url
stringlengths 6
1.61k
| fetch_time
int64 1,368,856,904B
1,726,893,854B
| content_mime_type
stringclasses 3
values | warc_filename
stringlengths 108
138
| warc_record_offset
int32 9.6k
1.74B
| warc_record_length
int32 664
793k
| text
stringlengths 45
1.04M
| token_count
int32 22
711k
| char_count
int32 45
1.04M
| metadata
stringlengths 439
443
| score
float64 2.52
5.09
| int_score
int64 3
5
| crawl
stringclasses 93
values | snapshot_type
stringclasses 2
values | language
stringclasses 1
value | language_score
float64 0.06
1
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://infinitylearn.com/surge/maths/class-10/trigonometry/306090-triangle-in-trigonometry/
| 1,726,450,437,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-38/segments/1725700651668.29/warc/CC-MAIN-20240916012328-20240916042328-00836.warc.gz
| 281,471,344
| 24,925
|
30-60-90 Triangle in Trigonometry
# 30-60-90 Triangle in Trigonometry
• 30-60-90 Triangle
• Summary
• What’s Next?
In the previous segment, we learnt how to find the value of trigonometric functions. In this segment, we will learn about the 30-60-90 triangle and its importance in trigonometry.
Fill Out the Form for Expert Academic Guidance!
+91
Live ClassesBooksTest SeriesSelf Learning
Verify OTP Code (required)
What is a 30-60-90 triangle?
A 30-60-90 triangle is a triangle whose angles are 30°, 60°, and 90°.
The sides of this triangle are in a specific ratio of
Thus, if the side opposite to 30° measures 1 unit, then the side opposite to 60° will be units and the side opposite the right angle will be 2 units.
30°
60°
√3 units
2 units
1 unit
30-60-90 triangle
So, the side opposite to the larger angle in the triangle is larger than the side opposite to the smaller angle.
For example,
Consider △ABC.
∠B is a right angle, m∠A = 30°, and m∠C = 60°.
The three sides BC, AB, and AC are in the ratio of
A
B
C
30°
60°
√3a
2a
a
Triangle ABC
If BC = ‘a’, then AB = and AC = ‘2a’. That is, AC > AB > BC.
Summary
30-60-90 Triangle A triangle whose angles are 30°, 60°, and 90° Ratio of the sides are
What’s next?
In the next segment of Class 10 Maths, we will learn the trigonometric values of a 30° angle.
## Related content
What is Trigonometry?Video URL: https://dontmemorise.com/courses/introduction-to-trigonometry/lessons/introduction-322/topic/what-is-trigonometry/ What is the Reference Angle?Video URL: https://dontmemorise.com/courses/introduction-to-trigonometry/lessons/introduction-322/topic/what-is-the-reference-angle/ What is a Function? BasicsVideo URL: https://dontmemorise.com/courses/introduction-to-trigonometry/lessons/trigonometric-ratios/topic/what-is-a-function-basics/ What is the Sine Function?Video URL: https://dontmemorise.com/courses/introduction-to-trigonometry/lessons/trigonometric-ratios/topic/what-is-the-sine-function/ Which are the Three Functions in Trigonometry?Video URL: https://dontmemorise.com/courses/introduction-to-trigonometry/lessons/trigonometric-ratios/topic/which-are-the-three-functions-in-trigonometry/ What is the Unit Circle? Part 1Video URL: https://dontmemorise.com/courses/introduction-to-trigonometry/lessons/trigonometric-ratios/topic/what-is-the-unit-circle-part-1/ What is the Unit Circle? Part 2Video URL: https://dontmemorise.com/courses/introduction-to-trigonometry/lessons/trigonometric-ratios/topic/what-is-the-unit-circle-part-2/ Which are the Six Functions in Trigonometry?Video URL: https://dontmemorise.com/courses/introduction-to-trigonometry/lessons/trigonometric-ratios/topic/which-are-the-six-functions-in-trigonometry/ How do we Find the Value of all Functions Given the Value of Just One?Video URL: https://dontmemorise.com/courses/introduction-to-trigonometry/lessons/trigonometric-ratios/topic/how-do-we-find-the-value-of-all-functions-given-the-value-of-just-one/ Which are the Different Identities in Trigonometry?
| 826
| 3,036
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.46875
| 4
|
CC-MAIN-2024-38
|
latest
|
en
| 0.769672
|
http://mathhelpforum.com/algebra/216035-subtracting-fractions-print.html
| 1,524,320,089,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2018-17/segments/1524125945222.55/warc/CC-MAIN-20180421125711-20180421145711-00125.warc.gz
| 190,103,064
| 3,693
|
# Subtracting Fractions
• Mar 30th 2013, 05:30 PM
dsDoan
Subtracting Fractions
"Find the difference and simplify, if necessary."
If you can make out my work and identify my error, that would be great. The initial problem is in the top right, in Arial font. My work begins at the top left, with the equation rewritten, and continues down and to the right. If you cannot make out my work, the correct steps would be great, as well.
Also, how are symbols for equations entered directly in the post text? I don't see any format options for them.
• Mar 30th 2013, 06:44 PM
Soroban
Re: Subtracting Fractions
Hello, dsDoan!
Quote:
$\displaystyle \frac{-7x - 49}{x^2 + 2x-35} - \frac{x+7}{5-x}$
We have: .$\displaystyle \frac{-7x-49}{(x-5)(x+7)} - \frac{x+7}{{\color{red}-}(x-5)} \;=\;\frac{-7x-49}{(x-5)(x+7)} \;{\color{red}+}\; \frac{x+7}{x-5}$
. . . . . .$\displaystyle =\;\;\frac{-7x-49}{(x-5)(x+78)} + \frac{x+7}{x-5}\cdot {\color{blue}\frac{x+7}{x+7}} \;\;=\;\;\frac{-7x-49}{(x-5)(x+7)} + \frac{(x+7)^2}{(x-5)(x+7)}$
. . . . . .$\displaystyle =\;\;\frac{-7x-49 + (x+7)^2}{(x-5)(x+7)} \;\;=\;\; \frac{-7x-49 + x^2 + 14x + 49}{(x-5)(x+7)}$
. . . . . .$\displaystyle =\;\;\frac{x^2+7x}{(x-5)(x+7)} \;\;=\;\;\frac{x(x+7)}{(x-5)(x+7)} \;\;=\;\;\frac{x}{x-5}$
• Mar 30th 2013, 08:03 PM
dsDoan
Re: Subtracting Fractions
My mistake was with a negative sign from the start, so I'd like to get that issue straightened out:
$\displaystyle -\frac{x+7}{5-x}\;=\; +\frac{x+7}{x-5}$
Going from step one to step two, a negative one has been distributed to the denominator. Why does this make the fraction positive?
• Mar 30th 2013, 10:02 PM
ibdutt
Re: Subtracting Fractions
we can also do it as shown in the attachment.Attachment 27744
• Mar 31st 2013, 06:49 AM
dsDoan
Re: Subtracting Fractions
Quote:
Originally Posted by ibdutt
we can also do it as shown in the attachment.Attachment 27744
This is the method I originally used when starting this section, but cancelling early in the equation doesn't always lead to two common denominators so I discontinued this approach. If I realize, early on, that cancelling early will result in common denominators it would save time, so I'll keep this in mind.
I would still like to clear up my issue with the negative. It seems like such a trivial issue that will be an ongoing problem if I don't get it sorted now.
• Mar 31st 2013, 08:46 PM
ibdutt
Re: Subtracting Fractions
There are two ways to look at it. One is that we multiply and divide by negative one OR alternatively be tale negative one common. In both cases we will have negative into negative and that is positive.
• Apr 2nd 2013, 03:31 PM
dsDoan
Re: Subtracting Fractions
Quote:
Originally Posted by ibdutt
There are two ways to look at it. One is that we multiply and divide by negative one OR alternatively be tale negative one common. In both cases we will have negative into negative and that is positive.
Can you explain this by applying it to the example I posted in post #3?
| 972
| 2,985
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.28125
| 4
|
CC-MAIN-2018-17
|
latest
|
en
| 0.792208
|
http://oeis.org/A113694
| 1,561,486,484,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2019-26/segments/1560627999876.81/warc/CC-MAIN-20190625172832-20190625194832-00119.warc.gz
| 122,904,857
| 3,506
|
This site is supported by donations to The OEIS Foundation.
Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113694 Decimal expansion of 10/44955. 3
0, 0, 0, 2, 2, 2, 4, 4, 4, 6, 6, 6, 8, 8, 9, 1, 1, 1, 3, 3, 3, 5, 5, 5, 7, 7, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET 0,4 COMMENTS We can get this sequence from 10/44955 or from Sqrt[128128128128128128128128128128128128128128128128128128] =24Sqrt[222444666889111333555778000222444666889111333555778], where Sqrt is the square root. LINKS MATHEMATICA n = 17; Sqrt[128*Apply[Plus, Table[(10^3)^k, {k, 0, n}]]] Join[{0, 0, 0}, RealDigits[10/44955, 10, 120][[1]]] (* Harvey P. Dale, May 13 2012 *) CROSSREFS Cf. A021895, A021085. Sequence in context: A302402 A079438 A123050 * A086159 A029048 A086160 Adjacent sequences: A113691 A113692 A113693 * A113695 A113696 A113697 KEYWORD easy,cons,nonn AUTHOR Daisuke Minematsu and Ryohei Miyadera, Jan 17 2006 STATUS approved
Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.
Last modified June 25 12:55 EDT 2019. Contains 324352 sequences. (Running on oeis4.)
| 471
| 1,309
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.75
| 3
|
CC-MAIN-2019-26
|
latest
|
en
| 0.555548
|
https://essaypassusa.com/how-much-will-low-ability-workers-be-paid-explain-4/
| 1,656,851,849,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2022-27/segments/1656104240553.67/warc/CC-MAIN-20220703104037-20220703134037-00363.warc.gz
| 289,358,447
| 24,023
|
# How much will low-ability workers be paid? Explain.
Assume there are 2 types of workers: high-ability workers and low-ability workers. The proportion o Show more Assume there are 2 types of workers: high-ability workers and low-ability workers. The proportion of workers that are high-ability is (theta) so the proportion that are low-ability is (1-). Over their career the value of the output produced by a high-ability workers is wh. The value of the output produced by a low-ability worker is w. Assume that wh > w. Assume that the market for labor is perfectly competitive. If employers can observe which workers are high-ability and which workers are low-ability how much will high-ability workers be paid over the course of their career? How much will low-ability workers be paid? Explain. Explain the following: If employers cannot tell which workers are high-ability and which workers are low-ability a risk-neutral employer with the objective of maximizing expected profit will pay all workers the same and the wage that they pay will be: w o = wh + (1-)w Show less
## “Get 15% discount on your first 3 orders with us” Use the following coupon FIRST15
Posted in Uncategorized
| 263
| 1,189
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.765625
| 3
|
CC-MAIN-2022-27
|
latest
|
en
| 0.965487
|
https://womark.cz/79384/ntPrO.html
| 1,618,988,542,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2021-17/segments/1618039526421.82/warc/CC-MAIN-20210421065303-20210421095303-00243.warc.gz
| 666,294,327
| 7,840
|
### Flotation Material Balancing Excel Solver: Mass
2020-6-25 Design material balance purpose is to find values for the unknown flow parameters. Operating flotation circuits material balances contains large amount of data and helps produce a picture of the state of an operating plant. Here is a procedure of how to do balancing for an operating flotation circuit using Microsoft Excel Solver on Excel
get price
### calculations on mass balance on ball mill circuit
Material balance in mineral processing nptel. Key words: Material balance, ball mill, hydro cyclone, flotation. Preamble In this lecture basics of material balance in mineral processing is discussed. Material balance. It is based To transport solids in the circuit n.
get price
### Ball Mill mass balance in steady state Grinding
2020-7-15 A ball mill is operated in closed circuit with sieve bend under steady state conditions as shown in the attached diagram.The % solids in each stream are indicated.The water addition to the sump is 100 cubic metres per hr and to the mill feed is 67cubic metres per hr. Calculate mass flow of sol
get price
### (PDF) Material Balance Calculations Using the Excel
Material Balance Calculations Using the Excel Spreadsheet
get price
### Material Balance Calculations Using the Excel Spreadsheet
2017-4-11 Material Balance Calculations Using the Excel Spreadsheet Introduction Material balance is a fundamental petroleum reservoir engineering tool that can be used to provide an understanding of a reservoir and the influence of any connecting aquifer. The basic requirements for the application of material balance to a reservoir
get price
### Raw Material In Excel Format CiteHR
If any body have detailed format of raw material stock in excel format including, opening balance, inward, consumption and final stock plz. send 23rd November 2009
get price
### Exact Circuit Analysis with Microsoft Excel Maxim
2020-7-5 Simple RC circuit. The equation for Z in is simply the sum of the impedances of the individual components in series. The derivation of the equations for Z in is shown in Figure 1. Now, to set this up in Excel we build a spreadsheet with entries for the R, the C, and a frequency sweep as shown in Figure 2. Figure 2. Excel spreadsheet calculates
get price
### AMIT 135: Lesson 2 Circuit Mass Balancing Mining
Consider the balance around a classifying cyclone: Thus, the volumetric yield to the underflow stream can be obtained from the following expression: Formulas for figuring the balance around a classifying cyclone [diagram 135-2-1] Slurry Solids Concentration by Weight. A
get price
### Daily Stock Maintain Template in Excel Sheet
2020-7-5 Practicing out policies to decrease operational cost is a powerful application for the prosperity of business. To maintain stock is essential in every business, whether; its product orient or restaurant business. Daily sheet prepares in some business or updated on a regular basis. Stock Maintain Template prepares in an excelContinue Reading
get price
### Chapter 4 Material Balances Note
2013-8-28 CBE2124, Levicky 3 Differential balances: The terms in a differential material balance are expressed as rates; that is, rate of input (e.g. moles/s, kg/s), rate of generation, rate of output, and rate of accumulation. Differential balances are applied to continuous processes. Integral balances: These usually apply to batch processes.. The terms in a batch mater
get price
### Chapter 4 Material Balances Note
2013-8-28 CBE2124, Levicky 3 Differential balances: The terms in a differential material balance are expressed as rates; that is, rate of input (e.g. moles/s, kg/s), rate of generation, rate of output, and rate of accumulation. Differential balances are applied to continuous processes. Integral balances: These usually apply to batch processes.. The terms in a batch mater
get price
### Pulp and Paper Focus on Energy Focus on Energy
2015-8-20 The intent of the Guidebook binder format is to provide a “living” document that can be updated continually with new Best Practices and Case Studies provided by the Focus on Energy program (and others) with direct input from Pulp and Paper industrial leaders.
get price
### Construction Design The Balance Small Business
The Balance Small Business Menu Go. Starting Your Business. Small Business Obtaining Financing Entrepreneurship 101 Basics FreelancingConsulting Operations. Learn the Different Types of Decking Material and What's Best to Use. Find out If Radiant Floor Heating Is a Cost Effective Solution.
get price
Control and Manage Your BOMs Accurately. Regardless of whether you use spreadsheets or a cloud-based bill of materials software solution like Arena Product Lifecycle Management, your BOMs must contain complete and accurate information in order to be
get price
### Types of Bills of Materials (BOMs) in Manufacturing
2019-1-21 The exact format for a BOM will vary depending on the nature of the product being manufactured, but it is typical for two distinctly different types of BOM to be associated with each product—one used for the engineering phase when a product is first being developed, and another type of BOM used when the product rolls out to mass production for shipping to customers.
get price
### Material PlanningLogistics Manager Resume Fort
Jan 2009-September 2009, Consulting for Confidential Feb 2008-Jan 2009, Material PlanningLogistics Manager 793 Fort Mill Highway Fort Mill, South Carolina. Planned and purchased imported and domestic forgings for manufacturing. Emphasis on Just-in-Time inventory using
get price
### Papermaking OVERVIEW AND INTRODUCTION 1.
2013-1-15 Papermaking . OVERVIEW AND INTRODUCTION . 1. Introduction and Overview . Papermachine quick facts: 10m wide 100m long 100 km/hr \$250,000,000++
get price
### Hydrocyclone DesignSizing Parameters
2020-6-25 Here is a hydrocyclone sizing calculator with immediate access to all design equations needed for your hydrocyclone design calculation in an online XLS spreadsheet format. Based on first principles of hydrocyclone theory and equations, this quasi design software lets you enter all cyclone design parameters such as cut size, D50, D60 (efficiency calculation), graphs your results. Calculate
get price
### Selection Learnaboutgmp: Accredited Online Life
for a company. Want to roll out our training in your company? Book a demo today
get price
Bill Gates Book Recommendations Python Programming Book Pdf Introduction To Java Programming And Data Structures, Comprehensive Version, Loose Leaf Edition 12th National Suicide: Military Aid To The Soviet Union Basics Of Web Development Edexcel Igcse Chemistry Second Edition Basic Knowledge Of Computer Manual Photoshop 2020 Pdf L'immobilier Pour Les Nuls C Plus Plus
get price
### Papermaking OVERVIEW AND INTRODUCTION 1.
2013-1-15 Papermaking . OVERVIEW AND INTRODUCTION . 1. Introduction and Overview . Papermachine quick facts: 10m wide 100m long 100 km/hr \$250,000,000++
get price
### Construction Design The Balance Small Business
The Balance Small Business Menu Go. Starting Your Business. Small Business Obtaining Financing Entrepreneurship 101 Basics FreelancingConsulting Operations. Learn the Different Types of Decking Material and What's Best to Use. Find out If Radiant Floor Heating Is a Cost Effective Solution.
get price
### Selection Learnaboutgmp: Accredited Online Life
for a company. Want to roll out our training in your company? Book a demo today
get price
### Control Valve Technical Specification ICEweb
2019-5-10 circuit diagrams, section drawings, part lists and materials. 1.1.5 Installation, operation, and maintenance manuals, including instructions for any sub-suppliers. 1.1.6 Recommended spare parts lists. 1.2 Equipment and services furnished by the Buyer shall include: 1.2.1 Receiving, unloading, storage, and installation of all equipment supplied
get price
### Material PlanningLogistics Manager Resume Fort
Jan 2009-September 2009, Consulting for Confidential Feb 2008-Jan 2009, Material PlanningLogistics Manager 793 Fort Mill Highway Fort Mill, South Carolina. Planned and purchased imported and domestic forgings for manufacturing. Emphasis on Just-in-Time inventory using
get price
### Complaint Letter Sample / example / template / format
Complaint Letter example 2. Suppose you have received 1,000 Cartoons of Tube lights but 100 cartoons of them are damaged. Write a complaint letter to the supplier stating the fact and ask for a
get price
### BACK TO BASICS ESTIMATING SHEET METAL
2014-3-11 handling fees, storage rental fees, rare material surcharges, handling fees, packaging fees, sales taxes and financing fees can all be hidden or spelled out by the service provider. In most cases, these fees are part of a mark-up that is added on the service cost. In some cases, it makes sense to “make” the service in-house.
get price
### PmplP PROFILES kviconline.gov
(mini limestone mill) (agro based processing industry ) 355000 view; 41 palm fiber miniature circuit breakers (rural engg. and bio-tech industry ) 1650000 view; 271 multipurpose computer centre/cyber café (rural engg. and bio-tech industry
get price
| 2,013
| 9,241
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.09375
| 3
|
CC-MAIN-2021-17
|
latest
|
en
| 0.80219
|
http://www.ck12.org/probability/Numerical-Computations/
| 1,443,966,232,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2015-40/segments/1443736673632.3/warc/CC-MAIN-20151001215753-00088-ip-10-137-6-227.ec2.internal.warc.gz
| 419,249,828
| 15,570
|
<meta http-equiv="refresh" content="1; url=/nojavascript/">
# Numerical Computations
## Practice working with probability in story problems
Levels are CK-12's student achievement levels.
Basic Students matched to this level have a partial mastery of prerequisite knowledge and skills fundamental for proficient work.
At Grade (Proficient) Students matched to this level have demonstrated competency over challenging subject matter, including subject matter knowledge, application of such knowledge to real-world situations, and analytical skills appropriate to subject matter.
Advanced Students matched to this level are ready for material that requires superior performance and mastery.
## Finding the Probability of an Event
This lesson covers how to determine the probability of an event with a known sample space.
1
## Write and Compare Probabilities as Fractions, Decimals and Percents
Learn to write probabilities as fractions, decimals and percent.
0
• Practice
0%
0
## Finding the Probability of an Event Stop and Jot
Strengthen ability to analyze word meaning and symbolic or mathematical notation from context and introduce students to unfamiliar vocabulary or notation. Further solidify understanding by defining new vocabulary words and notation as well as generating personal examples of words, concepts, and notation usage.
0
## Write and Compare Probabilities as Fractions, Decimals and Percents
Summarize the main idea of a reading, create visual aids, and come up with new questions using a Four Square Concept Matrix.
0
• Real World Application
## Play Ball!
You can calculate batting averages with your knowledge of probability.
0
• Real World Application
| 318
| 1,693
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.21875
| 3
|
CC-MAIN-2015-40
|
longest
|
en
| 0.890581
|
https://www.ato.gov.au/forms-and-instructions/research-and-development-tax-concession-2009-schedule-and-instructions/list-of-tables
| 1,713,731,273,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-18/segments/1712296817819.93/warc/CC-MAIN-20240421194551-20240421224551-00823.warc.gz
| 589,669,186
| 107,565
|
Search Suggestion:
# List of tables
Last updated 11 August 2020
Table 1: Australian owned R&D incremental tax concession calculation - s73RA and 73RC steps
Row
Company
A Y0
Reduced expenditure on Australian owned R&D
D, table 2.1
B Y-1
Reduced expenditure on Australian owned R&D
D, table 2.2
C Y-2
Reduced expenditure on Australian owned R&D
D, table 2.3
D Y-3
Reduced expenditure on Australian owned R&D
D, table 2.4
E Total of columns B, C and D
D, table 3
F Column E divided by 3
E, table 3
G Column A minus column F
G, table 3
H Zero if column G is negative
H, table 3
a
-
-
-
-
-
-
-
-
-
b
-
-
-
-
-
-
-
-
-
c
-
-
-
-
-
-
-
-
-
d
-
-
-
-
-
-
-
-
-
e
Group members - totals from additional table
-
-
-
-
-
-
-
-
f
Total of eligible company and group
-
-
-
-
-
-
-
-
Table 2.1: Calculation of the reduced expenditure on Australian owned R&D for the Y0 year of income
Row
Calculation element
Company 1
Company 2
Company 3
A
Incremental expenditure (step 2.1.1)
\$
\$
\$
B
Adjustments to incremental expenditure (step 2.1.2)
Receipt of grants - initial clawback amount attributable to incremental expenditure (step 2.1.3)
\$
\$
\$
C
Reduced expenditure on Australian owned R&D (step 2.1.4)
\$
\$
\$
D
(A + BC) (Write 0 if negative.)
\$
\$
\$
Transfer the amount at D for each company to:
• table 1 or additional table (if used) of these instructions, for each relevant company for the year of income
• item 1 in part D of the Research and development tax concession schedule 2009 or additional table (if used) for the company, for the year of income, and
• F in table 3 of these instructions.
Note: If you are grouped with more than three companies, you will need to complete additional copies of tables 2.1 to 2.4.
Table 2.2: Calculation of the reduced expenditure on Australian owned R&D for the Y-1 year of income
Row
Calculation element
Company 1
Company 2
Company 3
A
Incremental expenditure (step 2.1.1)
\$
\$
\$
B
Adjustments to incremental expenditure (step 2.1.2)
\$
\$
\$
C
Receipt of grants - initial clawback amount attributable to incremental expenditure (step 2.1.3)
\$
\$
\$
D
Reduced expenditure on Australian owned R&D (step 2.1.4)
(A + B − C) (Write 0 if negative.)
\$
\$
\$
Transfer the amount at D for each company to:
• table 1 or additional table (if used) of these instructions, for each relevant company for the year of income
• item 1 in part D of the Research and development tax concession schedule 2009 or additional table (if used) for the company, for the year of income, and
• A in table 3 of these instructions.
Table 2.3: Calculation of the reduced expenditure on Australian owned R&D for the Y-2 year of income
Row
Calculation element
Company 1
Company 2
Company 3
A
Incremental expenditure (step 2.1.1)
\$
\$
\$
B
Adjustments to incremental expenditure (step 2.1.2)
\$
\$
\$
C
Receipt of grants - initial clawback amount attributable to incremental expenditure (step 2.1.3)
\$
\$
\$
D
Reduced expenditure on Australian owned R&D (step 2.1.4)
(A + BC) (Write 0 if negative.)
\$
\$
\$
Transfer the amount at D for each company to:
• table 1 or additional table (if used) of these instructions, for each relevant company for the year of income
• item 1 in part D of the Research and development tax concession schedule 2009 or additional table (if used) for the company, for the year of income, and
• B in table 3 of these instructions.
Table 2.4: Calculation of the reduced expenditure on Australian owned R&D for the Y-3 year of income
Row
Calculation element
Company1
Company 2
Company 3
A
Incremental expenditure (step 2.1.1)
\$
\$
\$
B
Adjustments to incremental expenditure (step 2.1.2)
\$
\$
\$
C
Receipt of grants - initial clawback amount attributable to incremental expenditure (step 2.1.3)
\$
\$
\$
D
Reduced expenditure on Australian owned R&D (step 2.1.4)
(A + BC) (Write 0 if negative.)
\$
\$
\$
Transfer the amount at D for each company to:
• table 1 or additional table (if used) of these instructions, for each relevant company for the year of income
• item 1 in part D of the Research and development tax concession schedule 2009 or additional table (if used) for the company, for the year of income, and
• C in table 3 of these instructions.
Table 3: Calculation of increase in expenditure on Australian owned R&D
Row
Calculation element
Company 1
Company 2
Company 3
A
Reduced expenditure on Australian owned R&D by the eligible company in its group membership period for the Y-1 year of income (from D in table 2.2)
\$
\$
\$
B
Reduced expenditure on Australian owned R&D by the eligible company in its group membership period for the Y-2 year of income (from D in table 2.3)
\$
\$
\$
C
Reduced expenditure on Australian owned R&D by the eligible company in its group membership period for the Y-3 year of income (from D in table 2.4)
\$
\$
\$
D
Total (A + B + C)
\$
\$
\$
E
Average reduced incremental expenditure on Australian owned R&D for theY-1, Y-2 and Y-3 years
(D ÷ 3)
\$
\$
\$
F
Reduced expenditure on Australian owned R&D by the eligible company in its group membership period for the Y-0 year of income (from D in table 2.1)
\$
\$
\$
G
Change in expenditure on Australian owned R&D
(FE)
\$
\$
\$
H
If G above is a negative number, write 0 at H. Otherwise, this is equal to the amount shown at G. This is the increase in expenditure on Australian owned R&D.
\$
\$
\$
Transfer the amount at D for each company to:
• column E in table 1 for each company.
Transfer the amount at E for each company to:
• column F in table 1 for each company.
Transfer the amount at G for each company to:
• column G in table 1 for each company.
Transfer the amount at H for each company to:
• column H in table 1 for each company, and
• A of table 15 for the claimant company only.
If the result at H is zero, leave M item 3 in part D of the Research and development tax concession schedule 2009 blank (you are ineligible for the Australian owned R&D incremental tax concession), and print X in the No box at the top of part D of the Research and development tax concession schedule 2009.
Note: If you are grouped with more than three companies, you will need to complete additional copies of table 3.
Table 4: Foreign owned R&D incremental tax concession calculation - s73RB and 73RD steps
Row
Campany
A Y0
E, table 5
B Y-1
A, table 6
C Y-2
B, table 6
D Y-3
C, table 6
E Total of columns B, C and D
D, table 6
F Column E divided by 3
E, table 6
G Column A minus column F
G, table 6
H Zero if column G is negative
H, table 6
a
-
-
-
-
-
-
-
-
-
b
-
-
-
-
-
-
-
-
-
c
-
-
-
-
-
-
-
-
-
d
-
-
-
-
-
-
-
-
-
e
Group members - totals from additional table
-
-
-
-
-
-
-
-
f
Total of eligible company and group
-
-
-
-
-
-
-
-
Table 5: Calculation of the reduced expenditure on foreign owned R&D for Y0 year of income
Row
Calculation element
Company 1
Company 2
Company 3
A
Foreign owned R&D expenditure from part A of the Research and development tax concession schedule 2009 (step 3.1.1)
\$
\$
\$
B
Adjustments to foreign owned R&D expenditure (step 3.1.2)
\$
\$
\$
C
Expenditure on foreign owned R&D (A + B)
\$
\$
\$
D
Receipt of grants - initial clawback amount attributable to incremental expenditure (step 3.1.3)
\$
\$
\$
E
Reduced expenditure on foreign owned R&D (step 3.1.4)
(CD) (Write 0 if negative.)
\$
\$
\$
Transfer the amount at E for each company to:
Note: If you are grouped with more than three companies, you will need to complete additional copies of table 5. Also, if you did not have a nil expenditure year for the Y-1, Y-2 and Y-3 years, you will need to use additional copies of this table when completing step 3.3.2.
Table 6: Total reduced notional expenditure on foreign owned R&D
Row
Calculation element
Company 1
Company 2
Company 3
A
Reduced notional expenditure on foreign owned R&D by the eligible company in its group membership period for the Y-1 year of income
\$
\$
\$
B
Reduced notional expenditure on foreign owned R&D by the eligible company in its group membership period for the Y-2 year of income
\$
\$
\$
C
Reduced notional expenditure on foreign owned R&D by the eligible company in its group membership period for the Y-3 year of income
\$
\$
\$
D
Total reduced notional expenditure on foreign owned R&D
(A + B + C)
\$
\$
\$
E
Average reduced notional expenditure on foreign owned R&D for the Y-1, Y-2 and Y-3 years
(D ÷ 3)
\$
\$
\$
F
Reduced expenditure on foreign owned R&D by the eligible company in its group membership period for the Y-0 year of income (E in table 5)
\$
\$
\$
G
Change in expenditure on foreign owned R&D
(F - E)
\$
\$
\$
H
If G above is a negative number, write 0 at H. Otherwise, H is equal to the amount shown at G. This is the increase in expenditure on foreign owned R&D.
\$
\$
\$
Transfer the amount at D for each company to:
• column E in table 4 for the relevant company.
Transfer the amount at E for each company to:
• column F in table 4 for the relevant company.
Transfer the amount at G for each company to:
• column G in table 4 for the relevant company.
Transfer the amount at H for each company to:
• column H in table 4 for the relevant company
• A in table 17 for the claimant company only.
If the result at H is zero, leave K item 2 in part E of the Research and development tax concession schedule 2009 blank (you are ineligible for the foreign owned R&D incremental tax concession), and print X in the No box at the top of part E of the Research and development tax concession schedule 2009.
Note: If you are grouped with more than three companies, you will need to complete additional copies of table 6.
Table 7: Calculation of adjusted increase in expenditure on R&D by the group [s73RE]
Adjustment balance calculation [s73V] – A Group R&D spend
Y-1
Adjustment balance calculation [s73V] – B Group R&D spend
Y-2
Adjustment balance calculation [s73V] – C Group R&D spend
Y-3
Adjustment balance calculation [s73V] – D AA0
Adjustment balance calculation [s73V] – E AA-1
Adjustment balance calculation [s73V] – F RA-1
s73RE calculation – H Adjusted increase in expenditure by the group
-
C, table 8.1
C, table 8.2
C, table 8.3
D, table 9
D, table 10
D, table 11
C, table 12 or
F, table 13
E, table 14
-
-
-
-
-
-
-
-
-
Table 8.1: R&D spend Y-1
Row
Calculation element
Amount
A
Group Y-1 from table 1(row f of column B)
\$
B
Group Y-1 from table 4 (row f of column B)
\$
C
R&D spend Y-1 (A + B)
Transfer the result at C to:
• column A in table 7
• C in table 9
• E in table 13.
Table 8.2: R&D spend Y-2
Row
Calculation element
Amount
A
Group Y-2 from table 1 (row f of column C)
\$
B
Group Y-2 from table 4 (row f of column C)
\$
C
R&D spend Y-2 (A + B)
Transfer the result at C to:
• column B in table 7 above
• A in table 9
• C in table 10
• A in table 11.
\$
Table 8.3: R&D spend Y-3
Row
Calculation element
Amount
A
Group Y-3 from table 1 (row f of column D)
\$
B
Group Y-3 from table 4 (row f of column D)
\$
C
R&D spend Y-3 (A + B)
Transfer the result at C to:
• column C in table 7
• A in table 10
• B in table 11.
Table 9: Calculation of adjustment amount for Y0 (AA0)
Row
Calculation element
Amount
A
R&D spend Y-2 (from C in table 8.2)
\$
B
A 0.8
\$
C
R&D spend Y-1 (from C in table 8.1)
\$
D
AA0 (B - C) (Write 0 if negative.)
\$
Transfer the amount at D to:
• column D, AA0, in table 7
• A in table 12
• B in table 13.
Table 10: Calculation of adjustment amount for Y-1 (AA-1)
Row
Calculation element
Amount
A
R&D spend Y-3 (from C in table 8.3)
\$
B
A × 0.8
\$
C
R&D spend Y-2 (from C in table 8.2)
\$
D
AA-1 (B - C) (Write 0 if negative.)
\$
Transfer the amount at D to:
• column E in table 7
• B in table 12
• C in table 13.
Table 11: Calculation of running average for Y-1 (RA-1)
Row
Calculation element
Amount
A
The R&D spend Y-2 (from C in table 8.2)
\$
B
The R&D spend Y-3 (from C in table 8.3)
\$
C
Total (A + B)
\$
D
RA-1 (C divided by 2)
\$
Transfer the result from D to:
• column F in table 7
• A in table 13.
Table 12: Calculation of the adjustment balance
Row
Calculation elements
Amout
A
Write AA0 (from column D in table 7)
\$
B
Write AA-1 (from column E in table 7)
\$
C
\$
Transfer the amount at C to:
• column G in table 7
• D in table 14.
Table 13: Calculation of the adjustment balance
Row
Calculation element
Amount
A
RA-1 (from column F in table 7)
\$
B
Write AA0 (from column D in table 7)
\$
C
Write AA-1 (from column E in table 7)
\$
D
Subtotal (A + B + C)
\$
E
R&D spend Y-1 (from Cin table 8.1)
\$
F
Adjustment balance (D − E) (Write 0 if negative.)
\$
Transfer the amount at F to:
• column G in table 7, and
• D in table 14.
Table 14: Calculation of the adjusted increase in expenditure on R&D by the group
Row
Calculation element
Amount
A
Row f of column G in table 1
\$
B
Row f of column G in table 4
\$
C
A + B (Write 0 if negative.)
\$
D
Adjustment balance (from column G in table 7)
\$
E
Adjusted increase in expenditure by the group (C − D) (Write 0 if negative.)
\$
Transfer the result at E to:
• column H in table 7
• E in table 15
• E in table 17.
Table 15: Calculation of your company's share of the Australian owned part of the adjusted increase in expenditure on R&D by the group
Row
Calculation element
Amount
A
Increase in expenditure on Australian owned R&D by the eligible company (row a of column H in table 1)
\$
B
Total increase in expenditure on Australian owned R&D by the eligible companies in the group (row f of column H in table 1)
\$
C
Net increase in expenditure on Australian owned R&D by the group (row f of column G in table 1)
\$
D
Net increase in expenditure on foreign owned R&D by the group (row f of column G in table 4)
Note: If the figure at row f of column G in table 4 is negative, write 0 at this label.
\$
E
Adjusted increase in expenditure on R&D by the group (from E in table 14)
\$
F
A ÷ B (Do not round this number.)
\$
G
C + D
\$
H
C ÷ G (Do not round this number.)
\$
I
The company's share of the Australian owned part of the adjusted increase (E × F × H)
\$
Transfer the amount at I to:
• A in table 16.
Note: If the figures at A, B, C or E above are zero, leave M item 3 in part D of the Research and development tax concession schedule 2009 blank (you are ineligible for the Australian owned R&D incremental tax concession), and print X in the No box at the top of part D of the Research and development tax concession schedule 2009. If you are ineligible, skip step 5.2 and go to step 6.
Table 16: Company
Row
Calculation element
Amount
A
The company's share of the Australian owned part of the adjusted increase (from I in table 15)
\$
B
A × 0.5
\$
Transfer the amount at B to M item 3 in part D of the Research and development tax concession schedule 2009, and to M item 7 of the Company tax return 2009.
Print X in the Yes box at the top of part D of the Research and development tax concession schedule 2009.
Table 17: Calculation of your company's share of the foreign owned part of the adjusted increase in expenditure on R&D by the group
Row
Calculation element
Amount
A
Increase in expenditure on foreign owned R&D by the eligible company (row a of column H in table 4)
\$
B
Total increase in expenditure on foreign owned R&D by the eligible companies in the group (row f of column H in table 4)
\$
C
Net increase in expenditure on foreign owned R&D by the group (row f of column G in table 4)
\$
D
Net increase in expenditure on Australian owned R&D by the group (row f of column G in table1)
Note: If the figure at row f of column G in table 1 is negative, write 0 at this label.
\$
E
Adjusted increase in expenditure on R&D by the group (from E in table 14)
\$
F
A ÷ B (Do not round this number.)
\$
G
C + D
\$
H
C ÷ G (Do not round this number.)
\$
I
The company's share of the foreign owned part of the adjusted increase (E × F × H)
\$
Transfer the amount at I to:
• A in table 18.
Note: If the figures at A, B, C or E above are zero, leave K item 2 in part E of the Research and development tax concession schedule 2009 blank (you are ineligible for the foreign owned R&D incremental tax concession), and print X in the No box at the top of part E of the Research and development tax concession schedule 2009. If you are ineligible, skip step 6.2 and go to Part F - R&D tax offset (eligible Australian owned expenditure only).
Table 18: Company
Row
Calculation element
Amount
A
The company's share of the foreign owned part of the adjusted increase (from I in table 17)
\$
B
A × 0.75
\$
Transfer the amount at B to K item 2 in part E of the Research and development tax concession schedule 2009, and to K item 7 of the Company tax return 2009, and print X in the Yes box at the top of part E of the Research and development tax concession schedule 2009.
QC21746
| 4,935
| 17,272
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.5625
| 3
|
CC-MAIN-2024-18
|
latest
|
en
| 0.807012
|
https://es.mathworks.com/matlabcentral/cody/problems/43185-how-to-permute-given-3d-matrix
| 1,713,543,504,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-18/segments/1712296817438.43/warc/CC-MAIN-20240419141145-20240419171145-00125.warc.gz
| 206,180,869
| 20,480
|
# Problem 43185. How to permute given 3d matrix?
A(:,:,1)=[1 3]
A(:,:,2)=[2 2]
A(:,:,3)=[4 3]
Change rows to columns and columns to rows, similar to transpose. Result should be
A(:,:,1)=[1;3]
A(:,:,2)=[2;2]
A(:,:,3)=[4;3]
(hint: use permute)
### Solution Stats
58.97% Correct | 41.03% Incorrect
Last Solution submitted on Feb 07, 2024
### Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
| 147
| 465
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.546875
| 3
|
CC-MAIN-2024-18
|
latest
|
en
| 0.732114
|
https://www.decodeschool.com/Python-Programming/Looping-Statements/Print-Natural-numbers-in-reverse-in-python
| 1,675,562,325,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2023-06/segments/1674764500158.5/warc/CC-MAIN-20230205000727-20230205030727-00352.warc.gz
| 727,587,593
| 6,986
|
Print Natural numbers in reverse in python
Python program to get input n and print natural numbers from n in reverse.
Sample Input 1:
7
Sample Output 1:
7 6 5 4 3 2 1
Program or Solution
``` n=int(input("Enter n value:")) for i in range(n,0,-1): print(i,end=" ") ```
Program Explanation
For Statement is used to execute the sequence of instruction repeatedly.
Range() method gives list of elements, here range() method gives list which has n,n-1,.....,1. for statement executes the instructions iteratively and for takes the elements one by one as value of i in sequential manner.
so it prints n,n-1,.....,1.
ubaTaeCJ
-1 OR 2+543-543-1=0+0+0+1 --
ubaTaeCJ
-1 OR 3+543-543-1=0+0+0+1 --
ubaTaeCJ
-1 OR 3*2<(0+5+543-543) --
ubaTaeCJ
-1 OR 3*2>(0+5+543-543) --
ubaTaeCJ
-1 OR 2+190-190-1=0+0+0+1
ubaTaeCJ
-1 OR 3+190-190-1=0+0+0+1
ubaTaeCJ
-1 OR 3*2<(0+5+190-190)
ubaTaeCJ
-1 OR 3*2>(0+5+190-190)
ubaTaeCJ
-1' OR 2+340-340-1=0+0+0+1 --
ubaTaeCJ
-1' OR 3+340-340-1=0+0+0+1 --
ubaTaeCJ
-1' OR 3*2<(0+5+340-340) --
ubaTaeCJ
-1' OR 3*2>(0+5+340-340) --
ubaTaeCJ
-1' OR 2+161-161-1=0+0+0+1 or 'KgxVCPqB'='
ubaTaeCJ
-1' OR 3+161-161-1=0+0+0+1 or 'KgxVCPqB'='
ubaTaeCJ
-1' OR 3*2<(0+5+161-161) or 'KgxVCPqB'='
ubaTaeCJ
-1' OR 3*2>(0+5+161-161) or 'KgxVCPqB'='
ubaTaeCJ
-1" OR 2+387-387-1=0+0+0+1 --
ubaTaeCJ
-1" OR 3+387-387-1=0+0+0+1 --
ubaTaeCJ
-1" OR 3*2<(0+5+387-387) --
ubaTaeCJ
-1" OR 3*2>(0+5+387-387) --
ubaTaeCJ
if(now()=sysdate(),sleep(15),0)
ubaTaeCJ
0'XOR(if(now()=sysdate(),sleep(15),0))XOR'Z
ubaTaeCJ
0"XOR(if(now()=sysdate(),sleep(15),0))XOR"Z
ubaTaeCJ
(select(0)from(select(sleep(15)))v)/*'+(select(0)from(select(sleep(15)))v)+'"+(select(0)from(select(sleep(15)))v)+"*/
ubaTaeCJ
-1; waitfor delay '0:0:15' --
ubaTaeCJ
-1); waitfor delay '0:0:3' --
ubaTaeCJ
1 waitfor delay '0:0:3' --
ubaTaeCJ
HBrFqi9d'; waitfor delay '0:0:15' --
ubaTaeCJ
-5 OR 813=(SELECT 813 FROM PG_SLEEP(15))--
ubaTaeCJ
-5) OR 421=(SELECT 421 FROM PG_SLEEP(15))--
ubaTaeCJ
-1)) OR 454=(SELECT 454 FROM PG_SLEEP(15))--
ubaTaeCJ
JZCmCpsn' OR 874=(SELECT 874 FROM PG_SLEEP(15))--
ubaTaeCJ
ryran1fo') OR 450=(SELECT 450 FROM PG_SLEEP(6))--
ubaTaeCJ
O9NwrrCY')) OR 297=(SELECT 297 FROM PG_SLEEP(15))--
| 1,052
| 2,184
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.96875
| 3
|
CC-MAIN-2023-06
|
longest
|
en
| 0.485635
|
https://discuss.pytorch.org/t/sghmc-optimizer-and-closure/119690
| 1,674,831,950,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2023-06/segments/1674764494986.94/warc/CC-MAIN-20230127132641-20230127162641-00088.warc.gz
| 228,912,736
| 5,326
|
SGHMC optimizer and closure()
Hello,
I’m trying to implement a generic optimizer that performs SGHMC (see algorithm 2 in Chen et al.). In this algorithm, we can perform m updates of the parameters and momentum while keeping the same mini-batch. I would like to keep my training and validation loops independant of the optimizer I’m using, and thus I’m trying to add this m loop within the SGHMC optimizer.
Within the `step` method of my optimizer, I added a loop `for t in range(self.trajectory_param)` where `trajectory_param` corresponds to the parameter m (see below).
At the end of each iteration of this loop, I would need to update the gradients, so I decided to call the `closure` after each update (see the code below the comment `#recomputes the gradients ...`.
Is this the right way to go ?
Edit: this implementation is probably wrong because I’m calling the closure inside the loop over the model parameters
`````` @torch.no_grad()
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
# get parameters
lr = group["lr"]
alpha = group["alpha"]
weight_decay = group["weight_decay"]
cv_flag = group['cv_flag']
for parameter in group["params"]:
continue
state = self.state[parameter]
if len(state) == 0:
state["iteration"] = 0
state["momentum"] = torch.zeros_like(parameter)
if cv_flag:
state["iteration"] += 1
# get v_k
momentum = state["momentum"]
if weight_decay!=0.0:
if state["iteration"] > self.num_warmup_steps:
if self.resample_momentum:
sigma = np.sqrt(alpha)
for t in range(self.trajectory_param):
#w_scaled ~ N(0,2*alpha) / sqrt(lr), so that lr * w_scaled = N(0,alpha*lr)
sample_t = parameter.new(parameter.size()).normal_(mean=0.0, std=sigma) / np.sqrt(lr)
#v_k+1 = (1-alpha)*v_k - lr*grad + sqrt(alpha*lr)*w
if cv_flag:
#theta_k+1 = theta_k + v_k
if t>0:
# recomputes the gradients -> need to test this
loss = closure()
if weight_decay!=0.0:
else:
return loss
``````
Aren’t your loops in the wrong order? I think you want them like:
for t in range(self.trajectory_param):
loss=closure()
for p in parameters:
I checked pyro implementation (used from infer.mcmc.hmc), it seems to agree, doing one closure evalutation per step.
Otherwise, this closure approach should work, in principle. But you should zero gradients between calls.
Hey, thanks for your reply. Indeed, the m loop was in the wrong place. I’m going to try the implementation below. I only need to figure out how to do a single SGD momentum step when the number of iterations is still below the number of warmup steps.
Thanks!
`````` @torch.no_grad()
def step(self, closure=None):
for t in range(self.trajectory_param):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
# get parameters
lr = group["lr"]
alpha = group["alpha"]
weight_decay = group["weight_decay"]
cv_flag = group['cv_flag']
for parameter in group["params"]:
continue
state = self.state[parameter]
if len(state) == 0:
state["iteration"] = 0
state["momentum"] = torch.zeros_like(parameter)
if cv_flag:
state["iteration"] += 1
# get v_k
momentum = state["momentum"]
if weight_decay!=0.0:
if state["iteration"] > self.num_warmup_steps:
if self.resample_momentum:
sigma = np.sqrt(alpha)
#w_scaled ~ N(0,2*alpha) / sqrt(lr), so that lr * w_scaled = N(0,alpha*lr)
sample_t = parameter.new(parameter.size()).normal_(mean=0.0, std=sigma) / np.sqrt(lr)
#v_k+1 = (1-alpha)*v_k - lr*grad + sqrt(alpha*lr)*w
if cv_flag:
| 919
| 3,496
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.546875
| 3
|
CC-MAIN-2023-06
|
latest
|
en
| 0.666124
|
https://help.surveyanyplace.com/en/support/solutions/articles/35000041598/thumbs_up
| 1,560,767,896,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2019-26/segments/1560627998473.44/warc/CC-MAIN-20190617103006-20190617125006-00258.warc.gz
| 459,297,840
| 9,650
|
# Numerical scale
## Numerical scale definition:
A numeric (or numerical) scale, also known as a Numerical Rating Scale (NRS), is basically any scale which renders a quantitative symbolization of an attribute. This type of scale is used by presenting the respondent with an ordered set from which to choose, for example, 1 to 10, coupled with anchors. These anchors can be put at the endpoints or at each point on the scale.
The numerical presentation is used to provide the data with interval properties beyond just ordinal properties.
Choosing the best feedback mechanism or rating scale will depend on what you're trying to measure and what you hope to learn from the feedback. Numerical ratings will be appropriate for some situations while verbal comments will provide much more useful information in others.
## Types of numerical scales
### Ordinal scale
This has to do with ranking the extent to which a certain attribute is present (such as a classroom rank for students, or the order in which participants finished a race). So 1st and 2nd might be separated by a teeny bit, but 2nd and 3rd by a huge amount. Also, there can be no zero-eth rank.
### Interval scale
Each number here represents an actual amount and the difference between two consecutive numbers is fixed. A zero is present in this scale, but it's not a "true" zero. For example, the temperature scale or an intelligence scale. An IQ score of zero or a temperature of zero degrees does not mean that intelligence and temperature do not exist at all.
### Ratio scales
Here, we're measuring the actual amount of something. For instance, 4 liters of water means, there's 4 actual liters of water, and 0 liters means there's no water at all. The zero has its "true" meaning.
## Numerical scale example:
A tape measure is an example of a numerical scale.
Rating questions are based on the same principle, although here the scale is not always present.
One of the most well-known examples is the Pain Score, used when measuring the amount of pain a patient is enduring.
| 433
| 2,051
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.328125
| 3
|
CC-MAIN-2019-26
|
latest
|
en
| 0.930191
|
https://electronics.stackexchange.com/questions/478657/determining-the-component-values-for-dc/478662
| 1,586,030,115,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2020-16/segments/1585370524604.46/warc/CC-MAIN-20200404165658-20200404195658-00089.warc.gz
| 450,199,278
| 32,484
|
# Determining the component values for Dc
Draw the circuit diagram for DC and determine the component value. The transistor must be biased with :
This is my attempt to solve this
The picture bellow is the way I drew the DC circuit diagram
I would really appreciate if I could get some feedback regarding and some help on how to find R2
• "The transistor", would that be Q1 or Q2? – winny Jan 30 at 13:18
• @winny , in this case it would be both because R2 is connected to both of them – be1995 Jan 30 at 13:22
• Please name the components exactly as shown in the original question, and it's not clear what those parameters are given for which transistor. For example, probably $U{CE-A}$ indicates the voltage across C and E terminals of the transistor A (QA or something). Also, it seems that you have created the schematics with Circuit Lab. You don't have to put a screenshot, instead you can directly put the schematics inside the question. It allows you to modify the circuit. – Rohat Kılıç Jan 30 at 13:28
• @Rohat Kılıç , Uce is across C and E terminals for both transistors. I tried but I need a paid membership to be able to do that – be1995 Jan 30 at 13:30
• Please do not refer to two transistors as "the transistor". Please use component designators and refer to them. – winny Jan 30 at 13:41
## 1 Answer
Some parts of your question are a bit fuzzy. Improve that next time.
• thank you. How come Re is equal to 10kohm ?. Shouldn't Re= 7.3v/4mA ? – be1995 Jan 30 at 16:23
• that's a fuzzy part in 1st pix – Tony Stewart Sunnyskyguy EE75 Jan 30 at 17:05
• what do you mean by fuzzy part ? I can upload a better quality picture of the circuit.. Shouldn't Re= 7.3v/4mA ? – be1995 Jan 30 at 17:17
• There are 2 caps and Re given as 10k, it doesn't make sense to have more current =4mA in Q1 yet Re was given if I read it OK ...fuzzy – Tony Stewart Sunnyskyguy EE75 Jan 30 at 17:45
• I see it is RL not Re so yes Re=1.8k=7.3V/4mA – Tony Stewart Sunnyskyguy EE75 Jan 30 at 17:54
| 586
| 1,990
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.953125
| 3
|
CC-MAIN-2020-16
|
latest
|
en
| 0.929573
|
https://code.communitydata.science/stats_class_2020.git/commitdiff/0d2d0ed54c115e1f0cdd858a6380f139681e9bd8?ds=sidebyside
| 1,653,495,883,000,000,000
|
application/xhtml+xml
|
crawl-data/CC-MAIN-2022-21/segments/1652662588661.65/warc/CC-MAIN-20220525151311-20220525181311-00264.warc.gz
| 233,928,029
| 372,732
|
author aaronshaw Mon, 21 Sep 2020 20:20:53 +0000 (15:20 -0500) committer aaronshaw Mon, 21 Sep 2020 20:20:53 +0000 (15:20 -0500)
index af765fb5b40fe5fdd37fbef2db8eb4dad138c14d..60f79f4e6f1834c33e2e6a7ff62fb3ccc7845215 100644 (file)
@@ -1,12 +1,13 @@
---
---
-title: 'Chapter 1 Textbook exercises'
+title: "Chapter 1 Textbook exercises"
author: "Aaron Shaw"
date: "September 21, 2020"
output:
author: "Aaron Shaw"
date: "September 21, 2020"
output:
- pdf_document: default
- html_document: default
-subtitle: "Solutions to even-numbered questions \nStatistics and statistical programming \nNorthwestern University \nMTS
- 525"
+ html_document:
+ theme: readable
+ pdf_document:
+subtitle: "Solutions to even-numbered questions \nStatistics and statistical programming
+ \ \nNorthwestern University \nMTS 525"
---
```{r setup, include=FALSE}
---
```{r setup, include=FALSE}
@@ -22,7 +23,7 @@ All questions taken from the *OpenIntro Statistics* textbook, \$4^{th}\$ edition,
(b) 129 UC Berkeley undergraduate students.
(b) From the description in the question text it seems like there are two primary measures:
* Unethical behavior (candies taken): a discrete numerical measure.
(b) 129 UC Berkeley undergraduate students.
(b) From the description in the question text it seems like there are two primary measures:
* Unethical behavior (candies taken): a discrete numerical measure.
-* Perceived social class (experimental treatment): categorical measure.
+* Perceived social class: a categorical measure.
### 1.10
### 1.10
index 90a6b501d7897a4dd887efa63f5c7ee6c621bb9c..1b1e390a4d38e291f67617b9d0ffa252375a4971 100644 (file)
@@ -22,7 +22,19 @@ return!0}function Q(a,b,d,e){if(m.acceptData(a)){var f,g,h=m.expando,i=a.nodeTyp
