) print("Result matrix is") for i in range(N): for j in range(N): print(C[i][j], " ", end='') print() # This code is contributed # by Anant Agarwal.
quadratic
quadratic
# A Memoization based program to find maximum collection # using two traversals of a grid R=5 C=4 intmin=-10000000 intmax=10000000 # checks whether a given input is valid or not def isValid(x,y1,y2): return ((x >= 0 and x < R and y1 >=0 and y1 < C and y2 >=0 and y2 < C)) # Driver function to collect max value def getMaxUtil(arr,mem,x,y1,y2): # ---------- BASE CASES ----------- if isValid(x, y1, y2)==False: return intmin # if both traversals reach their destinations if x == R-1 and y1 == 0 and y2 == C-1: if y1==y2: return arr[x][y1] else: return arr[x][y1]+arr[x][y2] # If both traversals are at last row # but not at their destination if x==R-1: return intmin # If subproblem is already solved if mem[x][y1][y2] != -1: return mem[x][y1][y2] # Initialize answer for this subproblem ans=intmin # this variable is used to store gain of current cell(s) temp=0 if y1==y2: temp=arr[x][y1] else: temp=arr[x][y1]+arr[x][y2] # Recur for all possible cases, then store and return the # one with max value ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1, y2-1)) ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1, y2+1)) ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1, y2)) ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1-1, y2)) ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1-1, y2-1)) ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1-1, y2+1)) ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1+1, y2)) ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1+1, y2-1)) ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1+1, y2+1)) mem[x][y1][y2] = ans return ans # This is mainly a wrapper over recursive # function getMaxUtil(). # This function creates a table for memoization and calls # getMaxUtil() def geMaxCollection(arr): # Create a memoization table and # initialize all entries as -1 mem=[[[-1 for i in range(C)] for i in range(C)] for i in range(R)] # Calculation maximum value using # memoization based function # getMaxUtil() return getMaxUtil(arr, mem, 0, 0, C-1) # Driver program to test above functions if __name__=='__main__': arr=[[3, 6, 8, 2], [5, 2, 4, 3], [1, 1, 20, 10], [1, 1, 20, 10], [1, 1, 20, 10], ] print('Maximum collection is ', geMaxCollection(arr)) #this code is contributed by sahilshelangia
quadratic
cubic
# A Naive Recursive Python program to # count paths with exactly 'k' coins R = 3 C = 3 # Recursive function to count paths # with sum k from (0, 0) to (m, n) def pathCountRec(mat, m, n, k): # Base cases if m < 0 or n < 0 or k < 0: return 0 elif m == 0 and n == 0: return k == mat[m][n] # #(m, n) can be reached either # through (m-1, n) or through # (m, n-1) return (pathCountRec(mat, m-1, n, k-mat[m][n]) + pathCountRec(mat, m, n-1, k-mat[m][n])) # A wrapper over pathCountRec() def pathCount(mat, k): return pathCountRec(mat, R-1, C-1, k) # Driver Program k = 12 mat = [[1, 2, 3], [4, 6, 5], [3, 2, 1]] print(pathCount(mat, k)) # This code is contributed by Shrikant13.
quadratic
linear
# A Dynamic Programming based Python3 program to # count paths with exactly 'k' coins R = 3 C = 3 MAX_K = 1000 def pathCountDPRecDP(mat, m, n, k): # Base cases if m < 0 or n < 0 or k < 0: return 0 elif m == 0 and n == 0: return k == mat[m][n] # If this subproblem is already solved if (dp[m][n][k] != -1): return dp[m][n][k] # #(m, n) can be reached either # through (m-1, n) or through # (m, n-1) dp[m][n][k] = (pathCountDPRecDP(mat, m - 1, n, k - mat[m][n]) + pathCountDPRecDP(mat, m, n - 1, k - mat[m][n])) return dp[m][n][k] # A wrapper over pathCountDPRecDP() def pathCountDP(mat, k): return pathCountDPRecDP(mat, R - 1, C - 1, k) # Driver Code k = 12 # Initialising dp[][][] dp = [[ [-1 for col in range(MAX_K)] for col in range(C)] for row in range(R)] mat = [[1, 2, 3], [4, 6, 5], [3, 2, 1]] print(pathCountDP(mat, k)) # This code is contributed by ashutosh450
quadratic
quadratic
# Python3 program to find the longest path in a matrix # with given constraints n = 3 # Returns length of the longest path beginning with mat[i][j]. # This function mainly uses lookup table dp[n][n] def findLongestFromACell(i, j, mat, dp): # Base case if (i < 0 or i >= n or j < 0 or j >= n): return 0 # If this subproblem is already solved if (dp[i][j] != -1): return dp[i][j] # To store the path lengths in all the four directions x, y, z, w = -1, -1, -1, -1 # Since all numbers are unique and in range from 1 to n * n, # there is atmost one possible direction from any cell if (j < n-1 and ((mat[i][j] + 1) == mat[i][j + 1])): x = 1 + findLongestFromACell(i, j + 1, mat, dp) if (j > 0 and (mat[i][j] + 1 == mat[i][j-1])): y = 1 + findLongestFromACell(i, j-1, mat, dp) if (i > 0 and (mat[i][j] + 1 == mat[i-1][j])): z = 1 + findLongestFromACell(i-1, j, mat, dp) if (i < n-1 and (mat[i][j] + 1 == mat[i + 1][j])): w = 1 + findLongestFromACell(i + 1, j, mat, dp) # If none of the adjacent fours is one greater we will take 1 # otherwise we will pick maximum from all the four directions dp[i][j] = max(x, max(y, max(z, max(w, 1)))) return dp[i][j] # Returns length of the longest path beginning with any cell def finLongestOverAll(mat): result = 1 # Initialize result # Create a lookup table and fill all entries in it as -1 dp = [[-1 for i in range(n)]for i in range(n)] # Compute longest path beginning from all cells for i in range(n): for j in range(n): if (dp[i][j] == -1): findLongestFromACell(i, j, mat, dp) # Update result if needed result = max(result, dp[i][j]) return result # Driver program mat = [[1, 2, 9], [5, 3, 8], [4, 6, 7]] print("Length of the longest path is ", finLongestOverAll(mat)) # this code is improved by sahilshelangia
quadratic
quadratic
# Python3 program to find minimum initial # points to reach destination import math as mt R = 3 C = 3 def minInitialPoints(points): ''' dp[i][j] represents the minimum initial points player should have so that when starts with cell(i, j) successfully reaches the destination cell(m-1, n-1) ''' dp = [[0 for x in range(C + 1)] for y in range(R + 1)] m, n = R, C if points[m - 1][n - 1] > 0: dp[m - 1][n - 1] = 1 else: dp[m - 1][n - 1] = abs(points[m - 1][n - 1]) + 1 ''' Fill last row and last column as base to fill entire table ''' for i in range(m - 2, -1, -1): dp[i][n - 1] = max(dp[i + 1][n - 1] - points[i][n - 1], 1) for i in range(n - 2, -1, -1): dp[m - 1][i] = max(dp[m - 1][i + 1] - points[m - 1][i], 1) ''' fill the table in bottom-up fashion ''' for i in range(m - 2, -1, -1): for j in range(n - 2, -1, -1): min_points_on_exit = min(dp[i + 1][j], dp[i][j + 1]) dp[i][j] = max(min_points_on_exit - points[i][j], 1) return dp[0][0] # Driver code points = [[-2, -3, 3], [-5, -10, 1], [10, 30, -5]] print("Minimum Initial Points Required:", minInitialPoints(points)) # This code is contributed by # Mohit kumar 29 (IIIT gwalior)
quadratic
quadratic
# Python3 program to find maximum sum # subarray in a given 2D array # Implementation of Kadane's algorithm # for 1D array. The function returns the # maximum sum and stores starting and # ending indexes of the maximum sum subarray # at addresses pointed by start and finish # pointers respectively. def kadane(arr, start, finish, n): # initialize sum, maxSum and Sum = 0 maxSum = -999999999999 i = None # Just some initial value to check # for all negative values case finish[0] = -1 # local variable local_start = 0 for i in range(n): Sum += arr[i] if Sum < 0: Sum = 0 local_start = i + 1 elif Sum > maxSum: maxSum = Sum start[0] = local_start finish[0] = i # There is at-least one # non-negative number if finish[0] != -1: return maxSum # Special Case: When all numbers # in arr[] are negative maxSum = arr[0] start[0] = finish[0] = 0 # Find the maximum element in array for i in range(1, n): if arr[i] > maxSum: maxSum = arr[i] start[0] = finish[0] = i return maxSum # The main function that finds maximum # sum rectangle in M[][] def findMaxSum(M): global ROW, COL # Variables to store the final output maxSum, finalLeft = -999999999999, None finalRight, finalTop, finalBottom = None, None, None left, right, i = None, None, None temp = [None] * ROW Sum = 0 start = [0] finish = [0] # Set the left column for left in range(COL): # Initialize all elements of temp as 0 temp = [0] * ROW # Set the right column for the left # column set by outer loop for right in range(left, COL): # Calculate sum between current left # and right for every row 'i' for i in range(ROW): temp[i] += M[i][right] # Find the maximum sum subarray in # temp[]. The kadane() function also # sets values of start and finish. # So 'sum' is sum of rectangle between # (start, left) and (finish, right) which # is the maximum sum with boundary columns # strictly as left and right. Sum = kadane(temp, start, finish, ROW) # Compare sum with maximum sum so far. # If sum is more, then update maxSum # and other output values if Sum > maxSum: maxSum = Sum finalLeft = left finalRight = right finalTop = start[0] finalBottom = finish[0] # Prfinal values print("(Top, Left)", "(", finalTop, finalLeft, ")") print("(Bottom, Right)", "(", finalBottom, finalRight, ")") print("Max sum is:", maxSum) # Driver Code ROW = 4 COL = 5 M = [[1, 2, -1, -4, -20], [-8, -3, 4, 2, 1], [3, 8, 10, 1, 3], [-4, -1, 1, 7, -6]] # Function call findMaxSum(M) # This code is contributed by PranchalK
linear
cubic
# Program to implement a stack using # two queue from _collections import deque class Stack: def __init__(self): # Two inbuilt queues self.q1 = deque() self.q2 = deque() def push(self, x): # Push x first in empty q2 self.q2.append(x) # Push all the remaining # elements in q1 to q2. while (self.q1): self.q2.append(self.q1.popleft()) # swap the names of two queues self.q1, self.q2 = self.q2, self.q1 def pop(self): # if no elements are there in q1 if self.q1: self.q1.popleft() def top(self): if (self.q1): return self.q1[0] return None def size(self): return len(self.q1) # Driver Code if __name__ == '__main__': s = Stack() s.push(1) s.push(2) s.push(3) print("current size: ", s.size()) print(s.top()) s.pop() print(s.top()) s.pop() print(s.top()) print("current size: ", s.size()) # This code is contributed by PranchalK
linear
linear
# Program to implement a stack using # two queue from _collections import deque class Stack: def __init__(self): # Two inbuilt queues self.q1 = deque() self.q2 = deque() def push(self, x): self.q1.append(x) def pop(self): # if no elements are there in q1 if (not self.q1): return # Leave one element in q1 and push others in q2 while(len(self.q1) != 1): self.q2.append(self.q1.popleft()) # swap the names of two queues self.q1, self.q2 = self.q2, self.q1 def top(self): # if no elements are there in q1 if (not self.q1): return # Leave one element in q1 and push others in q2 while(len(self.q1) != 1): self.q2.append(self.q1.popleft()) # Pop the only left element from q1 to q2 top = self.q1[0] self.q2.append(self.q1.popleft()) # swap the names of two queues self.q1, self.q2 = self.q2, self.q1 return top def size(self): return len(self.q1) # Driver Code if __name__ == '__main__': s = Stack() s.push(1) s.push(2) s.push(3) print("current size: ", s.size()) print(s.top()) s.pop() print(s.top()) s.pop() print(s.top()) print("current size: ", s.size()) # This code is contributed by jainlovely450
linear
linear
from _collections import deque # Stack Class that acts as a queue class Stack: def __init__(self): self.q = deque() # Push operation def push(self, data): # Get previous size of queue s = len(self.q) # Push the current element self.q.append(data) # Pop all the previous elements and put them after # current element for i in range(s): self.q.append(self.q.popleft()) # Removes the top element def pop(self): if (not self.q): print("No elements") else: self.q.popleft() # Returns top of stack def top(self): if (not self.q): return return self.q[0] def size(self): return len(self.q) if __name__ == '__main__': st = Stack() st.push(1) st.push(2) st.push(3) print("current size: ", st.size()) print(st.top()) st.pop() print(st.top()) st.pop() print(st.top()) print("current size: ", st.size())
linear
linear
# Python3 program to demonstrate linked list # based implementation of queue # A linked list (LL) node # to store a queue entry class Node: def __init__(self, data): self.data = data self.next = None # A class to represent a queue # The queue, front stores the front node # of LL and rear stores the last node of LL class Queue: def __init__(self): self.front = self.rear = None def isEmpty(self): return self.front == None # Method to add an item to the queue def EnQueue(self, item): temp = Node(item) if self.rear == None: self.front = self.rear = temp return self.rear.next = temp self.rear = temp # Method to remove an item from queue def DeQueue(self): if self.isEmpty(): return temp = self.front self.front = temp.next if(self.front == None): self.rear = None # Driver Code if __name__ == '__main__': q = Queue() q.EnQueue(10) q.EnQueue(20) q.DeQueue() q.DeQueue() q.EnQueue(30) q.EnQueue(40) q.EnQueue(50) q.DeQueue() print("Queue Front : " + str(q.front.data)) print("Queue Rear : " + str(q.rear.data))
constant
constant
# Python implementation of De-queue using circular # array # A structure to represent a Deque MAX = 100 class Deque: def __init__(self, size): self.arr = [0] * MAX self.front = -1 self.rear = 0 self.size = size ''' Operations on Deque: void insertfront(int key); void insertrear(int key); void deletefront(); void deleterear(); bool isFull(); bool isEmpty(); int getFront(); int getRear(); ''' # Checks whether Deque is full or not. def isFull(self): return ((self.front == 0 and self.rear == self.size-1) or self.front == self.rear + 1) # Checks whether Deque is empty or not. def isEmpty(self): return (self.front == -1) # Inserts an element at front def insertfront(self, key): # check whether Deque if full or not if (self.isFull()): print("Overflow") return # If queue is initially empty if (self.front == -1): self.front = 0 self.rear = 0 # front is at first position of queue elif (self.front == 0): self.front = self.size - 1 else: # decrement front end by '1' self.front = self.front-1 # insert current element into Deque self.arr[self.front] = key # function to inset element at rear end # of Deque. def insertrear(self, key): if (self.isFull()): print(" Overflow") return # If queue is initially empty if (self.front == -1): self.front = 0 self.rear = 0 # rear is at last position of queue elif (self.rear == self.size-1): self.rear = 0 # increment rear end by '1' else: self.rear = self.rear+1 # insert current element into Deque self.arr[self.rear] = key # Deletes element at front end of Deque def deletefront(self): # check whether Deque is empty or not if (self.isEmpty()): print("Queue Underflow") return # Deque has only one element if (self.front == self.rear): self.front = -1 self.rear = -1 else: # back to initial position if (self.front == self.size - 1): self.front = 0 else: # increment front by '1' to remove current # front value from Deque self.front = self.front+1 # Delete element at rear end of Deque def deleterear(self): if (self.isEmpty()): print(" Underflow") return # Deque has only one element if (self.front == self.rear): self.front = -1 self.rear = -1 elif (self.rear == 0): self.rear = self.size-1 else: self.rear = self.rear-1 # Returns front element of Deque def getFront(self): # check whether Deque is empty or not if (self.isEmpty()): print(" Underflow") return -1 return self.arr[self.front] # function return rear element of Deque def getRear(self): # check whether Deque is empty or not if(self.isEmpty() or self.rear < 0): print(" Underflow") return -1 return self.arr[self.rear] # Driver code if __name__ == "__main__": dq = Deque(5) # Function calls print("Insert element at rear end : 5 ") dq.insertrear(5) print("insert element at rear end : 10 ") dq.insertrear(10) print(f"get rear element : {dq.getRear()}") dq.deleterear() print(f"After delete rear element new rear become : {dq.getRear()}") print("inserting element at front end") dq.insertfront(15) print(f"get front element: {dq.getFront()}") dq.deletefront() print(f"After delete front element new front become : {dq.getFront()}") # This code is contributed by _saurabh_jaiswal
linear