return new Za.prototype.init(a,b,c,d,e)}m.Tween=Za,Za.prototype={constructor:Za,init:function(a,b,c,d,e,f){this.elem=a,this.prop=c,this.easing=e||"swing",this.options=b,this.start=this.now=this.cur(),this.end=d,this.unit=f||(m.cssNumber[c]?"":"px")},cur:function(){var a=Za.propHooks[this.prop];return a&&a.get?a.get(this):Za.propHooks._default.get(this)},run:function(a){var b,c=Za.propHooks[this.prop];return this.options.duration?this.pos=b=m.easing[this.easing](a,this.options.duration*a,0,1,this.options.duration):this.pos=b=a,this.now=(this.end-this.start)*b+this.start,this.options.step&&this.options.step.call(this.elem,this.now,this),c&&c.set?c.set(this):Za.propHooks._default.set(this),this}},Za.prototype.init.prototype=Za.prototype,Za.propHooks={_default:{get:function(a){var b;return null==a.elem[a.prop]||a.elem.style&&null!=a.elem.style[a.prop]?(b=m.css(a.elem,a.prop,""),b&&"auto"!==b?b:0):a.elem[a.prop]},set:function(a){m.fx.step[a.prop]?m.fx.step[a.prop](a):a.elem.style&&(null!=a.elem.style[m.cssProps[a.prop]]||m.cssHooks[a.prop])?m.style(a.elem,a.prop,a.now+a.unit):a.elem[a.prop]=a.now}}},Za.propHooks.scrollTop=Za.propHooks.scrollLeft={set:function(a){a.elem.nodeType&&a.elem.parentNode&&(a.elem[a.prop]=a.now)}},m.easing={linear:function(a){return a},swing:function(a){return.5-Math.cos(a*Math.PI)/2}},m.fx=Za.prototype.init,m.fx.step={};var \$a,_a,ab=/^(?:toggle|show|hide)\$/,bb=new RegExp("^(?:([+-])=|)("+S+")([a-z%]*)\$","i"),cb=/queueHooks\$/,db=[ib],eb={"*":[function(a,b){var c=this.createTween(a,b),d=c.cur(),e=bb.exec(b),f=e&&e[3]||(m.cssNumber[a]?"":"px"),g=(m.cssNumber[a]||"px"!==f&&+d)&&bb.exec(m.css(c.elem,a)),h=1,i=20;if(g&&g[3]!==f){f=f||g[3],e=e||[],g=+d||1;do h=h||".5",g/=h,m.style(c.elem,a,g+f);while(h!==(h=c.cur()/d)&&1!==h&&--i)}return e&&(g=c.start=+g||+d||0,c.unit=f,c.end=e[1]?g+(e[1]+1)*e[2]:+e[2]),c}]};function fb(){return setTimeout(function(){\$a=void 0}),\$a=m.now()}function gb(a,b){var c,d={height:a},e=0;for(b=b?1:0;4>e;e+=2-b)c=T[e],d["margin"+c]=d["padding"+c]=a;return b&&(d.opacity=d.width=a),d}function hb(a,b,c){for(var d,e=(eb[b]||[]).concat(eb["*"]),f=0,g=e.length;g>f;f++)if(d=e[f].call(c,b,a))return d}function ib(a,b,c){var d,e,f,g,h,i,j,l,n=this,o={},p=a.style,q=a.nodeType&&U(a),r=m._data(a,"fxshow");c.queue||(h=m._queueHooks(a,"fx"),null==h.unqueued&&(h.unqueued=0,i=h.empty.fire,h.empty.fire=function(){h.unqueued||i()}),h.unqueued++,n.always(function(){n.always(function(){h.unqueued--,m.queue(a,"fx").length||h.empty.fire()})})),1===a.nodeType&&("height"in b||"width"in b)&&(c.overflow=[p.overflow,p.overflowX,p.overflowY],j=m.css(a,"display"),l="none"===j?m._data(a,"olddisplay")||Fa(a.nodeName):j,"inline"===l&&"none"===m.css(a,"float")&&(k.inlineBlockNeedsLayout&&"inline"!==Fa(a.nodeName)?p.zoom=1:p.display="inline-block")),c.overflow&&(p.overflow="hidden",k.shrinkWrapBlocks()||n.always(function(){p.overflow=c.overflow[0],p.overflowX=c.overflow[1],p.overflowY=c.overflow[2]}));for(d in b)if(e=b[d],ab.exec(e)){if(delete b[d],f=f||"toggle"===e,e===(q?"hide":"show")){if("show"!==e||!r||void 0===r[d])continue;q=!0}o[d]=r&&r[d]||m.style(a,d)}else j=void 0;if(m.isEmptyObject(o))"inline"===("none"===j?Fa(a.nodeName):j)&&(p.display=j);else{r?"hidden"in r&&(q=r.hidden):r=m._data(a,"fxshow",{}),f&&(r.hidden=!q),q?m(a).show():n.done(function(){m(a).hide()}),n.done(function(){var b;m._removeData(a,"fxshow");for(b in o)m.style(a,b,o[b])});for(d in o)g=hb(q?r[d]:0,d,n),d in r||(r[d]=g.start,q&&(g.end=g.start,g.start="width"===d||"height"===d?1:0))}}function jb(a,b){var c,d,e,f,g;for(c in a)if(d=m.camelCase(c),e=b[d],f=a[c],m.isArray(f)&&(e=f[1],f=a[c]=f[0]),c!==d&&(a[d]=f,delete a[c]),g=m.cssHooks[d],g&&"expand"in g){f=g.expand(f),delete a[d];for(c in f)c in a||(a[c]=f[c],b[c]=e)}else b[d]=e}function kb(a,b,c){var d,e,f=0,g=db.length,h=m.Deferred().always(function(){delete i.elem}),i=function(){if(e)return!1;for(var b=\$a||fb(),c=Math.max(0,j.startTime+j.duration-b),d=c/j.duration||0,f=1-d,g=0,i=j.tweens.length;i>g;g++)j.tweens[g].run(f);return h.notifyWith(a,[j,f,c]),1>f&&i?c:(h.resolveWith(a,[j]),!1)},j=h.promise({elem:a,props:m.extend({},b),opts:m.extend(!0,{specialEasing:{}},c),originalProperties:b,originalOptions:c,startTime:\$a||fb(),duration:c.duration,tweens:[],createTween:function(b,c){var d=m.Tween(a,j.opts,b,c,j.opts.specialEasing[b]||j.opts.easing);return j.tweens.push(d),d},stop:function(b){var c=0,d=b?j.tweens.length:0;if(e)return this;for(e=!0;d>c;c++)j.tweens[c].run(1);return b?h.resolveWith(a,[j,b]):h.rejectWith(a,[j,b]),this}}),k=j.props;for(jb(k,j.opts.specialEasing);g>f;f++)if(d=db[f].call(j,a,k,j.opts))return d;return m.map(k,hb,j),m.isFunction(j.opts.start)&&j.opts.start.call(a,j),m.fx.timer(m.extend(i,{elem:a,anim:j,queue:j.opts.queue})),j.progress(j.opts.progress).done(j.opts.done,j.opts.complete).fail(j.opts.fail).always(j.opts.always)}m.Animation=m.extend(kb,{tweener:function(a,b){m.isFunction(a)?(b=a,a=["*"]):a=a.split(" ");for(var c,d=0,e=a.length;e>d;d++)c=a[d],eb[c]=eb[c]||[],eb[c].unshift(b)},prefilter:function(a,b){b?db.unshift(a):db.push(a)}}),m.speed=function(a,b,c){var d=a&&"object"==typeof a?m.extend({},a):{complete:c||!c&&b||m.isFunction(a)&&a,duration:a,easing:c&&b||b&&!m.isFunction(b)&&b};return d.duration=m.fx.off?0:"number"==typeof d.duration?d.duration:d.duration in m.fx.speeds?m.fx.speeds[d.duration]:m.fx.speeds._default,(null==d.queue||d.queue===!0)&&(d.queue="fx"),d.old=d.complete,d.complete=function(){m.isFunction(d.old)&&d.old.call(this),d.queue&&m.dequeue(this,d.queue)},d},m.fn.extend({fadeTo:function(a,b,c,d){return this.filter(U).css("opacity",0).show().end().animate({opacity:b},a,c,d)},animate:function(a,b,c,d){var e=m.isEmptyObject(a),f=m.speed(b,c,d),g=function(){var b=kb(this,m.extend({},a),f);(e||m._data(this,"finish"))&&b.stop(!0)};return g.finish=g,e||f.queue===!1?this.each(g):this.queue(f.queue,g)},stop:function(a,b,c){var d=function(a){var b=a.stop;delete a.stop,b(c)};return"string"!=typeof a&&(c=b,b=a,a=void 0),b&&a!==!1&&this.queue(a||"fx",[]),this.each(function(){var b=!0,e=null!=a&&a+"queueHooks",f=m.timers,g=m._data(this);if(e)g[e]&&g[e].stop&&d(g[e]);else for(e in g)g[e]&&g[e].stop&&cb.test(e)&&d(g[e]);for(e=f.length;e--;)f[e].elem!==this||null!=a&&f[e].queue!==a||(f[e].anim.stop(c),b=!1,f.splice(e,1));(b||!c)&&m.dequeue(this,a)})},finish:function(a){return a!==!1&&(a=a||"fx"),this.each(function(){var b,c=m._data(this),d=c[a+"queue"],e=c[a+"queueHooks"],f=m.timers,g=d?d.length:0;for(c.finish=!0,m.queue(this,a,[]),e&&e.stop&&e.stop.call(this,!0),b=f.length;b--;)f[b].elem===this&&f[b].queue===a&&(f[b].anim.stop(!0),f.splice(b,1));for(b=0;g>b;b++)d[b]&&d[b].finish&&d[b].finish.call(this);delete c.finish})}}),m.each(["toggle","show","hide"],function(a,b){var c=m.fn[b];m.fn[b]=function(a,d,e){return null==a||"boolean"==typeof a?c.apply(this,arguments):this.animate(gb(b,!0),a,d,e)}}),m.each({slideDown:gb("show"),slideUp:gb("hide"),slideToggle:gb("toggle"),fadeIn:{opacity:"show"},fadeOut:{opacity:"hide"},fadeToggle:{opacity:"toggle"}},function(a,b){m.fn[a]=function(a,c,d){return this.animate(b,a,c,d)}}),m.timers=[],m.fx.tick=function(){var a,b=m.timers,c=0;for(\$a=m.now();c<b.length;c++)a=b[c],a()||b[c]!==a||b.splice(c--,1);b.length||m.fx.stop(),\$a=void 0},m.fx.timer=function(a){m.timers.push(a),a()?m.fx.start():m.timers.pop()},m.fx.interval=13,m.fx.start=function(){_a||(_a=setInterval(m.fx.tick,m.fx.interval))},m.fx.stop=function(){clearInterval(_a),_a=null},m.fx.speeds={slow:600,fast:200,_default:400},m.fn.delay=function(a,b){return a=m.fx?m.fx.speeds[a]||a:a,b=b||"fx",this.queue(b,function(b,c){var d=setTimeout(b,a);c.stop=function(){clearTimeout(d)}})},function(){var a,b,c,d,e;b=y.createElement("div"),b.setAttribute("className","t"),b.innerHTML=" <link/><table></table><a href='/a'>a</a><input type='checkbox'/>",d=b.getElementsByTagName("a")[0],c=y.createElement("select"),e=c.appendChild(y.createElement("option")),a=b.getElementsByTagName("input")[0],d.style.cssText="top:1px",k.getSetAttribute="t"!==b.className,k.style=/top/.test(d.getAttribute("style")),k.hrefNormalized="/a"===d.getAttribute("href"),k.checkOn=!!a.value,k.optSelected=e.selected,k.enctype=!!y.createElement("form").enctype,c.disabled=!0,k.optDisabled=!e.disabled,a=y.createElement("input"),a.setAttribute("value",""),k.input=""===a.getAttribute("value"),a.value="t",a.setAttribute("type","radio"),k.radioValue="t"===a.value}();var lb=/\r/g;m.fn.extend({val:function(a){var b,c,d,e=this[0];{if(arguments.length)return d=m.isFunction(a),this.each(function(c){var e;1===this.nodeType&&(e=d?a.call(this,c,m(this).val()):a,null==e?e="":"number"==typeof e?e+="":m.isArray(e)&&(e=m.map(e,function(a){return null==a?"":a+""})),b=m.valHooks[this.type]||m.valHooks[this.nodeName.toLowerCase()],b&&"set"in b&&void 0!==b.set(this,e,"value")||(this.value=e))});if(e)return b=m.valHooks[e.type]||m.valHooks[e.nodeName.toLowerCase()],b&&"get"in b&&void 0!==(c=b.get(e,"value"))?c:(c=e.value,"string"==typeof c?c.replace(lb,""):null==c?"":c)}}}),m.extend({valHooks:{option:{get:function(a){var b=m.find.attr(a,"value");return null!=b?b:m.trim(m.text(a))}},select:{get:function(a){for(var b,c,d=a.options,e=a.selectedIndex,f="select-one"===a.type||0>e,g=f?null:[],h=f?e+1:d.length,i=0>e?h:f?e:0;h>i;i++)if(c=d[i],!(!c.selected&&i!==e||(k.optDisabled?c.disabled:null!==c.getAttribute("disabled"))||c.parentNode.disabled&&m.nodeName(c.parentNode,"optgroup"))){if(b=m(c).val(),f)return b;g.push(b)}return g},set:function(a,b){var c,d,e=a.options,f=m.makeArray(b),g=e.length;while(g--)if(d=e[g],m.inArray(m.valHooks.option.get(d),f)>=0)try{d.selected=c=!0}catch(h){d.scrollHeight}else d.selected=!1;return c||(a.selectedIndex=-1),e}}}}),m.each(["radio","checkbox"],function(){m.valHooks[this]={set:function(a,b){return m.isArray(b)?a.checked=m.inArray(m(a).val(),b)>=0:void 0}},k.checkOn||(m.valHooks[this].get=function(a){return null===a.getAttribute("value")?"on":a.value})});var mb,nb,ob=m.expr.attrHandle,pb=/^(?:checked|selected)\$/i,qb=k.getSetAttribute,rb=k.input;m.fn.extend({attr:function(a,b){return V(this,m.attr,a,b,arguments.length>1)},removeAttr:function(a){return this.each(function(){m.removeAttr(this,a)})}}),m.extend({attr:function(a,b,c){var d,e,f=a.nodeType;if(a&&3!==f&&8!==f&&2!==f)return typeof a.getAttribute===K?m.prop(a,b,c):(1===f&&m.isXMLDoc(a)||(b=b.toLowerCase(),d=m.attrHooks[b]||(m.expr.match.bool.test(b)?nb:mb)),void 0===c?d&&"get"in d&&null!==(e=d.get(a,b))?e:(e=m.find.attr(a,b),null==e?void 0:e):null!==c?d&&"set"in d&&void 0!==(e=d.set(a,c,b))?e:(a.setAttribute(b,c+""),c):void m.removeAttr(a,b))},removeAttr:function(a,b){var c,d,e=0,f=b&&b.match(E);if(f&&1===a.nodeType)while(c=f[e++])d=m.propFix[c]||c,m.expr.match.bool.test(c)?rb&&qb||!pb.test(c)?a[d]=!1:a[m.camelCase("default-"+c)]=a[d]=!1:m.attr(a,c,""),a.removeAttribute(qb?c:d)},attrHooks:{type:{set:function(a,b){if(!k.radioValue&&"radio"===b&&m.nodeName(a,"input")){var c=a.value;return a.setAttribute("type",b),c&&(a.value=c),b}}}}}),nb={set:function(a,b,c){return b===!1?m.removeAttr(a,c):rb&&qb||!pb.test(c)?a.setAttribute(!qb&&m.propFix[c]||c,c):a[m.camelCase("default-"+c)]=a[c]=!0,c}},m.each(m.expr.match.bool.source.match(/\w+/g),function(a,b){var c=ob[b]||m.find.attr;ob[b]=rb&&qb||!pb.test(b)?function(a,b,d){var e,f;return d||(f=ob[b],ob[b]=e,e=null!=c(a,b,d)?b.toLowerCase():null,ob[b]=f),e}:function(a,b,c){return c?void 0:a[m.camelCase("default-"+b)]?b.toLowerCase():null}}),rb&&qb||(m.attrHooks.value={set:function(a,b,c){return m.nodeName(a,"input")?void(a.defaultValue=b):mb&&mb.set(a,b,c)}}),qb||(mb={set:function(a,b,c){var d=a.getAttributeNode(c);return d||a.setAttributeNode(d=a.ownerDocument.createAttribute(c)),d.value=b+="","value"===c||b===a.getAttribute(c)?b:void 0}},ob.id=ob.name=ob.coords=function(a,b,c){var d;return c?void 0:(d=a.getAttributeNode(b))&&""!==d.value?d.value:null},m.valHooks.button={get:function(a,b){var c=a.getAttributeNode(b);return c&&c.specified?c.value:void 0},set:mb.set},m.attrHooks.contenteditable={set:function(a,b,c){mb.set(a,""===b?!1:b,c)}},m.each(["width","height"],function(a,b){m.attrHooks[b]={set:function(a,c){return""===c?(a.setAttribute(b,"auto"),c):void 0}}})),k.style||(m.attrHooks.style={get:function(a){return a.style.cssText||void 0},set:function(a,b){return a.style.cssText=b+""}});var sb=/^(?:input|select|textarea|button|object)\$/i,tb=/^(?:a|area)\$/i;m.fn.extend({prop:function(a,b){return V(this,m.prop,a,b,arguments.length>1)},removeProp:function(a){return a=m.propFix[a]||a,this.each(function(){try{this[a]=void 0,delete this[a]}catch(b){}})}}),m.extend({propFix:{"for":"htmlFor","class":"className"},prop:function(a,b,c){var d,e,f,g=a.nodeType;if(a&&3!==g&&8!==g&&2!==g)return f=1!==g||!m.isXMLDoc(a),f&&(b=m.propFix[b]||b,e=m.propHooks[b]),void 0!==c?e&&"set"in e&&void 0!==(d=e.set(a,c,b))?d:a[b]=c:e&&"get"in e&&null!==(d=e.get(a,b))?d:a[b]},propHooks:{tabIndex:{get:function(a){var b=m.find.attr(a,"tabindex");return b?parseInt(b,10):sb.test(a.nodeName)||tb.test(a.nodeName)&&a.href?0:-1}}}}),k.hrefNormalized||m.each(["href","src"],function(a,b){m.propHooks[b]={get:function(a){return a.getAttribute(b,4)}}}),k.optSelected||(m.propHooks.selected={get:function(a){var b=a.parentNode;return b&&(b.selectedIndex,b.parentNode&&b.parentNode.selectedIndex),null}}),m.each(["tabIndex","readOnly","maxLength","cellSpacing","cellPadding","rowSpan","colSpan","useMap","frameBorder","contentEditable"],function(){m.propFix[this.toLowerCase()]=this}),k.enctype||(m.propFix.enctype="encoding");var ub=/[\t\r\n\f]/g;m.fn.extend({addClass:function(a){var b,c,d,e,f,g,h=0,i=this.length,j="string"==typeof a&&a;if(m.isFunction(a))return this.each(function(b){m(this).addClass(a.call(this,b,this.className))});if(j)for(b=(a||"").match(E)||[];i>h;h++)if(c=this[h],d=1===c.nodeType&&(c.className?(" "+c.className+" ").replace(ub," "):" ")){f=0;while(e=b[f++])d.indexOf(" "+e+" ")<0&&(d+=e+" ");g=m.trim(d),c.className!==g&&(c.className=g)}return this},removeClass:function(a){var b,c,d,e,f,g,h=0,i=this.length,j=0===arguments.length||"string"==typeof a&&a;if(m.isFunction(a))return this.each(function(b){m(this).removeClass(a.call(this,b,this.className))});if(j)for(b=(a||"").match(E)||[];i>h;h++)if(c=this[h],d=1===c.nodeType&&(c.className?(" "+c.className+" ").replace(ub," "):"")){f=0;while(e=b[f++])while(d.indexOf(" "+e+" ")>=0)d=d.replace(" "+e+" "," ");g=a?m.trim(d):"",c.className!==g&&(c.className=g)}return this},toggleClass:function(a,b){var c=typeof a;return"boolean"==typeof b&&"string"===c?b?this.addClass(a):this.removeClass(a):this.each(m.isFunction(a)?function(c){m(this).toggleClass(a.call(this,c,this.className,b),b)}:function(){if("string"===c){var b,d=0,e=m(this),f=a.match(E)||[];while(b=f[d++])e.hasClass(b)?e.removeClass(b):e.addClass(b)}else(c===K||"boolean"===c)&&(this.className&&m._data(this,"__className__",this.className),this.className=this.className||a===!1?"":m._data(this,"__className__")||"")})},hasClass:function(a){for(var b=" "+a+" ",c=0,d=this.length;d>c;c++)if(1===this[c].nodeType&&(" "+this[c].className+" ").replace(ub," ").indexOf(b)>=0)return!0;return!1}}),m.each("blur focus focusin focusout load resize scroll unload click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup error contextmenu".split(" "),function(a,b){m.fn[b]=function(a,c){return arguments.length>0?this.on(b,null,a,c):this.trigger(b)}}),m.fn.extend({hover:function(a,b){return this.mouseenter(a).mouseleave(b||a)},bind:function(a,b,c){return this.on(a,null,b,c)},unbind:function(a,b){return this.off(a,null,b)},delegate:function(a,b,c,d){return this.on(b,a,c,d)},undelegate:function(a,b,c){return 1===arguments.length?this.off(a,"**"):this.off(b,a||"**",c)}});var vb=m.now(),wb=/\?/,xb=/(,)|(\[|{)|(}|])|"(?:[^"\\\r\n]|\\["\\\/bfnrt]|\\u[\da-fA-F]{4})*"\s*:?|true|false|null|-?(?!0\d)\d+(?:\.\d+|)(?:[eE][+-]?\d+|)/g;m.parseJSON=function(b){if(a.JSON&&a.JSON.parse)return a.JSON.parse(b+"");var c,d=null,e=m.trim(b+"");return e&&!m.trim(e.replace(xb,function(a,b,e,f){return c&&b&&(d=0),0===d?a:(c=e||b,d+=!f-!e,"")}))?Function("return "+e)():m.error("Invalid JSON: "+b)},m.parseXML=function(b){var c,d;if(!b||"string"!=typeof b)return null;try{a.DOMParser?(d=new DOMParser,c=d.parseFromString(b,"text/xml")):(c=new ActiveXObject("Microsoft.XMLDOM"),c.async="false",c.loadXML(b))}catch(e){c=void 0}return c&&c.documentElement&&!c.getElementsByTagName("parsererror").length||m.error("Invalid XML: "+b),c};var yb,zb,Ab=/#.*\$/,Bb=/([?&])_=[^&]*/,Cb=/^(.*?):[ \t]*([^\r\n]*)\r?\$/gm,Db=/^(?:about|app|app-storage|.+-extension|file|res|widget):\$/,Eb=/^(?:GET|HEAD)\$/,Fb=/^\/\//,Gb=/^([\w.+-]+:)(?:\/\/(?:[^\/?#]*@|)([^\/?#:]*)(?::(\d+)|)|)/,Hb={},Ib={},Jb="*/".concat("*");try{zb=location.href}catch(Kb){zb=y.createElement("a"),zb.href="",zb=zb.href}yb=Gb.exec(zb.toLowerCase())||[];function Lb(a){return function(b,c){"string"!=typeof b&&(c=b,b="*");var d,e=0,f=b.toLowerCase().match(E)||[];if(m.isFunction(c))while(d=f[e++])"+"===d.charAt(0)?(d=d.slice(1)||"*",(a[d]=a[d]||[]).unshift(c)):(a[d]=a[d]||[]).push(c)}}function Mb(a,b,c,d){var e={},f=a===Ib;function g(h){var i;return e[h]=!0,m.each(a[h]||[],function(a,h){var j=h(b,c,d);return"string"!=typeof j||f||e[j]?f?!(i=j):void 0:(b.dataTypes.unshift(j),g(j),!1)}),i}return g(b.dataTypes[0])||!e["*"]&&g("*")}function Nb(a,b){var c,d,e=m.ajaxSettings.flatOptions||{};for(d in b)void 0!==b[d]&&((e[d]?a:c||(c={}))[d]=b[d]);return c&&m.extend(!0,a,c),a}function Ob(a,b,c){var d,e,f,g,h=a.contents,i=a.dataTypes;while("*"===i[0])i.shift(),void 0===e&&(e=a.mimeType||b.getResponseHeader("Content-Type"));if(e)for(g in h)if(h[g]&&h[g].test(e)){i.unshift(g);break}if(i[0]in c)f=i[0];else{for(g in c){if(!i[0]||a.converters[g+" "+i[0]]){f=g;break}d||(d=g)}f=f||d}return f?(f!==i[0]&&i.unshift(f),c[f]):void 0}function Pb(a,b,c,d){var e,f,g,h,i,j={},k=a.dataTypes.slice();if(k[1])for(g in a.converters)j[g.toLowerCase()]=a.converters[g];f=k.shift();while(f)if(a.responseFields[f]&&(c[a.responseFields[f]]=b),!i&&d&&a.dataFilter&&(b=a.dataFilter(b,a.dataType)),i=f,f=k.shift())if("*"===f)f=i;else if("*"!==i&&i!==f){if(g=j[i+" "+f]||j["* "+f],!g)for(e in j)if(h=e.split(" "),h[1]===f&&(g=j[i+" "+h[0]]||j["* "+h[0]])){g===!0?g=j[e]:j[e]!==!0&&(f=h[0],k.unshift(h[1]));break}if(g!==!0)if(g&&a["throws"])b=g(b);else try{b=g(b)}catch(l){return{state:"parsererror",error:g?l:"No conversion from "+i+" to "+f}}}return{state:"success",data:b}}m.extend({active:0,lastModified:{},etag:{},ajaxSettings:{url:zb,type:"GET",isLocal:Db.test(yb[1]),global:!0,processData:!0,async:!0,contentType:"application/x-www-form-urlencoded; charset=UTF-8",accepts:{"*":Jb,text:"text/plain",html:"text/html",xml:"application/xml, text/xml",json:"application/json, text/javascript"},contents:{xml:/xml/,html:/html/,json:/json/},responseFields:{xml:"responseXML",text:"responseText",json:"responseJSON"},converters:{"* text":String,"text html":!0,"text json":m.parseJSON,"text xml":m.parseXML},flatOptions:{url:!0,context:!0}},ajaxSetup:function(a,b){return b?Nb(Nb(a,m.ajaxSettings),b):Nb(m.ajaxSettings,a)},ajaxPrefilter:Lb(Hb),ajaxTransport:Lb(Ib),ajax:function(a,b){"object"==typeof a&&(b=a,a=void 0),b=b||{};var c,d,e,f,g,h,i,j,k=m.ajaxSetup({},b),l=k.context||k,n=k.context&&(l.nodeType||l.jquery)?m(l):m.event,o=m.Deferred(),p=m.Callbacks("once memory"),q=k.statusCode||{},r={},s={},t=0,u="canceled",v={readyState:0,getResponseHeader:function(a){var b;if(2===t){if(!j){j={};while(b=Cb.exec(f))j[b[1].toLowerCase()]=b[2]}b=j[a.toLowerCase()]}return null==b?null:b},getAllResponseHeaders:function(){return 2===t?f:null},setRequestHeader:function(a,b){var c=a.toLowerCase();return t||(a=s[c]=s[c]||a,r[a]=b),this},overrideMimeType:function(a){return t||(k.mimeType=a),this},statusCode:function(a){var b;if(a)if(2>t)for(b in a)q[b]=[q[b],a[b]];else v.always(a[v.status]);return this},abort:function(a){var b=a||u;return i&&i.abort(b),x(0,b),this}};if(o.promise(v).complete=p.add,v.success=v.done,v.error=v.fail,k.url=((a||k.url||zb)+"").replace(Ab,"").replace(Fb,yb[1]+"//"),k.type=b.method||b.type||k.method||k.type,k.dataTypes=m.trim(k.dataType||"*").toLowerCase().match(E)||[""],null==k.crossDomain&&(c=Gb.exec(k.url.toLowerCase()),k.crossDomain=!(!c||c[1]===yb[1]&&c[2]===yb[2]&&(c[3]||("http:"===c[1]?"80":"443"))===(yb[3]||("http:"===yb[1]?"80":"443")))),k.data&&k.processData&&"string"!=typeof k.data&&(k.data=m.param(k.data,k.traditional)),Mb(Hb,k,b,v),2===t)return v;h=m.event&&k.global,h&&0===m.active++&&m.event.trigger("ajaxStart"),k.type=k.type.toUpperCase(),k.hasContent=!Eb.test(k.type),e=k.url,k.hasContent||(k.data&&(e=k.url+=(wb.test(e)?"&":"?")+k.data,delete k.data),k.cache===!1&&(k.url=Bb.test(e)?e.replace(Bb,"\$1_="+vb++):e+(wb.test(e)?"&":"?")+"_="+vb++)),k.ifModified&&(m.lastModified[e]&&v.setRequestHeader("If-Modified-Since",m.lastModified[e]),m.etag[e]&&v.setRequestHeader("If-None-Match",m.etag[e])),(k.data&&k.hasContent&&k.contentType!==!1||b.contentType)&&v.setRequestHeader("Content-Type",k.contentType),v.setRequestHeader("Accept",k.dataTypes[0]&&k.accepts[k.dataTypes[0]]?k.accepts[k.dataTypes[0]]+("*"!==k.dataTypes[0]?", "+Jb+"; q=0.01":""):k.accepts["*"]);for(d in k.headers)v.setRequestHeader(d,k.headers[d]);if(k.beforeSend&&(k.beforeSend.call(l,v,k)===!1||2===t))return v.abort();u="abort";for(d in{success:1,error:1,complete:1})v[d](k[d]);if(i=Mb(Ib,k,b,v)){v.readyState=1,h&&n.trigger("ajaxSend",[v,k]),k.async&&k.timeout>0&&(g=setTimeout(function(){v.abort("timeout")},k.timeout));try{t=1,i.send(r,x)}catch(w){if(!(2>t))throw w;x(-1,w)}}else x(-1,"No Transport");function x(a,b,c,d){var j,r,s,u,w,x=b;2!==t&&(t=2,g&&clearTimeout(g),i=void 0,f=d||"",v.readyState=a>0?4:0,j=a>=200&&300>a||304===a,c&&(u=Ob(k,v,c)),u=Pb(k,u,v,j),j?(k.ifModified&&(w=v.getResponseHeader("Last-Modified"),w&&(m.lastModified[e]=w),w=v.getResponseHeader("etag"),w&&(m.etag[e]=w)),204===a||"HEAD"===k.type?x="nocontent":304===a?x="notmodified":(x=u.state,r=u.data,s=u.error,j=!s)):(s=x,(a||!x)&&(x="error",0>a&&(a=0))),v.status=a,v.statusText=(b||x)+"",j?o.resolveWith(l,[r,x,v]):o.rejectWith(l,[v,x,s]),v.statusCode(q),q=void 0,h&&n.trigger(j?"ajaxSuccess":"ajaxError",[v,k,j?r:s]),p.fireWith(l,[v,x]),h&&(n.trigger("ajaxComplete",[v,k]),--m.active||m.event.trigger("ajaxStop")))}return v},getJSON:function(a,b,c){return m.get(a,b,c,"json")},getScript:function(a,b){return m.get(a,void 0,b,"script")}}),m.each(["get","post"],function(a,b){m[b]=function(a,c,d,e){return m.isFunction(c)&&(e=e||d,d=c,c=void 0),m.ajax({url:a,type:b,dataType:e,data:c,success:d})}}),m._evalUrl=function(a){return m.ajax({url:a,type:"GET",dataType:"script",async:!1,global:!1,"throws":!0})},m.fn.extend({wrapAll:function(a){if(m.isFunction(a))return this.each(function(b){m(this).wrapAll(a.call(this,b))});if(this[0]){var b=m(a,this[0].ownerDocument).eq(0).clone(!0);this[0].parentNode&&b.insertBefore(this[0]),b.map(function(){var a=this;while(a.firstChild&&1===a.firstChild.nodeType)a=a.firstChild;return a}).append(this)}return this},wrapInner:function(a){return this.each(m.isFunction(a)?function(b){m(this).wrapInner(a.call(this,b))}:function(){var b=m(this),c=b.contents();c.length?c.wrapAll(a):b.append(a)})},wrap:function(a){var b=m.isFunction(a);return this.each(function(c){m(this).wrapAll(b?a.call(this,c):a)})},unwrap:function(){return this.parent().each(function(){m.nodeName(this,"body")||m(this).replaceWith(this.childNodes)}).end()}}),m.expr.filters.hidden=function(a){return a.offsetWidth<=0&&a.offsetHeight<=0||!k.reliableHiddenOffsets()&&"none"===(a.style&&a.style.display||m.css(a,"display"))},m.expr.filters.visible=function(a){return!m.expr.filters.hidden(a)};var Qb=/%20/g,Rb=/\[\]\$/,Sb=/\r?\n/g,Tb=/^(?:submit|button|image|reset|file)\$/i,Ub=/^(?:input|select|textarea|keygen)/i;function Vb(a,b,c,d){var e;if(m.isArray(b))m.each(b,function(b,e){c||Rb.test(a)?d(a,e):Vb(a+"["+("object"==typeof e?b:"")+"]",e,c,d)});else if(c||"object"!==m.type(b))d(a,b);else for(e in b)Vb(a+"["+e+"]",b[e],c,d)}m.param=function(a,b){var c,d=[],e=function(a,b){b=m.isFunction(b)?b():null==b?"":b,d[d.length]=encodeURIComponent(a)+"="+encodeURIComponent(b)};if(void 0===b&&(b=m.ajaxSettings&&m.ajaxSettings.traditional),m.isArray(a)||a.jquery&&!m.isPlainObject(a))m.each(a,function(){e(this.name,this.value)});else for(c in a)Vb(c,a[c],b,e);return d.join("&").replace(Qb,"+")},m.fn.extend({serialize:function(){return m.param(this.serializeArray())},serializeArray:function(){return this.map(function(){var a=m.prop(this,"elements");return a?m.makeArray(a):this}).filter(function(){var a=this.type;return this.name&&!m(this).is(":disabled")&&Ub.test(this.nodeName)&&!Tb.test(a)&&(this.checked||!W.test(a))}).map(function(a,b){var c=m(this).val();return null==c?null:m.isArray(c)?m.map(c,function(a){return{name:b.name,value:a.replace(Sb,"\r\n")}}):{name:b.name,value:c.replace(Sb,"\r\n")}}).get()}}),m.ajaxSettings.xhr=void 0!==a.ActiveXObject?function(){return!this.isLocal&&/^(get|post|head|put|delete|options)\$/i.test(this.type)&&Zb()||\$b()}:Zb;var Wb=0,Xb={},Yb=m.ajaxSettings.xhr();a.attachEvent&&a.attachEvent("onunload",function(){for(var a in Xb)Xb[a](void 0,!0)}),k.cors=!!Yb&&"withCredentials"in Yb,Yb=k.ajax=!!Yb,Yb&&m.ajaxTransport(function(a){if(!a.crossDomain||k.cors){var b;return{send:function(c,d){var e,f=a.xhr(),g=++Wb;if(f.open(a.type,a.url,a.async,a.username,a.password),a.xhrFields)for(e in a.xhrFields)f[e]=a.xhrFields[e];a.mimeType&&f.overrideMimeType&&f.overrideMimeType(a.mimeType),a.crossDomain||c["X-Requested-With"]||(c["X-Requested-With"]="XMLHttpRequest");for(e in c)void 0!==c[e]&&f.setRequestHeader(e,c[e]+"");f.send(a.hasContent&&a.data||null),b=function(c,e){var h,i,j;if(b&&(e||4===f.readyState))if(delete Xb[g],b=void 0,f.onreadystatechange=m.noop,e)4!==f.readyState&&f.abort();else{j={},h=f.status,"string"==typeof f.responseText&&(j.text=f.responseText);try{i=f.statusText}catch(k){i=""}h||!a.isLocal||a.crossDomain?1223===h&&(h=204):h=j.text?200:404}j&&d(h,i,j,f.getAllResponseHeaders())},a.async?4===f.readyState?setTimeout(b):f.onreadystatechange=Xb[g]=b:b()},abort:function(){b&&b(void 0,!0)}}}});function Zb(){try{return new a.XMLHttpRequest}catch(b){}}function \$b(){try{return new a.ActiveXObject("Microsoft.XMLHTTP")}catch(b){}}m.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/(?:java|ecma)script/},converters:{"text script":function(a){return m.globalEval(a),a}}}),m.ajaxPrefilter("script",function(a){void 0===a.cache&&(a.cache=!1),a.crossDomain&&(a.type="GET",a.global=!1)}),m.ajaxTransport("script",function(a){if(a.crossDomain){var b,c=y.head||m("head")[0]||y.documentElement;return{send:function(d,e){b=y.createElement("script"),b.async=!0,a.scriptCharset&&(b.charset=a.scriptCharset),b.src=a.url,b.onload=b.onreadystatechange=function(a,c){(c||!b.readyState||/loaded|complete/.test(b.readyState))&&(b.onload=b.onreadystatechange=null,b.parentNode&&b.parentNode.removeChild(b),b=null,c||e(200,"success"))},c.insertBefore(b,c.firstChild)},abort:function(){b&&b.onload(void 0,!0)}}}});var _b=[],ac=/(=)\?(?=&|\$)|\?\?/;m.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var a=_b.pop()||m.expando+"_"+vb++;return this[a]=!0,a}}),m.ajaxPrefilter("json jsonp",function(b,c,d){var e,f,g,h=b.jsonp!==!1&&(ac.test(b.url)?"url":"string"==typeof b.data&&!(b.contentType||"").indexOf("application/x-www-form-urlencoded")&&ac.test(b.data)&&"data");return h||"jsonp"===b.dataTypes[0]?(e=b.jsonpCallback=m.isFunction(b.jsonpCallback)?b.jsonpCallback():b.jsonpCallback,h?b[h]=b[h].replace(ac,"\$1"+e):b.jsonp!==!1&&(b.url+=(wb.test(b.url)?"&":"?")+b.jsonp+"="+e),b.converters["script json"]=function(){return g||m.error(e+" was not called"),g[0]},b.dataTypes[0]="json",f=a[e],a[e]=function(){g=arguments},d.always(function(){a[e]=f,b[e]&&(b.jsonpCallback=c.jsonpCallback,_b.push(e)),g&&m.isFunction(f)&&f(g[0]),g=f=void 0}),"script"):void 0}),m.parseHTML=function(a,b,c){if(!a||"string"!=typeof a)return null;"boolean"==typeof b&&(c=b,b=!1),b=b||y;var d=u.exec(a),e=!c&&[];return d?[b.createElement(d[1])]:(d=m.buildFragment([a],b,e),e&&e.length&&m(e).remove(),m.merge([],d.childNodes))};var bc=m.fn.load;m.fn.load=function(a,b,c){if("string"!=typeof a&&bc)return bc.apply(this,arguments);var d,e,f,g=this,h=a.indexOf(" ");return h>=0&&(d=m.trim(a.slice(h,a.length)),a=a.slice(0,h)),m.isFunction(b)?(c=b,b=void 0):b&&"object"==typeof b&&(f="POST"),g.length>0&&m.ajax({url:a,type:f,dataType:"html",data:b}).done(function(a){e=arguments,g.html(d?m("<div>").append(m.parseHTML(a)).find(d):a)}).complete(c&&function(a,b){g.each(c,e||[a.responseText,b,a])}),this},m.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(a,b){m.fn[b]=function(a){return this.on(b,a)}}),m.expr.filters.animated=function(a){return m.grep(m.timers,function(b){return a===b.elem}).length};var cc=a.document.documentElement;function dc(a){return m.isWindow(a)?a:9===a.nodeType?a.defaultView||a.parentWindow:!1}m.offset={setOffset:function(a,b,c){var d,e,f,g,h,i,j,k=m.css(a,"position"),l=m(a),n={};"static"===k&&(a.style.position="relative"),h=l.offset(),f=m.css(a,"top"),i=m.css(a,"left"),j=("absolute"===k||"fixed"===k)&&m.inArray("auto",[f,i])>-1,j?(d=l.position(),g=d.top,e=d.left):(g=parseFloat(f)||0,e=parseFloat(i)||0),m.isFunction(b)&&(b=b.call(a,c,h)),null!=b.top&&(n.top=b.top-h.top+g),null!=b.left&&(n.left=b.left-h.left+e),"using"in b?b.using.call(a,n):l.css(n)}},m.fn.extend({offset:function(a){if(arguments.length)return void 0===a?this:this.each(function(b){m.offset.setOffset(this,a,b)});var b,c,d={top:0,left:0},e=this[0],f=e&&e.ownerDocument;if(f)return b=f.documentElement,m.contains(b,e)?(typeof e.getBoundingClientRect!==K&&(d=e.getBoundingClientRect()),c=dc(f),{top:d.top+(c.pageYOffset||b.scrollTop)-(b.clientTop||0),left:d.left+(c.pageXOffset||b.scrollLeft)-(b.clientLeft||0)}):d},position:function(){if(this[0]){var a,b,c={top:0,left:0},d=this[0];return"fixed"===m.css(d,"position")?b=d.getBoundingClientRect():(a=this.offsetParent(),b=this.offset(),m.nodeName(a[0],"html")||(c=a.offset()),c.top+=m.css(a[0],"borderTopWidth",!0),c.left+=m.css(a[0],"borderLeftWidth",!0)),{top:b.top-c.top-m.css(d,"marginTop",!0),left:b.left-c.left-m.css(d,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var a=this.offsetParent||cc;while(a&&!m.nodeName(a,"html")&&"static"===m.css(a,"position"))a=a.offsetParent;return a||cc})}}),m.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(a,b){var c=/Y/.test(b);m.fn[a]=function(d){return V(this,function(a,d,e){var f=dc(a);return void 0===e?f?b in f?f[b]:f.document.documentElement[d]:a[d]:void(f?f.scrollTo(c?m(f).scrollLeft():e,c?e:m(f).scrollTop()):a[d]=e)},a,d,arguments.length,null)}}),m.each(["top","left"],function(a,b){m.cssHooks[b]=La(k.pixelPosition,function(a,c){return c?(c=Ja(a,b),Ha.test(c)?m(a).position()[b]+"px":c):void 0})}),m.each({Height:"height",Width:"width"},function(a,b){m.each({padding:"inner"+a,content:b,"":"outer"+a},function(c,d){m.fn[d]=function(d,e){var f=arguments.length&&(c||"boolean"!=typeof d),g=c||(d===!0||e===!0?"margin":"border");return V(this,function(b,c,d){var e;return m.isWindow(b)?b.document.documentElement["client"+a]:9===b.nodeType?(e=b.documentElement,Math.max(b.body["scroll"+a],e["scroll"+a],b.body["offset"+a],e["offset"+a],e["client"+a])):void 0===d?m.css(b,c,g):m.style(b,c,d,g)},b,f?d:void 0,f,null)}})}),m.fn.size=function(){return this.length},m.fn.andSelf=m.fn.addBack,"function"==typeof define&&define.amd&&define("jquery",[],function(){return m});var ec=a.jQuery,fc=a.\$;return m.noConflict=function(b){return a.\$===m&&(a.\$=fc),b&&a.jQuery===m&&(a.jQuery=ec),m},typeof b===K&&(a.jQuery=a.\$=m),m});
</script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
return new Za.prototype.init(a,b,c,d,e)}m.Tween=Za,Za.prototype={constructor:Za,init:function(a,b,c,d,e,f){this.elem=a,this.prop=c,this.easing=e||"swing",this.options=b,this.start=this.now=this.cur(),this.end=d,this.unit=f||(m.cssNumber[c]?"":"px")},cur:function(){var a=Za.propHooks[this.prop];return a&&a.get?a.get(this):Za.propHooks._default.get(this)},run:function(a){var b,c=Za.propHooks[this.prop];return this.options.duration?this.pos=b=m.easing[this.easing](a,this.options.duration*a,0,1,this.options.duration):this.pos=b=a,this.now=(this.end-this.start)*b+this.start,this.options.step&&this.options.step.call(this.elem,this.now,this),c&&c.set?c.set(this):Za.propHooks._default.set(this),this}},Za.prototype.init.prototype=Za.prototype,Za.propHooks={_default:{get:function(a){var b;return null==a.elem[a.prop]||a.elem.style&&null!=a.elem.style[a.prop]?(b=m.css(a.elem,a.prop,""),b&&"auto"!==b?b:0):a.elem[a.prop]},set:function(a){m.fx.step[a.prop]?m.fx.step[a.prop](a):a.elem.style&&(null!=a.elem.style[m.cssProps[a.prop]]||m.cssHooks[a.prop])?m.style(a.elem,a.prop,a.now+a.unit):a.elem[a.prop]=a.now}}},Za.propHooks.scrollTop=Za.propHooks.scrollLeft={set:function(a){a.elem.nodeType&&a.elem.parentNode&&(a.elem[a.prop]=a.now)}},m.easing={linear:function(a){return a},swing:function(a){return.5-Math.cos(a*Math.PI)/2}},m.fx=Za.prototype.init,m.fx.step={};var \$a,_a,ab=/^(?:toggle|show|hide)\$/,bb=new RegExp("^(?:([+-])=|)("+S+")([a-z%]*)\$","i"),cb=/queueHooks\$/,db=[ib],eb={"*":[function(a,b){var c=this.createTween(a,b),d=c.cur(),e=bb.exec(b),f=e&&e[3]||(m.cssNumber[a]?"":"px"),g=(m.cssNumber[a]||"px"!==f&&+d)&&bb.exec(m.css(c.elem,a)),h=1,i=20;if(g&&g[3]!==f){f=f||g[3],e=e||[],g=+d||1;do h=h||".5",g/=h,m.style(c.elem,a,g+f);while(h!==(h=c.cur()/d)&&1!==h&&--i)}return e&&(g=c.start=+g||+d||0,c.unit=f,c.end=e[1]?g+(e[1]+1)*e[2]:+e[2]),c}]};function fb(){return setTimeout(function(){\$a=void 0}),\$a=m.now()}function gb(a,b){var c,d={height:a},e=0;for(b=b?1:0;4>e;e+=2-b)c=T[e],d["margin"+c]=d["padding"+c]=a;return b&&(d.opacity=d.width=a),d}function hb(a,b,c){for(var d,e=(eb[b]||[]).concat(eb["*"]),f=0,g=e.length;g>f;f++)if(d=e[f].call(c,b,a))return d}function ib(a,b,c){var d,e,f,g,h,i,j,l,n=this,o={},p=a.style,q=a.nodeType&&U(a),r=m._data(a,"fxshow");c.queue||(h=m._queueHooks(a,"fx"),null==h.unqueued&&(h.unqueued=0,i=h.empty.fire,h.empty.fire=function(){h.unqueued||i()}),h.unqueued++,n.always(function(){n.always(function(){h.unqueued--,m.queue(a,"fx").length||h.empty.fire()})})),1===a.nodeType&&("height"in b||"width"in b)&&(c.overflow=[p.overflow,p.overflowX,p.overflowY],j=m.css(a,"display"),l="none"===j?m._data(a,"olddisplay")||Fa(a.nodeName):j,"inline"===l&&"none"===m.css(a,"float")&&(k.inlineBlockNeedsLayout&&"inline"!==Fa(a.nodeName)?p.zoom=1:p.display="inline-block")),c.overflow&&(p.overflow="hidden",k.shrinkWrapBlocks()||n.always(function(){p.overflow=c.overflow[0],p.overflowX=c.overflow[1],p.overflowY=c.overflow[2]}));for(d in b)if(e=b[d],ab.exec(e)){if(delete b[d],f=f||"toggle"===e,e===(q?"hide":"show")){if("show"!==e||!r||void 0===r[d])continue;q=!0}o[d]=r&&r[d]||m.style(a,d)}else j=void 0;if(m.isEmptyObject(o))"inline"===("none"===j?Fa(a.nodeName):j)&&(p.display=j);else{r?"hidden"in r&&(q=r.hidden):r=m._data(a,"fxshow",{}),f&&(r.hidden=!q),q?m(a).show():n.done(function(){m(a).hide()}),n.done(function(){var b;m._removeData(a,"fxshow");for(b in o)m.style(a,b,o[b])});for(d in o)g=hb(q?r[d]:0,d,n),d in r||(r[d]=g.start,q&&(g.end=g.start,g.start="width"===d||"height"===d?1:0))}}function jb(a,b){var c,d,e,f,g;for(c in a)if(d=m.camelCase(c),e=b[d],f=a[c],m.isArray(f)&&(e=f[1],f=a[c]=f[0]),c!==d&&(a[d]=f,delete a[c]),g=m.cssHooks[d],g&&"expand"in g){f=g.expand(f),delete a[d];for(c in f)c in a||(a[c]=f[c],b[c]=e)}else b[d]=e}function kb(a,b,c){var d,e,f=0,g=db.length,h=m.Deferred().always(function(){delete i.elem}),i=function(){if(e)return!1;for(var b=\$a||fb(),c=Math.max(0,j.startTime+j.duration-b),d=c/j.duration||0,f=1-d,g=0,i=j.tweens.length;i>g;g++)j.tweens[g].run(f);return h.notifyWith(a,[j,f,c]),1>f&&i?c:(h.resolveWith(a,[j]),!1)},j=h.promise({elem:a,props:m.extend({},b),opts:m.extend(!0,{specialEasing:{}},c),originalProperties:b,originalOptions:c,startTime:\$a||fb(),duration:c.duration,tweens:[],createTween:function(b,c){var d=m.Tween(a,j.opts,b,c,j.opts.specialEasing[b]||j.opts.easing);return j.tweens.push(d),d},stop:function(b){var c=0,d=b?j.tweens.length:0;if(e)return this;for(e=!0;d>c;c++)j.tweens[c].run(1);return b?h.resolveWith(a,[j,b]):h.rejectWith(a,[j,b]),this}}),k=j.props;for(jb(k,j.opts.specialEasing);g>f;f++)if(d=db[f].call(j,a,k,j.opts))return d;return m.map(k,hb,j),m.isFunction(j.opts.start)&&j.opts.start.call(a,j),m.fx.timer(m.extend(i,{elem:a,anim:j,queue:j.opts.queue})),j.progress(j.opts.progress).done(j.opts.done,j.opts.complete).fail(j.opts.fail).always(j.opts.always)}m.Animation=m.extend(kb,{tweener:function(a,b){m.isFunction(a)?(b=a,a=["*"]):a=a.split(" ");for(var c,d=0,e=a.length;e>d;d++)c=a[d],eb[c]=eb[c]||[],eb[c].unshift(b)},prefilter:function(a,b){b?db.unshift(a):db.push(a)}}),m.speed=function(a,b,c){var d=a&&"object"==typeof a?m.extend({},a):{complete:c||!c&&b||m.isFunction(a)&&a,duration:a,easing:c&&b||b&&!m.isFunction(b)&&b};return d.duration=m.fx.off?0:"number"==typeof d.duration?d.duration:d.duration in m.fx.speeds?m.fx.speeds[d.duration]:m.fx.speeds._default,(null==d.queue||d.queue===!0)&&(d.queue="fx"),d.old=d.complete,d.complete=function(){m.isFunction(d.old)&&d.old.call(this),d.queue&&m.dequeue(this,d.queue)},d},m.fn.extend({fadeTo:function(a,b,c,d){return this.filter(U).css("opacity",0).show().end().animate({opacity:b},a,c,d)},animate:function(a,b,c,d){var e=m.isEmptyObject(a),f=m.speed(b,c,d),g=function(){var b=kb(this,m.extend({},a),f);(e||m._data(this,"finish"))&&b.stop(!0)};return g.finish=g,e||f.queue===!1?this.each(g):this.queue(f.queue,g)},stop:function(a,b,c){var d=function(a){var b=a.stop;delete a.stop,b(c)};return"string"!=typeof a&&(c=b,b=a,a=void 0),b&&a!==!1&&this.queue(a||"fx",[]),this.each(function(){var b=!0,e=null!=a&&a+"queueHooks",f=m.timers,g=m._data(this);if(e)g[e]&&g[e].stop&&d(g[e]);else for(e in g)g[e]&&g[e].stop&&cb.test(e)&&d(g[e]);for(e=f.length;e--;)f[e].elem!==this||null!=a&&f[e].queue!==a||(f[e].anim.stop(c),b=!1,f.splice(e,1));(b||!c)&&m.dequeue(this,a)})},finish:function(a){return a!==!1&&(a=a||"fx"),this.each(function(){var b,c=m._data(this),d=c[a+"queue"],e=c[a+"queueHooks"],f=m.timers,g=d?d.length:0;for(c.finish=!0,m.queue(this,a,[]),e&&e.stop&&e.stop.call(this,!0),b=f.length;b--;)f[b].elem===this&&f[b].queue===a&&(f[b].anim.stop(!0),f.splice(b,1));for(b=0;g>b;b++)d[b]&&d[b].finish&&d[b].finish.call(this);delete c.finish})}}),m.each(["toggle","show","hide"],function(a,b){var c=m.fn[b];m.fn[b]=function(a,d,e){return null==a||"boolean"==typeof a?c.apply(this,arguments):this.animate(gb(b,!0),a,d,e)}}),m.each({slideDown:gb("show"),slideUp:gb("hide"),slideToggle:gb("toggle"),fadeIn:{opacity:"show"},fadeOut:{opacity:"hide"},fadeToggle:{opacity:"toggle"}},function(a,b){m.fn[a]=function(a,c,d){return this.animate(b,a,c,d)}}),m.timers=[],m.fx.tick=function(){var a,b=m.timers,c=0;for(\$a=m.now();c<b.length;c++)a=b[c],a()||b[c]!==a||b.splice(c--,1);b.length||m.fx.stop(),\$a=void 0},m.fx.timer=function(a){m.timers.push(a),a()?m.fx.start():m.timers.pop()},m.fx.interval=13,m.fx.start=function(){_a||(_a=setInterval(m.fx.tick,m.fx.interval))},m.fx.stop=function(){clearInterval(_a),_a=null},m.fx.speeds={slow:600,fast:200,_default:400},m.fn.delay=function(a,b){return a=m.fx?m.fx.speeds[a]||a:a,b=b||"fx",this.queue(b,function(b,c){var d=setTimeout(b,a);c.stop=function(){clearTimeout(d)}})},function(){var a,b,c,d,e;b=y.createElement("div"),b.setAttribute("className","t"),b.innerHTML=" <link/><table></table><a href='/a'>a</a><input type='checkbox'/>",d=b.getElementsByTagName("a")[0],c=y.createElement("select"),e=c.appendChild(y.createElement("option")),a=b.getElementsByTagName("input")[0],d.style.cssText="top:1px",k.getSetAttribute="t"!==b.className,k.style=/top/.test(d.getAttribute("style")),k.hrefNormalized="/a"===d.getAttribute("href"),k.checkOn=!!a.value,k.optSelected=e.selected,k.enctype=!!y.createElement("form").enctype,c.disabled=!0,k.optDisabled=!e.disabled,a=y.createElement("input"),a.setAttribute("value",""),k.input=""===a.getAttribute("value"),a.value="t",a.setAttribute("type","radio"),k.radioValue="t"===a.value}();var lb=/\r/g;m.fn.extend({val:function(a){var b,c,d,e=this[0];{if(arguments.length)return d=m.isFunction(a),this.each(function(c){var e;1===this.nodeType&&(e=d?a.call(this,c,m(this).val()):a,null==e?e="":"number"==typeof e?e+="":m.isArray(e)&&(e=m.map(e,function(a){return null==a?"":a+""})),b=m.valHooks[this.type]||m.valHooks[this.nodeName.toLowerCase()],b&&"set"in b&&void 0!==b.set(this,e,"value")||(this.value=e))});if(e)return b=m.valHooks[e.type]||m.valHooks[e.nodeName.toLowerCase()],b&&"get"in b&&void 0!==(c=b.get(e,"value"))?c:(c=e.value,"string"==typeof c?c.replace(lb,""):null==c?"":c)}}}),m.extend({valHooks:{option:{get:function(a){var b=m.find.attr(a,"value");return null!=b?b:m.trim(m.text(a))}},select:{get:function(a){for(var b,c,d=a.options,e=a.selectedIndex,f="select-one"===a.type||0>e,g=f?null:[],h=f?e+1:d.length,i=0>e?h:f?e:0;h>i;i++)if(c=d[i],!(!c.selected&&i!==e||(k.optDisabled?c.disabled:null!==c.getAttribute("disabled"))||c.parentNode.disabled&&m.nodeName(c.parentNode,"optgroup"))){if(b=m(c).val(),f)return b;g.push(b)}return g},set:function(a,b){var c,d,e=a.options,f=m.makeArray(b),g=e.length;while(g--)if(d=e[g],m.inArray(m.valHooks.option.get(d),f)>=0)try{d.selected=c=!0}catch(h){d.scrollHeight}else d.selected=!1;return c||(a.selectedIndex=-1),e}}}}),m.each(["radio","checkbox"],function(){m.valHooks[this]={set:function(a,b){return m.isArray(b)?a.checked=m.inArray(m(a).val(),b)>=0:void 0}},k.checkOn||(m.valHooks[this].get=function(a){return null===a.getAttribute("value")?"on":a.value})});var mb,nb,ob=m.expr.attrHandle,pb=/^(?:checked|selected)\$/i,qb=k.getSetAttribute,rb=k.input;m.fn.extend({attr:function(a,b){return V(this,m.attr,a,b,arguments.length>1)},removeAttr:function(a){return this.each(function(){m.removeAttr(this,a)})}}),m.extend({attr:function(a,b,c){var d,e,f=a.nodeType;if(a&&3!==f&&8!==f&&2!==f)return typeof a.getAttribute===K?m.prop(a,b,c):(1===f&&m.isXMLDoc(a)||(b=b.toLowerCase(),d=m.attrHooks[b]||(m.expr.match.bool.test(b)?nb:mb)),void 0===c?d&&"get"in d&&null!==(e=d.get(a,b))?e:(e=m.find.attr(a,b),null==e?void 0:e):null!==c?d&&"set"in d&&void 0!==(e=d.set(a,c,b))?e:(a.setAttribute(b,c+""),c):void m.removeAttr(a,b))},removeAttr:function(a,b){var c,d,e=0,f=b&&b.match(E);if(f&&1===a.nodeType)while(c=f[e++])d=m.propFix[c]||c,m.expr.match.bool.test(c)?rb&&qb||!pb.test(c)?a[d]=!1:a[m.camelCase("default-"+c)]=a[d]=!1:m.attr(a,c,""),a.removeAttribute(qb?c:d)},attrHooks:{type:{set:function(a,b){if(!k.radioValue&&"radio"===b&&m.nodeName(a,"input")){var c=a.value;return a.setAttribute("type",b),c&&(a.value=c),b}}}}}),nb={set:function(a,b,c){return b===!1?m.removeAttr(a,c):rb&&qb||!pb.test(c)?a.setAttribute(!qb&&m.propFix[c]||c,c):a[m.camelCase("default-"+c)]=a[c]=!0,c}},m.each(m.expr.match.bool.source.match(/\w+/g),function(a,b){var c=ob[b]||m.find.attr;ob[b]=rb&&qb||!pb.test(b)?function(a,b,d){var e,f;return d||(f=ob[b],ob[b]=e,e=null!=c(a,b,d)?b.toLowerCase():null,ob[b]=f),e}:function(a,b,c){return c?void 0:a[m.camelCase("default-"+b)]?b.toLowerCase():null}}),rb&&qb||(m.attrHooks.value={set:function(a,b,c){return m.nodeName(a,"input")?void(a.defaultValue=b):mb&&mb.set(a,b,c)}}),qb||(mb={set:function(a,b,c){var d=a.getAttributeNode(c);return d||a.setAttributeNode(d=a.ownerDocument.createAttribute(c)),d.value=b+="","value"===c||b===a.getAttribute(c)?b:void 0}},ob.id=ob.name=ob.coords=function(a,b,c){var d;return c?void 0:(d=a.getAttributeNode(b))&&""!==d.value?d.value:null},m.valHooks.button={get:function(a,b){var c=a.getAttributeNode(b);return c&&c.specified?c.value:void 0},set:mb.set},m.attrHooks.contenteditable={set:function(a,b,c){mb.set(a,""===b?!1:b,c)}},m.each(["width","height"],function(a,b){m.attrHooks[b]={set:function(a,c){return""===c?(a.setAttribute(b,"auto"),c):void 0}}})),k.style||(m.attrHooks.style={get:function(a){return a.style.cssText||void 0},set:function(a,b){return a.style.cssText=b+""}});var sb=/^(?:input|select|textarea|button|object)\$/i,tb=/^(?:a|area)\$/i;m.fn.extend({prop:function(a,b){return V(this,m.prop,a,b,arguments.length>1)},removeProp:function(a){return a=m.propFix[a]||a,this.each(function(){try{this[a]=void 0,delete this[a]}catch(b){}})}}),m.extend({propFix:{"for":"htmlFor","class":"className"},prop:function(a,b,c){var d,e,f,g=a.nodeType;if(a&&3!==g&&8!==g&&2!==g)return f=1!==g||!m.isXMLDoc(a),f&&(b=m.propFix[b]||b,e=m.propHooks[b]),void 0!==c?e&&"set"in e&&void 0!==(d=e.set(a,c,b))?d:a[b]=c:e&&"get"in e&&null!==(d=e.get(a,b))?d:a[b]},propHooks:{tabIndex:{get:function(a){var b=m.find.attr(a,"tabindex");return b?parseInt(b,10):sb.test(a.nodeName)||tb.test(a.nodeName)&&a.href?0:-1}}}}),k.hrefNormalized||m.each(["href","src"],function(a,b){m.propHooks[b]={get:function(a){return a.getAttribute(b,4)}}}),k.optSelected||(m.propHooks.selected={get:function(a){var b=a.parentNode;return b&&(b.selectedIndex,b.parentNode&&b.parentNode.selectedIndex),null}}),m.each(["tabIndex","readOnly","maxLength","cellSpacing","cellPadding","rowSpan","colSpan","useMap","frameBorder","contentEditable"],function(){m.propFix[this.toLowerCase()]=this}),k.enctype||(m.propFix.enctype="encoding");var ub=/[\t\r\n\f]/g;m.fn.extend({addClass:function(a){var b,c,d,e,f,g,h=0,i=this.length,j="string"==typeof a&&a;if(m.isFunction(a))return this.each(function(b){m(this).addClass(a.call(this,b,this.className))});if(j)for(b=(a||"").match(E)||[];i>h;h++)if(c=this[h],d=1===c.nodeType&&(c.className?(" "+c.className+" ").replace(ub," "):" ")){f=0;while(e=b[f++])d.indexOf(" "+e+" ")<0&&(d+=e+" ");g=m.trim(d),c.className!==g&&(c.className=g)}return this},removeClass:function(a){var b,c,d,e,f,g,h=0,i=this.length,j=0===arguments.length||"string"==typeof a&&a;if(m.isFunction(a))return this.each(function(b){m(this).removeClass(a.call(this,b,this.className))});if(j)for(b=(a||"").match(E)||[];i>h;h++)if(c=this[h],d=1===c.nodeType&&(c.className?(" "+c.className+" ").replace(ub," "):"")){f=0;while(e=b[f++])while(d.indexOf(" "+e+" ")>=0)d=d.replace(" "+e+" "," ");g=a?m.trim(d):"",c.className!==g&&(c.className=g)}return this},toggleClass:function(a,b){var c=typeof a;return"boolean"==typeof b&&"string"===c?b?this.addClass(a):this.removeClass(a):this.each(m.isFunction(a)?function(c){m(this).toggleClass(a.call(this,c,this.className,b),b)}:function(){if("string"===c){var b,d=0,e=m(this),f=a.match(E)||[];while(b=f[d++])e.hasClass(b)?e.removeClass(b):e.addClass(b)}else(c===K||"boolean"===c)&&(this.className&&m._data(this,"__className__",this.className),this.className=this.className||a===!1?"":m._data(this,"__className__")||"")})},hasClass:function(a){for(var b=" "+a+" ",c=0,d=this.length;d>c;c++)if(1===this[c].nodeType&&(" "+this[c].className+" ").replace(ub," ").indexOf(b)>=0)return!0;return!1}}),m.each("blur focus focusin focusout load resize scroll unload click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup error contextmenu".split(" "),function(a,b){m.fn[b]=function(a,c){return arguments.length>0?this.on(b,null,a,c):this.trigger(b)}}),m.fn.extend({hover:function(a,b){return this.mouseenter(a).mouseleave(b||a)},bind:function(a,b,c){return this.on(a,null,b,c)},unbind:function(a,b){return this.off(a,null,b)},delegate:function(a,b,c,d){return this.on(b,a,c,d)},undelegate:function(a,b,c){return 1===arguments.length?this.off(a,"**"):this.off(b,a||"**",c)}});var vb=m.now(),wb=/\?/,xb=/(,)|(\[|{)|(}|])|"(?:[^"\\\r\n]|\\["\\\/bfnrt]|\\u[\da-fA-F]{4})*"\s*:?|true|false|null|-?(?!0\d)\d+(?:\.\d+|)(?:[eE][+-]?\d+|)/g;m.parseJSON=function(b){if(a.JSON&&a.JSON.parse)return a.JSON.parse(b+"");var c,d=null,e=m.trim(b+"");return e&&!m.trim(e.replace(xb,function(a,b,e,f){return c&&b&&(d=0),0===d?a:(c=e||b,d+=!f-!e,"")}))?Function("return "+e)():m.error("Invalid JSON: "+b)},m.parseXML=function(b){var c,d;if(!b||"string"!=typeof b)return null;try{a.DOMParser?(d=new DOMParser,c=d.parseFromString(b,"text/xml")):(c=new ActiveXObject("Microsoft.XMLDOM"),c.async="false",c.loadXML(b))}catch(e){c=void 0}return c&&c.documentElement&&!c.getElementsByTagName("parsererror").length||m.error("Invalid XML: "+b),c};var yb,zb,Ab=/#.*\$/,Bb=/([?&])_=[^&]*/,Cb=/^(.*?):[ \t]*([^\r\n]*)\r?\$/gm,Db=/^(?:about|app|app-storage|.+-extension|file|res|widget):\$/,Eb=/^(?:GET|HEAD)\$/,Fb=/^\/\//,Gb=/^([\w.+-]+:)(?:\/\/(?:[^\/?#]*@|)([^\/?#:]*)(?::(\d+)|)|)/,Hb={},Ib={},Jb="*/".concat("*");try{zb=location.href}catch(Kb){zb=y.createElement("a"),zb.href="",zb=zb.href}yb=Gb.exec(zb.toLowerCase())||[];function Lb(a){return function(b,c){"string"!=typeof b&&(c=b,b="*");var d,e=0,f=b.toLowerCase().match(E)||[];if(m.isFunction(c))while(d=f[e++])"+"===d.charAt(0)?(d=d.slice(1)||"*",(a[d]=a[d]||[]).unshift(c)):(a[d]=a[d]||[]).push(c)}}function Mb(a,b,c,d){var e={},f=a===Ib;function g(h){var i;return e[h]=!0,m.each(a[h]||[],function(a,h){var j=h(b,c,d);return"string"!=typeof j||f||e[j]?f?!(i=j):void 0:(b.dataTypes.unshift(j),g(j),!1)}),i}return g(b.dataTypes[0])||!e["*"]&&g("*")}function Nb(a,b){var c,d,e=m.ajaxSettings.flatOptions||{};for(d in b)void 0!==b[d]&&((e[d]?a:c||(c={}))[d]=b[d]);return c&&m.extend(!0,a,c),a}function Ob(a,b,c){var d,e,f,g,h=a.contents,i=a.dataTypes;while("*"===i[0])i.shift(),void 0===e&&(e=a.mimeType||b.getResponseHeader("Content-Type"));if(e)for(g in h)if(h[g]&&h[g].test(e)){i.unshift(g);break}if(i[0]in c)f=i[0];else{for(g in c){if(!i[0]||a.converters[g+" "+i[0]]){f=g;break}d||(d=g)}f=f||d}return f?(f!==i[0]&&i.unshift(f),c[f]):void 0}function Pb(a,b,c,d){var e,f,g,h,i,j={},k=a.dataTypes.slice();if(k[1])for(g in a.converters)j[g.toLowerCase()]=a.converters[g];f=k.shift();while(f)if(a.responseFields[f]&&(c[a.responseFields[f]]=b),!i&&d&&a.dataFilter&&(b=a.dataFilter(b,a.dataType)),i=f,f=k.shift())if("*"===f)f=i;else if("*"!==i&&i!==f){if(g=j[i+" "+f]||j["* "+f],!g)for(e in j)if(h=e.split(" "),h[1]===f&&(g=j[i+" "+h[0]]||j["* "+h[0]])){g===!0?g=j[e]:j[e]!==!0&&(f=h[0],k.unshift(h[1]));break}if(g!==!0)if(g&&a["throws"])b=g(b);else try{b=g(b)}catch(l){return{state:"parsererror",error:g?l:"No conversion from "+i+" to "+f}}}return{state:"success",data:b}}m.extend({active:0,lastModified:{},etag:{},ajaxSettings:{url:zb,type:"GET",isLocal:Db.test(yb[1]),global:!0,processData:!0,async:!0,contentType:"application/x-www-form-urlencoded; charset=UTF-8",accepts:{"*":Jb,text:"text/plain",html:"text/html",xml:"application/xml, text/xml",json:"application/json, text/javascript"},contents:{xml:/xml/,html:/html/,json:/json/},responseFields:{xml:"responseXML",text:"responseText",json:"responseJSON"},converters:{"* text":String,"text html":!0,"text json":m.parseJSON,"text xml":m.parseXML},flatOptions:{url:!0,context:!0}},ajaxSetup:function(a,b){return b?Nb(Nb(a,m.ajaxSettings),b):Nb(m.ajaxSettings,a)},ajaxPrefilter:Lb(Hb),ajaxTransport:Lb(Ib),ajax:function(a,b){"object"==typeof a&&(b=a,a=void 0),b=b||{};var c,d,e,f,g,h,i,j,k=m.ajaxSetup({},b),l=k.context||k,n=k.context&&(l.nodeType||l.jquery)?m(l):m.event,o=m.Deferred(),p=m.Callbacks("once memory"),q=k.statusCode||{},r={},s={},t=0,u="canceled",v={readyState:0,getResponseHeader:function(a){var b;if(2===t){if(!j){j={};while(b=Cb.exec(f))j[b[1].toLowerCase()]=b[2]}b=j[a.toLowerCase()]}return null==b?null:b},getAllResponseHeaders:function(){return 2===t?f:null},setRequestHeader:function(a,b){var c=a.toLowerCase();return t||(a=s[c]=s[c]||a,r[a]=b),this},overrideMimeType:function(a){return t||(k.mimeType=a),this},statusCode:function(a){var b;if(a)if(2>t)for(b in a)q[b]=[q[b],a[b]];else v.always(a[v.status]);return this},abort:function(a){var b=a||u;return i&&i.abort(b),x(0,b),this}};if(o.promise(v).complete=p.add,v.success=v.done,v.error=v.fail,k.url=((a||k.url||zb)+"").replace(Ab,"").replace(Fb,yb[1]+"//"),k.type=b.method||b.type||k.method||k.type,k.dataTypes=m.trim(k.dataType||"*").toLowerCase().match(E)||[""],null==k.crossDomain&&(c=Gb.exec(k.url.toLowerCase()),k.crossDomain=!(!c||c[1]===yb[1]&&c[2]===yb[2]&&(c[3]||("http:"===c[1]?"80":"443"))===(yb[3]||("http:"===yb[1]?"80":"443")))),k.data&&k.processData&&"string"!=typeof k.data&&(k.data=m.param(k.data,k.traditional)),Mb(Hb,k,b,v),2===t)return v;h=m.event&&k.global,h&&0===m.active++&&m.event.trigger("ajaxStart"),k.type=k.type.toUpperCase(),k.hasContent=!Eb.test(k.type),e=k.url,k.hasContent||(k.data&&(e=k.url+=(wb.test(e)?"&":"?")+k.data,delete k.data),k.cache===!1&&(k.url=Bb.test(e)?e.replace(Bb,"\$1_="+vb++):e+(wb.test(e)?"&":"?")+"_="+vb++)),k.ifModified&&(m.lastModified[e]&&v.setRequestHeader("If-Modified-Since",m.lastModified[e]),m.etag[e]&&v.setRequestHeader("If-None-Match",m.etag[e])),(k.data&&k.hasContent&&k.contentType!==!1||b.contentType)&&v.setRequestHeader("Content-Type",k.contentType),v.setRequestHeader("Accept",k.dataTypes[0]&&k.accepts[k.dataTypes[0]]?k.accepts[k.dataTypes[0]]+("*"!==k.dataTypes[0]?", "+Jb+"; q=0.01":""):k.accepts["*"]);for(d in k.headers)v.setRequestHeader(d,k.headers[d]);if(k.beforeSend&&(k.beforeSend.call(l,v,k)===!1||2===t))return v.abort();u="abort";for(d in{success:1,error:1,complete:1})v[d](k[d]);if(i=Mb(Ib,k,b,v)){v.readyState=1,h&&n.trigger("ajaxSend",[v,k]),k.async&&k.timeout>0&&(g=setTimeout(function(){v.abort("timeout")},k.timeout));try{t=1,i.send(r,x)}catch(w){if(!(2>t))throw w;x(-1,w)}}else x(-1,"No Transport");function x(a,b,c,d){var j,r,s,u,w,x=b;2!==t&&(t=2,g&&clearTimeout(g),i=void 0,f=d||"",v.readyState=a>0?4:0,j=a>=200&&300>a||304===a,c&&(u=Ob(k,v,c)),u=Pb(k,u,v,j),j?(k.ifModified&&(w=v.getResponseHeader("Last-Modified"),w&&(m.lastModified[e]=w),w=v.getResponseHeader("etag"),w&&(m.etag[e]=w)),204===a||"HEAD"===k.type?x="nocontent":304===a?x="notmodified":(x=u.state,r=u.data,s=u.error,j=!s)):(s=x,(a||!x)&&(x="error",0>a&&(a=0))),v.status=a,v.statusText=(b||x)+"",j?o.resolveWith(l,[r,x,v]):o.rejectWith(l,[v,x,s]),v.statusCode(q),q=void 0,h&&n.trigger(j?"ajaxSuccess":"ajaxError",[v,k,j?r:s]),p.fireWith(l,[v,x]),h&&(n.trigger("ajaxComplete",[v,k]),--m.active||m.event.trigger("ajaxStop")))}return v},getJSON:function(a,b,c){return m.get(a,b,c,"json")},getScript:function(a,b){return m.get(a,void 0,b,"script")}}),m.each(["get","post"],function(a,b){m[b]=function(a,c,d,e){return m.isFunction(c)&&(e=e||d,d=c,c=void 0),m.ajax({url:a,type:b,dataType:e,data:c,success:d})}}),m._evalUrl=function(a){return m.ajax({url:a,type:"GET",dataType:"script",async:!1,global:!1,"throws":!0})},m.fn.extend({wrapAll:function(a){if(m.isFunction(a))return this.each(function(b){m(this).wrapAll(a.call(this,b))});if(this[0]){var b=m(a,this[0].ownerDocument).eq(0).clone(!0);this[0].parentNode&&b.insertBefore(this[0]),b.map(function(){var a=this;while(a.firstChild&&1===a.firstChild.nodeType)a=a.firstChild;return a}).append(this)}return this},wrapInner:function(a){return this.each(m.isFunction(a)?function(b){m(this).wrapInner(a.call(this,b))}:function(){var b=m(this),c=b.contents();c.length?c.wrapAll(a):b.append(a)})},wrap:function(a){var b=m.isFunction(a);return this.each(function(c){m(this).wrapAll(b?a.call(this,c):a)})},unwrap:function(){return this.parent().each(function(){m.nodeName(this,"body")||m(this).replaceWith(this.childNodes)}).end()}}),m.expr.filters.hidden=function(a){return a.offsetWidth<=0&&a.offsetHeight<=0||!k.reliableHiddenOffsets()&&"none"===(a.style&&a.style.display||m.css(a,"display"))},m.expr.filters.visible=function(a){return!m.expr.filters.hidden(a)};var Qb=/%20/g,Rb=/\[\]\$/,Sb=/\r?\n/g,Tb=/^(?:submit|button|image|reset|file)\$/i,Ub=/^(?:input|select|textarea|keygen)/i;function Vb(a,b,c,d){var e;if(m.isArray(b))m.each(b,function(b,e){c||Rb.test(a)?d(a,e):Vb(a+"["+("object"==typeof e?b:"")+"]",e,c,d)});else if(c||"object"!==m.type(b))d(a,b);else for(e in b)Vb(a+"["+e+"]",b[e],c,d)}m.param=function(a,b){var c,d=[],e=function(a,b){b=m.isFunction(b)?b():null==b?"":b,d[d.length]=encodeURIComponent(a)+"="+encodeURIComponent(b)};if(void 0===b&&(b=m.ajaxSettings&&m.ajaxSettings.traditional),m.isArray(a)||a.jquery&&!m.isPlainObject(a))m.each(a,function(){e(this.name,this.value)});else for(c in a)Vb(c,a[c],b,e);return d.join("&").replace(Qb,"+")},m.fn.extend({serialize:function(){return m.param(this.serializeArray())},serializeArray:function(){return this.map(function(){var a=m.prop(this,"elements");return a?m.makeArray(a):this}).filter(function(){var a=this.type;return this.name&&!m(this).is(":disabled")&&Ub.test(this.nodeName)&&!Tb.test(a)&&(this.checked||!W.test(a))}).map(function(a,b){var c=m(this).val();return null==c?null:m.isArray(c)?m.map(c,function(a){return{name:b.name,value:a.replace(Sb,"\r\n")}}):{name:b.name,value:c.replace(Sb,"\r\n")}}).get()}}),m.ajaxSettings.xhr=void 0!==a.ActiveXObject?function(){return!this.isLocal&&/^(get|post|head|put|delete|options)\$/i.test(this.type)&&Zb()||\$b()}:Zb;var Wb=0,Xb={},Yb=m.ajaxSettings.xhr();a.attachEvent&&a.attachEvent("onunload",function(){for(var a in Xb)Xb[a](void 0,!0)}),k.cors=!!Yb&&"withCredentials"in Yb,Yb=k.ajax=!!Yb,Yb&&m.ajaxTransport(function(a){if(!a.crossDomain||k.cors){var b;return{send:function(c,d){var e,f=a.xhr(),g=++Wb;if(f.open(a.type,a.url,a.async,a.username,a.password),a.xhrFields)for(e in a.xhrFields)f[e]=a.xhrFields[e];a.mimeType&&f.overrideMimeType&&f.overrideMimeType(a.mimeType),a.crossDomain||c["X-Requested-With"]||(c["X-Requested-With"]="XMLHttpRequest");for(e in c)void 0!==c[e]&&f.setRequestHeader(e,c[e]+"");f.send(a.hasContent&&a.data||null),b=function(c,e){var h,i,j;if(b&&(e||4===f.readyState))if(delete Xb[g],b=void 0,f.onreadystatechange=m.noop,e)4!==f.readyState&&f.abort();else{j={},h=f.status,"string"==typeof f.responseText&&(j.text=f.responseText);try{i=f.statusText}catch(k){i=""}h||!a.isLocal||a.crossDomain?1223===h&&(h=204):h=j.text?200:404}j&&d(h,i,j,f.getAllResponseHeaders())},a.async?4===f.readyState?setTimeout(b):f.onreadystatechange=Xb[g]=b:b()},abort:function(){b&&b(void 0,!0)}}}});function Zb(){try{return new a.XMLHttpRequest}catch(b){}}function \$b(){try{return new a.ActiveXObject("Microsoft.XMLHTTP")}catch(b){}}m.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/(?:java|ecma)script/},converters:{"text script":function(a){return m.globalEval(a),a}}}),m.ajaxPrefilter("script",function(a){void 0===a.cache&&(a.cache=!1),a.crossDomain&&(a.type="GET",a.global=!1)}),m.ajaxTransport("script",function(a){if(a.crossDomain){var b,c=y.head||m("head")[0]||y.documentElement;return{send:function(d,e){b=y.createElement("script"),b.async=!0,a.scriptCharset&&(b.charset=a.scriptCharset),b.src=a.url,b.onload=b.onreadystatechange=function(a,c){(c||!b.readyState||/loaded|complete/.test(b.readyState))&&(b.onload=b.onreadystatechange=null,b.parentNode&&b.parentNode.removeChild(b),b=null,c||e(200,"success"))},c.insertBefore(b,c.firstChild)},abort:function(){b&&b.onload(void 0,!0)}}}});var _b=[],ac=/(=)\?(?=&|\$)|\?\?/;m.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var a=_b.pop()||m.expando+"_"+vb++;return this[a]=!0,a}}),m.ajaxPrefilter("json jsonp",function(b,c,d){var e,f,g,h=b.jsonp!==!1&&(ac.test(b.url)?"url":"string"==typeof b.data&&!(b.contentType||"").indexOf("application/x-www-form-urlencoded")&&ac.test(b.data)&&"data");return h||"jsonp"===b.dataTypes[0]?(e=b.jsonpCallback=m.isFunction(b.jsonpCallback)?b.jsonpCallback():b.jsonpCallback,h?b[h]=b[h].replace(ac,"\$1"+e):b.jsonp!==!1&&(b.url+=(wb.test(b.url)?"&":"?")+b.jsonp+"="+e),b.converters["script json"]=function(){return g||m.error(e+" was not called"),g[0]},b.dataTypes[0]="json",f=a[e],a[e]=function(){g=arguments},d.always(function(){a[e]=f,b[e]&&(b.jsonpCallback=c.jsonpCallback,_b.push(e)),g&&m.isFunction(f)&&f(g[0]),g=f=void 0}),"script"):void 0}),m.parseHTML=function(a,b,c){if(!a||"string"!=typeof a)return null;"boolean"==typeof b&&(c=b,b=!1),b=b||y;var d=u.exec(a),e=!c&&[];return d?[b.createElement(d[1])]:(d=m.buildFragment([a],b,e),e&&e.length&&m(e).remove(),m.merge([],d.childNodes))};var bc=m.fn.load;m.fn.load=function(a,b,c){if("string"!=typeof a&&bc)return bc.apply(this,arguments);var d,e,f,g=this,h=a.indexOf(" ");return h>=0&&(d=m.trim(a.slice(h,a.length)),a=a.slice(0,h)),m.isFunction(b)?(c=b,b=void 0):b&&"object"==typeof b&&(f="POST"),g.length>0&&m.ajax({url:a,type:f,dataType:"html",data:b}).done(function(a){e=arguments,g.html(d?m("<div>").append(m.parseHTML(a)).find(d):a)}).complete(c&&function(a,b){g.each(c,e||[a.responseText,b,a])}),this},m.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(a,b){m.fn[b]=function(a){return this.on(b,a)}}),m.expr.filters.animated=function(a){return m.grep(m.timers,function(b){return a===b.elem}).length};var cc=a.document.documentElement;function dc(a){return m.isWindow(a)?a:9===a.nodeType?a.defaultView||a.parentWindow:!1}m.offset={setOffset:function(a,b,c){var d,e,f,g,h,i,j,k=m.css(a,"position"),l=m(a),n={};"static"===k&&(a.style.position="relative"),h=l.offset(),f=m.css(a,"top"),i=m.css(a,"left"),j=("absolute"===k||"fixed"===k)&&m.inArray("auto",[f,i])>-1,j?(d=l.position(),g=d.top,e=d.left):(g=parseFloat(f)||0,e=parseFloat(i)||0),m.isFunction(b)&&(b=b.call(a,c,h)),null!=b.top&&(n.top=b.top-h.top+g),null!=b.left&&(n.left=b.left-h.left+e),"using"in b?b.using.call(a,n):l.css(n)}},m.fn.extend({offset:function(a){if(arguments.length)return void 0===a?this:this.each(function(b){m.offset.setOffset(this,a,b)});var b,c,d={top:0,left:0},e=this[0],f=e&&e.ownerDocument;if(f)return b=f.documentElement,m.contains(b,e)?(typeof e.getBoundingClientRect!==K&&(d=e.getBoundingClientRect()),c=dc(f),{top:d.top+(c.pageYOffset||b.scrollTop)-(b.clientTop||0),left:d.left+(c.pageXOffset||b.scrollLeft)-(b.clientLeft||0)}):d},position:function(){if(this[0]){var a,b,c={top:0,left:0},d=this[0];return"fixed"===m.css(d,"position")?b=d.getBoundingClientRect():(a=this.offsetParent(),b=this.offset(),m.nodeName(a[0],"html")||(c=a.offset()),c.top+=m.css(a[0],"borderTopWidth",!0),c.left+=m.css(a[0],"borderLeftWidth",!0)),{top:b.top-c.top-m.css(d,"marginTop",!0),left:b.left-c.left-m.css(d,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var a=this.offsetParent||cc;while(a&&!m.nodeName(a,"html")&&"static"===m.css(a,"position"))a=a.offsetParent;return a||cc})}}),m.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(a,b){var c=/Y/.test(b);m.fn[a]=function(d){return V(this,function(a,d,e){var f=dc(a);return void 0===e?f?b in f?f[b]:f.document.documentElement[d]:a[d]:void(f?f.scrollTo(c?m(f).scrollLeft():e,c?e:m(f).scrollTop()):a[d]=e)},a,d,arguments.length,null)}}),m.each(["top","left"],function(a,b){m.cssHooks[b]=La(k.pixelPosition,function(a,c){return c?(c=Ja(a,b),Ha.test(c)?m(a).position()[b]+"px":c):void 0})}),m.each({Height:"height",Width:"width"},function(a,b){m.each({padding:"inner"+a,content:b,"":"outer"+a},function(c,d){m.fn[d]=function(d,e){var f=arguments.length&&(c||"boolean"!=typeof d),g=c||(d===!0||e===!0?"margin":"border");return V(this,function(b,c,d){var e;return m.isWindow(b)?b.document.documentElement["client"+a]:9===b.nodeType?(e=b.documentElement,Math.max(b.body["scroll"+a],e["scroll"+a],b.body["offset"+a],e["offset"+a],e["client"+a])):void 0===d?m.css(b,c,g):m.style(b,c,d,g)},b,f?d:void 0,f,null)}})}),m.fn.size=function(){return this.length},m.fn.andSelf=m.fn.addBack,"function"==typeof define&&define.amd&&define("jquery",[],function(){return m});var ec=a.jQuery,fc=a.\$;return m.noConflict=function(b){return a.\$===m&&(a.\$=fc),b&&a.jQuery===m&&(a.jQuery=ec),m},typeof b===K&&(a.jQuery=a.\$=m),m});
</script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
-<style type="text/css">html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}article,aside,details,figcaption,figure,footer,header,hgroup,main,menu,nav,section,summary{display:block}audio,canvas,progress,video{display:inline-block;vertical-align:baseline}audio:not([controls]){display:none;height:0}[hidden],template{display:none}a{background-color:transparent}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}dfn{font-style:italic}h1{margin:.67em 0;font-size:2em}mark{color:#000;background:#ff0}small{font-size:80%}sub,sup{position:relative;font-size:75%;line-height:0;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}img{border:0}svg:not(:root){overflow:hidden}figure{margin:1em 40px}hr{height:0;-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box}pre{overflow:auto}code,kbd,pre,samp{font-family:monospace,monospace;font-size:1em}button,input,optgroup,select,textarea{margin:0;font:inherit;color:inherit}button{overflow:visible}button,select{text-transform:none}button,html input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer}button[disabled],html input[disabled]{cursor:default}button::-moz-focus-inner,input::-moz-focus-inner{padding:0;border:0}input{line-height:normal}input[type=checkbox],input[type=radio]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;padding:0}input[type=number]::-webkit-inner-spin-button,input[type=number]::-webkit-outer-spin-button{height:auto}input[type=search]{-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box;-webkit-appearance:textfield}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}fieldset{padding:.35em .625em .75em;margin:0 2px;border:1px solid silver}legend{padding:0;border:0}textarea{overflow:auto}optgroup{font-weight:700}table{border-spacing:0;border-collapse:collapse}td,th{padding:0}@media print{*,:after,:before{color:#000!important;text-shadow:none!important;background:0 0!important;-webkit-box-shadow:none!important;box-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}abbr[title]:after{content:" (" attr(title) ")"}a[href^="javascript:"]:after,a[href^="#"]:after{content:""}blockquote,pre{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}h2,h3,p{orphans:3;widows:3}h2,h3{page-break-after:avoid}.navbar{display:none}.btn>.caret,.dropup>.btn>.caret{border-top-color:#000!important}.label{border:1px solid #000}.table{border-collapse:collapse!important}.table td,.table th{background-color:#fff!important}.table-bordered td,.table-bordered th{border:1px solid #ddd!important}}@font-face{font-family:'Glyphicons Halflings';src:url(data:application/vnd.ms-fontobject;base64,n04AAEFNAAACAAIABAAAAAAABQAAAAAAAAABAJABAAAEAExQAAAAAAAAAAIAAAAAAAAAAAEAAAAAAAAAJxJ/LAAAAAAAAAAAAAAAAAAAAAAAACgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAAAADgBSAGUAZwB1AGwAYQByAAAAeABWAGUAcgBzAGkAbwBuACAAMQAuADAAMAA5ADsAUABTACAAMAAwADEALgAwADAAOQA7AGgAbwB0AGMAbwBuAHYAIAAxAC4AMAAuADcAMAA7AG0AYQBrAGUAbwB0AGYALgBsAGkAYgAyAC4ANQAuADUAOAAzADIAOQAAADgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzACAAUgBlAGcAdQBsAGEAcgAAAAAAQlNHUAAAAAAAAAAAAAAAAAAAAAADAKncAE0TAE0ZAEbuFM3pjM/SEdmjKHUbyow8ATBE40IvWA3vTu8LiABDQ+pexwUMcm1SMnNryctQSiI1K5ZnbOlXKmnVV5YvRe6RnNMFNCOs1KNVpn6yZhCJkRtVRNzEufeIq7HgSrcx4S8h/v4vnrrKc6oCNxmSk2uKlZQHBii6iKFoH0746ThvkO1kJHlxjrkxs+LWORaDQBEtiYJIR5IB9Bi1UyL4Rmr0BNigNkMzlKQmnofBHviqVzUxwdMb3NdCn69hy+pRYVKGVS/1tnsqv4LL7wCCPZZAZPT4aCShHjHJVNuXbmMrY5LeQaGnvAkXlVrJgKRAUdFjrWEah9XebPeQMj7KS7DIBAFt8ycgC5PLGUOHSE3ErGZCiViNLL5ZARfywnCoZaKQCu6NuFX42AEeKtKUGnr/Cm2Cy8tpFhBPMW5Fxi4Qm4TkDWh4IWFDClhU2hRWosUWqcKLlgyXB+lSHaWaHiWlBAR8SeSgSPCQxdVQgzUixWKSTrIQEbU94viDctkvX+VSjJuUmV8L4CXShI11esnp0pjWNZIyxKHS4wVQ2ime1P4RnhvGw0aDN1OLAXGERsB7buFpFGGBAre4QEQR0HOIO5oYH305G+KspT/FupEGGafCCwxSe6ZUa+073rXHnNdVXE6eWvibUS27XtRzkH838mYLMBmYysZTM0EM3A1fbpCBYFccN1B/EnCYu/TgCGmr7bMh8GfYL+BfcLvB0gRagC09w9elfldaIy/hNCBLRgBgtCC7jAF63wLSMAfbfAlEggYU0bUA7ACCJmTDpEmJtI78w4/BO7dN7JR7J7ZvbYaUbaILSQsRBiF3HGk5fEg6p9unwLvn98r+vnsV+372uf1xBLq4qU/45fTuqaAP+pssmCCCTF0mhEow8ZXZOS8D7Q85JsxZ+Azok7B7O/f6J8AzYBySZQB/QHYUSA+EeQhEWiS6AIQzgcsDiER4MjgMBAWDV4AgQ3g1eBgIdweCQmCjJEMkJ+PKRWyFHHmg1Wi/6xzUgA0LREoKJChwnQa9B+5RQZRB3IlBlkAnxyQNaANwHMowzlYSMCBgnbpzvqpl0iTJNCQidDI9ZrSYNIRBhHtUa5YHMHxyGEik9hDE0AKj72AbTCaxtHPUaKZdAZSnQTyjGqGLsmBStCejApUhg4uBMU6mATujEl+KdDPbI6Ag4vLr+hjY6lbjBeoLKnZl0UZgRX8gTySOeynZVz1wOq7e1hFGYIq+MhrGxDLak0PrwYzSXtcuyhXEhwOYofiW+EcI/jw8P6IY6ed+etAbuqKp5QIapT77LnAe505lMuqL79a0ut4rWexzFttsOsLDy7zvtQzcq3U1qabe7tB0wHWVXji+zDbo8x8HyIRUbXnwUcklFv51fvTymiV+MXLSmGH9d9+aXpD5X6lao41anWGig7IwIdnoBY2ht/pO9mClLo4NdXHAsefqWUKlXJkbqPOFhMoR4aiA1BXqhRNbB2Xwi+7u/jpAoOpKJ0UX24EsrzMfHXViakCNcKjBxuQX8BO0ZqjJ3xXzf+61t2VXOSgJ8xu65QKgtN6FibPmPYsXbJRHHqbgATcSZxBqGiDiU4NNNsYBsKD0MIP/OfKnlk/Lkaid/O2NbKeuQrwOB2Gq3YHyr6ALgzym5wIBnsdC1ZkoBFZSQXChZvlesPqvK2c5oHHT3Q65jYpNxnQcGF0EHbvYqoFw60WNlXIHQF2HQB7zD6lWjZ9rVqUKBXUT6hrkZOle0RFYII0V5ZYGl1JAP0Ud1fZZMvSomBzJ710j4Me8mjQDwEre5Uv2wQfk1ifDwb5ksuJQQ3xt423lbuQjvoIQByQrNDh1JxGFkOdlJvu/gFtuW0wR4cgd+ZKesSV7QkNE2kw6AV4hoIuC02LGmTomyf8PiO6CZzOTLTPQ+HW06H+tx+bQ8LmDYg1pTFrp2oJXgkZTyeRJZM0C8aE2LpFrNVDuhARsN543/FV6klQ6Tv1OoZGXLv0igKrl/CmJxRmX7JJbJ998VSIPQRyDBICzl4JJlYHbdql30NvYcOuZ7a10uWRrgoieOdgIm4rlq6vNOQBuqESLbXG5lzdJGHw2m0sDYmODXbYGTfSTGRKpssTO95fothJCjUGQgEL4yKoGAF/0SrpUDNn8CBgBcSDQByAeNkCXp4S4Ro2Xh4OeaGRgR66PVOsU8bc6TR5/xTcn4IVMLOkXSWiXxkZQCbvKfmoAvQaKjO3EDKwkwqHChCDEM5loQRPd5ACBki1TjF772oaQhQbQ5C0lcWXPFOzrfsDGUXGrpxasbG4iab6eByaQkQfm0VFlP0ZsDkvvqCL6QXMUwCjdMx1ZOyKhTJ7a1GWAdOUcJ8RSejxNVyGs31OKMyRyBVoZFjqIkmKlLQ5eHMeEL4MkUf23cQ/1SgRCJ1dk4UdBT7OoyuNgLs0oCd8RnrEIb6QdMxT2QjD4zMrJkfgx5aDMcA4orsTtKCqWb/Veyceqa5OGSmB28YwH4rFbkQaLoUN8OQQYnD3w2eXpI4ScQfbCUZiJ4yMOIKLyyTc7BQ4uXUw6Ee6/xM+4Y67ngNBknxIPwuppgIhFcwJyr6EIj+LzNj/mfR2vhhRlx0BILZoAYruF0caWQ7YxO66UmeguDREAFHYuC7HJviRgVO6ruJH59h/C/PkgSle8xNzZJULLWq9JMDTE2fjGE146a1Us6PZDGYle6ldWRqn/pdpgHKNGrGIdkRK+KPETT9nKT6kLyDI8xd9A1FgWmXWRAIHwZ37WyZHOVyCadJEmMVz0MadMjDrPho+EIochkVC2xgGiwwsQ6DMv2P7UXqT4x7CdcYGId2BJQQa85EQKmCmwcRejQ9Bm4oATENFPkxPXILHpMPUyWTI5rjNOsIlmEeMbcOCEqInpXACYQ9DDxmFo9vcmsDblcMtg4tqBerNngkIKaFJmrQAPnq1dEzsMXcwjcHdfdCibcAxxA+q/j9m3LM/O7WJka4tSidVCjsvo2lQ/2ewyoYyXwAYyr2PlRoR5MpgVmSUIrM3PQxXPbgjBOaDQFIyFMJvx3Pc5RSYj12ySVF9fwFPQu2e2KWVoL9q3Ayv3IzpGHUdvdPdrNUdicjsTQ2ISy7QU3DrEytIjvbzJnAkmANXjAFERA0MUoPF3/5KFmW14bBNOhwircYgMqoDpUMcDtCmBE82QM2YtdjVLB4kBuKho/bcwQdeboqfQartuU3CsCf+cXkgYAqp/0Ee3RorAZt0AvvOCSI4JICIlGlsV0bsSid/NIEALAAzb6HAgyWHBps6xAOwkJIGcB82CxRQq4sJf3FzA70A+TRqcqjEMETCoez3mkPcpnoALs0ugJY8kQwrC+JE5ik3w9rzrvDRjAQnqgEVvdGrNwlanR0SOKWzxOJOvLJhcd8Cl4AshACUkv9czdMkJCVQSQhp6kp7StAlpVRpK0t0SW6LHeBJnE2QchB5Ccu8kxRghZXGIgZIiSj7gEKMJDClcnX6hgoqJMwiQDigIXg3ioFLCgDgjPtYHYpsF5EiA4kcnN18MZtOrY866dEQAb0FB34OGKHGZQjwW/WDHA60cYFaI/PjpzquUqdaYGcIq+mLez3WLFFCtNBN2QJcrlcoELgiPku5R5dSlJFaCEqEZle1AQzAKC+1SotMcBNyQUFuRHRF6OlimSBgjZeTBCwLyc6A+P/oFRchXTz5ADknYJHxzrJ5pGuIKRQISU6WyKTBBjD8WozmVYWIsto1AS5rxzKlvJu4E/vwOiKxRtCWsDM+eTHUrmwrCK5BIfMzGkD+0Fk5LzBs0jMYXktNDblB06LMNJ09U8pzSLmo14MS0OMjcdrZ31pyQqxJJpRImlSvfYAK8inkYU52QY2FPEVsjoWewpwhRp5yAuNpkqhdb7ku9Seefl2D0B8SMTFD90xi4CSOwwZy9IKkpMtI3FmFUg3/kFutpQGNc3pCR7gvC4sgwbupDu3DyEN+W6YGLNM21jpB49irxy9BSlHrVDlnihGKHwPrbVFtc+h1rVQKZduxIyojccZIIcOCmhEnC7UkY68WXKQgLi2JCDQkQWJRQuk60hZp0D3rtCTINSeY9Ej2kIKYfGxwOs4j9qMM7fYZiipzgcf7TamnehqdhsiMiCawXnz4xAbyCkLAx5EGbo3Ax1u3dUIKnTxIaxwQTHehPl3V491H0+bC5zgpGz7Io+mjdhKlPJ01EeMpM7UsRJMi1nGjmJg35i6bQBAAxjO/ENJubU2mg3ONySEoWklCwdABETcs7ck3jgiuU9pcKKpbgn+3YlzV1FzIkB6pmEDOSSyDfPPlQskznctFji0kpgZjW5RZe6x9kYT4KJcXg0bNiCyif+pZACCyRMmYsfiKmN9tSO65F0R2OO6ytlEhY5Sj6uRKfFxw0ijJaAx/k3QgnAFSq27/2i4GEBA+UvTJKK/9eISNvG46Em5RZfjTYLdeD8kdXHyrwId/DQZUaMCY4gGbke2C8vfjgV/Y9kkRQOJIn/xM9INZSpiBnqX0Q9GlQPpPKAyO5y+W5NMPSRdBCUlmuxl40ZfMCnf2Cp044uI9WLFtCi4YVxKjuRCOBWIb4XbIsGdbo4qtMQnNOQz4XDSui7W/N6l54qOynCqD3DpWQ+mpD7C40D8BZEWGJX3tlAaZBMj1yjvDYKwCJBa201u6nBKE5UE+7QSEhCwrXfbRZylAaAkplhBWX50dumrElePyNMRYUrC99UmcSSNgImhFhDI4BXjMtiqkgizUGCrZ8iwFxU6fQ8GEHCFdLewwxYWxgScAYMdMLmcZR6b7rZl95eQVDGVoUKcRMM1ixXQtXNkBETZkVVPg8LoSrdetHzkuM7DjZRHP02tCxA1fmkXKF3VzfN1pc1cv/8lbTIkkYpqKM9VOhp65ktYk+Q46myFWBapDfyWUCnsnI00QTBQmuFjMZTcd0V2NQ768Fhpby04k2IzNR1wKabuGJqYWwSly6ocMFGTeeI+ejsWDYgEvr66QgqdcIbFYDNgsm0x9UHY6SCd5+7tpsLpKdvhahIDyYmEJQCqMqtCF6UlrE5GXRmbu+vtm3BFSxI6ND6UxIE7GsGMgWqghXxSnaRJuGFveTcK5ZVSPJyjUxe1dKgI6kNF7EZhIZs8y8FVqwEfbM0Xk2ltORVDKZZM40SD3qQoQe0orJEKwPfZwm3YPqwixhUMOndis6MhbmfvLBKjC8sKKIZKbJk8L11oNkCQzCgvjhyyEiQSuJcgCQSG4Mocfgc0Hkwcjal1UNgP0CBPikYqBIk9tONv4kLtBswH07vUCjEaHiFGlLf8MgXKzSgjp2HolRRccAOh0ILHz9qlGgIFkwAnzHJRjWFhlA7ROwINyB5HFj59PRZHFor6voq7l23EPNRwdWhgawqbivLSjRA4htEYUFkjESu67icTg5S0aW1sOkCiIysfJ9UnIWevOOLGpepcBxy1wEhd2WI3AZg7sr9WBmHWyasxMcvY/iOmsLtHSWNUWEGk9hScMPShasUA1AcHOtRZlqMeQ0OzYS9vQvYUjOLrzP07BUAFikcJNMi7gIxEw4pL1G54TcmmmoAQ5s7TGWErJZ2Io4yQ0ljRYhL8H5e62oDtLF8aDpnIvZ5R3GWJyAugdiiJW9hQAVTsnCBHhwu7rkBlBX6r3b7ejEY0k5GGeyKv66v+6dg7mcJTrWHbtMywbedYqCQ0FPwoytmSWsL8WTtChZCKKzEF7vP6De4x2BJkkniMgSdWhbeBSLtJZR9CTHetK1xb34AYIJ37OegYIoPVbXgJ/qDQK+bfCtxQRVKQu77WzOoM6SGL7MaZwCGJVk46aImai9fmam+WpHG+0BtQPWUgZ7RIAlPq6lkECUhZQ2gqWkMYKcYMYaIc4gYCDFHYa2d1nzp3+J1eCBay8IYZ0wQRKGAqvCuZ/UgbQPyllosq+XtfKIZOzmeJqRazpmmoP/76YfkjzV2NlXTDSBYB04SVlNQsFTbGPk1t/I4Jktu0XSgifO2ozFOiwd/0SssJDn0dn4xqk4GDTTKX73/wQyBLdqgJ+Wx6AQaba3BA9CKEzjtQYIfAsiYamapq80LAamYjinlKXUkxdpIDk0puXUEYzSalfRibAeDAKpNiqQ0FTwoxuGYzRnisyTotdVTclis1LHRQCy/qqL8oUaQzWRxilq5Mi0IJGtMY02cGLD69vGjkj3p6pGePKI8bkBv5evq8SjjyU04vJR2cQXQwSJyoinDsUJHCQ50jrFTT7yRdbdYQMB3MYCb6uBzJ9ewhXYPAIZSXfeEQBZZ3GPN3Nbhh/wkvAJLXnQMdi5NYYZ5GHE400GS5rXkOZSQsdZgIbzRnF9ueLnsfQ47wHAsirITnTlkCcuWWIUhJSbpM3wWhXNHvt2xUsKKMpdBSbJnBMcihkoDqAd1Zml/R4yrzow1Q2A5G+kzo/RhRxQS2lCSDRV8LlYLBOOoo1bF4jwJAwKMK1tWLHlu9i0j4Ig8qVm6wE1DxXwAwQwsaBWUg2pOOol2dHxyt6npwJEdLDDVYyRc2D0HbcbLUJQj8gPevQBUBOUHXPrsAPBERICpnYESeu2OHotpXQxRGlCCtLdIsu23MhZVEoJg8Qumj/UMMc34IBqTKLDTp76WzL/dMjCxK7MjhiGjeYAC/kj/jY/Rde7hpSM1xChrog6yZ7OWTuD56xBJnGFE+pT2ElSyCnJcwVzCjkqeNLfMEJqKW0G7OFIp0G+9mh50I9o8k1tpCY0xYqFNIALgIfc2me4n1bmJnRZ89oepgLPT0NTMLNZsvSCZAc3TXaNB07vail36/dBySis4m9/DR8izaLJW6bWCkVgm5T+ius3ZXq4xI+GnbveLbdRwF2mNtsrE0JjYc1AXknCOrLSu7Te/r4dPYMCl5qtiHNTn+TPbh1jCBHH+dMJNhwNgs3nT+OhQoQ0vYif56BMG6WowAcHR3DjQolxLzyVekHj00PBAaW7IIAF1EF+uRIWyXjQMAs2chdpaKPNaB+kSezYt0+CA04sOg5vx8Fr7Ofa9sUv87h7SLAUFSzbetCCZ9pmyLt6l6/TzoA1/ZBG9bIUVHLAbi/kdBFgYGyGwRQGBpkqCEg2ah9UD6EedEcEL3j4y0BQQCiExEnocA3SZboh+epgd3YsOkHskZwPuQ5OoyA0fTA5AXrHcUOQF+zkJHIA7PwCDk1gGVmGUZSSoPhNf+Tklauz98QofOlCIQ/tCD4dosHYPqtPCXB3agggQQIqQJsSkB+qn0rkQ1toJjON/OtCIB9RYv3PqRA4C4U68ZMlZn6BdgEvi2ziU+TQ6NIw3ej+AtDwMGEZk7e2IjxUWKdAxyaw9OCwSmeADTPPleyk6UhGDNXQb++W6Uk4q6F7/rg6WVTo82IoCxSIsFDrav4EPHphD3u4hR53WKVvYZUwNCCeM4PMBWzK+EfIthZOkuAwPo5C5jgoZgn6dUdvx5rIDmd58cXXdKNfw3l+wM2UjgrDJeQHhbD7HW2QDoZMCujgIUkk5Fg8VCsdyjOtnGRx8wgKRPZN5dR0zPUyfGZFVihbFRniXZFOZGKPnEQzU3AnD1KfR6weHW2XS6KbPJxUkOTZsAB9vTVp3Le1F8q5l+DMcLiIq78jxAImD2pGFw0VHfRatScGlK6SMu8leTmhUSMy8Uhdd6xBiH3Gdman4tjQGLboJfqz6fL2WKHTmrfsKZRYX6BTDjDldKMosaSTLdQS7oDisJNqAUhw1PfTlnacCO8vl8706Km1FROgLDmudzxg+EWTiArtHgLsRrAXYWdB0NmToNCJdKm0KWycZQqb+Mw76Qy29iQ5up/X7oyw8QZ75kP5F6iJAJz6KCmqxz8fEa/xnsMYcIO/vEkGRuMckhr4rIeLrKaXnmIzlNLxbFspOphkcnJdnz/Chp/Vlpj2P7jJQmQRwGnltkTV5dbF9fE3/fxoSqTROgq9wFUlbuYzYcasE0ouzBo+dDCDzxKAfhbAZYxQiHrLzV2iVexnDX/QnT1fsT/xuhu1ui5qIytgbGmRoQkeQooO8eJNNZsf0iALur8QxZFH0nCMnjerYQqG1pIfjyVZWxhVRznmmfLG00BcBWJE6hzQWRyFknuJnXuk8A5FRDCulwrWASSNoBtR+CtGdkPwYN2o7DOw/VGlCZPusRBFXODQdUM5zeHDIVuAJBLqbO/f9Qua+pDqEPk230Sob9lEZ8BHiCorjVghuI0lI4JDgHGRDD/prQ84B1pVGkIpVUAHCG+iz3Bn3qm2AVrYcYWhock4jso5+J7HfHVj4WMIQdGctq3psBCVVzupQOEioBGA2Bk+UILT7+VoX5mdxxA5fS42gISQVi/HTzrgMxu0fY6hE1ocUwwbsbWcezrY2n6S8/6cxXkOH4prpmPuFoikTzY7T85C4T2XYlbxLglSv2uLCgFv8Quk/wdesUdWPeHYIH0R729JIisN9Apdd4eB10aqwXrPt+Su9mA8k8n1sjMwnfsfF2j3jMUzXepSHmZ/BfqXvzgUNQQWOXO8YEuFBh4QTYCkOAPxywpYu1VxiDyJmKVcmJPGWk/gc3Pov02StyYDahwmzw3E1gYC9wkupyWfDqDSUMpCTH5e5N8B//lHiMuIkTNw4USHrJU67bjXGqNav6PBuQSoqTxc8avHoGmvqNtXzIaoyMIQIiiUHIM64cXieouplhNYln7qgc4wBVAYR104kO+CvKqsg4yIUlFNThVUAKZxZt1XA34h3TCUUiXVkZ0w8Hh2R0Z5L0b4LZvPd/p1gi/07h8qfwHrByuSxglc9cI4QIg2oqvC/qm0i7tjPLTgDhoWTAKDO2ONW5oe+/eKB9vZB8K6C25yCZ9RFVMnb6NRdRjyVK57CHHSkJBfnM2/j4ODUwRkqrtBBCrDsDpt8jhZdXoy/1BCqw3sSGhgGGy0a5Jw6BP/TExoCmNFYjZl248A0osgPyGEmRA+fAsqPVaNAfytu0vuQJ7rk3J4kTDTR2AlCHJ5cls26opZM4w3jMULh2YXKpcqGBtuleAlOZnaZGbD6DHzMd6i2oFeJ8z9XYmalg1Szd/ocZDc1C7Y6vcALJz2lYnTXiWEr2wawtoR4g3jvWUU2Ngjd1cewtFzEvM1NiHZPeLlIXFbBPawxNgMwwAlyNSuGF3zizVeOoC9bag1qRAQKQE/EZBWC2J8mnXAN2aTBboZ7HewnObE8CwROudZHmUM5oZ/Ugd/JZQK8lvAm43uDRAbyW8gZ+ZGq0EVerVGUKUSm/Idn8AQHdR4m7bue88WBwft9mSCeMOt1ncBwziOmJYI2ZR7ewNMPiCugmSsE4EyQ+QATJG6qORMGd4snEzc6B4shPIo4G1T7PgSm8PY5eUkPdF8JZ0VBtadbHXoJgnEhZQaODPj2gpODKJY5Yp4DOsLBFxWbvXN755KWylJm+oOd4zEL9Hpubuy2gyyfxh8oEfFutnYWdfB8PdESLWYvSqbElP9qo3u6KTmkhoacDauMNNjj0oy40DFV7Ql0aZj77xfGl7TJNHnIwgqOkenruYYNo6h724+zUQ7+vkCpZB+pGA562hYQiDxHVWOq0oDQl/QsoiY+cuI7iWq/ZIBtHcXJ7kks+h2fCNUPA82BzjnqktNts+RLdk1VSu+tqEn7QZCCsvEqk6FkfiOYkrsw092J8jsfIuEKypNjLxrKA9kiA19mxBD2suxQKCzwXGws7kEJvlhUiV9tArLIdZW0IORcxEzdzKmjtFhsjKy/44XYXdI5noQoRcvjZ1RMPACRqYg2V1+OwOepcOknRLLFdYgTkT5UApt/JhLM3jeFYprZV+Zow2g8fP+U68hkKFWJj2yBbKqsrp25xkZX1DAjUw52IMYWaOhab8Kp05VrdNftqwRrymWF4OQSjbdfzmRZirK8FMJELEgER2PHjEAN9pGfLhCUiTJFbd5LBkOBMaxLr/A1SY9dXFz4RjzoU9ExfJCmx/I9FKEGT3n2cmzl2X42L3Jh+AbQq6sA+Ss1kitoa4TAYgKHaoybHUDJ51oETdeI/9ThSmjWGkyLi5QAGWhL0BG1UsTyRGRJOldKBrYJeB8ljLJHfATWTEQBXBDnQexOHTB+Un44zExFE4vLytcu5NwpWrUxO/0ZICUGM7hGABXym0V6ZvDST0E370St9MIWQOTWngeoQHUTdCJUP04spMBMS8LSker9cReVQkULFDIZDFPrhTzBl6sed9wcZQTbL+BDqMyaN3RJPh/anbx+Iv+qgQdAa3M9Z5JmvYlh4qop+Ho1F1W5gbOE9YKLgAnWytXElU4G8GtW47lhgFE6gaSs+gs37sFvi0PPVvA5dnCBgILTwoKd/+DoL9F6inlM7H4rOTzD79KJgKlZO/Zgt22UsKhrAaXU5ZcLrAglTVKJEmNJvORGN1vqrcfSMizfpsgbIe9zno+gBoKVXgIL/VI8dB1O5o/R3Suez/gD7M781ShjKpIIORM/nxG+jjhhgPwsn2IoXsPGPqYHXA63zJ07M2GPEykQwJBYLK808qYxuIew4frk52nhCsnCYmXiR6CuapvE1IwRB4/QftDbEn+AucIr1oxrLabRj9q4ae0+fXkHnteAJwXRbVkR0mctVSwEbqhJiMSZUp9DNbEDMmjX22m3ABpkrPQQTP3S1sib5pD2VRKRd+eNAjLYyT0hGrdjWJZy24OYXRoWQAIhGBZRxuBFMjjZQhpgrWo8SiFYbojcHO8V5DyscJpLTHyx9Fimassyo5U6WNtquUMYgccaHY5amgR3PQzq3ToNM5ABnoB9kuxsebqmYZm0R9qxJbFXCQ1UPyFIbxoUraTJFDpCk0Wk9GaYJKz/6oHwEP0Q14lMtlddQsOAU9zlYdMVHiT7RQP3XCmWYDcHCGbVRHGnHuwzScA0BaSBOGkz3lM8CArjrBsyEoV6Ys4qgDK3ykQQPZ3hCRGNXQTNNXbEb6tDiTDLKOyMzRhCFT+mAUmiYbV3YQVqFVp9dorv+TsLeCykS2b5yyu8AV7IS9cxcL8z4Kfwp+xJyYLv1OsxQCZwTB4a8BZ/5EdxTBJthApqyfd9u3ifr/WILTqq5VqgwMT9SOxbSGWLQJUUWCVi4k9tho9nEsbUh7U6NUsLmkYFXOhZ0kmamaJLRNJzSj/qn4Mso6zb6iLLBXoaZ6AqeWCjHQm2lztnejYYM2eubnpBdKVLORZhudH3JF1waBJKA9+W8EhMj3Kzf0L4vi4k6RoHh3Z5YgmSZmk6ns4fjScjAoL8GoOECgqgYEBYUGFVO4FUv4/YtowhEmTs0vrvlD/CrisnoBNDAcUi/teY7OctFlmARQzjOItrrlKuPO6E2Ox93L4O/4DcgV/dZ7qR3VBwVQxP1GCieA4RIpweYJ5FoYrHxqRBdJjnqbsikA2Ictbb8vE1GYIo9dacK0REgDX4smy6GAkxlH1yCGGsk+tgiDhNKuKu3yNrMdxafmKTF632F8Vx4BNK57GvlFisrkjN9WDAtjsWA0ENT2e2nETUb/n7qwhvGnrHuf5bX6Vh/n3xffU3PeHdR+FA92i6ufT3AlyAREoNDh6chiMWTvjKjHDeRhOa9YkOQRq1vQXEMppAQVwHCuIcV2g5rBn6GmZZpTR7vnSD6ZmhdSl176gqKTXu5E+YbfL0adwNtHP7dT7t7b46DVZIkzaRJOM+S6KcrzYVg+T3wSRFRQashjfU18NutrKa/7PXbtuJvpIjbgPeqd+pjmRw6YKpnANFSQcpzTZgpSNJ6J7uiagAbir/8tNXJ/OsOnRh6iuIexxrmkIneAgz8QoLmiaJ8sLQrELVK2yn3wOHp57BAZJhDZjTBzyoRAuuZ4eoxHruY1pSb7qq79cIeAdOwin4GdgMeIMHeG+FZWYaiUQQyC5b50zKjYw97dFjAeY2I4Bnl105Iku1y0lMA1ZHolLx19uZnRdILcXKlZGQx/GdEqSsMRU1BIrFqRcV1qQOOHyxOLXEGcbRtAEsuAC2V4K3p5mFJ22IDWaEkk9ttf5Izb2LkD1MnrSwztXmmD/Qi/EmVEFBfiKGmftsPwVaIoZanlKndMZsIBOskFYpDOq3QUs9aSbAAtL5Dbokus2G4/asthNMK5UQKCOhU97oaOYNGsTah+jfCKsZnTRn5TbhFX8ghg8CBYt/BjeYYYUrtUZ5jVij/op7V5SsbA4mYTOwZ46hqdpbB6Qvq3AS2HHNkC15pTDIcDNGsMPXaBidXYPHc6PJAkRh29Vx8KcgX46LoUQBhRM+3SW6Opll/wgxxsPgKJKzr5QCmwkUxNbeg6Wj34SUnEzOemSuvS2OetRCO8Tyy+QbSKVJcqkia+GvDefFwMOmgnD7h81TUtMn+mRpyJJ349HhAnoWFTejhpYTL9G8N2nVg1qkXBeoS9Nw2fB27t7trm7d/QK7Cr4uoCeOQ7/8JfKT77KiDzLImESHw/0wf73QeHu74hxv7uihi4fTX+XEwAyQG3264dwv17aJ5N335Vt9sdrAXhPOAv8JFvzqyYXwfx8WYJaef1gMl98JRFyl5Mv5Uo/oVH5ww5OzLFsiTPDns7fS6EURSSWd/92BxMYQ8sBaH+j+wthQPdVgDGpTfi+JQIWMD8xKqULliRH01rTeyF8x8q/GBEEEBrAJMPf25UQwi0b8tmqRXY7kIvNkzrkvRWLnxoGYEJsz8u4oOyMp8cHyaybb1HdMCaLApUE+/7xLIZGP6H9xuSEXp1zLIdjk5nBaMuV/yTDRRP8Y2ww5RO6d2D94o+6ucWIqUAvgHIHXhZsmDhjVLczmZ3ca0Cb3PpKwt2UtHVQ0BgFJsqqTsnzZPlKahRUkEu4qmkJt+kqdae76ViWe3STan69yaF9+fESD2lcQshLHWVu4ovItXxO69bqC5p1nZLvI8NdQB9s9UNaJGlQ5mG947ipdDA0eTIw/A1zEdjWquIsQXXGIVEH0thC5M+W9pZe7IhAVnPJkYCCXN5a32HjN6nsvokEqRS44tGIs7s2LVTvcrHAF+RVmI8L4HUYk4x+67AxSMJKqCg8zrGOgvK9kNMdDrNiUtSWuHFpC8/p5qIQrEo/H+1l/0cAwQ2nKmpWxKcMIuHY44Y6DlkpO48tRuUGBWT0FyHwSKO72Ud+tJUfdaZ4CWNijzZtlRa8+CkmO/EwHYfPZFU/hzjFWH7vnzHRMo+aF9u8qHSAiEkA2HjoNQPEwHsDKOt6hOoK3Ce/+/9boMWDa44I6FrQhdgS7OnNaSzwxWKZMcyHi6LN4WC6sSj0qm2PSOGBTvDs/GWJS6SwEN/ULwpb4LQo9fYjUfSXRwZkynUazlSpvX9e+G2zor8l+YaMxSEomDdLHGcD6YVQPegTaA74H8+V4WvJkFUrjMLGLlvSZQWvi8/QA7yzQ8GPno//5SJHRP/OqKObPCo81s/+6WgLqykYpGAgQZhVDEBPXWgU/WzFZjKUhSFInufPRiMAUULC6T11yL45ZrRoB4DzOyJShKXaAJIBS9wzLYIoCEcJKQW8GVCx4fihqJ6mshBUXSw3wWVj3grrHQlGNGhIDNNzsxQ3M+GWn6ASobIWC+LbYOC6UpahVO13Zs2zOzZC8z7FmA05JhUGyBsF4tsG0drcggIFzgg/kpf3+CnAXKiMgIE8Jk/Mhpkc8DUJEUzDSnWlQFme3d0sHZDrg7LavtsEX3cHwjCYA17pMTfx8Ajw9hHscN67hyo+RJQ4458RmPywXykkVcW688oVUrQhahpPRvTWPnuI0B+SkQu7dCyvLRyFYlC1LG1gRCIvn3rwQeINzZQC2KXq31FaR9UmVV2QeGVqBHjmE+VMd3b1fhCynD0pQNhCG6/WCDbKPyE7NRQzL3BzQAJ0g09aUzcQA6mUp9iZFK6Sbp/YbHjo++7/Wj8S4YNa+ZdqAw1hDrKWFXv9+zaXpf8ZTDSbiqsxnwN/CzK5tPkOr4tRh2kY3Bn9JtalbIOI4b3F7F1vPQMfoDcdxMS8CW9m/NCW/HILTUVWQIPiD0j1A6bo8vsv6P1hCESl2abrSJWDrq5sSzUpwoxaCU9FtJyYH4QFMxDBpkkBR6kn0LMPO+5EJ7Z6bCiRoPedRZ/P0SSdii7ZnPAtVwwHUidcdyspwncz5uq6vvm4IEDbJVLUFCn/LvIHfooUBTkFO130FC7CmmcrKdgDJcid9mvVzsDSibOoXtIf9k6ABle3PmIxejodc4aob0QKS432srrCMndbfD454q52V01G4q913mC5HOsTzWF4h2No1av1VbcUgWAqyoZl+11PoFYnNv2HwAODeNRkHj+8SF1fcvVBu6MrehHAZK1Gm69ICcTKizykHgGFx7QdowTVAsYEF2tVc0Z6wLryz2FI1sc5By2znJAAmINndoJiB4sfPdPrTC8RnkW7KRCwxC6YvXg5ahMlQuMpoCSXjOlBy0Kij+bsCYPbGp8BdCBiLmLSAkEQRaieWo1SYvZIKJGj9Ur/eWHjiB7SOVdqMAVmpBvfRiebsFjger7DC+8kRFGtNrTrnnGD2GAJb8rQCWkUPYHhwXsjNBSkE6lGWUj5QNhK0DMNM2l+kXRZ0KLZaGsFSIdQz/HXDxf3/TE30+DgBKWGWdxElyLccJfEpjsnszECNoDGZpdwdRgCixeg9L4EPhH+RptvRMVRaahu4cySjS3P5wxAUCPkmn+rhyASpmiTaiDeggaIxYBmtLZDDhiWIJaBgzfCsAGUF1Q1SFZYyXDt9skCaxJsxK2Ms65dmdp5WAZyxik/zbrTQk5KmgxCg/f45L0jywebOWUYFJQAJia7XzCV0x89rpp/f3AVWhSPyTanqmik2SkD8A3Ml4NhIGLAjBXtPShwKYfi2eXtrDuKLk4QlSyTw1ftXgwqA2jUuopDl+5tfUWZNwBpEPXghzbBggYCw/dhy0ntds2yeHCDKkF/YxQjNIL/F/37jLPHCKBO9ibwYCmuxImIo0ijV2Wbg3kSN2psoe8IsABv3RNFaF9uMyCtCYtqcD+qNOhwMlfARQUdJ2tUX+MNJqOwIciWalZsmEjt07tfa8ma4cji9sqz+Q9hWfmMoKEbIHPOQORbhQRHIsrTYlnVTNvcq1imqmmPDdVDkJgRcTgB8Sb6epCQVmFZe+jGDiNJQLWnfx+drTKYjm0G8yH0ZAGMWzEJhUEQ4Maimgf/bkvo8PLVBsZl152y5S8+HRDfZIMCbYZ1WDp4yrdchOJw8k6R+/2pHmydK4NIK2PHdFPHtoLmHxRDwLFb7eB+M4zNZcB9NrAgjVyzLM7xyYSY13ykWfIEEd2n5/iYp3ZdrCf7fL+en+sIJu2W7E30MrAgZBD1rAAbZHPgeAMtKCg3NpSpYQUDWJu9bT3V7tOKv+NRiJc8JAKqqgCA/PNRBR7ChpiEulyQApMK1AyqcWnpSOmYh6yLiWkGJ2mklCSPIqN7UypWj3dGi5MvsHQ87MrB4VFgypJaFriaHivwcHIpmyi5LhNqtem4q0n8awM19Qk8BOS0EsqGscuuydYsIGsbT5GHnERUiMpKJl4ON7qjB4fEqlGN/hCky89232UQCiaeWpDYCJINXjT6xl4Gc7DxRCtgV0i1ma4RgWLsNtnEBRQFqZggCLiuyEydmFd7WlogpkCw5G1x4ft2psm3KAREwVwr1Gzl6RT7FDAqpVal34ewVm3VH4qn5mjGj+bYL1NgfLNeXDwtmYSpwzbruDKpTjOdgiIHDVQSb5/zBgSMbHLkxWWgghIh9QTFSDILixVwg0Eg1puooBiHAt7DzwJ7m8i8/i+jHvKf0QDnnHVkVTIqMvIQImOrzCJwhSR7qYB5gSwL6aWL9hERHCZc4G2+JrpgHNB8eCCmcIWIQ6rSdyPCyftXkDlErUkHafHRlkOIjxGbAktz75bnh50dU7YHk+Mz7wwstg6RFZb+TZuSOx1qqP5C66c0mptQmzIC2dlpte7vZrauAMm/7RfBYkGtXWGiaWTtwvAQiq2oD4YixPLXE2khB2FRaNRDTk+9sZ6K74Ia9VntCpN4BhJGJMT4Z5c5FhSepRCRWmBXqx+whVZC4me4saDs2iNqXMuCl6iAZflH8fscC1sTsy4PHeC+XYuqMBMUun5YezKbRKmEPwuK+CLzijPEQgfhahQswBBLfg/GBgBiI4QwAqzJkkyYAWtjzSg2ILgMAgqxYfwERRo3zruBL9WOryUArSD8sQOcD7fvIODJxKFS615KFPsb68USBEPPj1orNzFY2xoTtNBVTyzBhPbhFH0PI5AtlJBl2aSgNPYzxYLw7XTDBDinmVoENwiGzmngrMo8OmnRP0Z0i0Zrln9DDFcnmOoBZjABaQIbPOJYZGqX+RCMlDDbElcjaROLDoualmUIQ88Kekk3iM4OQrADcxi3rJguS4MOIBIgKgXrjd1WkbCdqxJk/4efRIFsavZA7KvvJQqp3Iid5Z0NFc5aiMRzGN3vrpBzaMy4JYde3wr96PjN90AYOIbyp6T4zj8LoE66OGcX1Ef4Z3KoWLAUF4BTg7ug/AbkG5UNQXAMkQezujSHeir2uTThgd3gpyzDrbnEdDRH2W7U6PeRvBX1ZFMP5RM+Zu6UUZZD8hDPHldVWntTCNk7To8IeOW9yn2wx0gmurwqC60AOde4r3ETi5pVMSDK8wxhoGAoEX9NLWHIR33VbrbMveii2jAJlrxwytTHbWNu8Y4N8vCCyZjAX/pcsfwXbLze2+D+u33OGBoJyAAL3jn3RuEcdp5If8O+a4NKWvxOTyDltG0IWoHhwVGe7dKkCWFT++tm+haBCikRUUMrMhYKZJKYoVuv/bsJzO8DwfVIInQq3g3BYypiz8baogH3r3GwqCwFtZnz4xMjAVOYnyOi5HWbFA8n0qz1OjSpHWFzpQOpvkNETZBGpxN8ybhtqV/DMUxd9uFZmBfKXMCn/SqkWJyKPnT6lq+4zBZni6fYRByJn6OK+OgPBGRAJluwGSk4wxjOOzyce/PKODwRlsgrVkdcsEiYrqYdXo0Er2GXi2GQZd0tNJT6c9pK1EEJG1zgDJBoTVuCXGAU8BKTvCO/cEQ1Wjk3Zzuy90JX4m3O5IlxVFhYkSUwuQB2up7jhvkm+bddRQu5F9s0XftGEJ9JSuSk+ZachCbdU45fEqbugzTIUokwoAKvpUQF/CvLbWW5BNQFqFkJg2f30E/48StNe5QwBg8zz3YAJ82FZoXBxXSv4QDooDo79NixyglO9AembuBcx5Re3CwOKTHebOPhkmFC7wNaWtoBhFuV4AkEuJ0J+1pT0tLkvFVZaNzfhs/Kd3+A9YsImlO4XK4vpCo/elHQi/9gkFg07xxnuXLt21unCIpDV+bbRxb7FC6nWYTsMFF8+1LUg4JFjVt3vqbuhHmDKbgQ4e+RGizRiO8ky05LQGMdL2IKLSNar0kNG7lHJMaXr5mLdG3nykgj6vB/KVijd1ARWkFEf3yiUw1v/WaQivVUpIDdSNrrKbjO5NPnxz6qTTGgYg03HgPhDrCFyYZTi3XQw3HXCva39mpLNFtz8AiEhxAJHpWX13gCTAwgm9YTvMeiqetdNQv6IU0hH0G+ZManTqDLPjyrOse7WiiwOJCG+J0pZYULhN8NILulmYYvmVcV2MjAfA39sGKqGdjpiPo86fecg65UPyXDIAOyOkCx5NQsLeD4gGVjTVDwOHWkbbBW0GeNjDkcSOn2Nq4cEssP54t9D749A7M1AIOBl0Fi0sSO5v3P7LCBrM6ZwFY6kp2FX6AcbGUdybnfChHPyu6WlRZ2Fwv9YM0RMI7kISRgR8HpQSJJOyTfXj/6gQKuihPtiUtlCQVPohUgzfezTg8o1b3n9pNZeco1QucaoXe40Fa5JYhqdTspFmxGtW9h5ezLFZs3j/N46f+S2rjYNC2JySXrnSAFhvAkz9a5L3pza8eYKHNoPrvBRESpxYPJdKVUxBE39nJ1chrAFpy4MMkf0qKgYALctGg1DQI1kIymyeS2AJNT4X240d3IFQb/0jQbaHJ2YRK8A+ls6WMhWmpCXYG5jqapGs5/eOJErxi2/2KWVHiPellTgh/fNl/2KYPKb7DUcAg+mCOPQFCiU9Mq/WLcU1xxC8aLePFZZlE+PCLzf7ey46INWRw2kcXySR9FDgByXzfxiNKwDFbUSMMhALPFSedyjEVM5442GZ4hTrsAEvZxIieSHGSgkwFh/nFNdrrFD4tBH4Il7fW6ur4J8Xaz7RW9jgtuPEXQsYk7gcMs2neu3zJwTyUerHKSh1iTBkj2YJh1SSOZL5pLuQbFFAvyO4k1Hxg2h99MTC6cTUkbONQIAnEfGsGkNFWRbuRyyaEZInM5pij73EA9rPIUfU4XoqQpHT9THZkW+oKFLvpyvTBMM69tN1Ydwv1LIEhHsC+ueVG+w+kyCPsvV3erRikcscHjZCkccx6VrBkBRusTDDd8847GA7p2Ucy0y0HdSRN6YIBciYa4vuXcAZbQAuSEmzw+H/AuOx+aH+tBL88H57D0MsqyiZxhOEQkF/8DR1d2hSPMj/sNOa5rxcUnBgH8ictv2J+cb4BA4v3MCShdZ2vtK30vAwkobnEWh7rsSyhmos3WC93Gn9C4nnAd/PjMMtQfyDNZsOPd6XcAsnBE/mRHtHEyJMzJfZFLE9OvQa0i9kUmToJ0ZxknTgdl/XPV8xoh0K7wNHHsnBdvFH3sv52lU7UFteseLG/VanIvcwycVA7+BE1Ulyb20BvwUWZcMTKhaCcmY3ROpvonVMV4N7yBXTL7IDtHzQ4CCcqF66LjF3xUqgErKzolLyCG6Kb7irP/MVTCCwGRxfrPGpMMGvPLgJ881PHMNMIO09T5ig7AzZTX/5PLlwnJLDAPfuHynSGhV4tPqR3gJ4kg4c06c/F1AcjGytKm2Yb5jwMotF7vro4YDLWlnMIpmPg36NgAZsGA0W1spfLSue4xxat0Gdwd0lqDBOgIaMANykwwDKejt5YaNtJYIkrSgu0KjIg0pznY0SCd1qlC6R19g97UrWDoYJGlrvCE05J/5wkjpkre727p5PTRX5FGrSBIfJqhJE/IS876PaHFkx9pGTH3oaY3jJRvLX9Iy3Edoar7cFvJqyUlOhAEiOSAyYgVEGkzHdug+oRHIEOXAExMiTSKU9A6nmRC8mp8iYhwWdP2U/5EkFAdPrZw03YA3gSyNUtMZeh7dDCu8pF5x0VORCTgKp07ehy7NZqKTpIC4UJJ89lnboyAfy5OyXzXtuDRbtAFjZRSyGFTpFrXwkpjSLIQIG3N0Vj4BtzK3wdlkBJrO18MNsgseR4BysJilI0wI6ZahLhBFA0XBmV8d4LUzEcNVb0xbLjLTETYN8OEVqNxkt10W614dd1FlFFVTIgB7/BQQp1sWlNolpIu4ekxUTBV7NmxOFKEBmmN+nA7pvF78/RII5ZHA09OAiE/66MF6HQ+qVEJCHxwymukkNvzqHEh52dULPbVasfQMgTDyBZzx4007YiKdBuUauQOt27Gmy8ISclPmEUCIcuLbkb1mzQSqIa3iE0PJh7UMYQbkpe+hXjTJKdldyt2mVPwywoODGJtBV1lJTgMsuSQBlDMwhEKIfrvsxGQjHPCEfNfMAY2oxvyKcKPUbQySkKG6tj9AQyEW3Q5rpaDJ5Sns9ScLKeizPRbvWYAw4bXkrZdmB7CQopCH8NAmqbuciZChHN8lVGaDbCnmddnqO1PQ4ieMYfcSiBE5zzMz+JV/4eyzrzTEShvqSGzgWimkNxLvUj86iAwcZuIkqdB0VaIB7wncLRmzHkiUQpPBIXbDDLHBlq7vp9xwuC9AiNkIptAYlG7Biyuk8ILdynuUM1cHWJgeB+K3wBP/ineogxkvBNNQ4AkW0hvpBOQGFfeptF2YTR75MexYDUy7Q/9uocGsx41O4IZhViw/2FvAEuGO5g2kyXBUijAggWM08bRhXg5ijgMwDJy40QeY/cQpUDZiIzmvskQpO5G1zyGZA8WByjIQU4jRoFJt56behxtHUUE/om7Rj2psYXGmq3llVOCgGYKNMo4pzwntITtapDqjvQtqpjaJwjHmDzSVGLxMt12gEXAdLi/caHSM3FPRGRf7dB7YC+cD2ho6oL2zGDCkjlf/DFoQVl8GS/56wur3rdV6ggtzZW60MRB3g+U1W8o8cvqIpMkctiGVMzXUFI7FacFLrgtdz4mTEr4aRAaQ2AFQaNeG7GX0yOJgMRYFziXdJf24kg/gBQIZMG/YcPEllRTVNoDYR6oSJ8wQNLuihfw81UpiKPm714bZX1KYjcXJdfclCUOOpvTxr9AAJevTY4HK/G7F3mUc3GOAKqh60zM0v34v+ELyhJZqhkaMA8UMMOU90f8RKEJFj7EqepBVwsRiLbwMo1J2zrE2UYJnsgIAscDmjPjnzI8a719Wxp757wqmSJBjXowhc46QN4RwKIxqEE6E5218OeK7RfcpGjWG1jD7qND+/GTk6M56Ig4yMsU6LUW1EWE+fIYycVV1thldSlbP6ltdC01y3KUfkobkt2q01YYMmxpKRvh1Z48uNKzP/IoRIZ/F6buOymSnW8gICitpJjKWBscSb9JJKaWkvEkqinAJ2kowKoqkqZftRqfRQlLtKoqvTRDi2vg/RrPD/d3a09J8JhGZlEkOM6znTsoMCsuvTmywxTCDhw5dd0GJOHCMPbsj3QLkTE3MInsZsimDQ3HkvthT7U9VA4s6G07sID0FW4SHJmRGwCl+Mu4xf0ezqeXD2PtPDnwMPo86sbwDV+9PWcgFcARUVYm3hrFQrHcgMElFGbSM2A1zUYA3baWfheJp2AINmTJLuoyYD/OwA4a6V0ChBN97E8YtDBerUECv0u0TlxR5yhJCXvJxgyM73Bb6pyq0jTFJDZ4p1Am1SA6sh8nADd1hAcGBMfq4d/UfwnmBqe0Jun1n1LzrgKuZMAnxA3NtCN7Klf4BH+14B7ibBmgt0TGUafVzI4uKlpF7v8NmgNjg90D6QE3tbx8AjSAC+OA1YJvclyPKgT27QpIEgVYpbPYGBsnyCNrGz9XUsCHkW1QAHgL2STZk12QGqmvAB0NFteERkvBIH7INDsNW9KKaAYyDMdBEMzJiWaJHZALqDxQDWRntumSDPcplyFiI1oDpT8wbwe01AHhW6+vAUUBoGhY3CT2tgwehdPqU/4Q7ZLYvhRl/ogOvR9O2+wkkPKW5vCTjD2fHRYXONCoIl4Jh1bZY0ZE1O94mMGn/dFSWBWzQ/VYk+Gezi46RgiDv3EshoTmMSlioUK6MQEN8qeyK6FRninyX8ZPeUWjjbMJChn0n/yJvrq5bh5UcCAcBYSafTFg7p0jDgrXo2QWLb3WpSOET/Hh4oSadBTvyDo10IufLzxiMLAnbZ1vcUmj3w7BQuIXjEZXifwukVxrGa9j+DXfpi12m1RbzYLg9J2wFergEwOxFyD0/JstNK06ZN2XdZSGWxcJODpQHOq4iKqjqkJUmPu1VczL5xTGUfCgLEYyNBCCbMBFT/cUP6pE/mujnHsSDeWxMbhrNilS5MyYR0nJyzanWXBeVcEQrRIhQeJA6Xt4f2eQESNeLwmC10WJVHqwx8SSyrtAAjpGjidcj1E2FYN0LObUcFQhafUKTiGmHWRHGsFCB+HEXgrzJEB5bp0QiF8ZHh11nFX8AboTD0PS4O1LqF8XBks2MpjsQnwKHF6HgaKCVLJtcr0XjqFMRGfKv8tmmykhLRzu+vqQ02+KpJBjaLt9ye1Ab+BbEBhy4EVdIJDrL2naV0o4wU8YZ2Lq04FG1mWCKC+UwkXOoAjneU/xHplMQo2cXUlrVNqJYczgYlaOEczVCs/OCgkyvLmTmdaBJc1iBLuKwmr6qtRnhowngsDxhzKFAi02tf8bmET8BO27ovJKF1plJwm3b0JpMh38+xsrXXg7U74QUM8ZCIMOpXujHntKdaRtsgyEZl5MClMVMMMZkZLNxH9+b8fH6+b8Lev30A9TuEVj9CqAdmwAAHBPbfOBFEATAPZ2CS0OH1Pj/0Q7PFUcC8hDrxESWdfgFRm+7vvWbkEppHB4T/1ApWnlTIqQwjcPl0VgS1yHSmD0OdsCVST8CQVwuiew1Y+g3QGFjNMzwRB2DSsAk26cmA8lp2wIU4p93AUBiUHFGOxOajAqD7Gm6NezNDjYzwLOaSXRBYcWipTSONHjUDXCY4mMI8XoVCR/Rrs/JLKXgEx+qkmeDlFOD1/yTQNDClRuiUyKYCllfMiQiyFkmuTz2vLsBNyRW+xz+5FElFxWB28VjYIGZ0Yd+5wIjkcoMaggxswbT0pCmckRAErbRlIlcOGdBo4djTNO8FAgQ+lT6vPS60BwTRSUAM3ddkEAZiwtEyArrkiDRnS7LJ+2hwbzd2YDQagSgACpsovmjil5wfPuXq3GuH0CyE7FK3M4FgRaFoIkaodORrPx1+JpI9psyNYIFuJogZa0/1AhOWdlHQxdAgbwacsHqPZo8u/ngAH2GmaTdhYnBfSDbBfh8CHq6Bx5bttP2+RdM+MAaYaZ0Y/ADkbNCZuAyAVQa2OcXOeICmDn9Q/eFkDeFQg5MgHEDXq/tVjj+jtd26nhaaolWxs1ixSUgOBwrDhRIGOLyOVk2/Bc0UxvseQCO2pQ2i+Krfhu/WeBovNb5dJxQtJRUDv2mCwYVpNl2efQM9xQHnK0JwLYt/U0Wf+phiA4uw8G91slC832pmOTCAoZXohg1fewCZqLBhkOUBofBWpMPsqg7XEXgPfAlDo2U5WXjtFdS87PIqClCK5nW6adCeXPkUiTGx0emOIDQqw1yFYGHEVx20xKjJVYe0O8iLmnQr3FA9nSIQilUKtJ4ZAdcTm7+ExseJauyqo30hs+1qSW211A1SFAOUgDlCGq7eTIcMAeyZkV1SQJ4j/e1Smbq4HcjqgFbLAGLyKxlMDMgZavK5NAYH19Olz3la/QCTiVelFnU6O/GCvykqS/wZJDhKN9gBtSOp/1SP5VRgJcoVj+kmf2wBgv4gjrgARBWiURYx8xENV3bEVUAAWWD3dYDKAIWk5opaCFCMR5ZjJExiCAw7gYiSZ2rkyTce4eNMY3lfGn+8p6+vBckGlKEXnA6Eota69OxDO9oOsJoy28BXOR0UoXNRaJD5ceKdlWMJlOFzDdZNpc05tkMGQtqeNF2lttZqNco1VtwXgRstLSQ6tSPChgqtGV5h2DcDReIQadaNRR6AsAYKL5gSFsCJMgfsaZ7DpKh8mg8Wz8V7H+gDnLuMxaWEIUPevIbClgap4dqmVWSrPgVYCzAoZHIa5z2Ocx1D/GvDOEqMOKLrMefWIbSWHZ6jbgA8qVBhYNHpx0P+jAgN5TB3haSifDcApp6yymEi6Ij/GsEpDYUgcHATJUYDUAmC1SCkJ4cuZXSAP2DEpQsGUjQmKJfJOvlC2x/pChkOyLW7KEoMYc5FDC4v2FGqSoRWiLsbPCiyg1U5yiHZVm1XLkHMMZL11/yxyw0UnGig3MFdZklN5FI/qiT65T+jOXOdO7XbgWurOAZR6Cv9uu1cm5LjkXX4xi6mWn5r5NjBS0gTliHhMZI2WNqSiSphEtiCAwnafS11JhseDGHYQ5+bqWiAYiAv6Jsf79/VUs4cIl+n6+WOjcgB/2l5TreoAV2717JzZbQIR0W1cl/dEqCy5kJ3ZSIHuU0vBoHooEpiHeQWVkkkOqRX27eD1FWw4BfO9CJDdKoSogQi3hAAwsPRFrN5RbX7bqLdBJ9JYMohWrgJKHSjVl1sy2xAG0E3sNyO0oCbSGOxCNBRRXTXenYKuwAoDLfnDcQaCwehUOIDiHAu5m5hMpKeKM4sIo3vxACakIxKoH2YWF2QM84e6F5C5hJU4g8uxuFOlAYnqtwxmHyNEawLW/PhoawJDrGAP0JYWHgAVUByo/bGdiv2T2EMg8gsS14/rAdzlOYazFE7w4OzxeKiWdm3nSOnQRRKXSlVo8HEAbBfyJMKqoq+SCcTSx5NDtbFwNlh8VhjGGDu7JG5/TAGAvniQSSUog0pNzTim8Owc6QTuSKSTXlQqwV3eiEnklS3LeSXYPXGK2VgeZBqNcHG6tZHvA3vTINhV0ELuQdp3t1y9+ogD8Kk/W7QoRN1UWPqM4+xdygkFDPLoTaumKReKiLWoPHOfY54m3qPx4c+4pgY3MRKKbljG8w4wvz8pxk3AqKsy4GMAkAtmRjRMsCxbb4Q2Ds0Ia9ci8cMT6DmsJG00XaHCIS+o3F8YVVeikw13w+OEDaCYYhC0ZE54kA4jpjruBr5STWeqQG6M74HHL6TZ3lXrd99ZX++7LhNatQaZosuxEf5yRA15S9gPeHskBIq3Gcw81AGb9/O53DYi/5CsQ51EmEh8Rkg4vOciClpy4d04eYsfr6fyQkBmtD+P8sNh6e+XYHJXT/lkXxT4KXU5F2sGxYyzfniMMQkb9OjDN2C8tRRgTyL7GwozH14PrEUZc6oz05Emne3Ts5EG7WolDmU8OB1LDG3VrpQxp+pT0KYV5dGtknU64JhabdqcVQbGZiAxQAnvN1u70y1AnmvOSPgLI6uB4AuDGhmAu3ATkJSw7OtS/2ToPjqkaq62/7WFG8advGlRRqxB9diP07JrXowKR9tpRa+jGJ91zxNTT1h8I2PcSfoUPtd7NejVoH03EUcqSBuFZPkMZhegHyo2ZAITovmm3zAIdGFWxoNNORiMRShgwdYwFzkPw5PA4a5MIIQpmq+nsp3YMuXt/GkXxLx/P6+ZJS0lFyz4MunC3eWSGE8xlCQrKvhKUPXr0hjpAN9ZK4PfEDrPMfMbGNWcHDzjA7ngMxTPnT7GMHar+gMQQ3NwHCv4zH4BIMYvzsdiERi6gebRmerTsVwZJTRsL8dkZgxgRxmpbgRcud+YlCIRpPwHShlUSwuipZnx9QCsEWziVazdDeKSYU5CF7UVPAhLer3CgJOQXl/zh575R5rsrmRnKAzq4POFdgbYBuEviM4+LVC15ssLNFghbTtHWerS1hDt5s4qkLUha/qpZXhWh1C6lTQAqCNQnaDjS7UGFBC6wTu8yFnKJnExCnAs3Ok9yj5KpfZESQ4lTy5pTGTnkAUpxI+yjEldJfSo4y0QhG4i4IwkRFGcjWY8+EzgYYJUK7BXQksLxAww/YYWBMhJILB9e8ePEJ4OP7z+4/wOQDl64iOYDp26DaONPxpKtBxq/aTzRGarm3VkPYTLJKx6Z/Mw2YbBGseJhPMwhhNswrIkyvV2BYzrvZbxLpKwcWJhYmFtVZ+lPEq91FzVp1HlQY1bZVLqeNR9SAUn6n0E28k/UuGkNpP1DBI5ch/EehZfjUQ9aE41NhETExoPT2gGQz0IhWJbEOvTQ4wgcXCHHFBhewYUiFHuhRSAUVmEHeCRQHQkXGFwkAgyzREJCVN7TRnTon36Zw3tPhx4EALwNdwDv+J41YSP4B2CQqz0EFgARZ4ESgBHQgROwAVn9GTI+HYexTUevLUeta4/DqKrbMVS+Yqb8hUwYCrlgKtmAq1YCrFgKrd4qpXiqZcKn1oqdWipjYKpWwVPVYqW6xUpVipKqFR3QKjagVEtAqHpxUMTitsnFaJOKx2cVhswq35RVpyiq9lFVNIKnOQVMkgqtYxVNxiqQjFS7GKlSIVIsQqPIhUWwioigFQ++KkN8VHr49HDw9Ebo9EDo9DTo9Crg9BDg9/Wx7gWx7YWwlobYrOGxWPNisAaAHEyALpkAVDIAeWAArsABVXACYuAD5cAF6wAKFQAQqgAbVAAsoAAlQAUaYAfkwAvogBWQACOgAD9AAHSAAKT4GUdMiOvFngBTwCn2AZ7Dv6B6k/90B8+yRnkV144AIBoAMTQATGgAjNAA4YABgwABZgB/mQCwyAVlwCguASlwCEuAQFwB4uAMlwBYuAJlQAUVAAhUD2KgdpUDaJgaRMDFJgX5MC1JgWJEAokQCWRAHxEAWkQBMRADpEAMkQAYROAEecC484DRpwBDTnwNOdw05tjTmiNOYwtswhYFwLA7BYG4LA2BYGOLAwRYFuLAsxYFQJAohIEyJAMwkAwiQC0JAJgkAeiQBkJAFokAPCQA0JABwcD4Dgc4cDdDgaYcDIDgYgUC6CgWgUClCgUYUAVBQBOFAEYMALgwAgDA9QYAdIn8AZzeBB2L5EcWrenUT1KXienEsuJJ7x5U8XlTjc1NVzUyXFTGb1LlpUtWlTDIjqwE4LsagowoCi2gJLKAkpoBgJQNpAIhNqaEoneI6kiiqQ6Go/n6j0cS+a2gEU8gIHJ+BwfgZX4GL+Bd/gW34FZ+BS/gUH4FN6BTegTvoEv6BJegRnYEF2A79gOvYDl2BdEjCkqkGtwXp0LNToIskOTXzh/F062yJ7AAAAEDAWAAABWhJ+KPEIJgBFxMVP7w2QJBGHASQnOBKXKFIdUK4igKA9IEaYJg);src:url(data:application/vnd.ms-fontobject;base64,n04AAEFNAAACAAIABAAAAAAABQAAAAAAAAABAJABAAAEAExQAAAAAAAAAAIAAAAAAAAAAAEAAAAAAAAAJxJ/LAAAAAAAAAAAAAAAAAAAAAAAACgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAAAADgBSAGUAZwB1AGwAYQByAAAAeABWAGUAcgBzAGkAbwBuACAAMQAuADAAMAA5ADsAUABTACAAMAAwADEALgAwADAAOQA7AGgAbwB0AGMAbwBuAHYAIAAxAC4AMAAuADcAMAA7AG0AYQBrAGUAbwB0AGYALgBsAGkAYgAyAC4ANQAuADUAOAAzADIAOQAAADgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzACAAUgBlAGcAdQBsAGEAcgAAAAAAQlNHUAAAAAAAAAAAAAAAAAAAAAADAKncAE0TAE0ZAEbuFM3pjM/SEdmjKHUbyow8ATBE40IvWA3vTu8LiABDQ+pexwUMcm1SMnNryctQSiI1K5ZnbOlXKmnVV5YvRe6RnNMFNCOs1KNVpn6yZhCJkRtVRNzEufeIq7HgSrcx4S8h/v4vnrrKc6oCNxmSk2uKlZQHBii6iKFoH0746ThvkO1kJHlxjrkxs+LWORaDQBEtiYJIR5IB9Bi1UyL4Rmr0BNigNkMzlKQmnofBHviqVzUxwdMb3NdCn69hy+pRYVKGVS/1tnsqv4LL7wCCPZZAZPT4aCShHjHJVNuXbmMrY5LeQaGnvAkXlVrJgKRAUdFjrWEah9XebPeQMj7KS7DIBAFt8ycgC5PLGUOHSE3ErGZCiViNLL5ZARfywnCoZaKQCu6NuFX42AEeKtKUGnr/Cm2Cy8tpFhBPMW5Fxi4Qm4TkDWh4IWFDClhU2hRWosUWqcKLlgyXB+lSHaWaHiWlBAR8SeSgSPCQxdVQgzUixWKSTrIQEbU94viDctkvX+VSjJuUmV8L4CXShI11esnp0pjWNZIyxKHS4wVQ2ime1P4RnhvGw0aDN1OLAXGERsB7buFpFGGBAre4QEQR0HOIO5oYH305G+KspT/FupEGGafCCwxSe6ZUa+073rXHnNdVXE6eWvibUS27XtRzkH838mYLMBmYysZTM0EM3A1fbpCBYFccN1B/EnCYu/TgCGmr7bMh8GfYL+BfcLvB0gRagC09w9elfldaIy/hNCBLRgBgtCC7jAF63wLSMAfbfAlEggYU0bUA7ACCJmTDpEmJtI78w4/BO7dN7JR7J7ZvbYaUbaILSQsRBiF3HGk5fEg6p9unwLvn98r+vnsV+372uf1xBLq4qU/45fTuqaAP+pssmCCCTF0mhEow8ZXZOS8D7Q85JsxZ+Azok7B7O/f6J8AzYBySZQB/QHYUSA+EeQhEWiS6AIQzgcsDiER4MjgMBAWDV4AgQ3g1eBgIdweCQmCjJEMkJ+PKRWyFHHmg1Wi/6xzUgA0LREoKJChwnQa9B+5RQZRB3IlBlkAnxyQNaANwHMowzlYSMCBgnbpzvqpl0iTJNCQidDI9ZrSYNIRBhHtUa5YHMHxyGEik9hDE0AKj72AbTCaxtHPUaKZdAZSnQTyjGqGLsmBStCejApUhg4uBMU6mATujEl+KdDPbI6Ag4vLr+hjY6lbjBeoLKnZl0UZgRX8gTySOeynZVz1wOq7e1hFGYIq+MhrGxDLak0PrwYzSXtcuyhXEhwOYofiW+EcI/jw8P6IY6ed+etAbuqKp5QIapT77LnAe505lMuqL79a0ut4rWexzFttsOsLDy7zvtQzcq3U1qabe7tB0wHWVXji+zDbo8x8HyIRUbXnwUcklFv51fvTymiV+MXLSmGH9d9+aXpD5X6lao41anWGig7IwIdnoBY2ht/pO9mClLo4NdXHAsefqWUKlXJkbqPOFhMoR4aiA1BXqhRNbB2Xwi+7u/jpAoOpKJ0UX24EsrzMfHXViakCNcKjBxuQX8BO0ZqjJ3xXzf+61t2VXOSgJ8xu65QKgtN6FibPmPYsXbJRHHqbgATcSZxBqGiDiU4NNNsYBsKD0MIP/OfKnlk/Lkaid/O2NbKeuQrwOB2Gq3YHyr6ALgzym5wIBnsdC1ZkoBFZSQXChZvlesPqvK2c5oHHT3Q65jYpNxnQcGF0EHbvYqoFw60WNlXIHQF2HQB7zD6lWjZ9rVqUKBXUT6hrkZOle0RFYII0V5ZYGl1JAP0Ud1fZZMvSomBzJ710j4Me8mjQDwEre5Uv2wQfk1ifDwb5ksuJQQ3xt423lbuQjvoIQByQrNDh1JxGFkOdlJvu/gFtuW0wR4cgd+ZKesSV7QkNE2kw6AV4hoIuC02LGmTomyf8PiO6CZzOTLTPQ+HW06H+tx+bQ8LmDYg1pTFrp2oJXgkZTyeRJZM0C8aE2LpFrNVDuhARsN543/FV6klQ6Tv1OoZGXLv0igKrl/CmJxRmX7JJbJ998VSIPQRyDBICzl4JJlYHbdql30NvYcOuZ7a10uWRrgoieOdgIm4rlq6vNOQBuqESLbXG5lzdJGHw2m0sDYmODXbYGTfSTGRKpssTO95fothJCjUGQgEL4yKoGAF/0SrpUDNn8CBgBcSDQByAeNkCXp4S4Ro2Xh4OeaGRgR66PVOsU8bc6TR5/xTcn4IVMLOkXSWiXxkZQCbvKfmoAvQaKjO3EDKwkwqHChCDEM5loQRPd5ACBki1TjF772oaQhQbQ5C0lcWXPFOzrfsDGUXGrpxasbG4iab6eByaQkQfm0VFlP0ZsDkvvqCL6QXMUwCjdMx1ZOyKhTJ7a1GWAdOUcJ8RSejxNVyGs31OKMyRyBVoZFjqIkmKlLQ5eHMeEL4MkUf23cQ/1SgRCJ1dk4UdBT7OoyuNgLs0oCd8RnrEIb6QdMxT2QjD4zMrJkfgx5aDMcA4orsTtKCqWb/Veyceqa5OGSmB28YwH4rFbkQaLoUN8OQQYnD3w2eXpI4ScQfbCUZiJ4yMOIKLyyTc7BQ4uXUw6Ee6/xM+4Y67ngNBknxIPwuppgIhFcwJyr6EIj+LzNj/mfR2vhhRlx0BILZoAYruF0caWQ7YxO66UmeguDREAFHYuC7HJviRgVO6ruJH59h/C/PkgSle8xNzZJULLWq9JMDTE2fjGE146a1Us6PZDGYle6ldWRqn/pdpgHKNGrGIdkRK+KPETT9nKT6kLyDI8xd9A1FgWmXWRAIHwZ37WyZHOVyCadJEmMVz0MadMjDrPho+EIochkVC2xgGiwwsQ6DMv2P7UXqT4x7CdcYGId2BJQQa85EQKmCmwcRejQ9Bm4oATENFPkxPXILHpMPUyWTI5rjNOsIlmEeMbcOCEqInpXACYQ9DDxmFo9vcmsDblcMtg4tqBerNngkIKaFJmrQAPnq1dEzsMXcwjcHdfdCibcAxxA+q/j9m3LM/O7WJka4tSidVCjsvo2lQ/2ewyoYyXwAYyr2PlRoR5MpgVmSUIrM3PQxXPbgjBOaDQFIyFMJvx3Pc5RSYj12ySVF9fwFPQu2e2KWVoL9q3Ayv3IzpGHUdvdPdrNUdicjsTQ2ISy7QU3DrEytIjvbzJnAkmANXjAFERA0MUoPF3/5KFmW14bBNOhwircYgMqoDpUMcDtCmBE82QM2YtdjVLB4kBuKho/bcwQdeboqfQartuU3CsCf+cXkgYAqp/0Ee3RorAZt0AvvOCSI4JICIlGlsV0bsSid/NIEALAAzb6HAgyWHBps6xAOwkJIGcB82CxRQq4sJf3FzA70A+TRqcqjEMETCoez3mkPcpnoALs0ugJY8kQwrC+JE5ik3w9rzrvDRjAQnqgEVvdGrNwlanR0SOKWzxOJOvLJhcd8Cl4AshACUkv9czdMkJCVQSQhp6kp7StAlpVRpK0t0SW6LHeBJnE2QchB5Ccu8kxRghZXGIgZIiSj7gEKMJDClcnX6hgoqJMwiQDigIXg3ioFLCgDgjPtYHYpsF5EiA4kcnN18MZtOrY866dEQAb0FB34OGKHGZQjwW/WDHA60cYFaI/PjpzquUqdaYGcIq+mLez3WLFFCtNBN2QJcrlcoELgiPku5R5dSlJFaCEqEZle1AQzAKC+1SotMcBNyQUFuRHRF6OlimSBgjZeTBCwLyc6A+P/oFRchXTz5ADknYJHxzrJ5pGuIKRQISU6WyKTBBjD8WozmVYWIsto1AS5rxzKlvJu4E/vwOiKxRtCWsDM+eTHUrmwrCK5BIfMzGkD+0Fk5LzBs0jMYXktNDblB06LMNJ09U8pzSLmo14MS0OMjcdrZ31pyQqxJJpRImlSvfYAK8inkYU52QY2FPEVsjoWewpwhRp5yAuNpkqhdb7ku9Seefl2D0B8SMTFD90xi4CSOwwZy9IKkpMtI3FmFUg3/kFutpQGNc3pCR7gvC4sgwbupDu3DyEN+W6YGLNM21jpB49irxy9BSlHrVDlnihGKHwPrbVFtc+h1rVQKZduxIyojccZIIcOCmhEnC7UkY68WXKQgLi2JCDQkQWJRQuk60hZp0D3rtCTINSeY9Ej2kIKYfGxwOs4j9qMM7fYZiipzgcf7TamnehqdhsiMiCawXnz4xAbyCkLAx5EGbo3Ax1u3dUIKnTxIaxwQTHehPl3V491H0+bC5zgpGz7Io+mjdhKlPJ01EeMpM7UsRJMi1nGjmJg35i6bQBAAxjO/ENJubU2mg3ONySEoWklCwdABETcs7ck3jgiuU9pcKKpbgn+3YlzV1FzIkB6pmEDOSSyDfPPlQskznctFji0kpgZjW5RZe6x9kYT4KJcXg0bNiCyif+pZACCyRMmYsfiKmN9tSO65F0R2OO6ytlEhY5Sj6uRKfFxw0ijJaAx/k3QgnAFSq27/2i4GEBA+UvTJKK/9eISNvG46Em5RZfjTYLdeD8kdXHyrwId/DQZUaMCY4gGbke2C8vfjgV/Y9kkRQOJIn/xM9INZSpiBnqX0Q9GlQPpPKAyO5y+W5NMPSRdBCUlmuxl40ZfMCnf2Cp044uI9WLFtCi4YVxKjuRCOBWIb4XbIsGdbo4qtMQnNOQz4XDSui7W/N6l54qOynCqD3DpWQ+mpD7C40D8BZEWGJX3tlAaZBMj1yjvDYKwCJBa201u6nBKE5UE+7QSEhCwrXfbRZylAaAkplhBWX50dumrElePyNMRYUrC99UmcSSNgImhFhDI4BXjMtiqkgizUGCrZ8iwFxU6fQ8GEHCFdLewwxYWxgScAYMdMLmcZR6b7rZl95eQVDGVoUKcRMM1ixXQtXNkBETZkVVPg8LoSrdetHzkuM7DjZRHP02tCxA1fmkXKF3VzfN1pc1cv/8lbTIkkYpqKM9VOhp65ktYk+Q46myFWBapDfyWUCnsnI00QTBQmuFjMZTcd0V2NQ768Fhpby04k2IzNR1wKabuGJqYWwSly6ocMFGTeeI+ejsWDYgEvr66QgqdcIbFYDNgsm0x9UHY6SCd5+7tpsLpKdvhahIDyYmEJQCqMqtCF6UlrE5GXRmbu+vtm3BFSxI6ND6UxIE7GsGMgWqghXxSnaRJuGFveTcK5ZVSPJyjUxe1dKgI6kNF7EZhIZs8y8FVqwEfbM0Xk2ltORVDKZZM40SD3qQoQe0orJEKwPfZwm3YPqwixhUMOndis6MhbmfvLBKjC8sKKIZKbJk8L11oNkCQzCgvjhyyEiQSuJcgCQSG4Mocfgc0Hkwcjal1UNgP0CBPikYqBIk9tONv4kLtBswH07vUCjEaHiFGlLf8MgXKzSgjp2HolRRccAOh0ILHz9qlGgIFkwAnzHJRjWFhlA7ROwINyB5HFj59PRZHFor6voq7l23EPNRwdWhgawqbivLSjRA4htEYUFkjESu67icTg5S0aW1sOkCiIysfJ9UnIWevOOLGpepcBxy1wEhd2WI3AZg7sr9WBmHWyasxMcvY/iOmsLtHSWNUWEGk9hScMPShasUA1AcHOtRZlqMeQ0OzYS9vQvYUjOLrzP07BUAFikcJNMi7gIxEw4pL1G54TcmmmoAQ5s7TGWErJZ2Io4yQ0ljRYhL8H5e62oDtLF8aDpnIvZ5R3GWJyAugdiiJW9hQAVTsnCBHhwu7rkBlBX6r3b7ejEY0k5GGeyKv66v+6dg7mcJTrWHbtMywbedYqCQ0FPwoytmSWsL8WTtChZCKKzEF7vP6De4x2BJkkniMgSdWhbeBSLtJZR9CTHetK1xb34AYIJ37OegYIoPVbXgJ/qDQK+bfCtxQRVKQu77WzOoM6SGL7MaZwCGJVk46aImai9fmam+WpHG+0BtQPWUgZ7RIAlPq6lkECUhZQ2gqWkMYKcYMYaIc4gYCDFHYa2d1nzp3+J1eCBay8IYZ0wQRKGAqvCuZ/UgbQPyllosq+XtfKIZOzmeJqRazpmmoP/76YfkjzV2NlXTDSBYB04SVlNQsFTbGPk1t/I4Jktu0XSgifO2ozFOiwd/0SssJDn0dn4xqk4GDTTKX73/wQyBLdqgJ+Wx6AQaba3BA9CKEzjtQYIfAsiYamapq80LAamYjinlKXUkxdpIDk0puXUEYzSalfRibAeDAKpNiqQ0FTwoxuGYzRnisyTotdVTclis1LHRQCy/qqL8oUaQzWRxilq5Mi0IJGtMY02cGLD69vGjkj3p6pGePKI8bkBv5evq8SjjyU04vJR2cQXQwSJyoinDsUJHCQ50jrFTT7yRdbdYQMB3MYCb6uBzJ9ewhXYPAIZSXfeEQBZZ3GPN3Nbhh/wkvAJLXnQMdi5NYYZ5GHE400GS5rXkOZSQsdZgIbzRnF9ueLnsfQ47wHAsirITnTlkCcuWWIUhJSbpM3wWhXNHvt2xUsKKMpdBSbJnBMcihkoDqAd1Zml/R4yrzow1Q2A5G+kzo/RhRxQS2lCSDRV8LlYLBOOoo1bF4jwJAwKMK1tWLHlu9i0j4Ig8qVm6wE1DxXwAwQwsaBWUg2pOOol2dHxyt6npwJEdLDDVYyRc2D0HbcbLUJQj8gPevQBUBOUHXPrsAPBERICpnYESeu2OHotpXQxRGlCCtLdIsu23MhZVEoJg8Qumj/UMMc34IBqTKLDTp76WzL/dMjCxK7MjhiGjeYAC/kj/jY/Rde7hpSM1xChrog6yZ7OWTuD56xBJnGFE+pT2ElSyCnJcwVzCjkqeNLfMEJqKW0G7OFIp0G+9mh50I9o8k1tpCY0xYqFNIALgIfc2me4n1bmJnRZ89oepgLPT0NTMLNZsvSCZAc3TXaNB07vail36/dBySis4m9/DR8izaLJW6bWCkVgm5T+ius3ZXq4xI+GnbveLbdRwF2mNtsrE0JjYc1AXknCOrLSu7Te/r4dPYMCl5qtiHNTn+TPbh1jCBHH+dMJNhwNgs3nT+OhQoQ0vYif56BMG6WowAcHR3DjQolxLzyVekHj00PBAaW7IIAF1EF+uRIWyXjQMAs2chdpaKPNaB+kSezYt0+CA04sOg5vx8Fr7Ofa9sUv87h7SLAUFSzbetCCZ9pmyLt6l6/TzoA1/ZBG9bIUVHLAbi/kdBFgYGyGwRQGBpkqCEg2ah9UD6EedEcEL3j4y0BQQCiExEnocA3SZboh+epgd3YsOkHskZwPuQ5OoyA0fTA5AXrHcUOQF+zkJHIA7PwCDk1gGVmGUZSSoPhNf+Tklauz98QofOlCIQ/tCD4dosHYPqtPCXB3agggQQIqQJsSkB+qn0rkQ1toJjON/OtCIB9RYv3PqRA4C4U68ZMlZn6BdgEvi2ziU+TQ6NIw3ej+AtDwMGEZk7e2IjxUWKdAxyaw9OCwSmeADTPPleyk6UhGDNXQb++W6Uk4q6F7/rg6WVTo82IoCxSIsFDrav4EPHphD3u4hR53WKVvYZUwNCCeM4PMBWzK+EfIthZOkuAwPo5C5jgoZgn6dUdvx5rIDmd58cXXdKNfw3l+wM2UjgrDJeQHhbD7HW2QDoZMCujgIUkk5Fg8VCsdyjOtnGRx8wgKRPZN5dR0zPUyfGZFVihbFRniXZFOZGKPnEQzU3AnD1KfR6weHW2XS6KbPJxUkOTZsAB9vTVp3Le1F8q5l+DMcLiIq78jxAImD2pGFw0VHfRatScGlK6SMu8leTmhUSMy8Uhdd6xBiH3Gdman4tjQGLboJfqz6fL2WKHTmrfsKZRYX6BTDjDldKMosaSTLdQS7oDisJNqAUhw1PfTlnacCO8vl8706Km1FROgLDmudzxg+EWTiArtHgLsRrAXYWdB0NmToNCJdKm0KWycZQqb+Mw76Qy29iQ5up/X7oyw8QZ75kP5F6iJAJz6KCmqxz8fEa/xnsMYcIO/vEkGRuMckhr4rIeLrKaXnmIzlNLxbFspOphkcnJdnz/Chp/Vlpj2P7jJQmQRwGnltkTV5dbF9fE3/fxoSqTROgq9wFUlbuYzYcasE0ouzBo+dDCDzxKAfhbAZYxQiHrLzV2iVexnDX/QnT1fsT/xuhu1ui5qIytgbGmRoQkeQooO8eJNNZsf0iALur8QxZFH0nCMnjerYQqG1pIfjyVZWxhVRznmmfLG00BcBWJE6hzQWRyFknuJnXuk8A5FRDCulwrWASSNoBtR+CtGdkPwYN2o7DOw/VGlCZPusRBFXODQdUM5zeHDIVuAJBLqbO/f9Qua+pDqEPk230Sob9lEZ8BHiCorjVghuI0lI4JDgHGRDD/prQ84B1pVGkIpVUAHCG+iz3Bn3qm2AVrYcYWhock4jso5+J7HfHVj4WMIQdGctq3psBCVVzupQOEioBGA2Bk+UILT7+VoX5mdxxA5fS42gISQVi/HTzrgMxu0fY6hE1ocUwwbsbWcezrY2n6S8/6cxXkOH4prpmPuFoikTzY7T85C4T2XYlbxLglSv2uLCgFv8Quk/wdesUdWPeHYIH0R729JIisN9Apdd4eB10aqwXrPt+Su9mA8k8n1sjMwnfsfF2j3jMUzXepSHmZ/BfqXvzgUNQQWOXO8YEuFBh4QTYCkOAPxywpYu1VxiDyJmKVcmJPGWk/gc3Pov02StyYDahwmzw3E1gYC9wkupyWfDqDSUMpCTH5e5N8B//lHiMuIkTNw4USHrJU67bjXGqNav6PBuQSoqTxc8avHoGmvqNtXzIaoyMIQIiiUHIM64cXieouplhNYln7qgc4wBVAYR104kO+CvKqsg4yIUlFNThVUAKZxZt1XA34h3TCUUiXVkZ0w8Hh2R0Z5L0b4LZvPd/p1gi/07h8qfwHrByuSxglc9cI4QIg2oqvC/qm0i7tjPLTgDhoWTAKDO2ONW5oe+/eKB9vZB8K6C25yCZ9RFVMnb6NRdRjyVK57CHHSkJBfnM2/j4ODUwRkqrtBBCrDsDpt8jhZdXoy/1BCqw3sSGhgGGy0a5Jw6BP/TExoCmNFYjZl248A0osgPyGEmRA+fAsqPVaNAfytu0vuQJ7rk3J4kTDTR2AlCHJ5cls26opZM4w3jMULh2YXKpcqGBtuleAlOZnaZGbD6DHzMd6i2oFeJ8z9XYmalg1Szd/ocZDc1C7Y6vcALJz2lYnTXiWEr2wawtoR4g3jvWUU2Ngjd1cewtFzEvM1NiHZPeLlIXFbBPawxNgMwwAlyNSuGF3zizVeOoC9bag1qRAQKQE/EZBWC2J8mnXAN2aTBboZ7HewnObE8CwROudZHmUM5oZ/Ugd/JZQK8lvAm43uDRAbyW8gZ+ZGq0EVerVGUKUSm/Idn8AQHdR4m7bue88WBwft9mSCeMOt1ncBwziOmJYI2ZR7ewNMPiCugmSsE4EyQ+QATJG6qORMGd4snEzc6B4shPIo4G1T7PgSm8PY5eUkPdF8JZ0VBtadbHXoJgnEhZQaODPj2gpODKJY5Yp4DOsLBFxWbvXN755KWylJm+oOd4zEL9Hpubuy2gyyfxh8oEfFutnYWdfB8PdESLWYvSqbElP9qo3u6KTmkhoacDauMNNjj0oy40DFV7Ql0aZj77xfGl7TJNHnIwgqOkenruYYNo6h724+zUQ7+vkCpZB+pGA562hYQiDxHVWOq0oDQl/QsoiY+cuI7iWq/ZIBtHcXJ7kks+h2fCNUPA82BzjnqktNts+RLdk1VSu+tqEn7QZCCsvEqk6FkfiOYkrsw092J8jsfIuEKypNjLxrKA9kiA19mxBD2suxQKCzwXGws7kEJvlhUiV9tArLIdZW0IORcxEzdzKmjtFhsjKy/44XYXdI5noQoRcvjZ1RMPACRqYg2V1+OwOepcOknRLLFdYgTkT5UApt/JhLM3jeFYprZV+Zow2g8fP+U68hkKFWJj2yBbKqsrp25xkZX1DAjUw52IMYWaOhab8Kp05VrdNftqwRrymWF4OQSjbdfzmRZirK8FMJELEgER2PHjEAN9pGfLhCUiTJFbd5LBkOBMaxLr/A1SY9dXFz4RjzoU9ExfJCmx/I9FKEGT3n2cmzl2X42L3Jh+AbQq6sA+Ss1kitoa4TAYgKHaoybHUDJ51oETdeI/9ThSmjWGkyLi5QAGWhL0BG1UsTyRGRJOldKBrYJeB8ljLJHfATWTEQBXBDnQexOHTB+Un44zExFE4vLytcu5NwpWrUxO/0ZICUGM7hGABXym0V6ZvDST0E370St9MIWQOTWngeoQHUTdCJUP04spMBMS8LSker9cReVQkULFDIZDFPrhTzBl6sed9wcZQTbL+BDqMyaN3RJPh/anbx+Iv+qgQdAa3M9Z5JmvYlh4qop+Ho1F1W5gbOE9YKLgAnWytXElU4G8GtW47lhgFE6gaSs+gs37sFvi0PPVvA5dnCBgILTwoKd/+DoL9F6inlM7H4rOTzD79KJgKlZO/Zgt22UsKhrAaXU5ZcLrAglTVKJEmNJvORGN1vqrcfSMizfpsgbIe9zno+gBoKVXgIL/VI8dB1O5o/R3Suez/gD7M781ShjKpIIORM/nxG+jjhhgPwsn2IoXsPGPqYHXA63zJ07M2GPEykQwJBYLK808qYxuIew4frk52nhCsnCYmXiR6CuapvE1IwRB4/QftDbEn+AucIr1oxrLabRj9q4ae0+fXkHnteAJwXRbVkR0mctVSwEbqhJiMSZUp9DNbEDMmjX22m3ABpkrPQQTP3S1sib5pD2VRKRd+eNAjLYyT0hGrdjWJZy24OYXRoWQAIhGBZRxuBFMjjZQhpgrWo8SiFYbojcHO8V5DyscJpLTHyx9Fimassyo5U6WNtquUMYgccaHY5amgR3PQzq3ToNM5ABnoB9kuxsebqmYZm0R9qxJbFXCQ1UPyFIbxoUraTJFDpCk0Wk9GaYJKz/6oHwEP0Q14lMtlddQsOAU9zlYdMVHiT7RQP3XCmWYDcHCGbVRHGnHuwzScA0BaSBOGkz3lM8CArjrBsyEoV6Ys4qgDK3ykQQPZ3hCRGNXQTNNXbEb6tDiTDLKOyMzRhCFT+mAUmiYbV3YQVqFVp9dorv+TsLeCykS2b5yyu8AV7IS9cxcL8z4Kfwp+xJyYLv1OsxQCZwTB4a8BZ/5EdxTBJthApqyfd9u3ifr/WILTqq5VqgwMT9SOxbSGWLQJUUWCVi4k9tho9nEsbUh7U6NUsLmkYFXOhZ0kmamaJLRNJzSj/qn4Mso6zb6iLLBXoaZ6AqeWCjHQm2lztnejYYM2eubnpBdKVLORZhudH3JF1waBJKA9+W8EhMj3Kzf0L4vi4k6RoHh3Z5YgmSZmk6ns4fjScjAoL8GoOECgqgYEBYUGFVO4FUv4/YtowhEmTs0vrvlD/CrisnoBNDAcUi/teY7OctFlmARQzjOItrrlKuPO6E2Ox93L4O/4DcgV/dZ7qR3VBwVQxP1GCieA4RIpweYJ5FoYrHxqRBdJjnqbsikA2Ictbb8vE1GYIo9dacK0REgDX4smy6GAkxlH1yCGGsk+tgiDhNKuKu3yNrMdxafmKTF632F8Vx4BNK57GvlFisrkjN9WDAtjsWA0ENT2e2nETUb/n7qwhvGnrHuf5bX6Vh/n3xffU3PeHdR+FA92i6ufT3AlyAREoNDh6chiMWTvjKjHDeRhOa9YkOQRq1vQXEMppAQVwHCuIcV2g5rBn6GmZZpTR7vnSD6ZmhdSl176gqKTXu5E+YbfL0adwNtHP7dT7t7b46DVZIkzaRJOM+S6KcrzYVg+T3wSRFRQashjfU18NutrKa/7PXbtuJvpIjbgPeqd+pjmRw6YKpnANFSQcpzTZgpSNJ6J7uiagAbir/8tNXJ/OsOnRh6iuIexxrmkIneAgz8QoLmiaJ8sLQrELVK2yn3wOHp57BAZJhDZjTBzyoRAuuZ4eoxHruY1pSb7qq79cIeAdOwin4GdgMeIMHeG+FZWYaiUQQyC5b50zKjYw97dFjAeY2I4Bnl105Iku1y0lMA1ZHolLx19uZnRdILcXKlZGQx/GdEqSsMRU1BIrFqRcV1qQOOHyxOLXEGcbRtAEsuAC2V4K3p5mFJ22IDWaEkk9ttf5Izb2LkD1MnrSwztXmmD/Qi/EmVEFBfiKGmftsPwVaIoZanlKndMZsIBOskFYpDOq3QUs9aSbAAtL5Dbokus2G4/asthNMK5UQKCOhU97oaOYNGsTah+jfCKsZnTRn5TbhFX8ghg8CBYt/BjeYYYUrtUZ5jVij/op7V5SsbA4mYTOwZ46hqdpbB6Qvq3AS2HHNkC15pTDIcDNGsMPXaBidXYPHc6PJAkRh29Vx8KcgX46LoUQBhRM+3SW6Opll/wgxxsPgKJKzr5QCmwkUxNbeg6Wj34SUnEzOemSuvS2OetRCO8Tyy+QbSKVJcqkia+GvDefFwMOmgnD7h81TUtMn+mRpyJJ349HhAnoWFTejhpYTL9G8N2nVg1qkXBeoS9Nw2fB27t7trm7d/QK7Cr4uoCeOQ7/8JfKT77KiDzLImESHw/0wf73QeHu74hxv7uihi4fTX+XEwAyQG3264dwv17aJ5N335Vt9sdrAXhPOAv8JFvzqyYXwfx8WYJaef1gMl98JRFyl5Mv5Uo/oVH5ww5OzLFsiTPDns7fS6EURSSWd/92BxMYQ8sBaH+j+wthQPdVgDGpTfi+JQIWMD8xKqULliRH01rTeyF8x8q/GBEEEBrAJMPf25UQwi0b8tmqRXY7kIvNkzrkvRWLnxoGYEJsz8u4oOyMp8cHyaybb1HdMCaLApUE+/7xLIZGP6H9xuSEXp1zLIdjk5nBaMuV/yTDRRP8Y2ww5RO6d2D94o+6ucWIqUAvgHIHXhZsmDhjVLczmZ3ca0Cb3PpKwt2UtHVQ0BgFJsqqTsnzZPlKahRUkEu4qmkJt+kqdae76ViWe3STan69yaF9+fESD2lcQshLHWVu4ovItXxO69bqC5p1nZLvI8NdQB9s9UNaJGlQ5mG947ipdDA0eTIw/A1zEdjWquIsQXXGIVEH0thC5M+W9pZe7IhAVnPJkYCCXN5a32HjN6nsvokEqRS44tGIs7s2LVTvcrHAF+RVmI8L4HUYk4x+67AxSMJKqCg8zrGOgvK9kNMdDrNiUtSWuHFpC8/p5qIQrEo/H+1l/0cAwQ2nKmpWxKcMIuHY44Y6DlkpO48tRuUGBWT0FyHwSKO72Ud+tJUfdaZ4CWNijzZtlRa8+CkmO/EwHYfPZFU/hzjFWH7vnzHRMo+aF9u8qHSAiEkA2HjoNQPEwHsDKOt6hOoK3Ce/+/9boMWDa44I6FrQhdgS7OnNaSzwxWKZMcyHi6LN4WC6sSj0qm2PSOGBTvDs/GWJS6SwEN/ULwpb4LQo9fYjUfSXRwZkynUazlSpvX9e+G2zor8l+YaMxSEomDdLHGcD6YVQPegTaA74H8+V4WvJkFUrjMLGLlvSZQWvi8/QA7yzQ8GPno//5SJHRP/OqKObPCo81s/+6WgLqykYpGAgQZhVDEBPXWgU/WzFZjKUhSFInufPRiMAUULC6T11yL45ZrRoB4DzOyJShKXaAJIBS9wzLYIoCEcJKQW8GVCx4fihqJ6mshBUXSw3wWVj3grrHQlGNGhIDNNzsxQ3M+GWn6ASobIWC+LbYOC6UpahVO13Zs2zOzZC8z7FmA05JhUGyBsF4tsG0drcggIFzgg/kpf3+CnAXKiMgIE8Jk/Mhpkc8DUJEUzDSnWlQFme3d0sHZDrg7LavtsEX3cHwjCYA17pMTfx8Ajw9hHscN67hyo+RJQ4458RmPywXykkVcW688oVUrQhahpPRvTWPnuI0B+SkQu7dCyvLRyFYlC1LG1gRCIvn3rwQeINzZQC2KXq31FaR9UmVV2QeGVqBHjmE+VMd3b1fhCynD0pQNhCG6/WCDbKPyE7NRQzL3BzQAJ0g09aUzcQA6mUp9iZFK6Sbp/YbHjo++7/Wj8S4YNa+ZdqAw1hDrKWFXv9+zaXpf8ZTDSbiqsxnwN/CzK5tPkOr4tRh2kY3Bn9JtalbIOI4b3F7F1vPQMfoDcdxMS8CW9m/NCW/HILTUVWQIPiD0j1A6bo8vsv6P1hCESl2abrSJWDrq5sSzUpwoxaCU9FtJyYH4QFMxDBpkkBR6kn0LMPO+5EJ7Z6bCiRoPedRZ/P0SSdii7ZnPAtVwwHUidcdyspwncz5uq6vvm4IEDbJVLUFCn/LvIHfooUBTkFO130FC7CmmcrKdgDJcid9mvVzsDSibOoXtIf9k6ABle3PmIxejodc4aob0QKS432srrCMndbfD454q52V01G4q913mC5HOsTzWF4h2No1av1VbcUgWAqyoZl+11PoFYnNv2HwAODeNRkHj+8SF1fcvVBu6MrehHAZK1Gm69ICcTKizykHgGFx7QdowTVAsYEF2tVc0Z6wLryz2FI1sc5By2znJAAmINndoJiB4sfPdPrTC8RnkW7KRCwxC6YvXg5ahMlQuMpoCSXjOlBy0Kij+bsCYPbGp8BdCBiLmLSAkEQRaieWo1SYvZIKJGj9Ur/eWHjiB7SOVdqMAVmpBvfRiebsFjger7DC+8kRFGtNrTrnnGD2GAJb8rQCWkUPYHhwXsjNBSkE6lGWUj5QNhK0DMNM2l+kXRZ0KLZaGsFSIdQz/HXDxf3/TE30+DgBKWGWdxElyLccJfEpjsnszECNoDGZpdwdRgCixeg9L4EPhH+RptvRMVRaahu4cySjS3P5wxAUCPkmn+rhyASpmiTaiDeggaIxYBmtLZDDhiWIJaBgzfCsAGUF1Q1SFZYyXDt9skCaxJsxK2Ms65dmdp5WAZyxik/zbrTQk5KmgxCg/f45L0jywebOWUYFJQAJia7XzCV0x89rpp/f3AVWhSPyTanqmik2SkD8A3Ml4NhIGLAjBXtPShwKYfi2eXtrDuKLk4QlSyTw1ftXgwqA2jUuopDl+5tfUWZNwBpEPXghzbBggYCw/dhy0ntds2yeHCDKkF/YxQjNIL/F/37jLPHCKBO9ibwYCmuxImIo0ijV2Wbg3kSN2psoe8IsABv3RNFaF9uMyCtCYtqcD+qNOhwMlfARQUdJ2tUX+MNJqOwIciWalZsmEjt07tfa8ma4cji9sqz+Q9hWfmMoKEbIHPOQORbhQRHIsrTYlnVTNvcq1imqmmPDdVDkJgRcTgB8Sb6epCQVmFZe+jGDiNJQLWnfx+drTKYjm0G8yH0ZAGMWzEJhUEQ4Maimgf/bkvo8PLVBsZl152y5S8+HRDfZIMCbYZ1WDp4yrdchOJw8k6R+/2pHmydK4NIK2PHdFPHtoLmHxRDwLFb7eB+M4zNZcB9NrAgjVyzLM7xyYSY13ykWfIEEd2n5/iYp3ZdrCf7fL+en+sIJu2W7E30MrAgZBD1rAAbZHPgeAMtKCg3NpSpYQUDWJu9bT3V7tOKv+NRiJc8JAKqqgCA/PNRBR7ChpiEulyQApMK1AyqcWnpSOmYh6yLiWkGJ2mklCSPIqN7UypWj3dGi5MvsHQ87MrB4VFgypJaFriaHivwcHIpmyi5LhNqtem4q0n8awM19Qk8BOS0EsqGscuuydYsIGsbT5GHnERUiMpKJl4ON7qjB4fEqlGN/hCky89232UQCiaeWpDYCJINXjT6xl4Gc7DxRCtgV0i1ma4RgWLsNtnEBRQFqZggCLiuyEydmFd7WlogpkCw5G1x4ft2psm3KAREwVwr1Gzl6RT7FDAqpVal34ewVm3VH4qn5mjGj+bYL1NgfLNeXDwtmYSpwzbruDKpTjOdgiIHDVQSb5/zBgSMbHLkxWWgghIh9QTFSDILixVwg0Eg1puooBiHAt7DzwJ7m8i8/i+jHvKf0QDnnHVkVTIqMvIQImOrzCJwhSR7qYB5gSwL6aWL9hERHCZc4G2+JrpgHNB8eCCmcIWIQ6rSdyPCyftXkDlErUkHafHRlkOIjxGbAktz75bnh50dU7YHk+Mz7wwstg6RFZb+TZuSOx1qqP5C66c0mptQmzIC2dlpte7vZrauAMm/7RfBYkGtXWGiaWTtwvAQiq2oD4YixPLXE2khB2FRaNRDTk+9sZ6K74Ia9VntCpN4BhJGJMT4Z5c5FhSepRCRWmBXqx+whVZC4me4saDs2iNqXMuCl6iAZflH8fscC1sTsy4PHeC+XYuqMBMUun5YezKbRKmEPwuK+CLzijPEQgfhahQswBBLfg/GBgBiI4QwAqzJkkyYAWtjzSg2ILgMAgqxYfwERRo3zruBL9WOryUArSD8sQOcD7fvIODJxKFS615KFPsb68USBEPPj1orNzFY2xoTtNBVTyzBhPbhFH0PI5AtlJBl2aSgNPYzxYLw7XTDBDinmVoENwiGzmngrMo8OmnRP0Z0i0Zrln9DDFcnmOoBZjABaQIbPOJYZGqX+RCMlDDbElcjaROLDoualmUIQ88Kekk3iM4OQrADcxi3rJguS4MOIBIgKgXrjd1WkbCdqxJk/4efRIFsavZA7KvvJQqp3Iid5Z0NFc5aiMRzGN3vrpBzaMy4JYde3wr96PjN90AYOIbyp6T4zj8LoE66OGcX1Ef4Z3KoWLAUF4BTg7ug/AbkG5UNQXAMkQezujSHeir2uTThgd3gpyzDrbnEdDRH2W7U6PeRvBX1ZFMP5RM+Zu6UUZZD8hDPHldVWntTCNk7To8IeOW9yn2wx0gmurwqC60AOde4r3ETi5pVMSDK8wxhoGAoEX9NLWHIR33VbrbMveii2jAJlrxwytTHbWNu8Y4N8vCCyZjAX/pcsfwXbLze2+D+u33OGBoJyAAL3jn3RuEcdp5If8O+a4NKWvxOTyDltG0IWoHhwVGe7dKkCWFT++tm+haBCikRUUMrMhYKZJKYoVuv/bsJzO8DwfVIInQq3g3BYypiz8baogH3r3GwqCwFtZnz4xMjAVOYnyOi5HWbFA8n0qz1OjSpHWFzpQOpvkNETZBGpxN8ybhtqV/DMUxd9uFZmBfKXMCn/SqkWJyKPnT6lq+4zBZni6fYRByJn6OK+OgPBGRAJluwGSk4wxjOOzyce/PKODwRlsgrVkdcsEiYrqYdXo0Er2GXi2GQZd0tNJT6c9pK1EEJG1zgDJBoTVuCXGAU8BKTvCO/cEQ1Wjk3Zzuy90JX4m3O5IlxVFhYkSUwuQB2up7jhvkm+bddRQu5F9s0XftGEJ9JSuSk+ZachCbdU45fEqbugzTIUokwoAKvpUQF/CvLbWW5BNQFqFkJg2f30E/48StNe5QwBg8zz3YAJ82FZoXBxXSv4QDooDo79NixyglO9AembuBcx5Re3CwOKTHebOPhkmFC7wNaWtoBhFuV4AkEuJ0J+1pT0tLkvFVZaNzfhs/Kd3+A9YsImlO4XK4vpCo/elHQi/9gkFg07xxnuXLt21unCIpDV+bbRxb7FC6nWYTsMFF8+1LUg4JFjVt3vqbuhHmDKbgQ4e+RGizRiO8ky05LQGMdL2IKLSNar0kNG7lHJMaXr5mLdG3nykgj6vB/KVijd1ARWkFEf3yiUw1v/WaQivVUpIDdSNrrKbjO5NPnxz6qTTGgYg03HgPhDrCFyYZTi3XQw3HXCva39mpLNFtz8AiEhxAJHpWX13gCTAwgm9YTvMeiqetdNQv6IU0hH0G+ZManTqDLPjyrOse7WiiwOJCG+J0pZYULhN8NILulmYYvmVcV2MjAfA39sGKqGdjpiPo86fecg65UPyXDIAOyOkCx5NQsLeD4gGVjTVDwOHWkbbBW0GeNjDkcSOn2Nq4cEssP54t9D749A7M1AIOBl0Fi0sSO5v3P7LCBrM6ZwFY6kp2FX6AcbGUdybnfChHPyu6WlRZ2Fwv9YM0RMI7kISRgR8HpQSJJOyTfXj/6gQKuihPtiUtlCQVPohUgzfezTg8o1b3n9pNZeco1QucaoXe40Fa5JYhqdTspFmxGtW9h5ezLFZs3j/N46f+S2rjYNC2JySXrnSAFhvAkz9a5L3pza8eYKHNoPrvBRESpxYPJdKVUxBE39nJ1chrAFpy4MMkf0qKgYALctGg1DQI1kIymyeS2AJNT4X240d3IFQb/0jQbaHJ2YRK8A+ls6WMhWmpCXYG5jqapGs5/eOJErxi2/2KWVHiPellTgh/fNl/2KYPKb7DUcAg+mCOPQFCiU9Mq/WLcU1xxC8aLePFZZlE+PCLzf7ey46INWRw2kcXySR9FDgByXzfxiNKwDFbUSMMhALPFSedyjEVM5442GZ4hTrsAEvZxIieSHGSgkwFh/nFNdrrFD4tBH4Il7fW6ur4J8Xaz7RW9jgtuPEXQsYk7gcMs2neu3zJwTyUerHKSh1iTBkj2YJh1SSOZL5pLuQbFFAvyO4k1Hxg2h99MTC6cTUkbONQIAnEfGsGkNFWRbuRyyaEZInM5pij73EA9rPIUfU4XoqQpHT9THZkW+oKFLvpyvTBMM69tN1Ydwv1LIEhHsC+ueVG+w+kyCPsvV3erRikcscHjZCkccx6VrBkBRusTDDd8847GA7p2Ucy0y0HdSRN6YIBciYa4vuXcAZbQAuSEmzw+H/AuOx+aH+tBL88H57D0MsqyiZxhOEQkF/8DR1d2hSPMj/sNOa5rxcUnBgH8ictv2J+cb4BA4v3MCShdZ2vtK30vAwkobnEWh7rsSyhmos3WC93Gn9C4nnAd/PjMMtQfyDNZsOPd6XcAsnBE/mRHtHEyJMzJfZFLE9OvQa0i9kUmToJ0ZxknTgdl/XPV8xoh0K7wNHHsnBdvFH3sv52lU7UFteseLG/VanIvcwycVA7+BE1Ulyb20BvwUWZcMTKhaCcmY3ROpvonVMV4N7yBXTL7IDtHzQ4CCcqF66LjF3xUqgErKzolLyCG6Kb7irP/MVTCCwGRxfrPGpMMGvPLgJ881PHMNMIO09T5ig7AzZTX/5PLlwnJLDAPfuHynSGhV4tPqR3gJ4kg4c06c/F1AcjGytKm2Yb5jwMotF7vro4YDLWlnMIpmPg36NgAZsGA0W1spfLSue4xxat0Gdwd0lqDBOgIaMANykwwDKejt5YaNtJYIkrSgu0KjIg0pznY0SCd1qlC6R19g97UrWDoYJGlrvCE05J/5wkjpkre727p5PTRX5FGrSBIfJqhJE/IS876PaHFkx9pGTH3oaY3jJRvLX9Iy3Edoar7cFvJqyUlOhAEiOSAyYgVEGkzHdug+oRHIEOXAExMiTSKU9A6nmRC8mp8iYhwWdP2U/5EkFAdPrZw03YA3gSyNUtMZeh7dDCu8pF5x0VORCTgKp07ehy7NZqKTpIC4UJJ89lnboyAfy5OyXzXtuDRbtAFjZRSyGFTpFrXwkpjSLIQIG3N0Vj4BtzK3wdlkBJrO18MNsgseR4BysJilI0wI6ZahLhBFA0XBmV8d4LUzEcNVb0xbLjLTETYN8OEVqNxkt10W614dd1FlFFVTIgB7/BQQp1sWlNolpIu4ekxUTBV7NmxOFKEBmmN+nA7pvF78/RII5ZHA09OAiE/66MF6HQ+qVEJCHxwymukkNvzqHEh52dULPbVasfQMgTDyBZzx4007YiKdBuUauQOt27Gmy8ISclPmEUCIcuLbkb1mzQSqIa3iE0PJh7UMYQbkpe+hXjTJKdldyt2mVPwywoODGJtBV1lJTgMsuSQBlDMwhEKIfrvsxGQjHPCEfNfMAY2oxvyKcKPUbQySkKG6tj9AQyEW3Q5rpaDJ5Sns9ScLKeizPRbvWYAw4bXkrZdmB7CQopCH8NAmqbuciZChHN8lVGaDbCnmddnqO1PQ4ieMYfcSiBE5zzMz+JV/4eyzrzTEShvqSGzgWimkNxLvUj86iAwcZuIkqdB0VaIB7wncLRmzHkiUQpPBIXbDDLHBlq7vp9xwuC9AiNkIptAYlG7Biyuk8ILdynuUM1cHWJgeB+K3wBP/ineogxkvBNNQ4AkW0hvpBOQGFfeptF2YTR75MexYDUy7Q/9uocGsx41O4IZhViw/2FvAEuGO5g2kyXBUijAggWM08bRhXg5ijgMwDJy40QeY/cQpUDZiIzmvskQpO5G1zyGZA8WByjIQU4jRoFJt56behxtHUUE/om7Rj2psYXGmq3llVOCgGYKNMo4pzwntITtapDqjvQtqpjaJwjHmDzSVGLxMt12gEXAdLi/caHSM3FPRGRf7dB7YC+cD2ho6oL2zGDCkjlf/DFoQVl8GS/56wur3rdV6ggtzZW60MRB3g+U1W8o8cvqIpMkctiGVMzXUFI7FacFLrgtdz4mTEr4aRAaQ2AFQaNeG7GX0yOJgMRYFziXdJf24kg/gBQIZMG/YcPEllRTVNoDYR6oSJ8wQNLuihfw81UpiKPm714bZX1KYjcXJdfclCUOOpvTxr9AAJevTY4HK/G7F3mUc3GOAKqh60zM0v34v+ELyhJZqhkaMA8UMMOU90f8RKEJFj7EqepBVwsRiLbwMo1J2zrE2UYJnsgIAscDmjPjnzI8a719Wxp757wqmSJBjXowhc46QN4RwKIxqEE6E5218OeK7RfcpGjWG1jD7qND+/GTk6M56Ig4yMsU6LUW1EWE+fIYycVV1thldSlbP6ltdC01y3KUfkobkt2q01YYMmxpKRvh1Z48uNKzP/IoRIZ/F6buOymSnW8gICitpJjKWBscSb9JJKaWkvEkqinAJ2kowKoqkqZftRqfRQlLtKoqvTRDi2vg/RrPD/d3a09J8JhGZlEkOM6znTsoMCsuvTmywxTCDhw5dd0GJOHCMPbsj3QLkTE3MInsZsimDQ3HkvthT7U9VA4s6G07sID0FW4SHJmRGwCl+Mu4xf0ezqeXD2PtPDnwMPo86sbwDV+9PWcgFcARUVYm3hrFQrHcgMElFGbSM2A1zUYA3baWfheJp2AINmTJLuoyYD/OwA4a6V0ChBN97E8YtDBerUECv0u0TlxR5yhJCXvJxgyM73Bb6pyq0jTFJDZ4p1Am1SA6sh8nADd1hAcGBMfq4d/UfwnmBqe0Jun1n1LzrgKuZMAnxA3NtCN7Klf4BH+14B7ibBmgt0TGUafVzI4uKlpF7v8NmgNjg90D6QE3tbx8AjSAC+OA1YJvclyPKgT27QpIEgVYpbPYGBsnyCNrGz9XUsCHkW1QAHgL2STZk12QGqmvAB0NFteERkvBIH7INDsNW9KKaAYyDMdBEMzJiWaJHZALqDxQDWRntumSDPcplyFiI1oDpT8wbwe01AHhW6+vAUUBoGhY3CT2tgwehdPqU/4Q7ZLYvhRl/ogOvR9O2+wkkPKW5vCTjD2fHRYXONCoIl4Jh1bZY0ZE1O94mMGn/dFSWBWzQ/VYk+Gezi46RgiDv3EshoTmMSlioUK6MQEN8qeyK6FRninyX8ZPeUWjjbMJChn0n/yJvrq5bh5UcCAcBYSafTFg7p0jDgrXo2QWLb3WpSOET/Hh4oSadBTvyDo10IufLzxiMLAnbZ1vcUmj3w7BQuIXjEZXifwukVxrGa9j+DXfpi12m1RbzYLg9J2wFergEwOxFyD0/JstNK06ZN2XdZSGWxcJODpQHOq4iKqjqkJUmPu1VczL5xTGUfCgLEYyNBCCbMBFT/cUP6pE/mujnHsSDeWxMbhrNilS5MyYR0nJyzanWXBeVcEQrRIhQeJA6Xt4f2eQESNeLwmC10WJVHqwx8SSyrtAAjpGjidcj1E2FYN0LObUcFQhafUKTiGmHWRHGsFCB+HEXgrzJEB5bp0QiF8ZHh11nFX8AboTD0PS4O1LqF8XBks2MpjsQnwKHF6HgaKCVLJtcr0XjqFMRGfKv8tmmykhLRzu+vqQ02+KpJBjaLt9ye1Ab+BbEBhy4EVdIJDrL2naV0o4wU8YZ2Lq04FG1mWCKC+UwkXOoAjneU/xHplMQo2cXUlrVNqJYczgYlaOEczVCs/OCgkyvLmTmdaBJc1iBLuKwmr6qtRnhowngsDxhzKFAi02tf8bmET8BO27ovJKF1plJwm3b0JpMh38+xsrXXg7U74QUM8ZCIMOpXujHntKdaRtsgyEZl5MClMVMMMZkZLNxH9+b8fH6+b8Lev30A9TuEVj9CqAdmwAAHBPbfOBFEATAPZ2CS0OH1Pj/0Q7PFUcC8hDrxESWdfgFRm+7vvWbkEppHB4T/1ApWnlTIqQwjcPl0VgS1yHSmD0OdsCVST8CQVwuiew1Y+g3QGFjNMzwRB2DSsAk26cmA8lp2wIU4p93AUBiUHFGOxOajAqD7Gm6NezNDjYzwLOaSXRBYcWipTSONHjUDXCY4mMI8XoVCR/Rrs/JLKXgEx+qkmeDlFOD1/yTQNDClRuiUyKYCllfMiQiyFkmuTz2vLsBNyRW+xz+5FElFxWB28VjYIGZ0Yd+5wIjkcoMaggxswbT0pCmckRAErbRlIlcOGdBo4djTNO8FAgQ+lT6vPS60BwTRSUAM3ddkEAZiwtEyArrkiDRnS7LJ+2hwbzd2YDQagSgACpsovmjil5wfPuXq3GuH0CyE7FK3M4FgRaFoIkaodORrPx1+JpI9psyNYIFuJogZa0/1AhOWdlHQxdAgbwacsHqPZo8u/ngAH2GmaTdhYnBfSDbBfh8CHq6Bx5bttP2+RdM+MAaYaZ0Y/ADkbNCZuAyAVQa2OcXOeICmDn9Q/eFkDeFQg5MgHEDXq/tVjj+jtd26nhaaolWxs1ixSUgOBwrDhRIGOLyOVk2/Bc0UxvseQCO2pQ2i+Krfhu/WeBovNb5dJxQtJRUDv2mCwYVpNl2efQM9xQHnK0JwLYt/U0Wf+phiA4uw8G91slC832pmOTCAoZXohg1fewCZqLBhkOUBofBWpMPsqg7XEXgPfAlDo2U5WXjtFdS87PIqClCK5nW6adCeXPkUiTGx0emOIDQqw1yFYGHEVx20xKjJVYe0O8iLmnQr3FA9nSIQilUKtJ4ZAdcTm7+ExseJauyqo30hs+1qSW211A1SFAOUgDlCGq7eTIcMAeyZkV1SQJ4j/e1Smbq4HcjqgFbLAGLyKxlMDMgZavK5NAYH19Olz3la/QCTiVelFnU6O/GCvykqS/wZJDhKN9gBtSOp/1SP5VRgJcoVj+kmf2wBgv4gjrgARBWiURYx8xENV3bEVUAAWWD3dYDKAIWk5opaCFCMR5ZjJExiCAw7gYiSZ2rkyTce4eNMY3lfGn+8p6+vBckGlKEXnA6Eota69OxDO9oOsJoy28BXOR0UoXNRaJD5ceKdlWMJlOFzDdZNpc05tkMGQtqeNF2lttZqNco1VtwXgRstLSQ6tSPChgqtGV5h2DcDReIQadaNRR6AsAYKL5gSFsCJMgfsaZ7DpKh8mg8Wz8V7H+gDnLuMxaWEIUPevIbClgap4dqmVWSrPgVYCzAoZHIa5z2Ocx1D/GvDOEqMOKLrMefWIbSWHZ6jbgA8qVBhYNHpx0P+jAgN5TB3haSifDcApp6yymEi6Ij/GsEpDYUgcHATJUYDUAmC1SCkJ4cuZXSAP2DEpQsGUjQmKJfJOvlC2x/pChkOyLW7KEoMYc5FDC4v2FGqSoRWiLsbPCiyg1U5yiHZVm1XLkHMMZL11/yxyw0UnGig3MFdZklN5FI/qiT65T+jOXOdO7XbgWurOAZR6Cv9uu1cm5LjkXX4xi6mWn5r5NjBS0gTliHhMZI2WNqSiSphEtiCAwnafS11JhseDGHYQ5+bqWiAYiAv6Jsf79/VUs4cIl+n6+WOjcgB/2l5TreoAV2717JzZbQIR0W1cl/dEqCy5kJ3ZSIHuU0vBoHooEpiHeQWVkkkOqRX27eD1FWw4BfO9CJDdKoSogQi3hAAwsPRFrN5RbX7bqLdBJ9JYMohWrgJKHSjVl1sy2xAG0E3sNyO0oCbSGOxCNBRRXTXenYKuwAoDLfnDcQaCwehUOIDiHAu5m5hMpKeKM4sIo3vxACakIxKoH2YWF2QM84e6F5C5hJU4g8uxuFOlAYnqtwxmHyNEawLW/PhoawJDrGAP0JYWHgAVUByo/bGdiv2T2EMg8gsS14/rAdzlOYazFE7w4OzxeKiWdm3nSOnQRRKXSlVo8HEAbBfyJMKqoq+SCcTSx5NDtbFwNlh8VhjGGDu7JG5/TAGAvniQSSUog0pNzTim8Owc6QTuSKSTXlQqwV3eiEnklS3LeSXYPXGK2VgeZBqNcHG6tZHvA3vTINhV0ELuQdp3t1y9+ogD8Kk/W7QoRN1UWPqM4+xdygkFDPLoTaumKReKiLWoPHOfY54m3qPx4c+4pgY3MRKKbljG8w4wvz8pxk3AqKsy4GMAkAtmRjRMsCxbb4Q2Ds0Ia9ci8cMT6DmsJG00XaHCIS+o3F8YVVeikw13w+OEDaCYYhC0ZE54kA4jpjruBr5STWeqQG6M74HHL6TZ3lXrd99ZX++7LhNatQaZosuxEf5yRA15S9gPeHskBIq3Gcw81AGb9/O53DYi/5CsQ51EmEh8Rkg4vOciClpy4d04eYsfr6fyQkBmtD+P8sNh6e+XYHJXT/lkXxT4KXU5F2sGxYyzfniMMQkb9OjDN2C8tRRgTyL7GwozH14PrEUZc6oz05Emne3Ts5EG7WolDmU8OB1LDG3VrpQxp+pT0KYV5dGtknU64JhabdqcVQbGZiAxQAnvN1u70y1AnmvOSPgLI6uB4AuDGhmAu3ATkJSw7OtS/2ToPjqkaq62/7WFG8advGlRRqxB9diP07JrXowKR9tpRa+jGJ91zxNTT1h8I2PcSfoUPtd7NejVoH03EUcqSBuFZPkMZhegHyo2ZAITovmm3zAIdGFWxoNNORiMRShgwdYwFzkPw5PA4a5MIIQpmq+nsp3YMuXt/GkXxLx/P6+ZJS0lFyz4MunC3eWSGE8xlCQrKvhKUPXr0hjpAN9ZK4PfEDrPMfMbGNWcHDzjA7ngMxTPnT7GMHar+gMQQ3NwHCv4zH4BIMYvzsdiERi6gebRmerTsVwZJTRsL8dkZgxgRxmpbgRcud+YlCIRpPwHShlUSwuipZnx9QCsEWziVazdDeKSYU5CF7UVPAhLer3CgJOQXl/zh575R5rsrmRnKAzq4POFdgbYBuEviM4+LVC15ssLNFghbTtHWerS1hDt5s4qkLUha/qpZXhWh1C6lTQAqCNQnaDjS7UGFBC6wTu8yFnKJnExCnAs3Ok9yj5KpfZESQ4lTy5pTGTnkAUpxI+yjEldJfSo4y0QhG4i4IwkRFGcjWY8+EzgYYJUK7BXQksLxAww/YYWBMhJILB9e8ePEJ4OP7z+4/wOQDl64iOYDp26DaONPxpKtBxq/aTzRGarm3VkPYTLJKx6Z/Mw2YbBGseJhPMwhhNswrIkyvV2BYzrvZbxLpKwcWJhYmFtVZ+lPEq91FzVp1HlQY1bZVLqeNR9SAUn6n0E28k/UuGkNpP1DBI5ch/EehZfjUQ9aE41NhETExoPT2gGQz0IhWJbEOvTQ4wgcXCHHFBhewYUiFHuhRSAUVmEHeCRQHQkXGFwkAgyzREJCVN7TRnTon36Zw3tPhx4EALwNdwDv+J41YSP4B2CQqz0EFgARZ4ESgBHQgROwAVn9GTI+HYexTUevLUeta4/DqKrbMVS+Yqb8hUwYCrlgKtmAq1YCrFgKrd4qpXiqZcKn1oqdWipjYKpWwVPVYqW6xUpVipKqFR3QKjagVEtAqHpxUMTitsnFaJOKx2cVhswq35RVpyiq9lFVNIKnOQVMkgqtYxVNxiqQjFS7GKlSIVIsQqPIhUWwioigFQ++KkN8VHr49HDw9Ebo9EDo9DTo9Crg9BDg9/Wx7gWx7YWwlobYrOGxWPNisAaAHEyALpkAVDIAeWAArsABVXACYuAD5cAF6wAKFQAQqgAbVAAsoAAlQAUaYAfkwAvogBWQACOgAD9AAHSAAKT4GUdMiOvFngBTwCn2AZ7Dv6B6k/90B8+yRnkV144AIBoAMTQATGgAjNAA4YABgwABZgB/mQCwyAVlwCguASlwCEuAQFwB4uAMlwBYuAJlQAUVAAhUD2KgdpUDaJgaRMDFJgX5MC1JgWJEAokQCWRAHxEAWkQBMRADpEAMkQAYROAEecC484DRpwBDTnwNOdw05tjTmiNOYwtswhYFwLA7BYG4LA2BYGOLAwRYFuLAsxYFQJAohIEyJAMwkAwiQC0JAJgkAeiQBkJAFokAPCQA0JABwcD4Dgc4cDdDgaYcDIDgYgUC6CgWgUClCgUYUAVBQBOFAEYMALgwAgDA9QYAdIn8AZzeBB2L5EcWrenUT1KXienEsuJJ7x5U8XlTjc1NVzUyXFTGb1LlpUtWlTDIjqwE4LsagowoCi2gJLKAkpoBgJQNpAIhNqaEoneI6kiiqQ6Go/n6j0cS+a2gEU8gIHJ+BwfgZX4GL+Bd/gW34FZ+BS/gUH4FN6BTegTvoEv6BJegRnYEF2A79gOvYDl2BdEjCkqkGtwXp0LNToIskOTXzh/F062yJ7AAAAEDAWAAABWhJ+KPEIJgBFxMVP7w2QJBGHASQnOBKXKFIdUK4igKA9IEaYJg) format('embedded-opentype'),url(data:application/font-woff;base64,d09GRgABAAAAAFuAAA8AAAAAsVwAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAABWAAAABwAAAAcbSqX3EdERUYAAAF0AAAAHwAAACABRAAET1MvMgAAAZQAAABFAAAAYGe5a4ljbWFwAAAB3AAAAsAAAAZy2q3jgWN2dCAAAAScAAAABAAAAAQAKAL4Z2FzcAAABKAAAAAIAAAACP//AANnbHlmAAAEqAAATRcAAJSkfV3Cb2hlYWQAAFHAAAAANAAAADYFTS/YaGhlYQAAUfQAAAAcAAAAJApEBBFobXR4AABSEAAAAU8AAAN00scgYGxvY2EAAFNgAAACJwAAAjBv+5XObWF4cAAAVYgAAAAgAAAAIAFqANhuYW1lAABVqAAAAZ4AAAOisyygm3Bvc3QAAFdIAAAELQAACtG6o+U1d2ViZgAAW3gAAAAGAAAABsMYVFAAAAABAAAAAMw9os8AAAAA0HaBdQAAAADQdnOXeNpjYGRgYOADYgkGEGBiYGRgZBQDkixgHgMABUgASgB42mNgZulmnMDAysDCzMN0gYGBIQpCMy5hMGLaAeQDpRCACYkd6h3ux+DAoPD/P/OB/wJAdSIM1UBhRiQlCgyMADGWCwwAAAB42u2UP2hTQRzHf5ekaVPExv6JjW3fvTQ0sa3QLA5xylBLgyBx0gzSWEUaXbIoBBQyCQGHLqXUqYNdtIIgIg5FHJxEtwqtpbnfaV1E1KFaSvX5vVwGEbW6OPngk8/vvXfv7pt3v4SImojIDw6BViKxRgIVBaZwVdSv+xvXA+Iuzqcog2cOkkvDNE8Lbqs74k64i+5Sf3u8Z2AnIRLbyVCyTflVSEXVoEqrrMqrgiqqsqqqWQ5xlAc5zWOc5TwXucxVnuE5HdQhHdFRHdNJndZZndeFLc/zsKJLQ/WV6BcrCdWkwspVKZVROaw0qUqqoqZZcJhdTnGGxznHBS5xhad5VhNWCuturBTXKZ3RObuS98pb9c57k6ql9rp2v1as5deb1r6s9q1GV2IrHSt73T631424YXzjgPwqt+Rn+VG+lRvyirwsS/KCPCfPytPypDwhj8mjctRZd9acF86y89x55jxxHjkPnXstXfbt/pNjj/nwXW+cHa6/SYvZ7yEwbDYazDcIgoUGzY3h2HtqgUcs1AFPWKgTXrRQF7xkoQhRf7uF9hPFeyzUTTSwY6EoUUJY6AC8bSGMS4Ys1Au3WaiPSGGsMtkdGH2rzJgYHAaYjxIwQqtB1CnYkEZ9BM6ALOpROAfyqI/DBQudgidBETXuqRIooz4DV0AV9UV4GsyivkTEyMMmw1UYGdhkuAYjA5sMGMvIwCbDDRgZeAz1TXgcmDy3YeRhk+cOjCxsMjyAkYFNhscwMrDJ8BQ2886gXoaRhedQvyTSkDZ7uA6HLLQBI5vGntAbGHugTc53cMxC7+E4SKL+ACOzNpk3YWTWJid+iRo5NXIKM3fBItAPW55FdJLY3FeHBDr90606JCIU9Jk+Ms3/Y/8L8jUq3y79bJ/0/+ROoP4v9v/4/mj+i7HBXUd0/elU6IHfHt8Aj9EPGAAoAvgAAAAB//8AAnjaxb0JfBvVtTA+dxaN1hltI1m2ZVuSJVneLVlSHCdy9oTEWchqtrBEJRAgCYEsQNhC2EsbWmpI2dqkQBoSYgKlpaQthVL0yusrpW77aEubfq/ly+ujvJampSTW5Dvnzmi1E+jr//3+Xmbu3Llz77nnbuece865DMu0MAy5jGtiOEZkOp8lTNeUwyLP/DH+rEH41ZTDHAtB5lkOowWMPiwayNiUwwTjE46AI5xwhFrINPXYn/7ENY0dbWHfZAiTZbL8ID/InAd5xz2NpIH4STpDGonHIJNE3OP1KG4ISaSNeBuITAyRLgIxoiEUhFAnmUpEiXSRSGqAQEw0kuyFUIb0k2gnGSApyBFi0il2SI5YLGb5MdFjXCey4mNHzQ7WwLGEdZiPPgYR64we8THZHAt+wnT84D/x8YTpGPgheKH4CMEDVF9xBOIeP3EbQgGH29BGgpGkIxCMTCW9qUTA0Zsir+QUP1mt+P2KusevwIO6Bx/Iaj8/OD5O0VNrZW2EsqZBWbO1skRiEKE0DdlKKaSVO5VAuRpqk8VQJAqY7ydxaK44YJvrO2EWjOoDBoFYzQbDNkON+UbiKoRkywMWWf1j4bEY2iIY1AeMgvmEz/kVo9v4FSc/aMZMrFbjl4zWLL0+Y5FlyzNlEVYDudJohg8gPUP7kcB/mn+G6cd+5PV4Q72dXCgocWJADBgUuDTwiXiGSyZo14HOEQ2lE6k0XDIEusexDzZOMXwt1Dutz+tqmxTvlskNWXXUQIbhaurum9GrePqm9Yaeabjkiqf+bUvzDOvb2Y1E+EX2DnemcTP/zLcuu7xjQXdAtjR0Lo5n4/Hs/GtntMlysHt+29NXbH6se//WbFcyu+r28H0MwzI30DYeYTLMXIA2EG8QlHpAsyS0EfEToR0a3utIxFPJ3kiIHCCrZ66b0e2xEmL1dM9YN/MwS5p01N5jMX/BLKt/1R83l0LyC29M6+iYxo/UNg/EF7c2WyyW5tYl8WnhWg2/hyySbD5UhnDyS7OcU0dnrFw+DfGdI7v4QfYIIzOMq9hFtY55gmvC7jZ2FK7sEdrn6IXBuucYhjsGdQ8z0yEbWkkczjjsE5hNAIZrPx2zOLZDmKNXcXtg7EMqidAEEWg+SJCBBNwxvxJfc/bZa+KKf+xoKZybnq5vaqpPTye7CiF+ZFjxZ8/7Qij0hfOG/cowPA1rT1l4ymWnrKmxxqfErTVrpgwPlz1kC+Oy8NMDz6c+IO38K/x0xkPnLW8Kx6qGAoQdL+TD9V9rb+/ctn//trxz8dUrZrD/zk/ferF0cNt1BzctmX2FZPXt/jnFCQNz4Ah/iKllGiCMs1w5Lkg0kiEwj6VTXCDKsX9rMpnvIj9pcDecXAIXMnqn2dTUbN6w0XQ9ue6FV/nnXCH7S3lPWGltVcLsH75ub3ab7A8M28caNrIeOr3o5Q0yFsYL80xaa0EY/UEczV7icUMY5pnelAkmUAXmHYjvFWFGxuqlSaow3OM+/iYY7/l/hVELF4EjRqNR/bvRbOY+DUGzGR/Oh3EqmE/ugIQQguGt/eMYz/+L0cimjeZfQDI3phXMbMQsqH+CjwVz/hf4idHovgVmB8gLvjbicDcC/NypP536E/9N/puMibExdohBmNwyiaZdJGoigos7GpF222xrfnZhML/7Z+ylaqP63Hr+m7bdUkQ6/2cXqdfmvwixY+s2ksXFeXcE+iX0Z+Iow76DBNgjJ7TOdUK18iPsPflfQD+DPsZG2Aj9VmKMMJ4fYRrhIaxhTDR0Elh2vA6h/AE6xUb29mj3sjmL72petXjejPy+oel60M99tFduCI59N3221xe7apOvxs6aHs7vab1IqY2tv7q2xsHeHGml/cV06u/8S/xTjJ+JYc0bWEX0ukW6YmIbGkJRMdjJ9mYIH5QIdJF4hvRGyK7cC7ctImQRcUET99fGXOoft35GYLMQu+g2smnkgZUrH8AL/9Si217IssJ916nv14ZrJrvdxLkQvrvtBcjgPC0NXOicO8Qf4mcxPqh3hgUw3DDfdvLJXngg7N3dN2zbPJSaed3OfZnMU7dvmznp3C3bruO+Nmue0LFsy7S+6265+fCKFYdvvuW6vmlblnUI8xCXp37CrOZv4B9gauDBlYp7adcUXB5DNCwYImlXOJJKkAdvExXxVvKEYnCo+3eIskP9qrrfIYs71CccBjfXRC52udTHHdaP1A1ui/VvH1otbrLrpNXBsGX5B89QghDyimlvNB2KfkxZ5C9/em3+d1+d//IfFp2+2Oxn/s+9n/79p39S3s8idN6g0yZObwJOgKUpNB3GyU0Ls0PbRzIRq4lcarLKOJBkLRzJQD4j2090XrbA7DW8K3jNF5hlGS5e4V2D17zgss4T20egOJte5iD0bReM9yjTxnQxCRj3c5kFzGJmGbNKmwGw39IJDJcXJZGMkaAB4jyJAKw0jt5IAuIE+A+U3cVAZZrq9zhDyBrU8oosuxcGNTzCKJfla7JjNVmuSb/+tuzN2H+X4vlB+PpdfMXXmuVsNiub1T34SFbjYw5itEvVi0K0Nt9pNJUMI7SLGRhf2xipfCYf8z5OdlGKayOucFeVPeS/dbo3lBrbSMmwUiQN5/ed7g0Ds1s17IuZC5kNzM3MZ6EWCa0DtekdJfAxz+R/OX28sND7yRMTBcf++s8mQCQWHya4qBv/ufeMoWyslPA9DtMxUknxkH/yfTnm2CMYzs+Cq3r7PxY/MXomrvTEsRpfEGHa+WN8E1AHjElb7d06ddA7oK/+5Mdsv9EtPms0jv0Z5kf1FqPxWdFtfFr0kHfgDX0Y+5PRSG7RUj0tQr7rmfX8DH4G5W28kKeJLtmQsQkuwMP1pk16EV4sl7vrMJATfyUWo/GwEco4rh4XFQgaiUX9qxZHrMQqKnz/c2d8b9TysYrAuXpP/Rf/Gr8b1qwwc5a+euLa6S6sneNXToG2XrEJi4R5SGs8Sq2S3d97bsfCRaTdaLwKClRHt37mkudvXbjwVrLhuYeGhh56bvfQkHpk2CwvwClqgWwuBfndC3c8dwmstj81KkagcUgbfPY8Zje0W/82VPWJHmSq6pP8hPWpotc/EexDOK3qU+wngPhOCiO9MJRm8TJefjelrzoKnG2Bn+1NCUmPE4gHFmBN9jrTigRIpsACrc9Gstg58ULkp9467+Gf/eFnD5/31lNrt2967dhrm7bzI+VT5m+fzKhvf2MzpICEm79Bopkn07lt1762adNr127LwVqQLdJ5+lpQDcvHPQtVY5knhYrK6q8/JsiP6EuhGZdFdaNszjvpqvc+PI0CdjN0AXsFOC3ZfALDJwr4q2Xq+GF+GNbsxUg5NLLIEXi8otcDQcUts0D8eQ1iVDRAMBTsYiNdRIxE09EIBJO9A2xqgERTaW86BUFn0OD2xFO97FAgFhF6OoQ7prYt4XwSeUgQHiJyDbeke9IdQntciLQ1FlJMaYcUNvZBg+FB1ubjlnRNvl3o6IEU2w7fdNPhm/hh+FLysUu6++DLHkOkrSHYEjH0tEPe7WdD3uyDgvAgK/m4szFFR7ch0toUgBTdWHr7EpaWru6+6dmbbnqWEbV2EtxAsXiZAPTtGPSbHsotI2leoM8TePEqgSQprs7AGFf8kuOkPdZPXGb55POAW1d/jLST9v5YflasP6v/CO7+GNAPC2BMZWmsOjp2NNbfHwMCJD+LPVL+D/OYlWEEI/9jpPddOFkB5d1GSuKZYggmCCd7JUxD7EXAzxyirYnNDLdDZoFdx14kivkvGc3579Jm36reTTvDgBnaO6vzyQ6chQmlsMoIkIQ2+bBDWBud1Va4pcCn8CPqxlh/fgtG8IPaPH8C5wk6/nZDv69jurV5QhtwE0x2iqOsj9Mx8B9/0EaUdiPfOYYDCi/q9jhWRuupMDEU0+CtX0sDFxv07T/K5niBPqN9+tQjgEc31NGCXFeMcCEuQBIc/BK4CO78u7EPYvl3yaEfK3vcb6qP1R2tI7vUjVDDUdKubsSrNjYKY1qBEa2P50SJoaXiksIoLiCwnxS6EBuBde87botNfdEWwYvF/R0/u5yCqhGeEOR2ynSeyXjt6ka7neyye8kryBSWE52y+RBgogrXPZ8E1yIHoHIFUM+AbJhE7lbMtt8ApL+xmZW7PwbjAO0fAVoXQOuiSP/ksIVdFZ0aulsamKUzwPZ/NYDMJRBPCxsBqLzqHyneXF6Ej9HlIFo7+pg+jUb3unRmGpstGkm6etOuDBGA5wCMefp1gTHcdZlvPBXlOslvYTp1cd8UjYLVd/J5awNrIOKLnIt9MD9qdrKrWCvA6ALm3QV9VrsPm60Q7+RHJHP+2hqfugo/MvI2H/mqr4b9tFnKSRY1Y5Ek80Nm/WIhr1ikKnxGz9TWXrokf9xwujfvcOTtNTWnxd0F37Y2W79tteBqZ4G5qLCuomw+nSr28QESCRVLTyYKILGJOPfcnaIFOsewhRdvv+rWa/Wih0vlbX6Zb75T5C0qNKVFvH1QL/vazSWgC2s6oWXXIuUxQelKiJbowuJDQViatLmLijg9CQBMg8WiPgiw3LEeYRmm5f+XdnvkDnxLLjMLxtvX74C3OlwPQqx4xwIdpPx38LrlDphiyWUWHWKAzzxurS/xTo+P5wGFak62ap1PVFFN4v/y+xuR39WnIO7lsWfwgVsK17wxrs9K8ltIKuhkw7f/6dhK6gQokFKhWX3urrjk/rnI0pgfpGMeuQIUaEM7+GF5q2iMkCaMQwxxOzcvU0eXbsnS9XknXvP7Gtw5dwPXlFu2ecvSHEZgNDsU6x/GdXBYXyOQjzZReSedeEPY6nEv9gJR4oBQJtFO6Kd0fwC6BO4LNHDeBujB6dSNcUQC9zIv2LnAzGk99bUDrdFY+9yGFQtEo0GQPNv6vS2drj4+1jHbv3aJSMUWP+QTZrmbNTjU8wyG/iXNNpskybLcJ3CiTF5Ir+JYzmJwE0mSVhlxbtbmvweB3ulB6Til5UuUZydpgiFVeobhU0WaBqpJ198d+/XeNRTZ9/1OPfG7+2hwzd5W3D+hmyjsRcUg/+Cavb++Vh2ls3L7zT/etOnHNxeerv313vzLVqPai4nJv+K1FC6040/4udw7sAb3laSg0XCkAAs0npBO6VJabS4Elk/U+D4gTXW+j0wnrMlqNamq4tMIYB87tE10i0FR3LZNhJsb7/R561btmes8YBCRkhYNByRtKd55mqTas9FYhJnbRGHuOh3M4QTdgQSqmgRxuzGdSvZGcbMxNQGk5C3ebLjoXIOFM4l+WKHmLTJwRv9E8GWJ6dYvf/FmEyEGr+gyrr1p5zrgkz0Cw2j94Hv8Jdx7dIVegBSNtgsqGsRQEYiIBoXwD0LNvQ5d7s5Z00QzwNhqZA0b+tMG1tQq5nd84uq8R0zPvX35G8uRaze4jcOHzz0w1+Q2BIRvf6J6Kgatnrbiem+CFvAxfkrndzD9MFPP1GWTUHclpASUkCNAQkpCCcCgDSUDAhDZ+CuEkgn8J7i9nMA7pA4lISappxILKfAeSAbIcSDuN2bJcfZILqeO5rLs0MnngSHYRdrHjmaz7JEsEPw51ZqDJDmUIOZIe34WaQeegNsJn1qz8AIpT3yCjyEih/xELkuJ0lEMYTLVCiWpo5oYMleMH6USyYJcD+uOe+kWKpn1Qns34iyYDjkSLvgnZXcgVQNeqINXr48m3iS7cjm8tedyY0f1QvTnHHdsrKby/+SSbPY8/NH6vpl/Esq3Ae4ZU1HC44KFiI9o7CEgab/RqHbj7s5KAg06s39ZP/zxI/mVuF/TbTSy+3Fb8If9/cv7+wt91yy8RfP1QXtW5RzQn7qIiZyuFM5QfJ5E9uVnqT85TanFx0lkP3ukBAMprvsRyi/C8NAJL1xbIIirSvnSj4O5netb4JxmNANHPssHAcHMHsFRgEug816gDBeMbdfiuRcghqYcm0+Xxx/5IAEtN3fqFF3LzAXqwoT0PN0OVTNqxo8sxMkd5Ig6k79Zk7VxxX6gMLOZFQgvpW2RrMW1D0BDihaXQ9wVRoBxPLfpknmkeMtoB/qM9cRc9IqmMD2XUmdZ7GSRKPUZvChf8BoykriM2MnKYbOHX8R7cLdNCxSFFVQqoYswnlWtlFS2mNkhswVpZiQW1J/UKFfipHGlUkM6UKBhMz1istELIHJLMSctu3ugzfaVSOjKvUgc/THK4Sdg2Wscz69leKIkkrwuuWiOe9yGYKQXRumkC3qbRcMwrvhjNXgdZk3RxAUEhuSPvn3nnd++U/3vlVOmrJzCD8JLxV1OHRjrZifbcFDOuRNTGqdgQm1tSNJ2OcQ04YiEXuxtII1ECSQRoQGYioEsgCfchB4ghAtw7FfJre4WZ9hkVi9MtjuWqtdNDlpMrfEG9fOT6q21okg+e4As38MfGquNt7oUws6Ysarj1/efE+yst86YUVNvDdts3Pv5c8m/aP0C+f8/Qb+IMnGq09BgwN01oIOAnAdagI8mBSrqk1gxTDUBOtk2ousEtBH2z4Ir2d3f6k8PXXVlt2qN9RODxRuoJT/v27wm09jRYVc/e++iyx2tyzJb/n3J0htXP87eSsQaf2Ly0s6Zmxela88REy1cf4273mI3iXNJ7KxrZibOm9xm6rl4fqy/t27smU8tOfdW2ucBzg2UfmOIVyLIl3kpYlwphDISTXJXsctmiDtN7fNV6zelgxwnWxsVr83Aj/S5ki1jL/a0GC6+2L6Um+aoddlNFuj+bJ8mH/iaLh8I0/U51NspIEfq0dohwyFXKgm4NggwQ4rRhCOUFtxxo8XnitT4cnGfT93IS8FaT85XE3H5LMY4zIEPL1hw443wz+1UmhTJyJGxZzw+wsKkKZgUiVtKOKMEb2AKHTv61FNc01PQFwKnvsZ/9pPA4RKTASWahmh+8MxwzHxKy74IRn5LGRjsPUUwTu64UYNY38caqd7HKucZ/tHnODtENw/2UfHRMaq1UUPDJQ0OKkWCeet5fYOhII1VRz8+/Elg5j4Gxur3J8o2PJ4rg+2d08T/fwEzSVbyZ9XPro95T477lRKqUSRXQnauHNsISAl27oWi6Fv9z48JMv8r/aMMj8onCP/DuDZOuN+GPPr/+p7bx+7JlbYdppcNhzKU/1Px5aiaGDn/s1iGMaBcleKUo/v9rcxkZj7DBEKOfrayytXNLYiUdBY+pleQXdnscKlQcpzuWluxsieeyuXIK6SdxozitWyGOV3vOHHjguyCQ6fpIYy2JwvrQEF/Qa9Pdf/QqOSqCiE/EE1/XIVKTc2tzWbHnimrEd+Vyz311Ml3P0GVTj7PD5aDnsvCvH36alEaPMePcMegXs7x8igTu4B9v7G9vTHvhCu/kzIdx+BxC0ay9zRSvoS0F2lIxI+X7klU63I40gLQ3w5ep5na+SFnba3z5D64zv+QtM4n4ffG3tq4aNHGRfxgrXPMim+5487abL7xhdseIRn1KDl+7aINixdv0OD+JSPwKf5+xoP6aiTeQIDVlIhMcL1H5R9PYXvprs3fv2bO7MOplCmweuiq2JRZ1zz+9a/v2PH1Hfz9236w+ZrPXvWfAxlj4NLLHpq3c/PQ3uvmvbrjG7fe+o2y/cLdtE6VUlXi0ASb1VLUBVSUWSU4HdvAraTyS8xzM8NxvxFkXV6pUVRiJwcgC5zEeht4rwcp7ki0k41G0qlQhG1Vzlq8alEmnFi58caB5Q9vn988MLhqyVlHvLEWjtQFeupdiocF/tkkOGPW2ibWaBTkeZ/dvPWazXfOnnvL6jkRXpi85sFzZt+55ZptW3bl1cCCHZPD06MhySha7UFzjcjbp8fOecFCirzAG/yVjBX6OFIaadSjQq1nNhyIe8tVbaaSdHlXIWKacMeuZA1uxS95zILhyrxAdsXTL6m7kNQlx2P9uZf2qhufePFFbpI6/OU0WcP99RrCsrwseVot5mtytpf6Y0gm9sdeyKnPQ7onyK4nXlR/rg7H95M1upzu89DH6pgUcikoiihJ6NJKmRxV1x+MJiOA3YwhDRQrWU0u/0rvq0VYXnyCwsLeTJYBq3dAtJDavuzyoVpzZ99Z0+a0uoiFH/xcqgDR7rUFeOrUn6Cywb8ZeNMbhLV5ugP9l0zv9UN5b5mFkjzxUcpPJCn3V402pRxtJd2GrnLdhtVk9ZSZh9W91fCSH5B7ofxPiWL+j3D/uwhBRdyAyozeZwvQzs79soi+BKSnafLviZCcfrpBpLyimfLfTyJtbyruIQKD01tUwJyKEo/ybaxkSNFUMdMkhQoJyRBQFhnUkDQSXhTM+3NmY0EDM7ffLIjqWEGt8lCO6mLia3PukFnghosJD5p5SIho/VDkzQfLE+IrYoJXkD19pdP7OwG/voIUtagiWiZ4PAFTHHlTVhRZ7dYmPar+NJ+8JhmR6DFK5DV1foHoLNO/pHrvZfmWZ15RQlwvoVDKhCWNK3CCch9lfFBuAqUgpFSShmNaPj+i5++WZfKeViJfW5HnUakVL4UCNVkA4+ETfIqx4B5xSaP2L1yn0zn2ltPn4+OqZGmwwEVCaCSqG53ldtL1oLGAhdMLd09MpCCF6tD6ZnAZBY9hDaYsP0jzZ0j5ZjKsF4i1UmLuhbJMCnYJPt5VwFNvmZawXjEvLJqIH8STonZjq7BZ8gKgR20C9MDFqJAX1H64QW2NEup6qgzLP8cvppL/NNTOBTCJABOHeWoXzLhw4Wuy7gaBtjKr9kgKq8ZlRYBS32Lpxc8vIhpNDTfyNXWybMJbn2RyQ5EmWc2QF9wmSZ0KYCE+cPuYO6b15Uotj2Kd4MItLS7gtFbkTdrFND6pvEZqv5Yv7jXAus7Pg7avo7KDot50NX3CPkP+Kps8J9/3mGQIteY/LGPC+L7872SPR2br5fy8MtKBMHedGuM28/MZmPJMrGgi3Gb1S+Si1/L/zrZwO9XH1ce/z7ZQ1WSoY/+pMb5FT4ua0Wm+Jf/298nFmChEQ+Ti71est4mq9VYI6RsymoRJKYidElT2FGnDTZvqtfhGAFTbeqEw68GqtfmbVa/1IFO1/jdWr/8BDRRtQh9XNjubEm4aWVpVonpTGR7PVGc+KJNoBIWF7kYi4gUV3r1U6723i6TxUl3n3/tM27aZfKb7THiHW9VzFSwHJ05VfK6Ar7kaB0XgPPE0BSkSFKsBUpaLihEWoA9wBt8qirh2VSOkZwXEwyrxZ5jyt2rJmSo9gX7cg6jsEUGJU9z9xJPOEM3uQQxKgkh35DNATnVyrmJ3mbCNyIB/yox4wH1bg2DwN7q9kov4pFqny8oSm3RQbGgJ1QQTs6ZMLilOVYJ9v6Wha3HcJ9jddsXp9YhGUXLXt/qMDnvLpPNTXfNa60z5/yjXQOMq+lNmwh5egpYrdfZQZV9rI47xlRkuyTjpzsmCBSWNkAXVoK8sgYWqQJWbo1RLo6QH0YW6pxqfCnRgkd+RiFjUQUQ7poIaYoakgXxwFd9BuuI38H1xBxXSFb/pBDIKQFn7YB3dB36l7sG1FLaKiBdp1KxLvfswap/30lnVESgNnvjbUoT6w9N+Xoio0qcYOIM+heg940YimsucQVvli9NEcft2UZwGQwLuilj1fFr1i3NP94X+PE7Hpvtj6lBJfJ4R6NvWiaL6MgzWHxiN66DExa+dAdAbMYX6HVF8A+7rjEZIXAVbDe7PVI9rmN69JOLV1DOSvRPxWNPZBZf/Nf+Ny65BhYxxxV+77XJ2wfQ389/IQPgajXbwMsuAz/0IaQcXJavKbRqR2IqyZruXjVC2+hdee/5vdnYOedpmVtR3NGXldxSzDSIiBVpkGb9by89UpEPKrSLZmyFDzMab/wXl2CNe7s/qCtTvWgG5kpBmCBlSzDS/r8N4uwBwohRW63JTS1y32f0TQsPfXVGEHQrV8/NCfiOUVirYcBbIeA2+iF68rQIo3B/S628vYESr79ehzS7Q9LEL9UXmik9XVHb1yBO3Ngvt5935+k1efkV51mzzrM0LL3/20avnwMeKuWyOUZg2TasSqZ+KcZQiOn1Iu2Vh497ALUVZiCKt/gh6IvTIj1ZLRjWAkpHKOKovNwp00eqPROiAbiNEKieXwMLcXhVJ1/uzmLP4tfxaHR59cBdJVG1kTAgl9ze9QKUEQ946Hkb+okJ5JRDyf54Axur1D+WS49cLr0tTPEu7UmXrxcSr3XNvumv4yXzInXKH4F7Tc7p17Zt+t/qW2+93k063X7VW6lALxTY7i1nBXMxcxmzQbabxz+tJo+wijYaIGMNS8AoSMgAPt84DdHOoMPfjXhF+kuH1tZvuFQrRCN07xGcXRX9MYxYchDe5BcHj+Z4i+42WyPc8Xofi7bbZJN5nJLJ5qr6IqRtzqNlM17SpFsnkEyTWoABEjz4JXOQvzWYuwdnV5LNGOwTM5v9r4RpQ8ZXsYodks3o31JBlzbYtNotisnm22MxiwGFXam5oN1n0TA/hRvshvTSDwHff4nNzRo9Dum6PaJbMXzDz+x+Fkj4L4bFNBb1asqsgH7Dyh4DvbkPtf5yMDKzEwyoaESMSNS9P9gJVA3/RTlwoMwZvxECFWxIPNw9gi01nOHjP32esZTtmXHnxvZd8ZtakqQ7ekajbXetpNa6ocTVxJtY+uSe69OLz77zh5bDR3xjZMzUz6fxrz1nqrZGcHQHfPVefN+fiK86LeXj+Sc5lPKy+k/vCUI/DaLFYCWHr6nbXuILTIsb5imNKY/rCm28fSMxPhkN1XbNMNZGuqwOBhtTSxWuTk6bw0ZaG86b1hKddePOKuBvmiguYBn4T/yOqOyGRBt7bKUI1GjioBC8aUKwF7Q319UgcmtFGIzCJGBqwQij0ynDsfdFGc3TS3BlNfJ25xmzniMkpXXTPvCaD3ZaZvyzjmZdudBostmhb0ORZNN2sJBeed1HXkrUsywueQH+L0eCPxmsa5ZpgRJSDZ11yDv+jmbd86vxZfc1WcZJ3UkMq1BOOOVtvu/+pB+en186d3GTwWAw2jheaJs09/+LNfZft37DALyrNj1wABMuUKbODyTVnT/KYbJ3Tpq8IrNh92dkxOj5P/YpZx4/ycyiVcDYdn4JbEoKdQi9054iBKsygLW46FRGxAb0NPNCm8BSNCPjoKcj6EAus4SuP3rB+cV99/eTF6294dA8+TK6v74MHVpYNRt/I30e8QGTOOdfGWzzxcy+87a7bLjw37rHw1nPzp0KyyRSeZO+QQhInt3dYgvycjrPOv+T8s1rptaP84VeywdWX2T4ysr0/7TLIs6+x9zib56ye1dM9e/XsZmePY3NDs9zlnNVt4+WgHJbbz3Livg4P9WWgviOMm4kCRT6I8vw0NbUUEnFvOuFKoxQW1gTsvFirsF5pb7qTUCx4i7VmtToveaDxvK9uOaedVvPRpVOnNz0Q6bry7uiSdQ8t7Vy4JQKVS+XPplV2ts4bvCwZu+KzgITtxepaPRzWdpv74muvv6RO0SorX6cu/dqKn/XWnrtp/Zragz13DUCl5myiFW2Ycvb0PtsXnU+tx8pvLFbUspLX68mdegwmOif/NPDONajTGoUh6tU56HBJCTBASVvNUB5VIiKpc9kd7kludodSFz7xQbiOmMk5dOYk56gzL6uaf7N8a6MQOHm0ae6snZpFDfuT3/jdYzjzwkXXIVHoXNuCfQslQZqBZjTsoHMqrkE4jaYdgkGz2ATOgB3cPkSukD01DnV3ttb1wx+6arPqbkcNAHoFPzKUUQ+qL0k97pjbZv1I/egC9zTFbrrlFpNdmea+gIgfWW3wqkcis8ky5FAcRd1If5nNZrl2FFpungc8wpoCl1BpQV/ScS+zjlASyUTVv/AJ46gkJI4bHX4lTnloctxPZE1ckS3+jG2fKIjkQFyzuo8jvYQG1OrGvJPSTu/nSp9PHNTl4z5hK/8gtXVKF6gEKiglgcKiRlCESsQCV5QIlKWKpr34lt/wkSx/JCmP5/cBKQfl/5gd+rOS/+p91/+YCg5CXK2W4M9fu+/6xxX+vnelVuldIDCG0VQTpU9Dw4pRfei+6zWx0MLie0gPbyrkmRU7OwT16JGeyXLHqOLqAfVN1GPlBzWtFNzj0TRTCjogtP1NjIvu5habN5Aoa1k66wGpqriVetJgiGdwDZtKhnN0y4n9sXYnsqGmZfDSR15+5NLBlhoDaedEm7sxmpqRija6ZEEg2EAnTiAC8IrmFbGz1q08P9PSkjl/5bqzYqT9hMmptEXDgTqP3Wiye+sD4Wir4jCeoHbbp5hRfpB7BakUIppIlPCD30dR1GtslDz8OsqbXmejFC/v8wu5X2myq7SJ8Avzv9DFUJySf5uNvq4+Ti7W9D/OZrLChdwxmPNiBRqVjnpK/aGxRCDspVYKAW9AN1JANoo8wP4BJUlGqdgw6m1qPQ2QW3+OfU5/ieLS/NuKpDU3uf8bcAXyBal5jMR2NEAbPAZt0K3hvxHBEDlUxfIGcD+N2gNSNx36nfqlAYow0puatNpRz0e4W2oahKzQHsjf2c16ad/3t2KTtPobnX6D8C8pd0MDP+Kx7wnXqGGlLQcvikMErm6TmfsuxJXbSAxqNjOogJLQBLiKEHAE+JGTS3JoEhTrz8/CB+5YlupJ58aOat8Kv4JvregxwcU5Cp8GFAFm1FyOfto6GS2m1NGTS6CPNKkbsTdCBlnN9onMho55BX8IJZtEQ35lk+htwN5A0V3RCPoD/yXAcv6pAtbZczRUA64JmcUf4q7Q89ZHLeJVZ5D1Ps/t+0iCT3AHVtZC7JDCXfR7OSb/Xja5H3zQbZL1B+ULX1BMTEk3AseSpmnKEK4T9ekMIidUCRQFfcbj7z8gNLvzF7mbhQN8h6ZbRset+nQWdS/ZX3k7WpS8P9sfo0iGS64wV516pOhjI6TZ2dApgI5+LhxywYoWxKUrykKJsIoDsR4mSrCTg0egMPnLW/3Q5Nn8BZEuzqEI7HK3n0+zFmuO3TtWQ5WJoG9YqCD6Gc32SxnbnVPfsxvrFXK2dILl7bLthDp6glhcsfp4bYvbSmj/mQ94uBTw0E73x2jbNRCvC6VL6GCFDwU7eWQDcC5FY5s0slieRDwtAbRsbLXbaXAuu14e2OJw1dc6jQ3ZdY8v7rv2/BWZLqvFWVvvcmwZkK9f5jS4muO9yR5res4kfkRxhV03L1RfPOiPtYi8pd7jNEsOpyTwxpaY/yCZu/Amd5Or9uS3DYaeqVOhH7gZN/8I/wi1fEuLXvyNivibjuKvN+1Nc01HF/3h+ef/sOhox8MPd5SFucPjorQwXT+ytA8EmA5mamHNFDVhBI5pjZbQpugBNkO8MvRub8KVDKST1Wag7D3xlin1ZF7LFP/79nbvCXFOY+PUjrT7/otsPXXZ4exdPzuhZuL5LUXVAn7k7PbhG89uz3b41X01gbjP1xwlu5rrvvf9+pbs6E/Vu7Nk642/PYRaAiUBdrmO6CDTBLPQFA1ur0uXoBR1INDMkypKpoTqnSMx5GiEdTEaSHLs0Alvu/19/5QW9Rv1U1ridT22i+53pzumbs+XFFXYC++CGsTj5JUT/GCgRt3n78i2n71FHG4/u6X++9+raya7os3ZbDmgWfXun44e+u2NZKuGZ0HiF8M4TlMPR+EU6rPKRJ8wOU2RFUFLex3egEsz3YqEAq0cqhAAW19dBZIlVzR61tuIdTnpXH7l+uXrbjPUyep+8cl6aXKWhPHpDcXl9KiTWDNr4mBQc8Tq+NzK/OKSbsfl79o9G20R+brBXYvUg0rLHhtrc4TN81TTOWSZ0gL1ZVlOYH2ery/7XVUjFMbzYpg7UswcqJPQwBd0LKLabJ8IaCr2otcjSkIrGwootKECaUd4XH1+SdazRrfddkBU98t1htvWrbjqSqjaCguxrffM/5zDCpBALUycmajhd+R6ww4SWafuZ5eU+tPid4lgd3gt+b/Y9rQoZNmiXYPXyRHbRs8zX/f4WIFjWZJtUdSD55AP3xtXH+ZipC0EqdBGDA4CoYEU6gRLGPU11QhkLTBiEYPiqOeQgwTCl9aok1Qr5pFf71qEeNxjy/8F0GoqYPv75Yh9j3x4DuJ+uEzHRpAq2lMqb+qfTdiq6kGtzfOWsv0c7lSeMXDHBDe1MT+LUgx0Pg/p87u2UicdIvqQi8DkxhcUwUXCedMpb4NQjwY3npTmgsURJavLwCRyEcN2HfWsDVGfv/u9ZUWUx+PYFueUKwaNvbtu+Xps3eVWbN1GcgVrdMnWJ7WmJz9SD66EBidag0NF1Ukep0t5A7sFCWdhzvYwHv6L/BehXuHqfaBwBEU7hfVLcXvS4VQv+T/vaSIl7cbeMc7ekv9i8S3e1L5xxpvMGcu1EYPbKyCiijjGXcDKckm43PqU2qNWlXusZMiqF82cuVzolUHN9NNR0HZPxFPV9V0wLtvq+k4DqOwVWDlzuQLVdqFiP08cRX7aRlBVfR8cb55bWe5LExnlcsDp1vAP8Q9BucPMk1Ulh4GnN0SAdxcNHv3q9ohx1Ati4S/tkWjIDe3hQdkUGrGRaFBiUdiTSkI41UkMuuQHP+EaSQYlPQTFWJF03BNPpTu5KFAdkWgDukzsZKMG0Q1TAQQglScOaP/dsZ8+fP75D/9Uu5Gs3FY/2SxPld0DHOciXI9gqjcEidXjE+3BLosy0OcX3T7O5g65ROGyzQ2BZs7WbZVnO5ydLe32hMwTQ4wnnKXW6XW5LAa7oaXOIHoUl0FgLQLH2by8wSTWeAx2Y5PDazK3BqZbeJZwXGPaYhX87ZNszoDdaRxotXO1nNlpdvAPFWHDm8PqEE0sZxDEqGzxisFNnuCWetPcGrObN0p23tTZwMuRVodSV8+LTrOV3eRvzjQZiSjaLYS1WEJe0kNsJlZu9LFun7++wW4gRDRbaxw2nrOGm+xOj9cmtbp9ZqeTM1m8UXfQQCSTVSQox6pvtjot/FpHvIUjJovFEoYvHYV9C5Y/xN9OfcalvII37UEhTbTg/AQIaPb4Vz6j5u8/aViycMod/fkDcpu8QZbZoeBi/vbzP3XPsZvOubMtaPHkD9jt6+U2O7vqU/9C9SMvgrXpQNG/E0oJxun+CiElUa0IKQSUwERxOntKSV7ekcuh9VBZBBo3VUcB58ofKBHCwLyf9qFosz9Ibf8dGqwaBMjRig4SGOZ2UkWI7UiO9OfUPdxOYFApUZyfpY7mgEc5rtNGGk2H1lPhAk1Hp/VAMqQEHEUfEYkkUQq1JMdzsX7kklRrTrUi1wMcDjmu1YYfATj7Y+pGpPEBXuoQIj8rR9mgCl4C9yqmF7xnVWxGVniNqtpVmXBvQ6iwni5YQ8a1jYrXtc2J13HvgkvqWxuva1sbr+P2S5ceKGyBwDv2DbrToe1u6BkAJV7xnVLUaq0sJB8pFqcUIPi3yuwxi4JuLr+P30f3OkPQ72aO0xYo3/EsmO3QO5qEF8S0qQH0UsKXv0brnl9+8M7jF174+DsfvPOl1au/RL5/9DsbNnwHL2pHR1NTRxMZhJtHktOOxLxErPF6YlLvpC9YP73x+4ofw+3xVdrHcDE0dQQCmCRgvt9b35xINDf1CDcRSfJ+pYl+Sf8YcurfmXP5F/kj6J82jNsrkWiEuhVlgFfyNkB3S5MUzLhoNiwSCYcxQ7Ui4J0Xh7fmqRbaPa1tzujxkBRlsEHy0/OM4pYLPb7g9O6BQJN6l9zQ0OGyCaZz0vMTbHOzXfQ7a2tsterTcqxeInODoemdktw+1SbVhKwtW9ffe8VKadK0OVuC3bWzyKm5LeddsWTeorWyY9IMtUFutdu5g+Rn533qkocdvLs2HmhU75br/MmWtD8zA3OP2t1ea636jEzqYxJZGAwFiDEd61oTsrRuW3/3pYNi3bS+Rd+GjOfVpAPNd6y64Gsz1GaZleWIPoYL/v9mTeQBENVEguiF1aC4YeXxFETw6QyPfn0m9g8IrMFAvKM1EI11DARnbqibHk/Iojy5rSdgCyZi06y8sS024PeuO4MfwQ5Y9yKRZCqyYaF30vzeHlmUprR21tR0t0yz8KZY66zWuGvxVQB/36kP+K38t2Hu6NQ9SFJfw0AdpqPEK2qTMpf2VCqJwqPoJezTL824b8akoL+x03nhh+oNo5e77psxg9Q5LzebIKD+fsY34f2MtB9fk9v5b8PT6tYrgv4kRPwd0q9z3gdJSJ0653KjCYPwCaR5aUY63eW48O/kdo33yxX9wCiMv2QTrk8eGSI6Ag6moG9t2P/F7GRNlDjl0gw7pJ5aOXXqyqn8SENnXBmbSwUYLyqJjv3UmY1nKr4t80no0faXsaIEiF/BRaIBnItSce4OUif7W6Vm9T9H1X9Vj71BEm+RdmIJQST/ZfVdudUvh9S/qqNvqT98g9SQ3lHibZY0mRVHooyDN/FHmTgzjdozKw28NwQ0hwN6BCoPKaEk3YtKwNhwRLXuk076CGoZNXDQcRwZvreTZY9EZi+d0s4+ztv8iei04JQl6ZbDD2eHV7X4uHuFVfPrOmcs6m6Kr7hssr+1VZFcEZ/PdJkn1hOs8SXS/NFFgqt94PIZzZ3tdaL6Q5vo6piSzdy737pwsX1VyxUrF15iJ4uNkq+rbyg1Z+O8VsNC1UmcvORPRfxtPrfRwL2p/oA1eZp6Z/aGffoewaXcA/xBlKlQLfhQL/oPgBGP3qsA7IQS8qDVNswHKRSheDUvA3Q7MZoRcJMxlEygujn1QdyzfPfq3dEp/bXh5e5YXW2Ngfvza0ZF6UgFL/E0fTq4LBlvTE2qb/KuuzYSXVnjTfM1osvqMHVbm9950quIZlbqaL6YP7jk3kUtA0GnX2nvq53f3WoSsvEdDRnULgo2fN7lNZJgI8/VWi33c3bBZnGY05+dm+3qc7fNmj4YGKLj2nfqFP+g7jdDlxEV5XsJQZP6hYrS1l0VQr4c69Xueixp90gnZPmE5OF22j+SYEWHlZ0K/Hgsh/Ztsbh6h2DNRlvv6jJh9XaJaHCZDiUDKNTMkvb8vsqCyf3ZNdSmO0fa0Y4baJTtpbKzuVzeeSI7fCKr2Z0WypapnXJ4gnoWy3PoUIlIQ1TXdqhQJIXp9Wx5fYdpeWh2TY5D+YVyKd0jw3iumwi/BC3cEy4o83QlZnW79MrCgCjbhWXBlRZVVZZv4rIKpXC01HFlHdHLoeWVl6UVc/J5uGm6CViW5mulYMk+HqNYr0AyUPivLg2oMs2MPqtuhHyRyiwvNJej1Br+fcLyoAyu8D9B7bgmzUqfFobF5nKnK4+t8MPJkI/xHUNWk117jugWF+xazTAALQn6+UE9lhoI5ApGA/iuJOsrlNP28SVVuBVajXmircLel46w2bJS1Q0Ft0KDuikDFL/3pYrid1Q4FvofwRIo4R9h2ftSwc6jHAMqLcCql8YPHtlzGoByNXYN6v8hXnRaOhUvx0sVLCexwupGDR4NOYC7PePa5keIPACnuAdD7dEadRuTIiS6Lb7uskb381My5yjzF8lGCjBRqdwrWJCagfB3yCy7XT1i92hbcZ5Ci1FJkgYMDf6n+jspIsHFjJrTOdzSMuOa9DbDcj/nH9N9bIoGVgzHPWIQuFuYtaMRaq8eCKI0gEF6lPOZjBz3EEvaaxwSUT9U/8JbJZPJJLBLolH1La/RbF9AbC8JJjv/mMnssKjLRBJyqj9QXxNko0Ux/X79epfiXkm6fmKwF/en1HLc6LxloXWKvGa5rVCVL83VuiPcDEX/K5pTXOxHfx6HHB0t2FI0qI2rCZFTrvPWU67zVuS/kTsLnc7IKhFg30e4FOkqNSfH5PtkmUy6Cpiv/36k2sbqCeCFNa+URpoY0sZoYmCgCr3qgZz6s8I0gP1bYiR+D79H56NOz0EVWCTy2/fffvSCCx59W7uRV9995eqrX8GLesOXNm360iZ+T/El3uZqL+FyzSZ8XxpTiI/G0nkT4zznFZ0t4ipMz5v4q9ssqbdKUZt6u82knPCrt6PZwsnn0XySVnyPR1ZXAn72yx48bWJsu7apnI3Hy8bygUK5Js32qcytapqgmn95uexccj205vGgJ+euOeG2SORmKZr/qKzcx9SFctMJdwMUFZDJITs7dnOp1EKZCxg304Cevyfya+vlKqv6aXK1qIj3imL+L6hL+yvUlFfE0VKZ7E8gBY3M/8VoJCFgizH1W6VyC76nH6b7jiibYVxUmVIEspry/LgZIlCeP11Z4zs/AwvVwtGFEut5S1JY4lfyT0N/evOLo+rUEgjcqc9IkGpQbv3iW7Co5b+KgjvpzYdH85PLcc4X21ouwEGl/S4qnUAvoSlXUUhR1eKr2VWFTB+GMl6FsiQsVD1R3urlAAIoSn7JQkmiVVCHSpCwDH/qPepXQ0Db77CJOAImohB+RPWr31ev5g/kE+zTa4lbvZo8xdWPffQu9yJTPCNB66s+zXoJt/0L6hSoCuBIoK8fnBGG87OoRckJpLqyWe4YbpGi50g0+3I3UD85Oa0fzubfoXxPLbW3FDWzigmyJeM0tQkax7PqTy80+UxfUHPlBZIRVNQ+v0xRm8REKPoLmNr0+Uo48v9GFbXPKylqQ2IKm00QddgyWGMROCTxdLB9nCY8P7j2DjlsV/+mfr0C0r/NkeXbbpPlOTBBwT0mVz1zx9S/wJecBF9Wgv3p032iP2v4VSgfgW2G+HUEdEXU6iq4CtpLJfIN9XQG8dwa1VoO8XC2SrPDDyCOQptXgbcPvlAgBfxBoGwftQKeKFrNTASPt3pGGqDt/QRasn2kri+H6L80MJRsmVYJrAKyDItpJUy3/15WYIJqcJ9Q5N/LFJ4c3dc1URpWl9hW6mu50MUIelg4ucTPf15zs5DFo1c0VSp1tKB9jkwIyuM45kb+IP8gHed+6jO3v0KbIknzLy636E8KPTdCuUpB0wLo9JKnAO6pv0vS31EtBha/fJemkgLVVnd8KCk4qBTpQ5m7FbifBKrPJcq0pZAFVG/XbOFz+Tcq2MLrcmV28Nmi/OHskh82bau0k8eWCaPijQPWQ5lUvslwVCfHkXBMIehqUgtDNLeauH1huvZTbYmw+luPjyWoNGEuxRLR7LK5fSyXFUyK7PURQv2v8D3XOt2NJ6liBbmPGOsakw1kbeOs+31Wm5qpH+iJWSzqdPr2O7zc2TmtnrzCig6bBd/vgQmzOlz0STWIlmZEQfupogOZFHUZ7EkUnMn0RrpIMqAgHRJAOjIJ3yGw1I/MAp9q9S3Q/clADNm1wEeO+xbwg5OIYHZLY3ehG5lJk2xhco+6JWybpEVz2wrR6hZyD0QXZbeDVB+onmlimpkWprdAs4WEZDSQppsDlcdCBJJESIYFuAtUnC4GIF2C3Uu2Kv7L1bdz6FxtqxpG4TqQOqOUNAJ2HLvPWA2GgDy4O4vaDrtyl6P+1fAll+SyFcQ28GHqh7fvvf37udylf0fNwhzgz87Y+cf5x9GnF6ygHu18sAbipWeF0YPBgp2GaKeQduxxdEr3SgbH1kvH7tvqSLhedomOvZyts2dw8acu3dY/f+ucuMtCuP/e4zC4XnH3OLZ8ZuxTWxy8dJfU5dhDeKPSlJy5pn/+7u3XrJhmr9C5CuleGflGQocKnlAUaRKp0BAHV0ZwUt9VCqk6zYOgRIuMfePJzdmBdpPJ7/6B23+f+sp9NMDZevovvfYHG5dGPISQq1DojqNckchVrCcCYz/Q0hI0m3NKDRfkgsrnamo+p0CAq1FyvC3a3Nak/s5VX282x9Ufy3E39VAx6o7LpCvO2wK+ch9jNqpJCutcIOooKnYWtDK8gTRVYygRQfwgzKM5+jP2jOZdx3r32Py7rQUPOzAnoRs95NvRAR0qLGU11Taqu1bUYSzMcWjMEir067JQQHfIrLBHsrgv00/Wavd8HRLMEEYFSW3HCSNQehnrHztKqHcDyo4VfZ6gPKCR+gufwA8GegxUEo4A+gd0BASHiH6jYMLIsUdQJTs/C641KN4oCHWolCMLlMfIdtWKScjx7SM5LD9HnfmhrGI0S139UWfUnxgOXdJFW+AMcGjKr6eHAttHF5sUoeArYKDcxMSYcKA/xUDhPiEOEAPafSIUFArN0r24ynI91EPARDXvIDYyvqZaWeroBOUABQA/E+DXC7PWafDLQY2oiwpUEyj4RQtVlUp1GrM7In2p2A7VuiOW6otMiGOo5Mrp05ejVuTy6dNX/k/7mybZQ0nUmfrbx3U4KueDnlHm5wdh8FFeKnoaKKh/TK18StOPhwG9Xo5mqXAxvw/79YQwwDR+nAKQQ4izVXioB84qcppWB7IqjU45z4CE17OvF1Dw+oTFqxtz8dxwtogBnF9MjIl/in+K8s3hM9laIn0TiCbTAXL0T798bPXqx36p3chrv0O+GC9Xaj48Ecv8U8UEeBvUEsDlTepiU5OvlpeNGvpnKF0RvUooWhIjnx6GeBapXCQYTw9DNg6/OC3gZjp76oNTj9Kz6Jqobxb9NDqc08vcKReOpcsQV2K8InXFaXW3aI6Ofr1k48rp7CX7rx+v1UKPsfvzQU0Kc83i2VdILmd2/yX55zT9luN2+Cu4nKfwPcK/CvDVU+pHh8+LaldIf1fA5h3ndT6Fln9/W/9Ce1vndfvJtnPVO2xhm3qbafHVCN1X363UXHq9xuVD8OSD29Z8pZ5cZrern9cAdGW/uib/ud+VK0L9a42r6C90kL8KzxwLQw9NkIQJL0ASU8M+VG0KsUdgdvpgP/6NqqP0/gHZFUfGEijZLHpiIgvV5/Bltrj8Qd7XQd5p4P+7tJo30NMO6VGBwahSPMYiaaBYoLY6uEnciyhhh1Z/vvacG/rjpsvnpzs0B1Id6fmX8119l88XnOxe/uGrzzHcdu7UtY3+2vmXN5zUyj3ZcPl8p1sZSs6/nGXtwrV7Ka0XZdz83fwjjINpZWYw85lL8BRK4nGyIir2RiOsEyipuEcIakpGjWgBjLiHWOgj0Yi34gW1kKPxHt2Na5q+lwg1RdRSpFDNzosb44YJXnAfoEOpZW//6u1lhYA6leevezbI26zNHO811M2dc5HFxpk4i1jPC0s21/BWW5DnPQbn2X1WK43/aM2n18DfSoybbNHijFpamzXI31eRibGUOxSu/lT96YZlq1Yt20DaSBuG6knw2eusHs5EPBfNmVvHKdaQzcDfz9ZsXmLDWGXy2U5OsYSsIn8CS12jQIyD12KKqZrLPy7mSPdICmd6WGHG8NDZkkHuE4h9TU8FpmUO/VjC/EinToFyoNDz2p9XD6g78WgQdPG7Z3R0T/Z5dTM9lsL8Ktek7szl2L+gQwGgwkZHc2g5Su7NvVqwGy2Ua4KSXUwt1X4PaM5paaEu6jQ5zVFyNabxvUksVt2T/4VeamYPlLtffdQsk+2sUTY/zDXl/05W53/Bz9UK3p7LjapZ2ZxOm+UlZXrL3HHGqO8+wVroDaCTTnTxitMxmiAAYQzVJQH+nj3oIHnPaN6Zq6sNSLjBl8tKgVr2mj/9CWi9dnKca8rBQBsd5R1tzVlgrl5pbnPw6kZclCr2CHxMnHohLz+3KRQokzALyeIKFU1TNCiayJdoHvDYe7K6mZLm8S3uJ9dojuaJ62/qN/tjQxnSnhnKPw+LNrLi8ZKyJ3x1YhiI1aNAtP6NzCGzYv3DmaGh/LvQZnt0evgIhTFV0kE/PYxAnOHhCQUZdCWY5JWJwMzlAGl1mpNbDU7yyGnhRMILsYhH3VRAijrPcBU8/Cj1Y9NY6cnGVW0CjTLaz7E3epvaT/LtTV72Rs+0WVVmd0dz/MGTI5F0OsIviaqDlbbO5X6xT3PeXbXHRtf/z+fdka+eKPr8KF7IF4vBsT9MFPuPJMBTBMq9hQxXelQ+bewnf18ap4Ib+mSMrtDU5zqlD8QANa5MBGh/OwOvSDfcV2d66mfEWsbGWmIz6nsyZDWQSmqmxDneYyvjHPmRXHZxeueyRGLZzvRioKnGto9nIPkibAJA16adcOZRQr1iAP3bUyBR7T4RgAWTKxhkCYFwshq+7iV9r0whk50cmRcTg4fy5x4OmmNkHndIA2+YuMbmE9dwGYB4KFTsvnDE6Ah47r/fE3AYI+oXADpkdlENcZ8OZEEf8FFGZNxMs6ZLpG3SUFLL7Q2kcFU/A/Jsw+vWDa/7emewLaoeibaF1B9qUNnuqWK3+UfXYVL1v/omD15xxeDkPnXTOKSVcCbDGtOu0YQNpGAP7U1HU58UrqGu8xIbHtkQ3LVhb7Dx46ET3Ffcm1q0YcOizNmf3bC3VjWfAcpSv3MyTlgJ23FHQgmgvk+gk8pL0mcCDOn08MDAQlf+/SlTZ1z12fnqntOhbOTL9/ZdevbAPN+yby1f/uUtC/ixm8ZBo59LTXEW060hGrTDplNprWd58fwB/b/E27BdS/s7U+rGVCeQ46nzaw9QccnmZerGZZs3Yw9aVHt+Kh6HN4ti6lxIhT/wahnZtWwzlY9QHQ2c79C+dxzvVDKy8GqKWQERO9YAKbpsDUTLdWV5dE8PVPjvj9pqw7ah/PFVtkit7aj6G5xY9mfJrCz1j1e0BcnPol4UjtrCdbahIVtd2HaURujnFJR8CuOuUUfhrGhgKKgjCYNSvCc1WKlEp8wHUaAYynFNyzZn+2MnYv36dbMDBTonl/T/ma5IKAyEGz+4eRnVtaX6tss2o34u8mWorFtuFgm4A6qK/yp/gLEBVat5WnPDdKA574ubuFJ/IUfZ/Y2Nt6mN+ZNNTSTaeI56gKwkXerTe9DDHUw8/H35FY3nNN7GGuBKWhrV9ep+0k1WjNWVaHkW1yA+QHWNu8rtBw2a5YXuE40rs7/GA+j09V3hA98yRnFPOGr8ltGlsFdD/7tRce3LH6Trcneuiy7K7J3khKu+3qUaXPWaX7T6/Kfj9BX2eZq2XAcZT79u1ClJzUtHUqfqSMWBcZS43Ena0cUGLgpkKxB1QM+0Fxz10wgg6r5rltnFpH05pepUq3Y2HfYqeKRntmUFNz+XmcOs1H31U6cC6RTVLfCg7RNBF1UF2/wBgu0fFQtPEU1sSg3VcNsR7dWq3af87tUFn1l3ltXpaJxpNvtcZkH2WmMst3JqRpxUH+WC0E1qOGtP66s1MYv+VLu8/XFXvV/ZbunYYBeVN64ls0ur6NzpV9xzlmQwB5qC4Tq70WC0tk8dWJXeHvkD0h9zJOM0vD86/1NJMaIAolctvlByferCsqOKDKceOfUu1PsmoFCamV5mCrMUOCi6V6FJosMF22AcrKJgQDVhfYh6tepp/lYgvnCEAbJQ1L0rOpajEmRcasMiPfxhgGoVo4rwreQpV6fUJHH2e8fa1s2c13Apl1b89a58ozdoap2sjgLN9uISl7P1DrulyeIkt0zr6JjWocoPOZsaXPb6jtqBblsgsaRre2xHi4nELm0MhG1+x1SXwLpFi53b+aHRYo/IrbZtuWAKu5cSEXfybnnmUCaXGTpQr0xK2O2WWY76f+nAjNVf7nCZHU5XqIkTnpt6VtvsFlPXg1031g/VRdpkkyVpD7jnmax88QwDvg/66NnMRdRXTcGTmQc3cuINwN5IQqi0yzb+YFVHuVqI5s4ADfg5oE4ybDLd28mFSFmYvRoomsWXEdLU2Wl3GJy93ZNb/d5gqmNaqJZSO1l6PVRy0nZIj/45EetjLguh1rLqR+SK0hO6NrsqcNX8zoUdjQYDJ7tb4os6+i+Y0qpY2AWlnLRDWdGFTfGY1gV0zNAtJ7pdo24se0D88AwLY/gZmE9iuP4V5v7CSR/RThaHLh+UeBkXwU6BC7lGOevK65udTv+tS/PfW7qj3ljTcj3b9OkbV85t8xsMj7Ddj7DGpthZKwKPvso/c/1K9aLE12fMWLV1y1D9ua8lyJdWXr/bG+noCFutf/mLILe39ITUV4igr3876fpX5g2zeB52sWnIL4fXHlgeUzOx5QfIvJQyrKQE9wHUqVq+PEaOrz0wVvNbJZVSfsuMzxN4l9PkedFzw9V5Dj+nzpgoT4ZxCxJfC5RWLc74YVHxKlExCYt0JAOMatREhHBSCAtSfod6x6Ls8HCWECLwXZ9nd5Dz1T24JUdWs6fU3++fcnT49Qe+kBs+wdsMZgPXMp3U5S958snPP/EE7bvkOPCuTUDTUQ/UzirLhML9yPahoe1D5Fj5jWsaoveyP00PehdUAHk/seDVWsvDWXXXsyn/4wfpXc2V3/Qxli3jl/5hj/83avSCfpTNxOEKLmTjxOEKuxgNlsQn0xgct724mhynupNW1Ph6o3RYS3/+2TJrzLlkFz+ip3qCHKf6eqW02QJLjBYuuj4sobhCWqa/YHGEHpcnumuWSOhxeaL7sOakNR6vvmo+YcfFA8UFXEPZf9UjyudIOyNwx/i90DdsujS/FX2UAwvWSVK4NxaMhAGw3oowp/uc8CTi7D2rBgZWwb/60faR7SPsEbjkXy4G0XaqhXPwe2cePjxjxuHD6ssQuR1fq6PF0E+o2t1nePTn8TUmxz/A3crMoCc7egESuoTHYc7mYdg6etORoOhR7BBGD+qJopELrl4S6cJNRtEAsLP/OdvnJq0Wo0GolY2Et9VFB2Kf+4bZvVyxfOMz3WdFfSIryj6DwWghre7aQbdiDrkTL3A3vNDuDpk93HqXwam+bWmUJZfNn5ozKV5Pmmq8PF/jVY+2Tlk2M2RzSXKjmbQ4RZcQavEYrN/9rlXwtIQqzxQNMzPPfHYLvuPoO9TbT8bpGw5CQPGd+SyX/Cyf0Vxjd2R9NmsunnXYa8xGHzn+sSfM5J0y0DZEXWWxkXjcR75KBLNLHi7XvX2G8VOrf4Ykg0AMdBESIpo7MgAfyakA6rkqpI6UjNs0px7cMV+D5BF49Tez1VGnYmq0WIijp985m4Sn2gJR9b07riPPFo97OYbUZbxJCpot7H/lpZBicglCPN7WOfJkcHqc3ElWqvvz/1E6bIQrG+tz6WkM1SM9FBTR7FSs8KyBBytSmNEoquJNFN5EQyTiCrnKDx1h58yxCepPHU5nxGoxEQeeOZi2m80DxNxncVhr6BmEfUarxejw+WSiHhWk19bSY7aKR5MsteblJpfTLtjimBouXsm3d3djjYM+wEW0El9dM/ueVRWIsXwe43R7SgbVZqrnqoJ1X/kuF7pcgf8duv4q6vayV5U9zMV91GxO59UUjW8rHV6u799WzKMT7umRCXbYUKM+foaCcwgaoqZUtmodV3p+X7akb4dnU9B9La38RPFUG2SCC90tVA4XwEFhyOpZZrUCsgWYHsczLFBBVGNtstoN1bw0Z+O4fYIbvZVt4EUcJEKOhHeincWqONw+q6w5Go+WGOSR7LhKV+KBqbBPpfUvOf9QqkpDyVhBeyyZQGMsdA5FBUqvFMtUyGq9vjnsAJU4UcrxldP1CCaofyDkSAifoP5QwWx+SyUGxp75BzGAvtG7uQ38LehlyEQMeh0TeE6Bm7tYdXqdkt0uOb3kfYlNwmOdDyacOq/qlFo1v+PTmTi3E/glC9W11b34A22zmLzvb231Q0L2Bgg60OTW4YdstO+YOJnO38TtpH7zy9ymokWyA79qlVSn38HtpFlImFnhu3b4boNWXklOXV0Iwo7lQ1hrZyPFcwtjwFP7iEKSHSSJw509kh8kj6pr+H1jR7km9vcvqN9657vffefkv+fKxge1X+7RdjYUPIESN7gTvRkB/RMYtEkaVkdHApmdBPpnKmz0n1xSWFOyVIuLrinZwpoCRe6kyiVZoHX088F+UX4+WKS4iBTP0IWxGtZgOdMaV4KTayqHQF/VihBwTbgDXTCmKoOBJeNhwJMzEVjtjIFLuU38fPR7hqNG1JS7g/qRCuy3vmQ3W9Vu8qbVbP+SzazGRJH83MzP90Ck2m31mMjP8TiLn5uwD2Ugr2PFvPQjB5BnSJvQxGQZZEB+LopqzGzDbMmbkAPkZVJjeO5FzOSBKCgJze2ZS4Gemc9twrwY6u9H61iUQTcRvtdT9RW3tRxAWwFs2tcuJRnI6xjmBdWjbgFNRHMHiF1uHYBfUR/ut5Ug2jXAaT96+9RH/FToRwIzGbKmVJ1AZQnoabSB1yyIg7ByAridHApPMjyw0OiV6RjSbCuzwLAvFizBliWJua1tsuAgvNPbmljYbpt8lkWam7b3XZiOiKJskMOtmfScnsbPW208knwjuXrXK4Q1iKIgNyYXXDVT9C2Ye/78GQ5BEEXfFdde2RwauOysdJNL5AzCy84ard/nGAVN8alecnFdgu5Gbd5DJTL+hHZK0vApVy3OfU8XTSJg1TlssivsPYUlIqvn66PzrVTymCc4wgF6SDNR0pDf+9Gp+VnsUH5WtpHYsuhOaey8zdwLN47V8MTbm78g687+P3cx6tcAeNpjYGRgYGBk8s0/zBIfz2/zlUGeZQNQhOFCWfF0GP0/8P8c1jusIkAuBwMTSBQAYwQM6HjaY2BkYGAV+d8KJgP/XWG9wwAUQQGLAYqPBl942n1TvUoDQRCe1VM8kWARjNrZGIurBAsRBIuA2vkAFsJiKTYW4guIjT5ARMgTxCLoA1hcb5OgDyGHrY7f7M65e8fpLF++2W/nZ2eTmGfaIJi5I0qGDlZZcD51QzTTJirZPAI9JIwVA+wT8L5nOdMaV0AuMJ+icRHq8of6LSD18fzq8ds7xjpwBnQiSI9V5QVl6NwPvgM15NXn/AtWZyj3W0HjEXitOc/dIdbetPdFTZ+P6t+X7xU0/k6GJtOe1/B3arN0/pmz1J4UZc+D6ExwjD7vioeGd5HvhvU+R+DZcGZ6YBPNfAi0G97iBPwFXqph2cW8+D7kjMfwtinHb6kLb6Wygk3cZytSEoptGrlScdHtLPeri1JKueACMZfU1ViJG1Sq5E43dIt7SZZFl1zuRhb/GOs44xFVDbrJzB5tYs35OmaXTrEmkv0DajnMWQB42mNgYNCCwk0MLxheMPrhgUuY2JiUmOqY2pjWMD1hdmPOY+5hPsLCwWLEksSyiOUOawzrLrYiti/sCuxJ7Kc45DiSOPZxmnG2cG7jvMelweXDNYXrEbcBdxf3KR4OngheLd443g18fHwZfFv4NfiX8T8TEBIIEZggsEpQS7BMcJsQl5CFUI3QAWEp4RLhCyJaIldEbURXiJ4RYxEzE0sQ2yD2TzxIfJkEk4SeRJbENIkNEg8k/klqSGZITpE8InlL8p2UmVSG1A6pb9Jx0ltkjGSmyDySlZF1kc2RnSK7R/aZnJ5cmdwB+ST5SwpuCvsUjRTLFHcoOShNU9qhzKespGyhXKV8SPmBCpOKgUqcyjSVR6omqgmqe9RE1OrUnqkHqO9R/6FholGgsUZzgeYZLTUtL60WbS7tKh0OnQydXTpvdGV0O3S/6Gnopekt0ruhz6fvpl+nv0n/h4GdQYvBJUMhwwTDdYYvjFSM4oxmGd0zVjK2M84w3mYiYZJgssLkkqmO6TzTF2Z2ZjVmd8ylzP3MJ5lfsRCwcLJoszhhyWXpZdlhecZKxirHapbVPesF1ndsJGwCbBbZ/LA1sn1jZ2XXY3fFXsM+z36V/S8HD4cGh2OOTI51ThJOK5zeOUs4OzmXOS9wPuUi4JLgss7lm2uU6zY3NrcSty1u39zN3Mvct7l/8xDzMPLw88jyaPM44ynkaeEZ59niucqLyUvPKwgAn3OqOQAAAQAAARcApwARAAAAAAACAAAAAQABAAAAQAAuAAAAAHjarZK9TgJBEMf/d6CRaAyRhMLqCgsbL4ciglTGRPEjSiSKlnLycXJ86CEniU/hM9jYWPgIFkYfwd6nsDD+d1mBIIUx3mZnfzs3MzszuwDCeIYG8UUwQxmAFgxxPeeuyxrmcaNYxzTuFAewi0fFQSTxqXgM11pC8TgS2oPiCUS1d8Uh8ofiSczpYcVT5LjiCPlY8Qui+ncOr7D02y6/BTCrP/m+b5bdTrPi2I26Z9qNGtbRQBMdXMJBGRW0YOCecxEWYoiTCvxrYBunqHPdoX2bLOyrMKlZg8thDETw5K7Itci1TXlGy0124QRZZLDFU/exhxztMozlosTpMH6ZPge0L+OKGnFKjJ4WRwppHPL0PP3SI2P9jLQwFOu3GRhDfkeyDo//G7IHgzllZQxLdquvrdCyBVvat3seJlYo06gxapUxhU2JWnFygR03sSxnEkvcpf5Y5eibGq315TDp7fKWm8zbUVl71Aqq/ZtNnlkWmLnQtno9ycvXYbA6W2pF3aKfCayyC0Ja7Fr/PW70/HO4YM0OKxFvzf0C1MyPjwAAeNpt1VWUU2cYRuHsgxenQt1d8/3JOUnqAyR1d/cCLQVKO22pu7tQd3d3d3d3d3cXmGzumrWy3pWLs/NdPDMpZaWu1783l1Lpf14MnfzO6FbqVupfGkD30iR60JNe9KYP09CXfvRnAAMZxGCGMG3pW6ZjemZgKDMyEzMzC7MyG7MzB3MyF3MzD/MyH/OzAAuyEAuzCIuyGIuzBGWCRIUqOQU16jRYkqVYmmVYluVYng6GMZwRNGmxAiuyEiuzCquyGquzBmuyFmuzDuuyHuuzARuyERuzCZuyGZuzBVuyFVuzDduyHdszklGMZgd2ZAw7MZZxjGdnJrALu9LJbuzOHkxkT/Zib/ZhX/Zjfw7gQA7iYA7hUA7jcI7gSI7iaI7hWI7jeE7gRE7iZE5hEqdyGqdzBmdyFmdzDudyHudzARdyERdzCZdyGZdzBVdyFVdzDddyHddzAzdyEzdzC7dyG7dzB3dyF3dzD/dyH/fzAA/yEA/zCI/yGI/zBE/yFE/zDM/yHM/zAi/yEi/zCq/yGq/zBm/yFm/zDu/yHu/zAR/yER/zCZ/yGZ/zBV/yFV/zDd/yHd/zAz/yEz/zC7/yG7/zB3/yF3/zD/9mpYwsy7pl3bMeWc+sV9Y765NNk/XN+mX9swHZwGxQNjgb0nPkmInjR0V7Uq/OsaPL5Y7ylE3l8tQNN7kVt+rmbuHW3LrbcDvam1rtzVvdm50TxrU/DBvRtZUY1rV5a3jXFn550Wo/XDNWK3dFmh7X9LimxzU9qulRTY9qelTTo5rlKLt2wk7YiaprL+yFvbAX9pK9ZC/ZS/aSvWQv2Uv2kr1kr2KvYq9ir2KvYq9ir2KvYq9ir2Kvaq9qr2qvaq9qr2qvaq9qr2qvai+3l9vL7eX2cnu5vdxebi+3l9sr7BV2CjuFncJOYaewU9gp7NTs1LyrZq9mr2avZq9mr2avZq9mr26vbq9ur26vbq9ur26vbq9ur26vYa9hr2GvYa9hr2GvYa/R7oXuQ/eh+2j/UU7e3C3cqc/V3fYdof/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D92H7kP3ofvQfeg+dB+6D92H7kP3ofvQfRT29B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6j6nuG3Ya7U5q/0hN3nCTW3Grbu4Wrs/rP+k/6T/pP+k/6T/pP+k+6T7pPek86TzpPOk86TzpOuk66TrpOuk66TrpOlWmPu/36zrpOuk66TrpOuk66TrpOvl/Pek76TvpO+k76TvpO+k76TvpO+k76TvpO7V9t+qtVs/OaOURU6bo6PgPt6rZbwAAAAABVFDDFwAA) format('woff'),url(data:application/x-font-truetype;base64,AAEAAAAPAIAAAwBwRkZUTW0ql9wAAAD8AAAAHEdERUYBRAAEAAABGAAAACBPUy8yZ7lriQAAATgAAABgY21hcNqt44EAAAGYAAAGcmN2dCAAKAL4AAAIDAAAAARnYXNw//8AAwAACBAAAAAIZ2x5Zn1dwm8AAAgYAACUpGhlYWQFTS/YAACcvAAAADZoaGVhCkQEEQAAnPQAAAAkaG10eNLHIGAAAJ0YAAADdGxvY2Fv+5XOAACgjAAAAjBtYXhwAWoA2AAAorwAAAAgbmFtZbMsoJsAAKLcAAADonBvc3S6o+U1AACmgAAACtF3ZWJmwxhUUAAAsVQAAAAGAAAAAQAAAADMPaLPAAAAANB2gXUAAAAA0HZzlwABAAAADgAAABgAAAAAAAIAAQABARYAAQAEAAAAAgAAAAMEiwGQAAUABAMMAtAAAABaAwwC0AAAAaQAMgK4AAAAAAUAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAFVLV04AQAAg//8DwP8QAAAFFAB7AAAAAQAAAAAAAAAAAAAAIAABAAAABQAAAAMAAAAsAAAACgAAAdwAAQAAAAAEaAADAAEAAAAsAAMACgAAAdwABAGwAAAAaABAAAUAKAAgACsAoAClIAogLyBfIKwgvSISIxsl/CYBJvonCScP4APgCeAZ4CngOeBJ4FngYOBp4HngieCX4QnhGeEp4TnhRuFJ4VnhaeF54YnhleGZ4gbiCeIW4hniIeIn4jniSeJZ4mD4////AAAAIAAqAKAApSAAIC8gXyCsIL0iEiMbJfwmASb6JwknD+AB4AXgEOAg4DDgQOBQ4GDgYuBw4IDgkOEB4RDhIOEw4UDhSOFQ4WDhcOGA4ZDhl+IA4gniEOIY4iHiI+Iw4kDiUOJg+P/////j/9r/Zv9i4Ajf5N+132nfWd4F3P3aHdoZ2SHZE9kOIB0gHCAWIBAgCiAEH/4f+B/3H/Ef6x/lH3wfdh9wH2ofZB9jH10fVx9RH0sfRR9EHt4e3B7WHtUezh7NHsUevx65HrMIFQABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAAAAAACjAAAAAAAAAA1AAAAIAAAACAAAAADAAAAKgAAACsAAAAEAAAAoAAAAKAAAAAGAAAApQAAAKUAAAAHAAAgAAAAIAoAAAAIAAAgLwAAIC8AAAATAAAgXwAAIF8AAAAUAAAgrAAAIKwAAAAVAAAgvQAAIL0AAAAWAAAiEgAAIhIAAAAXAAAjGwAAIxsAAAAYAAAl/AAAJfwAAAAZAAAmAQAAJgEAAAAaAAAm+gAAJvoAAAAbAAAnCQAAJwkAAAAcAAAnDwAAJw8AAAAdAADgAQAA4AMAAAAeAADgBQAA4AkAAAAhAADgEAAA4BkAAAAmAADgIAAA4CkAAAAwAADgMAAA4DkAAAA6AADgQAAA4EkAAABEAADgUAAA4FkAAABOAADgYAAA4GAAAABYAADgYgAA4GkAAABZAADgcAAA4HkAAABhAADggAAA4IkAAABrAADgkAAA4JcAAAB1AADhAQAA4QkAAAB9AADhEAAA4RkAAACGAADhIAAA4SkAAACQAADhMAAA4TkAAACaAADhQAAA4UYAAACkAADhSAAA4UkAAACrAADhUAAA4VkAAACtAADhYAAA4WkAAAC3AADhcAAA4XkAAADBAADhgAAA4YkAAADLAADhkAAA4ZUAAADVAADhlwAA4ZkAAADbAADiAAAA4gYAAADeAADiCQAA4gkAAADlAADiEAAA4hYAAADmAADiGAAA4hkAAADtAADiIQAA4iEAAADvAADiIwAA4icAAADwAADiMAAA4jkAAAD1AADiQAAA4kkAAAD/AADiUAAA4lkAAAEJAADiYAAA4mAAAAETAAD4/wAA+P8AAAEUAAH1EQAB9REAAAEVAAH2qgAB9qoAAAEWAAYCCgAAAAABAAABAAAAAAAAAAAAAAAAAAAAAQACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAwAAAAAAAAAAAAAAAAAAAAAAAAAEAAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAL4AAAAAf//AAIAAgAoAAABaAMgAAMABwAusQEALzyyBwQA7TKxBgXcPLIDAgDtMgCxAwAvPLIFBADtMrIHBgH8PLIBAgDtMjMRIRElMxEjKAFA/ujw8AMg/OAoAtAAAQBkAGQETARMAFsAAAEyFh8BHgEdATc+AR8BFgYPATMyFhcWFRQGDwEOASsBFx4BDwEGJi8BFRQGBwYjIiYvAS4BPQEHDgEvASY2PwEjIiYnJjU0Nj8BPgE7AScuAT8BNhYfATU0Njc2AlgPJgsLCg+eBxYIagcCB57gChECBgMCAQIRCuCeBwIHaggWB54PCikiDyYLCwoPngcWCGoHAgee4AoRAgYDAgECEQrgngcCB2oIFgeeDwopBEwDAgECEQrgngcCB2oIFgeeDwopIg8mCwsKD54HFghqBwIHnuAKEQIGAwIBAhEK4J4HAgdqCBYHng8KKSIPJgsLCg+eBxYIagcCB57gChECBgAAAAABAAAAAARMBEwAIwAAATMyFhURITIWHQEUBiMhERQGKwEiJjURISImPQE0NjMhETQ2AcLIFR0BXhUdHRX+oh0VyBUd/qIVHR0VAV4dBEwdFf6iHRXIFR3+ohUdHRUBXh0VyBUdAV4VHQAAAAABAHAAAARABEwARQAAATMyFgcBBgchMhYPAQ4BKwEVITIWDwEOASsBFRQGKwEiJj0BISImPwE+ATsBNSEiJj8BPgE7ASYnASY2OwEyHwEWMj8BNgM5+goFCP6UBgUBDAoGBngGGAp9ARMKBgZ4BhgKfQ8LlAsP/u0KBgZ4BhgKff7tCgYGeAYYCnYFBv6UCAUK+hkSpAgUCKQSBEwKCP6UBgwMCKAIDGQMCKAIDK4LDw8LrgwIoAgMZAwIoAgMDAYBbAgKEqQICKQSAAABAGQABQSMBK4AOwAAATIXFhcjNC4DIyIOAwchByEGFSEHIR4EMzI+AzUzBgcGIyInLgEnIzczNjcjNzM+ATc2AujycDwGtSM0QDkXEys4MjAPAXtk/tQGAZZk/tQJMDlCNBUWOUA0I64eYmunznYkQgzZZHABBdpkhhQ+H3UErr1oaS1LMCEPCx4uTzJkMjJkSnRCKw8PIjBKK6trdZ4wqndkLzVkV4UljQAAAgB7AAAETASwAD4ARwAAASEyHgUVHAEVFA4FKwEHITIWDwEOASsBFRQGKwEiJj0BISImPwE+ATsBNSEiJj8BPgE7ARE0NhcRMzI2NTQmIwGsAV5DakIwFgwBAQwWMEJqQ7ICASAKBgZ4BhgKigsKlQoP/vUKBgZ4BhgKdf71CgYGeAYYCnUPtstALS1ABLAaJD8yTyokCwsLJCpQMkAlGmQMCKAIDK8LDg8KrwwIoAgMZAwIoAgMAdsKD8j+1EJWVEAAAAEAyAGQBEwCvAAPAAATITIWHQEUBiMhIiY9ATQ2+gMgFR0dFfzgFR0dArwdFcgVHR0VyBUdAAAAAgDIAAAD6ASwACUAQQAAARUUBisBFRQGBx4BHQEzMhYdASE1NDY7ATU0NjcuAT0BIyImPQEXFRQWFx4BFAYHDgEdASE1NCYnLgE0Njc+AT0BA+gdFTJjUVFjMhUd/OAdFTJjUVFjMhUdyEE3HCAgHDdBAZBBNxwgIBw3QQSwlhUdZFuVIyOVW5YdFZaWFR2WW5UjI5VbZB0VlshkPGMYDDI8MgwYYzyWljxjGAwyPDIMGGM8ZAAAAAEAAAAAAAAAAAAAAAAxAAAB//IBLATCBEEAFgAAATIWFzYzMhYVFAYjISImNTQ2NyY1NDYB9261LCwueKqqeP0ST3FVQgLYBEF3YQ6teHmtclBFaw4MGZnXAAAAAgAAAGQEsASvABoAHgAAAB4BDwEBMzIWHQEhNTQ2OwEBJyY+ARYfATc2AyEnAwL2IAkKiAHTHhQe+1AeFB4B1IcKCSAkCm9wCXoBebbDBLMTIxC7/RYlFSoqFSUC6rcQJBQJEJSWEPwecAIWAAAAAAQAAABkBLAETAALABcAIwA3AAATITIWBwEGIicBJjYXARYUBwEGJjURNDYJATYWFREUBicBJjQHARYGIyEiJjcBNjIfARYyPwE2MhkEfgoFCP3MCBQI/cwIBQMBCAgI/vgICgoDjAEICAoKCP74CFwBbAgFCvuCCgUIAWwIFAikCBQIpAgUBEwKCP3JCAgCNwgK2v74CBQI/vgIBQoCJgoF/vABCAgFCv3aCgUIAQgIFID+lAgKCggBbAgIpAgIpAgAAAAD//D/8AS6BLoACQANABAAAAAyHwEWFA8BJzcTAScJAQUTA+AmDpkNDWPWXyL9mdYCZv4f/rNuBLoNmQ4mDlzWYP50/ZrWAmb8anABTwAAAAEAAAAABLAEsAAPAAABETMyFh0BITU0NjsBEQEhArz6FR384B0V+v4MBLACiv3aHRUyMhUdAiYCJgAAAAEADgAIBEwEnAAfAAABJTYWFREUBgcGLgE2NzYXEQURFAYHBi4BNjc2FxE0NgFwAoUnMFNGT4gkV09IQv2oWEFPiCRXT0hCHQP5ow8eIvzBN1EXGSltchkYEAIJm/2iKmAVGilucRoYEQJ/JioAAAACAAn/+AS7BKcAHQApAAAAMh4CFQcXFAcBFgYPAQYiJwEGIycHIi4CND4BBCIOARQeATI+ATQmAZDItoNOAQFOARMXARY7GikT/u13jgUCZLaDTk6DAXKwlFZWlLCUVlYEp06DtmQCBY15/u4aJRg6FBQBEk0BAU6Dtsi2g1tWlLCUVlaUsJQAAQBkAFgErwREABkAAAE+Ah4CFRQOAwcuBDU0PgIeAQKJMHt4dVg2Q3mEqD4+p4V4Qzhadnh5A7VESAUtU3ZAOXmAf7JVVbJ/gHk5QHZTLQVIAAAAAf/TAF4EewSUABgAAAETNjIXEyEyFgcFExYGJyUFBiY3EyUmNjMBl4MHFQeBAaUVBhH+qoIHDxH+qf6qEQ8Hgv6lEQYUAyABYRMT/p8RDPn+bxQLDPb3DAsUAZD7DBEAAv/TAF4EewSUABgAIgAAARM2MhcTITIWBwUTFgYnJQUGJjcTJSY2MwUjFwc3Fyc3IycBl4MHFQeBAaUVBhH+qoIHDxH+qf6qEQ8Hgv6lEQYUAfPwxUrBw0rA6k4DIAFhExP+nxEM+f5vFAsM9vcMCxQBkPsMEWSO4ouM5YzTAAABAAAAAASwBLAAJgAAATIWHQEUBiMVFBYXBR4BHQEUBiMhIiY9ATQ2NyU+AT0BIiY9ATQ2Alh8sD4mDAkBZgkMDwr7ggoPDAkBZgkMJj6wBLCwfPouaEsKFwbmBRcKXQoPDwpdChcF5gYXCktoLvp8sAAAAA0AAAAABLAETAAPABMAIwAnACsALwAzADcARwBLAE8AUwBXAAATITIWFREUBiMhIiY1ETQ2FxUzNSkBIgYVERQWMyEyNjURNCYzFTM1BRUzNSEVMzUFFTM1IRUzNQchIgYVERQWMyEyNjURNCYFFTM1IRUzNQUVMzUhFTM1GQR+Cg8PCvuCCg8PVWQCo/3aCg8PCgImCg8Pc2T8GGQDIGT8GGQDIGTh/doKDw8KAiYKDw/872QDIGT8GGQDIGQETA8K++YKDw8KBBoKD2RkZA8K/qIKDw8KAV4KD2RkyGRkZGTIZGRkZGQPCv6iCg8PCgFeCg9kZGRkZMhkZGRkAAAEAAAAAARMBEwADwAfAC8APwAAEyEyFhURFAYjISImNRE0NikBMhYVERQGIyEiJjURNDYBITIWFREUBiMhIiY1ETQ2KQEyFhURFAYjISImNRE0NjIBkBUdHRX+cBUdHQJtAZAVHR0V/nAVHR39vQGQFR0dFf5wFR0dAm0BkBUdHRX+cBUdHQRMHRX+cBUdHRUBkBUdHRX+cBUdHRUBkBUd/agdFf5wFR0dFQGQFR0dFf5wFR0dFQGQFR0AAAkAAAAABEwETAAPAB8ALwA/AE8AXwBvAH8AjwAAEzMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2ATMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2ATMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2MsgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR389cgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR389cgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR0ETB0VyBUdHRXIFR0dFcgVHR0VyBUdHRXIFR0dFcgVHf5wHRXIFR0dFcgVHR0VyBUdHRXIFR0dFcgVHR0VyBUd/nAdFcgVHR0VyBUdHRXIFR0dFcgVHR0VyBUdHRXIFR0ABgAAAAAEsARMAA8AHwAvAD8ATwBfAAATMzIWHQEUBisBIiY9ATQ2KQEyFh0BFAYjISImPQE0NgEzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2ATMyFh0BFAYrASImPQE0NikBMhYdARQGIyEiJj0BNDYyyBUdHRXIFR0dAaUCvBUdHRX9RBUdHf6FyBUdHRXIFR0dAaUCvBUdHRX9RBUdHf6FyBUdHRXIFR0dAaUCvBUdHRX9RBUdHQRMHRXIFR0dFcgVHR0VyBUdHRXIFR3+cB0VyBUdHRXIFR0dFcgVHR0VyBUd/nAdFcgVHR0VyBUdHRXIFR0dFcgVHQAAAAABACYALAToBCAAFwAACQE2Mh8BFhQHAQYiJwEmND8BNjIfARYyAdECOwgUB7EICPzxBxUH/oAICLEHFAirBxYB3QI7CAixBxQI/PAICAGACBQHsQgIqwcAAQBuAG4EQgRCACMAAAEXFhQHCQEWFA8BBiInCQEGIi8BJjQ3CQEmND8BNjIXCQE2MgOIsggI/vUBCwgIsggVB/70/vQHFQiyCAgBC/71CAiyCBUHAQwBDAcVBDuzCBUH/vT+9AcVCLIICAEL/vUICLIIFQcBDAEMBxUIsggI/vUBDAcAAwAX/+sExQSZABkAJQBJAAAAMh4CFRQHARYUDwEGIicBBiMiLgI0PgEEIg4BFB4BMj4BNCYFMzIWHQEzMhYdARQGKwEVFAYrASImPQEjIiY9ATQ2OwE1NDYBmcSzgk1OASwICG0HFQj+1HeOYrSBTU2BAW+zmFhYmLOZWFj+vJYKD0sKDw8KSw8KlgoPSwoPDwpLDwSZTYKzYo15/tUIFQhsCAgBK01NgbTEs4JNWJmzmFhYmLOZIw8KSw8KlgoPSwoPDwpLDwqWCg9LCg8AAAMAF//rBMUEmQAZACUANQAAADIeAhUUBwEWFA8BBiInAQYjIi4CND4BBCIOARQeATI+ATQmBSEyFh0BFAYjISImPQE0NgGZxLOCTU4BLAgIbQcVCP7Ud45itIFNTYEBb7OYWFiYs5lYWP5YAV4KDw8K/qIKDw8EmU2Cs2KNef7VCBUIbAgIAStNTYG0xLOCTViZs5hYWJizmYcPCpYKDw8KlgoPAAAAAAIAFwAXBJkEsAAPAC0AAAEzMhYVERQGKwEiJjURNDYFNRYSFRQOAiIuAjU0EjcVDgEVFB4BMj4BNTQmAiZkFR0dFWQVHR0BD6fSW5vW6tabW9KnZ3xyxejFcnwEsB0V/nAVHR0VAZAVHeGmPv7ZuHXWm1tbm9Z1uAEnPqY3yHh0xXJyxXR4yAAEAGQAAASwBLAADwAfAC8APwAAATMyFhURFAYrASImNRE0NgEzMhYVERQGKwEiJjURNDYBMzIWFREUBisBIiY1ETQ2BTMyFh0BFAYrASImPQE0NgQBlgoPDwqWCg8P/t6WCg8PCpYKDw/+3pYKDw8KlgoPD/7elgoPDwqWCg8PBLAPCvuCCg8PCgR+Cg/+cA8K/RIKDw8KAu4KD/7UDwr+PgoPDwoBwgoPyA8K+goPDwr6Cg8AAAAAAgAaABsElgSWAEcATwAAATIfAhYfATcWFwcXFh8CFhUUDwIGDwEXBgcnBwYPAgYjIi8CJi8BByYnNycmLwImNTQ/AjY/ASc2Nxc3Nj8CNhIiBhQWMjY0AlghKSYFMS0Fhj0rUAMZDgGYBQWYAQ8YA1AwOIYFLDIFJisfISkmBTEtBYY8LFADGQ0ClwYGlwINGQNQLzqFBS0xBSYreLJ+frJ+BJYFmAEOGQJQMDmGBSwxBiYrHiIoJgYxLAWGPSxRAxkOApcFBZcCDhkDUTA5hgUtMAYmKiAhKCYGMC0Fhj0sUAIZDgGYBf6ZfrF+frEABwBkAAAEsAUUABMAFwAhACUAKQAtADEAAAEhMhYdASEyFh0BITU0NjMhNTQ2FxUhNQERFAYjISImNREXETMRMxEzETMRMxEzETMRAfQBLCk7ARMKD/u0DwoBEzspASwBLDsp/UQpO2RkZGRkZGRkBRQ7KWQPCktLCg9kKTtkZGT+1PzgKTs7KQMgZP1EArz9RAK8/UQCvP1EArwAAQAMAAAFCATRAB8AABMBNjIXARYGKwERFAYrASImNREhERQGKwEiJjURIyImEgJsCBUHAmAIBQqvDwr6Cg/+1A8K+goPrwoFAmoCYAcH/aAICv3BCg8PCgF3/okKDw8KAj8KAAIAZAAAA+gEsAARABcAAAERFBYzIREUBiMhIiY1ETQ2MwEjIiY9AQJYOykBLB0V/OAVHR0VA1L6FR0EsP5wKTv9dhUdHRUETBUd/nAdFfoAAwAXABcEmQSZAA8AGwAwAAAAMh4CFA4CIi4CND4BBCIOARQeATI+ATQmBTMyFhURMzIWHQEUBisBIiY1ETQ2AePq1ptbW5vW6tabW1ubAb/oxXJyxejFcnL+fDIKD68KDw8K+goPDwSZW5vW6tabW1ub1urWmztyxejFcnLF6MUNDwr+7Q8KMgoPDwoBXgoPAAAAAAL/nAAABRQEsAALAA8AACkBAyMDIQEzAzMDMwEDMwMFFP3mKfIp/eYBr9EVohTQ/p4b4BsBkP5wBLD+1AEs/nD+1AEsAAAAAAIAZAAABLAEsAAVAC8AAAEzMhYVETMyFgcBBiInASY2OwERNDYBMzIWFREUBiMhIiY1ETQ2OwEyFh0BITU0NgImyBUdvxQLDf65DSYN/rkNCxS/HQJUMgoPDwr75goPDwoyCg8DhA8EsB0V/j4XEP5wEBABkBAXAcIVHfzgDwr+ogoPDwoBXgoPDwqvrwoPAAMAFwAXBJkEmQAPABsAMQAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgUzMhYVETMyFgcDBiInAyY2OwERNDYB4+rWm1tbm9bq1ptbW5sBv+jFcnLF6MVycv58lgoPiRUKDd8NJg3fDQoViQ8EmVub1urWm1tbm9bq1ps7csXoxXJyxejFDQ8K/u0XEP7tEBABExAXARMKDwAAAAMAFwAXBJkEmQAPABsAMQAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JiUTFgYrAREUBisBIiY1ESMiJjcTNjIB4+rWm1tbm9bq1ptbW5sBv+jFcnLF6MVycv7n3w0KFYkPCpYKD4kVCg3fDSYEmVub1urWm1tbm9bq1ps7csXoxXJyxejFAf7tEBf+7QoPDwoBExcQARMQAAAAAAIAAAAABLAEsAAZADkAABMhMhYXExYVERQGBwYjISImJyY1EzQ3Ez4BBSEiBgcDBhY7ATIWHwEeATsBMjY/AT4BOwEyNicDLgHhAu4KEwO6BwgFDBn7tAweAgYBB7kDEwKX/dQKEgJXAgwKlgoTAiYCEwr6ChMCJgITCpYKDAJXAhIEsA4K/XQYGf5XDB4CBggEDRkBqRkYAowKDsgOC/4+Cw4OCpgKDg4KmAoODgsBwgsOAAMAFwAXBJkEmQAPABsAJwAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgUXFhQPAQYmNRE0NgHj6tabW1ub1urWm1tbmwG/6MVycsXoxXJy/ov9ERH9EBgYBJlbm9bq1ptbW5vW6tabO3LF6MVycsXoxV2+DCQMvgwLFQGQFQsAAQAXABcEmQSwACgAAAE3NhYVERQGIyEiJj8BJiMiDgEUHgEyPgE1MxQOAiIuAjQ+AjMyA7OHBwsPCv6WCwQHhW2BdMVycsXoxXKWW5vW6tabW1ub1nXABCSHBwQL/pYKDwsHhUxyxejFcnLFdHXWm1tbm9bq1ptbAAAAAAIAFwABBJkEsAAaADUAAAE3NhYVERQGIyEiJj8BJiMiDgEVIzQ+AjMyEzMUDgIjIicHBiY1ETQ2MyEyFg8BFjMyPgEDs4cHCw8L/pcLBAeGboF0xXKWW5vWdcDrllub1nXAnIYHCw8LAWgKBQiFboJ0xXIEJIcHBAv+lwsPCweGS3LFdHXWm1v9v3XWm1t2hggFCgFoCw8LB4VMcsUAAAAKAGQAAASwBLAADwAfAC8APwBPAF8AbwB/AI8AnwAAEyEyFhURFAYjISImNRE0NgUhIgYVERQWMyEyNjURNCYFMzIWHQEUBisBIiY9ATQ2MyEyFh0BFAYjISImPQE0NgczMhYdARQGKwEiJj0BNDYzITIWHQEUBiMhIiY9ATQ2BzMyFh0BFAYrASImPQE0NjMhMhYdARQGIyEiJj0BNDYHMzIWHQEUBisBIiY9ATQ2MyEyFh0BFAYjISImPQE0Nn0EGgoPDwr75goPDwPA/K4KDw8KA1IKDw/9CDIKDw8KMgoPD9IBwgoPDwr+PgoPD74yCg8PCjIKDw/SAcIKDw8K/j4KDw++MgoPDwoyCg8P0gHCCg8PCv4+Cg8PvjIKDw8KMgoPD9IBwgoPDwr+PgoPDwSwDwr7ggoPDwoEfgoPyA8K/K4KDw8KA1IKD2QPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKDwAAAAACAAAAAARMBLAAGQAjAAABNTQmIyEiBh0BIyIGFREUFjMhMjY1ETQmIyE1NDY7ATIWHQEDhHVT/tRSdmQpOzspA4QpOzsp/ageFMgUHgMgyFN1dlLIOyn9qCk7OykCWCk7lhUdHRWWAAIAZAAABEwETAAJADcAABMzMhYVESMRNDYFMhcWFREUBw4DIyIuAScuAiMiBwYjIicmNRE+ATc2HgMXHgIzMjc2fTIKD2QPA8AEBRADIUNAMRwaPyonKSxHHlVLBwgGBQ4WeDsXKC4TOQQpLUUdZ1AHBEwPCvvNBDMKDzACBhH+WwYGO1AkDQ0ODg8PDzkFAwcPAbY3VwMCAwsGFAEODg5XCAAAAwAAAAAEsASXACEAMQBBAAAAMh4CFREUBisBIiY1ETQuASAOARURFAYrASImNRE0PgEDMzIWFREUBisBIiY1ETQ2ITMyFhURFAYrASImNRE0NgHk6N6jYw8KMgoPjeT++uSNDwoyCg9joyqgCAwMCKAIDAwCYKAIDAwIoAgMDASXY6PedP7UCg8PCgEsf9FyctF//tQKDw8KASx03qP9wAwI/jQIDAwIAcwIDAwI/jQIDAwIAcwIDAAAAAACAAAA0wRHA90AFQA5AAABJTYWFREUBiclJisBIiY1ETQ2OwEyBTc2Mh8BFhQPARcWFA8BBiIvAQcGIi8BJjQ/AScmND8BNjIXAUEBAgkMDAn+/hUZ+goPDwr6GQJYeAcUByIHB3h4BwciBxQHeHgHFAciBwd3dwcHIgcUBwMurAYHCv0SCgcGrA4PCgFeCg+EeAcHIgcUB3h4BxQHIgcHd3cHByIHFAd4eAcUByIICAAAAAACAAAA0wNyA90AFQAvAAABJTYWFREUBiclJisBIiY1ETQ2OwEyJTMWFxYVFAcGDwEiLwEuATc2NTQnJjY/ATYBQQECCQwMCf7+FRn6Cg8PCvoZAdIECgZgWgYLAwkHHQcDBkhOBgMIHQcDLqwGBwr9EgoHBqwODwoBXgoPZAEJgaGafwkBAQYXBxMIZ36EaggUBxYFAAAAAAMAAADEBGID7AAbADEASwAAATMWFxYVFAYHBgcjIi8BLgE3NjU0JicmNj8BNgUlNhYVERQGJyUmKwEiJjURNDY7ATIlMxYXFhUUBwYPASIvAS4BNzY1NCcmNj8BNgPHAwsGh0RABwoDCQcqCAIGbzs3BgIJKgf9ggECCQwMCf7+FRn6Cg8PCvoZAdIECgZgWgYLAwkHHQcDBkhOBgMIHQcD7AEJs9lpy1QJAQYiBhQIlrJarEcJFAYhBb6sBgcK/RIKBwasDg8KAV4KD2QBCYGhmn8JAQEGFwcTCGd+hGoIFQYWBQAAAAANAAAAAASwBLAACQAVABkAHQAhACUALQA7AD8AQwBHAEsATwAAATMVIxUhFSMRIQEjFTMVIREjESM1IQURIREhESERBSM1MwUjNTMBMxEhETM1MwEzFSMVIzUjNTM1IzUhBREhEQcjNTMFIzUzASM1MwUhNSEB9GRk/nBkAfQCvMjI/tTIZAJY+7QBLAGQASz84GRkArxkZP1EyP4MyGQB9MhkyGRkyAEs/UQBLGRkZAOEZGT+DGRkAfT+1AEsA4RkZGQCWP4MZMgBLAEsyGT+1AEs/tQBLMhkZGT+DP4MAfRk/tRkZGRkyGTI/tQBLMhkZGT+1GRkZAAAAAAJAAAAAASwBLAAAwAHAAsADwATABcAGwAfACMAADcjETMTIxEzASMRMxMjETMBIxEzASE1IRcjNTMXIzUzBSM1M2RkZMhkZAGQyMjIZGQBLMjI/OD+1AEsyGRkyGRkASzIyMgD6PwYA+j8GAPo/BgD6PwYA+j7UGRkW1tbW1sAAAIAAAAKBKYEsAANABUAAAkBFhQHAQYiJwETNDYzBCYiBhQWMjYB9AKqCAj+MAgUCP1WAQ8KAUM7Uzs7UzsEsP1WCBQI/jAICAKqAdsKD807O1Q7OwAAAAADAAAACgXSBLAADQAZACEAAAkBFhQHAQYiJwETNDYzIQEWFAcBBiIvAQkBBCYiBhQWMjYB9AKqCAj+MAgUCP1WAQ8KAwYCqggI/jAIFAg4Aaj9RP7TO1M7O1M7BLD9VggUCP4wCAgCqgHbCg/9VggUCP4wCAg4AaoCvM07O1Q7OwAAAAABAGQAAASwBLAAJgAAASEyFREUDwEGJjURNCYjISIPAQYWMyEyFhURFAYjISImNRE0PwE2ASwDOUsSQAgKDwr9RBkSQAgFCgK8Cg8PCvyuCg8SixIEsEv8fBkSQAgFCgO2Cg8SQAgKDwr8SgoPDwoDzxkSixIAAAABAMj//wRMBLAACgAAEyEyFhURCQERNDb6AyAVHf4+/j4dBLAdFfuCAbz+QwR/FR0AAAAAAwAAAAAEsASwABUARQBVAAABISIGBwMGHwEeATMhMjY/ATYnAy4BASMiBg8BDgEjISImLwEuASsBIgYVERQWOwEyNj0BNDYzITIWHQEUFjsBMjY1ETQmASEiBg8BBhYzITI2LwEuAQM2/kQLEAFOBw45BhcKAcIKFwY+DgdTARABVpYKFgROBBYK/doKFgROBBYKlgoPDwqWCg8PCgLuCg8PCpYKDw/+sf4MChMCJgILCgJYCgsCJgITBLAPCv7TGBVsCQwMCWwVGAEtCg/+cA0JnAkNDQmcCQ0PCv12Cg8PCpYKDw8KlgoPDwoCigoP/agOCpgKDg4KmAoOAAAAAAQAAABkBLAETAAdACEAKQAxAAABMzIeAh8BMzIWFREUBiMhIiY1ETQ2OwE+BAEVMzUEIgYUFjI2NCQyFhQGIiY0AfTIOF00JAcGlik7Oyn8GCk7OymWAgknM10ByGT+z76Hh76H/u9WPDxWPARMKTs7FRQ7Kf2oKTs7KQJYKTsIG0U1K/7UZGRGh76Hh74IPFY8PFYAAAAAAgA1AAAEsASvACAAIwAACQEWFx4BHwEVITUyNi8BIQYHBh4CMxUhNTY3PgE/AQEDIQMCqQGBFCgSJQkK/l81LBFS/nk6IgsJKjIe/pM4HAwaBwcBj6wBVKIEr/waMioTFQECQkJXLd6RWSIuHAxCQhgcDCUNDQPu/VoByQAAAAADAGQAAAPwBLAAJwAyADsAAAEeBhUUDgMjITU+ATURNC4EJzUFMh4CFRQOAgclMzI2NTQuAisBETMyNjU0JisBAvEFEzUwOyodN1htbDD+DCk7AQYLFyEaAdc5dWM+Hy0tEP6Pi05pESpTPnbYUFJ9Xp8CgQEHGB0zOlIuQ3VONxpZBzMoAzsYFBwLEAkHRwEpSXNDM1s6KwkxYUopOzQb/K5lUFqBAAABAMgAAANvBLAAGQAAARcOAQcDBhYXFSE1NjcTNjQuBCcmJzUDbQJTQgeECSxK/gy6Dq0DAw8MHxUXDQYEsDkTNSj8uTEoBmFhEFIDQBEaExAJCwYHAwI5AAAAAAL/tQAABRQEsAAlAC8AAAEjNC4FKwERFBYfARUhNTI+AzURIyIOBRUjESEFIxEzByczESM3BRQyCAsZEyYYGcgyGRn+cAQOIhoWyBkYJhMZCwgyA+j7m0tLfX1LS30DhBUgFQ4IAwH8rhYZAQJkZAEFCRUOA1IBAwgOFSAVASzI/OCnpwMgpwACACH/tQSPBLAAJQAvAAABIzQuBSsBERQWHwEVITUyPgM1ESMiDgUVIxEhEwc1IRUnNxUhNQRMMggLGRMmGBnIMhkZ/nAEDiIaFsgZGCYTGQsIMgPoQ6f84KenAyADhBUgFQ4IAwH9dhYZAQJkZAEFCRUOAooBAwgOFSAVASz7gn1LS319S0sABAAAAAAEsARMAA8AHwAvAD8AABMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYyAlgVHR0V/agVHR0VA+gVHR0V/BgVHR0VAyAVHR0V/OAVHR0VBEwVHR0V+7QVHR0ETB0VZBUdHRVkFR3+1B0VZBUdHRVkFR3+1B0VZBUdHRVkFR3+1B0VZBUdHRVkFR0ABAAAAAAEsARMAA8AHwAvAD8AABMhMhYdARQGIyEiJj0BNDYDITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NgMhMhYdARQGIyEiJj0BNDb6ArwVHR0V/UQVHR2zBEwVHR0V+7QVHR3dArwVHR0V/UQVHR2zBEwVHR0V+7QVHR0ETB0VZBUdHRVkFR3+1B0VZBUdHRVkFR3+1B0VZBUdHRVkFR3+1B0VZBUdHRVkFR0ABAAAAAAEsARMAA8AHwAvAD8AAAE1NDYzITIWHQEUBiMhIiYBNTQ2MyEyFh0BFAYjISImEzU0NjMhMhYdARQGIyEiJgE1NDYzITIWHQEUBiMhIiYB9B0VAlgVHR0V/agVHf5wHRUD6BUdHRX8GBUdyB0VAyAVHR0V/OAVHf7UHRUETBUdHRX7tBUdA7ZkFR0dFWQVHR3+6WQVHR0VZBUdHf7pZBUdHRVkFR0d/ulkFR0dFWQVHR0AAAQAAAAABLAETAAPAB8ALwA/AAATITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2MgRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dBEwdFWQVHR0VZBUd/tQdFWQVHR0VZBUd/tQdFWQVHR0VZBUd/tQdFWQVHR0VZBUdAAgAAAAABLAETAAPAB8ALwA/AE8AXwBvAH8AABMzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2ATMyFh0BFAYrASImPQE0NikBMhYdARQGIyEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2KQEyFh0BFAYjISImPQE0NgEzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2MmQVHR0VZBUdHQFBAyAVHR0V/OAVHR3+6WQVHR0VZBUdHQFBAyAVHR0V/OAVHR3+6WQVHR0VZBUdHQFBAyAVHR0V/OAVHR3+6WQVHR0VZBUdHQFBAyAVHR0V/OAVHR0ETB0VZBUdHRVkFR0dFWQVHR0VZBUd/tQdFWQVHR0VZBUdHRVkFR0dFWQVHf7UHRVkFR0dFWQVHR0VZBUdHRVkFR3+1B0VZBUdHRVkFR0dFWQVHR0VZBUdAAAG/5wAAASwBEwAAwATACMAKgA6AEoAACEjETsCMhYdARQGKwEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2BQc1IzUzNQUhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2AZBkZJZkFR0dFWQVHR0VAfQVHR0V/gwVHR3++qfIyAHCASwVHR0V/tQVHR0VAlgVHR0V/agVHR0ETB0VZBUdHRVkFR3+1B0VZBUdHRVkFR36fUtkS68dFWQVHR0VZBUd/tQdFWQVHR0VZBUdAAAABgAAAAAFFARMAA8AEwAjACoAOgBKAAATMzIWHQEUBisBIiY9ATQ2ASMRMwEhMhYdARQGIyEiJj0BNDYFMxUjFSc3BSEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYyZBUdHRVkFR0dA2dkZPyuAfQVHR0V/gwVHR0EL8jIp6f75gEsFR0dFf7UFR0dFQJYFR0dFf2oFR0dBEwdFWQVHR0VZBUd+7QETP7UHRVkFR0dFWQVHchkS319rx0VZBUdHRVkFR3+1B0VZBUdHRVkFR0AAAAAAgAAAMgEsAPoAA8AEgAAEyEyFhURFAYjISImNRE0NgkCSwLuHywsH/0SHywsBIT+1AEsA+gsH/12HywsHwKKHyz9RAEsASwAAwAAAAAEsARMAA8AFwAfAAATITIWFREUBiMhIiY1ETQ2FxE3BScBExEEMhYUBiImNCwEWBIaGhL7qBIaGkr3ASpKASXs/NJwTk5wTgRMGhL8DBIaGhID9BIaZP0ftoOcAT7+4AH0dE5vT09vAAAAAAIA2wAFBDYEkQAWAB4AAAEyHgEVFAcOAQ8BLgQnJjU0PgIWIgYUFjI2NAKIdcZzRkWyNjYJIV5YbSk8RHOft7eCgreCBJF4ynVzj23pPz4IIWZomEiEdVijeUjDgriBgbgAAAACABcAFwSZBJkADwAXAAAAMh4CFA4CIi4CND4BAREiDgEUHgEB4+rWm1tbm9bq1ptbW5sBS3TFcnLFBJlbm9bq1ptbW5vW6tab/G8DVnLF6MVyAAACAHUAAwPfBQ8AGgA1AAABHgYVFA4DBy4DNTQ+BQMOAhceBBcWNj8BNiYnLgInJjc2IyYCKhVJT1dOPiUzVnB9P1SbfEokP0xXUEm8FykoAwEbITEcExUWAgYCCQkFEikMGiACCAgFD0iPdXdzdYdFR4BeRiYEBTpjl1lFh3ZzeHaQ/f4hS4I6JUEnIw4IBwwQIgoYBwQQQSlZtgsBAAAAAwAAAAAEywRsAAwAKgAvAAABNz4CHgEXHgEPAiUhMhcHISIGFREUFjMhMjY9ATcRFAYjISImNRE0NgkBBzcBA+hsAgYUFR0OFgoFBmz9BQGQMje7/pApOzspAfQpO8i7o/5wpbm5Azj+lqE3AWMD9XMBAgIEDw4WKgsKc8gNuzsp/gwpOzsptsj+tKW5uaUBkKW5/tf+ljKqAWMAAgAAAAAEkwRMABsANgAAASEGByMiBhURFBYzITI2NTcVFAYjISImNRE0NgUBFhQHAQYmJzUmDgMHPgY3NT4BAV4BaaQ0wyk7OykB9Ck7yLml/nClubkCfwFTCAj+rAcLARo5ZFRYGgouOUlARioTAQsETJI2Oyn+DCk7OymZZ6W5uaUBkKW5G/7TBxUH/s4GBAnLAQINFjAhO2JBNB0UBwHSCgUAAAAAAgAAAAAEnQRMAB0ANQAAASEyFwchIgYVERQWMyEyNj0BNxUUBiMhIiY1ETQ2CQE2Mh8BFhQHAQYiLwEmND8BNjIfARYyAV4BXjxDsv6jKTs7KQH0KTvIuaX+cKW5uQHKAYsHFQdlBwf97QcVB/gHB2UHFQdvCBQETBexOyn+DCk7OylFyNulubmlAZCluf4zAYsHB2UHFQf97AcH+AcVB2UHB28HAAAAAQAKAAoEpgSmADsAAAkBNjIXARYGKwEVMzU0NhcBFhQHAQYmPQEjFTMyFgcBBiInASY2OwE1IxUUBicBJjQ3ATYWHQEzNSMiJgE+AQgIFAgBBAcFCqrICggBCAgI/vgICsiqCgUH/vwIFAj++AgFCq/ICgj++AgIAQgICsivCgUDlgEICAj++AgKyK0KBAf+/AcVB/73BwQKrcgKCP74CAgBCAgKyK0KBAcBCQcVBwEEBwQKrcgKAAEAyAAAA4QETAAZAAATMzIWFREBNhYVERQGJwERFAYrASImNRE0NvpkFR0B0A8VFQ/+MB0VZBUdHQRMHRX+SgHFDggV/BgVCA4Bxf5KFR0dFQPoFR0AAAABAAAAAASwBEwAIwAAEzMyFhURATYWFREBNhYVERQGJwERFAYnAREUBisBIiY1ETQ2MmQVHQHQDxUB0A8VFQ/+MBUP/jAdFWQVHR0ETB0V/koBxQ4IFf5KAcUOCBX8GBUIDgHF/koVCA4Bxf5KFR0dFQPoFR0AAAABAJ0AGQSwBDMAFQAAAREUBicBERQGJwEmNDcBNhYVEQE2FgSwFQ/+MBUP/hQPDwHsDxUB0A8VBBr8GBUIDgHF/koVCA4B4A4qDgHgDggV/koBxQ4IAAAAAQDIABYEMwQ2AAsAABMBFhQHAQYmNRE0NvMDLhIS/NISGRkEMv4OCx4L/g4LDhUD6BUOAAIAyABkA4QD6AAPAB8AABMzMhYVERQGKwEiJjURNDYhMzIWFREUBisBIiY1ETQ2+sgVHR0VyBUdHQGlyBUdHRXIFR0dA+gdFfzgFR0dFQMgFR0dFfzgFR0dFQMgFR0AAAEAyABkBEwD6AAPAAABERQGIyEiJjURNDYzITIWBEwdFfzgFR0dFQMgFR0DtvzgFR0dFQMgFR0dAAAAAAEAAAAZBBMEMwAVAAABETQ2FwEWFAcBBiY1EQEGJjURNDYXAfQVDwHsDw/+FA8V/jAPFRUPAmQBthUIDv4gDioO/iAOCBUBtv47DggVA+gVCA4AAAH//gACBLMETwAjAAABNzIWFRMUBiMHIiY1AwEGJjUDAQYmNQM0NhcBAzQ2FwEDNDYEGGQUHgUdFWQVHQL+MQ4VAv4yDxUFFQ8B0gIVDwHSAh0ETgEdFfwYFR0BHRUBtf46DwkVAbX+OQ4JFAPoFQkP/j4BthQJDv49AbYVHQAAAQEsAAAD6ARMABkAAAEzMhYVERQGKwEiJjURAQYmNRE0NhcBETQ2A1JkFR0dFWQVHf4wDxUVDwHQHQRMHRX8GBUdHRUBtv47DggVA+gVCA7+OwG2FR0AAAIAZADIBLAESAALABsAAAkBFgYjISImNwE2MgEhMhYdARQGIyEiJj0BNDYCrgH1DwkW++4WCQ8B9Q8q/fcD6BUdHRX8GBUdHQQ5/eQPFhYPAhwP/UgdFWQVHR0VZBUdAAEAiP/8A3UESgAFAAAJAgcJAQN1/qABYMX92AIoA4T+n/6fxgIoAiYAAAAAAQE7//wEKARKAAUAAAkBJwkBNwQo/dnGAWH+n8YCI/3ZxgFhAWHGAAIAFwAXBJkEmQAPADMAAAAyHgIUDgIiLgI0PgEFIyIGHQEjIgYdARQWOwEVFBY7ATI2PQEzMjY9ATQmKwE1NCYB4+rWm1tbm9bq1ptbW5sBfWQVHZYVHR0Vlh0VZBUdlhUdHRWWHQSZW5vW6tabW1ub1urWm7odFZYdFWQVHZYVHR0Vlh0VZBUdlhUdAAAAAAIAFwAXBJkEmQAPAB8AAAAyHgIUDgIiLgI0PgEBISIGHQEUFjMhMjY9ATQmAePq1ptbW5vW6tabW1ubAkX+DBUdHRUB9BUdHQSZW5vW6tabW1ub1urWm/5+HRVkFR0dFWQVHQACABcAFwSZBJkADwAzAAAAMh4CFA4CIi4CND4BBCIPAScmIg8BBhQfAQcGFB8BFjI/ARcWMj8BNjQvATc2NC8BAePq1ptbW5vW6tabW1ubAeUZCXh4CRkJjQkJeHgJCY0JGQl4eAkZCY0JCXh4CQmNBJlbm9bq1ptbW5vW6tabrQl4eAkJjQkZCXh4CRkJjQkJeHgJCY0JGQl4eAkZCY0AAgAXABcEmQSZAA8AJAAAADIeAhQOAiIuAjQ+AQEnJiIPAQYUHwEWMjcBNjQvASYiBwHj6tabW1ub1urWm1tbmwEVVAcVCIsHB/IHFQcBdwcHiwcVBwSZW5vW6tabW1ub1urWm/4xVQcHiwgUCPEICAF3BxUIiwcHAAAAAAMAFwAXBJkEmQAPADsASwAAADIeAhQOAiIuAjQ+AQUiDgMVFDsBFjc+ATMyFhUUBgciDgUHBhY7ATI+AzU0LgMTIyIGHQEUFjsBMjY9ATQmAePq1ptbW5vW6tabW1ubAT8dPEIyIRSDHgUGHR8UFw4TARkOGhITDAIBDQ6tBx4oIxgiM0Q8OpYKDw8KlgoPDwSZW5vW6tabW1ub1urWm5ELHi9PMhkFEBQQFRIXFgcIBw4UHCoZCBEQKDhcNi9IKhsJ/eMPCpYKDw8KlgoPAAADABcAFwSZBJkADwAfAD4AAAAyHgIUDgIiLgI0PgEFIyIGHQEUFjsBMjY9ATQmAyMiBh0BFBY7ARUjIgYdARQWMyEyNj0BNCYrARE0JgHj6tabW1ub1urWm1tbmwGWlgoPDwqWCg8PCvoKDw8KS0sKDw8KAV4KDw8KSw8EmVub1urWm1tbm9bq1ptWDwqWCg8PCpYKD/7UDwoyCg/IDwoyCg8PCjIKDwETCg8AAgAAAAAEsASwAC8AXwAAATMyFh0BHgEXMzIWHQEUBisBDgEHFRQGKwEiJj0BLgEnIyImPQE0NjsBPgE3NTQ2ExUUBisBIiY9AQ4BBzMyFh0BFAYrAR4BFzU0NjsBMhYdAT4BNyMiJj0BNDY7AS4BAg2WCg9nlxvCCg8PCsIbl2cPCpYKD2eXG8IKDw8KwhuXZw+5DwqWCg9EZheoCg8PCqgXZkQPCpYKD0RmF6gKDw8KqBdmBLAPCsIbl2cPCpYKD2eXG8IKDw8KwhuXZw8KlgoPZ5cbwgoP/s2oCg8PCqgXZkQPCpYKD0RmF6gKDw8KqBdmRA8KlgoPRGYAAwAXABcEmQSZAA8AGwA/AAAAMh4CFA4CIi4CND4BBCIOARQeATI+ATQmBxcWFA8BFxYUDwEGIi8BBwYiLwEmND8BJyY0PwE2Mh8BNzYyAePq1ptbW5vW6tabW1ubAb/oxXJyxejFcnKaQAcHfHwHB0AHFQd8fAcVB0AHB3x8BwdABxUHfHwHFQSZW5vW6tabW1ub1urWmztyxejFcnLF6MVaQAcVB3x8BxUHQAcHfHwHB0AHFQd8fAcVB0AHB3x8BwAAAAMAFwAXBJkEmQAPABsAMAAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgcXFhQHAQYiLwEmND8BNjIfATc2MgHj6tabW1ub1urWm1tbmwG/6MVycsXoxXJyg2oHB/7ACBQIyggIagcVB0/FBxUEmVub1urWm1tbm9bq1ps7csXoxXJyxejFfWoHFQf+vwcHywcVB2oICE/FBwAAAAMAFwAXBJkEmQAPABgAIQAAADIeAhQOAiIuAjQ+AQUiDgEVFBcBJhcBFjMyPgE1NAHj6tabW1ub1urWm1tbmwFLdMVyQQJLafX9uGhzdMVyBJlbm9bq1ptbW5vW6tabO3LFdHhpAktB0P24PnLFdHMAAAAAAQAXAFMEsAP5ABUAABMBNhYVESEyFh0BFAYjIREUBicBJjQnAgoQFwImFR0dFf3aFxD99hACRgGrDQoV/t0dFcgVHf7dFQoNAasNJgAAAAABAAAAUwSZA/kAFQAACQEWFAcBBiY1ESEiJj0BNDYzIRE0NgJ/AgoQEP32EBf92hUdHRUCJhcD8f5VDSYN/lUNChUBIx0VyBUdASMVCgAAAAEAtwAABF0EmQAVAAAJARYGIyERFAYrASImNREhIiY3ATYyAqoBqw0KFf7dHRXIFR3+3RUKDQGrDSYEif32EBf92hUdHRUCJhcQAgoQAAAAAQC3ABcEXQSwABUAAAEzMhYVESEyFgcBBiInASY2MyERNDYCJsgVHQEjFQoN/lUNJg3+VQ0KFQEjHQSwHRX92hcQ/fYQEAIKEBcCJhUdAAABAAAAtwSZBF0AFwAACQEWFAcBBiY1EQ4DBz4ENxE0NgJ/AgoQEP32EBdesKWBJAUsW4fHfhcEVf5VDSYN/lUNChUBIwIkRHVNabGdcUYHAQYVCgACAAAAAASwBLAAFQArAAABITIWFREUBi8BBwYiLwEmND8BJyY2ASEiJjURNDYfATc2Mh8BFhQPARcWBgNSASwVHRUOXvkIFAhqBwf5Xg4I/iH+1BUdFQ5e+QgUCGoHB/leDggEsB0V/tQVCA5e+QcHaggUCPleDhX7UB0VASwVCA5e+QcHaggUCPleDhUAAAACAEkASQRnBGcAFQArAAABFxYUDwEXFgYjISImNRE0Nh8BNzYyASEyFhURFAYvAQcGIi8BJjQ/AScmNgP2agcH+V4OCBX+1BUdFQ5e+QgU/QwBLBUdFQ5e+QgUCGoHB/leDggEYGoIFAj5Xg4VHRUBLBUIDl75B/3xHRX+1BUIDl75BwdqCBQI+V4OFQAAAAADABcAFwSZBJkADwAfAC8AAAAyHgIUDgIiLgI0PgEFIyIGFxMeATsBMjY3EzYmAyMiBh0BFBY7ATI2PQE0JgHj6tabW1ub1urWm1tbmwGz0BQYBDoEIxQ2FCMEOgQYMZYKDw8KlgoPDwSZW5vW6tabW1ub1urWm7odFP7SFB0dFAEuFB3+DA8KlgoPDwqWCg8AAAAABQAAAAAEsASwAEkAVQBhAGgAbwAAATIWHwEWHwEWFxY3Nj8BNjc2MzIWHwEWHwIeATsBMhYdARQGKwEiBh0BIREjESE1NCYrASImPQE0NjsBMjY1ND8BNjc+BAUHBhY7ATI2LwEuAQUnJgYPAQYWOwEyNhMhIiY1ESkBERQGIyERAQQJFAUFFhbEFQ8dCAsmxBYXERUXMA0NDgQZCAEPCj0KDw8KMgoP/nDI/nAPCjIKDw8KPQsOCRkFDgIGFRYfAp2mBwQK2woKAzMDEP41sQgQAzMDCgrnCwMe/okKDwGQAlgPCv6JBLAEAgIKDXYNCxUJDRZ2DQoHIREQFRh7LAkLDwoyCg8PCq8BLP7UrwoPDwoyCg8GBQQwgBkUAwgWEQ55ogcKDgqVCgSqnQcECo8KDgr8cg8KAXf+iQoPAZAAAAAAAgAAAAwErwSmACsASQAAATYWFQYCDgQuAScmByYOAQ8BBiY1NDc+ATc+AScuAT4BNz4GFyYGBw4BDwEOBAcOARY2Nz4CNz4DNz4BBI0IGgItQmxhi2KORDg9EQQRMxuZGhYqCFUYEyADCQIQOjEnUmFch3vAJQgdHyaiPT44XHRZUhcYDhItIRmKcVtGYWtbKRYEBKYDEwiy/t3IlVgxEQgLCwwBAQIbG5kYEyJAJghKFRE8Hzdff4U/M0o1JSMbL0QJGCYvcSEhHjZST2c1ODwEJygeW0AxJUBff1UyFAABAF0AHgRyBM8ATwAAAQ4BHgQXLgc+ATceAwYHDgQHBicmNzY3PgQuAScWDgMmJy4BJyY+BDcGHgM3PgEuAicmPgMCjScfCic4R0IgBBsKGAoQAwEJEg5gikggBhANPkpTPhZINx8SBgsNJysiCRZOQQoVNU1bYC9QZwICBAUWITsoCAYdJzIYHw8YIiYHDyJJYlkEz0OAZVxEOSQMBzgXOB42IzElKRIqg5Gnl0o3Z0c6IAYWCwYNAwQFIDhHXGF1OWiqb0sdBxUknF0XNTQ8PEUiNWNROBYJDS5AQVUhVZloUSkAAAAAA//cAGoE1ARGABsAPwBRAAAAMh4FFA4FIi4FND4EBSYGFxYVFAYiJjU0NzYmBwYHDgEXHgQyPgM3NiYnJgUHDgEXFhcWNj8BNiYnJicuAQIGpJ17bk85HBw6T257naKde25POhwcOU9uewIPDwYIGbD4sBcIBw5GWg0ECxYyWl+DiINfWjIWCwQMWv3/Iw8JCSU4EC0OIw4DDywtCyIERi1JXGJcSSpJXGJcSS0tSVxiXEkqSVxiXEncDwYTOT58sLB8OzcTBg9FcxAxEiRGXkQxMEVeRSQSMRF1HiQPLxJEMA0EDyIPJQ8sSRIEAAAABP/cAAAE1ASwABQAJwA7AEwAACEjNy4ENTQ+BTMyFzczEzceARUUDgMHNz4BNzYmJyYlBgcOARceBBc3LgE1NDc2JhcHDgEXFhcWNj8CJyYnLgECUJQfW6l2WSwcOU9ue51SPUEglCYvbIknUGqYUi5NdiYLBAw2/VFGWg0ECxIqSExoNSlrjxcIB3wjDwkJJTgQLQ4MFgMsLQsieBRhdHpiGxVJXGJcSS0Pef5StVXWNBpacm5jGq0xiD8SMRFGckVzEDESHjxRQTkNmhKnbjs3EwZwJA8vEkQwDQQPC1YELEkSBAAAAAP/ngAABRIEqwALABgAKAAAJwE2FhcBFgYjISImJSE1NDY7ATIWHQEhAQczMhYPAQ4BKwEiJi8BJjZaAoIUOBQCghUbJfryJRsBCgFZDwqWCg8BWf5DaNAUGAQ6BCMUNhQjBDoEGGQEKh8FIfvgIEdEhEsKDw8KSwLT3x0U/BQdHRT8FB0AAAABAGQAFQSwBLAAKAAAADIWFREBHgEdARQGJyURFh0BFAYvAQcGJj0BNDcRBQYmPQE0NjcBETQCTHxYAWsPFhgR/plkGhPNzRMaZP6ZERgWDwFrBLBYPv6t/rsOMRQpFA0M+f75XRRAFRAJgIAJEBVAFF0BB/kMDRQpFDEOAUUBUz4AAAARAAAAAARMBLAAHQAnACsALwAzADcAOwA/AEMARwBLAE8AUwBXAFsAXwBjAAABMzIWHQEzMhYdASE1NDY7ATU0NjsBMhYdASE1NDYBERQGIyEiJjURFxUzNTMVMzUzFTM1MxUzNTMVMzUFFTM1MxUzNTMVMzUzFTM1MxUzNQUVMzUzFTM1MxUzNTMVMzUzFTM1A1JkFR0yFR37tB0VMh0VZBUdAfQdAQ8dFfwYFR1kZGRkZGRkZGRk/HxkZGRkZGRkZGT8fGRkZGRkZGRkZASwHRUyHRWWlhUdMhUdHRUyMhUd/nD9EhUdHRUC7shkZGRkZGRkZGRkyGRkZGRkZGRkZGTIZGRkZGRkZGRkZAAAAAMAAAAZBXcElwAZACUANwAAARcWFA8BBiY9ASMBISImPQE0NjsBATM1NDYBBycjIiY9ATQ2MyEBFxYUDwEGJj0BIyc3FzM1NDYEb/kPD/kOFZ/9qP7dFR0dFdECWPEV/amNetEVHR0VASMDGvkPD/kOFfG1jXqfFQSN5g4qDuYOCBWW/agdFWQVHQJYlhUI/piNeh0VZBUd/k3mDioO5g4IFZa1jXqWFQgAAAABAAAAAASwBEwAEgAAEyEyFhURFAYjIQERIyImNRE0NmQD6Ck7Oyn9rP7QZCk7OwRMOyn9qCk7/tQBLDspAlgpOwAAAAMAZAAABEwEsAAJABMAPwAAEzMyFh0BITU0NiEzMhYdASE1NDYBERQOBSIuBTURIRUUFRwBHgYyPgYmNTQ9AZbIFR3+1B0C0cgVHf7UHQEPBhgoTGacwJxmTCgYBgEsAwcNFB8nNkI2Jx8TDwUFAQSwHRX6+hUdHRX6+hUd/nD+1ClJalZcPigoPlxWakkpASz6CRIVKyclIRsWEAgJEBccISUnKhURCPoAAAAB//8A1ARMA8IABQAAAQcJAScBBEzG/p/+n8UCJwGbxwFh/p/HAicAAQAAAO4ETQPcAAUAAAkCNwkBBE392v3ZxgFhAWEDFf3ZAifH/p8BYQAAAAAC/1EAZAVfA+gAFAApAAABITIWFREzMhYPAQYiLwEmNjsBESElFxYGKwERIRchIiY1ESMiJj8BNjIBlALqFR2WFQgO5g4qDuYOCBWW/oP+HOYOCBWWAYHX/RIVHZYVCA7mDioD6B0V/dkVDvkPD/kOFQGRuPkOFf5wyB0VAiYVDvkPAAABAAYAAASeBLAAMAAAEzMyFh8BITIWBwMOASMhFyEyFhQGKwEVFAYiJj0BIRUUBiImPQEjIiYvAQMjIiY0NjheERwEJgOAGB4FZAUsIf2HMAIXFR0dFTIdKh3+1B0qHR8SHQYFyTYUHh4EsBYQoiUY/iUVK8gdKh0yFR0dFTIyFR0dFTIUCQoDwR0qHQAAAAACAAAAAASwBEwACwAPAAABFSE1MzQ2MyEyFhUFIREhBLD7UMg7KQEsKTv9RASw+1AD6GRkKTs7Kcj84AACAAAAAAXcBEwADAAQAAATAxEzNDYzITIWFSEVBQEhAcjIyDspASwqOgH0ASz+1PtQASwDIP5wAlgpOzspyGT9RAK8AAEBRQAAA2sErwAbAAABFxYGKwERMzIWDwEGIi8BJjY7AREjIiY/ATYyAnvmDggVlpYVCA7mDioO5g4IFZaWFQgO5g4qBKD5DhX9pxUO+Q8P+Q4VAlkVDvkPAAAAAQABAUQErwNrABsAAAEXFhQPAQYmPQEhFRQGLwEmND8BNhYdASE1NDYDqPkODvkPFf2oFQ/5Dg75DxUCWBUDYOUPKQ/lDwkUl5cUCQ/lDykP5Q8JFZWVFQkAAAAEAAAAAASwBLAACQAZAB0AIQAAAQMuASMhIgYHAwUhIgYdARQWMyEyNj0BNCYFNTMVMzUzFQSRrAUkFP1gFCQFrAQt/BgpOzspA+gpOzv+q2RkZAGQAtwXLSgV/R1kOylkKTs7KWQpO8hkZGRkAAAAA/+cAGQEsARMAAsAIwAxAAAAMhYVERQGIiY1ETQDJSMTFgYjIisBIiYnAj0BNDU0PgE7ASUBFSIuAz0BND4CNwRpKh0dKh1k/V0mLwMRFQUCVBQdBDcCCwzIAqP8GAQOIhoWFR0dCwRMHRX8rhUdHRUDUhX8mcj+7BAIHBUBUQ76AgQQDw36/tT6AQsTKRwyGigUDAEAAAACAEoAAARmBLAALAA1AAABMzIWDwEeARcTFzMyFhQGBw4EIyIuBC8BLgE0NjsBNxM+ATcnJjYDFjMyNw4BIiYCKV4UEgYSU3oPP3YRExwaEggeZGqfTzl0XFU+LwwLEhocExF2Pw96UxIGEyQyNDUxDDdGOASwFRMlE39N/rmtHSkoBwQLHBYSCg4REg4FBAgoKR2tAUdNfhQgExr7vgYGMT09AAEAFAAUBJwEnAAXAAABNwcXBxcHFycHJwcnBzcnNyc3Jxc3FzcDIOBO6rS06k7gLZubLeBO6rS06k7gLZubA7JO4C2bmy3gTuq0tOpO4C2bmy3gTuq0tAADAAAAZASwBLAAIQAtAD0AAAEzMhYdAQchMhYdARQHAw4BKwEiJi8BIyImNRE0PwI+ARcPAREzFzMTNSE3NQEzMhYVERQGKwEiJjURNDYCijIoPBwBSCg8He4QLBf6B0YfHz0tNxSRYA0xG2SWZIjW+v4+Mv12ZBUdHRVkFR0dBLBRLJZ9USxkLR3+qBghMhkZJCcBkCQbxMYcKGTU1f6JZAF3feGv/tQdFf4MFR0dFQH0FR0AAAAAAwAAAAAEsARMACAAMAA8AAABMzIWFxMWHQEUBiMhFh0BFAYrASImLwImNRE0NjsBNgUzMhYVERQGKwEiJjURNDYhByMRHwEzNSchNQMCWPoXLBDuHTwo/rgcPCgyGzENYJEUNy09fP3pZBUdHRVkFR0dAl+IZJZkMjIBwvoETCEY/qgdLWQsUXYHlixRKBzGxBskAZAnJGRkHRX+DBUdHRUB9BUdZP6J1dSv4X0BdwADAAAAZAUOBE8AGwA3AEcAAAElNh8BHgEPASEyFhQGKwEDDgEjISImNRE0NjcXERchEz4BOwEyNiYjISoDLgQnJj8BJwUzMhYVERQGKwEiJjURNDYBZAFrHxZuDQEMVAEuVGxuVGqDBhsP/qoHphwOOmQBJYMGGw/LFRMSFv44AgoCCQMHAwUDAQwRklb9T2QVHR0VZBUdHQNp5hAWcA0mD3lMkE7+rRUoog0CDRElCkj+CVkBUxUoMjIBAgIDBQIZFrdT5B0V/gwVHR0VAfQVHQAAAAP/nABkBLAETwAdADYARgAAAQUeBBURFAYjISImJwMjIiY0NjMhJyY2PwE2BxcWBw4FKgIjIRUzMhYXEyE3ESUFMzIWFREUBisBIiY1ETQ2AdsBbgIIFBANrAf+qg8bBoNqVW1sVAEuVQsBDW4WSpIRDAIDBQMHAwkDCgH+Jd0PHAaCASZq/qoCUGQVHR0VZBUdHQRP5gEFEBEXC/3zDaIoFQFTTpBMeQ8mDXAWrrcWGQIFAwICAWQoFf6tWQH37OQdFf4MFR0dFQH0FR0AAAADAGEAAARMBQ4AGwA3AEcAAAAyFh0BBR4BFREUBiMhIiYvAQMmPwE+AR8BETQXNTQmBhURHAMOBAcGLwEHEyE3ESUuAQMhMhYdARQGIyEiJj0BNDYB3pBOAVMVKKIN/fMRJQoJ5hAWcA0mD3nGMjIBAgIDBQIZFrdT7AH3Wf6tFSiWAfQVHR0V/gwVHR0FDm5UaoMGGw/+qgemHA4OAWsfFm4NAQxUAS5U1ssVExIW/jgCCgIJAwcDBQMBDBGSVv6tZAElgwYb/QsdFWQVHR0VZBUdAAP//QAGA+gFFAAPAC0ASQAAASEyNj0BNCYjISIGHQEUFgEVFAYiJjURBwYmLwEmNxM+BDMhMhYVERQGBwEDFzc2Fx4FHAIVERQWNj0BNDY3JREnAV4B9BUdHRX+DBUdHQEPTpBMeQ8mDXAWEOYBBRARFwsCDQ2iKBX9iexTtxYZAgUDAgIBMjIoFQFTWQRMHRVkFR0dFWQVHfzmalRubFQBLlQMAQ1uFh8BawIIEw8Mpgf+qg8bBgHP/q1WkhEMAQMFAwcDCQIKAv44FhITFcsPGwaDASVkAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEBJSYGHQEhIgYdARQWMyEVFBY3JTY0AeLs1ptbW5vW7NabW1ubAob+7RAX/u0KDw8KARMXEAETEASaW5vW7NabW1ub1uzWm/453w0KFYkPCpYKD4kVCg3fDSYAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgENAQYUFwUWNj0BITI2PQE0JiMhNTQmAeLs1ptbW5vW7NabW1ubASX+7RAQARMQFwETCg8PCv7tFwSaW5vW7NabW1ub1uzWm+jfDSYN3w0KFYkPCpYKD4kVCgAAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEBAyYiBwMGFjsBERQWOwEyNjURMzI2AeLs1ptbW5vW7NabW1ubAkvfDSYN3w0KFYkPCpYKD4kVCgSaW5vW7NabW1ub1uzWm/5AARMQEP7tEBf+7QoPDwoBExcAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEFIyIGFREjIgYXExYyNxM2JisBETQmAeLs1ptbW5vW7NabW1ubAZeWCg+JFQoN3w0mDd8NChWJDwSaW5vW7NabW1ub1uzWm7sPCv7tFxD+7RAQARMQFwETCg8AAAMAGAAYBJgEmAAPAJYApgAAADIeAhQOAiIuAjQ+ASUOAwcGJgcOAQcGFgcOAQcGFgcUFgcyHgEXHgIXHgI3Fg4BFx4CFxQGFBcWNz4CNy4BJy4BJyIOAgcGJyY2NS4BJzYuAQYHBicmNzY3HgIXHgMfAT4CJyY+ATc+AzcmNzIWMjY3LgMnND4CJiceAT8BNi4CJwYHFB4BFS4CJz4BNxYyPgEB5OjVm1xcm9Xo1ZtcXJsBZA8rHDoKDz0PFD8DAxMBAzEFCRwGIgEMFhkHECIvCxU/OR0HFBkDDRQjEwcFaHUeISQDDTAMD0UREi4oLBAzDwQBBikEAQMLGhIXExMLBhAGKBsGBxYVEwYFAgsFAwMNFwQGCQcYFgYQCCARFwkKKiFBCwQCAQMDHzcLDAUdLDgNEiEQEgg/KhADGgMKEgoRBJhcm9Xo1ZtcXJvV6NWbEQwRBwkCAwYFBycPCxcHInIWInYcCUcYChQECA4QBAkuHgQPJioRFRscBAcSCgwCch0kPiAIAQcHEAsBAgsLIxcBMQENCQIPHxkCFBkdHB4QBgEBBwoMGBENBAMMJSAQEhYXDQ4qFBkKEhIDCQsXJxQiBgEOCQwHAQ0DBAUcJAwSCwRnETIoAwEJCwsLJQcKDBEAAAAAAQAAAAIErwSFABYAAAE2FwUXNxYGBw4BJwEGIi8BJjQ3ASY2AvSkjv79kfsGUE08hjv9rA8rD28PDwJYIk8EhVxliuh+WYcrIgsW/awQEG4PKxACV2XJAAYAAABgBLAErAAPABMAIwAnADcAOwAAEyEyFh0BFAYjISImPQE0NgUjFTMFITIWHQEUBiMhIiY9ATQ2BSEVIQUhMhYdARQGIyEiJj0BNDYFIRUhZAPoKTs7KfwYKTs7BBHIyPwYA+gpOzsp/BgpOzsEEf4MAfT8GAPoKTs7KfwYKTs7BBH+1AEsBKw7KWQpOzspZCk7ZGTIOylkKTs7KWQpO2RkyDspZCk7OylkKTtkZAAAAAIAZAAABEwEsAALABEAABMhMhYUBiMhIiY0NgERBxEBIZYDhBUdHRX8fBUdHQI7yP6iA4QEsB0qHR0qHf1E/tTIAfQB9AAAAAMAAABkBLAEsAAXABsAJQAAATMyFh0BITIWFREhNSMVIRE0NjMhNTQ2FxUzNQEVFAYjISImPQEB9MgpOwEsKTv+DMj+DDspASw7KcgB9Dsp/BgpOwSwOylkOyn+cGRkAZApO2QpO2RkZP1EyCk7OynIAAAABAAAAAAEsASwABUAKwBBAFcAABMhMhYPARcWFA8BBiIvAQcGJjURNDYpATIWFREUBi8BBwYiLwEmND8BJyY2ARcWFA8BFxYGIyEiJjURNDYfATc2MgU3NhYVERQGIyEiJj8BJyY0PwE2MhcyASwVCA5exwcHaggUCMdeDhUdAzUBLBUdFQ5exwgUCGoHB8deDgj+L2oHB8deDggV/tQVHRUOXscIFALLXg4VHRX+1BUIDl7HBwdqCBQIBLAVDl7HCBQIagcHx14OCBUBLBUdHRX+1BUIDl7HBwdqCBQIx14OFf0maggUCMdeDhUdFQEsFQgOXscHzl4OCBX+1BUdFQ5exwgUCGoHBwAAAAYAAAAABKgEqAAPABsAIwA7AEMASwAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JiQyFhQGIiY0JDIWFAYjIicHFhUUBiImNTQ2PwImNTQEMhYUBiImNCQyFhQGIiY0Advy3Z9fX5/d8t2gXl6gAcbgv29vv+C/b2/+LS0gIC0gAUwtICAWDg83ETNIMykfegEJ/octICAtIAIdLSAgLSAEqF+f3fLdoF5eoN3y3Z9Xb7/gv29vv+C/BiAtISEtICAtIQqRFxwkMzMkIDEFfgEODhekIC0gIC0gIC0gIC0AAf/YAFoEuQS8AFsAACUBNjc2JicmIyIOAwcABw4EFx4BMzI3ATYnLgEjIgcGBwEOASY0NwA3PgEzMhceARcWBgcOBgcGIyImJyY2NwE2NzYzMhceARcWBgcBDgEnLgECIgHVWwgHdl8WGSJBMD8hIP6IDx4eLRMNBQlZN0ozAiQkEAcdEhoYDRr+qw8pHA4BRyIjQS4ODyw9DQ4YIwwod26La1YOOEBGdiIwGkQB/0coW2tQSE5nDxE4Qv4eDyoQEAOtAdZbZWKbEQQUGjIhH/6JDxsdNSg3HT5CMwIkJCcQFBcMGv6uDwEcKQ4BTSIjIQEINykvYyMLKnhuiWZMBxtAOU6+RAH/SBg3ISSGV121Qv4kDwIPDyYAAAACAGQAWASvBEQAGQBEAAABPgIeAhUUDgMHLgQ1ND4CHgEFIg4DIi4DIyIGFRQeAhcWFx4EMj4DNzY3PgQ1NCYCiTB7eHVYNkN5hKg+PqeFeEM4WnZ4eQEjIT8yLSohJyktPyJDbxtBMjMPBw86KzEhDSIzKUAMBAgrKT8dF2oDtURIBS1TdkA5eYB/slVVsn+AeTlAdlMtBUgtJjY1JiY1NiZvTRc4SjQxDwcOPCouGBgwKEALBAkpKkQqMhNPbQACADn/8gR3BL4AFwAuAAAAMh8BFhUUBg8BJi8BNycBFwcvASY0NwEDNxYfARYUBwEGIi8BJjQ/ARYfAQcXAQKru0KNQjgiHR8uEl/3/nvUaRONQkIBGxJpCgmNQkL+5UK6Qo1CQjcdLhJf9wGFBL5CjUJeKmsiHTUuEl/4/nvUahKNQrpCARv+RmkICY1CukL+5UJCjUK7Qjc3LxFf+AGFAAAAAAMAyAAAA+gEsAARABUAHQAAADIeAhURFAYjISImNRE0PgEHESERACIGFBYyNjQCBqqaZDo7Kf2oKTs8Zj4CWP7/Vj09Vj0EsB4uMhX8Ryk7OykDuRUzLar9RAK8/RY9Vj09VgABAAAAAASwBLAAFgAACQEWFAYiLwEBEScBBRMBJyEBJyY0NjIDhgEbDx0qDiT+6dT+zP7oywEz0gEsAQsjDx0qBKH+5g8qHQ8j/vX+1NL+zcsBGAE01AEXJA4qHQAAAAADAScAEQQJBOAAMgBAAEsAAAEVHgQXIy4DJxEXHgQVFAYHFSM1JicuASczHgEXEScuBDU0PgI3NRkBDgMVFB4DFxYXET4ENC4CArwmRVI8LAKfBA0dMydAIjxQNyiym2SWVygZA4sFV0obLkJOMCAyVWg6HSoqFQ4TJhkZCWgWKTEiGBkzNwTgTgUTLD9pQiQuLBsH/s0NBxMtPGQ+i6oMTU8QVyhrVk1iEAFPCA4ZLzlYNkZwSCoGTf4SARIEDh02Jh0rGRQIBgPQ/soCCRYgNEM0JRkAAAABAGQAZgOUBK0ASgAAATIeARUjNC4CIyIGBwYVFB4BFxYXMxUjFgYHBgc+ATM2FjMyNxcOAyMiLgEHDgEPASc+BTc+AScjNTMmJy4CPgE3NgIxVJlemSc8OxolVBQpGxoYBgPxxQgVFS02ImIWIIwiUzUyHzY4HCAXanQmJ1YYFzcEGAcTDBEJMAwk3aYXFQcKAg4tJGEErVCLTig/IhIdFSw5GkowKgkFZDKCHj4yCg8BIh6TExcIASIfBAMaDAuRAxAFDQsRCjePR2QvORQrREFMIVgAAAACABn//wSXBLAADwAfAAABMzIWDwEGIi8BJjY7AREzBRcWBisBESMRIyImPwE2MgGQlhUIDuYOKg7mDggVlsgCF+YOCBWWyJYVCA7mDioBLBYO+g8P+g4WA4QQ+Q4V/HwDhBUO+Q8AAAQAGf//A+gEsAAHABcAGwAlAAABIzUjFSMRIQEzMhYPAQYiLwEmNjsBETMFFTM1EwczFSE1NyM1IQPoZGRkASz9qJYVCA7mDioO5g4IFZbIAZFkY8jI/tTIyAEsArxkZAH0/HwWDvoPD/oOFgOEZMjI/RL6ZJb6ZAAAAAAEABn//wPoBLAADwAZACEAJQAAATMyFg8BBiIvASY2OwERMwUHMxUhNTcjNSERIzUjFSMRIQcVMzUBkJYVCA7mDioO5g4IFZbIAljIyP7UyMgBLGRkZAEsx2QBLBYO+g8P+g4WA4SW+mSW+mT7UGRkAfRkyMgAAAAEABn//wRMBLAADwAVABsAHwAAATMyFg8BBiIvASY2OwERMwEjESM1MxMjNSMRIQcVMzUBkJYVCA7mDioO5g4IFZbIAlhkZMhkZMgBLMdkASwWDvoPD/oOFgOE/gwBkGT7UGQBkGTIyAAAAAAEABn//wRMBLAADwAVABkAHwAAATMyFg8BBiIvASY2OwERMwEjNSMRIQcVMzUDIxEjNTMBkJYVCA7mDioO5g4IFZbIArxkyAEsx2QBZGTIASwWDvoPD/oOFgOE/gxkAZBkyMj7tAGQZAAAAAAFABn//wSwBLAADwATABcAGwAfAAABMzIWDwEGIi8BJjY7AREzBSM1MxMhNSETITUhEyE1IQGQlhUIDuYOKg7mDggVlsgB9MjIZP7UASxk/nABkGT+DAH0ASwWDvoPD/oOFgOEyMj+DMj+DMj+DMgABQAZ//8EsASwAA8AEwAXABsAHwAAATMyFg8BBiIvASY2OwERMwUhNSEDITUhAyE1IQMjNTMBkJYVCA7mDioO5g4IFZbIAyD+DAH0ZP5wAZBk/tQBLGTIyAEsFg76Dw/6DhYDhMjI/gzI/gzI/gzIAAIAAAAABEwETAAPAB8AAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmAV4BkKK8u6P+cKW5uQJn/gwpOzspAfQpOzsETLuj/nClubmlAZClucg7Kf4MKTs7KQH0KTsAAAAAAwAAAAAETARMAA8AHwArAAABITIWFREUBiMhIiY1ETQ2BSEiBhURFBYzITI2NRE0JgUXFhQPAQYmNRE0NgFeAZClubml/nCju7wCZP4MKTs7KQH0KTs7/m/9ERH9EBgYBEy5pf5wpbm5pQGQo7vIOyn+DCk7OykB9Ck7gr4MJAy+DAsVAZAVCwAAAAADAAAAAARMBEwADwAfACsAAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmBSEyFg8BBiIvASY2AV4BkKO7uaX+cKW5uQJn/gwpOzspAfQpOzv+FQGQFQsMvgwkDL4MCwRMvKL+cKW5uaUBkKO7yDsp/gwpOzspAfQpO8gYEP0REf0QGAAAAAMAAAAABEwETAAPAB8AKwAAASEyFhURFAYjISImNRE0NgUhIgYVERQWMyEyNjURNCYFFxYGIyEiJj8BNjIBXgGQpbm5pf5wo7u5Amf+DCk7OykB9Ck7O/77vgwLFf5wFQsMvgwkBEy5pf5wo7u8ogGQpbnIOyn+DCk7OykB9Ck7z/0QGBgQ/REAAAAAAgAAAAAFFARMAB8ANQAAASEyFhURFAYjISImPQE0NjMhMjY1ETQmIyEiJj0BNDYHARYUBwEGJj0BIyImPQE0NjsBNTQ2AiYBkKW5uaX+cBUdHRUBwik7Oyn+PhUdHb8BRBAQ/rwQFvoVHR0V+hYETLml/nCluR0VZBUdOykB9Ck7HRVkFR3p/uQOJg7+5A4KFZYdFcgVHZYVCgAAAQDZAAID1wSeACMAAAEXFgcGAgclMhYHIggBBwYrAScmNz4BPwEhIicmNzYANjc2MwMZCQgDA5gCASwYEQ4B/vf+8wQMDgkJCQUCUCcn/tIXCAoQSwENuwUJEASeCQoRC/5TBwEjEv7K/sUFDwgLFQnlbm4TFRRWAS/TBhAAAAACAAAAAAT+BEwAHwA1AAABITIWHQEUBiMhIgYVERQWMyEyFh0BFAYjISImNRE0NgUBFhQHAQYmPQEjIiY9ATQ2OwE1NDYBXgGQFR0dFf4+KTs7KQHCFR0dFf5wpbm5AvEBRBAQ/rwQFvoVHR0V+hYETB0VZBUdOyn+DCk7HRVkFR25pQGQpbnp/uQOJg7+5A4KFZYdFcgVHZYVCgACAAAAAASwBLAAFQAxAAABITIWFREUBi8BAQYiLwEmNDcBJyY2ASMiBhURFBYzITI2PQE3ERQGIyEiJjURNDYzIQLuAZAVHRUObf7IDykPjQ8PAThtDgj+75wpOzspAfQpO8i7o/5wpbm5pQEsBLAdFf5wFQgObf7IDw+NDykPAThtDhX+1Dsp/gwpOzsplMj+1qW5uaUBkKW5AAADAA4ADgSiBKIADwAbACMAAAAyHgIUDgIiLgI0PgEEIg4BFB4BMj4BNCYEMhYUBiImNAHh7tmdXV2d2e7ZnV1dnQHD5sJxccLmwnFx/nugcnKgcgSiXZ3Z7tmdXV2d2e7ZnUdxwubCcXHC5sJzcqBycqAAAAMAAAAABEwEsAAVAB8AIwAAATMyFhURMzIWBwEGIicBJjY7ARE0NgEhMhYdASE1NDYFFTM1AcLIFR31FAoO/oEOJw3+hQ0JFfod/oUD6BUd+7QdA2dkBLAdFf6iFg/+Vg8PAaoPFgFeFR38fB0V+voVHWQyMgAAAAMAAAAABEwErAAVAB8AIwAACQEWBisBFRQGKwEiJj0BIyImNwE+AQEhMhYdASE1NDYFFTM1AkcBeg4KFfQiFsgUGPoUCw4Bfw4n/fkD6BUd+7QdA2dkBJ7+TQ8g+hQeHRX6IQ8BrxAC/H8dFfr6FR1kMjIAAwAAAAAETARLABQAHgAiAAAJATYyHwEWFAcBBiInASY0PwE2MhcDITIWHQEhNTQ2BRUzNQGMAXEHFQeLBwf98wcVB/7cBweLCBUH1APoFR37tB0DZ2QC0wFxBweLCBUH/fMICAEjCBQIiwcH/dIdFfr6FR1kMjIABAAAAAAETASbAAkAGQAjACcAABM3NjIfAQcnJjQFNzYWFQMOASMFIiY/ASc3ASEyFh0BITU0NgUVMzWHjg4qDk3UTQ4CFtIOFQIBHRX9qxUIDtCa1P49A+gVHfu0HQNnZAP/jg4OTdRMDyqa0g4IFf2pFB4BFQ7Qm9T9Oh0V+voVHWQyMgAAAAQAAAAABEwEsAAPABkAIwAnAAABBR4BFRMUBi8BByc3JyY2EwcGIi8BJjQ/AQEhMhYdASE1NDYFFTM1AV4CVxQeARUO0JvUm9IOCMNMDyoOjg4OTf76A+gVHfu0HQNnZASwAgEdFf2rFQgO0JrUmtIOFf1QTQ4Ojg4qDk3+WB0V+voVHWQyMgACAAT/7ASwBK8ABQAIAAAlCQERIQkBFQEEsP4d/sb+cQSs/TMCq2cBFP5xAacDHPz55gO5AAAAAAIAAABkBEwEsAAVABkAAAERFAYrAREhESMiJjURNDY7AREhETMHIzUzBEwdFZb9RJYVHR0V+gH0ZMhkZAPo/K4VHQGQ/nAdFQPoFB7+1AEsyMgAAAMAAABFBN0EsAAWABoALwAAAQcBJyYiDwEhESMiJjURNDY7AREhETMHIzUzARcWFAcBBiIvASY0PwE2Mh8BATYyBEwC/tVfCRkJlf7IlhUdHRX6AfRkyGRkAbBqBwf+XAgUCMoICGoHFQdPASkHFQPolf7VXwkJk/5wHRUD6BQe/tQBLMjI/c5qBxUH/lsHB8sHFQdqCAhPASkHAAMAAAANBQcEsAAWABoAPgAAAREHJy4BBwEhESMiJjURNDY7AREhETMHIzUzARcWFA8BFxYUDwEGIi8BBwYiLwEmND8BJyY0PwE2Mh8BNzYyBExnhg8lEP72/reWFR0dFfoB9GTIZGQB9kYPD4ODDw9GDykPg4MPKQ9GDw+Dgw8PRg8pD4ODDykD6P7zZ4YPAw7+9v5wHRUD6BQe/tQBLMjI/YxGDykPg4MPKQ9GDw+Dgw8PRg8pD4ODDykPRg8Pg4MPAAADAAAAFQSXBLAAFQAZAC8AAAERISIGHQEhESMiJjURNDY7AREhETMHIzUzEzMyFh0BMzIWDwEGIi8BJjY7ATU0NgRM/qIVHf4MlhUdHRX6AfRkyGRklmQVHZYVCA7mDioO5g4IFZYdA+j+1B0Vlv5wHRUD6BQe/tQBLMjI/agdFfoVDuYODuYOFfoVHQAAAAADAAAAAASXBLAAFQAZAC8AAAERJyYiBwEhESMiJjURNDY7AREhETMHIzUzExcWBisBFRQGKwEiJj0BIyImPwE2MgRMpQ4qDv75/m6WFR0dFfoB9GTIZGTr5g4IFZYdFWQVHZYVCA7mDioD6P5wpQ8P/vf+cB0VA+gUHv7UASzIyP2F5Q8V+hQeHhT6FQ/lDwADAAAAyASwBEwACQATABcAABMhMhYdASE1NDYBERQGIyEiJjURExUhNTIETBUd+1AdBJMdFfu0FR1kAZAETB0VlpYVHf7U/doVHR0VAib+1MjIAAAGAAMAfQStBJcADwAZAB0ALQAxADsAAAEXFhQPAQYmPQEhNSE1NDYBIyImPQE0NjsBFyM1MwE3NhYdASEVIRUUBi8BJjQFIzU7AjIWHQEUBisBA6f4Dg74DhX+cAGQFf0vMhUdHRUyyGRk/oL3DhUBkP5wFQ73DwOBZGRkMxQdHRQzBI3mDioO5g4IFZbIlhUI/oUdFWQVHcjI/cvmDggVlsiWFQgO5g4qecgdFWQVHQAAAAACAGQAAASwBLAAFgBRAAABJTYWFREUBisBIiY1ES4ENRE0NiUyFh8BERQOAg8BERQGKwEiJjURLgQ1ETQ+AzMyFh8BETMRPAE+AjMyFh8BETMRND4DA14BFBklHRXIFR0EDiIaFiX+4RYZAgEVHR0LCh0VyBUdBA4iGhYBBwoTDRQZAgNkBQkVDxcZAQFkAQUJFQQxdBIUH/uuFR0dFQGNAQgbHzUeAWcfRJEZDA3+Phw/MSkLC/5BFR0dFQG/BA8uLkAcAcICBxENCxkMDf6iAV4CBxENCxkMDf6iAV4CBxENCwABAGQAAASwBEwAMwAAARUiDgMVERQWHwEVITUyNjURIREUFjMVITUyPgM1ETQmLwE1IRUiBhURIRE0JiM1BLAEDiIaFjIZGf5wSxn+DBlL/nAEDiIaFjIZGQGQSxkB9BlLBEw4AQUKFA78iBYZAQI4OA0lAYr+diUNODgBBQoUDgN4FhkBAjg4DSX+dgGKJQ04AAAABgAAAAAETARMAAwAHAAgACQAKAA0AAABITIWHQEjBTUnITchBSEyFhURFAYjISImNRE0NhcVITUBBTUlBRUhNQUVFAYjIQchJyE3MwKjAXcVHWn+2cj+cGQBd/4lASwpOzsp/tQpOzspASwCvP5wAZD8GAEsArwdFf6JZP6JZAGQyGkD6B0VlmJiyGTIOyn+DCk7OykB9Ck7ZMjI/veFo4XGyMhm+BUdZGTIAAEAEAAQBJ8EnwAmAAATNzYWHwEWBg8BHgEXNz4BHwEeAQ8BBiIuBicuBTcRohEuDosOBhF3ZvyNdxEzE8ATBxGjAw0uMUxPZWZ4O0p3RjITCwED76IRBhPCFDERdo78ZXYRBA6IDi8RogEECBUgNUNjO0qZfHNVQBAAAAACAAAAAASwBEwAIwBBAAAAMh4EHwEVFAYvAS4BPQEmIAcVFAYPAQYmPQE+BRIyHgIfARUBHgEdARQGIyEiJj0BNDY3ATU0PgIB/LimdWQ/LAkJHRTKFB2N/sKNHRTKFB0DDTE7ZnTKcFImFgEBAW0OFR0V+7QVHRUOAW0CFiYETBUhKCgiCgrIFRgDIgMiFZIYGJIVIgMiAxgVyAQNJyQrIP7kExwcCgoy/tEPMhTUFR0dFdQUMg8BLzIEDSEZAAADAAAAAASwBLAADQAdACcAAAEHIScRMxUzNTMVMzUzASEyFhQGKwEXITcjIiY0NgMhMhYdASE1NDYETMj9qMjIyMjIyPyuArwVHR0VDIn8SokMFR0dswRMFR37UB0CvMjIAfTIyMjI/OAdKh1kZB0qHf7UHRUyMhUdAAAAAwBkAAAEsARMAAkAEwAdAAABIyIGFREhETQmASMiBhURIRE0JgEhETQ2OwEyFhUCvGQpOwEsOwFnZCk7ASw7/Rv+1DspZCk7BEw7KfwYA+gpO/7UOyn9RAK8KTv84AGQKTs7KQAAAAAF/5wAAASwBEwADwATAB8AJQApAAATITIWFREUBiMhIiY1ETQ2FxEhEQUjFTMRITUzNSMRIQURByMRMwcRMxHIArx8sLB8/UR8sLAYA4T+DMjI/tTIyAEsAZBkyMhkZARMsHz+DHywsHwB9HywyP1EArzIZP7UZGQBLGT+1GQB9GT+1AEsAAAABf+cAAAEsARMAA8AEwAfACUAKQAAEyEyFhURFAYjISImNRE0NhcRIREBIzUjFSMRMxUzNTMFEQcjETMHETMRyAK8fLCwfP1EfLCwGAOE/gxkZGRkZGQBkGTIyGRkBEywfP4MfLCwfAH0fLDI/UQCvP2oyMgB9MjIZP7UZAH0ZP7UASwABP+cAAAEsARMAA8AEwAbACMAABMhMhYVERQGIyEiJjURNDYXESERBSMRMxUhESEFIxEzFSERIcgCvHywsHz9RHywsBgDhP4MyMj+1AEsAZDIyP7UASwETLB8/gx8sLB8AfR8sMj9RAK8yP7UZAH0ZP7UZAH0AAAABP+cAAAEsARMAA8AEwAWABkAABMhMhYVERQGIyEiJjURNDYXESERAS0BDQERyAK8fLCwfP1EfLCwGAOE/gz+1AEsAZD+1ARMsHz+DHywsHwB9HywyP1EArz+DJaWlpYBLAAAAAX/nAAABLAETAAPABMAFwAgACkAABMhMhYVERQGIyEiJjURNDYXESERAyERIQcjIgYVFBY7AQERMzI2NTQmI8gCvHywsHz9RHywsBgDhGT9RAK8ZIImOTYpgv4Mgik2OSYETLB8/gx8sLB8AfR8sMj9RAK8/agB9GRWQUFUASz+1FRBQVYAAAAF/5wAAASwBEwADwATAB8AJQApAAATITIWFREUBiMhIiY1ETQ2FxEhEQUjFTMRITUzNSMRIQEjESM1MwMjNTPIArx8sLB8/UR8sLAYA4T+DMjI/tTIyAEsAZBkZMjIZGQETLB8/gx8sLB8AfR8sMj9RAK8yGT+1GRkASz+DAGQZP4MZAAG/5wAAASwBEwADwATABkAHwAjACcAABMhMhYVERQGIyEiJjURNDYXESERBTMRIREzASMRIzUzBRUzNQEjNTPIArx8sLB8/UR8sLAYA4T9RMj+1GQCWGRkyP2oZAEsZGQETLB8/gx8sLB8AfR8sMj9RAK8yP5wAfT+DAGQZMjIyP7UZAAF/5wAAASwBEwADwATABwAIgAmAAATITIWFREUBiMhIiY1ETQ2FxEhEQEHIzU3NSM1IQEjESM1MwMjNTPIArx8sLB8/UR8sLAYA4T+DMdkx8gBLAGQZGTIx2RkBEywfP4MfLCwfAH0fLDI/UQCvP5wyDLIlmT+DAGQZP4MZAAAAAMACQAJBKcEpwAPABsAJQAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgchFSEVISc1NyEB4PDbnl5entvw255eXp4BxeTCcXHC5MJxcWz+1AEs/tRkZAEsBKdentvw255eXp7b8NueTHHC5MJxccLkwtDIZGTIZAAAAAAEAAkACQSnBKcADwAbACcAKwAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgcVBxcVIycjFSMRIQcVMzUB4PDbnl5entvw255eXp4BxeTCcXHC5MJxcWwyZGRklmQBLMjIBKdentvw255eXp7b8NueTHHC5MJxccLkwtBkMmQyZGQBkGRkZAAAAv/y/50EwgRBACAANgAAATIWFzYzMhYUBisBNTQmIyEiBh0BIyImNTQ2NyY1ND4BEzMyFhURMzIWDwEGIi8BJjY7ARE0NgH3brUsLC54qqp4gB0V/tQVHd5QcFZBAmKqepYKD4kVCg3fDSYN3w0KFYkPBEF3YQ6t8a36FR0dFfpzT0VrDhMSZKpi/bMPCv7tFxD0EBD0EBcBEwoPAAAAAAL/8v+cBMMEQQAcADMAAAEyFhc2MzIWFxQGBwEmIgcBIyImNTQ2NyY1ND4BExcWBisBERQGKwEiJjURIyImNzY3NjIB9m62LCsueaoBeFr+hg0lDf6DCU9xVkECYqnm3w0KFYkPCpYKD4kVCg3HGBMZBEF3YQ+teGOkHAFoEBD+k3NPRWsOExNkqWP9kuQQF/7tCg8PCgETFxDMGBMAAAABAGQAAARMBG0AGAAAJTUhATMBMwkBMwEzASEVIyIGHQEhNTQmIwK8AZD+8qr+8qr+1P7Uqv7yqv7yAZAyFR0BkB0VZGQBLAEsAU3+s/7U/tRkHRUyMhUdAAAAAAEAeQAABDcEmwAvAAABMhYXHgEVFAYHFhUUBiMiJxUyFh0BITU0NjM1BiMiJjU0Ny4BNTQ2MzIXNCY1NDYCWF6TGll7OzIJaUo3LRUd/tQdFS03SmkELzlpSgUSAqMEm3FZBoNaPWcfHRpKaR77HRUyMhUd+x5pShIUFVg1SmkCAhAFdKMAAAAGACcAFASJBJwAEQAqAEIASgBiAHsAAAEWEgIHDgEiJicmAhI3PgEyFgUiBw4BBwYWHwEWMzI3Njc2Nz4BLwEmJyYXIgcOAQcGFh8BFjMyNz4BNz4BLwEmJyYWJiIGFBYyNjciBw4BBw4BHwEWFxYzMjc+ATc2Ji8BJhciBwYHBgcOAR8BFhcWMzI3PgE3NiYvASYD8m9PT29T2dzZU29PT29T2dzZ/j0EBHmxIgQNDCQDBBcGG0dGYAsNAwkDCwccBAVQdRgEDA0iBAQWBhJROQwMAwkDCwf5Y4xjY4xjVhYGElE6CwwDCQMLBwgEBVB1GAQNDCIEjRcGG0dGYAsNAwkDCwcIBAR5sSIEDQwkAwPyb/7V/tVvU1dXU28BKwErb1NXVxwBIrF5DBYDCQEWYEZHGwMVDCMNBgSRAhh1UA0WAwkBFTpREgMVCyMMBwT6Y2OMY2MVFTpREQQVCyMMBwQCGHVQDRYDCQEkFmBGRxsDFQwjDQYEASKxeQwWAwkBAAAABQBkAAAD6ASwAAwADwAWABwAIgAAASERIzUhFSERNDYzIQEjNQMzByczNTMDISImNREFFRQGKwECvAEstP6s/oQPCgI/ASzIZKLU1KJktP51Cg8DhA8KwwMg/oTIyALzCg/+1Mj84NTUyP4MDwoBi8jDCg8AAAAABQBkAAAD6ASwAAkADAATABoAIQAAASERCQERNDYzIQEjNRMjFSM1IzcDISImPQEpARUUBisBNQK8ASz+ov3aDwoCPwEsyD6iZKLUqv6dCg8BfAIIDwqbAyD9+AFe/doERwoP/tTI/HzIyNT+ZA8KNzcKD1AAAAAAAwAAAAAEsAP0AAgAGQAfAAABIxUzFyERIzcFMzIeAhUhFSEDETM0PgIBMwMhASEEiqJkZP7UotT9EsgbGiEOASz9qMhkDiEaAnPw8PzgASwB9AMgyGQBLNTUBBErJGT+ogHCJCsRBP5w/nAB9AAAAAMAAAAABEwETAAZADIAOQAAATMyFh0BMzIWHQEUBiMhIiY9ATQ2OwE1NDYFNTIWFREUBiMhIic3ARE0NjMVFBYzITI2AQc1IzUzNQKKZBUdMhUdHRX+1BUdHRUyHQFzKTs7Kf2oARP2/ro7KVg+ASw+WP201MjIBEwdFTIdFWQVHR0VZBUdMhUd+pY7KfzgKTsE9gFGAUQpO5Y+WFj95tSiZKIAAwBkAAAEvARMABkANgA9AAABMzIWHQEzMhYdARQGIyEiJj0BNDY7ATU0NgU1MhYVESMRMxQOAiMhIiY1ETQ2MxUUFjMhMjYBBzUjNTM1AcJkFR0yFR0dFf7UFR0dFTIdAXMpO8jIDiEaG/2oKTs7KVg+ASw+WAGc1MjIBEwdFTIdFWQVHR0VZBUdMhUd+pY7Kf4M/tQkKxEEOykDICk7lj5YWP3m1KJkogAAAAP/ogAABRYE1AALABsAHwAACQEWBiMhIiY3ATYyEyMiBhcTHgE7ATI2NxM2JgMVMzUCkgJ9FyAs+wQsIBcCfRZARNAUGAQ6BCMUNhQjBDoEGODIBK37sCY3NyYEUCf+TB0U/tIUHR0UAS4UHf4MZGQAAAAACQAAAAAETARMAA8AHwAvAD8ATwBfAG8AfwCPAAABMzIWHQEUBisBIiY9ATQ2EzMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2ITMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2ITMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBqfoKDw8K+goPDwr6Cg8PCvoKDw8BmvoKDw8K+goPD/zq+goPDwr6Cg8PAZr6Cg8PCvoKDw8BmvoKDw8K+goPD/zq+goPDwr6Cg8PAZr6Cg8PCvoKDw8BmvoKDw8K+goPDwRMDwqWCg8PCpYKD/7UDwqWCg8PCpYKDw8KlgoPDwqWCg/+1A8KlgoPDwqWCg8PCpYKDw8KlgoPDwqWCg8PCpYKD/7UDwqWCg8PCpYKDw8KlgoPDwqWCg8PCpYKDw8KlgoPAAAAAwAAAAAEsAUUABkAKQAzAAABMxUjFSEyFg8BBgchJi8BJjYzITUjNTM1MwEhMhYUBisBFyE3IyImNDYDITIWHQEhNTQ2ArxkZAFePjEcQiko/PwoKUIcMT4BXmRkyP4+ArwVHR0VDIn8SooNFR0dswRMFR37UB0EsMhkTzeEUzMzU4Q3T2TIZPx8HSodZGQdKh3+1B0VMjIVHQAABAAAAAAEsAUUAAUAGQArADUAAAAyFhUjNAchFhUUByEyFg8BIScmNjMhJjU0AyEyFhQGKwEVBSElNSMiJjQ2AyEyFh0BITU0NgIwUDnCPAE6EgMBSCkHIq/9WrIiCikBSAOvArwVHR0VlgET/EoBE5YVHR2zBEwVHftQHQUUOykpjSUmCBEhFpGRFiERCCb+lR0qHcjIyMgdKh39qB0VMjIVHQAEAAAAAASwBJ0ABwAUACQALgAAADIWFAYiJjQTMzIWFRQXITY1NDYzASEyFhQGKwEXITcjIiY0NgMhMhYdASE1NDYCDZZqapZqty4iKyf+vCcrI/7NArwVHR0VDYr8SokMFR0dswRMFR37UB0EnWqWamqW/us5Okxra0w6Of5yHSodZGQdKh3+1B0VMjIVHQAEAAAAAASwBRQADwAcACwANgAAATIeARUUBiImNTQ3FzcnNhMzMhYVFBchNjU0NjMBITIWFAYrARchNyMiJjQ2AyEyFh0BITU0NgJYL1szb5xvIpBvoyIfLiIrJ/68Jysj/s0CvBUdHRUNivxKiQwVHR2zBEwVHftQHQUUa4s2Tm9vTj5Rj2+jGv4KOTpMa2tMOjn+ch0qHWRkHSod/tQdFTIyFR0AAAADAAAAAASwBRIAEgAiACwAAAEFFSEUHgMXIS4BNTQ+AjcBITIWFAYrARchNyMiJjQ2AyEyFh0BITU0NgJYASz+1CU/P00T/e48PUJtj0r+ogK8FR0dFQ2K/EqJDBUdHbMETBUd+1AdBLChizlmUT9IGVO9VFShdksE/H4dKh1kZB0qHf7UHRUyMhUdAAIAyAAAA+gFFAAPACkAAAAyFh0BHgEdASE1NDY3NTQDITIWFyMVMxUjFTMVIxUzFAYjISImNRE0NgIvUjsuNv5wNi5kAZA2XBqsyMjIyMh1U/5wU3V1BRQ7KU4aXDYyMjZcGk4p/kc2LmRkZGRkU3V1UwGQU3UAAAMAZP//BEwETAAPAC8AMwAAEyEyFhURFAYjISImNRE0NgMhMhYdARQGIyEXFhQGIi8BIQcGIiY0PwEhIiY9ATQ2BQchJ5YDhBUdHRX8fBUdHQQDtgoPDwr+5eANGiUNWP30Vw0mGg3g/t8KDw8BqmQBRGQETB0V/gwVHR0VAfQVHf1EDwoyCg/gDSUbDVhYDRslDeAPCjIKD2RkZAAAAAAEAAAAAASwBEwAGQAjAC0ANwAAEyEyFh0BIzQmKwEiBhUjNCYrASIGFSM1NDYDITIWFREhETQ2ExUUBisBIiY9ASEVFAYrASImPQHIAyBTdWQ7KfopO2Q7KfopO2R1EQPoKTv7UDvxHRVkFR0D6B0VZBUdBEx1U8gpOzspKTs7KchTdf4MOyn+1AEsKTv+DDIVHR0VMjIVHR0VMgADAAEAAASpBKwADQARABsAAAkBFhQPASEBJjQ3ATYyCQMDITIWHQEhNTQ2AeACqh8fg/4f/fsgIAEnH1n+rAFWAS/+q6IDIBUd/HwdBI39VR9ZH4MCBh9ZHwEoH/5u/qoBMAFV/BsdFTIyFR0AAAAAAgCPAAAEIQSwABcALwAAAQMuASMhIgYHAwYWMyEVFBYyNj0BMzI2AyE1NDY7ATU0NjsBETMRMzIWHQEzMhYVBCG9CCcV/nAVJwi9CBMVAnEdKh19FROo/a0dFTIdFTDILxUdMhUdAocB+hMcHBP+BhMclhUdHRWWHP2MMhUdMhUdASz+1B0VMh0VAAAEAAAAAASwBLAADQAQAB8AIgAAASERFAYjIREBNTQ2MyEBIzUBIREUBiMhIiY1ETQ2MyEBIzUDhAEsDwr+if7UDwoBdwEsyP2oASwPCv12Cg8PCgF3ASzIAyD9wQoPAk8BLFQKD/7UyP4M/cEKDw8KA7YKD/7UyAAC/5wAZAUUBEcARgBWAAABMzIeAhcWFxY2NzYnJjc+ARYXFgcOASsBDgEPAQ4BKwEiJj8BBisBIicHDgErASImPwEmLwEuAT0BNDY7ATY3JyY2OwE2BSMiBh0BFBY7ATI2PQE0JgHkw0uOakkMEhEfQwoKGRMKBQ8XDCkCA1Y9Pgc4HCcDIhVkFRgDDDEqwxgpCwMiFWQVGAMaVCyfExwdFXwLLW8QBxXLdAFF+goPDwr6Cg8PBEdBa4pJDgYKISAiJRsQCAYIDCw9P1c3fCbqFB0dFEYOCEAUHR0UnUplNQcmFTIVHVdPXw4TZV8PCjIKDw8KMgoPAAb/nP/mBRQEfgAJACQANAA8AFIAYgAAASU2Fh8BFgYPASUzMhYfASEyFh0BFAYHBQYmJyYjISImPQE0NhcjIgYdARQ7ATI2NTQmJyYEIgYUFjI2NAE3PgEeARceAT8BFxYGDwEGJi8BJjYlBwYfAR4BPwE2Jy4BJy4BAoEBpxMuDiAOAxCL/CtqQ0geZgM3FR0cE/0fFyIJKjr+1D5YWLlQExIqhhALIAsSAYBALS1ALf4PmBIgHhMQHC0aPzANITNQL3wpgigJASlmHyElDR0RPRMFAhQHCxADhPcICxAmDyoNeMgiNtQdFTIVJgeEBBQPQ1g+yD5YrBwVODMQEAtEERzJLUAtLUD+24ITChESEyMgAwWzPUkrRSgJL5cvfRxYGyYrDwkLNRAhFEgJDAQAAAAAAwBkAAAEOQSwAFEAYABvAAABMzIWHQEeARcWDgIPATIeBRUUDgUjFRQGKwEiJj0BIxUUBisBIiY9ASMiJj0BNDY7AREjIiY9ATQ2OwE1NDY7ATIWHQEzNTQ2AxUhMj4CNTc0LgMjARUhMj4CNTc0LgMjAnGWCg9PaAEBIC4uEBEGEjQwOiodFyI2LUAjGg8KlgoPZA8KlgoPrwoPDwpLSwoPDwqvDwqWCg9kD9cBBxwpEwsBAQsTKRz++QFrHCkTCwEBCxMpHASwDwptIW1KLk0tHwYGAw8UKDJOLTtdPCoVCwJLCg8PCktLCg8PCksPCpYKDwJYDwqWCg9LCg8PCktLCg/+1MgVHR0LCgQOIhoW/nDIFR0dCwoEDiIaFgAAAwAEAAIEsASuABcAKQAsAAATITIWFREUBg8BDgEjISImJy4CNRE0NgQiDgQPARchNy4FAyMT1AMMVnokEhIdgVL9xFKCHAgYKHoCIIx9VkcrHQYGnAIwnAIIIClJVSGdwwSuelb+YDO3QkJXd3ZYHFrFMwGgVnqZFyYtLSUMDPPzBQ8sKDEj/sIBBQACAMgAAAOEBRQADwAZAAABMzIWFREUBiMhIiY1ETQ2ARUUBisBIiY9AQHblmesVCn+PilUrAFINhWWFTYFFKxn/gwpVFQpAfRnrPwY4RU2NhXhAAACAMgAAAOEBRQADwAZAAABMxQWMxEUBiMhIiY1ETQ2ARUUBisBIiY9AQHbYLOWVCn+PilUrAFINhWWFTYFFJaz/kIpVFQpAfRnrPwY4RU2NhXhAAACAAAAFAUOBBoAFAAaAAAJASUHFRcVJwc1NzU0Jj4CPwEnCQEFJTUFJQUO/YL+hk5klpZkAQEBBQQvkwKCAVz+ov6iAV4BXgL//uWqPOCWx5SVyJb6BA0GCgYDKEEBG/1ipqaTpaUAAAMAZAH0BLADIAAHAA8AFwAAEjIWFAYiJjQkMhYUBiImNCQyFhQGIiY0vHxYWHxYAeh8WFh8WAHofFhYfFgDIFh8WFh8WFh8WFh8WFh8WFh8AAAAAAMBkAAAArwETAAHAA8AFwAAADIWFAYiJjQSMhYUBiImNBIyFhQGIiY0Aeh8WFh8WFh8WFh8WFh8WFh8WARMWHxYWHz+yFh8WFh8/shYfFhYfAAAAAMAZABkBEwETAAPAB8ALwAAEyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2fQO2Cg8PCvxKCg8PCgO2Cg8PCvxKCg8PCgO2Cg8PCvxKCg8PBEwPCpYKDw8KlgoP/nAPCpYKDw8KlgoP/nAPCpYKDw8KlgoPAAAABAAAAAAEsASwAA8AHwAvADMAAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmBSEyFhURFAYjISImNRE0NhcVITUBXgH0ory7o/4Mpbm5Asv9qCk7OykCWCk7O/2xAfQVHR0V/gwVHR1HAZAEsLuj/gylubmlAfSlucg7Kf2oKTs7KQJYKTtkHRX+1BUdHRUBLBUdZMjIAAAAAAEAZABkBLAETAA7AAATITIWFAYrARUzMhYUBisBFTMyFhQGKwEVMzIWFAYjISImNDY7ATUjIiY0NjsBNSMiJjQ2OwE1IyImNDaWA+gVHR0VMjIVHR0VMjIVHR0VMjIVHR0V/BgVHR0VMjIVHR0VMjIVHR0VMjIVHR0ETB0qHcgdKh3IHSodyB0qHR0qHcgdKh3IHSodyB0qHQAAAAYBLAAFA+gEowAHAA0AEwAZAB8AKgAAAR4BBgcuATYBMhYVIiYlFAYjNDYBMhYVIiYlFAYjNDYDFRQGIiY9ARYzMgKKVz8/V1c/P/75fLB8sAK8sHyw/cB8sHywArywfLCwHSodKAMRBKNDsrJCQrKy/sCwfLB8fLB8sP7UsHywfHywfLD+05AVHR0VjgQAAAH/tQDIBJQDgQBCAAABNzYXAR4BBw4BKwEyFRQOBCsBIhE0NyYiBxYVECsBIi4DNTQzIyImJyY2NwE2HwEeAQ4BLwEHIScHBi4BNgLpRRkUASoLCAYFGg8IAQQNGyc/KZK4ChRUFQu4jjBJJxkHAgcPGQYGCAsBKhQaTBQVCiMUM7YDe7YsFCMKFgNuEwYS/tkLHw8OEw0dNkY4MhwBIBgXBAQYF/7gKjxTQyMNEw4PHwoBKBIHEwUjKBYGDMHBDAUWKCMAAAAAAgAAAAAEsASwACUAQwAAASM0LgUrAREUFh8BFSE1Mj4DNREjIg4FFSMRIQEjNC4DKwERFBYXMxUjNTI1ESMiDgMVIzUhBLAyCAsZEyYYGcgyGRn+cAQOIhoWyBkYJhMZCwgyA+j9RBkIChgQEWQZDQzIMmQREBgKCBkB9AOEFSAVDggDAfyuFhkBAmRkAQUJFQ4DUgEDCA4VIBUBLP0SDxMKBQH+VwsNATIyGQGpAQUKEw+WAAAAAAMAAAAABEwErgAdACAAMAAAATUiJy4BLwEBIwEGBw4BDwEVITUiJj8BIRcWBiMVARsBARUUBiMhIiY9ATQ2MyEyFgPoGR4OFgUE/t9F/tQSFQkfCwsBETE7EkUBJT0NISf+7IZ5AbEdFfwYFR0dFQPoFR0BLDIgDiIKCwLr/Q4jFQkTBQUyMisusKYiQTIBhwFW/qr942QVHR0VZBUdHQADAAAAAASwBLAADwBHAEoAABMhMhYVERQGIyEiJjURNDYFIyIHAQYHBgcGHQEUFjMhMjY9ATQmIyInJj8BIRcWBwYjIgYdARQWMyEyNj0BNCYnIicmJyMBJhMjEzIETBUdHRX7tBUdHQJGRg0F/tUREhImDAsJAREIDAwINxAKCj8BCjkLEQwYCAwMCAE5CAwLCBEZGQ8B/uAFDsVnBLAdFfu0FR0dFQRMFR1SDP0PIBMSEAUNMggMDAgyCAwXDhmjmR8YEQwIMggMDAgyBwwBGRskAuwM/gUBCAAABAAAAAAEsASwAAMAEwAjACcAAAEhNSEFITIWFREUBiMhIiY1ETQ2KQEyFhURFAYjISImNRE0NhcRIREEsPtQBLD7ggGQFR0dFf5wFR0dAm0BkBUdHRX+cBUdHUcBLARMZMgdFfx8FR0dFQOEFR0dFf5wFR0dFQGQFR1k/tQBLAAEAAAAAASwBLAADwAfACMAJwAAEyEyFhURFAYjISImNRE0NgEhMhYVERQGIyEiJjURNDYXESEREyE1ITIBkBUdHRX+cBUdHQJtAZAVHR0V/nAVHR1HASzI+1AEsASwHRX8fBUdHRUDhBUd/gwdFf5wFR0dFQGQFR1k/tQBLP2oZAAAAAACAAAAZASwA+gAJwArAAATITIWFREzNTQ2MyEyFh0BMxUjFRQGIyEiJj0BIxEUBiMhIiY1ETQ2AREhETIBkBUdZB0VAZAVHWRkHRX+cBUdZB0V/nAVHR0CnwEsA+gdFf6ilhUdHRWWZJYVHR0Vlv6iFR0dFQMgFR3+1P7UASwAAAQAAAAABLAEsAADABMAFwAnAAAzIxEzFyEyFhURFAYjISImNRE0NhcRIREBITIWFREUBiMhIiY1ETQ2ZGRklgGQFR0dFf5wFR0dRwEs/qIDhBUdHRX8fBUdHQSwZB0V/nAVHR0VAZAVHWT+1AEs/gwdFf5wFR0dFQGQFR0AAAAAAgBkAAAETASwACcAKwAAATMyFhURFAYrARUhMhYVERQGIyEiJjURNDYzITUjIiY1ETQ2OwE1MwcRIRECWJYVHR0VlgHCFR0dFfx8FR0dFQFelhUdHRWWZMgBLARMHRX+cBUdZB0V/nAVHR0VAZAVHWQdFQGQFR1kyP7UASwAAAAEAAAAAASwBLAAAwATABcAJwAAISMRMwUhMhYVERQGIyEiJjURNDYXESERASEyFhURFAYjISImNRE0NgSwZGT9dgGQFR0dFf5wFR0dRwEs/K4DhBUdHRX8fBUdHQSwZB0V/nAVHR0VAZAVHWT+1AEs/gwdFf5wFR0dFQGQFR0AAAEBLAAwA28EgAAPAAAJAQYjIiY1ETQ2MzIXARYUA2H+EhcSDhAQDhIXAe4OAjX+EhcbGQPoGRsX/hIOKgAAAAABAUEAMgOEBH4ACwAACQE2FhURFAYnASY0AU8B7h0qKh3+Eg4CewHuHREp/BgpER0B7g4qAAAAAAEAMgFBBH4DhAALAAATITIWBwEGIicBJjZkA+gpER3+Eg4qDv4SHREDhCod/hIODgHuHSoAAAAAAQAyASwEfgNvAAsAAAkBFgYjISImNwE2MgJ7Ae4dESn8GCkRHQHuDioDYf4SHSoqHQHuDgAAAAACAAgAAASwBCgABgAKAAABFQE1LQE1ASE1IQK8/UwBnf5jBKj84AMgAuW2/r3dwcHd+9jIAAAAAAIAAABkBLAEsAALADEAAAEjFTMVIREzNSM1IQEzND4FOwERFAYPARUhNSIuAzURMzIeBRUzESEEsMjI/tTIyAEs+1AyCAsZEyYYGWQyGRkBkAQOIhoWZBkYJhMZCwgy/OADhGRkASxkZP4MFSAVDggDAf3aFhkBAmRkAQUJFQ4CJgEDCA4VIBUBLAAAAgAAAAAETAPoACUAMQAAASM0LgUrAREUFh8BFSE1Mj4DNREjIg4FFSMRIQEjFTMVIREzNSM1IQMgMggLGRMmGBlkMhkZ/nAEDiIaFmQZGCYTGQsIMgMgASzIyP7UyMgBLAK8FSAVDggDAf3aFhkCAWRkAQUJFQ4CJgEDCA4VIBUBLPzgZGQBLGRkAAABAMgAZgNyBEoAEgAAATMyFgcJARYGKwEiJwEmNDcBNgK9oBAKDP4wAdAMChCgDQr+KQcHAdcKBEoWDP4w/jAMFgkB1wgUCAHXCQAAAQE+AGYD6ARKABIAAAEzMhcBFhQHAQYrASImNwkBJjYBU6ANCgHXBwf+KQoNoBAKDAHQ/jAMCgRKCf4pCBQI/ikJFgwB0AHQDBYAAAEAZgDIBEoDcgASAAAAFh0BFAcBBiInASY9ATQ2FwkBBDQWCf4pCBQI/ikJFgwB0AHQA3cKEKANCv4pBwcB1woNoBAKDP4wAdAAAAABAGYBPgRKA+gAEgAACQEWHQEUBicJAQYmPQE0NwE2MgJqAdcJFgz+MP4wDBYJAdcIFAPh/ikKDaAQCgwB0P4wDAoQoA0KAdcHAAAAAgDZ//kEPQSwAAUAOgAAARQGIzQ2BTMyFh8BNjc+Ah4EBgcOBgcGIiYjIgYiJy4DLwEuAT4EHgEXJyY2A+iwfLD+VmQVJgdPBQsiKFAzRyorDwURAQQSFyozTSwNOkkLDkc3EDlfNyYHBw8GDyUqPjdGMR+TDA0EsHywfLDIHBPCAQIGBwcFDx81S21DBxlLR1xKQhEFBQcHGWt0bCQjP2hJNyATBwMGBcASGAAAAAACAMgAFQOEBLAAFgAaAAATITIWFREUBisBEQcGJjURIyImNRE0NhcVITX6AlgVHR0Vlv8TGpYVHR2rASwEsB0V/nAVHf4MsgkQFQKKHRUBkBUdZGRkAAAAAgDIABkETASwAA4AEgAAEyEyFhURBRElIREjETQ2ARU3NfoC7ic9/UQCWP1EZB8BDWQEsFEs/Ft1A7Z9/BgEARc0/V1kFGQAAQAAAAECTW/DBF9fDzz1AB8EsAAAAADQdnOXAAAAANB2c5f/Uf+cBdwFFAAAAAgAAgAAAAAAAAABAAAFFP+FAAAFFP9R/tQF3AABAAAAAAAAAAAAAAAAAAAAowG4ACgAAAAAAZAAAASwAAAEsABkBLAAAASwAAAEsABwAooAAAUUAAACigAABRQAAAGxAAABRQAAANgAAADYAAAAogAAAQQAAABIAAABBAAAAUUAAASwAGQEsAB7BLAAyASwAMgB9AAABLD/8gSwAAAEsAAABLD/8ASwAAAEsAAOBLAACQSwAGQEsP/TBLD/0wSwAAAEsAAABLAAAASwAAAEsAAABLAAJgSwAG4EsAAXBLAAFwSwABcEsABkBLAAGgSwAGQEsAAMBLAAZASwABcEsP+cBLAAZASwABcEsAAXBLAAAASwABcEsAAXBLAAFwSwAGQEsAAABLAAZASwAAAEsAAABLAAAASwAAAEsAAABLAAAASwAAAEsAAABLAAZASwAMgEsAAABLAAAASwADUEsABkBLAAyASw/7UEsAAhBLAAAASwAAAEsAAABLAAAASwAAAEsP+cBLAAAASwAAAEsAAABLAA2wSwABcEsAB1BLAAAASwAAAEsAAABLAACgSwAMgEsAAABLAAnQSwAMgEsADIBLAAyASwAAAEsP/+BLABLASwAGQEsACIBLABOwSwABcEsAAXBLAAFwSwABcEsAAXBLAAFwSwAAAEsAAXBLAAFwSwABcEsAAXBLAAAASwALcEsAC3BLAAAASwAAAEsABJBLAAFwSwAAAEsAAABLAAXQSw/9wEsP/cBLD/nwSwAGQEsAAABLAAAASwAAAEsABkBLD//wSwAAAEsP9RBLAABgSwAAAEsAAABLABRQSwAAEEsAAABLD/nASwAEoEsAAUBLAAAASwAAAEsAAABLD/nASwAGEEsP/9BLAAFgSwABYEsAAWBLAAFgSwABgEsAAABMQAAASwAGQAAAAAAAD/2ABkADkAyAAAAScAZAAZABkAGQAZABkAGQAZAAAAAAAAAAAAAADZAAAAAAAOAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAMAZABkAAAAEAAAAAAAZP+c/5z/nP+c/5z/nP+c/5wACQAJ//L/8gBkAHkAJwBkAGQAAAAAAGT/ogAAAAAAAAAAAAAAAADIAGQAAAABAI8AAP+c/5wAZAAEAMgAyAAAAGQBkABkAAAAZAEs/7UAAAAAAAAAAAAAAAAAAABkAAABLAFBADIAMgAIAAAAAADIAT4AZgBmANkAyADIAAAAKgAqACoAKgCyAOgA6AFOAU4BTgFOAU4BTgFOAU4BTgFOAU4BTgFOAU4BpAIGAiICfgKGAqwC5ANGA24DjAPEBAgEMgRiBKIE3AVcBboGcgb0ByAHYgfKCB4IYgi+CTYJhAm2Cd4KKApMCpQK4gswC4oLygwIDFgNKg1eDbAODg5oDrQPKA+mD+YQEhBUEJAQqhEqEXYRthIKEjgSfBLAExoTdBPQFCoU1BU8FagVzBYEFjYWYBawFv4XUhemGAIYLhhqGJYYsBjgGP4ZKBloGZQZxBnaGe4aNhpoGrga9hteG7QcMhyUHOIdHB1EHWwdlB28HeYeLh52HsAfYh/SIEYgviEyIXYhuCJAIpYiuCMOIyIjOCN6I8Ij4CQCJDAkXiSWJOIlNCVgJbwmFCZ+JuYnUCe8J/goNChwKKwpoCnMKiYqSiqEKworeiwILGgsuizsLRwtiC30LiguZi6iLtgvDi9GL34vsi/4MD4whDDSMRIxYDGuMegyJDJeMpoy3jMiMz4zaDO2NBg0YDSoNNI1LDWeNeg2PjZ8Ntw3GjdON5I31DgQOEI4hjjIOQo5SjmIOcw6HDpsOpo63jugO9w8GDxQPKI8+D0yPew+Oj6MPtQ/KD9uP6o/+kBIQIBAxkECQX5CGEKoQu5DGENCQ3ZDoEPKRBBEYESuRPZFWkW2RgZGdEa0RvZHNkd2R7ZH9kgWSDJITkhqSIZIzEkSSThJXkmESapKAkouSlIAAQAAARcApwARAAAAAAACAAAAAQABAAAAQAAuAAAAAAAAABAAxgABAAAAAAATABIAAAADAAEECQAAAGoAEgADAAEECQABACgAfAADAAEECQACAA4ApAADAAEECQADAEwAsgADAAEECQAEADgA/gADAAEECQAFAHgBNgADAAEECQAGADYBrgADAAEECQAIABYB5AADAAEECQAJABYB+gADAAEECQALACQCEAADAAEECQAMACQCNAADAAEECQATACQCWAADAAEECQDIABYCfAADAAEECQDJADACkgADAAEECdkDABoCwnd3dy5nbHlwaGljb25zLmNvbQBDAG8AcAB5AHIAaQBnAGgAdAAgAKkAIAAyADAAMQA0ACAAYgB5ACAASgBhAG4AIABLAG8AdgBhAHIAaQBrAC4AIABBAGwAbAAgAHIAaQBnAGgAdABzACAAcgBlAHMAZQByAHYAZQBkAC4ARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAFIAZQBnAHUAbABhAHIAMQAuADAAMAA5ADsAVQBLAFcATgA7AEcATABZAFAASABJAEMATwBOAFMASABhAGwAZgBsAGkAbgBnAHMALQBSAGUAZwB1AGwAYQByAEcATABZAFAASABJAEMATwBOAFMAIABIAGEAbABmAGwAaQBuAGcAcwAgAFIAZQBnAHUAbABhAHIAVgBlAHIAcwBpAG8AbgAgADEALgAwADAAOQA7AFAAUwAgADAAMAAxAC4AMAAwADkAOwBoAG8AdABjAG8AbgB2ACAAMQAuADAALgA3ADAAOwBtAGEAawBlAG8AdABmAC4AbABpAGIAMgAuADUALgA1ADgAMwAyADkARwBMAFkAUABIAEkAQwBPAE4AUwBIAGEAbABmAGwAaQBuAGcAcwAtAFIAZQBnAHUAbABhAHIASgBhAG4AIABLAG8AdgBhAHIAaQBrAEoAYQBuACAASwBvAHYAYQByAGkAawB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQBXAGUAYgBmAG8AbgB0ACAAMQAuADAAVwBlAGQAIABPAGMAdAAgADIAOQAgADAANgA6ADMANgA6ADAANwAgADIAMAAxADQARgBvAG4AdAAgAFMAcQB1AGkAcgByAGUAbAAAAAIAAAAAAAD/tQAyAAAAAAAAAAAAAAAAAAAAAAAAAAABFwAAAQIBAwADAA0ADgEEAJYBBQEGAQcBCAEJAQoBCwEMAQ0BDgEPARABEQESARMA7wEUARUBFgEXARgBGQEaARsBHAEdAR4BHwEgASEBIgEjASQBJQEmAScBKAEpASoBKwEsAS0BLgEvATABMQEyATMBNAE1ATYBNwE4ATkBOgE7ATwBPQE+AT8BQAFBAUIBQwFEAUUBRgFHAUgBSQFKAUsBTAFNAU4BTwFQAVEBUgFTAVQBVQFWAVcBWAFZAVoBWwFcAV0BXgFfAWABYQFiAWMBZAFlAWYBZwFoAWkBagFrAWwBbQFuAW8BcAFxAXIBcwF0AXUBdgF3AXgBeQF6AXsBfAF9AX4BfwGAAYEBggGDAYQBhQGGAYcBiAGJAYoBiwGMAY0BjgGPAZABkQGSAZMBlAGVAZYBlwGYAZkBmgGbAZwBnQGeAZ8BoAGhAaIBowGkAaUBpgGnAagBqQGqAasBrAGtAa4BrwGwAbEBsgGzAbQBtQG2AbcBuAG5AboBuwG8Ab0BvgG/AcABwQHCAcMBxAHFAcYBxwHIAckBygHLAcwBzQHOAc8B0AHRAdIB0wHUAdUB1gHXAdgB2QHaAdsB3AHdAd4B3wHgAeEB4gHjAeQB5QHmAecB6AHpAeoB6wHsAe0B7gHvAfAB8QHyAfMB9AH1AfYB9wH4AfkB+gH7AfwB/QH+Af8CAAIBAgICAwIEAgUCBgIHAggCCQIKAgsCDAINAg4CDwIQAhECEgZnbHlwaDEGZ2x5cGgyB3VuaTAwQTAHdW5pMjAwMAd1bmkyMDAxB3VuaTIwMDIHdW5pMjAwMwd1bmkyMDA0B3VuaTIwMDUHdW5pMjAwNgd1bmkyMDA3B3VuaTIwMDgHdW5pMjAwOQd1bmkyMDBBB3VuaTIwMkYHdW5pMjA1RgRFdXJvB3VuaTIwQkQHdW5pMjMxQgd1bmkyNUZDB3VuaTI2MDEHdW5pMjZGQQd1bmkyNzA5B3VuaTI3MEYHdW5pRTAwMQd1bmlFMDAyB3VuaUUwMDMHdW5pRTAwNQd1bmlFMDA2B3VuaUUwMDcHdW5pRTAwOAd1bmlFMDA5B3VuaUUwMTAHdW5pRTAxMQd1bmlFMDEyB3VuaUUwMTMHdW5pRTAxNAd1bmlFMDE1B3VuaUUwMTYHdW5pRTAxNwd1bmlFMDE4B3VuaUUwMTkHdW5pRTAyMAd1bmlFMDIxB3VuaUUwMjIHdW5pRTAyMwd1bmlFMDI0B3VuaUUwMjUHdW5pRTAyNgd1bmlFMDI3B3VuaUUwMjgHdW5pRTAyOQd1bmlFMDMwB3VuaUUwMzEHdW5pRTAzMgd1bmlFMDMzB3VuaUUwMzQHdW5pRTAzNQd1bmlFMDM2B3VuaUUwMzcHdW5pRTAzOAd1bmlFMDM5B3VuaUUwNDAHdW5pRTA0MQd1bmlFMDQyB3VuaUUwNDMHdW5pRTA0NAd1bmlFMDQ1B3VuaUUwNDYHdW5pRTA0Nwd1bmlFMDQ4B3VuaUUwNDkHdW5pRTA1MAd1bmlFMDUxB3VuaUUwNTIHdW5pRTA1Mwd1bmlFMDU0B3VuaUUwNTUHdW5pRTA1Ngd1bmlFMDU3B3VuaUUwNTgHdW5pRTA1OQd1bmlFMDYwB3VuaUUwNjIHdW5pRTA2Mwd1bmlFMDY0B3VuaUUwNjUHdW5pRTA2Ngd1bmlFMDY3B3VuaUUwNjgHdW5pRTA2OQd1bmlFMDcwB3VuaUUwNzEHdW5pRTA3Mgd1bmlFMDczB3VuaUUwNzQHdW5pRTA3NQd1bmlFMDc2B3VuaUUwNzcHdW5pRTA3OAd1bmlFMDc5B3VuaUUwODAHdW5pRTA4MQd1bmlFMDgyB3VuaUUwODMHdW5pRTA4NAd1bmlFMDg1B3VuaUUwODYHdW5pRTA4Nwd1bmlFMDg4B3VuaUUwODkHdW5pRTA5MAd1bmlFMDkxB3VuaUUwOTIHdW5pRTA5Mwd1bmlFMDk0B3VuaUUwOTUHdW5pRTA5Ngd1bmlFMDk3B3VuaUUxMDEHdW5pRTEwMgd1bmlFMTAzB3VuaUUxMDQHdW5pRTEwNQd1bmlFMTA2B3VuaUUxMDcHdW5pRTEwOAd1bmlFMTA5B3VuaUUxMTAHdW5pRTExMQd1bmlFMTEyB3VuaUUxMTMHdW5pRTExNAd1bmlFMTE1B3VuaUUxMTYHdW5pRTExNwd1bmlFMTE4B3VuaUUxMTkHdW5pRTEyMAd1bmlFMTIxB3VuaUUxMjIHdW5pRTEyMwd1bmlFMTI0B3VuaUUxMjUHdW5pRTEyNgd1bmlFMTI3B3VuaUUxMjgHdW5pRTEyOQd1bmlFMTMwB3VuaUUxMzEHdW5pRTEzMgd1bmlFMTMzB3VuaUUxMzQHdW5pRTEzNQd1bmlFMTM2B3VuaUUxMzcHdW5pRTEzOAd1bmlFMTM5B3VuaUUxNDAHdW5pRTE0MQd1bmlFMTQyB3VuaUUxNDMHdW5pRTE0NAd1bmlFMTQ1B3VuaUUxNDYHdW5pRTE0OAd1bmlFMTQ5B3VuaUUxNTAHdW5pRTE1MQd1bmlFMTUyB3VuaUUxNTMHdW5pRTE1NAd1bmlFMTU1B3VuaUUxNTYHdW5pRTE1Nwd1bmlFMTU4B3VuaUUxNTkHdW5pRTE2MAd1bmlFMTYxB3VuaUUxNjIHdW5pRTE2Mwd1bmlFMTY0B3VuaUUxNjUHdW5pRTE2Ngd1bmlFMTY3B3VuaUUxNjgHdW5pRTE2OQd1bmlFMTcwB3VuaUUxNzEHdW5pRTE3Mgd1bmlFMTczB3VuaUUxNzQHdW5pRTE3NQd1bmlFMTc2B3VuaUUxNzcHdW5pRTE3OAd1bmlFMTc5B3VuaUUxODAHdW5pRTE4MQd1bmlFMTgyB3VuaUUxODMHdW5pRTE4NAd1bmlFMTg1B3VuaUUxODYHdW5pRTE4Nwd1bmlFMTg4B3VuaUUxODkHdW5pRTE5MAd1bmlFMTkxB3VuaUUxOTIHdW5pRTE5Mwd1bmlFMTk0B3VuaUUxOTUHdW5pRTE5Nwd1bmlFMTk4B3VuaUUxOTkHdW5pRTIwMAd1bmlFMjAxB3VuaUUyMDIHdW5pRTIwMwd1bmlFMjA0B3VuaUUyMDUHdW5pRTIwNgd1bmlFMjA5B3VuaUUyMTAHdW5pRTIxMQd1bmlFMjEyB3VuaUUyMTMHdW5pRTIxNAd1bmlFMjE1B3VuaUUyMTYHdW5pRTIxOAd1bmlFMjE5B3VuaUUyMjEHdW5pRTIyMwd1bmlFMjI0B3VuaUUyMjUHdW5pRTIyNgd1bmlFMjI3B3VuaUUyMzAHdW5pRTIzMQd1bmlFMjMyB3VuaUUyMzMHdW5pRTIzNAd1bmlFMjM1B3VuaUUyMzYHdW5pRTIzNwd1bmlFMjM4B3VuaUUyMzkHdW5pRTI0MAd1bmlFMjQxB3VuaUUyNDIHdW5pRTI0Mwd1bmlFMjQ0B3VuaUUyNDUHdW5pRTI0Ngd1bmlFMjQ3B3VuaUUyNDgHdW5pRTI0OQd1bmlFMjUwB3VuaUUyNTEHdW5pRTI1Mgd1bmlFMjUzB3VuaUUyNTQHdW5pRTI1NQd1bmlFMjU2B3VuaUUyNTcHdW5pRTI1OAd1bmlFMjU5B3VuaUUyNjAHdW5pRjhGRgZ1MUY1MTEGdTFGNkFBAAAAAAFUUMMXAAA=) format('truetype'),url() format('svg')}.glyphicon{position:relative;top:1px;display:inline-block;font-family:'Glyphicons Halflings';font-style:normal;font-weight:400;line-height:1;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.glyphicon-asterisk:before{content:"\2a"}.glyphicon-plus:before{content:"\2b"}.glyphicon-eur:before,.glyphicon-euro:before{content:"\20ac"}.glyphicon-minus:before{content:"\2212"}.glyphicon-cloud:before{content:"\2601"}.glyphicon-envelope:before{content:"\2709"}.glyphicon-pencil:before{content:"\270f"}.glyphicon-glass:before{content:"\e001"}.glyphicon-music:before{content:"\e002"}.glyphicon-search:before{content:"\e003"}.glyphicon-heart:before{content:"\e005"}.glyphicon-star:before{content:"\e006"}.glyphicon-star-empty:before{content:"\e007"}.glyphicon-user:before{content:"\e008"}.glyphicon-film:before{content:"\e009"}.glyphicon-th-large:before{content:"\e010"}.glyphicon-th:before{content:"\e011"}.glyphicon-th-list:before{content:"\e012"}.glyphicon-ok:before{content:"\e013"}.glyphicon-remove:before{content:"\e014"}.glyphicon-zoom-in:before{content:"\e015"}.glyphicon-zoom-out:before{content:"\e016"}.glyphicon-off:before{content:"\e017"}.glyphicon-signal:before{content:"\e018"}.glyphicon-cog:before{content:"\e019"}.glyphicon-trash:before{content:"\e020"}.glyphicon-home:before{content:"\e021"}.glyphicon-file:before{content:"\e022"}.glyphicon-time:before{content:"\e023"}.glyphicon-road:before{content:"\e024"}.glyphicon-download-alt:before{content:"\e025"}.glyphicon-download:before{content:"\e026"}.glyphicon-upload:before{content:"\e027"}.glyphicon-inbox:before{content:"\e028"}.glyphicon-play-circle:before{content:"\e029"}.glyphicon-repeat:before{content:"\e030"}.glyphicon-refresh:before{content:"\e031"}.glyphicon-list-alt:before{content:"\e032"}.glyphicon-lock:before{content:"\e033"}.glyphicon-flag:before{content:"\e034"}.glyphicon-headphones:before{content:"\e035"}.glyphicon-volume-off:before{content:"\e036"}.glyphicon-volume-down:before{content:"\e037"}.glyphicon-volume-up:before{content:"\e038"}.glyphicon-qrcode:before{content:"\e039"}.glyphicon-barcode:before{content:"\e040"}.glyphicon-tag:before{content:"\e041"}.glyphicon-tags:before{content:"\e042"}.glyphicon-book:before{content:"\e043"}.glyphicon-bookmark:before{content:"\e044"}.glyphicon-print:before{content:"\e045"}.glyphicon-camera:before{content:"\e046"}.glyphicon-font:before{content:"\e047"}.glyphicon-bold:before{content:"\e048"}.glyphicon-italic:before{content:"\e049"}.glyphicon-text-height:before{content:"\e050"}.glyphicon-text-width:before{content:"\e051"}.glyphicon-align-left:before{content:"\e052"}.glyphicon-align-center:before{content:"\e053"}.glyphicon-align-right:before{content:"\e054"}.glyphicon-align-justify:before{content:"\e055"}.glyphicon-list:before{content:"\e056"}.glyphicon-indent-left:before{content:"\e057"}.glyphicon-indent-right:before{content:"\e058"}.glyphicon-facetime-video:before{content:"\e059"}.glyphicon-picture:before{content:"\e060"}.glyphicon-map-marker:before{content:"\e062"}.glyphicon-adjust:before{content:"\e063"}.glyphicon-tint:before{content:"\e064"}.glyphicon-edit:before{content:"\e065"}.glyphicon-share:before{content:"\e066"}.glyphicon-check:before{content:"\e067"}.glyphicon-move:before{content:"\e068"}.glyphicon-step-backward:before{content:"\e069"}.glyphicon-fast-backward:before{content:"\e070"}.glyphicon-backward:before{content:"\e071"}.glyphicon-play:before{content:"\e072"}.glyphicon-pause:before{content:"\e073"}.glyphicon-stop:before{content:"\e074"}.glyphicon-forward:before{content:"\e075"}.glyphicon-fast-forward:before{content:"\e076"}.glyphicon-step-forward:before{content:"\e077"}.glyphicon-eject:before{content:"\e078"}.glyphicon-chevron-left:before{content:"\e079"}.glyphicon-chevron-right:before{content:"\e080"}.glyphicon-plus-sign:before{content:"\e081"}.glyphicon-minus-sign:before{content:"\e082"}.glyphicon-remove-sign:before{content:"\e083"}.glyphicon-ok-sign:before{content:"\e084"}.glyphicon-question-sign:before{content:"\e085"}.glyphicon-info-sign:before{content:"\e086"}.glyphicon-screenshot:before{content:"\e087"}.glyphicon-remove-circle:before{content:"\e088"}.glyphicon-ok-circle:before{content:"\e089"}.glyphicon-ban-circle:before{content:"\e090"}.glyphicon-arrow-left:before{content:"\e091"}.glyphicon-arrow-right:before{content:"\e092"}.glyphicon-arrow-up:before{content:"\e093"}.glyphicon-arrow-down:before{content:"\e094"}.glyphicon-share-alt:before{content:"\e095"}.glyphicon-resize-full:before{content:"\e096"}.glyphicon-resize-small:before{content:"\e097"}.glyphicon-exclamation-sign:before{content:"\e101"}.glyphicon-gift:before{content:"\e102"}.glyphicon-leaf:before{content:"\e103"}.glyphicon-fire:before{content:"\e104"}.glyphicon-eye-open:before{content:"\e105"}.glyphicon-eye-close:before{content:"\e106"}.glyphicon-warning-sign:before{content:"\e107"}.glyphicon-plane:before{content:"\e108"}.glyphicon-calendar:before{content:"\e109"}.glyphicon-random:before{content:"\e110"}.glyphicon-comment:before{content:"\e111"}.glyphicon-magnet:before{content:"\e112"}.glyphicon-chevron-up:before{content:"\e113"}.glyphicon-chevron-down:before{content:"\e114"}.glyphicon-retweet:before{content:"\e115"}.glyphicon-shopping-cart:before{content:"\e116"}.glyphicon-folder-close:before{content:"\e117"}.glyphicon-folder-open:before{content:"\e118"}.glyphicon-resize-vertical:before{content:"\e119"}.glyphicon-resize-horizontal:before{content:"\e120"}.glyphicon-hdd:before{content:"\e121"}.glyphicon-bullhorn:before{content:"\e122"}.glyphicon-bell:before{content:"\e123"}.glyphicon-certificate:before{content:"\e124"}.glyphicon-thumbs-up:before{content:"\e125"}.glyphicon-thumbs-down:before{content:"\e126"}.glyphicon-hand-right:before{content:"\e127"}.glyphicon-hand-left:before{content:"\e128"}.glyphicon-hand-up:before{content:"\e129"}.glyphicon-hand-down:before{content:"\e130"}.glyphicon-circle-arrow-right:before{content:"\e131"}.glyphicon-circle-arrow-left:before{content:"\e132"}.glyphicon-circle-arrow-up:before{content:"\e133"}.glyphicon-circle-arrow-down:before{content:"\e134"}.glyphicon-globe:before{content:"\e135"}.glyphicon-wrench:before{content:"\e136"}.glyphicon-tasks:before{content:"\e137"}.glyphicon-filter:before{content:"\e138"}.glyphicon-briefcase:before{content:"\e139"}.glyphicon-fullscreen:before{content:"\e140"}.glyphicon-dashboard:before{content:"\e141"}.glyphicon-paperclip:before{content:"\e142"}.glyphicon-heart-empty:before{content:"\e143"}.glyphicon-link:before{content:"\e144"}.glyphicon-phone:before{content:"\e145"}.glyphicon-pushpin:before{content:"\e146"}.glyphicon-usd:before{content:"\e148"}.glyphicon-gbp:before{content:"\e149"}.glyphicon-sort:before{content:"\e150"}.glyphicon-sort-by-alphabet:before{content:"\e151"}.glyphicon-sort-by-alphabet-alt:before{content:"\e152"}.glyphicon-sort-by-order:before{content:"\e153"}.glyphicon-sort-by-order-alt:before{content:"\e154"}.glyphicon-sort-by-attributes:before{content:"\e155"}.glyphicon-sort-by-attributes-alt:before{content:"\e156"}.glyphicon-unchecked:before{content:"\e157"}.glyphicon-expand:before{content:"\e158"}.glyphicon-collapse-down:before{content:"\e159"}.glyphicon-collapse-up:before{content:"\e160"}.glyphicon-log-in:before{content:"\e161"}.glyphicon-flash:before{content:"\e162"}.glyphicon-log-out:before{content:"\e163"}.glyphicon-new-window:before{content:"\e164"}.glyphicon-record:before{content:"\e165"}.glyphicon-save:before{content:"\e166"}.glyphicon-open:before{content:"\e167"}.glyphicon-saved:before{content:"\e168"}.glyphicon-import:before{content:"\e169"}.glyphicon-export:before{content:"\e170"}.glyphicon-send:before{content:"\e171"}.glyphicon-floppy-disk:before{content:"\e172"}.glyphicon-floppy-saved:before{content:"\e173"}.glyphicon-floppy-remove:before{content:"\e174"}.glyphicon-floppy-save:before{content:"\e175"}.glyphicon-floppy-open:before{content:"\e176"}.glyphicon-credit-card:before{content:"\e177"}.glyphicon-transfer:before{content:"\e178"}.glyphicon-cutlery:before{content:"\e179"}.glyphicon-header:before{content:"\e180"}.glyphicon-compressed:before{content:"\e181"}.glyphicon-earphone:before{content:"\e182"}.glyphicon-phone-alt:before{content:"\e183"}.glyphicon-tower:before{content:"\e184"}.glyphicon-stats:before{content:"\e185"}.glyphicon-sd-video:before{content:"\e186"}.glyphicon-hd-video:before{content:"\e187"}.glyphicon-subtitles:before{content:"\e188"}.glyphicon-sound-stereo:before{content:"\e189"}.glyphicon-sound-dolby:before{content:"\e190"}.glyphicon-sound-5-1:before{content:"\e191"}.glyphicon-sound-6-1:before{content:"\e192"}.glyphicon-sound-7-1:before{content:"\e193"}.glyphicon-copyright-mark:before{content:"\e194"}.glyphicon-registration-mark:before{content:"\e195"}.glyphicon-cloud-download:before{content:"\e197"}.glyphicon-cloud-upload:before{content:"\e198"}.glyphicon-tree-conifer:before{content:"\e199"}.glyphicon-tree-deciduous:before{content:"\e200"}.glyphicon-cd:before{content:"\e201"}.glyphicon-save-file:before{content:"\e202"}.glyphicon-open-file:before{content:"\e203"}.glyphicon-level-up:before{content:"\e204"}.glyphicon-copy:before{content:"\e205"}.glyphicon-paste:before{content:"\e206"}.glyphicon-alert:before{content:"\e209"}.glyphicon-equalizer:before{content:"\e210"}.glyphicon-king:before{content:"\e211"}.glyphicon-queen:before{content:"\e212"}.glyphicon-pawn:before{content:"\e213"}.glyphicon-bishop:before{content:"\e214"}.glyphicon-knight:before{content:"\e215"}.glyphicon-baby-formula:before{content:"\e216"}.glyphicon-tent:before{content:"\26fa"}.glyphicon-blackboard:before{content:"\e218"}.glyphicon-bed:before{content:"\e219"}.glyphicon-apple:before{content:"\f8ff"}.glyphicon-erase:before{content:"\e221"}.glyphicon-hourglass:before{content:"\231b"}.glyphicon-lamp:before{content:"\e223"}.glyphicon-duplicate:before{content:"\e224"}.glyphicon-piggy-bank:before{content:"\e225"}.glyphicon-scissors:before{content:"\e226"}.glyphicon-bitcoin:before{content:"\e227"}.glyphicon-btc:before{content:"\e227"}.glyphicon-xbt:before{content:"\e227"}.glyphicon-yen:before{content:"\00a5"}.glyphicon-jpy:before{content:"\00a5"}.glyphicon-ruble:before{content:"\20bd"}.glyphicon-rub:before{content:"\20bd"}.glyphicon-scale:before{content:"\e230"}.glyphicon-ice-lolly:before{content:"\e231"}.glyphicon-ice-lolly-tasted:before{content:"\e232"}.glyphicon-education:before{content:"\e233"}.glyphicon-option-horizontal:before{content:"\e234"}.glyphicon-option-vertical:before{content:"\e235"}.glyphicon-menu-hamburger:before{content:"\e236"}.glyphicon-modal-window:before{content:"\e237"}.glyphicon-oil:before{content:"\e238"}.glyphicon-grain:before{content:"\e239"}.glyphicon-sunglasses:before{content:"\e240"}.glyphicon-text-size:before{content:"\e241"}.glyphicon-text-color:before{content:"\e242"}.glyphicon-text-background:before{content:"\e243"}.glyphicon-object-align-top:before{content:"\e244"}.glyphicon-object-align-bottom:before{content:"\e245"}.glyphicon-object-align-horizontal:before{content:"\e246"}.glyphicon-object-align-left:before{content:"\e247"}.glyphicon-object-align-vertical:before{content:"\e248"}.glyphicon-object-align-right:before{content:"\e249"}.glyphicon-triangle-right:before{content:"\e250"}.glyphicon-triangle-left:before{content:"\e251"}.glyphicon-triangle-bottom:before{content:"\e252"}.glyphicon-triangle-top:before{content:"\e253"}.glyphicon-console:before{content:"\e254"}.glyphicon-superscript:before{content:"\e255"}.glyphicon-subscript:before{content:"\e256"}.glyphicon-menu-left:before{content:"\e257"}.glyphicon-menu-right:before{content:"\e258"}.glyphicon-menu-down:before{content:"\e259"}.glyphicon-menu-up:before{content:"\e260"}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}:after,:before{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:10px;-webkit-tap-highlight-color:rgba(0,0,0,0)}body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;line-height:1.42857143;color:#333;background-color:#fff}button,input,select,textarea{font-family:inherit;font-size:inherit;line-height:inherit}a{color:#337ab7;text-decoration:none}a:focus,a:hover{color:#23527c;text-decoration:underline}a:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}figure{margin:0}img{vertical-align:middle}.carousel-inner>.item>a>img,.carousel-inner>.item>img,.img-responsive,.thumbnail a>img,.thumbnail>img{display:block;max-width:100%;height:auto}.img-rounded{border-radius:6px}.img-thumbnail{display:inline-block;max-width:100%;height:auto;padding:4px;line-height:1.42857143;background-color:#fff;border:1px solid #ddd;border-radius:4px;-webkit-transition:all .2s ease-in-out;-o-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.img-circle{border-radius:50%}hr{margin-top:20px;margin-bottom:20px;border:0;border-top:1px solid #eee}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}[role=button]{cursor:pointer}.h1,.h2,.h3,.h4,.h5,.h6,h1,h2,h3,h4,h5,h6{font-family:inherit;font-weight:500;line-height:1.1;color:inherit}.h1 .small,.h1 small,.h2 .small,.h2 small,.h3 .small,.h3 small,.h4 .small,.h4 small,.h5 .small,.h5 small,.h6 .small,.h6 small,h1 .small,h1 small,h2 .small,h2 small,h3 .small,h3 small,h4 .small,h4 small,h5 .small,h5 small,h6 .small,h6 small{font-weight:400;line-height:1;color:#777}.h1,.h2,.h3,h1,h2,h3{margin-top:20px;margin-bottom:10px}.h1 .small,.h1 small,.h2 .small,.h2 small,.h3 .small,.h3 small,h1 .small,h1 small,h2 .small,h2 small,h3 .small,h3 small{font-size:65%}.h4,.h5,.h6,h4,h5,h6{margin-top:10px;margin-bottom:10px}.h4 .small,.h4 small,.h5 .small,.h5 small,.h6 .small,.h6 small,h4 .small,h4 small,h5 .small,h5 small,h6 .small,h6 small{font-size:75%}.h1,h1{font-size:36px}.h2,h2{font-size:30px}.h3,h3{font-size:24px}.h4,h4{font-size:18px}.h5,h5{font-size:14px}.h6,h6{font-size:12px}p{margin:0 0 10px}.lead{margin-bottom:20px;font-size:16px;font-weight:300;line-height:1.4}@media (min-width:768px){.lead{font-size:21px}}.small,small{font-size:85%}.mark,mark{padding:.2em;background-color:#fcf8e3}.text-left{text-align:left}.text-right{text-align:right}.text-center{text-align:center}.text-justify{text-align:justify}.text-nowrap{white-space:nowrap}.text-lowercase{text-transform:lowercase}.text-uppercase{text-transform:uppercase}.text-capitalize{text-transform:capitalize}.text-muted{color:#777}.text-primary{color:#337ab7}a.text-primary:focus,a.text-primary:hover{color:#286090}.text-success{color:#3c763d}a.text-success:focus,a.text-success:hover{color:#2b542c}.text-info{color:#31708f}a.text-info:focus,a.text-info:hover{color:#245269}.text-warning{color:#8a6d3b}a.text-warning:focus,a.text-warning:hover{color:#66512c}.text-danger{color:#a94442}a.text-danger:focus,a.text-danger:hover{color:#843534}.bg-primary{color:#fff;background-color:#337ab7}a.bg-primary:focus,a.bg-primary:hover{background-color:#286090}.bg-success{background-color:#dff0d8}a.bg-success:focus,a.bg-success:hover{background-color:#c1e2b3}.bg-info{background-color:#d9edf7}a.bg-info:focus,a.bg-info:hover{background-color:#afd9ee}.bg-warning{background-color:#fcf8e3}a.bg-warning:focus,a.bg-warning:hover{background-color:#f7ecb5}.bg-danger{background-color:#f2dede}a.bg-danger:focus,a.bg-danger:hover{background-color:#e4b9b9}.page-header{padding-bottom:9px;margin:40px 0 20px;border-bottom:1px solid #eee}ol,ul{margin-top:0;margin-bottom:10px}ol ol,ol ul,ul ol,ul ul{margin-bottom:0}.list-unstyled{padding-left:0;list-style:none}.list-inline{padding-left:0;margin-left:-5px;list-style:none}.list-inline>li{display:inline-block;padding-right:5px;padding-left:5px}dl{margin-top:0;margin-bottom:20px}dd,dt{line-height:1.42857143}dt{font-weight:700}dd{margin-left:0}@media (min-width:768px){.dl-horizontal dt{float:left;width:160px;overflow:hidden;clear:left;text-align:right;text-overflow:ellipsis;white-space:nowrap}.dl-horizontal dd{margin-left:180px}}abbr[data-original-title],abbr[title]{cursor:help;border-bottom:1px dotted #777}.initialism{font-size:90%;text-transform:uppercase}blockquote{padding:10px 20px;margin:0 0 20px;font-size:17.5px;border-left:5px solid #eee}blockquote ol:last-child,blockquote p:last-child,blockquote ul:last-child{margin-bottom:0}blockquote .small,blockquote footer,blockquote small{display:block;font-size:80%;line-height:1.42857143;color:#777}blockquote .small:before,blockquote footer:before,blockquote small:before{content:'\2014 \00A0'}.blockquote-reverse,blockquote.pull-right{padding-right:15px;padding-left:0;text-align:right;border-right:5px solid #eee;border-left:0}.blockquote-reverse .small:before,.blockquote-reverse footer:before,.blockquote-reverse small:before,blockquote.pull-right .small:before,blockquote.pull-right footer:before,blockquote.pull-right small:before{content:''}.blockquote-reverse .small:after,.blockquote-reverse footer:after,.blockquote-reverse small:after,blockquote.pull-right .small:after,blockquote.pull-right footer:after,blockquote.pull-right small:after{content:'\00A0 \2014'}address{margin-bottom:20px;font-style:normal;line-height:1.42857143}code,kbd,pre,samp{font-family:monospace}code{padding:2px 4px;font-size:90%;color:#c7254e;background-color:#f9f2f4;border-radius:4px}kbd{padding:2px 4px;font-size:90%;color:#fff;background-color:#333;border-radius:3px;-webkit-box-shadow:inset 0 -1px 0 rgba(0,0,0,.25);box-shadow:inset 0 -1px 0 rgba(0,0,0,.25)}kbd kbd{padding:0;font-size:100%;font-weight:700;-webkit-box-shadow:none;box-shadow:none}pre{display:block;padding:9.5px;margin:0 0 10px;font-size:13px;line-height:1.42857143;color:#333;word-break:break-all;word-wrap:break-word;background-color:#f5f5f5;border:1px solid #ccc;border-radius:4px}pre code{padding:0;font-size:inherit;color:inherit;white-space:pre-wrap;background-color:transparent;border-radius:0}.pre-scrollable{max-height:340px;overflow-y:scroll}.container{padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:768px){.container{width:750px}}@media (min-width:992px){.container{width:970px}}@media (min-width:1200px){.container{width:1170px}}.container-fluid{padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}.row{margin-right:-15px;margin-left:-15px}.col-lg-1,.col-lg-10,.col-lg-11,.col-lg-12,.col-lg-2,.col-lg-3,.col-lg-4,.col-lg-5,.col-lg-6,.col-lg-7,.col-lg-8,.col-lg-9,.col-md-1,.col-md-10,.col-md-11,.col-md-12,.col-md-2,.col-md-3,.col-md-4,.col-md-5,.col-md-6,.col-md-7,.col-md-8,.col-md-9,.col-sm-1,.col-sm-10,.col-sm-11,.col-sm-12,.col-sm-2,.col-sm-3,.col-sm-4,.col-sm-5,.col-sm-6,.col-sm-7,.col-sm-8,.col-sm-9,.col-xs-1,.col-xs-10,.col-xs-11,.col-xs-12,.col-xs-2,.col-xs-3,.col-xs-4,.col-xs-5,.col-xs-6,.col-xs-7,.col-xs-8,.col-xs-9{position:relative;min-height:1px;padding-right:15px;padding-left:15px}.col-xs-1,.col-xs-10,.col-xs-11,.col-xs-12,.col-xs-2,.col-xs-3,.col-xs-4,.col-xs-5,.col-xs-6,.col-xs-7,.col-xs-8,.col-xs-9{float:left}.col-xs-12{width:100%}.col-xs-11{width:91.66666667%}.col-xs-10{width:83.33333333%}.col-xs-9{width:75%}.col-xs-8{width:66.66666667%}.col-xs-7{width:58.33333333%}.col-xs-6{width:50%}.col-xs-5{width:41.66666667%}.col-xs-4{width:33.33333333%}.col-xs-3{width:25%}.col-xs-2{width:16.66666667%}.col-xs-1{width:8.33333333%}.col-xs-pull-12{right:100%}.col-xs-pull-11{right:91.66666667%}.col-xs-pull-10{right:83.33333333%}.col-xs-pull-9{right:75%}.col-xs-pull-8{right:66.66666667%}.col-xs-pull-7{right:58.33333333%}.col-xs-pull-6{right:50%}.col-xs-pull-5{right:41.66666667%}.col-xs-pull-4{right:33.33333333%}.col-xs-pull-3{right:25%}.col-xs-pull-2{right:16.66666667%}.col-xs-pull-1{right:8.33333333%}.col-xs-pull-0{right:auto}.col-xs-push-12{left:100%}.col-xs-push-11{left:91.66666667%}.col-xs-push-10{left:83.33333333%}.col-xs-push-9{left:75%}.col-xs-push-8{left:66.66666667%}.col-xs-push-7{left:58.33333333%}.col-xs-push-6{left:50%}.col-xs-push-5{left:41.66666667%}.col-xs-push-4{left:33.33333333%}.col-xs-push-3{left:25%}.col-xs-push-2{left:16.66666667%}.col-xs-push-1{left:8.33333333%}.col-xs-push-0{left:auto}.col-xs-offset-12{margin-left:100%}.col-xs-offset-11{margin-left:91.66666667%}.col-xs-offset-10{margin-left:83.33333333%}.col-xs-offset-9{margin-left:75%}.col-xs-offset-8{margin-left:66.66666667%}.col-xs-offset-7{margin-left:58.33333333%}.col-xs-offset-6{margin-left:50%}.col-xs-offset-5{margin-left:41.66666667%}.col-xs-offset-4{margin-left:33.33333333%}.col-xs-offset-3{margin-left:25%}.col-xs-offset-2{margin-left:16.66666667%}.col-xs-offset-1{margin-left:8.33333333%}.col-xs-offset-0{margin-left:0}@media (min-width:768px){.col-sm-1,.col-sm-10,.col-sm-11,.col-sm-12,.col-sm-2,.col-sm-3,.col-sm-4,.col-sm-5,.col-sm-6,.col-sm-7,.col-sm-8,.col-sm-9{float:left}.col-sm-12{width:100%}.col-sm-11{width:91.66666667%}.col-sm-10{width:83.33333333%}.col-sm-9{width:75%}.col-sm-8{width:66.66666667%}.col-sm-7{width:58.33333333%}.col-sm-6{width:50%}.col-sm-5{width:41.66666667%}.col-sm-4{width:33.33333333%}.col-sm-3{width:25%}.col-sm-2{width:16.66666667%}.col-sm-1{width:8.33333333%}.col-sm-pull-12{right:100%}.col-sm-pull-11{right:91.66666667%}.col-sm-pull-10{right:83.33333333%}.col-sm-pull-9{right:75%}.col-sm-pull-8{right:66.66666667%}.col-sm-pull-7{right:58.33333333%}.col-sm-pull-6{right:50%}.col-sm-pull-5{right:41.66666667%}.col-sm-pull-4{right:33.33333333%}.col-sm-pull-3{right:25%}.col-sm-pull-2{right:16.66666667%}.col-sm-pull-1{right:8.33333333%}.col-sm-pull-0{right:auto}.col-sm-push-12{left:100%}.col-sm-push-11{left:91.66666667%}.col-sm-push-10{left:83.33333333%}.col-sm-push-9{left:75%}.col-sm-push-8{left:66.66666667%}.col-sm-push-7{left:58.33333333%}.col-sm-push-6{left:50%}.col-sm-push-5{left:41.66666667%}.col-sm-push-4{left:33.33333333%}.col-sm-push-3{left:25%}.col-sm-push-2{left:16.66666667%}.col-sm-push-1{left:8.33333333%}.col-sm-push-0{left:auto}.col-sm-offset-12{margin-left:100%}.col-sm-offset-11{margin-left:91.66666667%}.col-sm-offset-10{margin-left:83.33333333%}.col-sm-offset-9{margin-left:75%}.col-sm-offset-8{margin-left:66.66666667%}.col-sm-offset-7{margin-left:58.33333333%}.col-sm-offset-6{margin-left:50%}.col-sm-offset-5{margin-left:41.66666667%}.col-sm-offset-4{margin-left:33.33333333%}.col-sm-offset-3{margin-left:25%}.col-sm-offset-2{margin-left:16.66666667%}.col-sm-offset-1{margin-left:8.33333333%}.col-sm-offset-0{margin-left:0}}@media (min-width:992px){.col-md-1,.col-md-10,.col-md-11,.col-md-12,.col-md-2,.col-md-3,.col-md-4,.col-md-5,.col-md-6,.col-md-7,.col-md-8,.col-md-9{float:left}.col-md-12{width:100%}.col-md-11{width:91.66666667%}.col-md-10{width:83.33333333%}.col-md-9{width:75%}.col-md-8{width:66.66666667%}.col-md-7{width:58.33333333%}.col-md-6{width:50%}.col-md-5{width:41.66666667%}.col-md-4{width:33.33333333%}.col-md-3{width:25%}.col-md-2{width:16.66666667%}.col-md-1{width:8.33333333%}.col-md-pull-12{right:100%}.col-md-pull-11{right:91.66666667%}.col-md-pull-10{right:83.33333333%}.col-md-pull-9{right:75%}.col-md-pull-8{right:66.66666667%}.col-md-pull-7{right:58.33333333%}.col-md-pull-6{right:50%}.col-md-pull-5{right:41.66666667%}.col-md-pull-4{right:33.33333333%}.col-md-pull-3{right:25%}.col-md-pull-2{right:16.66666667%}.col-md-pull-1{right:8.33333333%}.col-md-pull-0{right:auto}.col-md-push-12{left:100%}.col-md-push-11{left:91.66666667%}.col-md-push-10{left:83.33333333%}.col-md-push-9{left:75%}.col-md-push-8{left:66.66666667%}.col-md-push-7{left:58.33333333%}.col-md-push-6{left:50%}.col-md-push-5{left:41.66666667%}.col-md-push-4{left:33.33333333%}.col-md-push-3{left:25%}.col-md-push-2{left:16.66666667%}.col-md-push-1{left:8.33333333%}.col-md-push-0{left:auto}.col-md-offset-12{margin-left:100%}.col-md-offset-11{margin-left:91.66666667%}.col-md-offset-10{margin-left:83.33333333%}.col-md-offset-9{margin-left:75%}.col-md-offset-8{margin-left:66.66666667%}.col-md-offset-7{margin-left:58.33333333%}.col-md-offset-6{margin-left:50%}.col-md-offset-5{margin-left:41.66666667%}.col-md-offset-4{margin-left:33.33333333%}.col-md-offset-3{margin-left:25%}.col-md-offset-2{margin-left:16.66666667%}.col-md-offset-1{margin-left:8.33333333%}.col-md-offset-0{margin-left:0}}@media (min-width:1200px){.col-lg-1,.col-lg-10,.col-lg-11,.col-lg-12,.col-lg-2,.col-lg-3,.col-lg-4,.col-lg-5,.col-lg-6,.col-lg-7,.col-lg-8,.col-lg-9{float:left}.col-lg-12{width:100%}.col-lg-11{width:91.66666667%}.col-lg-10{width:83.33333333%}.col-lg-9{width:75%}.col-lg-8{width:66.66666667%}.col-lg-7{width:58.33333333%}.col-lg-6{width:50%}.col-lg-5{width:41.66666667%}.col-lg-4{width:33.33333333%}.col-lg-3{width:25%}.col-lg-2{width:16.66666667%}.col-lg-1{width:8.33333333%}.col-lg-pull-12{right:100%}.col-lg-pull-11{right:91.66666667%}.col-lg-pull-10{right:83.33333333%}.col-lg-pull-9{right:75%}.col-lg-pull-8{right:66.66666667%}.col-lg-pull-7{right:58.33333333%}.col-lg-pull-6{right:50%}.col-lg-pull-5{right:41.66666667%}.col-lg-pull-4{right:33.33333333%}.col-lg-pull-3{right:25%}.col-lg-pull-2{right:16.66666667%}.col-lg-pull-1{right:8.33333333%}.col-lg-pull-0{right:auto}.col-lg-push-12{left:100%}.col-lg-push-11{left:91.66666667%}.col-lg-push-10{left:83.33333333%}.col-lg-push-9{left:75%}.col-lg-push-8{left:66.66666667%}.col-lg-push-7{left:58.33333333%}.col-lg-push-6{left:50%}.col-lg-push-5{left:41.66666667%}.col-lg-push-4{left:33.33333333%}.col-lg-push-3{left:25%}.col-lg-push-2{left:16.66666667%}.col-lg-push-1{left:8.33333333%}.col-lg-push-0{left:auto}.col-lg-offset-12{margin-left:100%}.col-lg-offset-11{margin-left:91.66666667%}.col-lg-offset-10{margin-left:83.33333333%}.col-lg-offset-9{margin-left:75%}.col-lg-offset-8{margin-left:66.66666667%}.col-lg-offset-7{margin-left:58.33333333%}.col-lg-offset-6{margin-left:50%}.col-lg-offset-5{margin-left:41.66666667%}.col-lg-offset-4{margin-left:33.33333333%}.col-lg-offset-3{margin-left:25%}.col-lg-offset-2{margin-left:16.66666667%}.col-lg-offset-1{margin-left:8.33333333%}.col-lg-offset-0{margin-left:0}}table{background-color:transparent}caption{padding-top:8px;padding-bottom:8px;color:#777;text-align:left}th{}.table{width:100%;max-width:100%;margin-bottom:20px}.table>tbody>tr>td,.table>tbody>tr>th,.table>tfoot>tr>td,.table>tfoot>tr>th,.table>thead>tr>td,.table>thead>tr>th{padding:8px;line-height:1.42857143;vertical-align:top;border-top:1px solid #ddd}.table>thead>tr>th{vertical-align:bottom;border-bottom:2px solid #ddd}.table>caption+thead>tr:first-child>td,.table>caption+thead>tr:first-child>th,.table>colgroup+thead>tr:first-child>td,.table>colgroup+thead>tr:first-child>th,.table>thead:first-child>tr:first-child>td,.table>thead:first-child>tr:first-child>th{border-top:0}.table>tbody+tbody{border-top:2px solid #ddd}.table .table{background-color:#fff}.table-condensed>tbody>tr>td,.table-condensed>tbody>tr>th,.table-condensed>tfoot>tr>td,.table-condensed>tfoot>tr>th,.table-condensed>thead>tr>td,.table-condensed>thead>tr>th{padding:5px}.table-bordered{border:1px solid #ddd}.table-bordered>tbody>tr>td,.table-bordered>tbody>tr>th,.table-bordered>tfoot>tr>td,.table-bordered>tfoot>tr>th,.table-bordered>thead>tr>td,.table-bordered>thead>tr>th{border:1px solid #ddd}.table-bordered>thead>tr>td,.table-bordered>thead>tr>th{border-bottom-width:2px}.table-striped>tbody>tr:nth-of-type(odd){background-color:#f9f9f9}.table-hover>tbody>tr:hover{background-color:#f5f5f5}table col[class*=col-]{position:static;display:table-column;float:none}table td[class*=col-],table th[class*=col-]{position:static;display:table-cell;float:none}.table>tbody>tr.active>td,.table>tbody>tr.active>th,.table>tbody>tr>td.active,.table>tbody>tr>th.active,.table>tfoot>tr.active>td,.table>tfoot>tr.active>th,.table>tfoot>tr>td.active,.table>tfoot>tr>th.active,.table>thead>tr.active>td,.table>thead>tr.active>th,.table>thead>tr>td.active,.table>thead>tr>th.active{background-color:#f5f5f5}.table-hover>tbody>tr.active:hover>td,.table-hover>tbody>tr.active:hover>th,.table-hover>tbody>tr:hover>.active,.table-hover>tbody>tr>td.active:hover,.table-hover>tbody>tr>th.active:hover{background-color:#e8e8e8}.table>tbody>tr.success>td,.table>tbody>tr.success>th,.table>tbody>tr>td.success,.table>tbody>tr>th.success,.table>tfoot>tr.success>td,.table>tfoot>tr.success>th,.table>tfoot>tr>td.success,.table>tfoot>tr>th.success,.table>thead>tr.success>td,.table>thead>tr.success>th,.table>thead>tr>td.success,.table>thead>tr>th.success{background-color:#dff0d8}.table-hover>tbody>tr.success:hover>td,.table-hover>tbody>tr.success:hover>th,.table-hover>tbody>tr:hover>.success,.table-hover>tbody>tr>td.success:hover,.table-hover>tbody>tr>th.success:hover{background-color:#d0e9c6}.table>tbody>tr.info>td,.table>tbody>tr.info>th,.table>tbody>tr>td.info,.table>tbody>tr>th.info,.table>tfoot>tr.info>td,.table>tfoot>tr.info>th,.table>tfoot>tr>td.info,.table>tfoot>tr>th.info,.table>thead>tr.info>td,.table>thead>tr.info>th,.table>thead>tr>td.info,.table>thead>tr>th.info{background-color:#d9edf7}.table-hover>tbody>tr.info:hover>td,.table-hover>tbody>tr.info:hover>th,.table-hover>tbody>tr:hover>.info,.table-hover>tbody>tr>td.info:hover,.table-hover>tbody>tr>th.info:hover{background-color:#c4e3f3}.table>tbody>tr.warning>td,.table>tbody>tr.warning>th,.table>tbody>tr>td.warning,.table>tbody>tr>th.warning,.table>tfoot>tr.warning>td,.table>tfoot>tr.warning>th,.table>tfoot>tr>td.warning,.table>tfoot>tr>th.warning,.table>thead>tr.warning>td,.table>thead>tr.warning>th,.table>thead>tr>td.warning,.table>thead>tr>th.warning{background-color:#fcf8e3}.table-hover>tbody>tr.warning:hover>td,.table-hover>tbody>tr.warning:hover>th,.table-hover>tbody>tr:hover>.warning,.table-hover>tbody>tr>td.warning:hover,.table-hover>tbody>tr>th.warning:hover{background-color:#faf2cc}.table>tbody>tr.danger>td,.table>tbody>tr.danger>th,.table>tbody>tr>td.danger,.table>tbody>tr>th.danger,.table>tfoot>tr.danger>td,.table>tfoot>tr.danger>th,.table>tfoot>tr>td.danger,.table>tfoot>tr>th.danger,.table>thead>tr.danger>td,.table>thead>tr.danger>th,.table>thead>tr>td.danger,.table>thead>tr>th.danger{background-color:#f2dede}.table-hover>tbody>tr.danger:hover>td,.table-hover>tbody>tr.danger:hover>th,.table-hover>tbody>tr:hover>.danger,.table-hover>tbody>tr>td.danger:hover,.table-hover>tbody>tr>th.danger:hover{background-color:#ebcccc}.table-responsive{min-height:.01%;overflow-x:auto}@media screen and (max-width:767px){.table-responsive{width:100%;margin-bottom:15px;overflow-y:hidden;-ms-overflow-style:-ms-autohiding-scrollbar;border:1px solid #ddd}.table-responsive>.table{margin-bottom:0}.table-responsive>.table>tbody>tr>td,.table-responsive>.table>tbody>tr>th,.table-responsive>.table>tfoot>tr>td,.table-responsive>.table>tfoot>tr>th,.table-responsive>.table>thead>tr>td,.table-responsive>.table>thead>tr>th{white-space:nowrap}.table-responsive>.table-bordered{border:0}.table-responsive>.table-bordered>tbody>tr>td:first-child,.table-responsive>.table-bordered>tbody>tr>th:first-child,.table-responsive>.table-bordered>tfoot>tr>td:first-child,.table-responsive>.table-bordered>tfoot>tr>th:first-child,.table-responsive>.table-bordered>thead>tr>td:first-child,.table-responsive>.table-bordered>thead>tr>th:first-child{border-left:0}.table-responsive>.table-bordered>tbody>tr>td:last-child,.table-responsive>.table-bordered>tbody>tr>th:last-child,.table-responsive>.table-bordered>tfoot>tr>td:last-child,.table-responsive>.table-bordered>tfoot>tr>th:last-child,.table-responsive>.table-bordered>thead>tr>td:last-child,.table-responsive>.table-bordered>thead>tr>th:last-child{border-right:0}.table-responsive>.table-bordered>tbody>tr:last-child>td,.table-responsive>.table-bordered>tbody>tr:last-child>th,.table-responsive>.table-bordered>tfoot>tr:last-child>td,.table-responsive>.table-bordered>tfoot>tr:last-child>th{border-bottom:0}}fieldset{min-width:0;padding:0;margin:0;border:0}legend{display:block;width:100%;padding:0;margin-bottom:20px;font-size:21px;line-height:inherit;color:#333;border:0;border-bottom:1px solid #e5e5e5}label{display:inline-block;max-width:100%;margin-bottom:5px;font-weight:700}input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=checkbox],input[type=radio]{margin:4px 0 0;margin-top:1px\9;line-height:normal}input[type=file]{display:block}input[type=range]{display:block;width:100%}select[multiple],select[size]{height:auto}input[type=file]:focus,input[type=checkbox]:focus,input[type=radio]:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}output{display:block;padding-top:7px;font-size:14px;line-height:1.42857143;color:#555}.form-control{display:block;width:100%;height:34px;padding:6px 12px;font-size:14px;line-height:1.42857143;color:#555;background-color:#fff;background-image:none;border:1px solid #ccc;border-radius:4px;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);box-shadow:inset 0 1px 1px rgba(0,0,0,.075);-webkit-transition:border-color ease-in-out .15s,-webkit-box-shadow ease-in-out .15s;-o-transition:border-color ease-in-out .15s,box-shadow ease-in-out .15s;transition:border-color ease-in-out .15s,box-shadow ease-in-out .15s}.form-control:focus{border-color:#66afe9;outline:0;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 8px rgba(102,175,233,.6);box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 8px rgba(102,175,233,.6)}.form-control::-moz-placeholder{color:#999;opacity:1}.form-control:-ms-input-placeholder{color:#999}.form-control::-webkit-input-placeholder{color:#999}.form-control[disabled],.form-control[readonly],fieldset[disabled] .form-control{background-color:#eee;opacity:1}.form-control[disabled],fieldset[disabled] .form-control{cursor:not-allowed}textarea.form-control{height:auto}input[type=search]{-webkit-appearance:none}@media screen and (-webkit-min-device-pixel-ratio:0){input[type=date].form-control,input[type=time].form-control,input[type=datetime-local].form-control,input[type=month].form-control{line-height:34px}.input-group-sm input[type=date],.input-group-sm input[type=time],.input-group-sm input[type=datetime-local],.input-group-sm input[type=month],input[type=date].input-sm,input[type=time].input-sm,input[type=datetime-local].input-sm,input[type=month].input-sm{line-height:30px}.input-group-lg input[type=date],.input-group-lg input[type=time],.input-group-lg input[type=datetime-local],.input-group-lg input[type=month],input[type=date].input-lg,input[type=time].input-lg,input[type=datetime-local].input-lg,input[type=month].input-lg{line-height:46px}}.form-group{margin-bottom:15px}.checkbox,.radio{position:relative;display:block;margin-top:10px;margin-bottom:10px}.checkbox label,.radio label{min-height:20px;padding-left:20px;margin-bottom:0;font-weight:400;cursor:pointer}.checkbox input[type=checkbox],.checkbox-inline input[type=checkbox],.radio input[type=radio],.radio-inline input[type=radio]{position:absolute;margin-top:4px\9;margin-left:-20px}.checkbox+.checkbox,.radio+.radio{margin-top:-5px}.checkbox-inline,.radio-inline{position:relative;display:inline-block;padding-left:20px;margin-bottom:0;font-weight:400;vertical-align:middle;cursor:pointer}.checkbox-inline+.checkbox-inline,.radio-inline+.radio-inline{margin-top:0;margin-left:10px}fieldset[disabled] input[type=checkbox],fieldset[disabled] input[type=radio],input[type=checkbox].disabled,input[type=checkbox][disabled],input[type=radio].disabled,input[type=radio][disabled]{cursor:not-allowed}.checkbox-inline.disabled,.radio-inline.disabled,fieldset[disabled] .checkbox-inline,fieldset[disabled] .radio-inline{cursor:not-allowed}.checkbox.disabled label,.radio.disabled label,fieldset[disabled] .checkbox label,fieldset[disabled] .radio label{cursor:not-allowed}.form-control-static{min-height:34px;padding-top:7px;padding-bottom:7px;margin-bottom:0}.form-control-static.input-lg,.form-control-static.input-sm{padding-right:0;padding-left:0}.input-sm{height:30px;padding:5px 10px;font-size:12px;line-height:1.5;border-radius:3px}select.input-sm{height:30px;line-height:30px}select[multiple].input-sm,textarea.input-sm{height:auto}.form-group-sm .form-control{height:30px;padding:5px 10px;font-size:12px;line-height:1.5;border-radius:3px}.form-group-sm select.form-control{height:30px;line-height:30px}.form-group-sm select[multiple].form-control,.form-group-sm textarea.form-control{height:auto}.form-group-sm .form-control-static{height:30px;min-height:32px;padding:6px 10px;font-size:12px;line-height:1.5}.input-lg{height:46px;padding:10px 16px;font-size:18px;line-height:1.3333333;border-radius:6px}select.input-lg{height:46px;line-height:46px}select[multiple].input-lg,textarea.input-lg{height:auto}.form-group-lg .form-control{height:46px;padding:10px 16px;font-size:18px;line-height:1.3333333;border-radius:6px}.form-group-lg select.form-control{height:46px;line-height:46px}.form-group-lg select[multiple].form-control,.form-group-lg textarea.form-control{height:auto}.form-group-lg .form-control-static{height:46px;min-height:38px;padding:11px 16px;font-size:18px;line-height:1.3333333}.has-feedback{position:relative}.has-feedback .form-control{padding-right:42.5px}.form-control-feedback{position:absolute;top:0;right:0;z-index:2;display:block;width:34px;height:34px;line-height:34px;text-align:center;pointer-events:none}.form-group-lg .form-control+.form-control-feedback,.input-group-lg+.form-control-feedback,.input-lg+.form-control-feedback{width:46px;height:46px;line-height:46px}.form-group-sm .form-control+.form-control-feedback,.input-group-sm+.form-control-feedback,.input-sm+.form-control-feedback{width:30px;height:30px;line-height:30px}.has-success .checkbox,.has-success .checkbox-inline,.has-success .control-label,.has-success .help-block,.has-success .radio,.has-success .radio-inline,.has-success.checkbox label,.has-success.checkbox-inline label,.has-success.radio label,.has-success.radio-inline label{color:#3c763d}.has-success .form-control{border-color:#3c763d;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);box-shadow:inset 0 1px 1px rgba(0,0,0,.075)}.has-success .form-control:focus{border-color:#2b542c;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #67b168;box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #67b168}.has-success .input-group-addon{color:#3c763d;background-color:#dff0d8;border-color:#3c763d}.has-success .form-control-feedback{color:#3c763d}.has-warning .checkbox,.has-warning .checkbox-inline,.has-warning .control-label,.has-warning .help-block,.has-warning .radio,.has-warning .radio-inline,.has-warning.checkbox label,.has-warning.checkbox-inline label,.has-warning.radio label,.has-warning.radio-inline label{color:#8a6d3b}.has-warning .form-control{border-color:#8a6d3b;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);box-shadow:inset 0 1px 1px rgba(0,0,0,.075)}.has-warning .form-control:focus{border-color:#66512c;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #c0a16b;box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #c0a16b}.has-warning .input-group-addon{color:#8a6d3b;background-color:#fcf8e3;border-color:#8a6d3b}.has-warning .form-control-feedback{color:#8a6d3b}.has-error .checkbox,.has-error .checkbox-inline,.has-error .control-label,.has-error .help-block,.has-error .radio,.has-error .radio-inline,.has-error.checkbox label,.has-error.checkbox-inline label,.has-error.radio label,.has-error.radio-inline label{color:#a94442}.has-error .form-control{border-color:#a94442;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);box-shadow:inset 0 1px 1px rgba(0,0,0,.075)}.has-error .form-control:focus{border-color:#843534;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #ce8483;box-shadow:inset 0 1px 1px rgba(0,0,0,.075),0 0 6px #ce8483}.has-error .input-group-addon{color:#a94442;background-color:#f2dede;border-color:#a94442}.has-error .form-control-feedback{color:#a94442}.has-feedback label~.form-control-feedback{top:25px}.has-feedback label.sr-only~.form-control-feedback{top:0}.help-block{display:block;margin-top:5px;margin-bottom:10px;color:#737373}@media (min-width:768px){.form-inline .form-group{display:inline-block;margin-bottom:0;vertical-align:middle}.form-inline .form-control{display:inline-block;width:auto;vertical-align:middle}.form-inline .form-control-static{display:inline-block}.form-inline .input-group{display:inline-table;vertical-align:middle}.form-inline .input-group .form-control,.form-inline .input-group .input-group-addon,.form-inline .input-group .input-group-btn{width:auto}.form-inline .input-group>.form-control{width:100%}.form-inline .control-label{margin-bottom:0;vertical-align:middle}.form-inline .checkbox,.form-inline .radio{display:inline-block;margin-top:0;margin-bottom:0;vertical-align:middle}.form-inline .checkbox label,.form-inline .radio label{padding-left:0}.form-inline .checkbox input[type=checkbox],.form-inline .radio input[type=radio]{position:relative;margin-left:0}.form-inline .has-feedback .form-control-feedback{top:0}}.form-horizontal .checkbox,.form-horizontal .checkbox-inline,.form-horizontal .radio,.form-horizontal .radio-inline{padding-top:7px;margin-top:0;margin-bottom:0}.form-horizontal .checkbox,.form-horizontal .radio{min-height:27px}.form-horizontal .form-group{margin-right:-15px;margin-left:-15px}@media (min-width:768px){.form-horizontal .control-label{padding-top:7px;margin-bottom:0;text-align:right}}.form-horizontal .has-feedback .form-control-feedback{right:15px}@media (min-width:768px){.form-horizontal .form-group-lg .control-label{padding-top:14.33px;font-size:18px}}@media (min-width:768px){.form-horizontal .form-group-sm .control-label{padding-top:6px;font-size:12px}}.btn{display:inline-block;padding:6px 12px;margin-bottom:0;font-size:14px;font-weight:400;line-height:1.42857143;text-align:center;white-space:nowrap;vertical-align:middle;-ms-touch-action:manipulation;touch-action:manipulation;cursor:pointer;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;background-image:none;border:1px solid transparent;border-radius:4px}.btn.active.focus,.btn.active:focus,.btn.focus,.btn:active.focus,.btn:active:focus,.btn:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}.btn.focus,.btn:focus,.btn:hover{color:#333;text-decoration:none}.btn.active,.btn:active{background-image:none;outline:0;-webkit-box-shadow:inset 0 3px 5px rgba(0,0,0,.125);box-shadow:inset 0 3px 5px rgba(0,0,0,.125)}.btn.disabled,.btn[disabled],fieldset[disabled] .btn{cursor:not-allowed;filter:alpha(opacity=65);-webkit-box-shadow:none;box-shadow:none;opacity:.65}a.btn.disabled,fieldset[disabled] a.btn{pointer-events:none}.btn-default{color:#333;background-color:#fff;border-color:#ccc}.btn-default.focus,.btn-default:focus{color:#333;background-color:#e6e6e6;border-color:#8c8c8c}.btn-default:hover{color:#333;background-color:#e6e6e6;border-color:#adadad}.btn-default.active,.btn-default:active,.open>.dropdown-toggle.btn-default{color:#333;background-color:#e6e6e6;border-color:#adadad}.btn-default.active.focus,.btn-default.active:focus,.btn-default.active:hover,.btn-default:active.focus,.btn-default:active:focus,.btn-default:active:hover,.open>.dropdown-toggle.btn-default.focus,.open>.dropdown-toggle.btn-default:focus,.open>.dropdown-toggle.btn-default:hover{color:#333;background-color:#d4d4d4;border-color:#8c8c8c}.btn-default.active,.btn-default:active,.open>.dropdown-toggle.btn-default{background-image:none}.btn-default.disabled,.btn-default.disabled.active,.btn-default.disabled.focus,.btn-default.disabled:active,.btn-default.disabled:focus,.btn-default.disabled:hover,.btn-default[disabled],.btn-default[disabled].active,.btn-default[disabled].focus,.btn-default[disabled]:active,.btn-default[disabled]:focus,.btn-default[disabled]:hover,fieldset[disabled] .btn-default,fieldset[disabled] .btn-default.active,fieldset[disabled] .btn-default.focus,fieldset[disabled] .btn-default:active,fieldset[disabled] .btn-default:focus,fieldset[disabled] .btn-default:hover{background-color:#fff;border-color:#ccc}.btn-default .badge{color:#fff;background-color:#333}.btn-primary{color:#fff;background-color:#337ab7;border-color:#2e6da4}.btn-primary.focus,.btn-primary:focus{color:#fff;background-color:#286090;border-color:#122b40}.btn-primary:hover{color:#fff;background-color:#286090;border-color:#204d74}.btn-primary.active,.btn-primary:active,.open>.dropdown-toggle.btn-primary{color:#fff;background-color:#286090;border-color:#204d74}.btn-primary.active.focus,.btn-primary.active:focus,.btn-primary.active:hover,.btn-primary:active.focus,.btn-primary:active:focus,.btn-primary:active:hover,.open>.dropdown-toggle.btn-primary.focus,.open>.dropdown-toggle.btn-primary:focus,.open>.dropdown-toggle.btn-primary:hover{color:#fff;background-color:#204d74;border-color:#122b40}.btn-primary.active,.btn-primary:active,.open>.dropdown-toggle.btn-primary{background-image:none}.btn-primary.disabled,.btn-primary.disabled.active,.btn-primary.disabled.focus,.btn-primary.disabled:active,.btn-primary.disabled:focus,.btn-primary.disabled:hover,.btn-primary[disabled],.btn-primary[disabled].active,.btn-primary[disabled].focus,.btn-primary[disabled]:active,.btn-primary[disabled]:focus,.btn-primary[disabled]:hover,fieldset[disabled] .btn-primary,fieldset[disabled] .btn-primary.active,fieldset[disabled] .btn-primary.focus,fieldset[disabled] .btn-primary:active,fieldset[disabled] .btn-primary:focus,fieldset[disabled] .btn-primary:hover{background-color:#337ab7;border-color:#2e6da4}.btn-primary .badge{color:#337ab7;background-color:#fff}.btn-success{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.btn-success.focus,.btn-success:focus{color:#fff;background-color:#449d44;border-color:#255625}.btn-success:hover{color:#fff;background-color:#449d44;border-color:#398439}.btn-success.active,.btn-success:active,.open>.dropdown-toggle.btn-success{color:#fff;background-color:#449d44;border-color:#398439}.btn-success.active.focus,.btn-success.active:focus,.btn-success.active:hover,.btn-success:active.focus,.btn-success:active:focus,.btn-success:active:hover,.open>.dropdown-toggle.btn-success.focus,.open>.dropdown-toggle.btn-success:focus,.open>.dropdown-toggle.btn-success:hover{color:#fff;background-color:#398439;border-color:#255625}.btn-success.active,.btn-success:active,.open>.dropdown-toggle.btn-success{background-image:none}.btn-success.disabled,.btn-success.disabled.active,.btn-success.disabled.focus,.btn-success.disabled:active,.btn-success.disabled:focus,.btn-success.disabled:hover,.btn-success[disabled],.btn-success[disabled].active,.btn-success[disabled].focus,.btn-success[disabled]:active,.btn-success[disabled]:focus,.btn-success[disabled]:hover,fieldset[disabled] .btn-success,fieldset[disabled] .btn-success.active,fieldset[disabled] .btn-success.focus,fieldset[disabled] .btn-success:active,fieldset[disabled] .btn-success:focus,fieldset[disabled] .btn-success:hover{background-color:#5cb85c;border-color:#4cae4c}.btn-success .badge{color:#5cb85c;background-color:#fff}.btn-info{color:#fff;background-color:#5bc0de;border-color:#46b8da}.btn-info.focus,.btn-info:focus{color:#fff;background-color:#31b0d5;border-color:#1b6d85}.btn-info:hover{color:#fff;background-color:#31b0d5;border-color:#269abc}.btn-info.active,.btn-info:active,.open>.dropdown-toggle.btn-info{color:#fff;background-color:#31b0d5;border-color:#269abc}.btn-info.active.focus,.btn-info.active:focus,.btn-info.active:hover,.btn-info:active.focus,.btn-info:active:focus,.btn-info:active:hover,.open>.dropdown-toggle.btn-info.focus,.open>.dropdown-toggle.btn-info:focus,.open>.dropdown-toggle.btn-info:hover{color:#fff;background-color:#269abc;border-color:#1b6d85}.btn-info.active,.btn-info:active,.open>.dropdown-toggle.btn-info{background-image:none}.btn-info.disabled,.btn-info.disabled.active,.btn-info.disabled.focus,.btn-info.disabled:active,.btn-info.disabled:focus,.btn-info.disabled:hover,.btn-info[disabled],.btn-info[disabled].active,.btn-info[disabled].focus,.btn-info[disabled]:active,.btn-info[disabled]:focus,.btn-info[disabled]:hover,fieldset[disabled] .btn-info,fieldset[disabled] .btn-info.active,fieldset[disabled] .btn-info.focus,fieldset[disabled] .btn-info:active,fieldset[disabled] .btn-info:focus,fieldset[disabled] .btn-info:hover{background-color:#5bc0de;border-color:#46b8da}.btn-info .badge{color:#5bc0de;background-color:#fff}.btn-warning{color:#fff;background-color:#f0ad4e;border-color:#eea236}.btn-warning.focus,.btn-warning:focus{color:#fff;background-color:#ec971f;border-color:#985f0d}.btn-warning:hover{color:#fff;background-color:#ec971f;border-color:#d58512}.btn-warning.active,.btn-warning:active,.open>.dropdown-toggle.btn-warning{color:#fff;background-color:#ec971f;border-color:#d58512}.btn-warning.active.focus,.btn-warning.active:focus,.btn-warning.active:hover,.btn-warning:active.focus,.btn-warning:active:focus,.btn-warning:active:hover,.open>.dropdown-toggle.btn-warning.focus,.open>.dropdown-toggle.btn-warning:focus,.open>.dropdown-toggle.btn-warning:hover{color:#fff;background-color:#d58512;border-color:#985f0d}.btn-warning.active,.btn-warning:active,.open>.dropdown-toggle.btn-warning{background-image:none}.btn-warning.disabled,.btn-warning.disabled.active,.btn-warning.disabled.focus,.btn-warning.disabled:active,.btn-warning.disabled:focus,.btn-warning.disabled:hover,.btn-warning[disabled],.btn-warning[disabled].active,.btn-warning[disabled].focus,.btn-warning[disabled]:active,.btn-warning[disabled]:focus,.btn-warning[disabled]:hover,fieldset[disabled] .btn-warning,fieldset[disabled] .btn-warning.active,fieldset[disabled] .btn-warning.focus,fieldset[disabled] .btn-warning:active,fieldset[disabled] .btn-warning:focus,fieldset[disabled] .btn-warning:hover{background-color:#f0ad4e;border-color:#eea236}.btn-warning .badge{color:#f0ad4e;background-color:#fff}.btn-danger{color:#fff;background-color:#d9534f;border-color:#d43f3a}.btn-danger.focus,.btn-danger:focus{color:#fff;background-color:#c9302c;border-color:#761c19}.btn-danger:hover{color:#fff;background-color:#c9302c;border-color:#ac2925}.btn-danger.active,.btn-danger:active,.open>.dropdown-toggle.btn-danger{color:#fff;background-color:#c9302c;border-color:#ac2925}.btn-danger.active.focus,.btn-danger.active:focus,.btn-danger.active:hover,.btn-danger:active.focus,.btn-danger:active:focus,.btn-danger:active:hover,.open>.dropdown-toggle.btn-danger.focus,.open>.dropdown-toggle.btn-danger:focus,.open>.dropdown-toggle.btn-danger:hover{color:#fff;background-color:#ac2925;border-color:#761c19}.btn-danger.active,.btn-danger:active,.open>.dropdown-toggle.btn-danger{background-image:none}.btn-danger.disabled,.btn-danger.disabled.active,.btn-danger.disabled.focus,.btn-danger.disabled:active,.btn-danger.disabled:focus,.btn-danger.disabled:hover,.btn-danger[disabled],.btn-danger[disabled].active,.btn-danger[disabled].focus,.btn-danger[disabled]:active,.btn-danger[disabled]:focus,.btn-danger[disabled]:hover,fieldset[disabled] .btn-danger,fieldset[disabled] .btn-danger.active,fieldset[disabled] .btn-danger.focus,fieldset[disabled] .btn-danger:active,fieldset[disabled] .btn-danger:focus,fieldset[disabled] .btn-danger:hover{background-color:#d9534f;border-color:#d43f3a}.btn-danger .badge{color:#d9534f;background-color:#fff}.btn-link{font-weight:400;color:#337ab7;border-radius:0}.btn-link,.btn-link.active,.btn-link:active,.btn-link[disabled],fieldset[disabled] .btn-link{background-color:transparent;-webkit-box-shadow:none;box-shadow:none}.btn-link,.btn-link:active,.btn-link:focus,.btn-link:hover{border-color:transparent}.btn-link:focus,.btn-link:hover{color:#23527c;text-decoration:underline;background-color:transparent}.btn-link[disabled]:focus,.btn-link[disabled]:hover,fieldset[disabled] .btn-link:focus,fieldset[disabled] .btn-link:hover{color:#777;text-decoration:none}.btn-group-lg>.btn,.btn-lg{padding:10px 16px;font-size:18px;line-height:1.3333333;border-radius:6px}.btn-group-sm>.btn,.btn-sm{padding:5px 10px;font-size:12px;line-height:1.5;border-radius:3px}.btn-group-xs>.btn,.btn-xs{padding:1px 5px;font-size:12px;line-height:1.5;border-radius:3px}.btn-block{display:block;width:100%}.btn-block+.btn-block{margin-top:5px}input[type=button].btn-block,input[type=reset].btn-block,input[type=submit].btn-block{width:100%}.fade{opacity:0;-webkit-transition:opacity .15s linear;-o-transition:opacity .15s linear;transition:opacity .15s linear}.fade.in{opacity:1}.collapse{display:none}.collapse.in{display:block}tr.collapse.in{display:table-row}tbody.collapse.in{display:table-row-group}.collapsing{position:relative;height:0;overflow:hidden;-webkit-transition-timing-function:ease;-o-transition-timing-function:ease;transition-timing-function:ease;-webkit-transition-duration:.35s;-o-transition-duration:.35s;transition-duration:.35s;-webkit-transition-property:height,visibility;-o-transition-property:height,visibility;transition-property:height,visibility}.caret{display:inline-block;width:0;height:0;margin-left:2px;vertical-align:middle;border-top:4px dashed;border-top:4px solid\9;border-right:4px solid transparent;border-left:4px solid transparent}.dropdown,.dropup{position:relative}.dropdown-toggle:focus{outline:0}.dropdown-menu{position:absolute;top:100%;left:0;z-index:1000;display:none;float:left;min-width:160px;padding:5px 0;margin:2px 0 0;font-size:14px;text-align:left;list-style:none;background-color:#fff;-webkit-background-clip:padding-box;background-clip:padding-box;border:1px solid #ccc;border:1px solid rgba(0,0,0,.15);border-radius:4px;-webkit-box-shadow:0 6px 12px rgba(0,0,0,.175);box-shadow:0 6px 12px rgba(0,0,0,.175)}.dropdown-menu.pull-right{right:0;left:auto}.dropdown-menu .divider{height:1px;margin:9px 0;overflow:hidden;background-color:#e5e5e5}.dropdown-menu>li>a{display:block;padding:3px 20px;clear:both;font-weight:400;line-height:1.42857143;color:#333;white-space:nowrap}.dropdown-menu>li>a:focus,.dropdown-menu>li>a:hover{color:#262626;text-decoration:none;background-color:#f5f5f5}.dropdown-menu>.active>a,.dropdown-menu>.active>a:focus,.dropdown-menu>.active>a:hover{color:#fff;text-decoration:none;background-color:#337ab7;outline:0}.dropdown-menu>.disabled>a,.dropdown-menu>.disabled>a:focus,.dropdown-menu>.disabled>a:hover{color:#777}.dropdown-menu>.disabled>a:focus,.dropdown-menu>.disabled>a:hover{text-decoration:none;cursor:not-allowed;background-color:transparent;background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.open>.dropdown-menu{display:block}.open>a{outline:0}.dropdown-menu-right{right:0;left:auto}.dropdown-menu-left{right:auto;left:0}.dropdown-header{display:block;padding:3px 20px;font-size:12px;line-height:1.42857143;color:#777;white-space:nowrap}.dropdown-backdrop{position:fixed;top:0;right:0;bottom:0;left:0;z-index:990}.pull-right>.dropdown-menu{right:0;left:auto}.dropup .caret,.navbar-fixed-bottom .dropdown .caret{content:"";border-top:0;border-bottom:4px dashed;border-bottom:4px solid\9}.dropup .dropdown-menu,.navbar-fixed-bottom .dropdown .dropdown-menu{top:auto;bottom:100%;margin-bottom:2px}@media (min-width:768px){.navbar-right .dropdown-menu{right:0;left:auto}.navbar-right .dropdown-menu-left{right:auto;left:0}}.btn-group,.btn-group-vertical{position:relative;display:inline-block;vertical-align:middle}.btn-group-vertical>.btn,.btn-group>.btn{position:relative;float:left}.btn-group-vertical>.btn.active,.btn-group-vertical>.btn:active,.btn-group-vertical>.btn:focus,.btn-group-vertical>.btn:hover,.btn-group>.btn.active,.btn-group>.btn:active,.btn-group>.btn:focus,.btn-group>.btn:hover{z-index:2}.btn-group .btn+.btn,.btn-group .btn+.btn-group,.btn-group .btn-group+.btn,.btn-group .btn-group+.btn-group{margin-left:-1px}.btn-toolbar{margin-left:-5px}.btn-toolbar .btn,.btn-toolbar .btn-group,.btn-toolbar .input-group{float:left}.btn-toolbar>.btn,.btn-toolbar>.btn-group,.btn-toolbar>.input-group{margin-left:5px}.btn-group>.btn:not(:first-child):not(:last-child):not(.dropdown-toggle){border-radius:0}.btn-group>.btn:first-child{margin-left:0}.btn-group>.btn:first-child:not(:last-child):not(.dropdown-toggle){border-top-right-radius:0;border-bottom-right-radius:0}.btn-group>.btn:last-child:not(:first-child),.btn-group>.dropdown-toggle:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.btn-group>.btn-group{float:left}.btn-group>.btn-group:not(:first-child):not(:last-child)>.btn{border-radius:0}.btn-group>.btn-group:first-child:not(:last-child)>.btn:last-child,.btn-group>.btn-group:first-child:not(:last-child)>.dropdown-toggle{border-top-right-radius:0;border-bottom-right-radius:0}.btn-group>.btn-group:last-child:not(:first-child)>.btn:first-child{border-top-left-radius:0;border-bottom-left-radius:0}.btn-group .dropdown-toggle:active,.btn-group.open .dropdown-toggle{outline:0}.btn-group>.btn+.dropdown-toggle{padding-right:8px;padding-left:8px}.btn-group>.btn-lg+.dropdown-toggle{padding-right:12px;padding-left:12px}.btn-group.open .dropdown-toggle{-webkit-box-shadow:inset 0 3px 5px rgba(0,0,0,.125);box-shadow:inset 0 3px 5px rgba(0,0,0,.125)}.btn-group.open .dropdown-toggle.btn-link{-webkit-box-shadow:none;box-shadow:none}.btn .caret{margin-left:0}.btn-lg .caret{border-width:5px 5px 0;border-bottom-width:0}.dropup .btn-lg .caret{border-width:0 5px 5px}.btn-group-vertical>.btn,.btn-group-vertical>.btn-group,.btn-group-vertical>.btn-group>.btn{display:block;float:none;width:100%;max-width:100%}.btn-group-vertical>.btn-group>.btn{float:none}.btn-group-vertical>.btn+.btn,.btn-group-vertical>.btn+.btn-group,.btn-group-vertical>.btn-group+.btn,.btn-group-vertical>.btn-group+.btn-group{margin-top:-1px;margin-left:0}.btn-group-vertical>.btn:not(:first-child):not(:last-child){border-radius:0}.btn-group-vertical>.btn:first-child:not(:last-child){border-top-right-radius:4px;border-bottom-right-radius:0;border-bottom-left-radius:0}.btn-group-vertical>.btn:last-child:not(:first-child){border-top-left-radius:0;border-top-right-radius:0;border-bottom-left-radius:4px}.btn-group-vertical>.btn-group:not(:first-child):not(:last-child)>.btn{border-radius:0}.btn-group-vertical>.btn-group:first-child:not(:last-child)>.btn:last-child,.btn-group-vertical>.btn-group:first-child:not(:last-child)>.dropdown-toggle{border-bottom-right-radius:0;border-bottom-left-radius:0}.btn-group-vertical>.btn-group:last-child:not(:first-child)>.btn:first-child{border-top-left-radius:0;border-top-right-radius:0}.btn-group-justified{display:table;width:100%;table-layout:fixed;border-collapse:separate}.btn-group-justified>.btn,.btn-group-justified>.btn-group{display:table-cell;float:none;width:1%}.btn-group-justified>.btn-group .btn{width:100%}.btn-group-justified>.btn-group .dropdown-menu{left:auto}[data-toggle=buttons]>.btn input[type=checkbox],[data-toggle=buttons]>.btn input[type=radio],[data-toggle=buttons]>.btn-group>.btn input[type=checkbox],[data-toggle=buttons]>.btn-group>.btn input[type=radio]{position:absolute;clip:rect(0,0,0,0);pointer-events:none}.input-group{position:relative;display:table;border-collapse:separate}.input-group[class*=col-]{float:none;padding-right:0;padding-left:0}.input-group .form-control{position:relative;z-index:2;float:left;width:100%;margin-bottom:0}.input-group-lg>.form-control,.input-group-lg>.input-group-addon,.input-group-lg>.input-group-btn>.btn{height:46px;padding:10px 16px;font-size:18px;line-height:1.3333333;border-radius:6px}select.input-group-lg>.form-control,select.input-group-lg>.input-group-addon,select.input-group-lg>.input-group-btn>.btn{height:46px;line-height:46px}select[multiple].input-group-lg>.form-control,select[multiple].input-group-lg>.input-group-addon,select[multiple].input-group-lg>.input-group-btn>.btn,textarea.input-group-lg>.form-control,textarea.input-group-lg>.input-group-addon,textarea.input-group-lg>.input-group-btn>.btn{height:auto}.input-group-sm>.form-control,.input-group-sm>.input-group-addon,.input-group-sm>.input-group-btn>.btn{height:30px;padding:5px 10px;font-size:12px;line-height:1.5;border-radius:3px}select.input-group-sm>.form-control,select.input-group-sm>.input-group-addon,select.input-group-sm>.input-group-btn>.btn{height:30px;line-height:30px}select[multiple].input-group-sm>.form-control,select[multiple].input-group-sm>.input-group-addon,select[multiple].input-group-sm>.input-group-btn>.btn,textarea.input-group-sm>.form-control,textarea.input-group-sm>.input-group-addon,textarea.input-group-sm>.input-group-btn>.btn{height:auto}.input-group .form-control,.input-group-addon,.input-group-btn{display:table-cell}.input-group .form-control:not(:first-child):not(:last-child),.input-group-addon:not(:first-child):not(:last-child),.input-group-btn:not(:first-child):not(:last-child){border-radius:0}.input-group-addon,.input-group-btn{width:1%;white-space:nowrap;vertical-align:middle}.input-group-addon{padding:6px 12px;font-size:14px;font-weight:400;line-height:1;color:#555;text-align:center;background-color:#eee;border:1px solid #ccc;border-radius:4px}.input-group-addon.input-sm{padding:5px 10px;font-size:12px;border-radius:3px}.input-group-addon.input-lg{padding:10px 16px;font-size:18px;border-radius:6px}.input-group-addon input[type=checkbox],.input-group-addon input[type=radio]{margin-top:0}.input-group .form-control:first-child,.input-group-addon:first-child,.input-group-btn:first-child>.btn,.input-group-btn:first-child>.btn-group>.btn,.input-group-btn:first-child>.dropdown-toggle,.input-group-btn:last-child>.btn-group:not(:last-child)>.btn,.input-group-btn:last-child>.btn:not(:last-child):not(.dropdown-toggle){border-top-right-radius:0;border-bottom-right-radius:0}.input-group-addon:first-child{border-right:0}.input-group .form-control:last-child,.input-group-addon:last-child,.input-group-btn:first-child>.btn-group:not(:first-child)>.btn,.input-group-btn:first-child>.btn:not(:first-child),.input-group-btn:last-child>.btn,.input-group-btn:last-child>.btn-group>.btn,.input-group-btn:last-child>.dropdown-toggle{border-top-left-radius:0;border-bottom-left-radius:0}.input-group-addon:last-child{border-left:0}.input-group-btn{position:relative;font-size:0;white-space:nowrap}.input-group-btn>.btn{position:relative}.input-group-btn>.btn+.btn{margin-left:-1px}.input-group-btn>.btn:active,.input-group-btn>.btn:focus,.input-group-btn>.btn:hover{z-index:2}.input-group-btn:first-child>.btn,.input-group-btn:first-child>.btn-group{margin-right:-1px}.input-group-btn:last-child>.btn,.input-group-btn:last-child>.btn-group{z-index:2;margin-left:-1px}.nav{padding-left:0;margin-bottom:0;list-style:none}.nav>li{position:relative;display:block}.nav>li>a{position:relative;display:block;padding:10px 15px}.nav>li>a:focus,.nav>li>a:hover{text-decoration:none;background-color:#eee}.nav>li.disabled>a{color:#777}.nav>li.disabled>a:focus,.nav>li.disabled>a:hover{color:#777;text-decoration:none;cursor:not-allowed;background-color:transparent}.nav .open>a,.nav .open>a:focus,.nav .open>a:hover{background-color:#eee;border-color:#337ab7}.nav .nav-divider{height:1px;margin:9px 0;overflow:hidden;background-color:#e5e5e5}.nav>li>a>img{max-width:none}.nav-tabs{border-bottom:1px solid #ddd}.nav-tabs>li{float:left;margin-bottom:-1px}.nav-tabs>li>a{margin-right:2px;line-height:1.42857143;border:1px solid transparent;border-radius:4px 4px 0 0}.nav-tabs>li>a:hover{border-color:#eee #eee #ddd}.nav-tabs>li.active>a,.nav-tabs>li.active>a:focus,.nav-tabs>li.active>a:hover{color:#555;cursor:default;background-color:#fff;border:1px solid #ddd;border-bottom-color:transparent}.nav-tabs.nav-justified{width:100%;border-bottom:0}.nav-tabs.nav-justified>li{float:none}.nav-tabs.nav-justified>li>a{margin-bottom:5px;text-align:center}.nav-tabs.nav-justified>.dropdown .dropdown-menu{top:auto;left:auto}@media (min-width:768px){.nav-tabs.nav-justified>li{display:table-cell;width:1%}.nav-tabs.nav-justified>li>a{margin-bottom:0}}.nav-tabs.nav-justified>li>a{margin-right:0;border-radius:4px}.nav-tabs.nav-justified>.active>a,.nav-tabs.nav-justified>.active>a:focus,.nav-tabs.nav-justified>.active>a:hover{border:1px solid #ddd}@media (min-width:768px){.nav-tabs.nav-justified>li>a{border-bottom:1px solid #ddd;border-radius:4px 4px 0 0}.nav-tabs.nav-justified>.active>a,.nav-tabs.nav-justified>.active>a:focus,.nav-tabs.nav-justified>.active>a:hover{border-bottom-color:#fff}}.nav-pills>li{float:left}.nav-pills>li>a{border-radius:4px}.nav-pills>li+li{margin-left:2px}.nav-pills>li.active>a,.nav-pills>li.active>a:focus,.nav-pills>li.active>a:hover{color:#fff;background-color:#337ab7}.nav-stacked>li{float:none}.nav-stacked>li+li{margin-top:2px;margin-left:0}.nav-justified{width:100%}.nav-justified>li{float:none}.nav-justified>li>a{margin-bottom:5px;text-align:center}.nav-justified>.dropdown .dropdown-menu{top:auto;left:auto}@media (min-width:768px){.nav-justified>li{display:table-cell;width:1%}.nav-justified>li>a{margin-bottom:0}}.nav-tabs-justified{border-bottom:0}.nav-tabs-justified>li>a{margin-right:0;border-radius:4px}.nav-tabs-justified>.active>a,.nav-tabs-justified>.active>a:focus,.nav-tabs-justified>.active>a:hover{border:1px solid #ddd}@media (min-width:768px){.nav-tabs-justified>li>a{border-bottom:1px solid #ddd;border-radius:4px 4px 0 0}.nav-tabs-justified>.active>a,.nav-tabs-justified>.active>a:focus,.nav-tabs-justified>.active>a:hover{border-bottom-color:#fff}}.tab-content>.tab-pane{display:none}.tab-content>.active{display:block}.nav-tabs .dropdown-menu{margin-top:-1px;border-top-left-radius:0;border-top-right-radius:0}.navbar{position:relative;min-height:50px;margin-bottom:20px;border:1px solid transparent}@media (min-width:768px){.navbar{border-radius:4px}}@media (min-width:768px){.navbar-header{float:left}}.navbar-collapse{padding-right:15px;padding-left:15px;overflow-x:visible;-webkit-overflow-scrolling:touch;border-top:1px solid transparent;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,.1);box-shadow:inset 0 1px 0 rgba(255,255,255,.1)}.navbar-collapse.in{overflow-y:auto}@media (min-width:768px){.navbar-collapse{width:auto;border-top:0;-webkit-box-shadow:none;box-shadow:none}.navbar-collapse.collapse{display:block!important;height:auto!important;padding-bottom:0;overflow:visible!important}.navbar-collapse.in{overflow-y:visible}.navbar-fixed-bottom .navbar-collapse,.navbar-fixed-top .navbar-collapse,.navbar-static-top .navbar-collapse{padding-right:0;padding-left:0}}.navbar-fixed-bottom .navbar-collapse,.navbar-fixed-top .navbar-collapse{max-height:340px}@media (max-device-width:480px) and (orientation:landscape){.navbar-fixed-bottom .navbar-collapse,.navbar-fixed-top .navbar-collapse{max-height:200px}}.container-fluid>.navbar-collapse,.container-fluid>.navbar-header,.container>.navbar-collapse,.container>.navbar-header{margin-right:-15px;margin-left:-15px}@media (min-width:768px){.container-fluid>.navbar-collapse,.container-fluid>.navbar-header,.container>.navbar-collapse,.container>.navbar-header{margin-right:0;margin-left:0}}.navbar-static-top{z-index:1000;border-width:0 0 1px}@media (min-width:768px){.navbar-static-top{border-radius:0}}.navbar-fixed-bottom,.navbar-fixed-top{position:fixed;right:0;left:0;z-index:1030}@media (min-width:768px){.navbar-fixed-bottom,.navbar-fixed-top{border-radius:0}}.navbar-fixed-top{top:0;border-width:0 0 1px}.navbar-fixed-bottom{bottom:0;margin-bottom:0;border-width:1px 0 0}.navbar-brand{float:left;height:50px;padding:15px 15px;font-size:18px;line-height:20px}.navbar-brand:focus,.navbar-brand:hover{text-decoration:none}.navbar-brand>img{display:block}@media (min-width:768px){.navbar>.container .navbar-brand,.navbar>.container-fluid .navbar-brand{margin-left:-15px}}.navbar-toggle{position:relative;float:right;padding:9px 10px;margin-top:8px;margin-right:15px;margin-bottom:8px;background-color:transparent;background-image:none;border:1px solid transparent;border-radius:4px}.navbar-toggle:focus{outline:0}.navbar-toggle .icon-bar{display:block;width:22px;height:2px;border-radius:1px}.navbar-toggle .icon-bar+.icon-bar{margin-top:4px}@media (min-width:768px){.navbar-toggle{display:none}}.navbar-nav{margin:7.5px -15px}.navbar-nav>li>a{padding-top:10px;padding-bottom:10px;line-height:20px}@media (max-width:767px){.navbar-nav .open .dropdown-menu{position:static;float:none;width:auto;margin-top:0;background-color:transparent;border:0;-webkit-box-shadow:none;box-shadow:none}.navbar-nav .open .dropdown-menu .dropdown-header,.navbar-nav .open .dropdown-menu>li>a{padding:5px 15px 5px 25px}.navbar-nav .open .dropdown-menu>li>a{line-height:20px}.navbar-nav .open .dropdown-menu>li>a:focus,.navbar-nav .open .dropdown-menu>li>a:hover{background-image:none}}@media (min-width:768px){.navbar-nav{float:left;margin:0}.navbar-nav>li{float:left}.navbar-nav>li>a{padding-top:15px;padding-bottom:15px}}.navbar-form{padding:10px 15px;margin-top:8px;margin-right:-15px;margin-bottom:8px;margin-left:-15px;border-top:1px solid transparent;border-bottom:1px solid transparent;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,.1),0 1px 0 rgba(255,255,255,.1);box-shadow:inset 0 1px 0 rgba(255,255,255,.1),0 1px 0 rgba(255,255,255,.1)}@media (min-width:768px){.navbar-form .form-group{display:inline-block;margin-bottom:0;vertical-align:middle}.navbar-form .form-control{display:inline-block;width:auto;vertical-align:middle}.navbar-form .form-control-static{display:inline-block}.navbar-form .input-group{display:inline-table;vertical-align:middle}.navbar-form .input-group .form-control,.navbar-form .input-group .input-group-addon,.navbar-form .input-group .input-group-btn{width:auto}.navbar-form .input-group>.form-control{width:100%}.navbar-form .control-label{margin-bottom:0;vertical-align:middle}.navbar-form .checkbox,.navbar-form .radio{display:inline-block;margin-top:0;margin-bottom:0;vertical-align:middle}.navbar-form .checkbox label,.navbar-form .radio label{padding-left:0}.navbar-form .checkbox input[type=checkbox],.navbar-form .radio input[type=radio]{position:relative;margin-left:0}.navbar-form .has-feedback .form-control-feedback{top:0}}@media (max-width:767px){.navbar-form .form-group{margin-bottom:5px}.navbar-form .form-group:last-child{margin-bottom:0}}@media (min-width:768px){.navbar-form{width:auto;padding-top:0;padding-bottom:0;margin-right:0;margin-left:0;border:0;-webkit-box-shadow:none;box-shadow:none}}.navbar-nav>li>.dropdown-menu{margin-top:0;border-top-left-radius:0;border-top-right-radius:0}.navbar-fixed-bottom .navbar-nav>li>.dropdown-menu{margin-bottom:0;border-top-left-radius:4px;border-top-right-radius:4px;border-bottom-right-radius:0;border-bottom-left-radius:0}.navbar-btn{margin-top:8px;margin-bottom:8px}.navbar-btn.btn-sm{margin-top:10px;margin-bottom:10px}.navbar-btn.btn-xs{margin-top:14px;margin-bottom:14px}.navbar-text{margin-top:15px;margin-bottom:15px}@media (min-width:768px){.navbar-text{float:left;margin-right:15px;margin-left:15px}}@media (min-width:768px){.navbar-left{float:left!important}.navbar-right{float:right!important;margin-right:-15px}.navbar-right~.navbar-right{margin-right:0}}.navbar-default{background-color:#f8f8f8;border-color:#e7e7e7}.navbar-default .navbar-brand{color:#777}.navbar-default .navbar-brand:focus,.navbar-default .navbar-brand:hover{color:#5e5e5e;background-color:transparent}.navbar-default .navbar-text{color:#777}.navbar-default .navbar-nav>li>a{color:#777}.navbar-default .navbar-nav>li>a:focus,.navbar-default .navbar-nav>li>a:hover{color:#333;background-color:transparent}.navbar-default .navbar-nav>.active>a,.navbar-default .navbar-nav>.active>a:focus,.navbar-default .navbar-nav>.active>a:hover{color:#555;background-color:#e7e7e7}.navbar-default .navbar-nav>.disabled>a,.navbar-default .navbar-nav>.disabled>a:focus,.navbar-default .navbar-nav>.disabled>a:hover{color:#ccc;background-color:transparent}.navbar-default .navbar-toggle{border-color:#ddd}.navbar-default .navbar-toggle:focus,.navbar-default .navbar-toggle:hover{background-color:#ddd}.navbar-default .navbar-toggle .icon-bar{background-color:#888}.navbar-default .navbar-collapse,.navbar-default .navbar-form{border-color:#e7e7e7}.navbar-default .navbar-nav>.open>a,.navbar-default .navbar-nav>.open>a:focus,.navbar-default .navbar-nav>.open>a:hover{color:#555;background-color:#e7e7e7}@media (max-width:767px){.navbar-default .navbar-nav .open .dropdown-menu>li>a{color:#777}.navbar-default .navbar-nav .open .dropdown-menu>li>a:focus,.navbar-default .navbar-nav .open .dropdown-menu>li>a:hover{color:#333;background-color:transparent}.navbar-default .navbar-nav .open .dropdown-menu>.active>a,.navbar-default .navbar-nav .open .dropdown-menu>.active>a:focus,.navbar-default .navbar-nav .open .dropdown-menu>.active>a:hover{color:#555;background-color:#e7e7e7}.navbar-default .navbar-nav .open .dropdown-menu>.disabled>a,.navbar-default .navbar-nav .open .dropdown-menu>.disabled>a:focus,.navbar-default .navbar-nav .open .dropdown-menu>.disabled>a:hover{color:#ccc;background-color:transparent}}.navbar-default .navbar-link{color:#777}.navbar-default .navbar-link:hover{color:#333}.navbar-default .btn-link{color:#777}.navbar-default .btn-link:focus,.navbar-default .btn-link:hover{color:#333}.navbar-default .btn-link[disabled]:focus,.navbar-default .btn-link[disabled]:hover,fieldset[disabled] .navbar-default .btn-link:focus,fieldset[disabled] .navbar-default .btn-link:hover{color:#ccc}.navbar-inverse{background-color:#222;border-color:#080808}.navbar-inverse .navbar-brand{color:#9d9d9d}.navbar-inverse .navbar-brand:focus,.navbar-inverse .navbar-brand:hover{color:#fff;background-color:transparent}.navbar-inverse .navbar-text{color:#9d9d9d}.navbar-inverse .navbar-nav>li>a{color:#9d9d9d}.navbar-inverse .navbar-nav>li>a:focus,.navbar-inverse .navbar-nav>li>a:hover{color:#fff;background-color:transparent}.navbar-inverse .navbar-nav>.active>a,.navbar-inverse .navbar-nav>.active>a:focus,.navbar-inverse .navbar-nav>.active>a:hover{color:#fff;background-color:#080808}.navbar-inverse .navbar-nav>.disabled>a,.navbar-inverse .navbar-nav>.disabled>a:focus,.navbar-inverse .navbar-nav>.disabled>a:hover{color:#444;background-color:transparent}.navbar-inverse .navbar-toggle{border-color:#333}.navbar-inverse .navbar-toggle:focus,.navbar-inverse .navbar-toggle:hover{background-color:#333}.navbar-inverse .navbar-toggle .icon-bar{background-color:#fff}.navbar-inverse .navbar-collapse,.navbar-inverse .navbar-form{border-color:#101010}.navbar-inverse .navbar-nav>.open>a,.navbar-inverse .navbar-nav>.open>a:focus,.navbar-inverse .navbar-nav>.open>a:hover{color:#fff;background-color:#080808}@media (max-width:767px){.navbar-inverse .navbar-nav .open .dropdown-menu>.dropdown-header{border-color:#080808}.navbar-inverse .navbar-nav .open .dropdown-menu .divider{background-color:#080808}.navbar-inverse .navbar-nav .open .dropdown-menu>li>a{color:#9d9d9d}.navbar-inverse .navbar-nav .open .dropdown-menu>li>a:focus,.navbar-inverse .navbar-nav .open .dropdown-menu>li>a:hover{color:#fff;background-color:transparent}.navbar-inverse .navbar-nav .open .dropdown-menu>.active>a,.navbar-inverse .navbar-nav .open .dropdown-menu>.active>a:focus,.navbar-inverse .navbar-nav .open .dropdown-menu>.active>a:hover{color:#fff;background-color:#080808}.navbar-inverse .navbar-nav .open .dropdown-menu>.disabled>a,.navbar-inverse .navbar-nav .open .dropdown-menu>.disabled>a:focus,.navbar-inverse .navbar-nav .open .dropdown-menu>.disabled>a:hover{color:#444;background-color:transparent}}.navbar-inverse .navbar-link{color:#9d9d9d}.navbar-inverse .navbar-link:hover{color:#fff}.navbar-inverse .btn-link{color:#9d9d9d}.navbar-inverse .btn-link:focus,.navbar-inverse .btn-link:hover{color:#fff}.navbar-inverse .btn-link[disabled]:focus,.navbar-inverse .btn-link[disabled]:hover,fieldset[disabled] .navbar-inverse .btn-link:focus,fieldset[disabled] .navbar-inverse .btn-link:hover{color:#444}.breadcrumb{padding:8px 15px;margin-bottom:20px;list-style:none;background-color:#f5f5f5;border-radius:4px}.breadcrumb>li{display:inline-block}.breadcrumb>li+li:before{padding:0 5px;color:#ccc;content:"/\00a0"}.breadcrumb>.active{color:#777}.pagination{display:inline-block;padding-left:0;margin:20px 0;border-radius:4px}.pagination>li{display:inline}.pagination>li>a,.pagination>li>span{position:relative;float:left;padding:6px 12px;margin-left:-1px;line-height:1.42857143;color:#337ab7;text-decoration:none;background-color:#fff;border:1px solid #ddd}.pagination>li:first-child>a,.pagination>li:first-child>span{margin-left:0;border-top-left-radius:4px;border-bottom-left-radius:4px}.pagination>li:last-child>a,.pagination>li:last-child>span{border-top-right-radius:4px;border-bottom-right-radius:4px}.pagination>li>a:focus,.pagination>li>a:hover,.pagination>li>span:focus,.pagination>li>span:hover{z-index:3;color:#23527c;background-color:#eee;border-color:#ddd}.pagination>.active>a,.pagination>.active>a:focus,.pagination>.active>a:hover,.pagination>.active>span,.pagination>.active>span:focus,.pagination>.active>span:hover{z-index:2;color:#fff;cursor:default;background-color:#337ab7;border-color:#337ab7}.pagination>.disabled>a,.pagination>.disabled>a:focus,.pagination>.disabled>a:hover,.pagination>.disabled>span,.pagination>.disabled>span:focus,.pagination>.disabled>span:hover{color:#777;cursor:not-allowed;background-color:#fff;border-color:#ddd}.pagination-lg>li>a,.pagination-lg>li>span{padding:10px 16px;font-size:18px;line-height:1.3333333}.pagination-lg>li:first-child>a,.pagination-lg>li:first-child>span{border-top-left-radius:6px;border-bottom-left-radius:6px}.pagination-lg>li:last-child>a,.pagination-lg>li:last-child>span{border-top-right-radius:6px;border-bottom-right-radius:6px}.pagination-sm>li>a,.pagination-sm>li>span{padding:5px 10px;font-size:12px;line-height:1.5}.pagination-sm>li:first-child>a,.pagination-sm>li:first-child>span{border-top-left-radius:3px;border-bottom-left-radius:3px}.pagination-sm>li:last-child>a,.pagination-sm>li:last-child>span{border-top-right-radius:3px;border-bottom-right-radius:3px}.pager{padding-left:0;margin:20px 0;text-align:center;list-style:none}.pager li{display:inline}.pager li>a,.pager li>span{display:inline-block;padding:5px 14px;background-color:#fff;border:1px solid #ddd;border-radius:15px}.pager li>a:focus,.pager li>a:hover{text-decoration:none;background-color:#eee}.pager .next>a,.pager .next>span{float:right}.pager .previous>a,.pager .previous>span{float:left}.pager .disabled>a,.pager .disabled>a:focus,.pager .disabled>a:hover,.pager .disabled>span{color:#777;cursor:not-allowed;background-color:#fff}.label{display:inline;padding:.2em .6em .3em;font-size:75%;font-weight:700;line-height:1;color:#fff;text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:.25em}a.label:focus,a.label:hover{color:#fff;text-decoration:none;cursor:pointer}.label:empty{display:none}.btn .label{position:relative;top:-1px}.label-default{background-color:#777}.label-default[href]:focus,.label-default[href]:hover{background-color:#5e5e5e}.label-primary{background-color:#337ab7}.label-primary[href]:focus,.label-primary[href]:hover{background-color:#286090}.label-success{background-color:#5cb85c}.label-success[href]:focus,.label-success[href]:hover{background-color:#449d44}.label-info{background-color:#5bc0de}.label-info[href]:focus,.label-info[href]:hover{background-color:#31b0d5}.label-warning{background-color:#f0ad4e}.label-warning[href]:focus,.label-warning[href]:hover{background-color:#ec971f}.label-danger{background-color:#d9534f}.label-danger[href]:focus,.label-danger[href]:hover{background-color:#c9302c}.badge{display:inline-block;min-width:10px;padding:3px 7px;font-size:12px;font-weight:700;line-height:1;color:#fff;text-align:center;white-space:nowrap;vertical-align:middle;background-color:#777;border-radius:10px}.badge:empty{display:none}.btn .badge{position:relative;top:-1px}.btn-group-xs>.btn .badge,.btn-xs .badge{top:0;padding:1px 5px}a.badge:focus,a.badge:hover{color:#fff;text-decoration:none;cursor:pointer}.list-group-item.active>.badge,.nav-pills>.active>a>.badge{color:#337ab7;background-color:#fff}.list-group-item>.badge{float:right}.list-group-item>.badge+.badge{margin-right:5px}.nav-pills>li>a>.badge{margin-left:3px}.jumbotron{padding-top:30px;padding-bottom:30px;margin-bottom:30px;color:inherit;background-color:#eee}.jumbotron .h1,.jumbotron h1{color:inherit}.jumbotron p{margin-bottom:15px;font-size:21px;font-weight:200}.jumbotron>hr{border-top-color:#d5d5d5}.container .jumbotron,.container-fluid .jumbotron{border-radius:6px}.jumbotron .container{max-width:100%}@media screen and (min-width:768px){.jumbotron{padding-top:48px;padding-bottom:48px}.container .jumbotron,.container-fluid .jumbotron{padding-right:60px;padding-left:60px}.jumbotron .h1,.jumbotron h1{font-size:63px}}.thumbnail{display:block;padding:4px;margin-bottom:20px;line-height:1.42857143;background-color:#fff;border:1px solid #ddd;border-radius:4px;-webkit-transition:border .2s ease-in-out;-o-transition:border .2s ease-in-out;transition:border .2s ease-in-out}.thumbnail a>img,.thumbnail>img{margin-right:auto;margin-left:auto}a.thumbnail.active,a.thumbnail:focus,a.thumbnail:hover{border-color:#337ab7}.thumbnail .caption{padding:9px;color:#333}.alert{padding:15px;margin-bottom:20px;border:1px solid transparent;border-radius:4px}.alert h4{margin-top:0;color:inherit}.alert .alert-link{font-weight:700}.alert>p,.alert>ul{margin-bottom:0}.alert>p+p{margin-top:5px}.alert-dismissable,.alert-dismissible{padding-right:35px}.alert-dismissable .close,.alert-dismissible .close{position:relative;top:-2px;right:-21px;color:inherit}.alert-success{color:#3c763d;background-color:#dff0d8;border-color:#d6e9c6}.alert-success hr{border-top-color:#c9e2b3}.alert-success .alert-link{color:#2b542c}.alert-info{color:#31708f;background-color:#d9edf7;border-color:#bce8f1}.alert-info hr{border-top-color:#a6e1ec}.alert-info .alert-link{color:#245269}.alert-warning{color:#8a6d3b;background-color:#fcf8e3;border-color:#faebcc}.alert-warning hr{border-top-color:#f7e1b5}.alert-warning .alert-link{color:#66512c}.alert-danger{color:#a94442;background-color:#f2dede;border-color:#ebccd1}.alert-danger hr{border-top-color:#e4b9c0}.alert-danger .alert-link{color:#843534}@-webkit-keyframes progress-bar-stripes{from{background-position:40px 0}to{background-position:0 0}}@-o-keyframes progress-bar-stripes{from{background-position:40px 0}to{background-position:0 0}}@keyframes progress-bar-stripes{from{background-position:40px 0}to{background-position:0 0}}.progress{height:20px;margin-bottom:20px;overflow:hidden;background-color:#f5f5f5;border-radius:4px;-webkit-box-shadow:inset 0 1px 2px rgba(0,0,0,.1);box-shadow:inset 0 1px 2px rgba(0,0,0,.1)}.progress-bar{float:left;width:0;height:100%;font-size:12px;line-height:20px;color:#fff;text-align:center;background-color:#337ab7;-webkit-box-shadow:inset 0 -1px 0 rgba(0,0,0,.15);box-shadow:inset 0 -1px 0 rgba(0,0,0,.15);-webkit-transition:width .6s ease;-o-transition:width .6s ease;transition:width .6s ease}.progress-bar-striped,.progress-striped .progress-bar{background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);-webkit-background-size:40px 40px;background-size:40px 40px}.progress-bar.active,.progress.active .progress-bar{-webkit-animation:progress-bar-stripes 2s linear infinite;-o-animation:progress-bar-stripes 2s linear infinite;animation:progress-bar-stripes 2s linear infinite}.progress-bar-success{background-color:#5cb85c}.progress-striped .progress-bar-success{background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent)}.progress-bar-info{background-color:#5bc0de}.progress-striped .progress-bar-info{background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent)}.progress-bar-warning{background-color:#f0ad4e}.progress-striped .progress-bar-warning{background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent)}.progress-bar-danger{background-color:#d9534f}.progress-striped .progress-bar-danger{background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent)}.media{margin-top:15px}.media:first-child{margin-top:0}.media,.media-body{overflow:hidden;zoom:1}.media-body{width:10000px}.media-object{display:block}.media-object.img-thumbnail{max-width:none}.media-right,.media>.pull-right{padding-left:10px}.media-left,.media>.pull-left{padding-right:10px}.media-body,.media-left,.media-right{display:table-cell;vertical-align:top}.media-middle{vertical-align:middle}.media-bottom{vertical-align:bottom}.media-heading{margin-top:0;margin-bottom:5px}.media-list{padding-left:0;list-style:none}.list-group{padding-left:0;margin-bottom:20px}.list-group-item{position:relative;display:block;padding:10px 15px;margin-bottom:-1px;background-color:#fff;border:1px solid #ddd}.list-group-item:first-child{border-top-left-radius:4px;border-top-right-radius:4px}.list-group-item:last-child{margin-bottom:0;border-bottom-right-radius:4px;border-bottom-left-radius:4px}a.list-group-item,button.list-group-item{color:#555}a.list-group-item .list-group-item-heading,button.list-group-item .list-group-item-heading{color:#333}a.list-group-item:focus,a.list-group-item:hover,button.list-group-item:focus,button.list-group-item:hover{color:#555;text-decoration:none;background-color:#f5f5f5}button.list-group-item{width:100%;text-align:left}.list-group-item.disabled,.list-group-item.disabled:focus,.list-group-item.disabled:hover{color:#777;cursor:not-allowed;background-color:#eee}.list-group-item.disabled .list-group-item-heading,.list-group-item.disabled:focus .list-group-item-heading,.list-group-item.disabled:hover .list-group-item-heading{color:inherit}.list-group-item.disabled .list-group-item-text,.list-group-item.disabled:focus .list-group-item-text,.list-group-item.disabled:hover .list-group-item-text{color:#777}.list-group-item.active,.list-group-item.active:focus,.list-group-item.active:hover{z-index:2;color:#fff;background-color:#337ab7;border-color:#337ab7}.list-group-item.active .list-group-item-heading,.list-group-item.active .list-group-item-heading>.small,.list-group-item.active .list-group-item-heading>small,.list-group-item.active:focus .list-group-item-heading,.list-group-item.active:focus .list-group-item-heading>.small,.list-group-item.active:focus .list-group-item-heading>small,.list-group-item.active:hover .list-group-item-heading,.list-group-item.active:hover .list-group-item-heading>.small,.list-group-item.active:hover .list-group-item-heading>small{color:inherit}.list-group-item.active .list-group-item-text,.list-group-item.active:focus .list-group-item-text,.list-group-item.active:hover .list-group-item-text{color:#c7ddef}.list-group-item-success{color:#3c763d;background-color:#dff0d8}a.list-group-item-success,button.list-group-item-success{color:#3c763d}a.list-group-item-success .list-group-item-heading,button.list-group-item-success .list-group-item-heading{color:inherit}a.list-group-item-success:focus,a.list-group-item-success:hover,button.list-group-item-success:focus,button.list-group-item-success:hover{color:#3c763d;background-color:#d0e9c6}a.list-group-item-success.active,a.list-group-item-success.active:focus,a.list-group-item-success.active:hover,button.list-group-item-success.active,button.list-group-item-success.active:focus,button.list-group-item-success.active:hover{color:#fff;background-color:#3c763d;border-color:#3c763d}.list-group-item-info{color:#31708f;background-color:#d9edf7}a.list-group-item-info,button.list-group-item-info{color:#31708f}a.list-group-item-info .list-group-item-heading,button.list-group-item-info .list-group-item-heading{color:inherit}a.list-group-item-info:focus,a.list-group-item-info:hover,button.list-group-item-info:focus,button.list-group-item-info:hover{color:#31708f;background-color:#c4e3f3}a.list-group-item-info.active,a.list-group-item-info.active:focus,a.list-group-item-info.active:hover,button.list-group-item-info.active,button.list-group-item-info.active:focus,button.list-group-item-info.active:hover{color:#fff;background-color:#31708f;border-color:#31708f}.list-group-item-warning{color:#8a6d3b;background-color:#fcf8e3}a.list-group-item-warning,button.list-group-item-warning{color:#8a6d3b}a.list-group-item-warning .list-group-item-heading,button.list-group-item-warning .list-group-item-heading{color:inherit}a.list-group-item-warning:focus,a.list-group-item-warning:hover,button.list-group-item-warning:focus,button.list-group-item-warning:hover{color:#8a6d3b;background-color:#faf2cc}a.list-group-item-warning.active,a.list-group-item-warning.active:focus,a.list-group-item-warning.active:hover,button.list-group-item-warning.active,button.list-group-item-warning.active:focus,button.list-group-item-warning.active:hover{color:#fff;background-color:#8a6d3b;border-color:#8a6d3b}.list-group-item-danger{color:#a94442;background-color:#f2dede}a.list-group-item-danger,button.list-group-item-danger{color:#a94442}a.list-group-item-danger .list-group-item-heading,button.list-group-item-danger .list-group-item-heading{color:inherit}a.list-group-item-danger:focus,a.list-group-item-danger:hover,button.list-group-item-danger:focus,button.list-group-item-danger:hover{color:#a94442;background-color:#ebcccc}a.list-group-item-danger.active,a.list-group-item-danger.active:focus,a.list-group-item-danger.active:hover,button.list-group-item-danger.active,button.list-group-item-danger.active:focus,button.list-group-item-danger.active:hover{color:#fff;background-color:#a94442;border-color:#a94442}.list-group-item-heading{margin-top:0;margin-bottom:5px}.list-group-item-text{margin-bottom:0;line-height:1.3}.panel{margin-bottom:20px;background-color:#fff;border:1px solid transparent;border-radius:4px;-webkit-box-shadow:0 1px 1px rgba(0,0,0,.05);box-shadow:0 1px 1px rgba(0,0,0,.05)}.panel-body{padding:15px}.panel-heading{padding:10px 15px;border-bottom:1px solid transparent;border-top-left-radius:3px;border-top-right-radius:3px}.panel-heading>.dropdown .dropdown-toggle{color:inherit}.panel-title{margin-top:0;margin-bottom:0;font-size:16px;color:inherit}.panel-title>.small,.panel-title>.small>a,.panel-title>a,.panel-title>small,.panel-title>small>a{color:inherit}.panel-footer{padding:10px 15px;background-color:#f5f5f5;border-top:1px solid #ddd;border-bottom-right-radius:3px;border-bottom-left-radius:3px}.panel>.list-group,.panel>.panel-collapse>.list-group{margin-bottom:0}.panel>.list-group .list-group-item,.panel>.panel-collapse>.list-group .list-group-item{border-width:1px 0;border-radius:0}.panel>.list-group:first-child .list-group-item:first-child,.panel>.panel-collapse>.list-group:first-child .list-group-item:first-child{border-top:0;border-top-left-radius:3px;border-top-right-radius:3px}.panel>.list-group:last-child .list-group-item:last-child,.panel>.panel-collapse>.list-group:last-child .list-group-item:last-child{border-bottom:0;border-bottom-right-radius:3px;border-bottom-left-radius:3px}.panel>.panel-heading+.panel-collapse>.list-group .list-group-item:first-child{border-top-left-radius:0;border-top-right-radius:0}.panel-heading+.list-group .list-group-item:first-child{border-top-width:0}.list-group+.panel-footer{border-top-width:0}.panel>.panel-collapse>.table,.panel>.table,.panel>.table-responsive>.table{margin-bottom:0}.panel>.panel-collapse>.table caption,.panel>.table caption,.panel>.table-responsive>.table caption{padding-right:15px;padding-left:15px}.panel>.table-responsive:first-child>.table:first-child,.panel>.table:first-child{border-top-left-radius:3px;border-top-right-radius:3px}.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child,.panel>.table:first-child>tbody:first-child>tr:first-child,.panel>.table:first-child>thead:first-child>tr:first-child{border-top-left-radius:3px;border-top-right-radius:3px}.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child td:first-child,.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child th:first-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child td:first-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child th:first-child,.panel>.table:first-child>tbody:first-child>tr:first-child td:first-child,.panel>.table:first-child>tbody:first-child>tr:first-child th:first-child,.panel>.table:first-child>thead:first-child>tr:first-child td:first-child,.panel>.table:first-child>thead:first-child>tr:first-child th:first-child{border-top-left-radius:3px}.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child td:last-child,.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child th:last-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child td:last-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child th:last-child,.panel>.table:first-child>tbody:first-child>tr:first-child td:last-child,.panel>.table:first-child>tbody:first-child>tr:first-child th:last-child,.panel>.table:first-child>thead:first-child>tr:first-child td:last-child,.panel>.table:first-child>thead:first-child>tr:first-child th:last-child{border-top-right-radius:3px}.panel>.table-responsive:last-child>.table:last-child,.panel>.table:last-child{border-bottom-right-radius:3px;border-bottom-left-radius:3px}.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child,.panel>.table:last-child>tbody:last-child>tr:last-child,.panel>.table:last-child>tfoot:last-child>tr:last-child{border-bottom-right-radius:3px;border-bottom-left-radius:3px}.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child td:first-child,.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child th:first-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child td:first-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child th:first-child,.panel>.table:last-child>tbody:last-child>tr:last-child td:first-child,.panel>.table:last-child>tbody:last-child>tr:last-child th:first-child,.panel>.table:last-child>tfoot:last-child>tr:last-child td:first-child,.panel>.table:last-child>tfoot:last-child>tr:last-child th:first-child{border-bottom-left-radius:3px}.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child td:last-child,.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child th:last-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child td:last-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child th:last-child,.panel>.table:last-child>tbody:last-child>tr:last-child td:last-child,.panel>.table:last-child>tbody:last-child>tr:last-child th:last-child,.panel>.table:last-child>tfoot:last-child>tr:last-child td:last-child,.panel>.table:last-child>tfoot:last-child>tr:last-child th:last-child{border-bottom-right-radius:3px}.panel>.panel-body+.table,.panel>.panel-body+.table-responsive,.panel>.table+.panel-body,.panel>.table-responsive+.panel-body{border-top:1px solid #ddd}.panel>.table>tbody:first-child>tr:first-child td,.panel>.table>tbody:first-child>tr:first-child th{border-top:0}.panel>.table-bordered,.panel>.table-responsive>.table-bordered{border:0}.panel>.table-bordered>tbody>tr>td:first-child,.panel>.table-bordered>tbody>tr>th:first-child,.panel>.table-bordered>tfoot>tr>td:first-child,.panel>.table-bordered>tfoot>tr>th:first-child,.panel>.table-bordered>thead>tr>td:first-child,.panel>.table-bordered>thead>tr>th:first-child,.panel>.table-responsive>.table-bordered>tbody>tr>td:first-child,.panel>.table-responsive>.table-bordered>tbody>tr>th:first-child,.panel>.table-responsive>.table-bordered>tfoot>tr>td:first-child,.panel>.table-responsive>.table-bordered>tfoot>tr>th:first-child,.panel>.table-responsive>.table-bordered>thead>tr>td:first-child,.panel>.table-responsive>.table-bordered>thead>tr>th:first-child{border-left:0}.panel>.table-bordered>tbody>tr>td:last-child,.panel>.table-bordered>tbody>tr>th:last-child,.panel>.table-bordered>tfoot>tr>td:last-child,.panel>.table-bordered>tfoot>tr>th:last-child,.panel>.table-bordered>thead>tr>td:last-child,.panel>.table-bordered>thead>tr>th:last-child,.panel>.table-responsive>.table-bordered>tbody>tr>td:last-child,.panel>.table-responsive>.table-bordered>tbody>tr>th:last-child,.panel>.table-responsive>.table-bordered>tfoot>tr>td:last-child,.panel>.table-responsive>.table-bordered>tfoot>tr>th:last-child,.panel>.table-responsive>.table-bordered>thead>tr>td:last-child,.panel>.table-responsive>.table-bordered>thead>tr>th:last-child{border-right:0}.panel>.table-bordered>tbody>tr:first-child>td,.panel>.table-bordered>tbody>tr:first-child>th,.panel>.table-bordered>thead>tr:first-child>td,.panel>.table-bordered>thead>tr:first-child>th,.panel>.table-responsive>.table-bordered>tbody>tr:first-child>td,.panel>.table-responsive>.table-bordered>tbody>tr:first-child>th,.panel>.table-responsive>.table-bordered>thead>tr:first-child>td,.panel>.table-responsive>.table-bordered>thead>tr:first-child>th{border-bottom:0}.panel>.table-bordered>tbody>tr:last-child>td,.panel>.table-bordered>tbody>tr:last-child>th,.panel>.table-bordered>tfoot>tr:last-child>td,.panel>.table-bordered>tfoot>tr:last-child>th,.panel>.table-responsive>.table-bordered>tbody>tr:last-child>td,.panel>.table-responsive>.table-bordered>tbody>tr:last-child>th,.panel>.table-responsive>.table-bordered>tfoot>tr:last-child>td,.panel>.table-responsive>.table-bordered>tfoot>tr:last-child>th{border-bottom:0}.panel>.table-responsive{margin-bottom:0;border:0}.panel-group{margin-bottom:20px}.panel-group .panel{margin-bottom:0;border-radius:4px}.panel-group .panel+.panel{margin-top:5px}.panel-group .panel-heading{border-bottom:0}.panel-group .panel-heading+.panel-collapse>.list-group,.panel-group .panel-heading+.panel-collapse>.panel-body{border-top:1px solid #ddd}.panel-group .panel-footer{border-top:0}.panel-group .panel-footer+.panel-collapse .panel-body{border-bottom:1px solid #ddd}.panel-default{border-color:#ddd}.panel-default>.panel-heading{color:#333;background-color:#f5f5f5;border-color:#ddd}.panel-default>.panel-heading+.panel-collapse>.panel-body{border-top-color:#ddd}.panel-default>.panel-heading .badge{color:#f5f5f5;background-color:#333}.panel-default>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#ddd}.panel-primary{border-color:#337ab7}.panel-primary>.panel-heading{color:#fff;background-color:#337ab7;border-color:#337ab7}.panel-primary>.panel-heading+.panel-collapse>.panel-body{border-top-color:#337ab7}.panel-primary>.panel-heading .badge{color:#337ab7;background-color:#fff}.panel-primary>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#337ab7}.panel-success{border-color:#d6e9c6}.panel-success>.panel-heading{color:#3c763d;background-color:#dff0d8;border-color:#d6e9c6}.panel-success>.panel-heading+.panel-collapse>.panel-body{border-top-color:#d6e9c6}.panel-success>.panel-heading .badge{color:#dff0d8;background-color:#3c763d}.panel-success>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#d6e9c6}.panel-info{border-color:#bce8f1}.panel-info>.panel-heading{color:#31708f;background-color:#d9edf7;border-color:#bce8f1}.panel-info>.panel-heading+.panel-collapse>.panel-body{border-top-color:#bce8f1}.panel-info>.panel-heading .badge{color:#d9edf7;background-color:#31708f}.panel-info>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#bce8f1}.panel-warning{border-color:#faebcc}.panel-warning>.panel-heading{color:#8a6d3b;background-color:#fcf8e3;border-color:#faebcc}.panel-warning>.panel-heading+.panel-collapse>.panel-body{border-top-color:#faebcc}.panel-warning>.panel-heading .badge{color:#fcf8e3;background-color:#8a6d3b}.panel-warning>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#faebcc}.panel-danger{border-color:#ebccd1}.panel-danger>.panel-heading{color:#a94442;background-color:#f2dede;border-color:#ebccd1}.panel-danger>.panel-heading+.panel-collapse>.panel-body{border-top-color:#ebccd1}.panel-danger>.panel-heading .badge{color:#f2dede;background-color:#a94442}.panel-danger>.panel-footer+.panel-collapse>.panel-body{border-bottom-color:#ebccd1}.embed-responsive{position:relative;display:block;height:0;padding:0;overflow:hidden}.embed-responsive .embed-responsive-item,.embed-responsive embed,.embed-responsive iframe,.embed-responsive object,.embed-responsive video{position:absolute;top:0;bottom:0;left:0;width:100%;height:100%;border:0}.embed-responsive-16by9{padding-bottom:56.25%}.embed-responsive-4by3{padding-bottom:75%}.well{min-height:20px;padding:19px;margin-bottom:20px;background-color:#f5f5f5;border:1px solid #e3e3e3;border-radius:4px;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.05);box-shadow:inset 0 1px 1px rgba(0,0,0,.05)}.well blockquote{border-color:#ddd;border-color:rgba(0,0,0,.15)}.well-lg{padding:24px;border-radius:6px}.well-sm{padding:9px;border-radius:3px}.close{float:right;font-size:21px;font-weight:700;line-height:1;color:#000;text-shadow:0 1px 0 #fff;filter:alpha(opacity=20);opacity:.2}.close:focus,.close:hover{color:#000;text-decoration:none;cursor:pointer;filter:alpha(opacity=50);opacity:.5}button.close{-webkit-appearance:none;padding:0;cursor:pointer;background:0 0;border:0}.modal-open{overflow:hidden}.modal{position:fixed;top:0;right:0;bottom:0;left:0;z-index:1050;display:none;overflow:hidden;-webkit-overflow-scrolling:touch;outline:0}.modal.fade .modal-dialog{-webkit-transition:-webkit-transform .3s ease-out;-o-transition:-o-transform .3s ease-out;transition:transform .3s ease-out;-webkit-transform:translate(0,-25%);-ms-transform:translate(0,-25%);-o-transform:translate(0,-25%);transform:translate(0,-25%)}.modal.in .modal-dialog{-webkit-transform:translate(0,0);-ms-transform:translate(0,0);-o-transform:translate(0,0);transform:translate(0,0)}.modal-open .modal{overflow-x:hidden;overflow-y:auto}.modal-dialog{position:relative;width:auto;margin:10px}.modal-content{position:relative;background-color:#fff;-webkit-background-clip:padding-box;background-clip:padding-box;border:1px solid #999;border:1px solid rgba(0,0,0,.2);border-radius:6px;outline:0;-webkit-box-shadow:0 3px 9px rgba(0,0,0,.5);box-shadow:0 3px 9px rgba(0,0,0,.5)}.modal-backdrop{position:fixed;top:0;right:0;bottom:0;left:0;z-index:1040;background-color:#000}.modal-backdrop.fade{filter:alpha(opacity=0);opacity:0}.modal-backdrop.in{filter:alpha(opacity=50);opacity:.5}.modal-header{min-height:16.43px;padding:15px;border-bottom:1px solid #e5e5e5}.modal-header .close{margin-top:-2px}.modal-title{margin:0;line-height:1.42857143}.modal-body{position:relative;padding:15px}.modal-footer{padding:15px;text-align:right;border-top:1px solid #e5e5e5}.modal-footer .btn+.btn{margin-bottom:0;margin-left:5px}.modal-footer .btn-group .btn+.btn{margin-left:-1px}.modal-footer .btn-block+.btn-block{margin-left:0}.modal-scrollbar-measure{position:absolute;top:-9999px;width:50px;height:50px;overflow:scroll}@media (min-width:768px){.modal-dialog{width:600px;margin:30px auto}.modal-content{-webkit-box-shadow:0 5px 15px rgba(0,0,0,.5);box-shadow:0 5px 15px rgba(0,0,0,.5)}.modal-sm{width:300px}}@media (min-width:992px){.modal-lg{width:900px}}.tooltip{position:absolute;z-index:1070;display:block;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:12px;font-style:normal;font-weight:400;line-height:1.42857143;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;word-spacing:normal;word-wrap:normal;white-space:normal;filter:alpha(opacity=0);opacity:0;line-break:auto}.tooltip.in{filter:alpha(opacity=90);opacity:.9}.tooltip.top{padding:5px 0;margin-top:-3px}.tooltip.right{padding:0 5px;margin-left:3px}.tooltip.bottom{padding:5px 0;margin-top:3px}.tooltip.left{padding:0 5px;margin-left:-3px}.tooltip-inner{max-width:200px;padding:3px 8px;color:#fff;text-align:center;background-color:#000;border-radius:4px}.tooltip-arrow{position:absolute;width:0;height:0;border-color:transparent;border-style:solid}.tooltip.top .tooltip-arrow{bottom:0;left:50%;margin-left:-5px;border-width:5px 5px 0;border-top-color:#000}.tooltip.top-left .tooltip-arrow{right:5px;bottom:0;margin-bottom:-5px;border-width:5px 5px 0;border-top-color:#000}.tooltip.top-right .tooltip-arrow{bottom:0;left:5px;margin-bottom:-5px;border-width:5px 5px 0;border-top-color:#000}.tooltip.right .tooltip-arrow{top:50%;left:0;margin-top:-5px;border-width:5px 5px 5px 0;border-right-color:#000}.tooltip.left .tooltip-arrow{top:50%;right:0;margin-top:-5px;border-width:5px 0 5px 5px;border-left-color:#000}.tooltip.bottom .tooltip-arrow{top:0;left:50%;margin-left:-5px;border-width:0 5px 5px;border-bottom-color:#000}.tooltip.bottom-left .tooltip-arrow{top:0;right:5px;margin-top:-5px;border-width:0 5px 5px;border-bottom-color:#000}.tooltip.bottom-right .tooltip-arrow{top:0;left:5px;margin-top:-5px;border-width:0 5px 5px;border-bottom-color:#000}.popover{position:absolute;top:0;left:0;z-index:1060;display:none;max-width:276px;padding:1px;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;font-style:normal;font-weight:400;line-height:1.42857143;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;word-spacing:normal;word-wrap:normal;white-space:normal;background-color:#fff;-webkit-background-clip:padding-box;background-clip:padding-box;border:1px solid #ccc;border:1px solid rgba(0,0,0,.2);border-radius:6px;-webkit-box-shadow:0 5px 10px rgba(0,0,0,.2);box-shadow:0 5px 10px rgba(0,0,0,.2);line-break:auto}.popover.top{margin-top:-10px}.popover.right{margin-left:10px}.popover.bottom{margin-top:10px}.popover.left{margin-left:-10px}.popover-title{padding:8px 14px;margin:0;font-size:14px;background-color:#f7f7f7;border-bottom:1px solid #ebebeb;border-radius:5px 5px 0 0}.popover-content{padding:9px 14px}.popover>.arrow,.popover>.arrow:after{position:absolute;display:block;width:0;height:0;border-color:transparent;border-style:solid}.popover>.arrow{border-width:11px}.popover>.arrow:after{content:"";border-width:10px}.popover.top>.arrow{bottom:-11px;left:50%;margin-left:-11px;border-top-color:#999;border-top-color:rgba(0,0,0,.25);border-bottom-width:0}.popover.top>.arrow:after{bottom:1px;margin-left:-10px;content:" ";border-top-color:#fff;border-bottom-width:0}.popover.right>.arrow{top:50%;left:-11px;margin-top:-11px;border-right-color:#999;border-right-color:rgba(0,0,0,.25);border-left-width:0}.popover.right>.arrow:after{bottom:-10px;left:1px;content:" ";border-right-color:#fff;border-left-width:0}.popover.bottom>.arrow{top:-11px;left:50%;margin-left:-11px;border-top-width:0;border-bottom-color:#999;border-bottom-color:rgba(0,0,0,.25)}.popover.bottom>.arrow:after{top:1px;margin-left:-10px;content:" ";border-top-width:0;border-bottom-color:#fff}.popover.left>.arrow{top:50%;right:-11px;margin-top:-11px;border-right-width:0;border-left-color:#999;border-left-color:rgba(0,0,0,.25)}.popover.left>.arrow:after{right:1px;bottom:-10px;content:" ";border-right-width:0;border-left-color:#fff}.carousel{position:relative}.carousel-inner{position:relative;width:100%;overflow:hidden}.carousel-inner>.item{position:relative;display:none;-webkit-transition:.6s