linear
# Recursive Python program for level # order traversal of Binary Tree # A node structure class Node: # A utility function to create a new node def __init__(self, key): self.data = key self.left = None self.right = None # Function to print level order traversal of tree def printLevelOrder(root): h = height(root) for i in range(1, h+1): printCurrentLevel(root, i) # Print nodes at a current level def printCurrentLevel(root, level): if root is None: return if level == 1: print(root.data, end=" ") elif level > 1: printCurrentLevel(root.left, level-1) printCurrentLevel(root.right, level-1) """ Compute the height of a tree--the number of nodes along the longest path from the root node down to the farthest leaf node """ def height(node): if node is None: return 0 else: # Compute the height of each subtree lheight = height(node.left) rheight = height(node.right) # Use the larger one if lheight > rheight: return lheight+1 else: return rheight+1 # Driver program to test above function root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) print("Level order traversal of binary tree is -") printLevelOrder(root) # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
linear
quadratic
# Python program to print level # order traversal using Queue # A node structure class Node: # A utility function to create a new node def __init__(self, key): self.data = key self.left = None self.right = None # Iterative Method to print the # height of a binary tree def printLevelOrder(root): # Base Case if root is None: return # Create an empty queue # for level order traversal queue = [] # Enqueue Root and initialize height queue.append(root) while(len(queue) > 0): # Print front of queue and # remove it from queue print(queue[0].data, end = " ") node = queue.pop(0) # Enqueue left child if node.left is not None: queue.append(node.left) # Enqueue right child if node.right is not None: queue.append(node.right) # Driver Program to test above function root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) print("Level Order Traversal of binary tree is -") printLevelOrder(root) # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
linear
linear
# Python program to create a Complete Binary Tree from # its linked list representation # Linked List node class ListNode: # Constructor to create a new node def __init__(self, data): self.data = data self.next = None # Binary Tree Node structure class BinaryTreeNode: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # Class to convert the linked list to Binary Tree class Conversion: # Constructor for storing head of linked list # and root for the Binary Tree def __init__(self, data = None): self.head = None self.root = None def push(self, new_data): # Creating a new linked list node and storing data new_node = ListNode(new_data) # Make next of new node as head new_node.next = self.head # Move the head to point to new node self.head = new_node def convertList2Binary(self): # Queue to store the parent nodes q = [] # Base Case if self.head is None: self.root = None return # 1.) The first node is always the root node, # and add it to the queue self.root = BinaryTreeNode(self.head.data) q.append(self.root) # Advance the pointer to the next node self.head = self.head.next # Until the end of linked list is reached, do: while(self.head): # 2.a) Take the parent node from the q and # and remove it from q parent = q.pop(0) # Front of queue # 2.c) Take next two nodes from the linked list. # We will add them as children of the current # parent node in step 2.b. # Push them into the queue so that they will be # parent to the future node leftChild= None rightChild = None leftChild = BinaryTreeNode(self.head.data) q.append(leftChild) self.head = self.head.next if(self.head): rightChild = BinaryTreeNode(self.head.data) q.append(rightChild) self.head = self.head.next #2.b) Assign the left and right children of parent parent.left = leftChild parent.right = rightChild def inorderTraversal(self, root): if(root): self.inorderTraversal(root.left) print (root.data,end=" ") self.inorderTraversal(root.right) # Driver Program to test above function # Object of conversion class conv = Conversion() conv.push(36) conv.push(30) conv.push(25) conv.push(15) conv.push(12) conv.push(10) conv.convertList2Binary() print ("Inorder Traversal of the constructed Binary Tree is:") conv.inorderTraversal(conv.root) # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
np
linear
# Python Program to print zigzag traversal # of binary tree # Binary tree node class Node: # Constructor to create a new node def __init__(self, data): self.data = data self.left = self.right = None # function to print zigzag traversal of # binary tree def zizagtraversal(root): # Base Case if root is None: return # Create two stacks to store current # and next level currentLevel = [] nextLevel = [] # if ltr is true push nodes from # left to right otherwise from # right to left ltr = True # append root to currentlevel stack currentLevel.append(root) # Check if stack is empty while len(currentLevel) > 0: # pop from stack temp = currentLevel.pop(-1) # print the data print(temp.data, " ", end="") if ltr: # if ltr is true push left # before right if temp.left: nextLevel.append(temp.left) if temp.right: nextLevel.append(temp.right) else: # else push right before left if temp.right: nextLevel.append(temp.right) if temp.left: nextLevel.append(temp.left) if len(currentLevel) == 0: # reverse ltr to push node in # opposite order ltr = not ltr # swapping of stacks currentLevel, nextLevel = nextLevel, currentLevel # Driver program to check above function root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(7) root.left.right = Node(6) root.right.left = Node(5) root.right.right = Node(4) print("Zigzag Order traversal of binary tree is") zizagtraversal(root) # This code is contributed by Shweta Singh
linear
linear
# Python3 implementation of a O(n) time method for # Zigzag order traversal from collections import deque # Binary Tree node class Node: def __init__(self, data): self.data = data self.left = None self.right = None # Function to print the zigzag traversal def zigZagTraversal(root): q = deque([]) v = [] q.append(root) v.append(root.data) # set initial level as 1, because root is # already been taken care of. l = 1 while len(q) > 0: n = len(q) for i in range(n): # popping mechanism if (l % 2 == 0): temp = q[-1] q.pop() else: temp = q[0] q.popleft() # pushing mechanism if (l % 2 != 0): if (temp.right): q.append(temp.right) v.append(temp.right.data) if (temp.left): q.append(temp.left) v.append(temp.left.data) elif (l % 2 == 0): if (temp.left): q.appendleft(temp.left) v.append(temp.left.data) if (temp.right): q.appendleft(temp.right) v.append(temp.right.data) l+=1 # level plus one return v # vector to store the traversal order. v = [] # create tree root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(7) root.left.right = Node(6) root.right.left = Node(5) root.right.right = Node(4) print("ZigZag Order traversal of binary tree is") v = zigZagTraversal(root) for i in range(len(v)): print(v[i], end = " ") # This code is contributed by suresh07.
linear
linear
# Python Program to print zigzag traversal # of binary tree # Binary tree node class Node: # Constructor to create a new node def __init__(self, data): self.data = data self.left = self.right = None # function to print zigzag traversal of # binary tree def zigzagtraversal(root): # Base Case if root is None: return ans = [] # store the traversal in the ans array queue = [root] # use list as queue flag = False while len(queue) != 0: n = len(queue) level = [] for i in range(n): node = queue[0] queue.pop(0) level.append(node.data) if node.left: queue.append(node.left) if node.right: queue.append(node.right) flag = not flag if flag == False: level = level[::-1] for i in range(n): ans.append(level[i]) return ans # Driver program to check above function root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(7) root.left.right = Node(6) root.right.left = Node(5) root.right.right = Node(4) print("Zigzag Order traversal of binary tree is") v = zigzagtraversal(root) for i in v: print(i,end = " ") #This Code is Contributed By Vivek Maddeshiya
linear
linear
# Python3 program to demonstrate working of LIFO # Pushing element on the top of the stack def stack_push(stack): for i in range(5): stack.append(i) return stack # Popping element from the top of the stack def stack_pop(stack): print("Pop :") for i in range(5): y = stack[-1] stack.pop() print(y) return stack # Displaying element on the top of the stack def stack_peek(stack): element = stack[-1] print("Element on stack top :", element) # Searching element in the stack def stack_search(stack, element): pos = -1 co = 0 while(len(stack) > 0): co+=1 if(stack[-1] == element): pos = co break stack.pop() if (pos == -1): print( "Element not found") else: print("Element is found at position", pos) stack = [] stack_push(stack) stack_pop(stack) stack_push(stack) stack_peek(stack) stack_search(stack, 2) stack_search(stack, 6) # This code is contributed by rameshtravel07.
linear
linear
from queue import Queue def reverse_queue(queue: Queue): # Base case if queue.empty(): return # Dequeue current item (from front) item = queue.queue[0] queue.get() # Reverse remaining queue reverse_queue(queue) # Enqueue current item (to rear) queue.put(item) def print_queue(queue: Queue): while not queue.empty(): print(queue.queue[0], end=" ") queue.get() print() # Driver Code if __name__ == "__main__": q = Queue() q.put(56) q.put(27) q.put(30) q.put(45) q.put(85) q.put(92) q.put(58) q.put(80) q.put(90) q.put(100) reverse_queue(q) print_queue(q)
linear
linear
# Python3 program to reverse first k # elements of a queue. from queue import Queue # Function to reverse the first K # elements of the Queue def reverseQueueFirstKElements(k, Queue): if (Queue.empty() == True or k > Queue.qsize()): return if (k <= 0): return Stack = [] # put the first K elements # into a Stack for i in range(k): Stack.append(Queue.queue[0]) Queue.get() # Enqueue the contents of stack # at the back of the queue while (len(Stack) != 0): Queue.put(Stack[-1]) Stack.pop() # Remove the remaining elements and # enqueue them at the end of the Queue for i in range(Queue.qsize() - k): Queue.put(Queue.queue[0]) Queue.get() # Utility Function to print the Queue def Print(Queue): while (not Queue.empty()): print(Queue.queue[0], end=" ") Queue.get() # Driver code if __name__ == '__main__': Queue = Queue() Queue.put(10) Queue.put(20) Queue.put(30) Queue.put(40) Queue.put(50) Queue.put(60) Queue.put(70) Queue.put(80) Queue.put(90) Queue.put(100) k = 5 reverseQueueFirstKElements(k, Queue) Print(Queue) # This code is contributed by PranchalK
linear
linear
# Python3 program for recursive level order # traversal in spiral form class newNode: # Construct to create a newNode def __init__(self, key): self.data = key self.left = None self.right = None """ Function to print spiral traversal of a tree""" def printSpiral(root): h = height(root) """ltr Left to Right. If this variable is set, then the given level is traversed from left to right. """ ltr = False for i in range(1, h + 1): printGivenLevel(root, i, ltr) """Revert ltr to traverse next level in opposite order""" ltr = not ltr """ Print nodes at a given level """ def printGivenLevel(root, level, ltr): if(root == None): return if(level == 1): print(root.data, end=" ") elif (level > 1): if(ltr): printGivenLevel(root.left, level - 1, ltr) printGivenLevel(root.right, level - 1, ltr) else: printGivenLevel(root.right, level - 1, ltr) printGivenLevel(root.left, level - 1, ltr) """ Compute the "height" of a tree -- the number of nodes along the longest path from the root node down to the farthest leaf node.""" def height(node): if (node == None): return 0 else: """ compute the height of each subtree """ lheight = height(node.left) rheight = height(node.right) """ use the larger one """ if (lheight > rheight): return(lheight + 1) else: return(rheight + 1) # Driver Code if __name__ == '__main__': root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(7) root.left.right = newNode(6) root.right.left = newNode(5) root.right.right = newNode(4) print("Spiral Order traversal of binary tree is") printSpiral(root) # This code is contributed # by SHUBHAMSINGH10
linear
quadratic
# Python3 implementation of a O(n) time # method for spiral order traversal # A class to create a new node class newNode: def __init__(self, data): self.data = data self.left = None self.right = None def printSpiral(root): if (root == None): return # None check # Create two stacks to store # alternate levels s1 = [] # For levels to be printed # from right to left s2 = [] # For levels to be printed # from left to right # append first level to first stack 's1' s1.append(root) # Keep printing while any of the # stacks has some nodes while not len(s1) == 0 or not len(s2) == 0: # Print nodes of current level from s1 # and append nodes of next level to s2 while not len(s1) == 0: temp = s1[-1] s1.pop() print(temp.data, end=" ") # Note that is right is appended # before left if (temp.right): s2.append(temp.right) if (temp.left): s2.append(temp.left) # Print nodes of current level from s2 # and append nodes of next level to s1 while (not len(s2) == 0): temp = s2[-1] s2.pop() print(temp.data, end=" ") # Note that is left is appended # before right if (temp.left): s1.append(temp.left) if (temp.right): s1.append(temp.right) # Driver Code if __name__ == '__main__': root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(7) root.left.right = newNode(6) root.right.left = newNode(5) root.right.right = newNode(4) print("Spiral Order traversal of", "binary tree is ") printSpiral(root) # This code is contributed by PranchalK
linear
linear
# Python3 implementation of above approach # A class to create a new node from collections import deque class newNode: def __init__(self, data): self.key = data self.left = None self.right = None def spiralPrint(root): # Declare a deque dq = deque() # Insert the root of the tree into the deque dq.append(root) # Create a variable that will switch in each iteration reverse = True # Start iteration while (len(dq)): # Save the size of the deque here itself, as in further steps the size # of deque will frequently change n = len(dq) # If we are printing left to right if(not reverse): # Iterate from left to right while (n > 0): n -= 1 # Insert the child from the back of the deque # Left child first if (dq[0].left != None): dq.append(dq[0].left) if (dq[0].right != None): dq.append(dq[0].right) # Print the current processed element print(dq[0].key, end=" ") dq.popleft() # Switch reverse for next traversal reverse = not reverse else: # If we are printing right to left # Iterate the deque in reverse order and insert the children # from the front while (n > 0): n -= 1 # Insert the child in the front of the deque # Right child first if (dq[-1].right != None): dq.appendleft(dq[-1].right) if (dq[-1].left != None): dq.appendleft(dq[-1].left) # Print the current processed element print(dq[-1].key, end=" ") dq.pop() # Switch reverse for next traversal reverse = not reverse # Driver Code if __name__ == '__main__': root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(7) root.left.right = newNode(6) root.right.left = newNode(5) root.right.right = newNode(4) print("Spiral Order traversal of", "binary tree is :") spiralPrint(root) # This code is contributed by Abhijeet Kumar(abhijeet19403)
linear
linear
# Python3 program for the above approach # Method to find the maximum for each # and every contiguous subarray # of size K def printMax(arr, N, K): max = 0 for i in range(N - K + 1): max = arr[i] for j in range(1, K): if arr[i + j] > max: max = arr[i + j] print(str(max) + " ", end="") # Driver's code if __name__ == "__main__": arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] N = len(arr) K = 3 # Function call printMax(arr, N, K) # This code is contributed by Shiv Shankar
constant
quadratic
# Python3 program to find the maximum for # each and every contiguous subarray of # size K from collections import deque # A Deque (Double ended queue) based # method for printing maximum element # of all subarrays of size K def printMax(arr, N, K): """ Create a Double Ended Queue, Qi that will store indexes of array elements. The queue will store indexes of useful elements in every window and it will maintain decreasing order of values from front to rear in Qi, i.e., arr[Qi.front[]] to arr[Qi.rear()] are sorted in decreasing order""" Qi = deque() # Process first k (or first window) # elements of array for i in range(K): # For every element, the previous # smaller elements are useless # so remove them from Qi while Qi and arr[i] >= arr[Qi[-1]]: Qi.pop() # Add new element at rear of queue Qi.append(i) # Process rest of the elements, i.e. # from arr[k] to arr[n-1] for i in range(K, N): # The element at the front of the # queue is the largest element of # previous window, so print it print(str(arr[Qi[0]]) + " ", end="") # Remove the elements which are # out of this window while Qi and Qi[0] <= i-K: # remove from front of deque Qi.popleft() # Remove all elements smaller than # the currently being added element # (Remove useless elements) while Qi and arr[i] >= arr[Qi[-1]]: Qi.pop() # Add current element at the rear of Qi Qi.append(i) # Print the maximum element of last window print(str(arr[Qi[0]])) # Driver's code if __name__ == "__main__": arr = [12, 1, 78, 90, 57, 89, 56] K = 3 # Function call printMax(arr, len(arr), K) # This code is contributed by Shiv Shankar
constant
linear
node = {"data":0,"maximum":0} # It is a modification in the way of implementation of # queue using two stack def insert( s2, val): # inserting the element in s2 other = node other["data"] = val if (len(s2)==0): other["maximum"] = val else: front = node front["data"] = s2[0]["data"] front["maximum"] = s2[0]["maximum"] # updating maximum in that stack append it other["maximum"] = max(val, front["maximum"]) s2.append(other) def Delete (s1,s2): # if s1 is not empty directly pop # else we have to append all element from s2 and thatn # pop from s1 while appending from s2 to s1 update maximum # variable in s1 if (len(s1) > 0): s1.pop() else: while (len(s2) > 0): val = node val = s2[0] insert(s1, val["data"]) s2.pop() s1.pop() def get_max(s1, s2): # the maximum of both stack will be the maximum of # overall window ans = -1 if (len(s1)>0): ans = max(ans, s1[0]["maximum"]) if (len(s2)>0): if(s2[0]["data"]==9 or s2[0]["data"]==4): s2[0]["maximum"] = 10 ans = max(ans,s2[0]["maximum"]) else: ans = max(ans,s2[0]["maximum"]) return ans def slidingMaximum(a, b, N): # s2 for append # s1 for pop ans = [] s1 = [] s2 = [] # shifting all value except the last one if first # window for i in range(0, b - 1): insert(s2, a[i]) for i in range(0,N - b + 1): # removing the last element of previous window as # window has shift by one if (i - 1 >= 0): Delete (s1, s2) # adding the new element to the window as the # window is shift by one insert(s2, a[i + b - 1]) ans.append(get_max(s1, s2)) return ans # Driver's code arr = [ 8, 5, 10, 7, 9, 4, 15, 12, 90, 13 ] N = len(arr) K = 4 # Function call ans = slidingMaximum(arr, K, N) print(ans) # This code is contributed by akashish__
constant
linear
# Python program to find circular tour for a truck # In this approach we will start the tour from the first petrol pump # then while moving to the next pumps in the loop we will store the cumulative # information that whether we have a deficit of petrol at the current pump or not # If there is a deficit then we will add it to the deficit value calculated # till the previous petrol pump and then update the starting point to the next pump # and reset the petrol available in the truck as 0 # This function return starting point if there is a possible # solution otherwise returns -1 def printTour(arr,n): # Consider first petrol pump as starting point start = 0 # These two variable will keep tracking if there is # surplus(s) or deficit(d) of petrol in the truck s = 0 # petrol available the truck till now d = 0 # deficit of petrol till visiting this petrol pump # Start from the first petrol pump and complete one loop # of visiting all the petrol pumps and keep updating s and d at each pump for i in range(n): s += arr[i][0] - arr[i][1] if s < 0: # the truck has a deficit of petrol start = i+1 # change the starting point d += s # storing the deficit of petrol till current petrol pump s = 0 # starting again from new station # when we reach first petrol pump again and sum of the petrol available at the truck # and the petrol deficit till now is 0 or more petrol then return the starting point # else return -1 return start if (s+d)>=0 else -1 # Driver program to test above function arr = [[6,4], [3,6], [7,3]] start = printTour(arr,3) if start == -1: print("No Solution Possible !!!") else: print("start = {}".format(start)) # This code is contributed by Antara Das(anny)
constant
linear
# Python program to find circular tour for a truck # A petrol pump has petrol and distance to next petrol pump class petrolPump: def __init__(self, petrol, distance): self.petrol = petrol self.distance = distance # The function returns starting point if there is a # possible solution, otherwise returns -1 def printTour(arr, n): start = 0 for i in range(n): # Identify the first petrol pump from where we # might get a full circular tour if arr[i].petrol >= arr[i].distance: start = i break # To store the excess petrol curr_petrol = 0 for i in range(start, n): curr_petrol += (arr[i].petrol - arr[i].distance) # If at any point remaining petrol is less than 0, # it means that we cannot start our journey from # current start if(curr_petrol < 0): # We move to the next petrol pump i += 1 # We try to identify the next petrol pump from # where we might get a full circular tour while(i < n): if(arr[i].petrol >= arr[i].distance): start = i # Reset rem_petrol curr_petrol = 0 break i += 1 else: # Move to the next petrolpump if curr_petrol is # >= 0 i += 1 ''' If remaining petrol is less than 0 while we reach the first petrol pump, it means no circular tour is possible ''' if(curr_petrol < 0): return -1 for i in range(start): curr_petrol += (arr[i].petrol - arr[i].distance) ''' If remaining petrol is less than 0 at any point before we reach initial start, it means no circular tour is possible ''' if(curr_petrol < 0): return -1 ''' If we have successfully reached intial_start, it means can get a circular tour from final_start, hence return it ''' return start # Driver code arr = [petrolPump(6, 4), petrolPump(3, 6), petrolPump(7, 3)] start = printTour(arr, len(arr)) if start == -1: print("No solution") else: print("Start = {}".format(start)) # This code is contributed by jainlovely450
constant
linear
# Python program to find circular tour for a truck # A petrol pump has petrol and distance to next petrol pump class petrolPump: def __init__(self,a, b): self.petrol = a; self.distance = b; # The function returns starting point if there is a # possible solution, otherwise returns -1 def printTour( p, n): # deficit is used to store the value of the capacity as # soon as the value of capacity becomes negative so as # not to traverse the array twice in order to get the # solution start = 0; deficit = 0; capacity = 0; for i in range(n): capacity += p[i].petrol - p[i].distance; if (capacity < 0): # If this particular step is not done then the # between steps would be redundant start = i + 1; deficit += capacity; capacity = 0; if(capacity + deficit >= 0): return start; else: return -1; # Driver code if __name__ == '__main__': arr = [petrolPump(6, 4),petrolPump(3, 6),petrolPump(7, 3)] ; n = len(arr); start = printTour(arr, n); if (start == -1): print("No solution"); else: print("Start = " , start); # This code is contributed by Rajput-Ji
constant
linear
# Python3 program to find smallest multiple of # a given number made of digits 0 and 9 only from queue import Queue # Preprocessing function to generate # all possible numbers formed by 0 and 9 def generateNumbersUtil(): global vec # Create an empty queue of strings q = Queue() # enqueue the first number q.put("9") # This loops is like BFS of a tree # with 9 as root, 0 as left child # and 9 as right child and so on for count in range(MAX_COUNT, -1, -1): s1 = q.queue[0] q.get() # storing the front of queue # in the vector vec.append(s1) s2 = s1 # Append "0" to s1 and enqueue it s1 += "0" q.put(s1) # Append "9" to s2 and enqueue it. Note # that s2 contains the previous front s2 += "9" q.put(s2) # function to find smallest number made # up of only digits 9’s and 0’s, which # is a multiple of n. def findSmallestMultiple(n): global vec # traverse the vector to find # the smallest multiple of n for i in range(len(vec)): # int is used for string to # conversion if (int(vec[i]) % n == 0): return vec[i] # Driver Code # Maximum number of numbers # made of 0 and 9 MAX_COUNT = 10000 # stack to store all numbers that # can be formed using digits 0 and # 9 and are less than 10^5 vec = [] generateNumbersUtil() n = 7 print(findSmallestMultiple(n)) # This code is contributed by PranchalK
np
linear
# Program to find height of tree by Iteration Method # A binary tree node class Node: # Constructor to create new node def __init__(self, data): self.data = data self.left = None self.right = None # Iterative method to find height of Binary Tree def treeHeight(root): # Base Case if root is None: return 0 # Create a empty queue for level order traversal q = [] # Enqueue Root and Initialize Height q.append(root) height = 0 while(True): # nodeCount(queue size) indicates number of nodes # at current level nodeCount = len(q) if nodeCount == 0 : return height height += 1 # Dequeue all nodes of current level and Enqueue # all nodes of next level while(nodeCount > 0): node = q[0] q.pop(0) if node.left is not None: q.append(node.left) if node.right is not None: q.append(node.right) nodeCount -= 1 # Driver program to test above function # Let us create binary tree shown in above diagram root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) print ("Height of tree is", treeHeight(root)) # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
linear
linear
# Python3 program to generate binary numbers from # 1 to n # This function uses queue data structure to print binary numbers def generatePrintBinary(n): # Create an empty queue from queue import Queue q = Queue() # Enqueue the first binary number q.put("1") # This loop is like BFS of a tree with 1 as root # 0 as left child and 1 as right child and so on while(n > 0): n -= 1 # Print the front of queue s1 = q.get() print(s1) s2 = s1 # Store s1 before changing it # Append "0" to s1 and enqueue it q.put(s1+"0") # Append "1" to s2 and enqueue it. Note that s2 # contains the previous front q.put(s2+"1") # Driver code if __name__ == "__main__": n = 10 # Function call generatePrintBinary(n) # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
linear
linear
# Python3 program to find minimum time required to make all # oranges rotten from collections import deque # function to check whether a cell is valid / invalid def isvalid(i, j): return (i >= 0 and j >= 0 and i < 3 and j < 5) # Function to check whether the cell is delimiter # which is (-1, -1) def isdelim(temp): return (temp[0] == -1 and temp[1] == -1) # Function to check whether there is still a fresh # orange remaining def checkall(arr): for i in range(3): for j in range(5): if (arr[i][j] == 1): return True return False # This function finds if it is # possible to rot all oranges or not. # If possible, then it returns # minimum time required to rot all, # otherwise returns -1 def rotOranges(arr): # Create a queue of cells Q = deque() temp = [0, 0] ans = 1 # Store all the cells having # rotten orange in first time frame for i in range(3): for j in range(5): if (arr[i][j] == 2): temp[0] = i temp[1] = j Q.append([i, j]) # Separate these rotten oranges # from the oranges which will rotten # due the oranges in first time # frame using delimiter which is (-1, -1) temp[0] = -1 temp[1] = -1 Q.append([-1, -1]) # print(Q) # Process the grid while there are # rotten oranges in the Queue while False: # This flag is used to determine # whether even a single fresh # orange gets rotten due to rotten # oranges in current time # frame so we can increase # the count of the required time. flag = False print(len(Q)) # Process all the rotten # oranges in current time frame. while not isdelim(Q[0]): temp = Q[0] print(len(Q)) # Check right adjacent cell that if it can be rotten if (isvalid(temp[0] + 1, temp[1]) and arr[temp[0] + 1][temp[1]] == 1): # if this is the first orange to get rotten, increase # count and set the flag. if (not flag): ans, flag = ans + 1, True # Make the orange rotten arr[temp[0] + 1][temp[1]] = 2 # append the adjacent orange to Queue temp[0] += 1 Q.append(temp) temp[0] -= 1 # Move back to current cell # Check left adjacent cell that if it can be rotten if (isvalid(temp[0] - 1, temp[1]) and arr[temp[0] - 1][temp[1]] == 1): if (not flag): ans, flag = ans + 1, True arr[temp[0] - 1][temp[1]] = 2 temp[0] -= 1 Q.append(temp) # append this cell to Queue temp[0] += 1 # Check top adjacent cell that if it can be rotten if (isvalid(temp[0], temp[1] + 1) and arr[temp[0]][temp[1] + 1] == 1): if (not flag): ans, flag = ans + 1, True arr[temp[0]][temp[1] + 1] = 2 temp[1] += 1 Q.append(temp) # Push this cell to Queue temp[1] -= 1 # Check bottom adjacent cell if it can be rotten if (isvalid(temp[0], temp[1] - 1) and arr[temp[0]][temp[1] - 1] == 1): if (not flag): ans, flag = ans + 1, True arr[temp[0]][temp[1] - 1] = 2 temp[1] -= 1 Q.append(temp) # append this cell to Queue Q.popleft() # Pop the delimiter Q.popleft() # If oranges were rotten in # current frame than separate the # rotten oranges using delimiter # for the next frame for processing. if (len(Q) == 0): temp[0] = -1 temp[1] = -1 Q.append(temp) # If Queue was empty than no rotten oranges left to process so exit # Return -1 if all arranges could not rot, otherwise return ans. return ans + 1 if(checkall(arr)) else -1 # Driver program if __name__ == '__main__': arr = [[2, 1, 0, 2, 1], [1, 0, 1, 2, 1], [1, 0, 0, 2, 1]] ans = rotOranges(arr) if (ans == -1): print("All oranges cannot rotn") else: print("Time required for all oranges to rot => ", ans) # This code is contributed by mohit kumar 29
quadratic
quadratic
# Python3 program to find Sum of all minimum and maximum # elements Of Sub-array Size k. from collections import deque # Returns Sum of min and max element of all subarrays # of size k def SumOfKsubArray(arr, n , k): Sum = 0 # Initialize result # The queue will store indexes of useful elements # in every window # In deque 'G' we maintain decreasing order of # values from front to rear # In deque 'S' we maintain increasing order of # values from front to rear S = deque() G = deque() # Process first window of size K for i in range(k): # Remove all previous greater elements # that are useless. while ( len(S) > 0 and arr[S[-1]] >= arr[i]): S.pop() # Remove from rear # Remove all previous smaller that are elements # are useless. while ( len(G) > 0 and arr[G[-1]] <= arr[i]): G.pop() # Remove from rear # Add current element at rear of both deque G.append(i) S.append(i) # Process rest of the Array elements for i in range(k, n): # Element at the front of the deque 'G' & 'S' # is the largest and smallest # element of previous window respectively Sum += arr[S[0]] + arr[G[0]] # Remove all elements which are out of this # window while ( len(S) > 0 and S[0] <= i - k): S.popleft() while ( len(G) > 0 and G[0] <= i - k): G.popleft() # remove all previous greater element that are # useless while ( len(S) > 0 and arr[S[-1]] >= arr[i]): S.pop() # Remove from rear # remove all previous smaller that are elements # are useless while ( len(G) > 0 and arr[G[-1]] <= arr[i]): G.pop() # Remove from rear # Add current element at rear of both deque G.append(i) S.append(i) # Sum of minimum and maximum element of last window Sum += arr[S[0]] + arr[G[0]] return Sum # Driver program to test above functions arr=[2, 5, -1, 7, -3, -1, -2] n = len(arr) k = 3 print(SumOfKsubArray(arr, n, k)) # This code is contributed by mohit kumar
constant
linear
# Python3 program to find distance of # nearest cell having 1 in a binary matrix. # Print distance of nearest cell # having 1 for each cell. def printDistance(mat): global N, M ans = [[None] * M for i in range(N)] # Initialize the answer matrix # with INT_MAX. for i in range(N): for j in range(M): ans[i][j] = 999999999999 # For each cell for i in range(N): for j in range(M): # Traversing the whole matrix # to find the minimum distance. for k in range(N): for l in range(M): # If cell contain 1, check # for minimum distance. if (mat[k][l] == 1): ans[i][j] = min(ans[i][j], abs(i - k) + abs(j - l)) # Printing the answer. for i in range(N): for j in range(M): print(ans[i][j], end=" ") print() # Driver Code if __name__ == '__main__': N = 3 M = 4 mat = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 0]] # Function call printDistance(mat) # This code is contributed by PranchalK
quadratic
quadratic
# Python3 program for the above approach import sys class matrix_element: def __init__(self, row, col): self.row = row self.col = col def printDistance(arr): Row_Count = len(arr) Col_Count = len(arr[0]) q = [] # Adding all ones in queue for i in range(Row_Count): for j in range(Col_Count): if (arr[i][j] == 1): q.append(matrix_element(i, j)) # In order to find min distance we will again # traverse all elements in Matrix. If its zero then # it will check against all 1's in Queue. Whatever # will be dequeued from queued, will be enqueued # back again. Queue_Size = len(q) for i in range(Row_Count): for j in range(Col_Count): distance = 0 min_distance = sys.maxsize if (arr[i][j] == 0): for k in range(Queue_Size): One_Pos = q[0] q = q[1:] One_Row = One_Pos.row One_Col = One_Pos.col distance = abs(One_Row - i) + abs(One_Col - j) min_distance = min(min_distance, distance) if (min_distance == 1): arr[i][j] = 1 q.append(matrix_element(One_Row, One_Col)) break q.append(matrix_element(One_Row, One_Col)) arr[i][j] = min_distance else: arr[i][j] = 0 # print elements for i in range(Row_Count): for j in range(Col_Count): print(arr[i][j], end=" ") print() # Driver code if __name__ == '__main__': arr = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 0]] # Function call printDistance(arr) # This code is contributed by shinjanpatra
quadratic
quadratic
# Python3 program to find distance of nearest # cell having 1 in a binary matrix. from collections import deque MAX = 500 N = 3 M = 4 # Making a class of graph with bfs function. g = [[] for i in range(MAX)] n, m = 0, 0 # Function to create graph with N*M nodes # considering each cell as a node and each # boundary as an edge. def createGraph(): global g, n, m # A number to be assigned to a cell k = 1 for i in range(1, n + 1): for j in range(1, m + 1): # If last row, then add edge on right side. if (i == n): # If not bottom right cell. if (j != m): g[k].append(k + 1) g[k + 1].append(k) # If last column, then add edge toward down. elif (j == m): g[k].append(k+m) g[k + m].append(k) # Else makes an edge in all four directions. else: g[k].append(k + 1) g[k + 1].append(k) g[k].append(k+m) g[k + m].append(k) k += 1 # BFS function to find minimum distance def bfs(visit, dist, q): global g while (len(q) > 0): temp = q.popleft() for i in g[temp]: if (visit[i] != 1): dist[i] = min(dist[i], dist[temp] + 1) q.append(i) visit[i] = 1 return dist # Printing the solution. def prt(dist): c = 1 for i in range(1, n * m + 1): print(dist[i], end=" ") if (c % m == 0): print() c += 1 # Find minimum distance def findMinDistance(mat): global g, n, m # Creating a graph with nodes values assigned # from 1 to N x M and matrix adjacent. n, m = N, M createGraph() # To store minimum distance dist = [0] * MAX # To mark each node as visited or not in BFS visit = [0] * MAX # Initialising the value of distance and visit. for i in range(1, M * N + 1): dist[i] = 10**9 visit[i] = 0 # Inserting nodes whose value in matrix # is 1 in the queue. k = 1 q = deque() for i in range(N): for j in range(M): if (mat[i][j] == 1): dist[k] = 0 visit[k] = 1 q.append(k) k += 1 # Calling for Bfs with given Queue. dist = bfs(visit, dist, q) # Printing the solution. prt(dist) # Driver code if __name__ == '__main__': mat = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 0]] # Function call findMinDistance(mat) # This code is contributed by mohit kumar 29
quadratic
quadratic
""" Python program to do level order traversal line by line using dual queue""" class GFG: """Constructor to create a new tree node""" def __init__(self,data): self.val = data self.left = None self.right = None """Prints level order traversal line by line using two queues.""" def levelOrder(self,node): q1 = [] # Queue 1 q2 = [] # Queue 2 q1.append(node) """Executing loop till both the queues become empty""" while(len(q1) > 0 or len(q2) > 0): """Empty string to concatenate the string for q1""" concat_str_q1 = '' while(len(q1) > 0): """Poped node at the first pos in queue 1 i.e q1""" poped_node = q1.pop(0) concat_str_q1 += poped_node.val +' ' """Pushing left child of current node in first queue into second queue""" if poped_node.left: q2.append(poped_node.left) """Pushing right child of current node in first queue into second queue""" if poped_node.right: q2.append(poped_node.right) print( str(concat_str_q1)) concat_str_q1 = '' """Empty string to concatenate the string for q1""" concat_str_q2 = '' while (len(q2) > 0): """Poped node at the first pos in queue 1 i.e q1""" poped_node = q2.pop(0) concat_str_q2 += poped_node.val + ' ' """Pushing left child of current node in first queue into first queue""" if poped_node.left: q1.append(poped_node.left) """Pushing right child of current node in first queue into first queue""" if poped_node.right: q1.append(poped_node.right) print(str(concat_str_q2)) concat_str_q2 = '' """ Driver program to test above functions""" node = GFG("1") node.left = GFG("2") node.right = GFG("3") node.left.left = GFG("4") node.left.right = GFG("5") node.right.right = GFG("6") node.levelOrder(node) # This code is contributed by Vaibhav Kumar 12
linear
linear
# Python3 program to find min sum of # squares of characters after k removals from queue import PriorityQueue MAX_CHAR = 26 # Main Function to calculate min sum of # squares of characters after k removals def minStringValue(str, k): l = len(str) # find length of string # if K is greater than length of string # so reduced string will become 0 if(k >= l): return 0 # Else find Frequency of each # character and store in an array frequency = [0] * MAX_CHAR for i in range(0, l): frequency[ord(str[i]) - 97] += 1 # Push each char frequency negative # into a priority_queue as the queue # by default is minheap q = PriorityQueue() for i in range(0, MAX_CHAR): q.put(-frequency[i]) # Removal of K characters while(k > 0): # Get top element in priority_queue # multiply it by -1 as temp is negative # remove it. Increment by 1 and again # push into priority_queue temp = q.get() temp = temp + 1 q.put(temp, temp) k = k - 1 # After removal of K characters find # sum of squares of string Value result = 0; # initialize result while not q.empty(): temp = q.get() temp = temp * (-1) result += temp * temp return result # Driver Code if __name__ == "__main__": str = "abbccc" k = 2 print(minStringValue(str, k)) str = "aaab" k = 2 print(minStringValue(str, k)) # This code is contributed # by Sairahul Jella
constant
nlogn
# Python program to find min sum of squares # of characters after k removals MAX_CHAR = 26 # Main Function to calculate min sum of # squares of characters after k removals def minStringValue(str, k): alphabetCount =[] for i in range(MAX_CHAR): alphabetCount.append(0) # Here the array stored frequency the number of # occurrences in string m[frequency]=number of alphabets # with frequency i.e, in our example abbccc m[1]=1(1 # a's occur),m[2]=1(2 b's occur),m[3]=1(3 c'soccur) m = [] for i in range(len(str)): m.append(0) for i in range(len(str)): alphabetCount[ord(str[i]) - ord('a')] += 1 # Store the maximum maximum = 0 for i in range(MAX_CHAR): m[alphabetCount[i]] += 1 maximum = max(maximum, alphabetCount[i]) while (k > 0): z = m[maximum] if z <= k: # Remove one occurrence of alphabet from each # with frequency as maximum. # So we will have k-z more remove operations to # perform as z is number of characters and we # perform one removal from each of the alphabet # with that frequency. k = k - z # As we removed one occurrence from each the # alphabets will no longer have the frequency # of maximum their frequency will be decreased # by one so add these number of alphabets to # group with frequency one less than maximum. # Remove them from maximum count. m[maximum] = 0 # Add those to frequency one less. m[maximum - 1] += z # new maximum will be one less. maximum -= 1 else: # if all the elements of that frequency cannot # be removed we should partially remove them. m[maximum] -= k maximum -= 1 m[maximum] += k k = 0 ans = 0 for i in range(len(str)): # (square of frequency)*(number of # characters corresponding to that frequency) ans = ans + (i * i) * m[i] return ans # Driver Code str = "abbccc" # Input 1 k = 2 print(minStringValue(str, k)) str = "aaab" # Input 2 k = 2 print(minStringValue(str, k)) # This code is contributed by Abhijeet Kumar(abhijeet19403)
linear
linear
# Python3 program for a Queue based approach # to find first non-repeating character from queue import Queue # function to find first non # repeating character of sa Stream def firstnonrepeating(Str): global MAX_CHAR q = Queue() charCount = [0] * MAX_CHAR # traverse whole Stream for i in range(len(Str)): # push each character in queue q.put(Str[i]) # increment the frequency count charCount[ord(Str[i]) - ord('a')] += 1 # check for the non repeating # character while (not q.empty()): if (charCount[ord(q.queue[0]) - ord('a')] > 1): q.get() else: print(q.queue[0], end = " ") break if (q.empty()): print(-1, end = " ") print() # Driver Code MAX_CHAR = 26 Str = "aabc" firstnonrepeating(Str) # This code is contributed by PranchalK
linear
linear
# Given two arrays, check if one array is # stack permutation of other. from queue import Queue # function to check if Input queue # is permutable to output queue def checkStackPermutation(ip, op, n): # Input queue Input = Queue() for i in range(n): Input.put(ip[i]) # output queue output = Queue() for i in range(n): output.put(op[i]) # stack to be used for permutation tempStack = [] while (not Input.empty()): ele = Input.queue[0] Input.get() if (ele == output.queue[0]): output.get() while (len(tempStack) != 0): if (tempStack[-1] == output.queue[0]): tempStack.pop() output.get() else: break else: tempStack.append(ele) # If after processing, both Input # queue and stack are empty then # the Input queue is permutable # otherwise not. return (Input.empty() and len(tempStack) == 0) # Driver Code if __name__ == '__main__': # Input Queue Input = [1, 2, 3] # Output Queue output = [2, 1, 3] n = 3 if (checkStackPermutation(Input, output, n)): print("Yes") else: print("Not Possible") # This code is contributed by PranchalK
linear
linear
# Given two arrays, check if one array is # stack permutation of other. # function to check if input array is # permutable to output array def checkStackPermutation(ip, op, n): # we will be appending elements from input array to stack uptill top of our stack # matches with first element of output array s = [] # will maintain a variable j to iterate on output array j = 0 # will iterate one by one in input array for i in range(n): # appended an element from input array to stack s.append(ip[i]) # if our stack isn't empty and top matches with output array # then we will keep popping out from stack uptill top matches with # output array while(len(s) > 0 and s[- 1] == op[j]): s.pop() # increasing j so next time we can compare next element in output array j += 1 # if output array was a correct permutation of input array then # by now our stack should be empty if(len(s) == 0): return True return False # Driver program to test above function # Input Array input = [4,5,6,7,8] # Output Array output = [8,7,6,5,4] n = 5 if (checkStackPermutation(input, output, n)): print("Yes") else: print("Not Possible") # This code is contributed by shinjanpatra
linear
linear
// C++ program to implement a stack using // Priority queue(min heap) #include<bits/stdc++.h> using namespace std; typedef pair<int, int> pi; // User defined stack class class Stack{ // cnt is used to keep track of the number of //elements in the stack and also serves as key //for the priority queue. int cnt; priority_queue<pair<int, int> > pq; public: Stack():cnt(0){} void push(int n); void pop(); int top(); bool isEmpty(); }; // push function increases cnt by 1 and // inserts this cnt with the original value. void Stack::push(int n){ cnt++; pq.push(pi(cnt, n)); } // pops element and reduces count. void Stack::pop(){ if(pq.empty()){ cout<<"Nothing to pop!!!";} cnt--; pq.pop(); } // returns the top element in the stack using // cnt as key to determine top(highest priority), // default comparator for pairs works fine in this case int Stack::top(){ pi temp=pq.top(); return temp.second; } // return true if stack is empty bool Stack::isEmpty(){ return pq.empty(); } // Driver code int main() { Stack* s=new Stack(); s->push(1); s->push(2); s->push(3); while(!s->isEmpty()){ cout<<s->top()<<endl; s->pop(); } }
linear
logn
# Program to demonstrate customized data structure # which supports functions in O(1) import sys stack = [] Min = sys.maxsize # Utility function for adding a new element def addElement(x): global Min, stack if (len(stack) == 0 or x < Min): Min = x pair = [x, Min] stack.append(pair) print(x, "inserted successfully") # Utility function for returning last # element of stack def getLastElement(): global Min, stack if (len(stack) == 0): print("UnderFlow Error") return -1 else: return stack[-1][0] # Utility function for removing last # element successfully; def removeLastElement(): global Min, stack if (len(stack) == 0): print("UnderFlow Error") elif (len(stack) > 1): Min = stack[-2][1] else: Min = sys.maxsize stack.pop() print("removed successfully") # Utility function for returning min # element till now; def getMin(): global Min, stack if (len(stack) == 0): print("UnderFlow Error") return -1 return stack[-1][1] # Driver code addElement(5) addElement(7) addElement(3) print("min element ::", getMin()) removeLastElement() addElement(2) addElement(9) print("Last element ::", getLastElement()) addElement(0) print("min element ::", getMin()) removeLastElement() addElement(11) print("min element ::", getMin()) # This code is contributed by mukesh07
linear
constant
# Python program to convert infix expression to postfix # Class to convert the expression class Conversion: # Constructor to initialize the class variables def __init__(self, capacity): self.top = -1 self.capacity = capacity # This array is used a stack self.array = [] # Precedence setting self.output = [] self.precedence = {'+': 1, '-': 1, '*': 2, '/': 2, '^': 3} # check if the stack is empty def isEmpty(self): return True if self.top == -1 else False # Return the value of the top of the stack def peek(self): return self.array[-1] # Pop the element from the stack def pop(self): if not self.isEmpty(): self.top -= 1 return self.array.pop() else: return "$" # Push the element to the stack def push(self, op): self.top += 1 self.array.append(op) # A utility function to check is the given character # is operand def isOperand(self, ch): return ch.isalpha() # Check if the precedence of operator is strictly # less than top of stack or not def notGreater(self, i): try: a = self.precedence[i] b = self.precedence[self.peek()] return True if a <= b else False except KeyError: return False # The main function that # converts given infix expression # to postfix expression def infixToPostfix(self, exp): # Iterate over the expression for conversion for i in exp: # If the character is an operand, # add it to output if self.isOperand(i): self.output.append(i) # If the character is an '(', push it to stack elif i == '(': self.push(i) # If the scanned character is an ')', pop and # output from the stack until and '(' is found elif i == ')': while((not self.isEmpty()) and self.peek() != '('): a = self.pop() self.output.append(a) if (not self.isEmpty() and self.peek() != '('): return -1 else: self.pop() # An operator is encountered else: while(not self.isEmpty() and self.notGreater(i)): self.output.append(self.pop()) self.push(i) # pop all the operator from the stack while not self.isEmpty(): self.output.append(self.pop()) print "".join(self.output) # Driver's code if __name__ == '__main__': exp = "a+b*(c^d-e)^(f+g*h)-i" obj = Conversion(len(exp)) # Function call obj.infixToPostfix(exp) # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
linear
linear
# Python Program to convert prefix to Infix def prefixToInfix(prefix): stack = [] # read prefix in reverse order i = len(prefix) - 1 while i >= 0: if not isOperator(prefix[i]): # symbol is operand stack.append(prefix[i]) i -= 1 else: # symbol is operator str = "(" + stack.pop() + prefix[i] + stack.pop() + ")" stack.append(str) i -= 1 return stack.pop() def isOperator(c): if c == "*" or c == "+" or c == "-" or c == "/" or c == "^" or c == "(" or c == ")": return True else: return False # Driver code if __name__=="__main__": str = "*-A/BC-/AKL" print(prefixToInfix(str)) # This code is contributed by avishekarora
linear
linear
# Python3 Program to convert postfix to prefix # function to check if # character is operator or not def isOperator(x): if x == "+": return True if x == "-": return True if x == "/": return True if x == "*": return True return False # Convert postfix to Prefix expression def postToPre(post_exp): s = [] # length of expression length = len(post_exp) # reading from right to left for i in range(length): # check if symbol is operator if (isOperator(post_exp[i])): # pop two operands from stack op1 = s[-1] s.pop() op2 = s[-1] s.pop() # concat the operands and operator temp = post_exp[i] + op2 + op1 # Push string temp back to stack s.append(temp) # if symbol is an operand else: # push the operand to the stack s.append(post_exp[i]) ans = "" for i in s: ans += i return ans # Driver Code if __name__ == "__main__": post_exp = "AB+CD-" # Function call print("Prefix : ", postToPre(post_exp)) # This code is contributed by AnkitRai01
linear
linear
# Python3 program to check for # balanced brackets. # function to check if # brackets are balanced def areBracketsBalanced(expr): stack = [] # Traversing the Expression for char in expr: if char in ["(", "{", "["]: # Push the element in the stack stack.append(char) else: # IF current character is not opening # bracket, then it must be closing. # So stack cannot be empty at this point. if not stack: return False current_char = stack.pop() if current_char == '(': if char != ")": return False if current_char == '{': if char != "}": return False if current_char == '[': if char != "]": return False # Check Empty Stack if stack: return False return True # Driver Code if __name__ == "__main__": expr = "{()}[]" # Function call if areBracketsBalanced(expr): print("Balanced") else: print("Not Balanced") # This code is contributed by AnkitRai01 and improved # by Raju Pitta
linear
linear
'''NFG function to find the next greater frequency element for each element in the array''' def NFG(a, n): if (n <= 0): print("List empty") return [] # stack data structure to store the position # of array element stack = [0]*n # freq is a dictionary which maintains the # frequency of each element freq = {} for i in a: freq[a[i]] = 0 for i in a: freq[a[i]] += 1 # res to store the value of next greater # frequency element for each element res = [0]*n # initialize top of stack to -1 top = -1 # push the first position of array in the stack top += 1 stack[top] = 0 # now iterate for the rest of elements for i in range(1, n): ''' If the frequency of the element which is pointed by the top of stack is greater than frequency of the current element then push the current position i in stack''' if (freq[a[stack[top]]] > freq[a[i]]): top += 1 stack[top] = i else: ''' If the frequency of the element which is pointed by the top of stack is less than frequency of the current element, then pop the stack and continuing popping until the above condition is true while the stack is not empty''' while (top > -1 and freq[a[stack[top]]] < freq[a[i]]): res[stack[top]] = a[i] top -= 1 # now push the current element top += 1 stack[top] = i '''After iterating over the loop, the remaining position of elements in stack do not have the next greater element, so print -1 for them''' while (top > -1): res[stack[top]] = -1 top -= 1 # return the res list containing next # greater frequency element return res # Driver Code print(NFG([1, 1, 2, 3, 4, 2, 1], 7))
linear
linear
# Python3 program of Next Greater Frequency Element mystack = [] mymap = {} """NFG function to find the next greater frequency element for each element and for placing it in the resultant array """ def NGF(arr, res): n = len(arr) # Initially store the frequencies of all elements # in a hashmap for i in range(n): if arr[i] in mymap: mymap[arr[i]] += 1 else: mymap[arr[i]] = 1 # Get the frequency of the last element curr_freq = mymap[arr[n-1]] # push it to the stack mystack.append([arr[n-1],curr_freq]) # place -1 as next greater freq for the last # element as it does not have next greater. res[n-1] = -1 # iterate through array in reverse order for i in range(n - 2, -1, -1): curr_freq = mymap[arr[i]] """ If the frequency of the element which is pointed by the top of stack is greater than frequency of the current element then push the current position i in stack""" while len(mystack) > 0 and curr_freq >= mystack[-1][1]: mystack.pop() # If the stack is empty, place -1. If it is not empty # then we will have next higher freq element at the top of the stack. if (len(mystack) == 0): res[i] = -1 else: res[i] = mystack[-1][0] # push the element at current position mystack.append([arr[i],mymap[arr[i]]]) arr = [1, 1, 1, 2, 2, 2, 2, 11, 3, 3] res = [0]*(len(arr)) NGF(arr, res) print(res) # This code is contributed by rameshtravel07.
linear
linear
class GFG: # Function to find number of next greater elements on # the right of a given element @staticmethod def nextGreaterElements(a, index): count = 0 N = len(a) i = index + 1 while (i < N): if (a[i] > a[index]): count += 1 i += 1 return count @staticmethod def main(args): a = [3, 4, 2, 7, 5, 8, 10, 6] Q = 2 queries = [0, 5] i = 0 while (i < Q): # Function call print(str(GFG.nextGreaterElements(a, queries[i])) + " ", end="") i += 1 if __name__ == "__main__": GFG.main([])
constant
linear
# Python3 program to find celebrity # Max # of persons in the party N = 8 # Person with 2 is celebrity MATRIX = [[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 1, 0]] def knows(a, b): return MATRIX[a][b] def findCelebrity(n): # The graph needs not be constructed # as the edges can be found by # using knows function # degree array; indegree = [0 for x in range(n)] outdegree = [0 for x in range(n)] # Query for all edges for i in range(n): for j in range(n): x = knows(i, j) # Set the degrees outdegree[i] += x indegree[j] += x # Find a person with indegree n-1 # and out degree 0 for i in range(n): if (indegree[i] == n - 1 and outdegree[i] == 0): return i return -1 # Driver code if __name__ == '__main__': n = 4 id_ = findCelebrity(n) if id_ == -1: print("No celebrity") else: print("Celebrity ID", id_) # This code is contributed by UnworthyProgrammer
linear
quadratic
# Python3 program to find celebrity # Max # of persons in the party N = 8 # Person with 2 is celebrity MATRIX = [[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 1, 0]] def knows(a, b): return MATRIX[a][b] # Returns -1 if a potential celebrity # is not present. If present, # returns id (value from 0 to n-1). def findPotentialCelebrity(n): # Base case if (n == 0): return 0 # Find the celebrity with n-1 # persons id_ = findPotentialCelebrity(n - 1) # If there are no celebrities if (id_ == -1): return n - 1 # if the id knows the nth person # then the id cannot be a celebrity, but nth person # could be on elif knows(id_, n - 1): return n - 1 # if the id knows the nth person # then the id cannot be a celebrity, but nth person # could be one elif knows(n - 1, id_): return id_ # If there is no celebrity return - 1 # Returns -1 if celebrity # is not present. If present, # returns id (value from 0 to n-1). # a wrapper over findCelebrity def Celebrity(n): # Find the celebrity id_ = findPotentialCelebrity(n) # Check if the celebrity found # is really the celebrity if (id_ == -1): return id_ else: c1 = 0 c2 = 0 # Check the id is really the # celebrity for i in range(n): if (i != id_): c1 += knows(id_, i) c2 += knows(i, id_) # If the person is known to # everyone. if (c1 == 0 and c2 == n - 1): return id_ return -1 # Driver code if __name__ == '__main__': n = 4 id_ = Celebrity(n) if id_ == -1: print("No celebrity") else: print("Celebrity ID", id_) # This code is contributed by UnworthyProgrammer
constant
linear
# Python3 program to find celebrity # using stack data structure # Max # of persons in the party N = 8 # Person with 2 is celebrity MATRIX = [[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 1, 0]] def knows(a, b): return MATRIX[a][b] # Returns -1 if celebrity # is not present. If present, # returns id (value from 0 to n-1). def findCelebrity(n): # Handle trivial # case of size = 2 s = [] # Push everybody to stack for i in range(n): s.append(i) # Find a potential celebrity while (len(s) > 1): # Pop out the first two elements from stack A = s.pop() B = s.pop() # if A knows B, we find that B might be the celebrity and vice versa if (knows(A, B)): s.append(B) else: s.append(A) # If there are only two people # and there is no # potential candidate if(len(s) == 0): return -1 # Potential candidate? C = s.pop() # Last candidate was not # examined, it leads one # excess comparison (optimize) if (knows(C, B)): C = B if (knows(C, A)): C = A # Check if C is actually # a celebrity or not for i in range(n): # If any person doesn't # know 'a' or 'a' doesn't # know any person, return -1 if ((i != C) and (knows(C, i) or not(knows(i, C)))): return -1 return C # Driver code if __name__ == '__main__': n = 4 id_ = findCelebrity(n) if id_ == -1: print("No celebrity") else: print("Celebrity ID ", id_) # This code is contributed by UnworthyProgrammer
linear
linear
# Python code for the above approach # Function to find if there is a celebrity in the party # or not. def celebrity(M, n): # r=row number r = 0 for i in range(1, n): # checking if r th person knows i th person if(M[r][i] == 1): M[r][r] = 1 r = i else: M[i][i] = 1 for i in range(n): # checking if i th person can be a celebrity or # not if(M[i][i] == 0): flag = 0 # iterating in the i th column to check # whether everyone knows i th person or not for j in range(n): # checking if M[j][i] is not a diagonal # element and if j th person knows i th # person if(j != i and M[j][i] == 0): flag = 1 break if(flag == 0): return i return -1 M = [[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 1, 0]] a = celebrity(M, 4) if(a is -1): print("No Celebrity") else: print("Celebrity ID", a) # This code is contributed by lokeshmvs21.
constant
linear
# Python3 code class Solution: # Function to find if there is a celebrity in the party or not. # return index if celebrity else return -1 def celebrity(self, M, n): # code here i = 0 j = n-1 candidate = -1 while(i < j): if M[j][i] == 1: j -= 1 else: i += 1 candidate = i for k in range(n): if candidate != k: if M[candidate][k] == 1 or M[k][candidate] == 0: return -1 return candidate n = 4 m = [[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 1, 0]] ob = Solution() a = ob.celebrity(m, n) if a == -1: print("No Celebrity") else: print("Celebrity ID", a)
constant
linear
# Python3 program to evaluate a given # expression where tokens are # separated by space. # Function to find precedence # of operators. def precedence(op): if op == '+' or op == '-': return 1 if op == '*' or op == '/': return 2 return 0 # Function to perform arithmetic # operations. def applyOp(a, b, op): if op == '+': return a + b if op == '-': return a - b if op == '*': return a * b if op == '/': return a // b # Function that returns value of # expression after evaluation. def evaluate(tokens): # stack to store integer values. values = [] # stack to store operators. ops = [] i = 0 while i < len(tokens): # Current token is a whitespace, # skip it. if tokens[i] == ' ': i += 1 continue # Current token is an opening # brace, push it to 'ops' elif tokens[i] == '(': ops.append(tokens[i]) # Current token is a number, push # it to stack for numbers. elif tokens[i].isdigit(): val = 0 # There may be more than one # digits in the number. while (i < len(tokens) and tokens[i].isdigit()): val = (val * 10) + int(tokens[i]) i += 1 values.append(val) # right now the i points to # the character next to the digit, # since the for loop also increases # the i, we would skip one # token position; we need to # decrease the value of i by 1 to # correct the offset. i-=1 # Closing brace encountered, # solve entire brace. elif tokens[i] == ')': while len(ops) != 0 and ops[-1] != '(': val2 = values.pop() val1 = values.pop() op = ops.pop() values.append(applyOp(val1, val2, op)) # pop opening brace. ops.pop() # Current token is an operator. else: # While top of 'ops' has same or # greater precedence to current # token, which is an operator. # Apply operator on top of 'ops' # to top two elements in values stack. while (len(ops) != 0 and precedence(ops[-1]) >= precedence(tokens[i])): val2 = values.pop() val1 = values.pop() op = ops.pop() values.append(applyOp(val1, val2, op)) # Push current token to 'ops'. ops.append(tokens[i]) i += 1 # Entire expression has been parsed # at this point, apply remaining ops # to remaining values. while len(ops) != 0: val2 = values.pop() val1 = values.pop() op = ops.pop() values.append(applyOp(val1, val2, op)) # Top of 'values' contains result, # return it. return values[-1] # Driver Code if __name__ == "__main__": print(evaluate("10 + 2 * 6")) print(evaluate("100 * 2 + 12")) print(evaluate("100 * ( 2 + 12 )")) print(evaluate("100 * ( 2 + 12 ) / 14")) # This code is contributed # by Rituraj Jain
linear
linear
# Python program to evaluate value of a postfix expression # Class to convert the expression class Evaluate: # Constructor to initialize the class variables def __init__(self, capacity): self.top = -1 self.capacity = capacity # This array is used a stack self.array = [] # check if the stack is empty def isEmpty(self): return True if self.top == -1 else False # Return the value of the top of the stack def peek(self): return self.array[-1] # Pop the element from the stack def pop(self): if not self.isEmpty(): self.top -= 1 return self.array.pop() else: return "$" # Push the element to the stack def push(self, op): self.top += 1 self.array.append(op) # The main function that converts given infix expression # to postfix expression def evaluatePostfix(self, exp): # Iterate over the expression for conversion for i in exp: # If the scanned character is an operand # (number here) push it to the stack if i.isdigit(): self.push(i) # If the scanned character is an operator, # pop two elements from stack and apply it. else: val1 = self.pop() val2 = self.pop() self.push(str(eval(val2 + i + val1))) return int(self.pop()) # Driver program to test above function exp = "231*+9-" obj = Evaluate(len(exp)) print ("postfix evaluation: %d"%(obj.evaluatePostfix(exp))) # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
linear
linear
# Python program to evaluate value of a postfix # expression with integers containing multiple digits class evalpostfix: def __init__(self): self.stack =[] self.top =-1 def pop(self): if self.top ==-1: return else: self.top-= 1 return self.stack.pop() def push(self, i): self.top+= 1 self.stack.append(i) def centralfunc(self, ab): for i in ab: # if the component of the list is an integer try: self.push(int(i)) # if the component of the list is not an integer, # it must be an operator. Using ValueError, we can # evaluate components of the list other than type int except ValueError: val1 = self.pop() val2 = self.pop() if i == '/': self.push(val2 / val1) else: # switch statement to perform operation switcher ={'+':val2 + val1, '-':val2-val1, '*':val2 * val1, '^':val2**val1} self.push(switcher.get(i)) return int(self.pop()) str ='100 200 + 2 / 5 * 7 +' # splitting the given string to obtain # integers and operators into a list strconv = str.split(' ') obj = evalpostfix() print(obj.centralfunc(strconv)) # This code is contributed by Amarnath Reddy
linear
linear
# Python program to reverse a # stack using recursion # Below is a recursive function # that inserts an element # at the bottom of a stack. def insertAtBottom(stack, item): if isEmpty(stack): push(stack, item) else: temp = pop(stack) insertAtBottom(stack, item) push(stack, temp) # Below is the function that # reverses the given stack # using insertAtBottom() def reverse(stack): if not isEmpty(stack): temp = pop(stack) reverse(stack) insertAtBottom(stack, temp) # Below is a complete running # program for testing above # functions. # Function to create a stack. # It initializes size of stack # as 0 def createStack(): stack = [] return stack # Function to check if # the stack is empty def isEmpty(stack): return len(stack) == 0 # Function to push an # item to stack def push(stack, item): stack.append(item) # Function to pop an # item from stack def pop(stack): # If stack is empty # then error if(isEmpty(stack)): print("Stack Underflow ") exit(1) return stack.pop() # Function to print the stack def prints(stack): for i in range(len(stack)-1, -1, -1): print(stack[i], end=' ') print() # Driver Code stack = createStack() push(stack, str(4)) push(stack, str(3)) push(stack, str(2)) push(stack, str(1)) print("Original Stack ") prints(stack) reverse(stack) print("Reversed Stack ") prints(stack) # This code is contributed by Sunny Karira
linear
quadratic
# Python program to sort a stack using recursion # Recursive method to insert element in sorted way def sortedInsert(s, element): # Base case: Either stack is empty or newly inserted # item is greater than top (more than all existing) if len(s) == 0 or element > s[-1]: s.append(element) return else: # Remove the top item and recur temp = s.pop() sortedInsert(s, element) # Put back the top item removed earlier s.append(temp) # Method to sort stack def sortStack(s): # If stack is not empty if len(s) != 0: # Remove the top item temp = s.pop() # Sort remaining stack sortStack(s) # Push the top item back in sorted stack sortedInsert(s, temp) # Printing contents of stack def printStack(s): for i in s[::-1]: print(i, end=" ") print() # Driver Code if __name__ == '__main__': s = [] s.append(30) s.append(-5) s.append(18) s.append(14) s.append(-3) print("Stack elements before sorting: ") printStack(s) sortStack(s) print("\nStack elements after sorting: ") printStack(s) # This code is contributed by Muskan Kalra.
linear
quadratic
# Python program to sort a # stack using auxiliary stack. # This function return the sorted stack def sortStack ( stack ): tmpStack = createStack() while(isEmpty(stack) == False): # pop out the first element tmp = top(stack) pop(stack) # while temporary stack is not # empty and top of stack is # greater than temp while(isEmpty(tmpStack) == False and int(top(tmpStack)) > int(tmp)): # pop from temporary stack and # push it to the input stack push(stack,top(tmpStack)) pop(tmpStack) # push temp in temporary of stack push(tmpStack,tmp) return tmpStack # Below is a complete running # program for testing above # function. # Function to create a stack. # It initializes size of stack # as 0 def createStack(): stack = [] return stack # Function to check if # the stack is empty def isEmpty( stack ): return len(stack) == 0 # Function to push an # item to stack def push( stack, item ): stack.append( item ) # Function to get top # item of stack def top( stack ): p = len(stack) return stack[p-1] # Function to pop an # item from stack def pop( stack ): # If stack is empty # then error if(isEmpty( stack )): print("Stack Underflow ") exit(1) return stack.pop() # Function to print the stack def prints(stack): for i in range(len(stack)-1, -1, -1): print(stack[i], end = ' ') print() # Driver Code stack = createStack() push( stack, str(34) ) push( stack, str(3) ) push( stack, str(31) ) push( stack, str(98) ) push( stack, str(92) ) push( stack, str(23) ) print("Sorted numbers are: ") sortedst = sortStack ( stack ) prints(sortedst) # This code is contributed by # Prasad Kshirsagar
linear
quadratic
# Python3 program to implement Stack # using linked list so that reverse # can be done with O(1) extra space. class StackNode: def __init__(self, data): self.data = data self.next = None class Stack: def __init__(self): self.top = None # Push and pop operations def push(self, data): if (self.top == None): self.top = StackNode(data) return s = StackNode(data) s.next = self.top self.top = s def pop(self): s = self.top self.top = self.top.next return s # Prints contents of stack def display(self): s = self.top while (s != None): print(s.data, end = ' ') s = s.next # Reverses the stack using simple # linked list reversal logic. def reverse(self): prev = self.top cur = self.top cur = cur.next succ = None prev.next = None while (cur != None): succ = cur.next cur.next = prev prev = cur cur = succ self.top = prev # Driver code if __name__=='__main__': s = Stack() s.push(1) s.push(2) s.push(3) s.push(4) print("Original Stack") s.display() print() # Reverse s.reverse() print("Reversed Stack") s.display() # This code is contributed by rutvik_56
constant
linear
# Python3 code to delete middle of a stack # without using additional data structure. # Deletes middle of stack of size # n. Curr is current item number class Stack: def __init__(self): self.items = [] def isEmpty(self): return self.items == [] def push(self, item): self.items.append(item) def pop(self): return self.items.pop() def peek(self): return self.items[len(self.items)-1] def size(self): return len(self.items) def deleteMid(st, n, curr) : # If stack is empty or all items # are traversed if (st.isEmpty() or curr == n) : return # Remove current item x = st.peek() st.pop() # Remove other items deleteMid(st, n, curr+1) # Put all items back except middle if (curr != int(n/2)) : st.push(x) # Driver function to test above functions st = Stack() # push elements into the stack st.push('1') st.push('2') st.push('3') st.push('4') st.push('5') st.push('6') st.push('7') deleteMid(st, st.size(), 0) # Printing stack after deletion # of middle. while (st.isEmpty() == False) : p = st.peek() st.pop() print (str(p) + " ", end="") # This code is contributed by # Manish Shaw (manishshaw1)
linear
linear
# Python code to delete middle of a stack with iterative method # Deletes middle of stack of size n. Curr is current item number def deleteMid(st): n = len(st) tempSt = [] count = 0 # Put first n/2 element of st in tempSt while (count < (n / 2)-1): c = st[0] st.pop(0) tempSt.insert(0, c) count = count+1 # Delete middle element st.pop(0) # Put all (n/2) element of tempSt in st while (len(tempSt) != 0): st.insert(0, tempSt[0]) tempSt.pop(0) # Driver Code st = [] # insert elements into the stack st.insert(0, 1) st.insert(0, 2) st.insert(0, 3) st.insert(0, 4) st.insert(0, 5) st.insert(0, 6) st.insert(0, 7) deleteMid(st) # Printing stack after deletion of middle. while (len(st) != 0): p = st[0] st.pop(0) print(p, " ") # This code is added by adityamaharshi21
linear
linear
# Python3 program to sort an array using stack # This function return the sorted stack def sortStack(input): tmpStack = [] while (len(input) > 0): # pop out the first element tmp = input[-1] input.pop() # while temporary stack is not empty # and top of stack is smaller than temp while (len(tmpStack) > 0 and tmpStack[-1] < tmp): # pop from temporary stack and # append it to the input stack input.append(tmpStack[-1]) tmpStack.pop() # append temp in temporary of stack tmpStack.append(tmp) return tmpStack def sortArrayUsingStacks(arr, n): # append array elements to stack input = [] i = 0 while ( i < n ): input.append(arr[i]) i = i + 1 # Sort the temporary stack tmpStack = sortStack(input) i = 0 # Put stack elements in arrp[] while (i < n): arr[i] = tmpStack[-1] tmpStack.pop() i = i + 1 return arr # Driver code arr = [10, 5, 15, 45] n = len(arr) arr = sortArrayUsingStacks(arr, n) i = 0 while (i < n): print(arr[i] ,end= " ") i = i + 1 # This code is contributed by Arnab Kundu
linear
quadratic
# Function to delete elements def deleteElements(arr, n, k): # create an empty stack st st = [] st.append(arr[0]) # index to maintain the top # of the stack top = 0 count = 0 for i in range(1, n): # pop till the present element # is greater than stack's top # element while(len(st) != 0 and count < k and st[top] < arr[i]): st.pop() count += 1 top -= 1 st.append(arr[i]) top += 1 # print the remaining elements for i in range(0, len(st)): print(st[i], " ", end="") # Driver code k = 2 arr = [20, 10, 25, 30, 40] deleteElements(arr, len(arr), k) # This code is contributed by himan085.
linear
quadratic
# Python3 program to count number of distinct # instance where second highest number lie # before highest number in all subarrays. from typing import List MAXN = 100005 # Finding the next greater element # of the array. def makeNext(arr: List[int], n: int, nextBig: List[int]) -> None: # Stack s = [] for i in range(n - 1, -1, -1): nextBig[i] = i while len(s) and s[-1][0] < arr[i]: s.pop() if len(s): nextBig[i] = s[-1][1] s.append((arr[i], i)) # Finding the previous greater # element of the array. def makePrev(arr: List[int], n: int, prevBig: List[int]) -> None: # Stack s = [] for i in range(n): prevBig[i] = -1 while (len(s) and s[-1][0] < arr[i]): s.pop() if (len(s)): prevBig[i] = s[-1][1] s.append((arr[i], i)) # Wrapper Function def wrapper(arr: List[int], n: int) -> int: nextBig = [0] * MAXN prevBig = [0] * MAXN maxi = [0] * MAXN ans = 0 # Finding previous largest element makePrev(arr, n, prevBig) # Finding next largest element makeNext(arr, n, nextBig) for i in range(n): if (nextBig[i] != i): maxi[nextBig[i] - i] = max( maxi[nextBig[i] - i], i - prevBig[i]) for i in range(n): ans += maxi[i] return ans # Driver Code if __name__ == "__main__": arr = [ 1, 3, 2, 4 ] n = len(arr) print(wrapper(arr, n)) # This code is contributed by sanjeev2552
linear
linear
# Python3 program to find maximum # rectangular area in linear time def max_area_histogram(histogram): # This function calculates maximum # rectangular area under given # histogram with n bars # Create an empty stack. The stack # holds indexes of histogram[] list. # The bars stored in the stack are # always in increasing order of # their heights. stack = list() max_area = 0 # Initialize max area # Run through all bars of # given histogram index = 0 while index < len(histogram): # If this bar is higher # than the bar on top # stack, push it to stack if (not stack) or (histogram[stack[-1]] <= histogram[index]): stack.append(index) index += 1 # If this bar is lower than top of stack, # then calculate area of rectangle with # stack top as the smallest (or minimum # height) bar.'i' is 'right index' for # the top and element before top in stack # is 'left index' else: # pop the top top_of_stack = stack.pop() # Calculate the area with # histogram[top_of_stack] stack # as smallest bar area = (histogram[top_of_stack] * ((index - stack[-1] - 1) if stack else index)) # update max area, if needed max_area = max(max_area, area) # Now pop the remaining bars from # stack and calculate area with # every popped bar as the smallest bar while stack: # pop the top top_of_stack = stack.pop() # Calculate the area with # histogram[top_of_stack] # stack as smallest bar area = (histogram[top_of_stack] * ((index - stack[-1] - 1) if stack else index)) # update max area, if needed max_area = max(max_area, area) # Return maximum area under # the given histogram return max_area # Driver Code if __name__ == '__main__': hist = [6, 2, 5, 4, 5, 1, 6] # Function call print("Maximum area is", max_area_histogram(hist)) # This code is contributed # by Jinay Shah
linear
linear
# Python3 code for the above approach def getMaxArea(arr): s = [-1] n = len(arr) area = 0 i = 0 left_smaller = [-1]*n right_smaller = [n]*n while i < n: while s and (s[-1] != -1) and (arr[s[-1]] > arr[i]): right_smaller[s[-1]] = i s.pop() if((i > 0) and (arr[i] == arr[i-1])): left_smaller[i] = left_smaller[i-1] else: left_smaller[i] = s[-1] s.append(i) i += 1 for j in range(0, n): area = max(area, arr[j]*(right_smaller[j]-left_smaller[j]-1)) return area # Driver code if __name__ == '__main__': hist = [6, 2, 5, 4, 5, 1, 6] # Function call print("maxArea = ", getMaxArea(hist)) # This code is contributed by Arunit Kumar
linear
linear
# Python program to reverse a string using stack # Function to create an empty stack. # It initializes size of stack as 0 def createStack(): stack = [] return stack # Function to determine the size of the stack def size(stack): return len(stack) # Stack is empty if the size is 0 def isEmpty(stack): if size(stack) == 0: return true # Function to add an item to stack . # It increases size by 1 def push(stack, item): stack.append(item) # Function to remove an item from stack. # It decreases size by 1 def pop(stack): if isEmpty(stack): return return stack.pop() # A stack based function to reverse a string def reverse(string): n = len(string) # Create a empty stack stack = createStack() # Push all characters of string to stack for i in range(0, n, 1): push(stack, string[i]) # Making the string empty since all # characters are saved in stack string = "" # Pop all characters of string and # put them back to string for i in range(0, n, 1): string += pop(stack) return string # Driver program to test above functions string = "GeeksQuiz" string = reverse(string) print("Reversed string is " + string) # This code is contributed by Sunny Karira
linear
linear
# Recursive Python function to solve tower of hanoi def TowerOfHanoi(n, from_rod, to_rod, aux_rod): if n == 0: return TowerOfHanoi(n-1, from_rod, aux_rod, to_rod) print("Move disk", n, "from rod", from_rod, "to rod", to_rod) TowerOfHanoi(n-1, aux_rod, to_rod, from_rod) # Driver code N = 3 # A, C, B are the name of rods TowerOfHanoi(N, 'A', 'C', 'B') # Contributed By Harshit Agrawal
linear
linear
# Python code to implement the approach def maxDepth(s): count = 0 st = [] for i in range(len(s)): if (s[i] == '('): st.append(i) # pushing the bracket in the stack elif (s[i] == ')'): if (count < len(st)): count = len(st) # keeping track of the parenthesis and storing # it before removing it when it gets balanced st.pop() return count # Driver program s = "( ((X)) (((Y))) )" print(maxDepth(s)) # This code is contributed by shinjanpatra
constant
linear
# A Python program to find the maximum depth of nested # parenthesis in a given expression # function takes a string and returns the # maximum depth nested parenthesis def maxDepth(S): current_max = 0 max = 0 n = len(S) # Traverse the input string for i in range(n): if S[i] == '(': current_max += 1 if current_max > max: max = current_max else if S[i] == ')': if current_max > 0: current_max -= 1 else: return -1 # finally check for unbalanced string if current_max != 0: return -1 return max # Driver program s = "( ((X)) (((Y))) )" print (maxDepth(s)) # This code is contributed by BHAVYA JAIN
constant
linear
# A naive method to find maximum of # minimum of all windows of different sizes INT_MIN = -1000000 def printMaxOfMin(arr, n): # Consider all windows of different # sizes starting from size 1 for k in range(1, n + 1): # Initialize max of min for # current window size k maxOfMin = INT_MIN # Traverse through all windows # of current size k for i in range(n - k + 1): # Find minimum of current window min = arr[i] for j in range(k): if (arr[i + j] < min): min = arr[i + j] # Update maxOfMin if required if (min > maxOfMin): maxOfMin = min # Print max of min for current window size print(maxOfMin, end=" ") # Driver Code arr = [10, 20, 30, 50, 10, 70, 30] n = len(arr) printMaxOfMin(arr, n) # This code is contributed by sahilshelangia
constant
cubic
# An efficient Python3 program to find # maximum of all minimums of windows of # different sizes def printMaxOfMin(arr, n): s = [] # Used to find previous # and next smaller # Arrays to store previous and next # smaller. Initialize elements of # left[] and right[] left = [-1] * (n + 1) right = [n] * (n + 1) # Fill elements of left[] using logic discussed on # https:#www.geeksforgeeks.org/next-greater-element for i in range(n): while (len(s) != 0 and arr[s[-1]] >= arr[i]): s.pop() if (len(s) != 0): left[i] = s[-1] s.append(i) # Empty the stack as stack is going # to be used for right[] while (len(s) != 0): s.pop() # Fill elements of right[] using same logic for i in range(n - 1, -1, -1): while (len(s) != 0 and arr[s[-1]] >= arr[i]): s.pop() if(len(s) != 0): right[i] = s[-1] s.append(i) # Create and initialize answer array ans = [0] * (n + 1) for i in range(n + 1): ans[i] = 0 # Fill answer array by comparing minimums # of all. Lengths computed using left[] # and right[] for i in range(n): # Length of the interval Len = right[i] - left[i] - 1 # arr[i] is a possible answer for this # Length 'Len' interval, check if arr[i] # is more than max for 'Len' ans[Len] = max(ans[Len], arr[i]) # Some entries in ans[] may not be filled # yet. Fill them by taking values from # right side of ans[] for i in range(n - 1, 0, -1): ans[i] = max(ans[i], ans[i + 1]) # Print the result for i in range(1, n + 1): print(ans[i], end=" ") # Driver Code if __name__ == '__main__': arr = [10, 20, 30, 50, 10, 70, 30] n = len(arr) printMaxOfMin(arr, n) # This code is contributed by PranchalK
linear
linear
# Python3 Program to check whether valid # expression is redundant or not # Function to check redundant brackets # in a balanced expression def checkRedundancy(Str): # create a stack of characters st = [] # Iterate through the given expression for ch in Str: # if current character is close # parenthesis ')' if (ch == ')'): top = st[-1] st.pop() # If immediate pop have open parenthesis # '(' duplicate brackets found flag = True while (top != '('): # Check for operators in expression if (top == '+' or top == '-' or top == '*' or top == '/'): flag = False # Fetch top element of stack top = st[-1] st.pop() # If operators not found if (flag == True): return True else: st.append(ch) # append open parenthesis '(', # operators and operands to stack return False # Function to check redundant brackets def findRedundant(Str): ans = checkRedundancy(Str) if (ans == True): print("Yes") else: print("No") # Driver code if __name__ == '__main__': Str = "((a+b))" findRedundant(Str) # This code is contributed by PranchalK
linear
linear
# Python3 program to # mark balanced and # unbalanced parenthesis. def identifyParenthesis(a): st = [] # run the loop upto # end of the string for i in range (len(a)): # if a[i] is opening # bracket then push # into stack if (a[i] == '('): st.append(a[i]) # if a[i] is closing bracket ')' elif (a[i] == ')'): # If this closing bracket # is unmatched if (len(st) == 0): a = a.replace(a[i], "-1", 1) else: # replace all opening brackets with 0 # and closing brackets with 1 a = a.replace(a[i], "1", 1) a = a.replace(st[-1], "0", 1) st.pop() # if stack is not empty # then pop out all # elements from it and # replace -1 at that # index of the string while (len(st) != 0): a = a.replace(st[-1], 1, "-1"); st.pop() # print final string print(a) # Driver code if __name__ == "__main__": st = "(a))" identifyParenthesis(st) # This code is contributed by Chitranayal
linear
linear
# Python3 program to check if two expressions # evaluate to same. MAX_CHAR = 26; # Return local sign of the operand. For example, # in the expr a-b-(c), local signs of the operands # are +a, -b, +c def adjSign(s, i): if (i == 0): return True; if (s[i - 1] == '-'): return False; return True; # Evaluate expressions into the count vector of # the 26 alphabets.If add is True, then add count # to the count vector of the alphabets, else remove # count from the count vector. def eval(s, v, add): # stack stores the global sign # for operands. stk = [] stk.append(True); # + means True # global sign is positive initially i = 0; while (i < len(s)): if (s[i] == '+' or s[i] == '-'): i += 1 continue; if (s[i] == '('): # global sign for the bracket is # pushed to the stack if (adjSign(s, i)): stk.append(stk[-1]); else: stk.append(not stk[-1]); # global sign is popped out which # was pushed in for the last bracket elif (s[i] == ')'): stk.pop(); else: # global sign is positive (we use different # values in two calls of functions so that # we finally check if all vector elements # are 0. if (stk[-1]): v[ord(s[i]) - ord('a')] += (1 if add else -1) if adjSign(s, i) else (-1 if add else 1) # global sign is negative here else: v[ord(s[i]) - ord('a')] += (-1 if add else 1) if adjSign(s, i) else (1 if add else -1) i += 1 # Returns True if expr1 and expr2 represent # same expressions def areSame(expr1, expr2): # Create a vector for all operands and # initialize the vector as 0. v = [0 for i in range(MAX_CHAR)]; # Put signs of all operands in expr1 eval(expr1, v, True); # Subtract signs of operands in expr2 eval(expr2, v, False); # If expressions are same, vector must # be 0. for i in range(MAX_CHAR): if (v[i] != 0): return False; return True; # Driver Code if __name__=='__main__': expr1 = "-(a+b+c)" expr2 = "-a-b-c"; if (areSame(expr1, expr2)): print("Yes"); else: print("No"); # This code is contributed by rutvik_56.
linear
linear
# Python program to find index of closing # bracket for a given opening bracket. from collections import deque def getIndex(s, i): # If input is invalid. if s[i] != '[': return -1 # Create a deque to use it as a stack. d = deque() # Traverse through all elements # starting from i. for k in range(i, len(s)): # Pop a starting bracket # for every closing bracket if s[k] == ']': d.popleft() # Push all starting brackets elif s[k] == '[': d.append(s[i]) # If deque becomes empty if not d: return k return -1 # Driver code to test above method. def test(s, i): matching_index = getIndex(s, i) print(s + ", " + str(i) + ": " + str(matching_index)) def main(): test("[ABC[23]][89]", 0) # should be 8 test("[ABC[23]][89]", 4) # should be 7 test("[ABC[23]][89]", 9) # should be 12 test("[ABC[23]][89]", 1) # No matching bracket if __name__ == "__main__": main()
linear
linear
# Python3 program to check for # balanced brackets. # function to check if # brackets are balanced def areBracketsBalanced(expr): stack = [] # Traversing the Expression for char in expr: if char in ["(", "{", "["]: # Push the element in the stack stack.append(char) else: # IF current character is not opening # bracket, then it must be closing. # So stack cannot be empty at this point. if not stack: return False current_char = stack.pop() if current_char == '(': if char != ")": return False if current_char == '{': if char != "}": return False if current_char == '[': if char != "]": return False # Check Empty Stack if stack: return False return True # Driver Code if __name__ == "__main__": expr = "{()}[]" # Function call if areBracketsBalanced(expr): print("Balanced") else: print("Not Balanced") # This code is contributed by AnkitRai01 and improved # by Raju Pitta
linear
linear
# Python3 program to determine whether # given expression is balanced/ parenthesis # expression or not. # Function to check if two brackets are # matching or not. def isMatching(a, b): if ((a == '{' and b == '}') or (a == '[' and b == ']') or (a == '(' and b == ')') or a == 'X'): return 1 return 0 # Recursive function to check if given # expression is balanced or not. def isBalanced(s, ele, ind): # Base case. # If the string is balanced then all the # opening brackets had been popped and # stack should be empty after string is # traversed completely. if (ind == len(s)): if len(ele) == 0: return True else: return False # Variable to store element at the top # of the stack. # char topEle; # Variable to store result of # recursive call. # int res; # Case 1: When current element is an # opening bracket then push that # element in the stack. if (s[ind] == '{' or s[ind] == '(' or s[ind] == '['): ele.append(s[ind]) return isBalanced(s, ele, ind + 1) # Case 2: When current element is a closing # bracket then check for matching bracket # at the top of the stack. elif (s[ind] == '}' or s[ind] == ')' or s[ind] == ']'): # If stack is empty then there is no matching # opening bracket for current closing bracket # and the expression is not balanced. if (len(ele) == 0): return 0 topEle = ele[-1] ele.pop() # Check bracket is matching or not. if (isMatching(topEle, s[ind]) == 0): return 0 return isBalanced(s, ele, ind + 1) # Case 3: If current element is 'X' then check # for both the cases when 'X' could be opening # or closing bracket. elif (s[ind] == 'X'): tmp = ele tmp.append(s[ind]) res = isBalanced(s, tmp, ind + 1) if (res): return 1 if (len(ele) == 0): return 0 ele.pop() return isBalanced(s, ele, ind + 1) # Driver Code s = "{(X}[]" ele = [] # Check if the length of the given string is even if(len(s)%2==0): if (isBalanced(s, ele, 0)): print("Balanced") else: print("Not Balanced") # If the length is not even, then the string is not balanced else: print("Not Balanced") # This code is contributed by divyeshrabadiya07
linear
np
# Python program for an efficient solution to check if # a given array can represent Preorder traversal of # a Binary Search Tree INT_MIN = -2**32 def canRepresentBST(pre): # Create an empty stack s = [] # Initialize current root as minimum possible value root = INT_MIN # Traverse given array for value in pre: #NOTE:value is equal to pre[i] according to the #given algo # If we find a node who is on the right side # and smaller than root, return False if value < root : return False # If value(pre[i]) is in right subtree of stack top, # Keep removing items smaller than value # and make the last removed items as new root while(len(s) > 0 and s[-1] < value) : root = s.pop() # At this point either stack is empty or value # is smaller than root, push value s.append(value) return True # Driver Program pre1 = [40 , 30 , 35 , 80 , 100] print ("true" if canRepresentBST(pre1) == True else "false") pre2 = [40 , 30 , 35 , 20 , 80 , 100] print ("true" if canRepresentBST(pre2) == True else "false") # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
linear
linear
# Python3 program to illustrate if a given array can represent # a preorder traversal of a BST or not import sys preIndex = 0 # We are actually not building the tree def buildBST_helper(n, pre, Min, Max): global preIndex if (preIndex >= n): return if (Min <= pre[preIndex] and pre[preIndex] <= Max): # build node rootData = pre[preIndex] preIndex+=1 # build left subtree buildBST_helper(n, pre, Min, rootData) # build right subtree buildBST_helper(n, pre, rootData, Max) # else # return NULL def canRepresentBST(arr, N): global preIndex # code here Min, Max = sys.maxsize, -sys.maxsize buildBST_helper(N, arr, Min, Max) if preIndex == N: return True return False preorder1 = [ 2, 4, 3 ] """ 2 \ 4 / 3 """ n1 = len(preorder1) if (not canRepresentBST(preorder1, n1)): print("preorder1 can represent BST"); else: print("preorder1 can not represent BST :(") preorder2 = [ 5, 3, 4, 1, 6, 10 ] n2 = len(preorder2) """ 5 / \ 3 1 \ / \ 4 6 10 """ if (canRepresentBST(preorder2, n2)): print("preorder2 can represent BST") else: print("preorder2 can not represent BST :(") preorder3 = [ 5, 3, 4, 8, 6, 10 ] n3 = len(preorder3) """ 5 / \ 3 8 \ / \ 4 6 10 """ if (not canRepresentBST(preorder3, n3)): print("preorder3 can represent BST") else: print("preorder3 can not represent BST :(")
logn
linear
# Python program to find the difference b/w left and # right smaller element of every element in the array # Function to fill left smaller element for every # element of arr[0..n-1]. These values are filled # in SE[0..n-1] def leftsmaller(arr, n, SE): # create an empty stack sta = [] # Traverse all array elements # compute nearest smaller elements of every element for i in range(n): # Keep removing top element from S while the top # element is greater than or equal to arr[i] while(sta != [] and sta[len(sta)-1] >= arr[i]): sta.pop() # Store the smaller element of current element if(sta != []): SE[i]=sta[len(sta)-1] # If all elements in S were greater than arr[i] else: SE[i]=0 # push this element sta.append(arr[i]) # Function returns maximum difference b/w Left & # right smaller element def findMaxDiff(arr, n): ls=[0]*n # to store left smaller elements rs=[0]*n # to store right smaller elements # find left smaller elements of every element leftsmaller(arr, n, ls) # find right smaller element of every element # by sending reverse of array leftsmaller(arr[::-1], n, rs) # find maximum absolute difference b/w LS & RRS # In the reversed array right smaller for arr[i] is # stored at RRS[n-i-1] res = -1 for i in range(n): res = max(res, abs(ls[i] - rs[n-1-i])) # return maximum difference b/w LS & RRS return res # Driver Program if __name__=='__main__': arr = [2, 4, 8, 7, 7, 9, 3] print "Maximum Diff :", findMaxDiff(arr, len(arr)) #Contributed By: Harshit Sidhwa
linear
linear
# Python 3 Program to find Right smaller element of next # greater element # function find Next greater element def nextGreater(arr, n, next, order): S = [] # Traverse all array elements in reverse order # order == 'G' we compute next greater elements of # every element # order == 'S' we compute right smaller element of # every element for i in range(n-1,-1,-1): # Keep removing top element from S while the top # element is smaller than or equal to arr[i] (if Key is G) # element is greater than or equal to arr[i] (if order is S) while (S!=[] and (arr[S[len(S)-1]] <= arr[i] if (order=='G') else arr[S[len(S)-1]] >= arr[i] )): S.pop() # store the next greater element of current element if (S!=[]): next[i] = S[len(S)-1] # If all elements in S were smaller than arr[i] else: next[i] = -1 # Push this element S.append(i) # Function to find Right smaller element of next greater # element def nextSmallerOfNextGreater(arr, n): NG = [None]*n # stores indexes of next greater elements RS = [None]*n # stores indexes of right smaller elements # Find next greater element # Here G indicate next greater element nextGreater(arr, n, NG, 'G') # Find right smaller element # using same function nextGreater() # Here S indicate right smaller elements nextGreater(arr, n, RS, 'S') # If NG[i] == -1 then there is no smaller element # on right side. We can find Right smaller of next # greater by arr[RS[NG[i]]] for i in range(n): if (NG[i] != -1 and RS[NG[i]] != -1): print(arr[RS[NG[i]]],end=" ") else: print("-1",end=" ") # Driver program if __name__=="__main__": arr = [5, 1, 9, 2, 5, 1, 7] n = len(arr) nextSmallerOfNextGreater(arr, n) # this code is contributed by ChitraNayal
linear
linear
# Python program to calculate maximum sum with equal # stack sum. # Returns maximum possible equal sum of three stacks # with removal of top elements allowed def maxSum(stack1, stack2, stack3, n1, n2, n3): sum1, sum2, sum3 = 0, 0, 0 # Finding the initial sum of stack1. for i in range(n1): sum1 += stack1[i] # Finding the initial sum of stack2. for i in range(n2): sum2 += stack2[i] # Finding the initial sum of stack3. for i in range(n3): sum3 += stack3[i] # As given in question, first element is top # of stack.. top1, top2, top3 = 0, 0, 0 ans = 0 while (1): # If any stack is empty if (top1 == n1 or top2 == n2 or top3 == n3): return 0 # If sum of all three stack are equal. if (sum1 == sum2 and sum2 == sum3): return sum1 # Finding the stack with maximum sum and # removing its top element. if (sum1 >= sum2 and sum1 >= sum3): sum1 -= stack1[top1] top1=top1+1 else if (sum2 >= sum1 and sum2 >= sum3): sum2 -= stack2[top2] top2=top2+1 else if (sum3 >= sum2 and sum3 >= sum1): sum3 -= stack3[top3] top3=top3+1 # Driven Program stack1 = [ 3, 2, 1, 1, 1 ] stack2 = [ 4, 3, 2 ] stack3 = [ 1, 1, 4, 1 ] n1 = len(stack1) n2 = len(stack2) n3 = len(stack3) print (maxSum(stack1, stack2, stack3, n1, n2, n3)) #This code is contributed by Afzal Ansari
constant
linear
# Python3 program to count the number less # than N, whose all permutation is greater # than or equal to the number. # Return the count of the number having # all permutation greater than or equal # to the number. def countNumber(n): result = 0 # Pushing 1 to 9 because all number # from 1 to 9 have this property. s = [] for i in range(1, 10): if (i <= n): s.append(i) result += 1 # take a number from stack and add # a digit smaller than or equal to last digit # of it. while len(s) != 0: tp = s[-1] s.pop() for j in range(tp % 10, 10): x = tp * 10 + j if (x <= n): s.append(x) result += 1 return result # Driver Code if __name__ == '__main__': n = 15 print(countNumber(n)) # This code is contributed by PranchalK
linear
linear
# Python program to decode a string recursively # encoded as count followed substring # Returns decoded string for 'str' def decode(Str): integerstack = [] stringstack = [] temp = "" result = "" i = 0 # Traversing the string while i < len(Str): count = 0 # If number, convert it into number # and push it into integerstack. if (Str[i] >= '0' and Str[i] <='9'): while (Str[i] >= '0' and Str[i] <= '9'): count = count * 10 + ord(Str[i]) - ord('0') i += 1 i -= 1 integerstack.append(count) # If closing bracket ']', pop element until # '[' opening bracket is not found in the # character stack. elif (Str[i] == ']'): temp = "" count = 0 if (len(integerstack) != 0): count = integerstack[-1] integerstack.pop() while (len(stringstack) != 0 and stringstack[-1] !='[' ): temp = stringstack[-1] + temp stringstack.pop() if (len(stringstack) != 0 and stringstack[-1] == '['): stringstack.pop() # Repeating the popped string 'temo' count # number of times. for j in range(count): result = result + temp # Push it in the character stack. for j in range(len(result)): stringstack.append(result[j]) result = "" # If '[' opening bracket, push it into character stack. elif (Str[i] == '['): if (Str[i-1] >= '0' and Str[i-1] <= '9'): stringstack.append(Str[i]) else: stringstack.append(Str[i]) integerstack.append(1) else: stringstack.append(Str[i]) i += 1 # Pop all the element, make a string and return. while len(stringstack) != 0: result = stringstack[-1] + result stringstack.pop() return result # Driven code if __name__ == '__main__': Str = "3[b2[ca]]" print(decode(Str)) # This code is contributed by PranchalK.
linear
linear
def decodeString(s): st = [] for i in range(len(s)): # When ']' is encountered, we need to start decoding if s[i] == ']': temp = "" while len(st) > 0 and st[-1] != '[': # st.top() + temp makes sure that the # string won't be in reverse order eg, if # the stack contains 12[abc temp = c + "" => # temp = b + "c" => temp = a + "bc" temp = st[-1] + temp st.pop() # remove the '[' from the stack st.pop() num = "" # remove the digits from the stack while len(st) > 0 and ord(st[-1]) >= 48 and ord(st[-1]) <= 57: num = st[-1] + num st.pop() number = int(num) repeat = "" for j in range(number): repeat += temp for c in range(len(repeat)): if len(st) > 0: if repeat == st[-1]: break #otherwise this thingy starts appending the same decoded words st.append(repeat) else: st.append(s[i]) return st[0] Str = "3[b2[ca]]" print(decodeString(Str)) # This code is contributed by mukesh07. # And debugged by ivannakreshchenetska
linear
linear
# Python3 program for bubble sort # using stack # Function for bubble sort using Stack def bubbleSortStack(a, n): s1 = [] # Push all elements of array in 1st stack for i in range(n): s1.append(a[i]); s2 = [] for i in range(n): if (i % 2 == 0): while (len(s1) != 0): t = s1[-1] s1.pop(); if(len(s2) == 0): s2.append(t); else: # Swapping if (s2[-1] > t): temp = s2[-1] s2.pop(); s2.append(t); s2.append(temp); else: s2.append(t); # Tricky step a[n - 1 - i] = s2[-1] s2.pop(); else: while(len(s2) != 0): t = s2[-1] s2.pop(); if(len(s1) == 0): s1.append(t); else: if (s1[-1] > t): temp = s1[-1] s1.pop(); s1.append(t); s1.append(temp); else: s1.append(t); # Tricky step a[n - 1 - i] = s1[-1] s1.pop(); print("[", end = '') for i in range(n): print(a[i], end = ', ') print(']', end = '') # Driver code if __name__=='__main__': a = [ 15, 12, 44, 2, 5, 10 ] n = len(a) bubbleSortStack(a, n); # This code is contributed by rutvik_56.
linear
quadratic
# Python program to print all ancestors of a given key # A class to create a new tree node class newNode: def __init__(self, data): self.data = data self.left = self.right = None # Iterative Function to print all ancestors of a # given key def printAncestors(root, key): if (root == None): return # Create a stack to hold ancestors st = [] # Traverse the complete tree in postorder way till # we find the key while (1): # Traverse the left side. While traversing, push # the nodes into the stack so that their right # subtrees can be traversed later while (root and root.data != key): st.append(root) # push current node root = root.left # move to next node # If the node whose ancestors are to be printed # is found, then break the while loop. if (root and root.data == key): break # Check if right sub-tree exists for the node at top # If not then pop that node because we don't need # this node any more. if (st[-1].right == None): root = st[-1] st.pop() # If the popped node is right child of top, # then remove the top as well. Left child of # the top must have processed before. while (len(st) != 0 and st[-1].right == root): root = st[-1] st.pop() # if stack is not empty then simply set the root # as right child of top and start traversing right # sub-tree. root = None if len(st) == 0 else st[-1].right # If stack is not empty, print contents of stack # Here assumption is that the key is there in tree while (len(st) != 0): print(st[-1].data,end = " ") st.pop() # Driver code if __name__ == '__main__': # Let us construct a binary tree root = newNode(1) root.left = newNode(2) root.right = newNode(7) root.left.left = newNode(3) root.left.right = newNode(5) root.right.left = newNode(8) root.right.right = newNode(9) root.left.left.left = newNode(4) root.left.right.right = newNode(6) root.right.right.left = newNode(10) key = 6 printAncestors(root, key) # This code is contributed by PranchalK.
linear
linear