ease-in-out left;-o-transition:.6s ease-in-out left;transition:.6s ease-in-out left}.carousel-inner>.item>a>img,.carousel-inner>.item>img{line-height:1}@media all and (transform-3d),(-webkit-transform-3d){.carousel-inner>.item{-webkit-transition:-webkit-transform .6s ease-in-out;-o-transition:-o-transform .6s ease-in-out;transition:transform .6s ease-in-out;-webkit-backface-visibility:hidden;backface-visibility:hidden;-webkit-perspective:1000px;perspective:1000px}.carousel-inner>.item.active.right,.carousel-inner>.item.next{left:0;-webkit-transform:translate3d(100%,0,0);transform:translate3d(100%,0,0)}.carousel-inner>.item.active.left,.carousel-inner>.item.prev{left:0;-webkit-transform:translate3d(-100%,0,0);transform:translate3d(-100%,0,0)}.carousel-inner>.item.active,.carousel-inner>.item.next.left,.carousel-inner>.item.prev.right{left:0;-webkit-transform:translate3d(0,0,0);transform:translate3d(0,0,0)}}.carousel-inner>.active,.carousel-inner>.next,.carousel-inner>.prev{display:block}.carousel-inner>.active{left:0}.carousel-inner>.next,.carousel-inner>.prev{position:absolute;top:0;width:100%}.carousel-inner>.next{left:100%}.carousel-inner>.prev{left:-100%}.carousel-inner>.next.left,.carousel-inner>.prev.right{left:0}.carousel-inner>.active.left{left:-100%}.carousel-inner>.active.right{left:100%}.carousel-control{position:absolute;top:0;bottom:0;left:0;width:15%;font-size:20px;color:#fff;text-align:center;text-shadow:0 1px 2px rgba(0,0,0,.6);filter:alpha(opacity=50);opacity:.5}.carousel-control.left{background-image:-webkit-linear-gradient(left,rgba(0,0,0,.5) 0,rgba(0,0,0,.0001) 100%);background-image:-o-linear-gradient(left,rgba(0,0,0,.5) 0,rgba(0,0,0,.0001) 100%);background-image:-webkit-gradient(linear,left top,right top,from(rgba(0,0,0,.5)),to(rgba(0,0,0,.0001)));background-image:linear-gradient(to right,rgba(0,0,0,.5) 0,rgba(0,0,0,.0001) 100%);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#80000000', endColorstr='#00000000', GradientType=1);background-repeat:repeat-x}.carousel-control.right{right:0;left:auto;background-image:-webkit-linear-gradient(left,rgba(0,0,0,.0001) 0,rgba(0,0,0,.5) 100%);background-image:-o-linear-gradient(left,rgba(0,0,0,.0001) 0,rgba(0,0,0,.5) 100%);background-image:-webkit-gradient(linear,left top,right top,from(rgba(0,0,0,.0001)),to(rgba(0,0,0,.5)));background-image:linear-gradient(to right,rgba(0,0,0,.0001) 0,rgba(0,0,0,.5) 100%);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#00000000', endColorstr='#80000000', GradientType=1);background-repeat:repeat-x}.carousel-control:focus,.carousel-control:hover{color:#fff;text-decoration:none;filter:alpha(opacity=90);outline:0;opacity:.9}.carousel-control .glyphicon-chevron-left,.carousel-control .glyphicon-chevron-right,.carousel-control .icon-next,.carousel-control .icon-prev{position:absolute;top:50%;z-index:5;display:inline-block;margin-top:-10px}.carousel-control .glyphicon-chevron-left,.carousel-control .icon-prev{left:50%;margin-left:-10px}.carousel-control .glyphicon-chevron-right,.carousel-control .icon-next{right:50%;margin-right:-10px}.carousel-control .icon-next,.carousel-control .icon-prev{width:20px;height:20px;font-family:serif;line-height:1}.carousel-control .icon-prev:before{content:'\2039'}.carousel-control .icon-next:before{content:'\203a'}.carousel-indicators{position:absolute;bottom:10px;left:50%;z-index:15;width:60%;padding-left:0;margin-left:-30%;text-align:center;list-style:none}.carousel-indicators li{display:inline-block;width:10px;height:10px;margin:1px;text-indent:-999px;cursor:pointer;background-color:#000\9;background-color:rgba(0,0,0,0);border:1px solid #fff;border-radius:10px}.carousel-indicators .active{width:12px;height:12px;margin:0;background-color:#fff}.carousel-caption{position:absolute;right:15%;bottom:20px;left:15%;z-index:10;padding-top:20px;padding-bottom:20px;color:#fff;text-align:center;text-shadow:0 1px 2px rgba(0,0,0,.6)}.carousel-caption .btn{text-shadow:none}@media screen and (min-width:768px){.carousel-control .glyphicon-chevron-left,.carousel-control .glyphicon-chevron-right,.carousel-control .icon-next,.carousel-control .icon-prev{width:30px;height:30px;margin-top:-15px;font-size:30px}.carousel-control .glyphicon-chevron-left,.carousel-control .icon-prev{margin-left:-15px}.carousel-control .glyphicon-chevron-right,.carousel-control .icon-next{margin-right:-15px}.carousel-caption{right:20%;left:20%;padding-bottom:30px}.carousel-indicators{bottom:20px}}.btn-group-vertical>.btn-group:after,.btn-group-vertical>.btn-group:before,.btn-toolbar:after,.btn-toolbar:before,.clearfix:after,.clearfix:before,.container-fluid:after,.container-fluid:before,.container:after,.container:before,.dl-horizontal dd:after,.dl-horizontal dd:before,.form-horizontal .form-group:after,.form-horizontal .form-group:before,.modal-footer:after,.modal-footer:before,.nav:after,.nav:before,.navbar-collapse:after,.navbar-collapse:before,.navbar-header:after,.navbar-header:before,.navbar:after,.navbar:before,.pager:after,.pager:before,.panel-body:after,.panel-body:before,.row:after,.row:before{display:table;content:" "}.btn-group-vertical>.btn-group:after,.btn-toolbar:after,.clearfix:after,.container-fluid:after,.container:after,.dl-horizontal dd:after,.form-horizontal .form-group:after,.modal-footer:after,.nav:after,.navbar-collapse:after,.navbar-header:after,.navbar:after,.pager:after,.panel-body:after,.row:after{clear:both}.center-block{display:block;margin-right:auto;margin-left:auto}.pull-right{float:right!important}.pull-left{float:left!important}.hide{display:none!important}.show{display:block!important}.invisible{visibility:hidden}.text-hide{font:0/0 a;color:transparent;text-shadow:none;background-color:transparent;border:0}.hidden{display:none!important}.affix{position:fixed}@-ms-viewport{width:device-width}.visible-lg,.visible-md,.visible-sm,.visible-xs{display:none!important}.visible-lg-block,.visible-lg-inline,.visible-lg-inline-block,.visible-md-block,.visible-md-inline,.visible-md-inline-block,.visible-sm-block,.visible-sm-inline,.visible-sm-inline-block,.visible-xs-block,.visible-xs-inline,.visible-xs-inline-block{display:none!important}@media (max-width:767px){.visible-xs{display:block!important}table.visible-xs{display:table!important}tr.visible-xs{display:table-row!important}td.visible-xs,th.visible-xs{display:table-cell!important}}@media (max-width:767px){.visible-xs-block{display:block!important}}@media (max-width:767px){.visible-xs-inline{display:inline!important}}@media (max-width:767px){.visible-xs-inline-block{display:inline-block!important}}@media (min-width:768px) and (max-width:991px){.visible-sm{display:block!important}table.visible-sm{display:table!important}tr.visible-sm{display:table-row!important}td.visible-sm,th.visible-sm{display:table-cell!important}}@media (min-width:768px) and (max-width:991px){.visible-sm-block{display:block!important}}@media (min-width:768px) and (max-width:991px){.visible-sm-inline{display:inline!important}}@media (min-width:768px) and (max-width:991px){.visible-sm-inline-block{display:inline-block!important}}@media (min-width:992px) and (max-width:1199px){.visible-md{display:block!important}table.visible-md{display:table!important}tr.visible-md{display:table-row!important}td.visible-md,th.visible-md{display:table-cell!important}}@media (min-width:992px) and (max-width:1199px){.visible-md-block{display:block!important}}@media (min-width:992px) and (max-width:1199px){.visible-md-inline{display:inline!important}}@media (min-width:992px) and (max-width:1199px){.visible-md-inline-block{display:inline-block!important}}@media (min-width:1200px){.visible-lg{display:block!important}table.visible-lg{display:table!important}tr.visible-lg{display:table-row!important}td.visible-lg,th.visible-lg{display:table-cell!important}}@media (min-width:1200px){.visible-lg-block{display:block!important}}@media (min-width:1200px){.visible-lg-inline{display:inline!important}}@media (min-width:1200px){.visible-lg-inline-block{display:inline-block!important}}@media (max-width:767px){.hidden-xs{display:none!important}}@media (min-width:768px) and (max-width:991px){.hidden-sm{display:none!important}}@media (min-width:992px) and (max-width:1199px){.hidden-md{display:none!important}}@media (min-width:1200px){.hidden-lg{display:none!important}}.visible-print{display:none!important}@media print{.visible-print{display:block!important}table.visible-print{display:table!important}tr.visible-print{display:table-row!important}td.visible-print,th.visible-print{display:table-cell!important}}.visible-print-block{display:none!important}@media print{.visible-print-block{display:block!important}}.visible-print-inline{display:none!important}@media print{.visible-print-inline{display:inline!important}}.visible-print-inline-block{display:none!important}@media print{.visible-print-inline-block{display:inline-block!important}}@media print{.hidden-print{display:none!important}}
+<style type="text/css">@font-face {
+font-family: 'Raleway';
+font-style: normal;
+font-weight: 400;
+src: url(data:application/x-font-truetype;base64,AAEAAAARAQAABAAQR1BPUxtH+3EAANmkAAAfHEdTVULdHN8hAAD4wAAAAHRPUy8yithpFAAAoKQAAABgY21hcB3C/ugAAKEEAAACTGN2dCAMEAMqAACrAAAAADBmcGdtQXn/lwAAo1AAAAdJZ2FzcAAAABAAANmcAAAACGdseWaq/o41AAABHAAAmeBoZWFk+5BgOAAAnNgAAAA2aGhlYQcyA6MAAKCAAAAAJGhtdHjExydIAACdEAAAA3BrZXJuCEgFtQAAqzAAACrGbG9jYSygA/oAAJscAAABum1heHABxwf4AACa/AAAACBuYW1lGqw3ZQAA1fgAAAGAcG9zdNlwGUsAANd4AAACIXByZXB8bZVxAACqnAAAAGEAAQAxAmwAtALaAAMAGEAEAwIBCCtADAEAAgAeAAAADgAjArA7KxMnNzNeLTtIAmwRXQAAAAMADwAAApoDlQAHAAoADgBCQBIAAA4NCgkABwAHBgUEAwIBBwgrQCgMCwIABQgBBAACIQAFAAU3AAQAAgEEAgACKQAAAAwiBgMCAQENASMFsDsrMwEzASMnIQcTAyEDJzczDwEpOQEpS1z+wVv8kgEgiC07SALG/Tre3gJ0/qECEhFdAAMADwAAApoDlQAHAAoAEQBFQBIAAA0MCgkABwAHBgUEAwIBBwgrQCsREA8OCwUABQgBBAACIQAFAAU3AAQAAgEEAgACKQAAAAwiBgMCAQENASMFsDsrMwEzASMnIQcTAyEBNzMXBycHDwEpOQEpS1z+wVv8kgEg/vZiMmMnVVUCxv063t4CdP6hAitVVRU/PwAAAAABACoCcAEhAtoABgAbQAQCAQEIK0APBgUEAwAFAB4AAAAOACMCsDsrEzczFwcnBypiMmMnVVUChVVVFT8/AAAABAAPAAACmgOSAAcACgAOABIAVEAgDw8LCwAADxIPEhEQCw4LDg0MCgkABwAHBgUEAwIBDAgrQCwIAQQAASEHAQULCAoDBgAFBgAAKQAEAAIBBAIAAikAAAAMIgkDAgEBDQEjBbA7KzMBMwEjJyEHEwMhAzUzFTM1MxUPASk5ASlLXP7BW/ySASD2Ols6Asb9Ot7eAnT+oQIfXl5eXgAAAAIAPQJ5AQwC1wADAAcALEASBAQAAAQHBAcGBQADAAMCAQYIK0ASBQMEAwEBAAAAJwIBAAAOASMCsDsrEzUzFTM1MxU9Ols6AnleXl5eAAAAAwAPAAACmgOVAAcACgAOAEJAEgAADAsKCQAHAAcGBQQDAgEHCCtAKA4NAgAFCAEEAAIhAAUABTcABAACAQQCAAIpAAAADCIGAwIBAQ0BIwWwOyszATMBIychBxMDIQMzFwcPASk5ASlLXP7BW/ySASDrRzwsAsb9Ot7eAnT+oQKAXREAAQAxAmwAtALaAAMAGEAEAQABCCtADAMCAgAeAAAADgAjArA7KxMzFwcxRzwsAtpdEQAAAAEANgKXAVcCxgADACFACgAAAAMAAwIBAwgrQA8CAQEBAAAAJwAAAAwBIwKwOysTNSEVNgEhApcvLwAAAAQADwAAApoDlQAHAAoAFgAiAFdAHBgXAAAeHBciGCIVEw8NCgkABwAHBgUEAwIBCwgrQDMIAQQAASEABQoBBwgFBwEAKQAIAAYACAYBACkABAACAQQCAAIpAAAADCIJAwIBAQ0BIwawOyszATMBIychBxMDIQM0NjMyFhUUBiMiJjciBhUUFjMyNjU0Jg8BKTkBKUtc/sFb/JIBINkqICAqKiAgKkoRFxcREBkYAsb9Ot7eAnT+oQI/HSQkHR4kJEQVEREWFhERFQAAAAIAMgJXAMYC2gALABcALkAODQwTEQwXDRcKCAQCBQgrQBgAAwABAwEBACgEAQICAAEAJwAAAA4CIwOwOysTNDYzMhYVFAYjIiY3IgYVFBYzMjY1NCYyKiAgKiogICpKERcXERAZGAKZHSQkHR4kJEQVEREWFhERFQAAAAADAA8AAAKaA5UABwAKACoA60AgDAsAACYlIR8cGhYVEQ8LKgwqCgkABwAHBgUEAwIBDQgrS7AdUFhANQgBBAABIQoBCAAGBQgGAQApAAkHDAIFAAkFAQApAAQAAgEEAgACKQAAAAwiCwMCAQENASMGG0uwIVBYQDwIAQQAASEABwUABQcANQoBCAAGBQgGAQApAAkMAQUHCQUBACkABAACAQQCAAIpAAAADCILAwIBAQ0BIwcbQEAIAQQAASEACggKNwAHBQAFBwA1AAgABgUIBgEAKQAJDAEFBwkFAQApAAQAAgEEAgACKQAAAAwiCwMCAQENASMIWVmwOyszATMBIychBxMDIQMiLgIjIg4CFSM0PgIzMh4CMzI+AjUzFA4CDwEpOQEpS1z+wVv8kgEgURchHRsQERMLAyoHFCQcFR8cHRMTFwwDKggVJwLG/Tre3gJ0/qECJAwPDQ4RDwIFHyAZDRANDhIPAgUeIBkAAAEALAJ2AWoC2gAfAIhAEgEAGxoWFBEPCwoGBAAfAR8HCCtLsB1QWEAaAAQCBgIABAABACgAAQEDAQAnBQEDAw4BIwMbS7AhUFhAHwACAAI4AAQGAQACBAABACkAAQEDAQAnBQEDAw4BIwQbQCMAAgACOAAEBgEAAgQAAQApAAUFDiIAAQEDAQAnAAMDDgEjBVlZsDsrASIuAiMiDgIVIzQ+AjMyHgIzMj4CNTMUDgIBCBchHRsQERMLAyoHFCQcFR8cHRMTFwwDKggVJwJ+DA8NDhEPAgUfIBkNEA0OEg8CBR4gGQAAAAADAFoAAAJvAsYAEgAfACwARUASICAgLCArIyEcGhkXCQcGBAcIK0ArEAECBAEhAAQAAgMEAgEAKQYBBQUBAQAnAAEBDCIAAwMAAQAnAAAADQAjBrA7KyUUDgIjIREhMh4CFRQGBx4BBzQuAiMhESEyPgIBETMyPgI1NC4CIwJvIDZIKf6yAVUlPCoXNjA9R0YSIS0a/vABCRswIhT+dvQaLSESER8rGbcoQzEbAsYgM0EhNlkWEmI1GjElF/7zFiUxAeD++hYkLxobMCMVAAAAAQAs//oCkQLKACcANUAKJCIZFw8NBgQECCtAIx4dCQgEAgEBIQABAQABACcAAAASIgACAgMBACcAAwMTAyMFsDsrEzQ+AjMyFhcHLgMjIg4CFRQeAjMyPgI3Fw4DIyIuAiwtVn5QX4YhOBEwODwdQGJDIilHYTkePzsyEToRPkxVKUl6WDEBaEB/ZD9WRSIjMB4NNFRpNjtsUzEPITEjHig9KhZAZ4MAAQAt/1ACkgLKAEEAqUASPz05NyooIB4XFQ0MCQcEAggIK0uwCVBYQEMvLhoZBAUENQEBBgsAAgABQQEHAAQhAAYAAQAGAQEAKQAAAAcABwEAKAAEBAMBACcAAwMSIgAFBQIBACcAAgINAiMHG0BDLy4aGQQFBDUBAQYLAAIAAUEBBwAEIQAGAAEABgEBACkAAAAHAAcBACgABAQDAQAnAAMDEiIABQUCAQAnAAICEwIjB1mwOysFHgEzMjU0JiMiBgc3LgM1ND4CMzIWFwcuAyMiDgIVFB4CMzI+AjcXDgMPAT4BMzIWFRQGIyImJwEsDjAaORsXFS4NLEV0Uy4tVn5QX4YhOBEwODwdQGJDIilHYTkePzsyEToQOEZPJxwJFQgjKTQyHTIUfgcLIxQQCQVSBEJmf0JAf2Q/VkUiIzAeDTRUaTY7bFMxDyExIx4lOykYAy4EAh8eIiQLCAAAAAEAFv9QAN8AEgAaAEdAChgWEhAJBwQCBAgrQDUOAQECCwACAAEaAQMAAyENDAICHwACAAEAAgEBACkAAAMDAAEAJgAAAAMBACcAAwADAQAkBrA7KxceATMyNTQmIyIGBzcXBz4BMzIWFRQGIyImJycOMBo5GxcVLg05ISMJFQgjKTQyHTIUfgcLIxQQCQVpDTgEAh8eIiQLCAAAAAIAWgAAAp4CxgAMABkAMUAOAAAWFBMRAAwACwMBBQgrQBsAAgIAAQAnAAAADCIAAwMBAQAnBAEBAQ0BIwSwOyszETMyHgIVFA4CIwE0LgIrAREzMj4CWvBVgFUqMFh+TgEOJEVkQaurQmVEIwLGOGCBSVGDXTMBZEBrTiv9ti1PawAAAAEAWgAAAjcCxgALAD9AEgAAAAsACwoJCAcGBQQDAgEHCCtAJQADAAQFAwQAACkAAgIBAAAnAAEBDCIGAQUFAAAAJwAAAA0AIwWwOyslFSERIRUhESEVIRECN/4jAdT+cQFc/qQ+PgLGPv8AO/7xAAACAFoAAAI3A5UAAwAPAE1AFAQEBA8EDw4NDAsKCQgHBgUDAggIK0AxAQACAgABIQAAAgA3AAQABQYEBQAAKQADAwIAACcAAgIMIgcBBgYBAAAnAAEBDQEjB7A7KwEnNzMTFSERIRUhESEVIREBWC07SIn+IwHU/nEBXP6kAycRXfypPgLGPv8AO/7xAAIAWgAAAjcDlQAGABIAUEAUBwcHEgcSERAPDg0MCwoJCAIBCAgrQDQGBQQDAAUCAAEhAAACADcABAAFBgQFAAApAAMDAgAAJwACAgwiBwEGBgEAACcAAQENASMHsDsrEzczFwcnBwEVIREhFSERIRUhEdZiMmMnVVUBO/4jAdT+cQFc/qQDQFVVFT8//RM+AsY+/wA7/vEAAwBaAAACNwOSAAMABwATAF1AIggIBAQAAAgTCBMSERAPDg0MCwoJBAcEBwYFAAMAAwIBDQgrQDMCAQALAwoDAQUAAQAAKQAHAAgJBwgAACkABgYFAAAnAAUFDCIMAQkJBAAAJwAEBA0EIwawOysTNTMVMzUzFRMVIREhFSERIRUhEeo6Wzp+/iMB1P5xAVz+pAM0Xl5eXv0KPgLGPv8AO/7xAAACAFoAAAI3A5UACwAPAE1AFAAADQwACwALCgkIBwYFBAMCAQgIK0AxDw4CAQYBIQAGAQY3AAMABAUDBAAAKQACAgEAACcAAQEMIgcBBQUAAAAnAAAADQAjB7A7KyUVIREhFSERIRUhERMzFwcCN/4jAdT+cQFc/qRWRzwsPj4Cxj7/ADv+8QNXXREAAAIAIgAAAqMCxgAQACEARUAWAAAeHBsaGRgXFQAQAA8HBQQDAgEJCCtAJwUBAQYBAAcBAAAAKQAEBAIBACcAAgIMIgAHBwMBACcIAQMDDQMjBbA7KzMRIzUzETMyHgIVFA4CIwE0LgIrAREzFSMRMzI+Al89PfBVgFUqMFh+TgEOJEVkQaurq6tCZUQjAUo2AUY4YIFJUYNdMwFkQGtOK/74Nv70LU9rAAEAIv/6Au4CygA5AGVAHgAAADkAOTg3NDMyMS0rIiAcGxoZFhUUEw8NBgQNCCtAPwkIAgIBJyYCBgUCIQwLAgIKAQMEAgMAACkJAQQIAQUGBAUAACkAAQEAAQAnAAAAEiIABgYHAQAnAAcHEwcjB7A7KxM+AzMyFhcHLgMjIg4CByEHIRQWFyEHIR4DMzI+AjcXDgMjIi4CJyM3My4BNSM3jQk0VXNIX4YhOBEwODwdN1hBKggBUhL+uwECATAT/uwMMUJRLh4/OzIROhE+TFUpPWlTOg5yElgCAUoSAaA5a1QyVkUiIzAeDSdBVS4rGBsLKy1NOSAPITEjHig9KhYtS2M3KwwbFysAAAABAFoAAAIrAsYACQA2QBAAAAAJAAkIBwYFBAMCAQYIK0AeAAIAAwQCAwAAKQABAQAAACcAAAAMIgUBBAQNBCMEsDsrMxEhFSERIRUhEVoB0f50AU/+sQLGPv77Ov63AAABAC3/+wKYAssAKACHQBAoJyYlJCMgHhYUDQsDAQcIK0uwLlBYQDESEQIFAiIAAgMEAiEABQAEAwUEAAApAAICAQEAJwABARIiAAMDAAEAJwYBAAATACMGG0A1EhECBQIiAAIDBAIhAAUABAMFBAAAKQACAgEBACcAAQESIgAGBg0iAAMDAAEAJwAAABMAIwdZsDsrJQYjIi4CNTQ+AjMyHgIXBy4BIyIOAhUUHgIzMjY3NSM1MxEjAlxjgEh5WTIxV3lHNFVDMhE2I3BHO19DJClIYTk9bjOd2TxnbD5mgURHgmM7Fyk5IiRCPjJTazk8bFEwOT13Nv6jAAABAFoAAAKKAsYACwAzQBIAAAALAAsKCQgHBgUEAwIBBwgrQBkABAABAAQBAAApBgUCAwMMIgIBAAANACMDsDsrAREjESERIxEzESERAopG/ltFRQGlAsb9OgFM/rQCxv7EATwAAQBaAAAAnwLFAAMAH0AKAAAAAwADAgEDCCtADQAAAAwiAgEBAQ0BIwKwOyszETMRWkUCxf07AAABABL/9QGVAsUAEgAtQAgRDwoJBAIDCCtAHQABAAESAQIAAiEAAQEMIgAAAAIBACcAAgIWAiMEsDsrNx4BMzI+AjURMxEUDgIjIicmFkUrNkEiCkYPMFxOWkBZDxYnTG9HAWj+mFGFXjQsAAACAFYAAADZA5UAAwAHAC1ADAAABwYAAwADAgEECCtAGQUEAgACASEAAgACNwAAAAwiAwEBAQ0BIwSwOyszETMRAyc3M1pFHC07SALF/TsDJxFdAAACAAEAAAD4A5UAAwAKADBADAAABgUAAwADAgEECCtAHAoJCAcEBQACASEAAgACNwAAAAwiAwEBAQ0BIwSwOyszETMRAzczFwcnB1pFnmIyYydVVQLF/TsDQFVVFT8/AAADABUAAADkA5IAAwAHAAsAPUAaCAgEBAAACAsICwoJBAcEBwYFAAMAAwIBCQgrQBsEAQIIBQcDAwACAwAAKQAAAAwiBgEBAQ0BIwOwOyszETMRAzUzFTM1MxVaRYo6WzoCxf07AzReXl5eAAACAB8AAACiA5UAAwAHAC1ADAAABQQAAwADAgEECCtAGQcGAgACASEAAgACNwAAAAwiAwEBAQ0BIwSwOyszETMRAzMXB1pFgEc8LALF/TsDlV0RAAABAFoAAAKDAsYACwAuQA4AAAALAAsIBwUEAgEFCCtAGAoJBgMEAgABIQEBAAAMIgQDAgICDQIjA7A7KzMRMxEBMwkBIwEHFVpFAYdN/t4BMk3+8IcCxf5kAZ3+yP5yAWWL2gAAAQBaAAACOgLGAAUAKEAMAAAABQAFBAMCAQQIK0AUAAAADCIAAQECAAInAwECAg0CIwOwOyszETMRIRVaRQGbAsb9eD4AAAAAAQBCAPYAfAFmAAMAKkAKAAAAAwADAgEDCCtAGAAAAQEAAAAmAAAAAQAAJwIBAQABAAAkA7A7Kzc1MxVCOvZwcAAAAAABAFoAAAMUAsYADAA3QBAAAAAMAAwLCggHBgUDAgYIK0AfCQQBAwACASEAAAIBAgABNQMBAgIMIgUEAgEBDQEjBLA7KyERASMBESMRMwkBMxECz/79Kf78RUcBFgEWRwJH/j0Bw/25Asb+GgHm/ToAAQBaAAACqwLGAAkAJ0AKCQgHBgQDAgEECCtAFQUAAgABASECAQEBDCIDAQAADQAjA7A7KxMRIxEzAREzESOfRTYB1kU8AkT9vALG/bECTv07AAAAAgAPAAACmgLGAAcACgA2QBAAAAoJAAcABwYFBAMCAQYIK0AeCAEEAAEhAAQAAgEEAgACKQAAAAwiBQMCAQENASMEsDsrMwEzASMnIQcTAyEPASk5ASlLXP7BW/ySASACxv063t4CdP6hAAAAAgBaAAACqwOVAAkAKQDKQBoLCiUkIB4bGRUUEA4KKQspCQgHBgQDAgELCCtLsB1QWEAsBQACAAEBIQkBBwAFBAcFAQApAAgGCgIEAQgEAQApAgEBAQwiAwEAAA0AIwUbS7AhUFhAMwUAAgABASEABgQBBAYBNQkBBwAFBAcFAQApAAgKAQQGCAQBACkCAQEBDCIDAQAADQAjBhtANwUAAgABASEACQcJNwAGBAEEBgE1AAcABQQHBQEAKQAICgEEBggEAQApAgEBAQwiAwEAAA0AIwdZWbA7KxMRIxEzAREzESMDIi4CIyIOAhUjND4CMzIeAjMyPgI1MxQOAp9FNgHWRTysFyEdGxAREwsDKgcUJBwVHxwdExMXDAMqCBUnAkT9vALG/bECTv07AzkMDw0OEQ8CBR8gGQ0QDQ4SDwIFHiAZAAAAAAIALf/7AscCywATACcAMUAOAQAkIhoYCwkAEwETBQgrQBsAAwMBAQAnAAEBEiIAAgIAAQAnBAEAABMAIwSwOysFIi4CNTQ+AjMyHgIVFA4CARQeAjMyPgI1NC4CIyIOAgF6SntYMDNaekdKe1cwM1l6/rImRmA7PGJEJSdGYDo8YkQlBT1lgkRHgmQ7P2aBQ0eCYzsBaDprUzE0VGo3OmtSMTNUagAAAAIALf/7BFsCywAgADQAsUAeIiEAACwqITQiNAAgACAfHh0cGxoZGBMRCQcCAQwIK0uwLlBYQDQXAQUEAwEHBgIhAAUABgcFBgAAKQkBBAQCAQAnAwECAhIiCwgKAwcHAAEAJwEBAAANACMGG0BOFwEFBAMBBwYCIQAFAAYHBQYAACkJAQQEAgEAJwACAhIiCQEEBAMAACcAAwMMIgsICgMHBwAAACcAAAANIgsICgMHBwEBACcAAQETASMKWbA7KyUVITUOAyMiLgI1ND4CMzIeAhc1IRUhFSEVIREFMj4CNTQuAiMiDgIVFB4CBFv+KBE1RFEtSntYMTNaekcuUkQzEQHP/ncBU/6t/rE8YkQlJ0ZgOjxiRCUmRmA+PrQnRDIcPWWCREeCZDsdMkQmtD7/Pv7zBDNUazg5a1MxM1RrNzprUzEAAAADAC3/+wLHA5UAAwAXACsAP0AQBQQoJh4cDw0EFwUXAwIGCCtAJwEAAgIAASEAAAIANwAEBAIBACcAAgISIgADAwEBACcFAQEBEwEjBrA7KwEnNzMDIi4CNTQ+AjMyHgIVFA4CARQeAjMyPgI1NC4CIyIOAgGBLTtIXUp7WDAzWnpHSntXMDNZev6yJkZgOzxiRCUnRmA6PGJEJQMnEV38Zj1lgkRHgmQ7P2aBQ0eCYzsBaDprUzE0VGo3OmtSMTNUagAAAwAt//sCxwOVAAYAGgAuAEJAEAgHKykhHxIQBxoIGgIBBggrQCoGBQQDAAUCAAEhAAACADcABAQCAQAnAAICEiIAAwMBAQAnBQEBARMBIwawOysBNzMXBycHEyIuAjU0PgIzMh4CFRQOAgEUHgIzMj4CNTQuAiMiDgIBAGIyYydVVVRKe1gwM1p6R0p7VzAzWXr+siZGYDs8YkQlJ0ZgOjxiRCUDQFVVFT8//NA9ZYJER4JkOz9mgUNHgmM7AWg6a1MxNFRqNzprUjEzVGoAAAQALf/7AscDkgADAAcAGwAvAE9AHgkIBAQAACwqIiATEQgbCRsEBwQHBgUAAwADAgELCCtAKQIBAAkDCAMBBQABAAApAAcHBQEAJwAFBRIiAAYGBAEAJwoBBAQTBCMFsDsrATUzFTM1MxUDIi4CNTQ+AjMyHgIVFA4CARQeAjMyPgI1NC4CIyIOAgETOls6aEp7WDAzWnpHSntXMDNZev6yJkZgOzxiRCUnRmA6PGJEJQM0Xl5eXvzHPWWCREeCZDs/ZoFDR4JjOwFoOmtTMTRUajc6a1IxM1RqAAADAC3/+wLHA5UAEwAnACsAP0AQAQApKCQiGhgLCQATARMGCCtAJysqAgEEASEABAEENwADAwEBACcAAQESIgACAgABACcFAQAAEwAjBrA7KwUiLgI1ND4CMzIeAhUUDgIBFB4CMzI+AjU0LgIjIg4CEzMXBwF6SntYMDNaekdKe1cwM1l6/rImRmA7PGJEJSdGYDo8YkQlq0c8LAU9ZYJER4JkOz9mgUNHgmM7AWg6a1MxNFRqNzprUjEzVGoB+10RAAAAAwAt//sCxwLLABsAJwAzAItAEgAAMC4kIgAbABsYFg4NCggHCCtLsC5QWEAwGgEFAiwrIB8PAQYEBQwBAAQDIQAFBQIBACcGAwICAhIiAAQEAAEAJwEBAAATACMFG0A4GgEFAywrIB8PAQYEBQwBAQQDIQYBAwMMIgAFBQIBACcAAgISIgABAQ0iAAQEAAEAJwAAABMAIwdZsDsrAQceARUUDgIjIiYnByM3LgE1ND4CMzIWFzcTNCYnAR4BMzI+AiUUFhcBLgEjIg4CAo05Nj0zWXpHMFUkHU04NjwzWnpHL1QjHkIsJv7GHUImPGJEJf3yKyYBOR1BJTxiRCUCxlU1j0tHgmM7GhcsVDSOTUeCZDsaFyz+nT1vKv4pExU0VGo3PnAqAdgTFTNUagAAAAEAHQAAAkMCxgADAB9ACgAAAAMAAwIBAwgrQA0CAQEBDCIAAAANACMCsDsrCQEjAQJD/idNAdgCxv06AsYAAAADAC3/+wLHA5UAEwAnAEcA4EAeKSgBAENCPjw5NzMyLiwoRylHJCIaGAsJABMBEwwIK0uwHVBYQDIJAQcABQQHBQEAKQAIBgsCBAEIBAEAKQADAwEBACcAAQESIgACAgABACcKAQAAEwAjBhtLsCFQWEA5AAYEAQQGATUJAQcABQQHBQEAKQAICwEEBggEAQApAAMDAQEAJwABARIiAAICAAEAJwoBAAATACMHG0A9AAkHCTcABgQBBAYBNQAHAAUEBwUBACkACAsBBAYIBAEAKQADAwEBACcAAQESIgACAgABACcKAQAAEwAjCFlZsDsrBSIuAjU0PgIzMh4CFRQOAgEUHgIzMj4CNTQuAiMiDgIBIi4CIyIOAhUjND4CMzIeAjMyPgI1MxQOAgF6SntYMDNaekdKe1cwM1l6/rImRmA7PGJEJSdGYDo8YkQlAUYXIR0bEBETCwMqBxQkHBUfHB0TExcMAyoIFScFPWWCREeCZDs/ZoFDR4JjOwFoOmtTMTRUajc6a1IxM1RqAZ8MDw0OEQ8CBR8gGQ0QDQ4SDwIFHiAZAAAAAgBaAAACUgLGAA4AGwA2QBAAABsZEQ8ADgAODQsDAQYIK0AeAAMAAQIDAQEAKQAEBAABACcAAAAMIgUBAgINAiMEsDsrMxEhMh4CFRQOAisBGQEzMj4CNTQuAisBWgEmLk04Hx02Sy7n4x8zJBQXJzUd3QLGJz9QKSxRPib++gFEGy07ICE7LBkAAAACAC3/+wLHAssAFwAvAIFAEhkYJyUdHBgvGS8XFg4MBAIHCCtLsC5QWEAtHhsVAAQDBAEhAAQFAwUEAzUABQUBAQAnAAEBEiIGAQMDAAEAJwIBAAATACMGG0AxHhsVAAQDBAEhAAQFAwUEAzUABQUBAQAnAAEBEiIAAgINIgYBAwMAAQAnAAAAEwAjB1mwOyslDgEjIi4CNTQ+AjMyHgIVFAYHFyMnMjY3JzMXPgE1NC4CIyIOAhUUHgICPClhOEp7WDAzWnpHSntXMDUvVEX4LUwgWUU5IyYnRmA6PGJEJSZGYD8gJD5kgkRHgmQ7P2aBQ0mEMmM6HRlqRCprODprUjIzVGs3OmtTMQAAAgBaAAACaALGABEAHgA/QBIAAB4cFBIAEQAREA8ODQMBBwgrQCUMAQIEASEABAACAQQCAAApAAUFAAEAJwAAAAwiBgMCAQENASMFsDsrMxEhMh4CFRQOAgcTIwMjGQEzMj4CNTQuAisBWgErLk44HxcqOiSvT6jS6R8zJBQXJzUd4wLGJz9QKSdHOScH/u4BBv76AUQbLjogIDssGgAAAAEAI//6Aj8CywAwADVACi4sHBoWFAQCBAgrQCMwGBcABAIAASEAAAADAQAnAAMDEiIAAgIBAQAnAAEBEwEjBbA7KwEuASMiBhUUHgIXHgMVFA4CIyInNx4BMzI2NTQuAicuAzU0PgIzMhYXAfseZT9fVhcxSzM5WkAiJkReN6d2IieEUVVgGzZRNThUOR0lQ104Rm8tAkEiKkc9ICkeFgsMHS1BMDFIMBdnOSk5PT4hLSEYDA0cKjsrMU0zGysnAAEAEwAAAlMCxgAHACZACgcGBQQDAgEABAgrQBQCAQAAAwAAJwADAwwiAAEBDQEjA7A7KwEjESMRIzUhAlP9Rv0CQAKI/XgCiD4AAAACAFoAAAJAAsYAEAAdAEBAFhIRAQAcGhEdEh0PDg0MCwkAEAEQCAgrQCIGAQAABQQABQEAKQcBBAABAgQBAQApAAMDDCIAAgINAiMEsDsrATIeAhUUDgIrARUjETMVEzI+AjU0LgIrAREBbS5NOCAeNksu1EVF0h8zJBMXJzQeywI5Jz9QKSxRPiZ5AsaN/n8bLTsfIDssGv69AAABAE//+wKlAsYAGQArQA4BABQTDgwHBgAZARkFCCtAFQMBAQEMIgQBAAACAQAnAAICEwIjA7A7KyUyPgI1ETMRFA4CIyIuAjURMxEUHgIBeUNZNRVGIEdyUlVyRh5FFjVYOjNTajYBZv6aSIFiOj1kgEQBZv6aOGpSMgAAAgBP//sCpQOVAAMAHQA5QBAFBBgXEhALCgQdBR0DAgYIK0AhAQACAgABIQAAAgA3BAECAgwiBQEBAQMBAicAAwMTAyMFsDsrASc3MwMyPgI1ETMRFA4CIyIuAjURMxEUHgIBgC07SF1DWTUVRiBHclJVckYeRRY1WAMnEV38pTNTajYBZv6aSIFiOj1kgEQBZv6aOGpSMgACAE//+wKlA5UABgAgADxAEAgHGxoVEw4NByAIIAIBBggrQCQGBQQDAAUCAAEhAAACADcEAQICDCIFAQEBAwECJwADAxMDIwWwOysTNzMXBycHEzI+AjURMxEUDgIjIi4CNREzERQeAv9iMmMnVVVUQ1k1FUYgR3JSVXJGHkUWNVgDQFVVFT8//Q8zU2o2AWb+mkiBYjo9ZIBEAWb+mjhqUjIAAAMAT//7AqUDkgADAAcAIQBJQB4JCAQEAAAcGxYUDw4IIQkhBAcEBwYFAAMAAwIBCwgrQCMCAQAJAwgDAQUAAQAAKQcBBQUMIgoBBAQGAQAnAAYGEwYjBLA7KwE1MxUzNTMVAzI+AjURMxEUDgIjIi4CNREzERQeAgETOls6aUNZNRVGIEdyUlVyRh5FFjVYAzReXl5e/QYzU2o2AWb+mkiBYjo9ZIBEAWb+mjhqUjIAAgBP//sCpQOVABkAHQA5QBABABsaFBMODAcGABkBGQYIK0AhHRwCAQQBIQAEAQQ3AwEBAQwiBQEAAAIBAicAAgITAiMFsDsrJTI+AjURMxEUDgIjIi4CNREzERQeAgMzFwcBeUNZNRVGIEdyUlVyRh5FFjVYGkc8LDozU2o2AWb+mkiBYjo9ZIBEAWb+mjhqUjIDW10RAAABAAwAAAKZAsYABgAoQAwAAAAGAAYFBAMCBAgrQBQBAQEAASEDAgIAAAwiAAEBDQEjA7A7KxsCMwEjAVX+/Er+2D3+2ALG/ZECb/06AsYAAAEADAAABAoCxgARAFlADg8ODQwKCQgHBAMBAAYIK0uwLlBYQBsREAsGBQIGAwABIQUCAQMAAAwiBAEDAw0DIwMbQB8REAsGBQIGAwABIQUBAgIMIgEBAAAMIgQBAwMNAyMEWbA7KwEzFzczAxMBMwEjCwEjATMBEwFjQ2RlQnyIAQFM/tQ+lZY+/tVKAQKHAsH8/P7R/r8Cdf06AV/+oQLG/YsBQQAAAAEABQAAAnICxgALAC5ADgAAAAsACwkIBgUDAgUIK0AYCgcEAQQBAAEhBAMCAAAMIgIBAQENASMDsDsrGwIzCQEjCwEjCQFT6elN/u8BCU3h4U4BCf7vAsb+ygE2/pj+ogEs/tQBXgFoAAAAAAEACAAAAnMCxgAIACpADAAAAAgACAYFAwIECCtAFgcEAQMBAAEhAwICAAAMIgABAQ0BIwOwOysbAjMBESMRAVTp6kz+7EX+7gLG/oIBfv5C/vgBCgG8AAACAAgAAAJzA5UACAAMADhADgAADAsACAAIBgUDAgUIK0AiCgkCAAMHBAEDAQACIQQCAgAADCIAAwMBAAAnAAEBDQEjBLA7KxsCMwERIxEBJSc3M1Tp6kz+7EX+7gE7LTtIAsb+ggF+/kL++AEKAbxhEV0AAAEAHAAAAlACxgAJADZACgkIBwYEAwIBBAgrQCQFAQABAAEDAgIhAAAAAQAAJwABAQwiAAICAwAAJwADAw0DIwWwOys3ASE1IRUBIRUhHAHj/iUCLP4jAdz9zTcCUT43/a8+AAACACD/9gHxAhIAKAA6AL1AGiopAQA0Mik6KjojIR4dGRcSEAsJACgBKAoIK0uwHVBYQEcVFAIBAg0BBwEwJgIEByUBBgQfAQAGBSEABAcGBwQGNQABAAcEAQcBACkAAgIDAQAnAAMDFSIJAQYGAAEAJwUIAgAAFgAjBxtASxUUAgECDQEHATAmAgQHJQEGBB8BBQYFIQAEBwYHBAY1AAEABwQBBwEAKQACAgMBACcAAwMVIgAFBQ0iCQEGBgABACcIAQAAFgAjCFmwOysXIi4CNTQ+AjMyFhc1NCYjIgYHJz4BMzIWHQEUMxUOASMiJi8BDgEnMjY3PgE9AS4BIyIGFRQeAtMoQi8aIDpRMSdSIE9DKlMrGDNgNF9wGAgOBRQhAgIibygtWRoHCiJKI0lbECEwChksOiAkOyoXDg0vRVEgHi0iIm5h6xw8AQEYGCkuMzQnIgkVCVUNDjs0FSggFAAAAAMAIP/2AfEC2gAoADoAPgDTQBwqKQEAPj00Mik6KjojIR4dGRcSEAsJACgBKAsIK0uwHVBYQFE8OwIDCBUUAgECDQEHATAmAgQHJQEGBB8BAAYGIQAEBwYHBAY1AAEABwQBBwEAKQAICA4iAAICAwEAJwADAxUiCgEGBgABACcFCQIAABYAIwgbQFU8OwIDCBUUAgECDQEHATAmAgQHJQEGBB8BBQYGIQAEBwYHBAY1AAEABwQBBwEAKQAICA4iAAICAwEAJwADAxUiAAUFDSIKAQYGAAEAJwkBAAAWACMJWbA7KxciLgI1ND4CMzIWFzU0JiMiBgcnPgEzMhYdARQzFQ4BIyImLwEOAScyNjc+AT0BLgEjIgYVFB4CEyc3M9MoQi8aIDpRMSdSIE9DKlMrGDNgNF9wGAgOBRQhAgIibygtWRoHCiJKI0lbECEwSi07SAoZLDogJDsqFw4NL0VRIB4tIiJuYescPAEBGBgpLjM0JyIJFQlVDQ47NBUoIBQCQhFdAAAAAwAg//YB8QLaACgAOgBBANlAHCopAQA9PDQyKToqOiMhHh0ZFxIQCwkAKAEoCwgrS7AdUFhAVEFAPz47BQMIFRQCAQINAQcBMCYCBAclAQYEHwEABgYhAAQHBgcEBjUAAQAHBAEHAQApAAgIDiIAAgIDAQAnAAMDFSIKAQYGAAEAJwUJAgAAFgAjCBtAWEFAPz47BQMIFRQCAQINAQcBMCYCBAclAQYEHwEFBgYhAAQHBgcEBjUAAQAHBAEHAQApAAgIDiIAAgIDAQAnAAMDFSIABQUNIgoBBgYAAQAnCQEAABYAIwlZsDsrFyIuAjU0PgIzMhYXNTQmIyIGByc+ATMyFh0BFDMVDgEjIiYvAQ4BJzI2Nz4BPQEuASMiBhUUHgIDNzMXBycH0yhCLxogOlExJ1IgT0MqUysYM2A0X3AYCA4FFCECAiJvKC1ZGgcKIkojSVsQITA3YjJjJ1VVChksOiAkOyoXDg0vRVEgHi0iIm5h6xw8AQEYGCkuMzQnIgkVCVUNDjs0FSggFAJbVVUVPz8AAAAABAAg//YB8QLXACgAOgA+AEIA7UAqPz87OyopAQA/Qj9CQUA7Pjs+PTw0Mik6KjojIR4dGRcSEAsJACgBKBAIK0uwHVBYQFcVFAIBAg0BBwEwJgIEByUBBgQfAQAGBSEABAcGBwQGNQABAAcEAQcBACkPCw4DCQkIAAAnCgEICA4iAAICAwEAJwADAxUiDQEGBgABACcFDAIAABYAIwkbQFsVFAIBAg0BBwEwJgIEByUBBgQfAQUGBSEABAcGBwQGNQABAAcEAQcBACkPCw4DCQkIAAAnCgEICA4iAAICAwEAJwADAxUiAAUFDSINAQYGAAEAJwwBAAAWACMKWbA7KxciLgI1ND4CMzIWFzU0JiMiBgcnPgEzMhYdARQzFQ4BIyImLwEOAScyNjc+AT0BLgEjIgYVFB4CAzUzFTM1MxXTKEIvGiA6UTEnUiBPQypTKxgzYDRfcBgIDgUUIQICIm8oLVkaBwoiSiNJWxAhMCQ6WzoKGSw6ICQ7KhcODS9FUSAeLSIibmHrHDwBARgYKS4zNCciCRUJVQ0OOzQVKCAUAk9eXl5eAAMAIv/2A4cCEgA/AFEAXAB7QCZSUkFAAQBSXFJcWFZLSUBRQVE5Ny4sKCcgHhoYFBILCQA/AT8PCCtATRwXFhAEAQINAQsBSAEFCUU7MzIEBgUEIQABAAkFAQkBACkOAQsABQYLBQAAKQoBAgIDAQAnBAEDAxUiDQgCBgYAAQAnBwwCAAAWACMHsDsrFyIuAjU0PgIzMhYXPgE3LgEjIgYHJzYzMhYXPgEzMh4CFRwBByEeAzMyPgI3Fw4DIyImJw4DJzI2NzY3LgEnJiMiBhUUHgIlLgMjIg4CB84kPy8aIDlQMCNGHQIHCAlLPCdTLBhlX0FcFyFnPzlfRScB/jsDIjZGJxkyKyEJOwwsOkYmRW8iETQ+QQ42WRcQAgoKATxBSFoTIi0CggMgNEUoKEQ0HwIKGSw7IiI6KhcLCRMoETY8IB4tRDYyLzkrSWM3BBEDKkc0HQ4YIxUQHS8jEz80HiwcDTQoIRATFDUXFDwxGCofEvArRzQdHTRIKgAAAAMAIP/2AfEC2gAoADoAPgDTQBwqKQEAPDs0Mik6KjojIR4dGRcSEAsJACgBKAsIK0uwHVBYQFE+PQIDCBUUAgECDQEHATAmAgQHJQEGBB8BAAYGIQAEBwYHBAY1AAEABwQBBwEAKQAICA4iAAICAwEAJwADAxUiCgEGBgABACcFCQIAABYAIwgbQFU+PQIDCBUUAgECDQEHATAmAgQHJQEGBB8BBQYGIQAEBwYHBAY1AAEABwQBBwEAKQAICA4iAAICAwEAJwADAxUiAAUFDSIKAQYGAAEAJwkBAAAWACMJWbA7KxciLgI1ND4CMzIWFzU0JiMiBgcnPgEzMhYdARQzFQ4BIyImLwEOAScyNjc+AT0BLgEjIgYVFB4CAzMXB9MoQi8aIDpRMSdSIE9DKlMrGDNgNF9wGAgOBRQhAgIibygtWRoHCiJKI0lbECEwGUc8LAoZLDogJDsqFw4NL0VRIB4tIiJuYescPAEBGBgpLjM0JyIJFQlVDQ47NBUoIBQCsF0RAAAAAwAw//YClgLPACsANwBJAJpAFi0sAABGRCw3LTcAKwArJyYZFwUDCAgrS7AYUFhAOz0iDgMCBTAvKiMBBQQCAiEABQUBAQAnAAEBEiIAAgIAAQAnBgMCAAAWIgcBBAQAAQAnBgMCAAAWACMHG0A4PSIOAwIFMC8qIwEFBAICIQAFBQEBACcAAQESIgACAgMAACcGAQMDDSIHAQQEAAEAJwAAABYAIwdZsDsrIScOASMiLgI1ND4CNy4DNTQ+AjMyHgIVFA4CBxc+ATUzDgEHFyUyNjcnDgEVFB4CAxQeAhc+AzU0JiMiDgICPFIqbkAvUj0kGCo2HhslFwobMEEmIzwtGhkqOCDHFBc6AR8dhf6DM1ch1zVGHS88VgcTIRsdMSMTOi0ZKh8RVi0zHDNHKyQ7MywVHS4nJBMhOSoYFCU0Hx80LikV0CZZMT5uLootKybjJVE2ITMjEQIIDBgfKRwUIyMlFScyEBwkAAQAIP/2AfEC2gAoADoARgBSAPdAJkhHKikBAE5MR1JIUkVDPz00Mik6KjojIR4dGRcSEAsJACgBKA8IK0uwHVBYQF4VFAIBAg0BBwEwJgIEByUBBgQfAQAGBSEABAcGBwQGNQALAAkDCwkBACkAAQAHBAEHAQApDgEKCggBACcACAgOIgACAgMBACcAAwMVIg0BBgYAAQAnBQwCAAAWACMKG0BiFRQCAQINAQcBMCYCBAclAQYEHwEFBgUhAAQHBgcEBjUACwAJAwsJAQApAAEABwQBBwEAKQ4BCgoIAQAnAAgIDiIAAgIDAQAnAAMDFSIABQUNIg0BBgYAAQAnDAEAABYAIwtZsDsrFyIuAjU0PgIzMhYXNTQmIyIGByc+ATMyFh0BFDMVDgEjIiYvAQ4BJzI2Nz4BPQEuASMiBhUUHgIDNDYzMhYVFAYjIiY3IgYVFBYzMjY1NCbTKEIvGiA6UTEnUiBPQypTKxgzYDRfcBgIDgUUIQICIm8oLVkaBwoiSiNJWxAhMAcqICAqKiAgKkoRFxcREBkYChksOiAkOyoXDg0vRVEgHi0iIm5h6xw8AQEYGCkuMzQnIgkVCVUNDjs0FSggFAJvHSQkHR4kJEQVEREWFhERFQAAAQAsAS8B8QLGAAYAKEAMAAAABgAGBAMCAQQIK0AUBQEBAAEhAwICAQABOAAAAAwAIwOwOysbATMTIwsBLMY6xTymqQEvAZf+aQFX/qkAAAABAEEA8QG9AVgAIAB0QA4gHxsZFhQQDwsJBgQGCCtLsCdQWEAnAAEDHgIBAAAEAQAEAQApAAEDAwEBACYAAQEDAQAnBQEDAQMBACQFG0AuAAEDHgACAAQAAgQ1AAAABAEABAEAKQABAwMBAQAmAAEBAwEAJwUBAwEDAQAkBlmwOys3ND4CMzIeAjMyPgI1MxQOAiMiLgIjIg4CFSNBCxopHhcoJiYVExoRBysLGiwgGSonJBISGA8HK/EFISQdEhYSDxIRAgIfIx0SFhISFRIBAAAAAAEAPgIMAQQCyQAOACNABAYFAQgrQBcODQwLCgkIBwQDAgEADQAeAAAADAAjArA7KxM3JzcXJzMHNxcHFwcnB1grRQtFAywDRQtELCArKwIiPhYkGklJGiQWPhZBQQAAAAIAMv9uAxACWwBYAGoAfUAeAQBpZ2FfUE5JRz89NTMsKiUjHRsVEw0LAFgBWA0IK0BXKCcCAwQfAQoDXRECCwpMSwIIAQQhDAEAAAcFAAcBACkABQAEAwUEAQApAAMACgsDCgEAKQAIAAkICQEAKAALCwIBACcAAgINIgAGBgEBACcAAQEWASMJsDsrATIeAhUUDgQjIi4CJw4BIyImNTQ+AjMyFhc0LgIjIgYHJz4BMzIeAh0BFBYzMj4CNTQuAiMiDgIVFB4CMzI2NxcOASMiLgI1ND4CEz4BPQEuASMiDgIVFBYzMjYBpEqEZDoDChMgMCIZHxIIAhxYNUdPITVCISxCEQscMCUoRx0SJFEuOEEiCREiHykYCTJZeEZFeVo1Mld4RitKJQ0pVCpLhGM5PWeGhSoXDUMwGzEmFzwvGTECWzdljFUOLzQ2LBsPGiESHSpLOyY0Hw0RBiQ7KhgZFicYHCU7SSSBLDgrPkcbSH5dNjNafEpHfV01FBIgFBQ4ZYpRVYliNf3rFDYcKAIUCRYjGyozDQAAAAADACD/9gHxAtoAKAA6AFoBfkAqPDsqKQEAVlVRT0xKRkVBPztaPFo0Mik6KjojIR4dGRcSEAsJACgBKBEIK0uwHVBYQGAVFAIBAg0BBwEwJgIEByUBBgQfAQAGBSEABAcGBwQGNQAMChACCAMMCAEAKQABAAcEAQcBACkACQkLAQAnDQELCw4iAAICAwEAJwADAxUiDwEGBgABACcFDgIAABYAIwobS7AhUFhAaxUUAgECDQEHATAmAgQHJQEGBB8BBQYFIQAKCAMICgM1AAQHBgcEBjUADBABCAoMCAEAKQABAAcEAQcBACkACQkLAQAnDQELCw4iAAICAwEAJwADAxUiAAUFDSIPAQYGAAEAJw4BAAAWACMMG0BvFRQCAQINAQcBMCYCBAclAQYEHwEFBgUhAAoIAwgKAzUABAcGBwQGNQAMEAEICgwIAQApAAEABwQBBwEAKQANDQ4iAAkJCwEAJwALCw4iAAICAwEAJwADAxUiAAUFDSIPAQYGAAEAJw4BAAAWACMNWVmwOysXIi4CNTQ+AjMyFhc1NCYjIgYHJz4BMzIWHQEUMxUOASMiJi8BDgEnMjY3PgE9AS4BIyIGFRQeAhMiLgIjIg4CFSM0PgIzMh4CMzI+AjUzFA4C0yhCLxogOlExJ1IgT0MqUysYM2A0X3AYCA4FFCECAiJvKC1ZGgcKIkojSVsQITCCFyEdGxAREwsDKgcUJBwVHxwdExMXDAMqCBUnChksOiAkOyoXDg0vRVEgHi0iIm5h6xw8AQEYGCkuMzQnIgkVCVUNDjs0FSggFAJUDA8NDhEPAgUfIBkNEA0OEg8CBR4gGQAAAgBJ//YCQALaABQAKQCBQBYWFQEAIB4VKRYpDAoHBgUEABQBFAgIK0uwGFBYQCslJAgDBAQFASEAAgIOIgAFBQMBACcAAwMVIgcBBAQAAQAnAQYCAAAWACMGG0AvJSQIAwQEBQEhAAICDiIABQUDAQAnAAMDFSIAAQENIgcBBAQAAQAnBgEAABYAIwdZsDsrBSImJxUjETMRPgEzMh4CFRQOAicyPgI1NC4CIyIOAgcVHgMBSD1oHT1EI2JCNlg9ISZDW0QrRzMdGzFEKR82LiUMBCMyOAo+MWUC2v7CNUEuTWEzN2JJKzwjO0soKUw7IxUkLxqiGy8iFAAAAQAbAAACHALGAAMAH0AKAAAAAwADAgEDCCtADQIBAQEMIgAAAA0AIwKwOysTASMBaQGzTf5MAsb9OgLGAAAAAAEAUv9+AI0DBwADACpACgAAAAMAAwIBAwgrQBgAAAEBAAAAJgAAAAEAACcCAQEAAQAAJAOwOysXETMRUjuCA4n8dwAAAQA1/+EA0QLkAB4AckAQAAAAHgAeHRsUEwwKCQgGCCtLsBhQWEAqEgQCAAIBIQACBAAEAgA1BQEEBAMBACcAAwMUIgAAAAEBACcAAQEWASMGG0AnEgQCAAIBIQACBAAEAgA1AAAAAQABAQAoBQEEBAMBACcAAwMUBCMFWbA7KxMRFAYHHgEVETMVIyImNRE0Jic1Mj4CNRE0NjsBFZoLEBALN14IDxQTCg8KBBIFXgKr/vsMJA4OJQv+8DkNEQEZFCECNAwQEwYBDhMLOQAAAAEALf/hAMgC5AAeAHJAEAAAAB4AHhYVFBILCgMBBggrS7AYUFhAKhoMAgMBASEAAQQDBAEDNQUBBAQAAQAnAAAAFCIAAwMCAQAnAAICFgIjBhtAJxoMAgMBASEAAQQDBAEDNQADAAIDAgEAKAUBBAQAAQAnAAAAFAQjBVmwOysTNTMyFhURFB4CMxUOARURFAYrATUzETQ2Ny4BNREtXgUSBAkOCxMTDwheNwoQEAoCqzkLE/7yBhMQDDQCIRT+5xENOQEQCyUODiQMAQUAAAABAFT/2ADLAuQABwBZQA4AAAAHAAcGBQQDAgEFCCtLsDJQWEAYAAIEAQMCAwAAKAABAQAAACcAAAAOASMDG0AiAAAAAQIAAQAAKQACAwMCAAAmAAICAwAAJwQBAwIDAAAkBFmwOysXETMVIxEzFVR3NzcoAww5/WY5AAAAAQAt/9gApALkAAcAWUAOAAAABwAHBgUEAwIBBQgrS7AyUFhAGAAABAEDAAMAACgAAQECAAAnAAICDgEjAxtAIgACAAEAAgEAACkAAAMDAAAAJgAAAAMAACcEAQMAAwAAJARZsDsrFzUzESM1MxEtODh3KDkCmjn89AAAAAIAVP9+AI8DBwADAAcAPkASBAQAAAQHBAcGBQADAAMCAQYIK0AkBQEDAAIBAwIAACkEAQEAAAEAACYEAQEBAAAAJwAAAQAAACQEsDsrExEjERMRIxGPOzs7ARX+aQGXAfL+aQGXAAAAAQBYAQABCwGzAA8AJUAGDAoEAgIIK0AXAAEAAAEBACYAAQEAAQAnAAABAAEAJAOwOysBFAYjIiY1ND4CMzIeAgELNCUlNQ4ZIRISIRgOAVomNDQmEiAZDg4ZIAABACf/9gIFAhIAJQA1QAoiIBcVDQsGBAQIK0AjHBsJCAQCAQEhAAEBAAEAJwAAABUiAAICAwEAJwADAxYDIwWwOysTND4CMzIWFwcuASMiDgIVFB4CMzI+AjcXDgMjIi4CJyZFYDpKbhxCFk4wKEUzHR40RScZMSoeBkILKjlFJTlgRicBBjdiSSpDORUoLSA3TC0sTjkhDhkgEhQcLyMTK0tiAAEAKP9QAgYCEgA/AQJAEj07NzUyMSgmHhwXFQkHBAIICCtLsAlQWEBHLSwaGQQEAwwBBgUzAQEGCwACAAE/AQcABSEABAMFBgQtAAYAAQAGAQECKQAAAAcABwEAKAADAwIBACcAAgIVIgAFBRMFIwcbS7ANUFhARy0sGhkEBAMMAQYFMwEBBgsAAgABPwEHAAUhAAQDBQYELQAGAAEABgEBAikAAAAHAAcBACgAAwMCAQAnAAICFSIABQUWBSMHG0BILSwaGQQEAwwBBgUzAQEGCwACAAE/AQcABSEABAMFAwQFNQAGAAEABgEBAikAAAAHAAcBACgAAwMCAQAnAAICFSIABQUWBSMHWVmwOysXHgEzMjU0JiMiBgc3LgM1ND4CMzIWFwcuASMiDgIVFB4CMzI+AjcXDgMPAT4BMzIWFRQGIyImJ+AOMBo5GxcVLg0qNVhAJCZFYDpKbhxCFk4wKEUzHR40RScZMSoeBkIKJzQ/IhoJFQgjKTQyHTIUfgcLIxQQCQVOBC5JXzU3YkkqQzkVKC0gN0wtLE45IQ4ZIBIUGy0hFQIqBAIfHiIkCwgAAAACAC7/iAINAoUAIgAtAFFAEgAAACIAIiEgFxYVFA8ODQwHCCtANwsBAQApKBwbEhEGAwIBAQQDAyEAAAYBBQAFAAAoAAICAQEAJwABARUiAAMDBAEAJwAEBBYEIwawOysFNS4DNTQ+Ajc1MxUeARcHLgEnET4DNxcOAyMVAxQeAhcRDgMBFzNWPSMhPFY2JUtkHEEXSCsULSkfBkIMMDpAG8gYLDwjJzwqFnhvBDFKXDAzXUowBXR0AkE4FSkoAv5fAQ4WIBMUIDEgEG4BeiVFNyUGAZwEJjpIAAAAAgBGAAAAfwIGAAMABwA2QBIEBAAABAcEBwYFAAMAAwIBBggrQBwEAQEBAAAAJwAAAA8iAAICAwAAJwUBAwMNAyMEsDsrEzUzFQM1MxVGOTk5AaRiYv5cYmIAAAABADf/vQCGAGIACwAsQAgLCgUEAQADCCtAHAABAAE3AAACAgABACYAAAACAQAnAAIAAgEAJASwOysXMjY9ATMVFA4CIzcHDjoOFxwODwgNXGYRGA8HAAAAAwAz//kDEwLLABMAJwBNAGBAHikoFRQBAEZEPDozMShNKU0fHRQnFScLCQATARMLCCtAOklINjUEBwYBIQAFAAYHBQYBACkABwoBBAIHBAEAKQADAwEBACcAAQESIgkBAgIAAQAnCAEAABMAIwewOysFIi4CNTQ+AjMyHgIVFA4CJzI+AjU0LgIjIg4CFRQeAjciLgI1ND4CMzIWFwcuAyMiDgIVFB4CMzI2NxcOAwGiT4diNzdih09PiGI4OGKIT0Z6WjQyWnpIR3pZMzJZek8tVUAnHDhWOkJmF0EKHyMjDyg7JxQeLjkbJkwRQgciMkEHN2GETk2EYDc3YIRNToRhNyEwVnhJR3hYMjJXeUZGeFgyYSE8VjUqVEIqOTYVFhwQBh8xPx8pQSwXKSMTEikjFgACACf/9gI3AtoAGwAwANlAGB0cAQAoJhwwHTAWFBIRDw4LCQAbARsJCCtLsBhQWEAwIiEZDQQDBhMBAAMCIQACAg4iAAYGAQEAJwABARUiCAUCAwMAAQInBAcCAAAWACMGG0uwIVBYQD0iIRkNBAMGEwEABQIhAAICDiIABgYBAQAnAAEBFSIAAwMAAQInBAcCAAAWIggBBQUAAQAnBAcCAAAWACMIG0A6IiEZDQQDBhMBBAUCIQACAg4iAAYGAQEAJwABARUiAAMDBAECJwAEBBMiCAEFBQABACcHAQAAFgAjCFlZsDsrBSIuAjU0PgIzMhYXETMRFDMVBiMiJj0BDgEnMj4CNzUuAyMiDgIVFB4CASE2XEMlJD9XNEJmHkQYEQoZICBpKxo5MSQECicxNxsqRTAbHjRHCi1KYTU3Y0orRTEBPv1+HDwDHRQ3Mzw8FCMvG6EbLyQUJDtMKCpMOSIAAAIAMgIuANgC1AALABsAKUAKGxkTEQoIBAIECCtAFwACAAECAQEAKAADAwABACcAAAAOAyMDsDsrEzQ2MzIWFRQGIyImNwYVFBcWMzI3NjU0JyYjIjIwIyMwMCMjMDQNDQ0SEw0MDAwUEwKCIy8vIyQwMEINEhINDQ0OEREODQAAAwBCAEoB1QHqAAMABwALAFBAGggIBAQAAAgLCAsKCQQHBAcGBQADAAMCAQkIK0AuAAAGAQEEAAEAACkABAgBBQIEBQAAKQACAwMCAAAmAAICAwAAJwcBAwIDAAAkBbA7KxM1MxUDNTMVJzUhFe47OzvnAZMBj1tb/rtaWrQ5OQADACX/mQJBAy8AKAAxADoA3UAWOTgwLyYlJCMiIRcWEhEQDw4NAwIKCCtLsA1QWEA3Ny4oGBQTBAAIBAABIQAGBQUGKwACAQECLAkBAAAFAQAnBwEFBQwiCAEEBAEBACcDAQEBEwEjBxtLsC5QWEA1Ny4oGBQTBAAIBAABIQAGBQY3AAIBAjgJAQAABQEAJwcBBQUMIggBBAQBAQAnAwEBARMBIwcbQEE3LigYFBMEAAgEAAEhAAYFBjcAAgECOAkBAAAFAQAnBwEFBQwiCAEEBAMBACcAAwMNIggBBAQBAQAnAAEBEwEjCVlZsDsrAS4BJxEeAxUUDgIHFSM1Jic3HgEXES4DNTQ+Ajc1MxUeARcDNC4CJxEyNgEUHgIXEQ4BAf0dXzw5XUIkJUJbNiWVaiIjdkg6VzsdIT1UMyVCaCsmFy1DLFVe/o4TKD0qVU0CQSAqAv71Cx0tQzAwSC8YAWFiCV05JjYFAQsNHio7Ky9JMx0DZWQCKyX+Oh4qHxgL/vs9AZQdJx0VCgEDBEUAAQBJAAAAjQIJAAMAH0AKAAAAAwADAgEDCCtADQAAAA8iAgEBAQ0BIwKwOyszETMRSUQCCf33AAACACf/9gIuAhIAIgAtAEtAFiMjAQAjLSMtKScZFxMSCwkAIgEiCAgrQC0eHQIDAgEhBwEFAAIDBQIAACkABAQBAQAnAAEBFSIAAwMAAQAnBgEAABYAIwawOysFIi4CNTQ+AjMyHgIVFAYHIR4DMzI+AjcXDgMTLgMjIg4CBwEtOWBGJydGXzk5X0QmAQH+QwMhM0MmGjIqIQk7DCw6RpsDITNEJiZEMx8DCitLYjg3YUkrK0pgNggQAypHNB0OGCMVEB0vIxMBKipFMhwcMkYpAAAAAAMAJ//2Ai4C2gADACYAMQBXQBgnJwUEJzEnMS0rHRsXFg8NBCYFJgMCCQgrQDcBAAICACIhAgQDAiEIAQYAAwQGAwAAKQAAAA4iAAUFAgEAJwACAhUiAAQEAQEAJwcBAQEWASMHsDsrASc3MwMiLgI1ND4CMzIeAhUUBgchHgMzMj4CNxcOAxMuAyMiDgIHAS8tO0hYOWBGJydGXzk5X0QmAQH+QwMhM0MmGjIqIQk7DCw6RpsDITNEJiZEMx8DAmwRXf0cK0tiODdhSSsrSmA2CBADKkc0HQ4YIxUQHS8jEwEqKkUyHBwyRikAAwAn//YCLgLaAAYAKQA0AFpAGCoqCAcqNCo0MC4gHhoZEhAHKQgpAgEJCCtAOgYFBAMABQIAJSQCBAMCIQgBBgADBAYDAAApAAAADiIABQUCAQAnAAICFSIABAQBAQAnBwEBARYBIwewOysTNzMXBycHEyIuAjU0PgIzMh4CFRQGByEeAzMyPgI3Fw4DEy4DIyIOAgeuYjJjJ1VVWTlgRicnRl85OV9EJgEB/kMDITNDJhoyKiEJOwwsOkabAyEzRCYmRDMfAwKFVVUVPz/9hitLYjg3YUkrK0pgNggQAypHNB0OGCMVEB0vIxMBKipFMhwcMkYpAAAEACf/9gIuAtcAAwAHACoANQBrQCYrKwkIBAQAACs1KzUxLyEfGxoTEQgqCSoEBwQHBgUAAwADAgEOCCtAPSYlAgcGASENAQkABgcJBgAAKQsDCgMBAQAAACcCAQAADiIACAgFAQAnAAUFFSIABwcEAQAnDAEEBBYEIwiwOysTNTMVMzUzFQMiLgI1ND4CMzIeAhUUBgchHgMzMj4CNxcOAxMuAyMiDgIHwjpbOmQ5YEYnJ0ZfOTlfRCYBAf5DAyEzQyYaMiohCTsMLDpGmwMhM0QmJkQzHwMCeV5eXl79fStLYjg3YUkrK0pgNggQAypHNB0OGCMVEB0vIxMBKipFMhwcMkYpAAADACf/9gIuAtoAIgAtADEAV0AYIyMBAC8uIy0jLSknGRcTEgsJACIBIgkIK0A3MTACAQYeHQIDAgIhCAEFAAIDBQIAACkABgYOIgAEBAEBACcAAQEVIgADAwABACcHAQAAFgAjB7A7KwUiLgI1ND4CMzIeAhUUBgchHgMzMj4CNxcOAxMuAyMiDgIHEzMXBwEtOWBGJydGXzk5X0QmAQH+QwMhM0MmGjIqIQk7DCw6RpsDITNEJiZEMx8DX0c8LAorS2I4N2FJKytKYDYIEAMqRzQdDhgjFRAdLyMTASoqRTIcHDJGKQG6XREAAAMAM//4AiACxgAnADsATwB1QA5MSkJAODYuLBoYBgQGCCtLsAlQWEArIw8CAgQBIQAEAAIDBAIBACkABQUBAQAnAAEBDCIAAwMAAQAnAAAAEwAjBhtAKyMPAgIEASEABAACAwQCAQApAAUFAQEAJwABAQwiAAMDAAEAJwAAABYAIwZZsDsrJRQOAiMiLgI1ND4CNy4DNTQ+AjMyHgIVFA4CBx4DBzQuAiMiDgIVFB4CMzI+AgEUHgIzMj4CNTQuAiMiDgICIChEWzI1WkEkGSgzGhgqIBMoP08oKE8/KBMhKxgdNCcXRSAzQB8hPzIeIDM/ICA/Mh/+thwsNhsaNywcGis3Hh43KhnFL0s2HSE5TCsiOi0hCQodJi4aLEMuGBgtRCsaLicdCgojLjodJDcmFBUnOCIjNyYUFSc3AWYdLR8QECAuHRwtHxARHy4AAAEAQgDxA0QBMAADACpACgAAAAMAAwIBAwgrQBgAAAEBAAAAJgAAAAEAACcCAQEAAQAAJAOwOys3NSEVQgMC8T8/AAAAAQBCAPEB+QEwAAMAKkAKAAAAAwADAgEDCCtAGAAAAQEAAAAmAAAAAQAAJwIBAQABAAAkA7A7Kzc1IRVCAbfxPz8AAAACAEYAwgF0AWYAAwAHAD1AEgQEAAAEBwQHBgUAAwADAgEGCCtAIwACBQEDAAIDAAApAAABAQAAACYAAAABAAAnBAEBAAEAACQEsDsrNzUhFSU1IRVGAS7+0gEuwjExczExAAAAAgAp//YCLwLaACQAOABCQAw1MyspISAWFAwKBQgrQC4kIx4dHBsBAAgBAhgBAwQCIQABAAQDAQQBAikAAgIOIgADAwABACcAAAAWACMFsDsrAQceAxUUDgIjIi4CNTQ+AjMyFhcuAScHJzcmJzMWFzcBFB4CMzI+AjU0LgIjIg4CAe9TKzgiDipIYDU1XEYoJ0JZM0NtGwo4P28WaThXYDctWP6WHTNEJyhFNB4eM0QnJ0YzHgKrMypbW1kqQWlMKSZCWDMxWEImQTQ/fD5GH0EwMiEnN/4fJkIyHB80RSclQDAbHTJEAAIAWAAAAJwCzQADAAcANkASBAQAAAQHBAcGBQADAAMCAQYIK0AcBAEBAQAAACcAAAAMIgACAgMAACcFAQMDDQMjBLA7KzcRMxEHNTMVWEREROQB6f4X5HBwAAAAAgBY//4AnALLAAMABwA2QBIEBAAABAcEBwYFAAMAAwIBBggrQBwAAgIDAAAnBQEDAwwiBAEBAQAAACcAAAANACMEsDsrExEjETcVIzWcREREAef+FwHp5HBwAAABAB0AAAFsAuQAFwBGQBQAAAAXABcWFRQTEA4JBwQDAgEICCtAKgsBAwIMAQEDAiEEAQEFAQAGAQAAACkAAwMCAQAnAAICFCIHAQYGDQYjBbA7KzMRIzUzNTQ2MzIWFwcuASMiBh0BMxUjEWVISFJIHjoVFQ4pFDAzkJABljZLYG0SDzELDEpGTTb+agAAAAACAB0AAAJgAuQAJwA1AGRAHgEANTQvLSAeGhgTEhEQDw4NDAsKCQgHBgAnAScNCCtAPiQBCAklHAIKACsBAQoDIQsHAgEGBAICAwECAAApDAEAAAkBACcACQkUIgAKCggBACcACAgMIgUBAwMNAyMHsDsrASIOAh0BMxUjESMRIxEjESM1MzU0PgIzMhYXPgEzMh4CFwcuAQc0NjcuASMiDgIdATMCAx8sGw2lpUSjREhIEyc8KCU5ExVALxcjGBEFFAse1wkKES0THSYYCqMCqBooNBlNNv5qAZb+agGWNiwmRzchEAodJAgLCwMxCA6XFDYTDAgbKDAVLgACAB0AAAKbAuQAKQA3AGdAICoqKjcqNzIwKSgnJiUkIyIhIB8eGRcQDgoIAwIBAA4IK0A/FAEEAhUMAgsELgEBCwMhDQwFAwEJBwIABgEAAAApAAQEAwEAJwADAxQiAAsLAgEAJwACAgwiCggCBgYNBiMHsDsrEyM1MzU0PgIzMhYXPgEzMh4CFwcuASMiDgIdASERIxEjESMRIxEjEzU0NjcuASMiDgIdAWVISBMnPCglORMXRjIaLyceCiAQPiUgLh0NAQREwESjROcJChEtEx0mGAoBljYsJkc3IRAKHSQKDhEGMQ4WGig0GU3+NAGW/moBlv5qAcxFFDYTDAgbKDAVLgAAAAACAB3/+gM0AuQAOQBHASlAKDo6AQA6RzpHQkA0MzIwKScjIRwbGhkYFxYVFBMSERAPCggAOQE5EQgrS7AWUFhARyUBDQE+AQINNQEACwMhEA4IAwIHBQIDCwIDAAApAAEBCgEAJwAKChQiAA0NCQEAJwAJCQwiDAELCwAAACcGBA8DAAANACMIG0uwJ1BYQE4lAQ0BPgECDTUBAAsDIQAMAwsDDAs1EA4IAwIHBQIDDAIDAAApAAEBCgEAJwAKChQiAA0NCQEAJwAJCQwiAAsLAAAAJwYEDwMAAA0AIwkbQFIlAQ0BPgECDTUBBAsDIQAMAwsDDAs1EA4IAwIHBQIDDAIDAAApAAEBCgEAJwAKChQiAA0NCQEAJwAJCQwiBgEEBA0iAAsLAAEAJw8BAAATACMKWVmwOysFIiY1ETQuAiMiDgIdATMVIxEjESMRIxEjNTM1ND4CMzIWFz4BMzIeAhURFBYzMjYzFxQOAgE1NDY3LgEjIg4CHQEC1jA2CxkqHh8rGwxtbUSmREhIFio9JyYyExdHMSxCLRYbHBQnAQ0RGyH+aAcIESYSHSgbDAY4JgHjEycfFBssNhxDNv5qAZb+agGWNjMoRjMdEAofIhcqOSL+LRUpCzgBBQYEAdJFFzYRDAcWJS4YNQABAB0AAAG0AuQAHQBEQBIdHBsaGRgXFhEPCggDAgEACAgrQCoMAQMCDQEBAwIhBAEBBgEABQEAAAApAAMDAgEAJwACAhQiBwEFBQ0FIwWwOysTIzUzNTQ+AjMyFhcHLgEjIg4CHQEhESMRIxEjZUhIFS1GMDhOER8RPiUgLR0OAQVEwUQBljZLJEo6JSINMQ8VGig0GU3+NAGW/moAAAAAAQAd//oCSwLkAC8AukAWLy4tKyQiHRwbGhkYFxYVFA8NBgQKCCtLsBZQWEAoBgECBQEDCAIDAAApAAEBBwEAJwAHBxQiCQEICAABACcEAQAAEwAjBRtLsCdQWEAvAAkDCAMJCDUGAQIFAQMJAgMAACkAAQEHAQAnAAcHFCIACAgAAQAnBAEAABMAIwYbQDMACQMIAwkINQYBAgUBAwkCAwAAKQABAQcBACcABwcUIgAEBA0iAAgIAAEAJwAAABMAIwdZWbA7KyUOAyMiJjURNC4CIyIOAh0BMxUjESMRIzUzNTQ+AjMyHgIVERQWMzI2MwJLAREaIhEwNQsaKR8eKxsNbm5ESEgWLUQuLEItFhscEycBCgEFBgQ4JgHjEycfFBssNhxDNv5qAZY2UCxJNR4XKjki/i0VKQsAAAEAJv9rAgACOwAuAFtAFAEAKyopKCEgHhwUEgsJAC4BLggIK0A/LAEDABAPAgIEAiEABAMCAwQCNQAFAAYABQYAACkHAQAAAwQAAwEAKQACAQECAQAmAAICAQEAJwABAgEBACQHsDsrATIeAhUUDgIjIi4CJzceATMyPgI1NC4CIyIGByM+Azc2NyEVIQc+AQEYMVQ/JCdDWjMmRTovDy0cYTolQDAbGi49JDBTGj8BCAwOBxEUAVf+3DEaSwE4ITxTMjVXPSITJDIfIjE8GS5AJiU9LBgpJwYqOkckVGc//xwfAAH/KP/8AXICygAFAAdABAIFAQ0rJwkBFwkB2AEYAQ8j/ur+7xsBVAFbHv6s/qQAAAIAFf+BAf8COwAKAA0ASUASAAAMCwAKAAoJCAcGBQQCAQcIK0AvDQECAQMBAAICIQABAgE3BgEEAAQ4BQECAAACAAAmBQECAgAAAicDAQACAAACJAawOysFNSE1ATMRMxUjFSUhEQFj/rIBYy9YWP62AQx/sjwBzP42PrLwAV8AAgAYAUsBYgLaAAoADQA/QBIAAAwLAAoACgkIBwYFBAIBBwgrQCUNAQIBAwEAAgIhBQECAwEABAIAAAApBgEEBAEAACcAAQEOBCMEsDsrEzUjNTczFTMVIxUnMzX85PIfOTnhtQFLZyr+/StnksAAAAIAKP8hAh8CEgAkADkA3EAYJiUBADEvJTkmOR0bFhQPDgsJACQBJAkIK0uwGlBYQDcrKiINBAUGGRgCBAACIQAGBgEBACcCAQEBFSIIAQUFAAEAJwcBAAATIgAEBAMBACcAAwMRAyMHG0uwMlBYQDsrKiINBAUGGRgCBAACIQACAg8iAAYGAQEAJwABARUiCAEFBQABACcHAQAAEyIABAQDAQAnAAMDEQMjCBtAOCsqIg0EBQYZGAIEAAIhAAQAAwQDAQAoAAICDyIABgYBAQAnAAEBFSIIAQUFAAEAJwcBAAATACMHWVmwOysFIi4CNTQ+AjMyFhc1MxEUDgIjIiYnNx4BMzI+Aj0BDgEnMj4CNzUuAyMiDgIVFB4CARw2WUEkI0BZNkNiIz0pRV40WW4iKh9mOiZFMx4fZyYeOi8gBQsnMDccLEQwGR40RwctSmAzNmNKLEMzbf31NlM4HEA2ITIvFSk/KmcyOjkWJS4YoRwwIhQlPEwnKkw5IQAAAAEASf/6Af8CygAyAHtAEDIxIR8aGRQSDAoJBwEABwgrS7AuUFhAKyoBAQIBIQACAAEAAgEBACkAAwMFAQAnAAUFEiIAAAAEAQAnBgEEBA0EIwYbQC8qAQECASEAAgABAAIBAQApAAMDBQEAJwAFBRIiAAQEDSIAAAAGAQAnAAYGEwYjB1mwOys3PgE1NC4CKwE1MzI2NTQuAiMiDgIVESMRND4CMzIeAhUUDgIHHgEVFA4CB+xdcBgsPiUSETZEFCItGSEyIRFBHjVJLChEMh0RHSYWS1IoSGU+OQFMTSM6KRc+PzMbKRwOFyk2H/4HAgMsSTUdGCo7IxsyKB0FEGtJM002HQIAAAEANf/1AdkCEAAGAAdABAUBAQ0rJQU1LQE1BQHZ/lwBQf6/AaTv+kvDxEn8AAAAAAIALABCAgEBxgAGAA0ACUAGCAwBBQINKxM3FQcXFSc/ARUHFxUnLPnBwfnd+MDA+AEUsjuIhjutJbI7iIY7rQACAEAAQgIVAcYABgANAAlABgwIBQECDSslBzU3JzUXDwE1Nyc1FwIV+MDA+N34wcH47607hog7siWtO4aIO7IAAQAsAEIBJQHGAAYAB0AEAQUBDSsTNxUHFxUnLPnBwfkBFLI7iIY7rQAAAAABAEAAQgE4AcYABgAHQAQFAQENKyUHNTcnNRcBOPjBwfjvrTuGiDuyAAAAAAEASQAAAf8C2gAXADRADBMRDg0MCwYEAQAFCCtAIA8KAgABASEAAwMOIgABAQQBACcABAQVIgIBAAANACMFsDsrISMRNCYjIg4CBxEjETMRPgEzMh4CFQH/RD07HTkyJQlERCBuPy0/JxIBI1lYFyg2IP7BAtr+uTtEITtTMgAAAQBCAPEBZQEwAAMAKkAKAAAAAwADAgEDCCtAGAAAAQEAAAAmAAAAAQAAJwIBAQABAAAkA7A7Kzc1IRVCASPxPz8AAAACAEkAAACNAtoAAwAHADRAEgQEAAAEBwQHBgUAAwADAgEGCCtAGgUBAwMCAAAnAAICDiIAAAAPIgQBAQENASMEsDsrMxEzEQM1MxVJREREAgn99wJ2ZGQAAgBEAAAAxwLaAAMABwAtQAwEBAQHBAcGBQMCBAgrQBkBAAIBAAEhAAAADiIAAQEPIgMBAgINAiMEsDsrEyc3MwMRMxFxLTtIfkQCbBFd/SYCCf33AAAAAAL/8AAAAOcC2gAGAAoAMEAMBwcHCgcKCQgCAQQIK0AcBgUEAwAFAQABIQAAAA4iAAEBDyIDAQICDQIjBLA7KwM3MxcHJwcTETMREGIyYydVVTNEAoVVVRU/P/2QAgn99wAAAAADAAQAAADTAtcAAwAHAAsAP0AaCAgEBAAACAsICwoJBAcEBwYFAAMAAwIBCQgrQB0HAwYDAQEAAAAnAgEAAA4iAAQEDyIIAQUFDQUjBLA7KxM1MxUzNTMVAxEzEQQ6WzqKRAJ5Xl5eXv2HAgn99wAAAgAOAAAAkQLaAAMABwAtQAwAAAUEAAMAAwIBBAgrQBkHBgIAAgEhAAICDiIAAAAPIgMBAQENASMEsDsrMxEzEQMzFwdJRH9HPCwCCf33AtpdEQAAAv+C/0sAjQLaABMAFwBEQBQUFAEAFBcUFxYVDg0IBgATARMHCCtAKAQBAQIDAQABAiEAAQUBAAEAAQAoBgEEBAMAACcAAwMOIgACAg8CIwWwOysHIiYnNx4BMzI+AjURMxEUDgITNTMVDCE6FyEQJhMSIRoQRBorNzhEtRIVLg4KDhkiFAIk/eAjOioXAytkZAAAAAEASQAAAgcC2gALADJADgAAAAsACwkIBgUEAwUIK0AcCgcCAQQAAgEhAAEBDiIAAgIPIgQDAgAADQAjBLA7KyEDBxUjETMRATMHEwG9wHBERAElTdXdAQtoowLa/hABHtX+zQABAEz/+gEPAtoADwAtQAgNCwYEAQADCCtAHQgBAQAJAQIBAiEAAAAOIgABAQIBAicAAgITAiMEsDsrEzMRFBYzMjY3Fw4BIyImNUxEIB0LHg0MEzcULzYC2v2cHSEGBTcICjUwAAAAAAEAIv/1AcUCEAAGAAdABAEFAQ0rEyUVDQEVJSIBo/6/AUH+XQEU/EnEw0v6AAAAAAEATwB+AgYBbAAFADJADAAAAAUABQQDAgEECCtAHgAAAQA4AwECAQECAAAmAwECAgEAACcAAQIBAAAkBLA7KwEVIzUhNQIGPP6FAWzusD4AAQBJAAADUAISACUAaUASIR8cGhcWFRQRDwwLBgQBAAgIK0uwGlBYQCEeGBMKBAABASEDAQEBBQEAJwcGAgUFDyIEAgIAAA0AIwQbQCUeGBMKBAABASEABQUPIgMBAQEGAQAnBwEGBhUiBAICAAANACMFWbA7KyEjETQmIyIOAgcRIxE0JiMiBgcRIxEzFT4BMzIWFzYzMh4CFQNQRDk6HjUtIglEODo7XBREPiBoP0JQCEmBKz0lEQEjW1YWKDch/sIBI11UUkP+wQIJdjxDSjyGIDtTMwAAAQBGAQsB2QFDAAMAB0AEAQABDSsTNSEVRgGTAQs4OAABAFD/LAInAgkAIADhQBAgHxwaExEODQsKBQMBAAcIK0uwCVBYQCceFgkDAQAPAQQBAiECAQAADyIDAQEBBAEAJwUBBAQNIgAGBhEGIwUbS7AYUFhAJx4WCQMBAA8BBAECIQIBAAAPIgMBAQEEAQAnBQEEBBMiAAYGEQYjBRtLsCFQWEAuHhYJAwMADwEEAQIhAAMAAQADATUCAQAADyIAAQEEAQAnBQEEBBMiAAYGEQYjBhtAMh4WCQMDAA8BBAECIQADAAEAAwE1AgEAAA8iAAQEEyIAAQEFAQAnAAUFFiIABgYRBiMHWVlZsDsrEzMRFDMyPgI3ETMRFDMVDgEjIiY9AQ4DIyImJxEjUER7HjkxJwxEGQoNBhcgDio0PB8xPA5BAgn+2rEUJjQhAUj+Txw8AgEcFUgbLiMULyb+4QAAAAABAEIAbAGMAbUACwAHQAQJAQENKyUHJwcnNyc3FzcXBwGMLHl6K3l4LHh4K3iXK3l5LHh5K3h5LHkAAAABAEkAAAH/AhIAGQBZQAwVEw4NDAsGBAEABQgrS7AaUFhAHA8KAgABASEAAQEDAQAnBAEDAw8iAgEAAA0AIwQbQCAPCgIAAQEhAAMDDyIAAQEEAQAnAAQEFSICAQAADQAjBVmwOyshIxE0JiMiDgIHESMRMxU+AzMyHgIVAf9ENjkePDQnCkQ+EC86QSMsOyQQASNdVBYoNyD+wQIJdhwvIhIgOlQzAAACACb/ZgIgAjsAIgA2AFFAEiQjLiwjNiQ2Hx0XFRAOBgQHCCtANxsBBQQTEgICAwIhAAAGAQQFAAQBACkABQADAgUDAQApAAIBAQIBACYAAgIBAQAnAAECAQEAJAawOysTND4CMzIeAhUUDgIjIiYnNx4BMzI+AjUOASMiLgI3Ig4CFRQeAjMyPgI1NC4CJidDXDU4XkMmJkVgO0ZwHSwUXDgsSDMdFmtEM1lCJvomQzMdHjJDJiZEMx0eM0MBRzNZQiYpTG9FbKFrNEY+KDM9Kk9zSjtGJUFY6h0yQyYmQzIdHTJDJiVDMx0AAAIASQAAAf8C2gAZADkBMUAcGxo1NDAuKyklJCAeGjkbORUTDg0MCwYEAQAMCCtLsBpQWEA1DwoCAAEBIQAJBwsCBQMJBQEAKQAGBggBACcKAQgIDiIAAQEDAQAnBAEDAw8iAgEAAA0AIwcbS7AdUFhAOQ8KAgABASEACQcLAgUECQUBACkABgYIAQAnCgEICA4iAAMDDyIAAQEEAQAnAAQEFSICAQAADQAjCBtLsCFQWEBADwoCAAEBIQAHBQQFBwQ1AAkLAQUHCQUBACkABgYIAQAnCgEICA4iAAMDDyIAAQEEAQAnAAQEFSICAQAADQAjCRtARA8KAgABASEABwUEBQcENQAJCwEFBwkFAQApAAoKDiIABgYIAQAnAAgIDiIAAwMPIgABAQQBACcABAQVIgIBAAANACMKWVlZsDsrISMRNCYjIg4CBxEjETMVPgMzMh4CFQMiLgIjIg4CFSM0PgIzMh4CMzI+AjUzFA4CAf9ENjkePDQnCkQ+EC86QSMsOyQQmxchHRsQERMLAyoHFCQcFR8cHRMTFwwDKggVJwEjXVQWKDcg/sECCXYcLyISIDpUMwFNDA8NDhEPAgUfIBkNEA0OEg8CBR4gGQAAAgAoAAAChQLGABsAHwCPQCYcHBwfHB8eHRsaGRgXFhUUExIREA8ODQwLCgkIBwYFBAMCAQARCCtLsCdQWEAtEA8HAwEGBAICAwECAAApDAEKCgwiDggCAAAJAAAnDQsCCQkPIgUBAwMNAyMFG0ArDQsCCQ4IAgABCQAAAikQDwcDAQYEAgIDAQIAACkMAQoKDCIFAQMDDQMjBFmwOysBIwczFSMHIzcjByM3IzUzNyM1MzczBzM3MwczBzcjBwKFgi+GkzI6M70yOjRxfTCDkDA6Mr0xOjJ16jC+LwHJxDbPz8/PNsQzysrKyvfExAAAAgAn//YCLQISABMAJwAxQA4BACQiGhgLCQATARMFCCtAGwADAwEBACcAAQEVIgACAgABACcEAQAAFgAjBLA7KwUiLgI1ND4CMzIeAhUUDgIDFB4CMzI+AjU0LgIjIg4CASo5X0UmJ0VfODhfRScnRV/1HTNFJydFNB4eNEQnJ0UzHgorSmI2N2JKLCxKYjc2YkorAQwsSzkgITlMLCtNOSEhOk0AAAAAAwAn//YCLQLaAAMAFwArAD9AEAUEKCYeHA8NBBcFFwMCBggrQCcBAAICAAEhAAAADiIABAQCAQAnAAICFSIAAwMBAQAnBQEBARYBIwawOysBJzczAyIuAjU0PgIzMh4CFRQOAgMUHgIzMj4CNTQuAiMiDgIBMC07SFw5X0UmJ0VfODhfRScnRV/1HTNFJydFNB4eNEQnJ0UzHgJsEV39HCtKYjY3YkosLEpiNzZiSisBDCxLOSAhOUwsK005ISE6TQAAAAMAJ//2Ai0C2gAGABoALgBCQBAIByspIR8SEAcaCBoCAQYIK0AqBgUEAwAFAgABIQAAAA4iAAQEAgEAJwACAhUiAAMDAQEAJwUBAQEWASMGsDsrEzczFwcnBxMiLgI1ND4CMzIeAhUUDgIDFB4CMzI+AjU0LgIjIg4CrmIyYydVVVY5X0UmJ0VfODhfRScnRV/1HTNFJydFNB4eNEQnJ0UzHgKFVVUVPz/9hitKYjY3YkosLEpiNzZiSisBDCxLOSAhOUwsK005ISE6TQAAAAAEACf/9gItAtcAAwAHABsALwBRQB4JCAQEAAAsKiIgExEIGwkbBAcEBwYFAAMAAwIBCwgrQCsJAwgDAQEAAAAnAgEAAA4iAAcHBQEAJwAFBRUiAAYGBAEAJwoBBAQWBCMGsDsrEzUzFTM1MxUDIi4CNTQ+AjMyHgIVFA4CAxQeAjMyPgI1NC4CIyIOAsI6WzpnOV9FJidFXzg4X0UnJ0Vf9R0zRScnRTQeHjREJydFMx4CeV5eXl79fStKYjY3YkosLEpiNzZiSisBDCxLOSAhOUwsK005ISE6TQAAAwAo//YD7QISADAARABPAQdAIkVFMjEBAEVPRU9LSTw6MUQyRCooHx0ZGBEPCwkAMAEwDQgrS7AdUFhANw0BCQcuJCMDBAMCIQwBCQADBAkDAAApCAEHBwEBACcCAQEBFSILBgIEBAABACcFCgIAABYAIwYbS7AhUFhARA0BCQcuJCMDBgMCIQwBCQADBgkDAAApCAEHBwEBACcCAQEBFSILAQYGAAEAJwUKAgAAFiIABAQAAQAnBQoCAAAWACMIG0BQDQEJBy4kIwMGAwIhDAEJAAMGCQMAACkACAgBAQAnAgEBARUiAAcHAQEAJwIBAQEVIgsBBgYAAQAnBQoCAAAWIgAEBAABACcFCgIAABYAIwpZWbA7KwUiLgI1ND4CMzIWFz4BMzIeAhccAQchHgMzMj4CNxcOAyMiLgInDgEnMj4CNTQuAiMiDgIVFB4CJS4DIyIOAgcBKTdeRScoRV82TXcbHHVRN1tDKQQB/kMDIjZGJxszKyAIOQ0tO0QkJkY8MhAhdUooRTMdHTNFJydGMx4dM0UCqQMhNEQmJkMxHwIKKkhiODlkSSpZTE5XJ0ZkPQQRAylHNB4OGCMVEB0wIhMXKzwlTFc8IDlMLCxNOSEhOk4sLEw3IOgrRzQdHTRIKgAAAAADACf/9gItAtoAEwAnACsAP0AQAQApKCQiGhgLCQATARMGCCtAJysqAgEEASEABAQOIgADAwEBACcAAQEVIgACAgABACcFAQAAFgAjBrA7KwUiLgI1ND4CMzIeAhUUDgIDFB4CMzI+AjU0LgIjIg4CEzMXBwEqOV9FJidFXzg4X0UnJ0Vf9R0zRScnRTQeHjREJydFMx5gRzwsCitKYjY3YkosLEpiNzZiSisBDCxLOSAhOUwsK005ISE6TQGsXREAAAAAAQAuAAABlgI7ABIAP0ASAAAAEgASERAMCwoJBAMCAQcIK0AlBQEDBAEhAAQDBDcAAwACAQMCAQApBgUCAQEAAAInAAAADQAjBbA7KyUVITUzEQ4DIzUyPgI3MxEBlv6tjgkmLzITFzcxIgJGPj4+AawMHBgQQhoiHgX+AwAAAAABACIBRgD6AtsAEgA8QBIAAAASABIREAwLCgkEAwIBBwgrQCIFAQMEASEAAwACAQMCAQApBgUCAQAAAQAAAigABAQOBCMEsDsrExUjNTMRDgMjNTI+AjUzEfrKUQUWGx0MECEcEi4Bcy0tATUGEQ8LLRAUEgH+mAADADH//AM6AtsAJwA6AEAAckAeKCgAACg6KDo5ODQzMjEsKyopACcAJyYlGRcODAwIK0BMPj0tAwcIEwEEABIBAgQ7AQMCBCFAAQMeAAcABgEHBgEAKQABAAAEAQABACkLCQIFAAQCBQQAAikACAgOIgACAgMAACcKAQMDDQMjCLA7KyE0PgI3PgM1NCYjIg4CByc+AzMyFhUUDgIHDgMVMxUBFSM1MxEOAyM1Mj4CNTMRAwkBFwkBAggPHy4fFi8nGTEyGCgeFwcdBBgnOCRHRxwpLxQhKxkL+f3PylEFFhsdDBAhHBIuWQEYAQ8j/ur+7yc5LCAMCRAXHxcfLAsRFAggBRYXEUQzHyocEgYLHCAgDSwBcy0tATUGEQ8LLRAUEgH+mP6oAVQBWx7+rP6kAAAAAAQALv/8AxcC2wAKAA0AIAAmAHhAIg4OAAAOIA4gHx4aGRgXEhEQDwwLAAoACgkIBwYFBAIBDggrQE4kIxMDCQoNAQYHAwEAAiEBBAAEISYBBB4ACQAIAQkIAQApDQsCBwAGAgcGAAIpBQECAwEABAIAAAApAAoKDiIAAQEEAAAnDAEEBA0EIwiwOyshNSM1NzMVMxUjFSczNSUVIzUzEQ4DIzUyPgI1MxEDCQEXCQECseTyHzk54bX+VMpRBRYbHQwQIRwSLjUBGAEPI/7q/u9nKv78LGeTvyEtLQE1BhEPCy0QFBIB/pj+qAFUAVse/qz+pAACAC8BWgF4AsYAJgA1AGJAGignAQAxLyc1KDUhHxwbFxUSEAsJACYBJgoIK0BAFBMCAQINAQcBLSQCBAcdAQAGBCEABAcGBwQGNQABAAcEAQcBACkJAQYFCAIABgABACgAAgIDAQAnAAMDDAIjBrA7KxMiLgI1ND4CMzIWFzU0JiMiByc2MzIWHQEUFxUOASMiJi8BDgEnMj4CPQEuASMiBhUUFqYZLCASFig2IRw1FTMtND4URkVGUBMHCwUUGQEBGUkaFSkhFRUwFy45LQFaER4oFxgoHRAJCRwrMiklLklEjxUBNAEBExEZICEtDBMZDTQJByUfHSgAAAACACwBWgGUAsYAEwAnAC5ADgEAJCIaGAsJABMBEwUIK0AYAAIEAQACAAEAKAADAwEBACcAAQEMAyMDsDsrEyIuAjU0PgIzMh4CFRQOAicUHgIzMj4CNTQuAiMiDgLgKEIwGhowQigoQjAaGjBCoBMgLBkZKyETEyErGRkrIRMBWh4yQiQlQjIdHTJCJSRCMh61GzAjFBUkMBsbMCIUFCMwAAAAAAMAJ//2Ai0CEgAbACcAMgDUQBIpKCgyKTIkIhsaFxUNDAkHBwgrS7AaUFhANAsBBAAxMCAfDgUFBBkBAgUDIQABBQEgAAQEAAEAJwEBAAAVIgYBBQUCAQAnAwECAhYCIwYbS7AhUFhAOAsBBAAxMCAfDgUFBBkBAwUDIQABBQEgAAQEAAEAJwEBAAAVIgADAw0iBgEFBQIBACcAAgIWAiMHG0A8CwEEATEwIB8OBQUEGQEDBQMhAAEFASAAAQEPIgAEBAABACcAAAAVIgADAw0iBgEFBQIBACcAAgIWAiMIWVmwOys3LgE1ND4CMzIWFzczBx4BFRQOAiMiJicHIxMUFhcTLgEjIg4CFzI+AjU0JicDFoQsMSdFXzgmQx0XLygtMidFXzgnRR0WLhAiHeAWMhonRTMevCdFNB4jHeAsMiZsPzdiSiwUEh82Jm0/NmJKKxQSHQEDMFAdAVIOESE6TfwhOUwsL1Ed/q8eAAAAAwAn//YCLQLaABMAJwBHAOZAHikoAQBDQj48OTczMi4sKEcpRyQiGhgLCQATARMMCCtLsB1QWEA0AAgGCwIEAQgEAQApAAUFBwEAJwkBBwcOIgADAwEBACcAAQEVIgACAgABACcKAQAAFgAjBxtLsCFQWEA7AAYEAQQGATUACAsBBAYIBAEAKQAFBQcBACcJAQcHDiIAAwMBAQAnAAEBFSIAAgIAAQAnCgEAABYAIwgbQD8ABgQBBAYBNQAICwEEBggEAQApAAkJDiIABQUHAQAnAAcHDiIAAwMBAQAnAAEBFSIAAgIAAQAnCgEAABYAIwlZWbA7KwUiLgI1ND4CMzIeAhUUDgIDFB4CMzI+AjU0LgIjIg4CEyIuAiMiDgIVIzQ+AjMyHgIzMj4CNTMUDgIBKjlfRSYnRV84OF9FJydFX/UdM0UnJ0U0Hh40RCcnRTMe+xchHRsQERMLAyoHFCQcFR8cHRMTFwwDKggVJworSmI2N2JKLCxKYjc2YkorAQwsSzkgITlMLCtNOSEhOk0BUAwPDQ4RDwIFHyAZDRANDhIPAgUeIBkAAAACAEn/KwJAAhIAFAApAIFAFhYVAQAgHhUpFikMCgcGBQQAFAEUCAgrS7AaUFhAKyUkCAMEBAUBIQAFBQIBACcDAQICDyIHAQQEAAEAJwYBAAAWIgABAREBIwYbQC8lJAgDBAQFASEAAgIPIgAFBQMBACcAAwMVIgcBBAQAAQAnBgEAABYiAAEBEQEjB1mwOysFIiYnESMRMxU+ATMyHgIVFA4CJzI+AjU0LgIjIg4CBxUeAwFUQmYfRD0gZjw2W0IlIj9XRypEMRoeNEcpGjgyIwQMJS83CkMz/r8C3mUxPS1LYjQ3YkorPCQ7SygqTDoiFSMvGqAcMCMUAAADACT/sAIvAsYAEQAaAB4AQEAWHh0cGxkYFxYODQwLCgkIBwYFBAIKCCtAIgQBAgMCOAkBBgUBAwIGAwEAKQgHAgEBAAEAJwAAAAwBIwSwOysTNDY7ARUjESMRIxEjES4DNxQeAhcRDgElIxEzJJSG8UY8Sjs8YEQkOyA3SSliZwFOSkoB1XJ/Nv0gATf+yQE3ASE+VzkvRC0YAgFzAWNk/o0AAAEALP/bAOwC4wARAAdABAUPAQ0rEzQ+AjcXDgMVFBYXBy4BLBYmMx00FS0lGUQ7Mz9NAVozY2FhMRkeWGRpME65WhtewQAAAAEAIP/bAOAC4wARAAdABA0DAQ0rExQGByc+ATU0LgInNx4D4E0/MztEGSYtFDQdMyYWAVpgwV4bWrlOMGlkWB4ZMWFhYwAAAAUALf/2AqcC0AATACcAOwBNAFMAaEAiPTwpKBUUAQBHRTxNPU0zMSg7KTsfHRQnFScLCQATARMMCCtAPlFQAgMBU04CBAYCIQkBAggBAAUCAAEAKQAFAAcGBQcBACkAAwMBAQAnAAEBEiILAQYGBAEAJwoBBAQWBCMHsDsrEyIuAjU0PgIzMh4CFRQOAicyPgI1NC4CIyIOAhUUHgIBIi4CNTQ+AjMyHgIVFA4CJzI+AjU0LgIjIg4CFRQWBQkBFwkBwh82KRcXKTYfHzcoGBgoNx8VJBsPEBwkExQkGw8QGyMBZB82KRcXKTYfHzYpFxcpNh8VIxsPEBskExUjGw85/lwBGAEPI/7q/u8BsRYnNB4eNCcXFyc0Hh40JxYnER0lFRYmHBARHSUVFSYdEP4eFic1Hh40JxYWJzQeHjUnFigRHCYVFSYdEBEdJRUsPAMBVAFbHv6s/qQAAAEAQgAAAHwAYgADACFACgAAAAMAAwIBAwgrQA8AAAABAAAnAgEBAQ0BIwKwOyszNTMVQjpiYgAAAQA1AMABbQIGAAsANUASAAAACwALCgkIBwYFBAMCAQcIK0AbBgUCAwIBAAEDAAAAKQABAQQAACcABAQPASMDsDsrARUjFSM1IzUzNTMVAW19Pn19PgF/OIeHOIeHAAAAAgBFAD0BiAIVAAMADwB/QBoEBAAABA8EDw4NDAsKCQgHBgUAAwADAgEKCCtLsClQWEAlCQcCBQQBAgMFAgAAKQAACAEBAAEAACgAAwMGAAAnAAYGDwMjBBtALwkHAgUEAQIDBQIAACkABgADAAYDAAApAAABAQAAACYAAAABAAAnCAEBAAEAACQFWbA7Kzc1IRURFSMVIzUjNTM1MxVFAUODPoKCPj05OQFMOYyMOYyMAAAAAgAn/ysCNgISABsAMACZQBgdHAEAKCYcMB0wFhQSEQ8OCwkAGwEbCQgrS7AaUFhANiIhGQ0EBQYTAQQDAiEABgYBAQAnAgEBARUiCAEFBQABACcHAQAAFiIAAwMEAQInAAQEEQQjBxtAOiIhGQ0EBQYTAQQDAiEAAgIPIgAGBgEBACcAAQEVIggBBQUAAQAnBwEAABYiAAMDBAECJwAEBBEEIwhZsDsrBSIuAjU0PgIzMhYXNTMRFBcVBiMiJjURDgEnMj4CNzUuAyMiDgIVFB4CARM1Vz4iJkNbND1nHj0YDg8aJSZlJx81LSMOBCIxOhwqRzMcHDFFCi1LYTU2YkosPzBm/X0cATsDJBoBAzo8PBQhLRmhGzEmFiQ7TCgqTDkiAAIAIwAAAbcCzwAlACkAR0AUJiYAACYpJikoJwAlACUXFQ4MBwgrQCsREAICAAEhBQECAAMAAgM1AAAAAQEAJwABARIiAAMDBAAAJwYBBAQNBCMGsDsrNzQ2Nz4DNTQuAiMiBgcnPgMzMh4CFRQOAgcOAxUHNTMVmyksFDAqHRcmMRo2VRYvDiw3PyElRjchFyYxGRIgGg85O8pCThoMGSQyJSEwIRA7Kx4fMCERFzBIMCg3KB0OChUhMCTKa2sAAAIAJP8rAbgB+gAlACkAeUAUJiYAACYpJikoJwAlACUXFQ4MBwgrS7AhUFhAKxEQAgACASEFAQIDAAMCADUAAwMEAAAnBgEEBA8iAAAAAQEAJwABAREBIwYbQCkREAIAAgEhBQECAwADAgA1BgEEAAMCBAMAACkAAAABAQAnAAEBEQEjBVmwOysBFAYHDgMVFB4CMzI2NxcOAyMiLgI1ND4CNz4DNTcVIzUBQCksFDAqHRcmMRo2VRYvDiw3PyElRjchFyYwGhIgGg85OwEwQk4aDBkkMiUhMCEQOyseHzAhERcwSDAoNygdDgoVITAkymtrAAACAD4CTQDZAswAAwAHACxAEgQEAAAEBwQHBgUAAwADAgEGCCtAEgUDBAMBAQAAACcCAQAADAEjArA7KxM1MxUzNTMVPjwkOwJNf39/fwAAAAIAN/+9APsAYgALABcANkAOFxYREA0MCwoFBAEABggrQCAEAQEAATcDAQACAgABACYDAQAAAgEAJwUBAgACAQAkBLA7KxcyNj0BMxUUDgIjNzI2PQEzFRQOAiM3Bw46DhccDnUHDjoOFxwODwgNXGYRGA8HNAgNXGYRGA8HAAAAAQA3/70AhgBiAAsALEAICwoFBAEAAwgrQBwAAQABNwAAAgIAAQAmAAAAAgEAJwACAAIBACQEsDsrFzI2PQEzFRQOAiM3Bw46DhccDg8IDVxmERgPBwAAAAIAOgIiAQkC2gALABcAKUAOFxYTEg0MCwoHBgEABggrQBMFAQIDAQACAAEAKAQBAQEOASMCsDsrEyIuAj0BMxUUFjMXIi4CPQEzFRQWM4kPHBYOOg4HgA8cFg46DgcCIgcPGRF4bw0INAcPGRF4bw0IAAAAAQA6AiIAiQLaAAsAIEAICwoHBgEAAwgrQBAAAgAAAgABACgAAQEOASMCsDsrEyIuAj0BMxUUFjOJDxwWDjoOBwIiBw8ZEXhvDQgAAAIANQIiAQQC2gALABcALEAOFxYTEg0MCwoHBgEABggrQBYEAQECATgFAQICAAEAJwMBAAAOAiMDsDsrEzIeAh0BIzU0JiM3Mh4CHQEjNTQmIzUPHBYOOg4HgA8cFg46DgcC2gcPGRF4bw0INAcPGRF4bw0IAAAAAAEANQIiAIQC2gALACNACAsKBwYBAAMIK0ATAAECATgAAgIAAQAnAAAADgIjA7A7KxMyHgIdASM1NCYjNQ8cFg46DgcC2gcPGRF4bw0IAAAAAQA3AlwAcwLMAAMAIUAKAAAAAwADAgEDCCtADwIBAQEAAAAnAAAADAEjArA7KxM1MxU3PAJccHAAAAAAAQBJAAABTQIMAA4AMUAKDQoHBgUEAQAECCtAHwgDAgEAASEOAQIfAAAAAgEAJwMBAgIPIgABAQ0BIwWwOysBDgEHESMRMxU+ATM6ARcBTUVmFURAG1gzCRAFAc0CSD/+vAIJfTdJAQAEADP/+QMTAssAEwAnADcAQABqQCI5OBUUAQA/PThAOUA3NjU0MzIqKB8dFCcVJwsJABMBEw0IK0BAMQEGCAEhBwEFBgIGBQI1AAQACQgECQEAKQwBCAAGBQgGAAApAAMDAQEAJwABARIiCwECAgABACcKAQAAEwAjCLA7KwUiLgI1ND4CMzIeAhUUDgInMj4CNTQuAiMiDgIVFB4CAzMyHgIVFAYHFyMnIxUjNzI2NTQmKwEVAaJPh2I3N2KHT0+IYjg4YohPRnpaMzJZekhIeVgyMlh5UL8dMSQUOC5vOmp2NL8pKjEmhwc3YYROTYRgNzdghE1OhGE3IDBWeUpGeFgyMlh3Rkd4WTICKxkpMxoxTQmvqKjWNykqNb8AAAABAB3/9gHDAhIAMQA6QA4BACEfGhgIBgAxATEFCCtAJB0cBAMEAQMBIQADAwIBACcAAgIVIgABAQABACcEAQAAFgAjBbA7KxciJic3HgEzMjY1NC4CJy4DNTQ+AjMyFhcHLgEjIg4CFRQeAhceAxUUBvg9dCofLFs0P0sUJzsnLUIrFR81Ryg8Yh4hHVMtGy4jFA4gMSMyTDMabgooJi4kJDMvFh0WEQkLFhwpHyc8JxQnICgeHgsYJRkVGhMPCAwYIC4hSFQAAAIAMf+oAdECywBAAFMAVEAQT01FRDo5MC4pJxEPCQcHCCtAPCwrAgQDUSACBgRGDg0ABAEFAyEABQYBBgUBNQAEAAYFBAYBACkAAQAAAQABAigAAwMCAQAnAAICEgMjBrA7KyUeARUUDgIjIi4CJzcWMzI+AjU0LgInLgE1NDY3LgE1ND4CMzIWFwcuASMiDgIVFB4CFx4DFRQGJRQeAhc+ATU0LgInLgEnDgEBoxcXJjtJIiA6MikPLEhMGjEnGBkmLBNeZQ8LFR4hN0kpQFgaNRFJIxoxJRYfKi0OKEg3IRH+3DFFSRgODxknLxYXKBcLDsMONSMwRCwVEBogESpEDh0qHB0iEgYCCE1KHi0ODz4mJz8uGTkmGSAaDh0qHCInEwUBAhIjOSkfMXgtJxAFCQsoFR0lFwkBAQQJCyUAAgA6/70AiQIGAAMADwA4QBAAAA8OCQgFBAADAAMCAQYIK0AgAAMBAgEDAjUAAgAEAgQBACgFAQEBAAAAJwAAAA8BIwSwOysTNTMVAzI2PQEzFRQOAiNPOk8HDjoOFxwOAaRiYv5NCA1cZhEYDwcAAAEALv+BAhkCRwAFACxACAUEAwIBAAMIK0AcAAIAAjgAAQAAAQAAJgABAQAAACcAAAEAAAAkBLA7KwEhNSEBIwGt/oEB6/6ZTgIIP/06AAAAAgA3//YCMQLLACIANgBKQBIkIy4sIzYkNh8dFxUQDgYEBwgrQDATEgIDAhsBBAUCIQADAAUEAwUBACkAAgIBAQAnAAEBEiIGAQQEAAEAJwAAABYAIwawOyslFA4CIyIuAjU0PgIzMhYXBy4BIyIOAhU+ATMyHgIHMj4CNTQuAiMiDgIVFB4CAjEnQ1w1OF5EJSZFYDtGcB0sFFw4LEgzHRZrRDNZQib6JkMzHR4yRCUmRDMdHjND6jNZQiYpTG9FbKFrNEY+KDM9Kk90STtGJUFY6h0yQyYmQzIdHTJDJiZCMx0AAv//AAADsgLGAA8AEgBWQBgQEBASEBIPDg0MCwoJCAcGBQQDAgEACggrQDYRAQIBASEAAgADCAIDAAApCQEIAAYECAYAACkAAQEAAAAnAAAADCIABAQFAAAnBwEFBQ0FIwewOysBIRUhFSEVIREhFSE1IQcjAREDAcgB4f52AVT+rAGT/in+/Y1MAdfeAsY+/z7+8z7e3gEcAVb+qgAAAAEANf/xAcoCywBDAGlAFkNCNzUyMCwqJyUfHh0cExEMCgEACggrQEsPDgIAAiQBBgU6LwIIBjkBBwgEIS4BBQEgAwEACQEEBQAEAAApAAICAQEAJwABARIiAAUFCAEAJwAICA0iAAYGBwEAJwAHBxYHIwmwOysTMy4DNTQ+AjMyFhcHLgEjIg4CFRQeAhczFSMWFRQGBzYzMh4CMzI2NxcGIyIuAiMiBgcnPgM1NCYnIzVeCxgUDR0xQiY2YR4oGE0qGCsfEg4UGAuyngguOiUlFSQiIRIUKhsRNjcXKCgpFxc7GhIiMB0NBQV1AXQVKSosGCQ+Lhs4MSoqMBIgKxkWKSkpFzYeHjJdPQkGBgYJCTQaBwkICQgyIjkyLxgRIA8AAAABABn/+gFFArkAGwB3QBAZFxQTEhEQDw4NDAsGBAcIK0uwJ1BYQCsbAQYBAAEABgIhAAMDDCIFAQEBAgAAJwQBAgIPIgAGBgABACcAAAATACMGG0ArGwEGAQABAAYCIQADAgM3BQEBAQIAACcEAQICDyIABgYAAQAnAAAAEwAjBlmwOyslDgMjIi4CNREjNTM1MxUzFSMRHgEzMjY3AUUGFx4mFRYoHhJISER4eAIkGR0sBhkDCgoIDBkmGQF1NrCwNv6eHRsTBAAAAAACAEn/KwIzAsYAFAApAEJADiYkGxkRDwwLCgkGBAYIK0AsHw0IAwUEASEAAgIMIgAEBAMBACcAAwMVIgAFBQABACcAAAAWIgABAREBIwewOysBDgMjIiYnESMRMxE+ATMyHgIHNC4CIyIOAgcVFB4CMzI+AgIzAShFXDY2WBZGRh1TPTpbQCJFGjBDKB40KiIMIDA5GilFMhwBATZjSy02JP7hA5v+7Ck5MU9iMClNOyMUIiwYsBguIhUkOkwAAAABACf/bQHpAkAAMgBRQA4qKCEfGRcWFBAOCQcGCCtAOyQjAgMEAAECAwwLAgECAyEABQAEAwUEAQApAAMAAgEDAgEAKQABAAABAQAmAAEBAAEAJwAAAQABACQGsDsrJR4BFRQOAiMiJic3HgEzMjY1NCYrATUzMjY1NC4CIyIGByc+AzMyHgIVFA4CAVhCTyE9VTRMch0vFVZBS1ZaVRkbTVIWJzUfOVcWLAwsOEQkLk04HxIiMewLYkgtSzUdPTYrLDRJREVQOkg5Hi0fEDMtKhorHhEaL0IoHjcrHQAAAAEAJAFBAWEC2wAtAIlAEgEAIB4ZFxMREA4KCAAtAS0HCCtLsBZQWEA0HBsCAwQmAQIDBAMCAQIDIQABBgEAAQABACgABAQFAQAnAAUFDiIAAgIDAQAnAAMDFQIjBhtAMhwbAgMEJgECAwQDAgECAyEAAwACAQMCAQApAAEGAQABAAEAKAAEBAUBACcABQUOBCMFWbA7KxMiJic3HgMzMjY1NCYrATUzMjY1NCYjIgYHJz4BMzIeAhUUBx4BFRQOAr8/VAgbARQiLhsxQ1BFFxc/SD8rKjsPHxJRMCE4KhdbMDcaLToBQTApHQwaFQ4nICMnKSEhIScfGSIdIhEdKBhFEwc5JhopHA8AAAAEACz//AMhAtsALQA4ADsAQQD3QCIuLgEAOjkuOC44NzY1NDMyMC8gHhkXExEQDgoIAC0BLQ4IK0uwFlBYQGM+AQQFPxwbAwMEJgECAwQDAgcCOwEAATEBBgg8AQoGByFBAQoeAAEMAQAIAQABACkLAQgJAQYKCAYAACkABAQFAQAnAAUFDiIAAgIDAQAnAAMDFSIABwcKAAAnDQEKCg0KIwobQGE+AQQFPxwbAwMEJgECAwQDAgcCOwEAATEBBgg8AQoGByFBAQoeAAMAAgcDAgEAKQABDAEACAEAAQApCwEICQEGCggGAAApAAQEBQEAJwAFBQ4iAAcHCgAAJw0BCgoNCiMJWbA7KxMiJic3HgMzMjY1NCYrATUzMjY1NCYjIgYHJz4BMzIeAhUUBx4BFRQOAgE1IzU3MxUzFSMVJzM1CQIXCQHHP1QIGwEUIi4bMUNQRRcXP0g/Kyo7Dx8SUTAhOCoXWzA3Gi06AdPk8h85OeG1/e0BGAEPI/7q/u8BQTApHQwaFQ4nICMnKSEhIScfGSIdIhEdKBhFEwc5JhopHA/+v2cq/vwsZ5O//skBVAFbHv6s/qQAAAABADMAAAHgAkUAKwA2QA4AAAArACsqKRsZEA4FCCtAIBUUAgIAASEAAQAAAgEAAQApAAICAwAAJwQBAwMNAyMEsDsrMzQ+Ajc+AzU0LgIjIg4CByc+AzMyHgIVFA4CBw4DByEVMw0lQTMbPzYjESExICE1KBsHLQYiN0svLUcyGic4OxMtPCYTBAFeJUdCPRsOHSQsHhMmHhITGh0JMQYgIBkZLDkgKj0sHAkUJigwHz4AAAABACUBRwFeAtsAJwA1QA4AAAAnACcmJRkXDgwFCCtAHxMSAgIAASEAAgQBAwIDAAAoAAAAAQEAJwABAQ4AIwSwOysTND4CNz4DNTQmIyIOAgcnPgMzMhYVFA4CBw4DFTMVJQ8fMCAXMCgaMzMZKCAXBx4EGCk5JUlJIC0wECApGAnyAUcnOSsfDQkRFiAXHysLERMIHwUXFxFEMSMsGw8GCxseIBErAAABAET/9gIaAgkAGwCkQBIBABYUEhEPDgkHBQQAGwEbBwgrS7AYUFhAIhkNAgIBEwEAAgIhAwEBAQ8iBAECAgABACcFBgIAABYAIwQbS7AhUFhAKRkNAgQBEwEAAgIhAAQBAgEEAjUDAQEBDyIAAgIAAQAnBQYCAAAWACMFG0AtGQ0CBAETAQUCAiEABAECAQQCNQMBAQEPIgAFBRMiAAICAAEAJwYBAAAWACMGWVmwOysXIiY1ETMRFDMyPgI3ETMRFDMVBiMiJj0BDgHqUlREeR46MScMRBkUCBchI3QKcXABMv7asRQmNCEBSP5PHDwDHBVIPUMAAAIARP/2AhoC2gADAB8AxEAUBQQaGBYVExINCwkIBB8FHwMCCAgrS7AYUFhALAEAAgIAHRECAwIXAQEDAyEAAAAOIgQBAgIPIgUBAwMBAQAnBgcCAQEWASMFG0uwIVBYQDMBAAICAB0RAgUCFwEBAwMhAAUCAwIFAzUAAAAOIgQBAgIPIgADAwEBACcGBwIBARYBIwYbQDcBAAICAB0RAgUCFwEGAwMhAAUCAwIFAzUAAAAOIgQBAgIPIgAGBhMiAAMDAQEAJwcBAQEWASMHWVmwOysBJzczAyImNREzERQzMj4CNxEzERQzFQYjIiY9AQ4BASctO0iTUlREeR46MScMRBkUCBchI3QCbBFd/RxxcAEy/tqxFCY0IQFI/k8cPAMcFUg9QwAAAgBE//YCGgLaAAYAIgDNQBQIBx0bGRgWFRAODAsHIggiAgEICCtLsBhQWEAvBgUEAwAFAgAgFAIDAhoBAQMDIQAAAA4iBAECAg8iBQEDAwEBAicGBwIBARYBIwUbS7AhUFhANgYFBAMABQIAIBQCBQIaAQEDAyEABQIDAgUDNQAAAA4iBAECAg8iAAMDAQECJwYHAgEBFgEjBhtAOgYFBAMABQIAIBQCBQIaAQYDAyEABQIDAgUDNQAAAA4iBAECAg8iAAYGEyIAAwMBAQInBwEBARYBIwdZWbA7KxM3MxcHJwcTIiY1ETMRFDMyPgI3ETMRFDMVBiMiJj0BDgGmYjJjJ1VVHlJURHkeOjEnDEQZFAgXISN0AoVVVRU/P/2GcXABMv7asRQmNCEBSP5PHDwDHBVIPUMAAwBE//YCGgLXAAMABwAjAORAIgkIBAQAAB4cGhkXFhEPDQwIIwkjBAcEBwYFAAMAAwIBDQgrS7AYUFhAMiEVAgYFGwEEBgIhCwMKAwEBAAAAJwIBAAAOIgcBBQUPIggBBgYEAQAnCQwCBAQWBCMGG0uwIVBYQDkhFQIIBRsBBAYCIQAIBQYFCAY1CwMKAwEBAAAAJwIBAAAOIgcBBQUPIgAGBgQBACcJDAIEBBYEIwcbQD0hFQIIBRsBCQYCIQAIBQYFCAY1CwMKAwEBAAAAJwIBAAAOIgcBBQUPIgAJCRMiAAYGBAEAJwwBBAQWBCMIWVmwOysTNTMVMzUzFQMiJjURMxEUMzI+AjcRMxEUMxUGIyImPQEOAbk6WzqeUlREeR46MScMRBkUCBchI3QCeV5eXl79fXFwATL+2rEUJjQhAUj+Txw8AxwVSD1DAAAAAgBE//YCGgLaABsAHwDEQBQBAB0cFhQSEQ8OCQcFBAAbARsICCtLsBhQWEAsHx4CAQYZDQICARMBAAIDIQAGBg4iAwEBAQ8iBAECAgABAicFBwIAABYAIwUbS7AhUFhAMx8eAgEGGQ0CBAETAQACAyEABAECAQQCNQAGBg4iAwEBAQ8iAAICAAECJwUHAgAAFgAjBhtANx8eAgEGGQ0CBAETAQUCAyEABAECAQQCNQAGBg4iAwEBAQ8iAAUFEyIAAgIAAQInBwEAABYAIwdZWbA7KxciJjURMxEUMzI+AjcRMxEUMxUGIyImPQEOAQMzFwfqUlREeR46MScMRBkUCBchI3RrRzwsCnFwATL+2rEUJjQhAUj+Txw8AxwVSD1DAuRdEQAAAAABABH/wgGOAAAAAwAqQAoAAAADAAMCAQMIK0AYAAABAQAAACYAAAABAAAnAgEBAAEAACQDsDsrFzUhFREBfT4+PgAAAAEAQgDxAfkBMAADACpACgAAAAMAAwIBAwgrQBgAAAEBAAAAJgAAAAEAACcCAQEAAQAAJAOwOys3NSEVQgG38T8/AAAAAf/0//wCUQLKAAMAB0AEAQMBDSsnARcBDAI0Kf3NHgKsIv1UAAAAAAEAEQAAAgECCQAGAChADAAAAAYABgUEAgEECCtAFAMBAgABIQEBAAAPIgMBAgINAiMDsDsrMwMzGwEzA+XUR7O0QtQCCf42Acr99wABABEAAAMfAgkAEQAxQA4PDgwLCAcGBQMCAQAGCCtAGxEQDQoJBAYBAAEhBQQDAwAADyICAQEBDQEjA7A7KwEzAyMLASMDMxM3JzMXNzMHFwLdQt85b28530G+Y1k6REM6WGMCCf33AQr+9gIJ/j3u1Kqq1O4AAAABAA0AAAHnAgkADwAuQA4AAAAPAA8NDAgHBQQFCCtAGA4KBgIEAQABIQQDAgAADyICAQEBDQEjA7A7KxMfAT8BMwMTIy8BDwEjEwNWnAgJm0nHx0mbCQibSsfHAgnMDw/M/vr+/csODssBAwEGAAAAAQAN/yACCAIJABYAWEAKFRMQDw0MBAIECCtLsC1QWEAgDgYAAwABFgEDAAIhAgEBAQ8iAAAAAwEAJwADAxEDIwQbQB0OBgADAAEWAQMAAiEAAAADAAMBACgCAQEBDwEjA1mwOysXHgEzMjY3PgM3AzMbATMBDgEjIidnBQoFChcFBQsRGhTjR8GyQf7xDzMuEw+hAQEEAgINITsyAgn+NgHK/WAlJAMAAgAN/yACCALaABYAGgBuQAwaGRUTEA8NDAQCBQgrS7AtUFhAKhgXAgEEDgYAAwABFgEDAAMhAAQEDiICAQEBDyIAAAADAQAnAAMDEQMjBRtAJxgXAgEEDgYAAwABFgEDAAMhAAAAAwADAQAoAAQEDiICAQEBDwEjBFmwOysXHgEzMjY3PgM3AzMbATMBDgEjIicTJzczZwUKBQoXBQULERoU40fBskH+8Q8zLhMPtC07SKEBAQQCAg0hOzICCf42Acr9YCUkAwNJEV0AAwAN/yACCALXABYAGgAeAIhAGhsbFxcbHhseHRwXGhcaGRgVExAPDQwEAgoIK0uwLVBYQDAOBgADAAEWAQMAAiEJBwgDBQUEAAAnBgEEBA4iAgEBAQ8iAAAAAwEAJwADAxEDIwYbQC0OBgADAAEWAQMAAiEAAAADAAMBACgJBwgDBQUEAAAnBgEEBA4iAgEBAQ8BIwVZsDsrFx4BMzI2Nz4DNwMzGwEzAQ4BIyInEzUzFTM1MxVnBQoFChcFBQsRGhTjR8GyQf7xDzMuEw9GOls6oQEBBAICDSE7MgIJ/jYByv1gJSQDA1ZeXl5eAAAAAQAeAAACiQLGABgAUEAYGBcVFBMSERAODQwLCgkIBwYFAwIBAAsIK0AwFgEBAA8EAgIBAiEIAQAHAQECAAEAACkGAQIFAQMEAgMAACkKAQkJDCIABAQNBCMFsDsrATMVIwcVMxUjFSM1IzUzNScjNTMDMxsBMwGxVG8hkZFGj48fcFbYTOjqTQFuMDYbML29MB00MAFY/oIBfgAAAQAcAAABxgIJAAkANkAKCQgHBgQDAgEECCtAJAUBAAEAAQMCAiEAAAABAAAnAAEBDyIAAgIDAAAnAAMDDQMjBbA7KzcBITUhFQEhFSEcAWD+qAGi/qIBXv5WLgGoMy7+WDMAAAIAOf/2Ai8CVQATACcAKkAKJCIaGBAOBgQECCtAGAABAAIDAQIBACkAAwMAAQAnAAAAFgAjA7A7KwEUDgIjIi4CNTQ+AjMyHgIHNC4CIyIOAhUUHgIzMj4CAi8mQ1w2NlxDJiZDXDY2XEMmRRswQygpQzAbGzBDKShDMBsBJUJvUS0tUW9CQm9RLi5Rb0I2WD8jIz9YNjZYPyIiP1gAAAABAAAA3AB+AAcAAAAAAAIAJAAvADwAAACDB0kAAAAAAAAAAAAAAAAAAAAaAFwApgDGARYBPgGAAZoBuAIeAlwDFAOIA/AERAT0BUIFhAW8BgIGTgagBuYHOgfAB/AIbgigCLwI8gkcCUwJggmsCd4KAgokClwKhgq8C2ALtAxYDLoNIg2QDfIOig6qD34PxBBKEJoQ+hEgEW4RrBH4EkoSohLuExYTahOgE8wUBhQ4FOoVrhZ6F04YDhjSGYgadhqeGwgbOBwGHUAdvh3eHgAeaB7QHw4fTB+AH64gACDaIUghdiGiIjwi7iMuI24kNiRSJLwlMiWuJjImqCdQJ3InlCfGKDooaCiWKN4pXCngKtYrJivELDYsTiyOLMYthi4KLiIuQi5iLnguji7OLvAvHC9IL3ovsi/cMCYwWDCMMKQwzDE4MUgx6jIIMlwy0jO6NDI0hjToNVA1vjayNxQ3VDeQOCo4pDkiOXQ6LDsCO4A70jv2PBo8yDzkPRQ9bj4APmA+2j8CP0I/bj+oP85ACkAyQFBAhEEUQXhCGEJQQnhC6kM6Q8xEMkSSRQJFiEZmRsBHFEeQSCRIwEloSfxKHkoeSkBKVEp6SrZK7ktCS6hMIExuTKBM8AAAAAEAAAACAEL5Ket0Xw889QAZA+gAAAAAzG+hBAAAAADMb3tH/yj/IARbA6UAAAAJAAIAAAAAAAAAAAAAAAAAAAAAAAABAAAAAN4AMQKnAA8CpwAPAUoAKgKnAA8BSQA9AqcADwDeADEBjAA2AqcADwD4ADICpwAPAZYALAKcAFoCsQAsArIALQEbABYCzgBaAmUAWgJlAFoCZQBaAmUAWgJlAFoC0wAiAyMAIgJJAFoC0gAtAuMAWgD5AFoB5gASAPkAVgD5AAEA+QAVAPkAHwKBAFoCTgBaAL0AQgNuAFoDBQBaAqcADwMFAFoC9AAtBIgALQL0AC0C9AAtAvQALQL0AC0C9AAtAl4AHQL0AC0CbQBaAvQALQKUAFoCZAAjAmYAEwJeAFoC8wBPAvMATwLzAE8C8wBPAvMATwKlAAwEFgAMAncABQJ6AAgCegAIAnAAHAIkACACJAAgAiQAIAIkACADpAAiAiQAIAKgADACJAAgAh0ALAH8AEEBQwA+AzoAMgIkACACaABJAjkAGwDfAFIA/QA1AP0ALQD4AFQA+AAtAOMAVAFjAFgCJgAnAigAKAI3AC4AxQBGAM0ANwNGADMCbwAnAQsAMgIXAEICaQAlANYASQJLACcCSwAnAksAJwJLACcCSwAnAlQAMwOFAEICOgBCAbkARgJbACkA8wBYAPQAWAFZAB0CVwAdAt0AHQMtAB0B9wAdAkQAHQInACYAmv8oAh4AFQGAABgCaAAoAicASQH6ADUCQgAsAkIAQAFlACwBZQBAAkMASQGnAEIA1gBJANYARADW//AA1gAEANYADgDW/4ICDwBJAQgATAH6ACICTQBPA5QASQIgAEYCVgBQAc4AQgJDAEkCTQAmAkMASQKsACgCUwAnAlMAJwJTACcCUwAnBAwAKAJTACcBrAAuARAAIgNlADEDPgAuAbIALwHAACwCUwAnAlMAJwJnAEkCVwAkAQwALAEMACAC1AAtAL0AQgGiADUBzABFAmcAJwHfACMB2AAkARgAPgFCADcAzQA3AUYAOgDGADoBRgA1AMYANQCqADcBXwBJA0YAMwHnAB0CAAAxANQAOgImAC4CXgA3A9///wH5ADUBTAAZAloASQIYACcBiAAkA04ALAIVADMBhgAlAlIARAJSAEQCUgBEAlIARAJSAEQBnwARAQAAAAI6AEICRP/0AhIAEQMvABEB9AANAh4ADQIeAA0CHgANAqYAHgHmABwCZwA5AAEAAAOs/xYAAASI/yj/KARbAAEAAAAAAAAAAAAAAAAAAADcAAMBzwGQAAUAAAK8AooAAACMArwCigAAAd0AMgD6AAACCwADAwEBBgADoAAAv1AAAFsAAAAAAAAAAHB5cnMAQAAg+wYDrP8WAAADrADqAAAAkwAAAAACCQLGAAAAIAADAAAAAgAAAAMAAAAUAAMAAQAAABQABAI4AAAAJgAgAAQABgB+AKMA/wExAVMCxgLaAtwgFCAaIB4gIiA6IEQgdCCsIhIiFf//AAAAIACgAKUBMQFSAsYC2gLcIBMgGCAcICIgOSBEIHQgrCISIhX//wAAAAAAAP82AAD9Qf00/TQAAAAAAADgOuBK4DfgCd9w3oDevQABACYA4gDoAAABmgAAAAAAAAGWAZgBnAAAAAAAAAAAAAAAAAAAAAAAAwByALIAmABmAKsATQC5AKkAqgBRAK0AYQCGAKwANADbAJ8AyADFAHwAegDAAL8AbQCWAGAAvgCPAHAAgACwAFIAKwARABIAFQAWAB0AHgAfACAAIQAmACcAKQAqAC0ANgA3ADgAOQA6ADwAQQBCAEMARABGAFkAVQBaAE8AzwALAEcAVABdAGMAaAB0AH4AhQCHAIwAjQCOAJEAlQCZAKcArwC6ALwAwwDKANMA1ADVANYA2gBXAFYAWABQANAAcwBfAMIA2QBbAL0ACQBiAKMAgQCQANEAuwAMAGQArgDJAMYABACTAKgAKAAUAKAApACCAKIAoQDHALEACgAFAAYADwAIAA0AwQATABoAFwAYABkAJQAiACMAJAAbACwAMgAvADAANQAxAJQAMwBAAD0APgA/AEUAOwB/AEwASABJAFMASgBOAEsAXgBsAGkAagBrAIsAiACJAIoAcQCXAJ4AmgCbAKYAnABlAKUAzgDLAMwAzQDXAMQA2AAuAJ0AbwBuALYAuAC0ALUAtwCzsAAsIGSwIGBmI7AAUFhlWS2wASwgZCCwwFCwBCZasARFW1ghIyEbilggsFBQWCGwQFkbILA4UFghsDhZWSCwCkVhZLAoUFghsApFILAwUFghsDBZGyCwwFBYIGYgiophILAKUFhgGyCwIFBYIbAKYBsgsDZQWCGwNmAbYFlZWRuwACtZWSOwAFBYZVlZLbACLLAHI0KwBiNCsAAjQrAAQ7AGQ1FYsAdDK7IAAQBDYEKwFmUcWS2wAyywAEMgRSCwAkVjsAFFYmBELbAELLAAQyBFILAAKyOxBgQlYCBFiiNhIGQgsCBQWCGwABuwMFBYsCAbsEBZWSOwAFBYZVmwAyUjYURELbAFLLEFBUWwAWFELbAGLLABYCAgsAlDSrAAUFggsAkjQlmwCkNKsABSWCCwCiNCWS2wByywAEOwAiVCsgABAENgQrEJAiVCsQoCJUKwARYjILADJVBYsABDsAQlQoqKIIojYbAGKiEjsAFhIIojYbAGKiEbsABDsAIlQrACJWGwBiohWbAJQ0ewCkNHYLCAYiCwAkVjsAFFYmCxAAATI0SwAUOwAD6yAQEBQ2BCLbAILLEABUVUWAAgYLABYbMLCwEAQopgsQcCKxsiWS2wCSywBSuxAAVFVFgAIGCwAWGzCwsBAEKKYLEHAisbIlktsAosIGCwC2AgQyOwAWBDsAIlsAIlUVgjIDywAWAjsBJlHBshIVktsAsssAorsAoqLbAMLCAgRyAgsAJFY7ABRWJgI2E4IyCKVVggRyAgsAJFY7ABRWJgI2E4GyFZLbANLLEABUVUWACwARawDCqwARUwGyJZLbAOLLAFK7EABUVUWACwARawDCqwARUwGyJZLbAPLCA1sAFgLbAQLACwA0VjsAFFYrAAK7ACRWOwAUVisAArsAAWtAAAAAAARD4jOLEPARUqLbARLCA8IEcgsAJFY7ABRWJgsABDYTgtsBIsLhc8LbATLCA8IEcgsAJFY7ABRWJgsABDYbABQ2M4LbAULLECABYlIC4gR7AAI0KwAiVJiopHI0cjYWKwASNCshMBARUUKi2wFSywABawBCWwBCVHI0cjYbABK2WKLiMgIDyKOC2wFiywABawBCWwBCUgLkcjRyNhILAFI0KwASsgsGBQWCCwQFFYswMgBCAbswMmBBpZQkIjILAIQyCKI0cjRyNhI0ZgsAVDsIBiYCCwACsgiophILADQ2BkI7AEQ2FkUFiwA0NhG7AEQ2BZsAMlsIBiYSMgILAEJiNGYTgbI7AIQ0awAiWwCENHI0cjYWAgsAVDsIBiYCMgsAArI7AFQ2CwACuwBSVhsAUlsIBisAQmYSCwBCVgZCOwAyVgZFBYIRsjIVkjICCwBCYjRmE4WS2wFyywABYgICCwBSYgLkcjRyNhIzw4LbAYLLAAFiCwCCNCICAgRiNHsAArI2E4LbAZLLAAFrADJbACJUcjRyNhsABUWC4gPCMhG7ACJbACJUcjRyNhILAFJbAEJUcjRyNhsAYlsAUlSbACJWGwAUVjI2JjsAFFYmAjLiMgIDyKOCMhWS2wGiywABYgsAhDIC5HI0cjYSBgsCBgZrCAYiMgIDyKOC2wGywjIC5GsAIlRlJYIDxZLrELARQrLbAcLCMgLkawAiVGUFggPFkusQsBFCstsB0sIyAuRrACJUZSWCA8WSMgLkawAiVGUFggPFkusQsBFCstsB4ssAAVIEewACNCsgABARUUEy6wESotsB8ssAAVIEewACNCsgABARUUEy6wESotsCAssQABFBOwEiotsCEssBQqLbAmLLAVKyMgLkawAiVGUlggPFkusQsBFCstsCkssBYriiAgPLAFI0KKOCMgLkawAiVGUlggPFkusQsBFCuwBUMusAsrLbAnLLAAFrAEJbAEJiAuRyNHI2GwASsjIDwgLiM4sQsBFCstsCQssQgEJUKwABawBCWwBCUgLkcjRyNhILAFI0KwASsgsGBQWCCwQFFYswMgBCAbswMmBBpZQkIjIEewBUOwgGJgILAAKyCKimEgsANDYGQjsARDYWRQWLADQ2EbsARDYFmwAyWwgGJhsAIlRmE4IyA8IzgbISAgRiNHsAArI2E4IVmxCwEUKy2wIyywCCNCsCIrLbAlLLAVKy6xCwEUKy2wKCywFishIyAgPLAFI0IjOLELARQrsAVDLrALKy2wIiywABZFIyAuIEaKI2E4sQsBFCstsCossBcrLrELARQrLbArLLAXK7AbKy2wLCywFyuwHCstsC0ssAAWsBcrsB0rLbAuLLAYKy6xCwEUKy2wLyywGCuwGystsDAssBgrsBwrLbAxLLAYK7AdKy2wMiywGSsusQsBFCstsDMssBkrsBsrLbA0LLAZK7AcKy2wNSywGSuwHSstsDYssBorLrELARQrLbA3LLAaK7AbKy2wOCywGiuwHCstsDkssBorsB0rLbA6LCstsDsssQAFRVRYsDoqsAEVMBsiWS0AAABLuADIUlixAQGOWbkIAAgAYyCwASNEILADI3CwFUUgILAoYGYgilVYsAIlYbABRWMjYrACI0SzCgsDAiuzDBEDAiuzEhcDAitZsgQoB0VSRLMMEQQCK7gB/4WwBI2xBQBEAAAAAAAAAAAAAAAAAAAAAEYAPABGAEYAPAA8AsYAAALaAgkAAP8rAsv/+wLkAhL/9v8rAAAAAQAAKsIAAQceGAAAChK0AAMAIf/kAAMAK//hAAMAOv/lAAMAQf/dAAMAQv/dAAMAQ//4AAMARP/bAAMAsv/hAAMAuP/jAAMAuf/iAAMAwf/dAAMA0//lAAMA1P/kAAMA1v/lABEAIf/xABEAK//yABEAOv/fABEAQf/sABEAQv/rABEAQ//wABEARP/jABEARv/7ABEAY///ABEAcf//ABEAdP/2ABEAiQAEABEAigAFABEAlf//ABEAmf//ABEAvP/9ABEAv//0ABEAwf/2ABEAw//3ABEAxf/5ABEAyv//ABEA0//3ABEA1P/2ABEA1f/zABEA1v/2ABEA2v/+ABIAK//2ABIALf/4ABIAOf/7ABIAOv/4ABIAQf/1ABIAQv/1ABIAQ//6ABIARP/vABIAUQAHABIAY//+ABIAcf/+ABIAdP/8ABIAiQAIABIAigANABIAlf//ABIAmf/+ABIAvP/9ABIAwf/6ABIAw//+ABIAyv//ABIA1P//ABIA1v//ABIA2v//ABUAG//6ABUAIf/cABUAK//nABUANP/uABUAOf//ABUAOv/fABUAQf/oABUAQv/oABUAQ//kABUARP/ZABUARv/wABUAR//6ABUAVf/yABUAcf/+ABUAfP/5ABUAhf//ABUAh///ABUAlf/7ABUAqv/0ABUArP/vABUAtv/6ABUAuf/3ABUAvP/+ABUAwf/cABUAyv//ABUA1P//ABUA1f/2ABUA1v/+ABUA2v/+ABYALf/0ABYAOf/0ABYAR//5ABYAY//tABYAcf/sABYAdP/wABYAg//zABYAhv/yABYAiQAIABYAigALABYAlf/8ABYAmf/tABYAvP/7ABYAv//wABYAw//zABYAyv/zABYA0//qABYA1P/pABYA1v/nABwAxf/5AB0AA//qAB0AIf9/AB0AK/+9AB0ALf/vAB0ANP/IAB0AOf/oAB0AR//DAB0AUQAGAB0AUv/5AB0AYP/zAB0AY//iAB0AZ//iAB0Acf/UAB0AdP/wAB0Adf/qAB0Adv/qAB0Ad//qAB0Aev/vAB0AfP/UAB0Af//0AB0Ag//tAB0AhP/vAB0Ahv/pAB0AiP/8AB0AiQAQAB0AigATAB0AiwAGAB0Alf/iAB0Amf/iAB0An//zAB0AqgABAB0ArP+1AB0AvP/cAB0Av//rAB0Awf+JAB0Aw//4AB0Axf/tAB0AyP/oAB0Ayv/nAB0A0//pAB0A1P/oAB0A1f/kAB0A1v/oAB0A2v/gAB4AOv/oAB4AQf/sAB4AQv/rAB4ARP/iAB4AVf/8AB4Acf//AB4AdP/6AB4Auf/4AB4Aw//6AB4A0//0AB4A1P/zAB4A1v/0ACAAR//5ACAAY//4ACAAcf/2ACAAdP/4ACAAigAFACAAmf/3ACAAvP/6ACAAw//4ACAA1v//ACAA2v//ACEAIf/xACEAK//wACEANP/8ACEAR//2ACEAY//3ACEAcf/0ACEAdP/5ACEAhf//ACEAh///ACEAiQAEACEAigAHACEAjv//ACEAlf/+ACEAmf/3ACEArP/3ACEAvP/1ACEAwf/sACEAw//6ACEAyv/+ACEA1f//ACEA2v/9ACQAVgADACYAA//zACYAIQABACYALf/eACYAM//6ACYANAAJACYAOf/3ACYAR//+ACYAUQAHACYAVQAEACYAWAAFACYAWgAGACYAYQAGACYAYv/xACYAY//kACYAcf/nACYAdP/0ACYAfAAKACYAg//xACYAhAABACYAhv/mACYAiQAEACYAigAXACYAiwAIACYAmf/jACYApf/6ACYAqgAKACYAswAGACYAtAAGACYAu//xACYAvgADACYAw//1ACYAyAAGACYAyv/wACYA0//dACYA1P/bACYA1v/dACYA2//5ACcAA//lACcAKP9rACcALf/TACcAOf/7ACcAOv+OACcAPP/VACcAQf+WACcAQv+UACcARP+LACcAUf+SACcAVf+pACcAYv/qACcAY//oACcAcf/uACcAdP/1ACcAg//RACcAhv++ACcAmf/pACcAo/+UACcApP+TACcAsP/vACcAtv+TACcAuP+UACcAuf+WACcAu//qACcAv//3ACcAwQAEACcAw//vACcAyv/1ACcA0/+2ACcA1P+xACcA1v+wACgAfP/tACgAjv/aACgAn//tACgAv//lACgAxf/gACgAyP/0ACsAA//hACsAG//7ACsALf/mACsAM//8ACsANAAGACsAOf/1ACsAOv+5ACsAPP/jACsAQf/JACsAQv/IACsARP+3ACsAR//4ACsATf/yACsAUf++ACsAUv/2ACsAVf/DACsAWgABACsAYQABACsAYv/qACsAY//vACsAbf/yACsAcf/xACsAdP/yACsAfAAGACsAg//xACsAhv/xACsAjv/+ACsAmf/vACsAo//TACsApP/OACsAqgAGACsAsP/nACsAswABACsAtAABACsAtv+7ACsAuP+8ACsAuf+7ACsAu//qACsAvP/6ACsAv//oACsAwP/wACsAw//pACsAyAADACsAyv/zACsA0//gACsA1P/dACsA1v/dACsA2//vAC0AG//5AC0AIf/cAC0AK//mAC0ANP/tAC0AOf//AC0AOv/eAC0AQf/nAC0AQv/mAC0AQ//kAC0ARP/WAC0ARv/tAC0AR//5AC0AUf/6AC0AVf/wAC0Acf/+AC0AfP/4AC0Ahf//AC0Ah//7AC0Alf/7AC0Aqv/yAC0ArP/tAC0Atv/5AC0AuP/6AC0Auf/zAC0AvP/+AC0Awf/ZAC0Ayv//AC0A1P//AC0A1f/0AC0A1v/8AC0A2v/+ADMAQf/8ADMAQv/8ADMAQ//7ADMARP/5ADMAUQAGADMAVQADADMAqgAEADQAIf+wADQAK//AADQALf/tADQANP8RADQAOf/8ADQAQQAGADQAQgAGADQAQwAHADQARAAHADQAR//iADQAY//aADQAbf/8ADQAcf/YADQAdP/7ADQAev/fADQAfP+0ADQAigAQADQAiwACADQAlf/qADQAlv/kADQAmf/bADQAn//tADQAvP/gADQAwP/yADQAwf+jADQAxf/nADQAyP/qADQAyv/rADQA0//wADQA1P/wADQA1f/8ADQA1v/xADQA2v/5ADQA2//cADYAA//lADYAIf+fADYAK//RADYANP/KADYAOv/8ADYAQf/0ADYAQv/0ADYAQ//vADYARP/wADYARv/3ADYAR//2ADYAY//0ADYAcf/pADYAev/8ADYAfP/eADYAg//zADYAhv/wADYAiQAEADYAigAJADYAmf/zADYAqv/8ADYArP+1ADYAvP/5ADYAwf+iADYA0wADADYA1AAEADYA1QACADYA1gAFADcAIf/8ADcAK//9ADcANAAGADcAQ//8ADcAWAADADcAWgADADcAYQADADcAfAAHADcAqgAHADcAswADADcAtAADADcAwf/6ADcAyAAEADcA1v/+ADgAG//+ADgAK//4ADgALf/8ADgANAADADgAOv/vADgAPP/9ADgAQf/sADgAQv/rADgARP/lADgAR//2ADgAVf/6ADgAY//tADgAcf/nADgAdP/8ADgAfAADADgAg//xADgAhf/7ADgAhv/5ADgAh//5ADgAjv/6ADgAlf/5ADgAmf/sADgAqgADADgAuP/+ADgAvP/7ADgAw//8ADgAyv/3ADgA0//8ADgA1P/8ADgA1v/8ADkAK//yADkAOv/4ADkAQf/xADkAQv/xADkAQ//3ADkARP/tADkAR///ADkAcf//ADkAdP/1ADkAhf//ADkAh///ADkAiQAHADkAigAKADkAjv//ADkAlf/+ADkAo//4ADkAvP/9ADkAv//2ADkAwf/9ADkAw//1ADkAyv/+ADkA0//qADkA1P/qADkA1f/3ADkA1v/qADkA2v/9ADoAA//lADoAIf+VADoAK/+5ADoALf/fADoANP/DADoAOf/3ADoAR/+dADoATf/4ADoAUQAPADoAUv/GADoAU/+pADoAYP/TADoAYv/oADoAY/+YADoAZ/+mADoAbf/5ADoAcf+oADoAdP/iADoAdf/dADoAdv/dADoAd//SADoAeP/nADoAev/IADoAfP++ADoAf//rADoAg/+/ADoAhP/NADoAhv+9ADoAiP/6ADoAiQAQADoAigAUADoAiwAGADoAlf+mADoAlv/IADoAmf+XADoAn//MADoAqgABADoArP+7ADoAu//oADoAvP+bADoAv//dADoAwP/xADoAwf+oADoAw//3ADoAxf/OADoAyP/RADoAyv+gADoA0/+0ADoA1P+0ADoA1f+6ADoA1v+2ADoA2v+wADoA2//KADsAG///ADsAIf/NADsAK//lADsANP/oADsAOf//ADsAOv/GADsAQf/iADsAQv/iADsAQ//TADsARP/HADsARv/nADsAR///ADsAUf/qADsAVf/nADsAWP/8ADsAWv/8ADsAhv/6ADsAqv/vADsArP/hADsAsP/3ADsAtv/gADsAuP/jADsAuf/PADsAwf/TADsA1P/8ADsA1f/5ADsA1v/6ADwAIf/iADwAK//jADwANP/tADwAR//zADwAY//1ADwAcf/yADwAdP/5ADwAfP/2ADwAhf/6ADwAh//6ADwAiQAEADwAigAIADwAjv/6ADwAlf/6ADwAmf/1ADwArP/uADwAvP/yADwAwf/UADwAw//7ADwAyv/4ADwA1f//ADwA2v/6AEEAA//dAEEAG//7AEEAIf+rAEEAK//JAEEALf/mAEEANP/BAEEAOf/vAEEAR//NAEEATf/sAEEAUQAKAEEAUv/aAEEAU//zAEEAVQAGAEEAWgABAEEAYP/xAEEAYv/qAEEAY//DAEEAZ//ZAEEAbf/vAEEAcf+9AEEAdP/pAEEAev/eAEEAfP/BAEEAf//qAEEAg//VAEEAhP/kAEEAhv/VAEEAiP/4AEEAiQANAEEAigAYAEEAiwALAEEAlf/ZAEEAlv/jAEEAmf/CAEEAn//uAEEAqgAGAEEArP+3AEEAtgABAEEAuAACAEEAu//qAEEAvP/OAEEAwP/sAEEAwf+pAEEAw//3AEEAxf/qAEEAyP/rAEEAyv/aAEEA0//wAEEA1P/xAEEA1f/zAEEA1v/yAEEA2v/uAEEA2//gAEIAA//dAEIAG//7AEIAIf+rAEIAK//IAEIALf/mAEIANP/AAEIAOf/vAEIAR//NAEIASv/zAEIATf/sAEIAUQAJAEIAUv/ZAEIAU//zAEIAVQAGAEIAWAABAEIAWgACAEIAYP/xAEIAYv/qAEIAY//CAEIAZ//ZAEIAbf/vAEIAcf+8AEIAdP/pAEIAev/eAEIAfP/AAEIAf//qAEIAg//UAEIAhP/kAEIAhv/VAEIAiP/4AEIAiQANAEIAigAZAEIAiwALAEIAlf/ZAEIAlv/iAEIAmf/BAEIAn//tAEIAqgAHAEIArP+2AEIAtgADAEIAuAADAEIAu//qAEIAvP/MAEIAwP/sAEIAwf+pAEIAw//3AEIAxf/qAEIAyP/rAEIAyv/ZAEIA0//wAEIA1P/xAEIA1f/yAEIA1v/yAEIA2v/uAEIA2//gAEMAA//4AEMALf/jAEMAM//6AEMANAAEAEMAOf/5AEMAR//8AEMAUQAKAEMAVQAHAEMAWAACAEMAWgADAEMAYv/yAEMAY//eAEMAZ//9AEMAcf/fAEMAdP/zAEMAfAAFAEMAf//9AEMAg//uAEMAhv/kAEMAiP/9AEMAiQAIAEMAigAZAEMAiwALAEMAlf/6AEMAmf/cAEMApf/3AEMAqgAIAEMAtgADAEMAuAADAEMAu//yAEMAw//6AEMAyAABAEMAyv/qAEMA0//iAEMA1P/hAEMA1v/jAEMA2//0AEQAA//aAEQAG//7AEQAIf+jAEQAK/+3AEQALf/XAEQANP+9AEQAOf/qAEQAR/+sAEQASv/0AEQATf/nAEQAUQAKAEQAUv/IAEQAU//yAEQAVQAHAEQAWAADAEQAWgADAEQAYP/kAEQAYv/fAEQAY/+rAEQAZ/+/AEQAa//sAEQAbf/pAEQAcf+nAEQAdP/dAEQAev/UAEQAfP+1AEQAf//gAEQAg/++AEQAhP/SAEQAhv+8AEQAiP/2AEQAiQALAEQAigAaAEQAiwANAEQAlf+/AEQAlv/TAEQAmf+pAEQAnP/sAEQAn//dAEQAqgAIAEQArP+wAEQAtgAEAEQAuAAEAEQAu//fAEQAvP+qAEQAwP/kAEQAwf+YAEQAw//wAEQAxf/dAEQAyP/dAEQAyv/CAEQA0//YAEQA1P/ZAEQA1f/dAEQA1v/bAEQA2v/ZAEQA2//RAEYALf/uAEYAR//7AEYAYv/0AEYAY//uAEYAZ//6AEYAcf/wAEYAdP/zAEYAg//2AEYAhv/xAEYAiQAIAEYAigALAEYAlf/4AEYAmf/uAEYAu//0AEYAvP//AEYAw//3AEYAyv/xAEYA0//qAEYA1P/rAEYA1v/rAEYA2//5AEcAG//5AEcAIP//AEcALf/5AEcAOf/8AEcAOv+WAEcAPP/1AEcAQf/JAEcAQv/IAEcARP+sAEcARv/8AEcAUf/mAEcAVf/YAEcAdP//AEcAo//8AEcApP/1AEcAsP/0AEcAtv/oAEcAuP/pAEcAuf/uAEcAw//5AEcA0//uAEcA1P/tAEcA1v/vAE0AIQAGAE0AKwANAE0AMwALAE0AOv/WAE0APP/8AE0AQf/VAE0AQv/VAE0AQwAQAE0ARP/KAE0ARgAEAE0ApQAEAE0AuP/ZAE0Auf/YAE0AvAAEAE0AwQAcAE0A0//tAE0A1P/tAE0A1QAMAE0A1v/sAE0A2gAEAFEAIf+oAFEAK/++AFEALf/5AFEAOgAPAFEAQQABAFEAQgAJAFEAQwAKAFEARAAKAFEAR//yAFEAY//TAFEAcf/NAFEAdP/6AFEAiQARAFEAigAUAFEAiwAEAFEAmf/hAFEAvP/uAFEAwf+gAFEA0wAGAFEA1AAHAFEA1QAHAFIAK//1AFIAOv/IAFIAQf/bAFIAQv/bAFIARP/KAFIAuP/eAFIAuf/eAFQAG//1AFQAIP/4AFQAIf/qAFQAK//wAFQAOf/4AFQAOv+YAFQAPP/1AFQAQf/CAFQAQv/CAFQAQ//dAFQARP+rAFQARv/rAFQAUf/UAFQAVf/aAFQAdP/9AFQAo//6AFQApP/xAFQAqv/vAFQArP/6AFQAsP/yAFQAtv/DAFQAuP/HAFQAuf+3AFQAvP//AFQAwf/rAFQAw//5AFQA0//uAFQA1P/tAFQA1f/tAFQA1v/uAFQA2v/0AFUAIQACAFUAKwAFAFUALf/uAFUAMwADAFUAOv/EAFUAPP/uAFUAQf/DAFUAQv/BAFUAQwAEAFUARP++AFUAuP+sAFUAuf+qAFUAv//yAFUAwP/9AFUAwQAKAFUAw//8AFUA0//gAFUA1P/dAFUA1QAEAFUA1v/eAFUA2//9AFYAJAADAFYAiQACAFYAigAGAFYAjAA/AFcAQgABAFcAQwACAFcARAADAFcAiQAIAFcAigAMAFcAjAAJAFcAwQAGAFkAKwABAFkAQQABAFkAQgACAFkAQwADAFkARAADAFkAiQAIAFkAigAMAFkAjAALAFkAwQAGAF0AG//6AF0AK//6AF0ALf/7AF0AOf/4AF0AOv+gAF0APP/4AF0AQf/JAF0AQv/JAF0AQ//8AF0ARP+0AF0ARv//AF0AUf/uAF0AVf/kAF0AY//6AF0Acf/5AF0Ag//0AF0Ahv/vAF0Amf/6AF0AsP/5AF0Atv/vAF0AuP/xAF0Auf/4AF0AvP/7AF0Awf//AF0A0//5AF0A1P/3AF0A1f/8AF0A1v/2AF4AjAAGAGAAOv/TAGAAQf/xAGAAQv/xAGAARP/kAGEAjAAKAGMAG//+AGMALf/6AGMAOv/8AGMAPP/4AGMAQf/8AGMAQv/8AGMARP/8AGMAw///AGMA0//+AGMA1P/9AGMA1v//AGQAev/tAGQAfP+qAGQAlv/mAGQAn//0AGQAxf/wAGQA2//tAGYAv//2AGYAxf/1AGgAG//3AGgAIP/5AGgAIf/vAGgAK//yAGgAOf/6AGgAOv+ZAGgAPP/4AGgAQf/HAGgAQv/GAGgAQ//qAGgARP+cAGgARv/vAGgAUf/kAGgAVf/cAGgApP/6AGgAqv/yAGgAsP/zAGgAtv/lAGgAuP/oAGgAuf/sAGgAwf/uAGgAw//7AGgA0//yAGgA1P/wAGgA1f/sAGgA1v/wAGgA2v/4AG0AK//xAG0AOv/4AG0AQf/vAG0AQv/vAG0ARP/oAG0Arf/5AG0Awf/xAHAAfP/3AHAAn//zAHAAv//tAHAAxf/pAHEAG//4AHEAIP/6AHEAIf/pAHEAK//uAHEANP/8AHEAOf/5AHEAOv/iAHEAPP/3AHEAQf/jAHEAQv/iAHEAQ//lAHEARP/cAHEARv/lAHEAUf/zAHEAVf/5AHEAqv/4AHEAtv/0AHEAuP/0AHEAuf/1AHEAwf/pAHEAw//9AHEA0//0AHEA1P/zAHEA1f/xAHEA1v/zAHEA2v/6AHMAigAEAHQAA//vAHQAIf/FAHQAK//ZAHQANP/lAHQAOf//AHQAOgAbAHQAQQAgAHQAQgAgAHQAQwAoAHQARAAlAHQARgAIAHQAR//4AHQAUQAMAHQAVQAWAHQAWAAIAHQAWgAJAHQAY//6AHQAcf/pAHQAg//oAHQAhv/kAHQAiQARAHQAigApAHQAiwASAHQAmf/5AHQAqgAWAHQArP/fAHQAtgADAHQAuAADAHQAwf/SAHQA2v/8AHUAigAGAHYAigADAHgAigADAHoAKP/0AHoAKwAEAHoAOv/UAHoAQf/zAHoAQv/zAHoARP/qAHoAVf/6AHoAhv/1AHoAkv/4AHoArf/nAHoAwQAEAHsAfP/0AHwAKP/xAHwAKwAEAHwAOv/JAHwAQf/gAHwAQv/gAHwAQwACAHwARP/WAHwAVf/jAHwAYQADAHwAZP/zAHwAhv/4AHwAkv/7AHwArf/xAHwAuf/8AHwAv//1AHwAwQAIAH4ALf/7AH4AOf//AH4AOv+lAH4APP/6AH4AQf/ZAH4AQv/XAH4AQ//6AH4ARP+/AH4ARv/5AH4AjAAlAH8AG//0AH8AIP/3AH8AIf/4AH8AK//0AH8ALf/6AH8AOf/9AH8AOv/fAH8APP/zAH8AQf/fAH8AQv/fAH8AQ//qAH8ARP/UAH8ARv/1AH8AUf/2AH8AVf/0AH8AdP/6AH8Ao//6AH8Atv/3AH8AuP/2AH8Auf/1AH8AvP//AH8Awf/0AH8Aw//5AH8A0//vAH8A1P/uAH8A1f/vAH8A1v/vAH8A2v/5AIMAOv/NAIMAQf/kAIMAQv/kAIMARP/RAIQAG//5AIQAIf/nAIQAK//xAIQAOv+/AIQAQf/UAIQAQv/UAIQAQ//uAIQARP++AIQARv/1AIQAdP/4AIQAuP/qAIQAuf/6AIQAvP/4AIQAwf/pAIQAw//3AIQA0//nAIQA1P/lAIQA1f/kAIQA1v/mAIQA2v/pAIUALf/7AIUAOf/7AIUAOv+YAIUAPP/3AIUAQf/MAIUAQv/LAIUAQ//9AIUARP+zAIUARv/4AIUAUf/eAIUAVf/fAIUApP/4AIUAsP/0AIUAtv/RAIUAuP/TAIUAuf+9AIUAw//8AIUA0//1AIUA1P/0AIUA1v/1AIYAIf/EAIYAK//xAIYAOv+9AIYAQf/VAIYAQv/VAIYAQ//kAIYARP+8AIYARv/yAIYAdP/6AIYAfP/vAIYAn//pAIYAvP/5AIYAv//iAIYAwf/wAIYAw//5AIYAxf/VAIYAyP/5AIYA0//qAIYA1P/pAIYA1f/hAIYA1v/pAIYA2v/iAIcALf//AIcAOf//AIcAPP/6AIcARv/6AIcAiQAFAIcAigAIAIgAUQADAIgAVQADAIgAqgAHAIgAtgACAIgAuAACAIkAUQARAIkAVgACAIkAWAAIAIkAWgAIAIkAfwACAIkAhQAFAIkAhwAFAIkAjgAGAIkAowADAIkApAAHAIkAqgAEAIkAsAAHAIkAtgAIAIkAuAAIAIkAuQAEAIoAUQAUAIoAVQAQAIoAVgAGAIoAWAAMAIoAWgAMAIoAcgAEAIoAfwAGAIoAhQAIAIoAhwAIAIoAjgAJAIoAowAJAIoApAANAIoAqgASAIoAsAANAIoAtgANAIoAuAANAIoAuQAIAIwAjAAgAI0ALf/zAI0ANAAGAI0AOv+4AI0APP/+AI0AQf/yAI0AQv/yAI0ARP/bAI0AR//3AI0AUQAGAI0AWAABAI0AWgABAI0AYQADAI0AY//oAI0Acf/jAI0AdP//AI0Ag//jAI0Ahv/eAI0Amf/nAI0Apf/6AI0AqgAGAI0AswADAI0AtAADAI0Atv/0AI0AuP/4AI0Auf/WAI0AvP/7AI4AA//kAI4AIP/+AI4AKP+4AI4ALf/yAI4ANAAMAI4AOv/pAI4APP/vAI4AQf/oAI4AQv/nAI4ARP/mAI4AUf/sAI4AVf/zAI4AYv/5AI4AY///AI4Acf//AI4AdP/8AI4Ag//wAI4Ahv/xAI4Amf//AI4Ao//uAI4ApP/uAI4AqgAHAI4Atv/tAI4AuP/tAI4Auf/uAI4Au//5AI4AwQABAI4Aw//6AI4A0//wAI4A1P/tAI4A1v/wAJIAfP/sAJIAn//tAJIAv//mAJIAxf/fAJUALf/7AJUAOf/7AJUAOv+ZAJUAPP/3AJUAQf/MAJUAQv/LAJUAQ//9AJUARP+1AJUARv/4AJUAUf/uAJUAVf/gAJUAsP/2AJUAtv/xAJUAuP/yAJUAuf/2AJUAw//8AJUA0//2AJUA1P/2AJUA1v/2AJYAOv/HAJYAQf/fAJYAQv/fAJYARP/QAJYAVf/gAJYAZP/jAJYAuf/qAJYAv//zAJgAfP/4AJkAG//1AJkAIP/3AJkAIf/qAJkAK//vAJkAOf/4AJkAOv+WAJkAPP/1AJkAQf/CAJkAQv/BAJkAQ//cAJkARP+pAJkARv/rAJkAUf/hAJkAVf/bAJkAdP/8AJkApP/4AJkAqv/vAJkAsP/zAJkAtv/jAJkAuP/lAJkAuf/qAJkAvP//AJkAwf/qAJkAw//4AJkA0//uAJkA1P/sAJkA1f/sAJkA1v/tAJkA2v/zAJ8AKP/sAJ8AKwAEAJ8AOv/GAJ8APP/4AJ8AQf/ZAJ8AQv/ZAJ8AQwAEAJ8ARP/PAJ8AVf/bAJ8AZP/tAJ8AcP/3AJ8Ahv/xAJ8Akv/uAJ8AmAADAJ8Arf/rAJ8Auf/xAJ8Av//2AJ8AwQAJAKUAUf/+AKkAIQADAKkAKwAGAKkALf/xAKkAMwAEAKkAOgABAKkAQQAHAKkAQgAHAKkAQwAIAKkARAAIAKkAY//vAKkAcf/wAKkAdP/9AKkAiQAEAKkAigASAKkAiwAHAKkAjAAIAKkAmf/wAKkAwP/9AKkAwQALAKkAyv/4AKkA0//zAKkA1P/yAKkA1QAEAKkA1v/1AKkA2//xAKwALf/tAKwAOv+7AKwAPP/tAKwAQf+3AKwAQv+2AKwARP+xAKwAY//6AKwAdP/+AKwAtv95AKwAuP98AKwAuf+HAKwAv//gAKwAwQABAKwAw//9AKwA0//SAKwA1P/PAKwA1v/QAK0Abf/5AK0AfP/eAK0An//3AK0Av//rAK0Axf/uAK0AyP/4AK8ALf/7AK8AOf//AK8AOv+lAK8APP/6AK8AQf/ZAK8AQv/XAK8AQ//6AK8ARP+/AK8ARv/5AK8AYQAEAK8AjABeAK8AswAEAK8AtAAEAK8AvgACALEAG//sALEAIP/zALEAIf/iALEAK//sALEALf/rALEAOf/tALEAOv+8ALEAPP/rALEAQf/OALEAQv/OALEAQ//vALEARP/CALEARv/rALEAR//oALEAY//pALEAcf/oALEAdP/tALEAhf/vALEAh//vALEAjABZALEAjv/tALEAlf/vALEAmf/pALEAvP/oALEAwf/uALEAw//rALEAyv/sALEA0//gALEA1P/fALEA1f/wALEA1v/oALEA2v/vALIAA//hALMAjAAKALQAjAAKALYAIf+pALYAK/+/ALYALf/6ALYAR//0ALYAY//KALYAcf/OALYAdP/6ALYAiQAEALYAigAKALYAmf/pALYArP9/ALYAvP/4ALYAwf+hALgAA//kALgAIf+pALgAK/++ALgALf/5ALgANP+nALgAR//0ALgAUv/dALgAY//JALgAcf/NALgAdP/6ALgAg//tALgAiQAEALgAigAIALgAmf/oALgArP9+ALgAvP/3ALgAwf+gALkAA//iALkAIf+rALkAK/+7ALkALf/zALkANP+jALkAR//4ALkAUv/bALkAY/+3ALkAcf/IALkAdP/6ALkAev/xALkAfP+sALkAg//6ALkAiQAEALkAigAIALkAlv/wALkAmf/qALkArP+HALkAvP/8ALkAwf+fALkAxf/3ALkA2//1ALoAA//qALoAIP//ALoAIf+vALoAK//TALoANP/aALoAOf//ALoAOv++ALoAQf/3ALoAQv/2ALoAQ//jALoARP/jALoARv/nALoAR//2ALoAUv/0ALoAY//pALoAcf/dALoAg//YALoAhP/yALoAhv/bALoAmf/oALoAqv/8ALoArP/QALoAvP/7ALoAwf/KALwAG//4ALwAIP/6ALwAK//3ALwALf/+ALwAOv+iALwAPP/1ALwAQf/SALwAQv/RALwAQ//8ALwARP+5ALwARv/8ALwAUf/4ALwAVf/mALwAdP//ALwAhv/4ALwAtv/6ALwAuP/6ALwAw///ALwA0//2ALwA1P/0ALwA1f/6ALwA1v/0AL4AjAAIAL8AIf/LAL8AKP/rAL8AK//YAL8ANP/OAL8AOv/rAL8ARv/0AL8AX//wAL8AZAABAL8AcP/0AL8Aev/xAL8AfP/QAL8Ahv/mAL8Akv/tAL8ArP+/AL8Arf/1AL8AvwADAL8Awf/LAMAAK//yAMAAOv/2AMAAQf/vAMAAQv/vAMAARP/pAMAAwf/vAMAAxf/8AMMAIP//AMMALf/3AMMAOv/NAMMAPP/1AMMAQf/lAMMAQv/kAMMARP/QAMMAVf/yAMMAY//1AMMAcf/0AMMAdP//AMMAg//sAMMAhv/yAMMAmf/1AMMAtv/5AMMAuP/6AMMAuf/xAMMAw///AMMA0///AMMA1P//AMMA1v//AMUAOv/MAMUAQf/kAMUAQv/kAMUAQwAEAMUARP/WAMUAVf/kAMUAZP/rAMUAuf/0AMUAv//3AMUAwQAIAMgAOv/NAMgAQf/mAMgAQv/mAMgARP/aAMgAVf/oAMgAwQAEAMoAG//+AMoALf/6AMoAOv+fAMoAPP/4AMoAQf/YAMoAQv/XAMoARP+6AMoARv/8AMoAUf/9AMoAVf/nAMoAtv/9AMoAuP/8AMoAw///AMoA0//+AMoA1P/9AMoA1v//ANMAA//lANMAG//4ANMAIf+1ANMAK//fANMANP/fANMAOv+zANMAQf/wANMAQv/wANMAQ//iANMARP/XANMARv/pANMAR//zANMAUQAGANMAUv/5ANMAVf/zANMAY//vANMAcf/mANMAg//nANMAhv/qANMAmf/uANMApAABANMAqv/zANMArP/SANMAvP/zANMAwf/NANQAA//kANQAG//4ANQAIf+wANQAK//dANQALf//ANQANP/cANQAOf//ANQAOv+0ANQAQf/xANQAQv/xANQAQ//hANQARP/YANQARv/pANQAR//yANQAUQAHANQAUv/5ANQAVf/yANQAY//tANQAcf/jANQAg//lANQAhv/pANQAmf/sANQApAACANQAqv/yANQArP/PANQAvP/yANQAwf/MANUALf/0ANUANAAEANUAOv+6ANUAPP//ANUAQf/zANUAQv/yANUARP/dANUAR//3ANUAUQAHANUAY//tANUAcf/oANUAdP//ANUAg//kANUAhv/hANUAmf/sANUAqgAEANUAvP/7ANYAA//lANYAG//3ANYAIP/8ANYAIf+1ANYAK//eANYANP/fANYAOf//ANYAOv+xANYAQf/uANYAQv/uANYAQ//fANYARP/UANYARv/mANYAR//yANYATf/5ANYAUv/4ANYAVf/xANYAY//tANYAcf/kANYAg//mANYAhv/qANYAmf/sANYAqv/xANYArP/RANYAvP/yANYAwf/MANoAG//6ANoAIP//ANoALf/+ANoAOv+xANoAPP/5ANoAQf/qANoAQv/pANoARP/SANoAVf/6ANoAY//0ANoAcf/vANoAg//pANoAhv/lANoAmf/0ANsAIf/2ANsAK//vANsANP/8ANsAOv/JANsAQf/gANsAQv/fANsAQ//zANsARP/RANsARv/0ANsAVf/gANsAZP/tANsAqv/xANsAuf/1ANsAv//yANsAwf/rAAAAAAAHAFoAAwABBAkAAQAOAAAAAwABBAkAAgAOAA4AAwABBAkAAwB6ABwAAwABBAkABAAOAAAAAwABBAkABQBcAJYAAwABBAkABgAOAAAAAwABBAkADgA0APIAUgBhAGwAZQB3AGEAeQBSAGUAZwB1AGwAYQByAE0AYQB0AHQATQBjAEkAbgBlAHIAbgBlAHkALABQAGEAYgBsAG8ASQBtAHAAYQBsAGwAYQByAGkALABSAG8AZAByAGkAZwBvAEYAdQBlAG4AegBhAGwAaQBkAGEAOgAgAFIAYQBsAGUAdwBhAHkAOgAgADIAMAAxADIAVgBlAHIAcwBpAG8AbgAgADIALgAwADAAMQA7ACAAdAB0AGYAYQB1AHQAbwBoAGkAbgB0ACAAKAB2ADAALgA4ACkAIAAtAEcAIAAyADAAMAAgAC0AcgAgADUAMABoAHQAdABwADoALwAvAHMAYwByAGkAcAB0AHMALgBzAGkAbAAuAG8AcgBnAC8ATwBGAEwAAgAAAAAAAP+1ADIAAAAAAAAAAAAAAAAAAAAAAAAAAADcAAABAgACAAMAjQDJAMcA2ABiAI4ArQBDANoAYwDdAK4A2QAlACYAZADeACcAKABlAMgAygDLAOkBAwApACoAKwAsAC0AzADNAM4AzwAuAC8AwwAwADEAJABmADIAsADQANEAZwDTAJEAEgCvADMANAA1ADYANwDtADgA1ADVAGgA1gA5ADoAOwA8AOsAPQBEAGkAawBsAKAAagAJAG4AQQBhAA0AIwBtAEUAPwBfAF4AYAA+AEAA6ACHAEYAbwCEAB0ADwCLAEcAgwC4AAcA1wBIAHAAcgBzAHEAGwCzALIAIADqAAQAowBJAQQBBQEGAQcBCAAYALwAFwEJAEoAiQAhAKkAqgC+AL8ASwAQAEwAdAB2AHcAdQBNAE4ATwAfAKQAUADvAJcA8ABRABwAeAAGAFIAeQB7AHwAsQB6ABQA8QD0APUAnQCeAKEAfQBTAIgACwAMAAgAEQAOAJMAVAAiAKIABQDFAMQAtAC2ALUAtwAKAFUAigBWAIYAHgAaABkAkACFAFcA7gAWAPMA9gAVAPIAWAB+AIAAgQB/AEIBCgELAQwAWQBaAFsAXADsALoAlgBdABMETlVMTARFdXJvA2ZfZgVmX2ZfaQVmX2ZfbANmX2kDZl9sDGZvdXJzdXBlcmlvcgd1bmkwMEEwB3VuaTAwQUQHdW5pMjIxNQAAAAABAAH//wAPAAEAAAAKAB4ALAABbGF0bgAIAAQAAAAA//8AAQAAAAFrZXJuAAgAAAABAAAAAQAEAAIAAAABAAgAAQDaAAQAAABoAa4B6AJSArADJgN0A3oELAReBIgE3gTkBXoF/AYWBtgHVgd0B/4IcAiqCSQJjgpkCtILLAwCDOANdg5cDrIPEA9iD7gP1hBUEKoQvBDaEQARchF4GgoRihG4EdIR3BJKEmgSehLkEuoTZBNqE2oTcBOeE6QT5hQQFIIUlBTmFTgVkhWsFcIWABZGFkwWthc0F0YXlBe2F7wYMhh8GIIY6BkuGUgZghoEGgoaChoQGkYajBrmG0gbohuoG+4cDBxiHIwcphzoHU4dvB4CHmwepgABAGgAAwARABIAFQAWABwAHQAeACAAIQAkACYAJwAoACsALQAzADQANgA3ADgAOQA6ADsAPABBAEIAQwBEAEYARwBNAFEAUgBUAFUAVgBXAFkAXQBeAGAAYQBjAGQAZgBoAG0AcABxAHMAdAB1AHYAeAB6AHsAfAB+AH8AgwCEAIUAhgCHAIgAiQCKAIwAjQCOAJIAlQCWAJgAmQCfAKUAqQCsAK0ArwCxALIAswC0ALYAuAC5ALoAvAC+AL8AwADDAMUAyADKANMA1ADVANYA2gDbAA4AIf/kACv/4QA6/+UAQf/dAEL/3QBD//gARP/bALL/4QC4/+MAuf/iAMH/3QDT/+UA1P/kANb/5QAaACH/8QAr//IAOv/fAEH/7ABC/+sAQ//wAET/4wBG//sAY///AHH//wB0//YAiQAEAIoABQCV//8Amf//ALz//QC///QAwf/2AMP/9wDF//kAyv//ANP/9wDU//YA1f/zANb/9gDa//4AFwAr//YALf/4ADn/+wA6//gAQf/1AEL/9QBD//oARP/vAFEABwBj//4Acf/+AHT//ACJAAgAigANAJX//wCZ//4AvP/9AMH/+gDD//4Ayv//ANT//wDW//8A2v//AB0AG//6ACH/3AAr/+cANP/uADn//wA6/98AQf/oAEL/6ABD/+QARP/ZAEb/8ABH//oAVf/yAHH//gB8//kAhf//AIf//wCV//sAqv/0AKz/7wC2//oAuf/3ALz//gDB/9wAyv//ANT//wDV//YA1v/+ANr//gATAC3/9AA5//QAR//5AGP/7QBx/+wAdP/wAIP/8wCG//IAiQAIAIoACwCV//wAmf/tALz/+wC///AAw//zAMr/8wDT/+oA1P/pANb/5wABAMX/+QAsAAP/6gAh/38AK/+9AC3/7wA0/8gAOf/oAEf/wwBRAAYAUv/5AGD/8wBj/+IAZ//iAHH/1AB0//AAdf/qAHb/6gB3/+oAev/vAHz/1AB///QAg//tAIT/7wCG/+kAiP/8AIkAEACKABMAiwAGAJX/4gCZ/+IAn//zAKoAAQCs/7UAvP/cAL//6wDB/4kAw//4AMX/7QDI/+gAyv/nANP/6QDU/+gA1f/kANb/6ADa/+AADAA6/+gAQf/sAEL/6wBE/+IAVf/8AHH//wB0//oAuf/4AMP/+gDT//QA1P/zANb/9AAKAEf/+QBj//gAcf/2AHT/+ACKAAUAmf/3ALz/+gDD//gA1v//ANr//wAVACH/8QAr//AANP/8AEf/9gBj//cAcf/0AHT/+QCF//8Ah///AIkABACKAAcAjv//AJX//gCZ//cArP/3ALz/9QDB/+wAw//6AMr//gDV//8A2v/9AAEAVgADACUAA//zACEAAQAt/94AM//6ADQACQA5//cAR//+AFEABwBVAAQAWAAFAFoABgBhAAYAYv/xAGP/5ABx/+cAdP/0AHwACgCD//EAhAABAIb/5gCJAAQAigAXAIsACACZ/+MApf/6AKoACgCzAAYAtAAGALv/8QC+AAMAw//1AMgABgDK//AA0//dANT/2wDW/90A2//5ACAAA//lACj/awAt/9MAOf/7ADr/jgA8/9UAQf+WAEL/lABE/4sAUf+SAFX/qQBi/+oAY//oAHH/7gB0//UAg//RAIb/vgCZ/+kAo/+UAKT/kwCw/+8Atv+TALj/lAC5/5YAu//qAL//9wDBAAQAw//vAMr/9QDT/7YA1P+xANb/sAAGAHz/7QCO/9oAn//tAL//5QDF/+AAyP/0ADAAA//hABv/+wAt/+YAM//8ADQABgA5//UAOv+5ADz/4wBB/8kAQv/IAET/twBH//gATf/yAFH/vgBS//YAVf/DAFoAAQBhAAEAYv/qAGP/7wBt//IAcf/xAHT/8gB8AAYAg//xAIb/8QCO//4Amf/vAKP/0wCk/84AqgAGALD/5wCzAAEAtAABALb/uwC4/7wAuf+7ALv/6gC8//oAv//oAMD/8ADD/+kAyAADAMr/8wDT/+AA1P/dANb/3QDb/+8AHwAb//kAIf/cACv/5gA0/+0AOf//ADr/3gBB/+cAQv/mAEP/5ABE/9YARv/tAEf/+QBR//oAVf/wAHH//gB8//gAhf//AIf/+wCV//sAqv/yAKz/7QC2//kAuP/6ALn/8wC8//4Awf/ZAMr//wDU//8A1f/0ANb//ADa//4ABwBB//wAQv/8AEP/+wBE//kAUQAGAFUAAwCqAAQAIgAh/7AAK//AAC3/7QA0/xEAOf/8AEEABgBCAAYAQwAHAEQABwBH/+IAY//aAG3//ABx/9gAdP/7AHr/3wB8/7QAigAQAIsAAgCV/+oAlv/kAJn/2wCf/+0AvP/gAMD/8gDB/6MAxf/nAMj/6gDK/+sA0//wANT/8ADV//wA1v/xANr/+QDb/9wAHAAD/+UAIf+fACv/0QA0/8oAOv/8AEH/9ABC//QAQ//vAET/8ABG//cAR//2AGP/9ABx/+kAev/8AHz/3gCD//MAhv/wAIkABACKAAkAmf/zAKr//ACs/7UAvP/5AMH/ogDTAAMA1AAEANUAAgDWAAUADgAh//wAK//9ADQABgBD//wAWAADAFoAAwBhAAMAfAAHAKoABwCzAAMAtAADAMH/+gDIAAQA1v/+AB4AG//+ACv/+AAt//wANAADADr/7wA8//0AQf/sAEL/6wBE/+UAR//2AFX/+gBj/+0Acf/nAHT//AB8AAMAg//xAIX/+wCG//kAh//5AI7/+gCV//kAmf/sAKoAAwC4//4AvP/7AMP//ADK//cA0//8ANT//ADW//wAGgAr//IAOv/4AEH/8QBC//EAQ//3AET/7QBH//8Acf//AHT/9QCF//8Ah///AIkABwCKAAoAjv//AJX//gCj//gAvP/9AL//9gDB//0Aw//1AMr//gDT/+oA1P/qANX/9wDW/+oA2v/9ADUAA//lACH/lQAr/7kALf/fADT/wwA5//cAR/+dAE3/+ABRAA8AUv/GAFP/qQBg/9MAYv/oAGP/mABn/6YAbf/5AHH/qAB0/+IAdf/dAHb/3QB3/9IAeP/nAHr/yAB8/74Af//rAIP/vwCE/80Ahv+9AIj/+gCJABAAigAUAIsABgCV/6YAlv/IAJn/lwCf/8wAqgABAKz/uwC7/+gAvP+bAL//3QDA//EAwf+oAMP/9wDF/84AyP/RAMr/oADT/7QA1P+0ANX/ugDW/7YA2v+wANv/ygAbABv//wAh/80AK//lADT/6AA5//8AOv/GAEH/4gBC/+IAQ//TAET/xwBG/+cAR///AFH/6gBV/+cAWP/8AFr//ACG//oAqv/vAKz/4QCw//cAtv/gALj/4wC5/88Awf/TANT//ADV//kA1v/6ABYAIf/iACv/4wA0/+0AR//zAGP/9QBx//IAdP/5AHz/9gCF//oAh//6AIkABACKAAgAjv/6AJX/+gCZ//UArP/uALz/8gDB/9QAw//7AMr/+ADV//8A2v/6ADUAA//dABv/+wAh/6sAK//JAC3/5gA0/8EAOf/vAEf/zQBN/+wAUQAKAFL/2gBT//MAVQAGAFoAAQBg//EAYv/qAGP/wwBn/9kAbf/vAHH/vQB0/+kAev/eAHz/wQB//+oAg//VAIT/5ACG/9UAiP/4AIkADQCKABgAiwALAJX/2QCW/+MAmf/CAJ//7gCqAAYArP+3ALYAAQC4AAIAu//qALz/zgDA/+wAwf+pAMP/9wDF/+oAyP/rAMr/2gDT//AA1P/xANX/8wDW//IA2v/uANv/4AA3AAP/3QAb//sAIf+rACv/yAAt/+YANP/AADn/7wBH/80ASv/zAE3/7ABRAAkAUv/ZAFP/8wBVAAYAWAABAFoAAgBg//EAYv/qAGP/wgBn/9kAbf/vAHH/vAB0/+kAev/eAHz/wAB//+oAg//UAIT/5ACG/9UAiP/4AIkADQCKABkAiwALAJX/2QCW/+IAmf/BAJ//7QCqAAcArP+2ALYAAwC4AAMAu//qALz/zADA/+wAwf+pAMP/9wDF/+oAyP/rAMr/2QDT//AA1P/xANX/8gDW//IA2v/uANv/4AAlAAP/+AAt/+MAM//6ADQABAA5//kAR//8AFEACgBVAAcAWAACAFoAAwBi//IAY//eAGf//QBx/98AdP/zAHwABQB///0Ag//uAIb/5ACI//0AiQAIAIoAGQCLAAsAlf/6AJn/3ACl//cAqgAIALYAAwC4AAMAu//yAMP/+gDIAAEAyv/qANP/4gDU/+EA1v/jANv/9AA5AAP/2gAb//sAIf+jACv/twAt/9cANP+9ADn/6gBH/6wASv/0AE3/5wBRAAoAUv/IAFP/8gBVAAcAWAADAFoAAwBg/+QAYv/fAGP/qwBn/78Aa//sAG3/6QBx/6cAdP/dAHr/1AB8/7UAf//gAIP/vgCE/9IAhv+8AIj/9gCJAAsAigAaAIsADQCV/78Alv/TAJn/qQCc/+wAn//dAKoACACs/7AAtgAEALgABAC7/98AvP+qAMD/5ADB/5gAw//wAMX/3QDI/90Ayv/CANP/2ADU/9kA1f/dANb/2wDa/9kA2//RABUALf/uAEf/+wBi//QAY//uAGf/+gBx//AAdP/zAIP/9gCG//EAiQAIAIoACwCV//gAmf/uALv/9AC8//8Aw//3AMr/8QDT/+oA1P/rANb/6wDb//kAFwAb//kAIP//AC3/+QA5//wAOv+WADz/9QBB/8kAQv/IAET/rABG//wAUf/mAFX/2AB0//8Ao//8AKT/9QCw//QAtv/oALj/6QC5/+4Aw//5ANP/7gDU/+0A1v/vABQAIQAGACsADQAzAAsAOv/WADz//ABB/9UAQv/VAEMAEABE/8oARgAEAKUABAC4/9kAuf/YALwABADBABwA0//tANT/7QDVAAwA1v/sANoABAAVACH/qAAr/74ALf/5ADoADwBBAAEAQgAJAEMACgBEAAoAR//yAGP/0wBx/80AdP/6AIkAEQCKABQAiwAEAJn/4QC8/+4Awf+gANMABgDUAAcA1QAHAAcAK//1ADr/yABB/9sAQv/bAET/ygC4/94Auf/eAB8AG//1ACD/+AAh/+oAK//wADn/+AA6/5gAPP/1AEH/wgBC/8IAQ//dAET/qwBG/+sAUf/UAFX/2gB0//0Ao//6AKT/8QCq/+8ArP/6ALD/8gC2/8MAuP/HALn/twC8//8Awf/rAMP/+QDT/+4A1P/tANX/7QDW/+4A2v/0ABUAIQACACsABQAt/+4AMwADADr/xAA8/+4AQf/DAEL/wQBDAAQARP++ALj/rAC5/6oAv//yAMD//QDBAAoAw//8ANP/4ADU/90A1QAEANb/3gDb//0ABAAkAAMAiQACAIoABgCMAD8ABwBCAAEAQwACAEQAAwCJAAgAigAMAIwACQDBAAYACQArAAEAQQABAEIAAgBDAAMARAADAIkACACKAAwAjAALAMEABgAcABv/+gAr//oALf/7ADn/+AA6/6AAPP/4AEH/yQBC/8kAQ//8AET/tABG//8AUf/uAFX/5ABj//oAcf/5AIP/9ACG/+8Amf/6ALD/+QC2/+8AuP/xALn/+AC8//sAwf//ANP/+QDU//cA1f/8ANb/9gABAIwABgAEADr/0wBB//EAQv/xAET/5AALABv//gAt//oAOv/8ADz/+ABB//wAQv/8AET//ADD//8A0//+ANT//QDW//8ABgB6/+0AfP+qAJb/5gCf//QAxf/wANv/7QACAL//9gDF//UAGwAb//cAIP/5ACH/7wAr//IAOf/6ADr/mQA8//gAQf/HAEL/xgBD/+oARP+cAEb/7wBR/+QAVf/cAKT/+gCq//IAsP/zALb/5QC4/+gAuf/sAMH/7gDD//sA0//yANT/8ADV/+wA1v/wANr/+AAHACv/8QA6//gAQf/vAEL/7wBE/+gArf/5AMH/8QAEAHz/9wCf//MAv//tAMX/6QAaABv/+AAg//oAIf/pACv/7gA0//wAOf/5ADr/4gA8//cAQf/jAEL/4gBD/+UARP/cAEb/5QBR//MAVf/5AKr/+AC2//QAuP/0ALn/9QDB/+kAw//9ANP/9ADU//MA1f/xANb/8wDa//oAAQCKAAQAHgAD/+8AIf/FACv/2QA0/+UAOf//ADoAGwBBACAAQgAgAEMAKABEACUARgAIAEf/+ABRAAwAVQAWAFgACABaAAkAY//6AHH/6QCD/+gAhv/kAIkAEQCKACkAiwASAJn/+QCqABYArP/fALYAAwC4AAMAwf/SANr//AABAIoABgABAIoAAwALACj/9AArAAQAOv/UAEH/8wBC//MARP/qAFX/+gCG//UAkv/4AK3/5wDBAAQAAQB8//QAEAAo//EAKwAEADr/yQBB/+AAQv/gAEMAAgBE/9YAVf/jAGEAAwBk//MAhv/4AJL/+wCt//EAuf/8AL//9QDBAAgACgAt//sAOf//ADr/pQA8//oAQf/ZAEL/1wBD//oARP+/AEb/+QCMACUAHAAb//QAIP/3ACH/+AAr//QALf/6ADn//QA6/98APP/zAEH/3wBC/98AQ//qAET/1ABG//UAUf/2AFX/9AB0//oAo//6ALb/9wC4//YAuf/1ALz//wDB//QAw//5ANP/7wDU/+4A1f/vANb/7wDa//kABAA6/80AQf/kAEL/5ABE/9EAFAAb//kAIf/nACv/8QA6/78AQf/UAEL/1ABD/+4ARP++AEb/9QB0//gAuP/qALn/+gC8//gAwf/pAMP/9wDT/+cA1P/lANX/5ADW/+YA2v/pABQALf/7ADn/+wA6/5gAPP/3AEH/zABC/8sAQ//9AET/swBG//gAUf/eAFX/3wCk//gAsP/0ALb/0QC4/9MAuf+9AMP//ADT//UA1P/0ANb/9QAWACH/xAAr//EAOv+9AEH/1QBC/9UAQ//kAET/vABG//IAdP/6AHz/7wCf/+kAvP/5AL//4gDB//AAw//5AMX/1QDI//kA0//qANT/6QDV/+EA1v/pANr/4gAGAC3//wA5//8APP/6AEb/+gCJAAUAigAIAAUAUQADAFUAAwCqAAcAtgACALgAAgAPAFEAEQBWAAIAWAAIAFoACAB/AAIAhQAFAIcABQCOAAYAowADAKQABwCqAAQAsAAHALYACAC4AAgAuQAEABEAUQAUAFUAEABWAAYAWAAMAFoADAByAAQAfwAGAIUACACHAAgAjgAJAKMACQCkAA0AqgASALAADQC2AA0AuAANALkACAABAIwAIAAaAC3/8wA0AAYAOv+4ADz//gBB//IAQv/yAET/2wBH//cAUQAGAFgAAQBaAAEAYQADAGP/6ABx/+MAdP//AIP/4wCG/94Amf/nAKX/+gCqAAYAswADALQAAwC2//QAuP/4ALn/1gC8//sAHwAD/+QAIP/+ACj/uAAt//IANAAMADr/6QA8/+8AQf/oAEL/5wBE/+YAUf/sAFX/8wBi//kAY///AHH//wB0//wAg//wAIb/8QCZ//8Ao//uAKT/7gCqAAcAtv/tALj/7QC5/+4Au//5AMEAAQDD//oA0//wANT/7QDW//AABAB8/+wAn//tAL//5gDF/98AEwAt//sAOf/7ADr/mQA8//cAQf/MAEL/ywBD//0ARP+1AEb/+ABR/+4AVf/gALD/9gC2//EAuP/yALn/9gDD//wA0//2ANT/9gDW//YACAA6/8cAQf/fAEL/3wBE/9AAVf/gAGT/4wC5/+oAv//zAAEAfP/4AB0AG//1ACD/9wAh/+oAK//vADn/+AA6/5YAPP/1AEH/wgBC/8EAQ//cAET/qQBG/+sAUf/hAFX/2wB0//wApP/4AKr/7wCw//MAtv/jALj/5QC5/+oAvP//AMH/6gDD//gA0//uANT/7ADV/+wA1v/tANr/8wASACj/7AArAAQAOv/GADz/+ABB/9kAQv/ZAEMABABE/88AVf/bAGT/7QBw//cAhv/xAJL/7gCYAAMArf/rALn/8QC///YAwQAJAAEAUf/+ABkAIQADACsABgAt//EAMwAEADoAAQBBAAcAQgAHAEMACABEAAgAY//vAHH/8AB0//0AiQAEAIoAEgCLAAcAjAAIAJn/8ADA//0AwQALAMr/+ADT//MA1P/yANUABADW//UA2//xABEALf/tADr/uwA8/+0AQf+3AEL/tgBE/7EAY//6AHT//gC2/3kAuP98ALn/hwC//+AAwQABAMP//QDT/9IA1P/PANb/0AAGAG3/+QB8/94An//3AL//6wDF/+4AyP/4AA4ALf/7ADn//wA6/6UAPP/6AEH/2QBC/9cAQ//6AET/vwBG//kAYQAEAIwAXgCzAAQAtAAEAL4AAgAgABv/7AAg//MAIf/iACv/7AAt/+sAOf/tADr/vAA8/+sAQf/OAEL/zgBD/+8ARP/CAEb/6wBH/+gAY//pAHH/6AB0/+0Ahf/vAIf/7wCMAFkAjv/tAJX/7wCZ/+kAvP/oAMH/7gDD/+sAyv/sANP/4ADU/98A1f/wANb/6ADa/+8AAQAD/+EAAQCMAAoADQAh/6kAK/+/AC3/+gBH//QAY//KAHH/zgB0//oAiQAEAIoACgCZ/+kArP9/ALz/+ADB/6EAEQAD/+QAIf+pACv/vgAt//kANP+nAEf/9ABS/90AY//JAHH/zQB0//oAg//tAIkABACKAAgAmf/oAKz/fgC8//cAwf+gABYAA//iACH/qwAr/7sALf/zADT/owBH//gAUv/bAGP/twBx/8gAdP/6AHr/8QB8/6wAg//6AIkABACKAAgAlv/wAJn/6gCs/4cAvP/8AMH/nwDF//cA2//1ABgAA//qACD//wAh/68AK//TADT/2gA5//8AOv++AEH/9wBC//YAQ//jAET/4wBG/+cAR//2AFL/9ABj/+kAcf/dAIP/2ACE//IAhv/bAJn/6ACq//wArP/QALz/+wDB/8oAFgAb//gAIP/6ACv/9wAt//4AOv+iADz/9QBB/9IAQv/RAEP//ABE/7kARv/8AFH/+ABV/+YAdP//AIb/+AC2//oAuP/6AMP//wDT//YA1P/0ANX/+gDW//QAAQCMAAgAEQAh/8sAKP/rACv/2AA0/84AOv/rAEb/9ABf//AAZAABAHD/9AB6//EAfP/QAIb/5gCS/+0ArP+/AK3/9QC/AAMAwf/LAAcAK//yADr/9gBB/+8AQv/vAET/6QDB/+8Axf/8ABUAIP//AC3/9wA6/80APP/1AEH/5QBC/+QARP/QAFX/8gBj//UAcf/0AHT//wCD/+wAhv/yAJn/9QC2//kAuP/6ALn/8QDD//8A0///ANT//wDW//8ACgA6/8wAQf/kAEL/5ABDAAQARP/WAFX/5ABk/+sAuf/0AL//9wDBAAgABgA6/80AQf/mAEL/5gBE/9oAVf/oAMEABAAQABv//gAt//oAOv+fADz/+ABB/9gAQv/XAET/ugBG//wAUf/9AFX/5wC2//0AuP/8AMP//wDT//4A1P/9ANb//wAZAAP/5QAb//gAIf+1ACv/3wA0/98AOv+zAEH/8ABC//AAQ//iAET/1wBG/+kAR//zAFEABgBS//kAVf/zAGP/7wBx/+YAg//nAIb/6gCZ/+4ApAABAKr/8wCs/9IAvP/zAMH/zQAbAAP/5AAb//gAIf+wACv/3QAt//8ANP/cADn//wA6/7QAQf/xAEL/8QBD/+EARP/YAEb/6QBH//IAUQAHAFL/+QBV//IAY//tAHH/4wCD/+UAhv/pAJn/7ACkAAIAqv/yAKz/zwC8//IAwf/MABEALf/0ADQABAA6/7oAPP//AEH/8wBC//IARP/dAEf/9wBRAAcAY//tAHH/6AB0//8Ag//kAIb/4QCZ/+wAqgAEALz/+wAaAAP/5QAb//cAIP/8ACH/tQAr/94ANP/fADn//wA6/7EAQf/uAEL/7gBD/98ARP/UAEb/5gBH//IATf/5AFL/+ABV//EAY//tAHH/5ACD/+YAhv/qAJn/7ACq//EArP/RALz/8gDB/8wADgAb//oAIP//AC3//gA6/7EAPP/5AEH/6gBC/+kARP/SAFX/+gBj//QAcf/vAIP/6QCG/+UAmf/0AA8AIf/2ACv/7wA0//wAOv/JAEH/4ABC/98AQ//zAET/0QBG//QAVf/gAGT/7QCq//EAuf/1AL//8gDB/+sAAQAAAAoAHgAsAAFsYXRuAAgABAAAAAD//wABAAAAAWxpZ2EACAAAAAEAAAABAAQABAAAAAEACAABADYAAQAIAAUADAAUABwAIgAoAHYAAwB0AIcAdwADAHQAjgB1AAIAdAB4AAIAhwB5AAIAjgABAAEAdA==) format('truetype');
+}
+@font-face {
+font-family: 'Raleway';
+font-style: normal;
+font-weight: 700;
+src: url(data:application/x-font-truetype;base64,AAEAAAARAQAABAAQR1BPU0bt7PoAANN4AAAfIkdTVULdHN8hAADynAAAAHRPUy8yjARpCgAAmkQAAABgY21hcB3C/ugAAJqkAAACTGN2dCAMzAPiAACkoAAAADBmcGdtQXn/lwAAnPAAAAdJZ2FzcAAAABAAANNwAAAACGdseWaKi51VAAABHAAAk4BoZWFk+7hfcgAAlngAAAA2aGhlYQdZA70AAJogAAAAJGhtdHjXFx8dAACWsAAAA3BrZXJuFXcT6gAApNAAACrGbG9jYWT7PkAAAJS8AAABum1heHABwwf1AACUnAAAACBuYW1lIZQ70AAAz5gAAAG0cG9zdNlwGUsAANFMAAACIXByZXB8bZVxAACkPAAAAGEAAQAvAkkA4gLaAAMAGEAEAwIBCCtADAEAAgAeAAAADgAjArA7KxMnNzOFVjZ9AkkadwAAAAMAAgAAAqEDkwAHAAoADgBCQBIAAA4NCgkABwAHBgUEAwIBBwgrQCgMCwIABQgBBAACIQAFAAU3AAQAAgEEAgACKQAAAAwiBgMCAQENASMFsDsrMwEzASMnIwcTAzMDJzczAgEYcAEXkkH5Qb5myUBWNn0Cxv06sbECMf7hAfAadwAAAAMAAgAAAqEDkwAHAAoAEQBFQBIAAA0MCgkABwAHBgUEAwIBBwgrQCsREA8OCwUABQgBBAACIQAFAAU3AAQAAgEEAgACKQAAAAwiBgMCAQENASMFsDsrMwEzASMnIwcTAzMDNzMXBycHAgEYcAEXkkH5Qb5myf1qYWpFVVUCxv06sbECMf7hAhxlZSA/PwAAAAEAHgJVAVMC2gAGABtABAIBAQgrQA8GBQQDAAUAHgAAAA4AIwKwOysTNzMXBycHHmphakVVVQJ1ZWUgPz8AAAAEAAIAAAKhA40ABwAKAA4AEgBUQCAPDwsLAAAPEg8SERALDgsODQwKCQAHAAcGBQQDAgEMCCtALAgBBAABIQcBBQsICgMGAAUGAAApAAQAAgEEAgACKQAAAAwiCQMCAQENASMFsDsrMwEzASMnIwcTAzMDNTMVMzUzFQIBGHABF5JB+UG+Zsn6b1FvAsb9OrGxAjH+4QIEd3d3dwACAE0CXAF8AtMAAwAHACxAEgQEAAAEBwQHBgUAAwADAgEGCCtAEgUDBAMBAQAAACcCAQAADgEjArA7KxM1MxUzNTMVTW9RbwJcd3d3dwAAAAMAAgAAAqEDlAAHAAoADgBCQBIAAAwLCgkABwAHBgUEAwIBBwgrQCgODQIABQgBBAACIQAFAAU3AAQAAgEEAgACKQAAAAwiBgMCAQENASMFsDsrMwEzASMnIwcTAzMDMxcHAgEYcAEXkkH5Qb5myeJ8N1YCxv06sbECMf7hAoJ3GgAAAAEALwJJAOIC2gADABhABAEAAQgrQAwDAgIAHgAAAA4AIwKwOysTMxcHL3w3VgLadxoAAAABADwCeQFoAswAAwAhQAoAAAADAAMCAQMIK0APAgEBAQAAACcAAAAMASMCsDsrEzUhFTwBLAJ5U1MAAAAEAAIAAAKhA5MABwAKABYAIgBXQBwYFwAAHhwXIhgiFRMPDQoJAAcABwYFBAMCAQsIK0AzCAEEAAEhAAUKAQcIBQcBACkACAAGAAgGAQApAAQAAgEEAgACKQAAAAwiCQMCAQENASMGsDsrMwEzASMnIwcTAzMDNDYzMhYVFAYjIiY3IgYVFBYzMjY1NCYCARhwAReSQflBvmbJxDUsLDU1LCw1YREXFxEQGRgCxv06sbECMf7hAjQlKCglJSgoSRMRDxUUEBETAAIAIgJAAOQC2gALABcALkAODQwTEQwXDRcKCAQCBQgrQBgAAwABAwEBACgEAQICAAEAJwAAAA4CIwOwOysTNDYzMhYVFAYjIiY3IgYVFBYzMjY1NCYiNSwsNTUsLDVhERcXERAZGAKNJSgoJSUoKEkTEQ8VFBAREwAAAAADAAIAAAKhA5MABwAKACoAXUAgDAsAACYlIR8cGhYVEQ8LKgwqCgkABwAHBgUEAwIBDQgrQDUIAQQAASEKAQgABgUIBgEAKQAJBwwCBQAJBQEAKQAEAAIBBAIAAikAAAAMIgsDAgEBDQEjBrA7KzMBMwEjJyMHEwMzAyIuAiMiDgIVIzQ+AjMyHgIzMj4CNTMUDgICARhwAReSQflBvmbJJBciHR0QERMKAkoMGy0hFyEdHRISFQsDSgwdLwLG/TqxsQIx/uECAQ4RDg4SDwEJKyshDxEPDhIQAgcqLCMAAAEAHwJXAZcC2gAfADRAEgEAGxoWFBEPCwoGBAAfAR8HCCtAGgAEAgYCAAQAAQAoAAEBAwEAJwUBAwMOASMDsDsrASIuAiMiDgIVIzQ+AjMyHgIzMj4CNTMUDgIBHBciHR0QERMKAkoMGy0hFyEdHRISFQsDSgwdLwJaDhEODhIPAQkrKyEPEQ8OEhACByosIwAAAAADAEoAAAKGAsYAEgAfACgARUASICAgKCAnIyEcGhkXCQcGBAcIK0ArEAECBAEhAAQAAgMEAgEAKQYBBQUBAQAnAAEBDCIAAwMAAQAnAAAADQAjBrA7KyUUDgIjIREhMh4CFRQGBx4BBzQuAisBFTMyPgIBFTMyNjU0JiMChiQ/Uy/+qQF8JTwqFzQyPUeLDRYeEtTNEyEYDv7ZuCMxLSG3LUQuGALGIDNBITRbFhJdLBMjGg+7DhkiAZKzMCopMAABACD/+gKKAsoAJwA1QAokIhkXDw0GBAQIK0AjHh0JCAQCAQEhAAEBAAEAJwAAABIiAAICAwEAJwADAxMDIwWwOysTND4CMzIWFwcuAyMiDgIVFB4CMzI+AjcXDgMjIi4CIC5XflFfiyFqDCYtMBYxSjEZHTVKLBcwLSYMcRA9TlYqSntZMQFoQX9kPlZFSR4pGAsqQ1UqL1dCKAwaKR1BKD0qFkBngwABACH/PAKLAsoAQgD4QBBAPjo4KykhHxgWCggEAgcIK0uwDFBYQEUwLxsaBAQDDQEFBDYBAQUMAAIAAUIBBgAFIQAFBAEABS0ABAABAAQBAQApAAMDAgEAJwACAhIiAAAABgECJwAGBhEGIwcbS7AfUFhARjAvGxoEBAMNAQUENgEBBQwAAgABQgEGAAUhAAUEAQQFATUABAABAAQBAQApAAMDAgEAJwACAhIiAAAABgECJwAGBhEGIwcbQEMwLxsaBAQDDQEFBDYBAQUMAAIAAUIBBgAFIQAFBAEEBQE1AAQAAQAEAQEAKQAAAAYABgECKAADAwIBACcAAgISAyMGWVmwOysFHgEzMjY1NCYjIgYHNy4DNTQ+AjMyFhcHLgMjIg4CFRQeAjMyPgI3Fw4DDwE+ATMyFhUUBiMiJicBIQwyGxoeHRcVLwwsRXRSLi5XflFfiyFqDCYtMBYxSjEZHTVKLBcwLSYMcQ80QkwmGAcRCCMyP0EhNhR/BwwPEhIPCQNXBUJmf0FBf2Q+VkVJHikYCypDVSovV0IoDBopHUEkOCoZBCYCAiElJjIMCAABABX/PAEAABwAGwCyQAoZFxMRCggEAgQIK0uwDFBYQC0PAQECDAACAAEbAQMAAyEODQICHwACAQACKwABAAE3AAAAAwECJwADAxEDIwYbS7AfUFhALA8BAQIMAAIAARsBAwADIQ4NAgIfAAIBAjcAAQABNwAAAAMBAicAAwMRAyMGG0A1DwEBAgwAAgABGwEDAAMhDg0CAh8AAgECNwABAAE3AAADAwABACYAAAADAQInAAMAAwECJAdZWbA7KxceATMyNjU0JiMiBgc3Fwc+ATMyFhUUBiMiJicwDDIbGh4dFxUvDD00IwcRCCMyP0EhNhR/BwwPEhIPCQN4EDYCAiElJjIMCAACAEoAAAKqAsYADAAZADFADgAAFhQTEQAMAAsDAQUIK0AbAAICAAEAJwAAAAwiAAMDAQEAJwQBAQENASMEsDsrMxEhMh4CFRQOAiMTNC4CKwERMzI+AkoBAleDWCwxXIFQ0xw2TzJ4eDNPNRwCxjhggUlRg10zAWQzVj4i/iwkP1YAAAABAEoAAAI3AsYACwA/QBIAAAALAAsKCQgHBgUEAwIBBwgrQCUAAwAEBQMEAAApAAICAQAAJwABAQwiBgEFBQAAACcAAAANACMFsDsrJRUhESEVIRUhFSEVAjf+EwHk/qYBK/7VeXkCxnmrcLkAAAAAAgBKAAACNwOTAAMADwBNQBQEBAQPBA8ODQwLCgkIBwYFAwIICCtAMQEAAgIAASEAAAIANwAEAAUGBAUAACkAAwMCAAAnAAICDCIHAQYGAQAAJwABAQ0BIwewOysBJzczExUhESEVIRUhFSEVAWlWNn1x/hMB5P6mASv+1QMCGnf85nkCxnmrcLkAAAACAEoAAAI3A5MABgASAFBAFAcHBxIHEhEQDw4NDAsKCQgCAQgIK0A0BgUEAwAFAgABIQAAAgA3AAQABQYEBQAAKQADAwIAACcAAgIMIgcBBgYBAAAnAAEBDQEjB7A7KxM3MxcHJwcBFSERIRUhFSEVIRWramFqRVVVAUb+EwHk/qYBK/7VAy5lZSA/P/1reQLGeatwuQAAAAMASgAAAjcDjQADAAcAEwBdQCIICAQEAAAIEwgTEhEQDw4NDAsKCQQHBAcGBQADAAMCAQ0IK0AzAgEACwMKAwEFAAEAACkABwAICQcIAAApAAYGBQAAJwAFBQwiDAEJCQQAACcABAQNBCMGsDsrEzUzFTM1MxUTFSERIRUhFSEVIRWub1FvWv4TAeT+pgEr/tUDFnd3d3f9Y3kCxnmrcLkAAAAAAgBKAAACNwOUAAsADwBNQBQAAA0MAAsACwoJCAcGBQQDAgEICCtAMQ8OAgEGASEABgEGNwADAAQFAwQAACkAAgIBAAAnAAEBDCIHAQUFAAAAJwAAAA0AIwewOyslFSERIRUhFSEVIRUDMxcHAjf+EwHk/qYBK/7VDnw3Vnl5AsZ5q3C5Axt3GgAAAAACAB8AAAKvAsYAEAAhAEVAFgAAHhwbGhkYFxUAEAAPBwUEAwIBCQgrQCcFAQEGAQAHAQAAACkABAQCAQAnAAICDCIABwcDAQAnCAEDAw0DIwWwOyszESM1MxEhMh4CFRQOAiMTNC4CKwEVMxUjFTMyPgJPMDABAleDWCwxXIFQ0xw2TzJ4i4t4M081HAEzZAEvOGCBSVGDXTMBZDNWPiK2ZLokP1YAAAABACL/+gLgAsoANQBlQB4AAAA1ADU0MzEwLy4qKB8dGxoZGBYVFBMPDQYEDQgrQD8JCAICASQjAgYFAiEMCwICCgEDBAIDAAApCQEECAEFBgQFAAApAAEBAAEAJwAAABIiAAYGBwEAJwAHBxMHIwewOysTPgMzMhYXBy4DIyIOAgchByMUFzMHIx4BMzI+AjcXDgMjIi4CJyM3MyY1Izd+CzdUcUVfiyFqDCYtMBYmPS4gCQEDHvAD6x62GVk8FzAtJgxxED1OVio5Y1E8EWkeOQNHHgG0N2RNLlZFSR4pGAsZKzkfSR8VSjZDDBopHUEoPSoWJ0JYMkoYHEkAAAAAAQBKAAACJwLGAAkANkAQAAAACQAJCAcGBQQDAgEGCCtAHgACAAMEAgMAACkAAQEAAAAnAAAADCIFAQQEDQQjBLA7KzMRIRUhFSEVIRFKAd3+rQEa/uYCxnm3cP7aAAAAAQAh//sCmALLACUAjUAQJSQjIiEgHhwUEg0LAwEHCCtLsC5QWEA0EA8CBQIfAQMEAAEAAwMhAAUABAMFBAAAKQACAgEBACcAAQESIgADAwABACcGAQAAEwAjBhtAOBAPAgUCHwEDBAABBgMDIQAFAAQDBQQAACkAAgIBAQAnAAEBEiIABgYNIgADAwABACcAAAATACMHWbA7KyUGIyIuAjU0PgIzMhYXBy4BIyIOAhUUHgIzMjc1IzUhESMCJlJrRHhZMzNbe0hhiiNnGls3LEcyHB42SSxiT48BAXJQVTxlhEdJgWE5VEdMNTgmQlYwMldAJWEyZf6TAAAAAQBKAAACnwLGAAsAM0ASAAAACwALCgkIBwYFBAMCAQcIK0AZAAQAAQAEAQAAKQYFAgMDDCICAQAADQAjA7A7KwERIxEhESMRMxEhEQKfif6+iooBQgLG/ToBL/7RAsb+4QEfAAEASgAAANQCxQADAB9ACgAAAAMAAwIBAwgrQA0AAAAMIgIBAQENASMCsDsrMxEzEUqKAsX9OwAAAQAL//UBrQLFABIALUAIEQ8KCQQCAwgrQB0AAQABEgECAAIhAAEBDCIAAAACAQAnAAICFgIjBLA7KzceATMyPgI1ETMRFA4CIyInKg5CKyoyGgiKETdoWFpAkQoYHTxZPAFo/phRhV40LAAAAgBKAAABDgOTAAMABwAtQAwAAAcGAAMAAwIBBAgrQBkFBAIAAgEhAAIAAjcAAAAMIgMBAQENASMEsDsrMxEzEQMnNzNKiiNWNn0Cxf07AwIadwAAAv/0AAABKQOTAAMACgAwQAwAAAYFAAMAAwIBBAgrQBwKCQgHBAUAAgEhAAIAAjcAAAAMIgMBAQENASMEsDsrMxEzEQM3MxcHJwdKiuBqYWpFVVUCxf07Ay5lZSA/PwAAA//3AAABJgONAAMABwALAD1AGggIBAQAAAgLCAsKCQQHBAcGBQADAAMCAQkIK0AbBAECCAUHAwMAAgMAACkAAAAMIgYBAQENASMDsDsrMxEzEQM1MxUzNTMVSordb1FvAsX9OwMWd3d3dwAAAgAPAAAA1AOUAAMABwAtQAwAAAUEAAMAAwIBBAgrQBkHBgIAAgEhAAIAAjcAAAAMIgMBAQENASMEsDsrMxEzEQMzFwdKisV8N1YCxf07A5R3GgAAAQBKAAACpwLGAAsALkAOAAAACwALCAcFBAIBBQgrQBgKCQYDBAIAASEBAQAADCIEAwICAg0CIwOwOyszETMRATMJASMDBxVKigEzj/7wASGS4l8Cxf6mAVv+xf51AT1n1gAAAAEASgAAAj4CxgAFAChADAAAAAUABQQDAgEECCtAFAAAAAwiAAEBAgACJwMBAgINAiMDsDsrMxEzESEVSooBagLG/bN5AAAAAAEAOQDyAKcBiQADACpACgAAAAMAAwIBAwgrQBgAAAEBAAAAJgAAAAEAACcCAQEAAQAAJAOwOys3NTMVOW7yl5cAAAAAAQBKAAADFwLGAAwAN0AQAAAADAAMCwoIBwYFAwIGCCtAHwkEAQMAAgEhAAACAQIAATUDAQICDCIFBAIBAQ0BIwSwOyshEQMjAxEjETMbATMRAo23S7eKlNLUkwHW/qIBXv4qAsb+bAGU/ToAAQBKAAACsQLGAAkAJ0AKCQgHBgQDAgEECCtAFQUAAgABASECAQEBDCIDAQAADQAjA7A7KxMRIxEzAREzESPUimsBcopwAcf+OQLG/i4B0f07AAAAAgACAAACoQLGAAcACgA2QBAAAAoJAAcABwYFBAMCAQYIK0AeCAEEAAEhAAQAAgEEAgACKQAAAAwiBQMCAQENASMEsDsrMwEzASMnIwcTAzMCARhwAReSQflBvmbJAsb9OrGxAjH+4QACAEoAAAKxA5MACQApAE5AGgsKJSQgHhsZFRQQDgopCykJCAcGBAMCAQsIK0AsBQACAAEBIQkBBwAFBAcFAQApAAgGCgIEAQgEAQApAgEBAQwiAwEAAA0AIwWwOysTESMRMwERMxEjAyIuAiMiDgIVIzQ+AjMyHgIzMj4CNTMUDgLUimsBcopwhRciHR0QERMKAkoMGy0hFyEdHRISFQsDSgwdLwHH/jkCxv4uAdH9OwMTDhEODhIPAQkrKyEPEQ8OEhACByosIwAAAAACACH/+wLDAssAEwAnADFADgEAJCIaGAsJABMBEwUIK0AbAAMDAQEAJwABARIiAAICAAEAJwQBAAATACMEsDsrBSIuAjU0PgIzMh4CFRQOAgEUHgIzMj4CNTQuAiMiDgIBcUt8WTAzW3xJS3xYMDNafP7yGzNKLzBJMhocM0kuMEkzGgU9ZYJER4JkOz9mgkNHgWM7AWguVkIoKURVLC5WQicpQ1UAAAACACH/+wQdAssAHAAwALFAHh4dAAAoJh0wHjAAHAAcGxoZGBcWFRQRDwcFAgEMCCtLsC5QWEA0EwEEAgMBAAcCIQAFAAYHBQYAACkJAQQEAgEAJwMBAgISIgsICgMHBwABACcBAQAADQAjBhtAThMBBAMDAQAHAiEABQAGBwUGAAApCQEEBAIBACcAAgISIgkBBAQDAAAnAAMDDCILCAoDBwcAAAAnAAAADSILCAoDBwcBAQAnAAEBEwEjClmwOyslFSE1DgEjIi4CNTQ+AjMyFhc1IRUhFSEVIRUFMj4CNTQuAiMiDgIVFB4CBB3+ISJqQEt9WDEzW3xJQWghAdb+swEX/un+rDBJMhocM0kuMEkzGhszSnl5aTA+PWWCREeCZDs+L2h5p3m0BClEViwuVUIoKURVLC5WQigAAwAh//sCwwOTAAMAFwArAD9AEAUEKCYeHA8NBBcFFwMCBggrQCcBAAICAAEhAAACADcABAQCAQAnAAICEiIAAwMBAQAnBQEBARMBIwawOysBJzczAyIuAjU0PgIzMh4CFRQOAgEUHgIzMj4CNTQuAiMiDgIBl1Y2fYNLfFkwM1t8SUt8WDAzWnz+8hszSi8wSTIaHDNJLjBJMxoDAhp3/Gg9ZYJER4JkOz9mgkNHgWM7AWguVkIoKURVLC5WQicpQ1UAAAMAIf/7AsMDkwAGABoALgBCQBAIByspIR8SEAcaCBoCAQYIK0AqBgUEAwAFAgABIQAAAgA3AAQEAgEAJwACAhIiAAMDAQEAJwUBAQETASMGsDsrEzczFwcnBxMiLgI1ND4CMzIeAhUUDgIBFB4CMzI+AjU0LgIjIg4C2mphakVVVVFLfFkwM1t8SUt8WDAzWnz+8hszSi8wSTIaHDNJLjBJMxoDLmVlID8//O09ZYJER4JkOz9mgkNHgWM7AWguVkIoKURVLC5WQicpQ1UAAAAEACH/+wLDA40AAwAHABsALwBPQB4JCAQEAAAsKiIgExEIGwkbBAcEBwYFAAMAAwIBCwgrQCkCAQAJAwgDAQUAAQAAKQAHBwUBACcABQUSIgAGBgQBACcKAQQEEwQjBbA7KxM1MxUzNTMVAyIuAjU0PgIzMh4CFRQOAgEUHgIzMj4CNTQuAiMiDgLcb1Fvmkt8WTAzW3xJS3xYMDNafP7yGzNKLzBJMhocM0kuMEkzGgMWd3d3d/zlPWWCREeCZDs/ZoJDR4FjOwFoLlZCKClEVSwuVkInKUNVAAAAAwAh//sCwwOUABMAJwArAD9AEAEAKSgkIhoYCwkAEwETBggrQCcrKgIBBAEhAAQBBDcAAwMBAQAnAAEBEiIAAgIAAQAnBQEAABMAIwawOysFIi4CNTQ+AjMyHgIVFA4CARQeAjMyPgI1NC4CIyIOAhMzFwcBcUt8WTAzW3xJS3xYMDNafP7yGzNKLzBJMhocM0kuMEkzGkh8N1YFPWWCREeCZDs/ZoJDR4FjOwFoLlZCKClEVSwuVkInKUNVAgV3GgAAAAMAIf/7AsMCywAaACUALwCJQBIAACwqIiAAGgAaFxUNDAoIBwgrS7AuUFhALxkBAgQCKSgdAwUEDgsCAAUDIQAEBAIBACcGAwICAhIiAAUFAAEAJwEBAAATACMFG0A3GQECBAMpKB0DBQQOCwIBBQMhBgEDAwwiAAQEAgEAJwACAhIiAAEBDSIABQUAAQAnAAAAEwAjB1mwOysBBx4BFRQOAiMiJwcjNy4BNTQ+AjMyFhc3ARQXEy4BIyIOAgU0JwMWMzI+AgK1TSwvM1p8SVJEFpRLLC8zW3xJKkohF/6MIPURKBYwSTMaAYwg9SQsMEkyGgLGbjOBQ0eBYzslIGwzf0VHgmQ7FBIh/p1KOwFgCAopQ1UsSDv+oBEpRFUAAAEAHAAAAqACxgADAB9ACgAAAAMAAwIBAwgrQA0CAQEBDCIAAAANACMCsDsrCQEjAQKg/hCUAe8Cxv06AsYAAAADACH/+wLDA5MAEwAnAEcAWEAeKSgBAENCPjw5NzMyLiwoRylHJCIaGAsJABMBEwwIK0AyCQEHAAUEBwUBACkACAYLAgQBCAQBACkAAwMBAQAnAAEBEiIAAgIAAQAnCgEAABMAIwawOysFIi4CNTQ+AjMyHgIVFA4CARQeAjMyPgI1NC4CIyIOAgEiLgIjIg4CFSM0PgIzMh4CMzI+AjUzFA4CAXFLfFkwM1t8SUt8WDAzWnz+8hszSi8wSTIaHDNJLjBJMxoBBxciHR0QERMKAkoMGy0hFyEdHRISFQsDSgwdLwU9ZYJER4JkOz9mgkNHgWM7AWguVkIoKURVLC5WQicpQ1UBhA4RDg4SDwEJKyshDxEPDhIQAgcqLCMAAAACAEoAAAJZAsYADgAZADZAEAAAGRcRDwAOAA4NCwMBBggrQB4AAwABAgMBAQApAAQEAAEAJwAAAAwiBQECAg0CIwSwOyszESEyHgIVFA4CKwEVETMyNjU0LgIrAUoBLTFTPCIgOlIxqKAmMxAaIxKaAsYpQ1UrLVVCKO4BZz41GyseDwACACH/+wLRAssAFwAtAL9AEhkYJSMcGxgtGS0XFg4MBAIHCCtLsAlQWEAvHRoCAwQVAAIAAwIhAAQFAwMELQAFBQEBACcAAQESIgYBAwMAAQInAgEAABMAIwYbS7AuUFhAMB0aAgMEFQACAAMCIQAEBQMFBAM1AAUFAQEAJwABARIiBgEDAwABAicCAQAAEwAjBhtANB0aAgMEFQACAgMCIQAEBQMFBAM1AAUFAQEAJwABARIiAAICDSIGAQMDAAECJwAAABMAIwdZWbA7KyUOASMiLgI1ND4CMzIeAhUUBgcXIycyNyczFzY1NC4CIyIOAhUUHgICIyZZM0t8WTAzW3xJS3xYMC0qZYPbMylrgywlHDNJLjBJMxobM0owGRw+ZIJER4JkOz9mgkNEezFxdRl5MkFNLlZCKClEVSwuVkIoAAACAEoAAAKNAsYADwAcAD9AEgAAHBoSEAAPAA8ODQwLAwEHCCtAJQoBAgQBIQAEAAIBBAIAACkABQUAAQAnAAAADCIGAwIBAQ0BIwWwOyszESEyHgIVFAYHEyMnIxURMzI+AjU0LgIrAUoBOjFTPCJFO6eclYitEyEYDhAbIxKnAsYpQ1UrRXEZ/vXu7gFnEh8qGBkqHxEAAAEAF//4AkgCywA0AG1ACjIwIR8YFgYEBAgrS7AJUFhAKTQBAAMbAAICABoBAQIDIQAAAAMBACcAAwMSIgACAgEBACcAAQETASMFG0ApNAEAAxsAAgIAGgEBAgMhAAAAAwEAJwADAxIiAAICAQEAJwABARYBIwVZsDsrAS4DIyIGFRQeAhceAxUUDgIjIiYnNx4DMzI1NC4CJy4DNTQ+AjMyFhcB8gclNT4gOTgVKD0oNFU7ICtIYDRQnD49CS9ATilyGjBEKjNLMhkoR142S34vAgwHGBcQKiYWHRYSCg4gMEMxOVEyFzAsdwkdHRRJGCAYFAsOISw8KTZUOB0vIAABAA4AAAJdAsYABwAmQAoHBgUEAwIBAAQIK0AUAgEAAAMAACcAAwMMIgABAQ0BIwOwOysBIxEjESM1IQJd4orjAk8CTf2zAk15AAAAAgBKAAACSALGABAAHQBAQBYSEQEAHBoRHRIdDw4NDAsJABABEAgIK0AiBgEAAAUEAAUBACkHAQQAAQIEAQEAKQADAwwiAAICDQIjBLA7KwEyHgIVFA4CKwEVIxEzFRMyPgI1NC4CKwEVAWYxUzwiIDpRMZiKipETIRgOEBsiE4sCRilCVSwuVUInbgLGgP6hEiApGBkqHxHmAAAAAQA///sCrALGABkAK0AOAQAUEw4MBwYAGQEZBQgrQBUDAQEBDCIEAQAAAgEAJwACAhMCIwOwOyslMj4CNREzERQOAiMiLgI1ETMRFB4CAXUxQykRiSNLdlJVd0ohihEpQnUoQFMsAWr+lkmAYDg7YYBFAWr+li1TQCcAAAIAP//7AqwDkwADAB0AOUAQBQQYFxIQCwoEHQUdAwIGCCtAIQEAAgIAASEAAAIANwQBAgIMIgUBAQEDAQInAAMDEwMjBbA7KwEnNzMDMj4CNREzERQOAiMiLgI1ETMRFB4CAZlWNn2BMUMpEYkjS3ZSVXdKIYoRKUIDAhp3/OIoQFMsAWr+lkmAYDg7YYBFAWr+li1TQCcAAgA///sCrAOTAAYAIAA8QBAIBxsaFRMODQcgCCACAQYIK0AkBgUEAwAFAgABIQAAAgA3BAECAgwiBQEBAQMBAicAAwMTAyMFsDsrEzczFwcnBxMyPgI1ETMRFA4CIyIuAjURMxEUHgLbamFqRVVVVDFDKRGJI0t2UlV3SiGKESlCAy5lZSA/P/1nKEBTLAFq/pZJgGA4O2GARQFq/pYtU0AnAAADAD//+wKsA40AAwAHACEASUAeCQgEBAAAHBsWFA8OCCEJIQQHBAcGBQADAAMCAQsIK0AjAgEACQMIAwEFAAEAACkHAQUFDCIKAQQEBgEAJwAGBhMGIwSwOysTNTMVMzUzFQMyPgI1ETMRFA4CIyIuAjURMxEUHgLeb1FvmDFDKRGJI0t2UlV3SiGKESlCAxZ3d3d3/V8oQFMsAWr+lkmAYDg7YYBFAWr+li1TQCcAAAIAP//7AqwDlAAZAB0AOUAQAQAbGhQTDgwHBgAZARkGCCtAIR0cAgEEASEABAEENwMBAQEMIgUBAAACAQInAAICEwIjBbA7KyUyPgI1ETMRFA4CIyIuAjURMxEUHgIDMxcHAXUxQykRiSNLdlJVd0ohihEpQk98N1Z1KEBTLAFq/pZJgGA4O2GARQFq/pYtU0AnAx93GgAAAQAAAAACoALGAAYAKEAMAAAABgAGBQQDAgQIK0AUAQEBAAEhAwICAAAMIgABAQ0BIwOwOysbAjMBIwGRwL6R/ut0/ukCxv3nAhn9OgLGAAAB//8AAAQeAsYAEQAxQA4PDg0MCgkIBwQDAQAGCCtAGxEQCwYFAgYDAAEhBQIBAwAADCIEAQMDDQMjA7A7KwEzFzczAxcTMwEjCwEjATMTNwE/f1BQgHlayZb+33R7e3T+4JXKWALE6+v+veMCKP06ASr+1gLG/djjAAAAAf/8AAACiALGAAsALkAOAAAACwALCQgGBQMCBQgrQBgKBwQBBAEAASEEAwIAAAwiAgEBAQ0BIwOwOysbAjMDEyMnByMTA5KxsJX99ZWoqZb1/QLG/vgBCP6Y/qL+/gFeAWgAAAH//AAAAogCxgAIACpADAAAAAgACAYFAwIECCtAFgcEAQMBAAEhAwICAAAMIgABAQ0BIwOwOysbAjMBFSM1AZKvspX+/on+/wLG/qoBVv4y+PoBzAAAAAAC//wAAAKIA5MACAAMADhADgAADAsACAAIBgUDAgUIK0AiCgkCAAMHBAEDAQACIQQCAgAADCIAAwMBAAAnAAEBDQEjBLA7KxsCMwEVIzUBJSc3M5KvspX+/on+/wFoVjZ9Asb+qgFW/jL4+gHMPBp3AAAAAAEAHAAAAk8CxgAJADZACgkIBwYEAwIBBAgrQCQFAQABAAEDAgIhAAAAAQAAJwABAQwiAAICAwAAJwADAw0DIwWwOys3ASE1IRUBIRUhHAGR/noCJf58AYf9zWgB5Xlo/ht5AAACABn/9gIiAhUAKAA3AGhAGiopAQAzMSk3KjcjIR4dGBYSEAsJACgBKAoIK0BGFQECAxQBAQINAQcBLwEEByYfAgAGBSEABAcGBwQGNQABAAcEAQcBACkAAgIDAQAnAAMDFSIJAQYGAAEAJwUIAgAAFgAjB7A7KxciLgI1ND4CMzIWFzU0JiMiBgcnNjMyFh0BFBYXFQ4BIy4BLwEOAScyNjc2PQEuASMiBhUUFswmQjAbITtSMSNDGjs6KlAqKWV1cX0QFBMhDCYoBQMjZBMiPREWGDgaNEI0ChktPCQlPywZDAseNDgeHVVDb2mjFRIBcgQDASEcHS4wYhgUERU8CQsvJCItAAADABn/9gIiAtoAKAA3ADsAdEAcKikBADs6MzEpNyo3IyEeHRgWEhALCQAoASgLCCtAUDk4AgMIFQECAxQBAQINAQcBLwEEByYfAgAGBiEABAcGBwQGNQABAAcEAQcBACkACAgOIgACAgMBACcAAwMVIgoBBgYAAQAnBQkCAAAWACMIsDsrFyIuAjU0PgIzMhYXNTQmIyIGByc2MzIWHQEUFhcVDgEjLgEvAQ4BJzI2NzY9AS4BIyIGFRQWEyc3M8wmQjAbITtSMSNDGjs6KlAqKWV1cX0QFBMhDCYoBQMjZBMiPREWGDgaNEI0Z1Y2fQoZLTwkJT8sGQwLHjQ4Hh1VQ29poxUSAXIEAwEhHB0uMGIYFBEVPAkLLyQiLQHxGncAAAAAAwAZ//YCIgLaACgANwA+AHdAHCopAQA6OTMxKTcqNyMhHh0YFhIQCwkAKAEoCwgrQFM+PTw7OAUDCBUBAgMUAQECDQEHAS8BBAcmHwIABgYhAAQHBgcEBjUAAQAHBAEHAQApAAgIDiIAAgIDAQAnAAMDFSIKAQYGAAEAJwUJAgAAFgAjCLA7KxciLgI1ND4CMzIWFzU0JiMiBgcnNjMyFh0BFBYXFQ4BIy4BLwEOAScyNjc2PQEuASMiBhUUFgM3MxcHJwfMJkIwGyE7UjEjQxo7OipQKilldXF9EBQTIQwmKAUDI2QTIj0RFhg4GjRCNFZqYWpFVVUKGS08JCU/LBkMCx40OB4dVUNvaaMVEgFyBAMBIRwdLjBiGBQRFTwJCy8kIi0CHWVlID8/AAAAAAQAGf/2AiIC0wAoADcAOwA/AIhAKjw8ODgqKQEAPD88Pz49ODs4Ozo5MzEpNyo3IyEeHRgWEhALCQAoASgQCCtAVhUBAgMUAQECDQEHAS8BBAcmHwIABgUhAAQHBgcEBjUAAQAHBAEHAQApDwsOAwkJCAAAJwoBCAgOIgACAgMBACcAAwMVIg0BBgYAAQAnBQwCAAAWACMJsDsrFyIuAjU0PgIzMhYXNTQmIyIGByc2MzIWHQEUFhcVDgEjLgEvAQ4BJzI2NzY9AS4BIyIGFRQWAzUzFTM1MxXMJkIwGyE7UjEjQxo7OipQKilldXF9EBQTIQwmKAUDI2QTIj0RFhg4GjRCNFNvUW8KGS08JCU/LBkMCx40OB4dVUNvaaMVEgFyBAMBIRwdLjBiGBQRFTwJCy8kIi0CBHd3d3cAAAAAAwAa//YDlQIVADoATgBVAH5AJk9PPDsBAE9VT1VTUUpIO048TjQyLSsnJh8dGRcTEQsJADoBOg8IK0BQGxYCAgMVEAIBAg0BCwFGAQUJQTYwLwQGBQUhAAEACQUBCQEAKQ4BCwAFBgsFAAApCgECAgMBACcEAQMDFSINCAIGBgABACcHDAIAABYAIwewOysXIi4CNTQ+AjMyFhc+ATcmIyIGByc2MzIWFz4BMzIeAhUUBgchHgMzMjY3Fw4BIyImJw4DNzI2Nz4BNS4DNS4BIyIGFRQWJS4BIyIGB80mQjAbITtSMSA+GAEEAwlqKlArKGV1PlwdIV47QGZHJgEC/mYCGSczGyhHDXMdf1hLciMSMzk9CyI9EgkMAgQCAhYzFzRDNQI+BU05OUwFChktPCQlPywZCgoJGwhbHh1VQycjIigsSmI3CxgIHzAiEicgIDxNOzEdKBsMYhgUCBMJBBITEwUICS8kIi3WPEpKPAADABn/9gIiAtoAKAA3ADsAdEAcKikBADk4MzEpNyo3IyEeHRgWEhALCQAoASgLCCtAUDs6AgMIFQECAxQBAQINAQcBLwEEByYfAgAGBiEABAcGBwQGNQABAAcEAQcBACkACAgOIgACAgMBACcAAwMVIgoBBgYAAQAnBQkCAAAWACMIsDsrFyIuAjU0PgIzMhYXNTQmIyIGByc2MzIWHQEUFhcVDgEjLgEvAQ4BJzI2NzY9AS4BIyIGFRQWAzMXB8wmQjAbITtSMSNDGjs6KlAqKWV1cX0QFBMhDCYoBQMjZBMiPREWGDgaNEI0O3w3VgoZLTwkJT8sGQwLHjQ4Hh1VQ29poxUSAXIEAwEhHB0uMGIYFBEVPAkLLyQiLQKCdxoAAAAAAwAp//YCyALPACkANABAAKBAFisqAAA/PSo0KzQAKQApJSQZFwUDCAgrS7AYUFhAPjgOAgIFLSwoISAFBAIBAQAEAyEABQUBAQAnAAEBEiIAAgIAAQAnBgMCAAAWIgcBBAQAAQAnBgMCAAAWACMHG0A7OA4CAgUtLCghIAUEAgEBAwQDIQAFBQEBACcAAQESIgACAgMAACcGAQMDDSIHAQQEAAEAJwAAABYAIwdZsDsrIScOASMiLgI1ND4CNy4DNTQ+AjMyHgIVFAYHFz4BNTMOAQcXJTI3Jw4BFRQeAgMUFhc+ATU0JiMiBgIYOCxmNjdYPiIUIS0YFRwSCB00RyolRDUfRDWJDxFtASEdk/5ePjSkIigSIS45GCEnKyYdICg7IiMiOk0qITgwKRIYJyQiEyY/LRgUJzsnOlcmjyBNLEd1L5pfKK4ZNCAVJxwRAcoRIyMZKRwbIScABAAZ//YCIgLaACgANwBDAE8Ai0AmRUQqKQEAS0lET0VPQkA8OjMxKTcqNyMhHh0YFhIQCwkAKAEoDwgrQF0VAQIDFAEBAg0BBwEvAQQHJh8CAAYFIQAEBwYHBAY1AAsACQMLCQEAKQABAAcEAQcBACkOAQoKCAEAJwAICA4iAAICAwEAJwADAxUiDQEGBgABACcFDAIAABYAIwqwOysXIi4CNTQ+AjMyFhc1NCYjIgYHJzYzMhYdARQWFxUOASMuAS8BDgEnMjY3Nj0BLgEjIgYVFBYDNDYzMhYVFAYjIiY3IgYVFBYzMjY1NCbMJkIwGyE7UjEjQxo7OipQKilldXF9EBQTIQwmKAUDI2QTIj0RFhg4GjRCNB01LCw1NSwsNWERFxcREBkYChktPCQlPywZDAseNDgeHVVDb2mjFRIBcgQDASEcHS4wYhgUERU8CQsvJCItAjUlKCglJSgoSRMRDxUUEBETAAAAAAEAKAEvAiMCxgAGAChADAAAAAYABgQDAgEECCtAFAUBAQABIQMCAgEAATgAAAAMACMDsDsrGwEzEyMLASjGcMVuj5IBLwGX/mkBJv7aAAAAAQA2AOQCAAFoACAAPUAOIB8bGRYUEA8LCQYEBggrQCcAAQMeAAEEAwEBACYCAQAABAMABAEAKQABAQMBACcFAQMBAwEAJAWwOys3ND4CMzIeAjMyPgI1MxQOAiMiLgIjIg4CFSM2DiA2JxstKigWFRsPBkoOITgpGy4qKBUUGQ4FSuQJKy0jERQRDxIRAgUqLiUQFBAQExABAAAAAQAzAeYBJQLNAA4AI0AEBgUBCCtAFw4NDAsKCQgHBAMCAQANAB4AAAAMACMCsDsrEzcnNxcnMwc3FwcXBycHSy9HEkkFRwVIEkYvNC0uAghHFjofTU0fOhZHIktLAAAAAgAr/24DHQJbAFcAZwDxQB4BAGZkYF5PTUhGPjw0MiknIyEbGRMRCwkAVwFXDQgrS7AWUFhAYiYBBAUlAQMEHQEKA1wBCwoPAQYLSgEIAUsBCQgHIQwBAAAHBQAHAQApAAUABAMFBAEAKQADAAoLAwoBACkACAAJCAkBACgACwsBAQAnAgEBARYiAAYGAQEAJwIBAQEWASMJG0BgJgEEBSUBAwQdAQoDXAELCg8BBgtKAQgBSwEJCAchDAEAAAcFAAcBACkABQAEAwUEAQApAAMACgsDCgEAKQAIAAkICQEAKAALCwIBACcAAgITIgAGBgEBACcAAQEWASMJWbA7KwEyHgIVFA4CIyIuAicOASMiJjU0PgIzMhYXNC4CIyIGByc2MzIeAh0BFB4CMzI+AjU0LgIjIg4CFRQeAjMyNjcXDgEjIi4CNTQ+AhM+AT0BLgEjIgYVFBYzMjYBp0qIZz0IHz42GyMVCgIfVzZNTyI3RCIqOg8KGi0iKUMZGUpiQEkkCAMKFBIbIRIHL1V3SEZ1VC8sUXJHL0YlESpYLUuEYzk/aYl6HxcOPCYwPycrFi4CWzJgjlwWUE86DxgdDh8oUjwqOCMPEAcbLiASGBRHMig+SSJgFyggEik5PxZEdlcxMFV1RUN1VzMVETQUFDdji1RYi18y/f8PJhoeBRAjKB0wDQAAAAMAGf/2AiIC2gAoADcAVwCRQCo5OCopAQBTUk5MSUdDQj48OFc5VzMxKTcqNyMhHh0YFhIQCwkAKAEoEQgrQF8VAQIDFAEBAg0BBwEvAQQHJh8CAAYFIQAEBwYHBAY1AAwKEAIIAwwIAQApAAEABwQBBwEAKQAJCQsBACcNAQsLDiIAAgIDAQAnAAMDFSIPAQYGAAEAJwUOAgAAFgAjCrA7KxciLgI1ND4CMzIWFzU0JiMiBgcnNjMyFh0BFBYXFQ4BIy4BLwEOAScyNjc2PQEuASMiBhUUFhMiLgIjIg4CFSM0PgIzMh4CMzI+AjUzFA4CzCZCMBshO1IxI0MaOzoqUCopZXVxfRAUEyEMJigFAyNkEyI9ERYYOBo0QjSDFyIdHRAREwoCSgwbLSEXIR0dEhIVCwNKDB0vChktPCQlPywZDAseNDgeHVVDb2mjFRIBcgQDASEcHS4wYhgUERU8CQsvJCItAgIOEQ4OEg8BCSsrIQ8RDw4SEAIHKiwjAAIAPP/2AlsC2gAUACcAjUAWFhUBACAeFScWJwwKBwYFBAAUARQICCtLsBhQWEAxCAEFAyMiAgQFAwEABAMhAAICDiIABQUDAQAnAAMDFSIHAQQEAAEAJwEGAgAAFgAjBhtANQgBBQMjIgIEBQMBAQQDIQACAg4iAAUFAwEAJwADAxUiAAEBDSIHAQQEAAEAJwYBAAAWACMHWbA7KwUiJicVIxEzET4BMzIeAhUUDgInMj4CNTQuAiMiBgcVHgMBZjxeG3WGHFs8M1U9ISVCWlkgNScVFCUyHi1HEwcbIigKNi9bAtr+1jA1LEpkNzliSSpyGSo4ICA6LBo7K30UIBcNAAAAAQAaAAACYgLGAAMAH0AKAAAAAwADAgEDCCtADQIBAQEMIgAAAA0AIwKwOysTASMBrwGzlP5MAsb9OgLGAAAAAAEARf9+ALcDBwADACpACgAAAAMAAwIBAwgrQBgAAAEBAAAAJgAAAAEAACcCAQEAAQAAJAOwOysXETMRRXKCA4n8dwAAAQAn/+EBCQLkAB4AckAQAAAAHgAeHRsUEwwKCQgGCCtLsBhQWEAqEgQCAAIBIQACBAAEAgA1BQEEBAMBACcAAwMUIgAAAAEBACcAAQEWASMGG0AnEgQCAAIBIQACBAAEAgA1AAAAAQABAQAoBQEEBAMBACcAAwMUBCMFWbA7KxMVFAYHHgEdATMVIyImPQE0Jic1Mj4CPQE0NjsBFdITEA8UN5kHEB4UChMNCBIFmQJ5zBQjDg4jFNdrDBL4GiUEXgwUFgvtEwtrAAAAAQAq/+EBDALkAB4AckAQAAAAHgAeFhUUEgsKAwEGCCtLsBhQWEAqGgwCAwEBIQABBAMEAQM1BQEEBAABACcAAAAUIgADAwIBACcAAgIWAiMGG0AnGgwCAwEBIQABBAMEAQM1AAMAAgMCAQAoBQEEBAABACcAAAAUBCMFWbA7KxM1MzIWHQEUHgIzFQ4BHQEUBisBNTM1NDY3LgE9ASqZBRIIDRILFB4RBpk3ExAQEwJ5awsT7QsWFAxeBCUa+BIMa9cUIw4OIxTMAAAAAQBH/9gBAwLkAAcAWUAOAAAABwAHBgUEAwIBBQgrS7AyUFhAGAACBAEDAgMAACgAAQEAAAAnAAAADgEjAxtAIgAAAAECAAEAACkAAgMDAgAAJgACAgMAACcEAQMCAwAAJARZsDsrFxEzFSMRMxVHvEBAKAMMa/3KawAAAAEAKv/YAOUC5AAHAFlADgAAAAcABwYFBAMCAQUIK0uwMlBYQBgAAAQBAwADAAAoAAEBAgAAJwACAg4BIwMbQCIAAgABAAIBAAApAAADAwAAACYAAAADAAAnBAEDAAMAACQEWbA7Kxc1MxEjNTMRKj8/uyhrAjZr/PQAAAACAEf/fgC5AwcAAwAHAD5AEgQEAAAEBwQHBgUAAwADAgEGCCtAJAUBAwACAQMCAAApBAEBAAABAAAmBAEBAQAAACcAAAEAAAAkBLA7KxMRIxETESMRuXJycgEI/nYBigH//nYBigAAAAEATQD1AR4BxgATACVABhAOBgQCCCtAFwABAAABAQAmAAEBAAEAJwAAAQABACQDsDsrARQOAiMiLgI1ND4CMzIeAgEeEBwmFhUnHBERHCcVFiYcEAFeFiYdEBAdJhYVJh0QEB0mAAAAAQAc//YCHwIVACEANUAKHhwXFQ0LBgQECCtAIxoZCQgEAgEBIQABAQABACcAAAAVIgACAgMBACcAAwMWAyMFsDsrEzQ+AjMyFhcHLgEjIg4CFRQeAjMyNjcXDgEjIi4CHCZIZkBWeR6DETgiHTIlFRYlMhwkPQyDG3xXQGZIJwEGN2JKLEo8KB0fFyk6IyM6KhckGig8TCxLYwAAAQAd/zwCIAIVADwA/UASOjg0MiknHx0YFg4NCggEAggIK0uwDFBYQEYsKxsaBAUEMAEBBgwAAgABPAEHAAQhAAYCAQAGLQAFAAEABQEBACkABAQDAQAnAAMDFSIAAgITIgAAAAcBAicABwcRByMIG0uwH1BYQEcsKxsaBAUEMAEBBgwAAgABPAEHAAQhAAYCAQIGATUABQABAAUBAQApAAQEAwEAJwADAxUiAAICEyIAAAAHAQInAAcHEQcjCBtARCwrGxoEBQQwAQEGDAACAAE8AQcABCEABgIBAgYBNQAFAAEABQEBACkAAAAHAAcBAigABAQDAQAnAAMDFSIAAgITAiMHWVmwOysXHgEzMjY1NCYjIgYHNy4DNTQ+AjMyFhcHLgEjIg4CFRQeAjMyNjcXDgEPAT4BMzIWFRQGIyImJ+IMMhsaHh0XFS8MKjtdQSMmSGZAVnkegxE4Ih0yJRUWJTIcJD0MgxlqSxUHEQgjMj9BITYUfwcMDxISDwkDUwQvSl40N2JKLEo8KB0fFyk6IyM6KhckGig2SQciAgIhJSYyDAgAAAIAKf+IAi0ChQAgACsAPkAOAAAAIAAgHx4PDg0MBQgrQCgLAQEAJyYaGRYVEhEBCQIBAiEAAAQBAwADAAAoAAEBFSIAAgIWAiMEsDsrBTUuAzU0PgI3NTMVHgEXBy4BJxE+ATcXDgMjFQMUHgIXEQ4DARY0Vz8jHz1YOTxGciCCDi4aGzUIgw80PkAanw4aJBcXJRoNeG8EMUpcMDNcSTIIcXECRD8oGhwC/swFHxcoIjMiEW4BehkuJh0HASgFHCkyAAACAEMAAACwAgYAAwAHADZAEgQEAAAEBwQHBgUAAwADAgEGCCtAHAQBAQEAAAAnAAAADyIAAgIDAAAnBQEDAw0DIwSwOysTNTMVAzUzFUNtbW0BdpCQ/oqQkAAAAAEAIP+PAK8AkAALACxACAsKBQQBAAMIK0AcAAEAATcAAAICAAEAJgAAAAIBACcAAgACAQAkBLA7KxcyNj0BMxUUDgIjIAcabhwqMhcSCxSDmx4nGAkAAAADACz/+QMgAssAEwAnAEsAYEAeKSgVFAEAREI6ODMxKEspSx8dFCcVJwsJABMBEwsIK0A6R0Y2NQQHBgEhAAUABgcFBgEAKQAHCgEEAgcEAQApAAMDAQEAJwABARIiCQECAgABACcIAQAAEwAjB7A7KwUiLgI1ND4CMzIeAhUUDgInMj4CNTQuAiMiDgIVFB4CNyIuAjU0PgIzMhYXBy4BIyIOAhUUHgIzMjY3Fw4DAaJRiWQ4OGSJUVKMZjo6ZoxSRXdZMjFYeEZFdVUxMFZ1TjhdQiUfP14+UHIbgg80GRoqHQ8UICgVHTQOggwoOUgHN2GETk2EYDc3YIRNToRhNzItU3JFQnFUMDBUcUJCcVQwSSVAVzMtVkMoRTsoHxcUIi0ZHi8fER4aJxovJBYAAgAd//YCYQLaABwALwCWQBgeHQEAJyUdLx4vFxUTEg8OCwkAHAEcCQgrS7AYUFhAMw0BBgEjIgIDBhoUAgADAyEAAgIOIgAGBgEBACcAAQEVIggFAgMDAAEAJwQHAgAAFgAjBhtAOg0BBgEjIgIDBhoUAgAFAyEAAwYFBgMFNQACAg4iAAYGAQEAJwABARUiCAEFBQABACcEBwIAABYAIwdZsDsrBSIuAjU0PgIzMhYXETMRFBYXFQYjLgEvAQ4BJzI+Ajc1LgEjIg4CFRQeAgEVNltCJSM+VjM5XRqGEBQmGiUpBQMdYhQTKCIcBxFNKh4zJBQWJzUKKkpjOTliSio4LQEq/cAVEgFyBwEgHSQyM3INGCATfSw6Gi06HyE4KhgAAAIAKQIHAPYC1AALABcALkAODQwTEQwXDRcKCAQCBQgrQBgAAwABAwEBACgEAQICAAEAJwAAAA4CIwOwOysTNDYzMhYVFAYjIiY3IgYVFBYzMjY1NCYpOS0tOjotLTlmDxYWDw8WFAJxKjk5KjA6O1EVEQ8WFg8RFQAAAAADADUAMAHIAiMAAwAHAAsAfUAaCAgEBAAACAsICwoJBAcEBwYFAAMAAwIBCQgrS7AWUFhAJAAECAEFAgQFAAApAAIHAQMCAwAAKAYBAQEAAAAnAAAADwEjBBtALgAABgEBBAABAAApAAQIAQUCBAUAACkAAgMDAgAAJgACAgMAACcHAQMCAwAAJAVZsDsrEzUzFQM1MxUlNSEVxnFxcf7+AZMBo4CA/o2BgcRrawAAAAMAIv+LAlMDLwAvADUAOwCQQAw7OjU0KyoTEhEQBQgrS7ALUFhAOi8sKQUEBAI5Mx4dGAYABwMEFwEAAwMhFAEAASAAAQAAASwAAgAEAwIEAQApAAMDAAEAJwAAABMAIwYbQDkvLCkFBAQCOTMeHRgGAAcDBBcBAAMDIRQBAAEgAAEAATgAAgAEAwIEAQApAAMDAAEAJwAAABMAIwZZsDsrAS4DJxUXHgMVFA4CBxUjNS4BJzceAxc1Jy4DNTQ+Ajc1MxUeARcDNCYnFTYDFBYXNQYB/QYhLTYdGTRVOyAnQ1gxPEaGNj0IJzhDJCUzSzIZIz1UMTxBbyp6ODJq8zAwYAIMBxQVEQOtBg4gMEMxN04yGQJubwUvJncIGhoVBKwKDiEsPCkzTzcgBGZlBS0c/kEjJhCiAwGLIiMOogYAAQA8AAAAwgIMAAMAH0AKAAAAAwADAgEDCCtADQAAAA8iAgEBAQ0BIwKwOyszETMRPIYCDP30AAACABz/9gJCAhUAHgAnAEtAFh8fAQAfJx8nIyEZFxMSCwkAHgEeCAgrQC0cGwIDAgEhBwEFAAIDBQIAACkABAQBAQAnAAEBFSIAAwMAAQAnBgEAABYAIwawOysFIi4CNTQ+AjMyHgIVFAYHIR4DMzI2NxcOARMuASMiDgIHATA/ZkgnJkhnQEBlRyUBAv5rAxgmMBooRw1zHX8wBU03Gy8kFwIKK0piNjhjSywsSmI1DRgIHzAiEicgIDxNATw7RxMiMB0AAwAc//YCQgLaAAMAIgArAFdAGCMjBQQjKyMrJyUdGxcWDw0EIgUiAwIJCCtANwEAAgIAIB8CBAMCIQgBBgADBAYDAAApAAAADiIABQUCAQAnAAICFSIABAQBAQAnBwEBARYBIwewOysBJzczAyIuAjU0PgIzMh4CFRQGByEeAzMyNjcXDgETLgEjIg4CBwFRVjZ9fj9mSCcmSGdAQGVHJQEC/msDGCYwGihHDXMdfzAFTTcbLyQXAgJJGnf9HCtKYjY4Y0ssLEpiNQ0YCB8wIhInICA8TQE8O0cTIjAdAAADABz/9gJCAtoABgAlAC4AWkAYJiYIByYuJi4qKCAeGhkSEAclCCUCAQkIK0A6BgUEAwAFAgAjIgIEAwIhCAEGAAMEBgMAACkAAAAOIgAFBQIBACcAAgIVIgAEBAEBACcHAQEBFgEjB7A7KxM3MxcHJwcTIi4CNTQ+AjMyHgIVFAYHIR4DMzI2NxcOARMuASMiDgIHlGphakVVVVY/ZkgnJkhnQEBlRyUBAv5rAxgmMBooRw1zHX8wBU03Gy8kFwICdWVlID8//aErSmI2OGNLLCxKYjUNGAgfMCISJyAgPE0BPDtHEyIwHQAAAAQAHP/2AkIC0wADAAcAJgAvAGtAJicnCQgEBAAAJy8nLyspIR8bGhMRCCYJJgQHBAcGBQADAAMCAQ4IK0A9JCMCBwYBIQ0BCQAGBwkGAAApCwMKAwEBAAAAJwIBAAAOIgAICAUBACcABQUVIgAHBwQBACcMAQQEFgQjCLA7KxM1MxUzNTMVAyIuAjU0PgIzMh4CFRQGByEeAzMyNjcXDgETLgEjIg4CB5dvUW+WP2ZIJyZIZ0BAZUclAQL+awMYJjAaKEcNcx1/MAVNNxsvJBcCAlx3d3d3/ZorSmI2OGNLLCxKYjUNGAgfMCISJyAgPE0BPDtHEyIwHQAAAAMAHP/2AkIC2gAeACcAKwBXQBgfHwEAKSgfJx8nIyEZFxMSCwkAHgEeCQgrQDcrKgIBBhwbAgMCAiEIAQUAAgMFAgAAKQAGBg4iAAQEAQEAJwABARUiAAMDAAEAJwcBAAAWACMHsDsrBSIuAjU0PgIzMh4CFRQGByEeAzMyNjcXDgETLgEjIg4CBxMzFwcBMD9mSCcmSGdAQGVHJQEC/msDGCYwGihHDXMdfzAFTTcbLyQXAgd8N1YKK0piNjhjSywsSmI1DRgIHzAiEicgIDxNATw7RxMiMB0BqHcaAAAAAwAs//cCMALGACMANwBHAEFADkZEPjw0MiooGBYGBAYIK0ArHw8CAgQBIQAEAAIDBAIBACkABQUBAQAnAAEBDCIAAwMAAQAnAAAAFgAjBrA7KyUUDgIjIi4CNTQ+AjcuATU0PgIzMh4CFRQGBx4DBzQuAiMiDgIVFB4CMzI+AgMUHgIzMj4CNTQmIyIGAjApR141NV1GKRQgKBQmNCtFUykpVEUrNSYVKR8TiBUiLBcYLCIUFSItFxgrIhTeEh0jEhIkHRI8KSk70jJQOh8hPFIxHjMqIAoSSCswSTIaGTJJMCtKEQshKzQXGSgbDg8cJxgYJxwPEBwnAToVHxULCxYfFSUsLQAAAQA5ANYDZQFPAAMAKkAKAAAAAwADAgEDCCtAGAAAAQEAAAAmAAAAAQAAJwIBAQABAAAkA7A7Kzc1IRU5AyzWeXkAAAABADkA1gIhAU8AAwAqQAoAAAADAAMCAQMIK0AYAAABAQAAACYAAAABAAAnAgEBAAEAACQDsDsrNzUhFTkB6NZ5eQAAAAIAPgCQAXcBmAADAAcAPUASBAQAAAQHBAcGBQADAAMCAQYIK0AjAAIFAQMAAgMAACkAAAEBAAAAJgAAAAEAACcEAQEAAQAAJASwOys3NSEVJTUhFT4BOf7HATmQV1exV1cAAAACAB//9gJEAtoAIwA3AEJADDQyKiggHxQSCggFCCtALiMiHBsaGQEACAECFgEEAQIhAAEABAMBBAECKQACAg4iAAMDAAEAJwAAABYAIwWwOysBBx4BFRQOAiMiLgI1ND4CMzIWFy4BJwcnNy4BJzMWFzcBFB4CMzI+AjU0LgIjIg4CAg1HQD4qSmY8OWNJKiZBWDI1WhwLKiVeJlQgTjKsMilP/sEVJDIdHjMlFRUlMh0eMiUVApQnSa9TRm9OKSVBWTQxWEAmKyMwWio0NC8cNxoaJS7+IRwvIxQVJDAcHC4iExQjLwAAAgBOAAAA1ALNAAMABwA2QBIEBAAABAcEBwYFAAMAAwIBBggrQBwEAQEBAAAAJwAAAAwiAAICAwAAJwUBAwMNAyMEsDsrExEzEQM1MxVOhoaGAQsBwv4+/vWXlwACAE7/+wDUAsgAAwAHADZAEgQEAAAEBwQHBgUAAwADAgEGCCtAHAACAgMAACcFAQMDDCIEAQEBAAAAJwAAAA0AIwSwOysTESMRExUjNdSGhoYBvf4+AcIBC5eXAAEAGgAAAY4C5AAVAEZAFAAAABUAFRQTEhEPDQkHBAMCAQgIK0AqCgEDAgsBAQMCIQQBAQUBAAYBAAAAKQADAwIBACcAAgIUIgcBBgYNBiMFsDsrMxEjNTM1NDYzMhcHLgEjIh0BMxUjEV5ERF9QQEEbDykRRoCAAWhnQWJyH2UIC15GZ/6YAAACABoAAAKbAuQAIwAzAGdAHgEAMzItKx4cGBYREA8ODQwLCgkIBwYFBAAjASMNCCtAQSABCAkaAQAIIQEKACkBAQoEIQsHAgEGBAICAwECAAApDAEAAAkBACcACQkUIgAKCggBACcACAgMIgUBAwMNAyMHsDsrASIGHQEzFSMRIxEjESMRIzUzNTQ+AjMyFhc+ATMyFhcHLgEHND4CNy4BIyIOAh0BMwI4KSWKioaAhkREGC1DKiJBHhhEMCY9GxsOI+sBAgQCDyQPFBsQCIACcjglRmf+mAFo/pgBaGcgLE04IBANHiMUC2UHC28EERMQBQgGEBkhECUAAAACABoAAAMEAuQAJQA1AGRAICYmJjUmNTAuJSQjIiEgHx4dHBsaFxUQDgoIAwIBAA4IK0A8EgwCBAIsEwIBCwIhDQwFAwEJBwIABgEAAAApAAQEAwEAJwADAxQiAAsLAgEAJwACAgwiCggCBgYNBiMHsDsrEyM1MzU0PgIzMhYXPgEzMhYXBy4BIyIGHQEhESMRIxEjESMRIwE1ND4CNy4BIyIOAh0BXkREGC1DKiJBHhxUNzRjLTYZRiExKwEahpSGgIYBBgECBAIPJA8UGxAIAWhnICxNOCAQDR4jJB1kFh04JUb+MQFo/pgBaP6YAc80BBETEAUIBhAZIRAlAAAAAgAa//gDmwLkAD0ASwEeQCg+PgEAPks+S0hGODc0MispJSMeHRwbGhkYFxYVFBMSEQwKAD0BPREIK0uwElBYQEQnAQEJRAECDQIhDAELAwADCwA1EA4IAwIHBQIDCwIDAAApAAEBCgEAJwAKChQiAA0NCQEAJwAJCQwiBgQPAwAADQAjCBtLsB1QWEBKJwEBCUQBAg0CIQAMAwsDDAs1AAsAAwsAMxAOCAMCBwUCAwwCAwAAKQABAQoBACcACgoUIgANDQkBACcACQkMIgYEDwMAAA0AIwkbQE4nAQEJRAECDQIhAAwDCwMMCzUACwQDCwQzEA4IAwIHBQIDDAIDAAApAAEBCgEAJwAKChQiAA0NCQEAJwAJCQwiBgEEBA0iDwEAABYAIwpZWbA7KwUiLgI1ETQuAiMiDgIdATMVIxEjESMRIxEjNTM1ND4CMzIWFz4BMzIWFREUHgIzMj4CMxcOAwE1ND4CNy4BIyIGHQEDHiAxIxIHEyEbGCEVCVdXhoGGREQZL0IqIz4fHFk5cmwFDBINCRQRDAESARYkLP4xAQEDAg8gDickCBIfKBcBmBMoIRYUISoWLmf+mAFo/pgBaGcjLUw3HhANICFsWP6LChURCwQFBGwBCAkHAdczBRIUEAQIBTMkKAAAAQAaAAAB/QLkABsAREASGxoZGBcWFRQRDwoIAwIBAAgIK0AqDAEDAg0BAQMCIQQBAQYBAAUBAAAAKQADAwIBACcAAgIUIgcBBQUNBSMFsDsrEyM1MzU0PgIzMhYXBy4BIyIGHQEhESMRIxEjXkREHTdPMzlfKjYaRiQtKwEZhpOGAWhnQStOOSIlHGQXHDglRv4xAWj+mAABABr/+AKUAuQAMQDtQBYxMC0rJCIfHh0cGxoZGBcWEQ8GBAoIK0uwCVBYQCkJAQgDAAMIADUGAQIFAQMIAgMAACkAAQEHAQAnAAcHFCIEAQAAEwAjBRtLsBJQWEApCQEIAwADCAA1BgECBQEDCAIDAAApAAEBBwEAJwAHBxQiBAEAABYAIwUbS7AdUFhALwAJAwgDCQg1AAgAAwgAMwYBAgUBAwkCAwAAKQABAQcBACcABwcUIgQBAAAWACMGG0AzAAkDCAMJCDUACAQDCAQzBgECBQEDCQIDAAApAAEBBwEAJwAHBxQiAAQEDSIAAAAWACMHWVlZsDsrJQ4DIyIuAjURNC4CIyIOAh0BMxUjESMRIzUzNTQ2MzIWFREUHgIzMj4CMwKUARYkLRYfMSMSBxMhGxghFQlYWIZERHRncmwGDBINCRMRDAERAQgJBxIfKBcBmBMoIRYUISoWLmf+mAFoZ01hZ2xY/osKFRELBAUEAAABABz/awILAjsAKABbQBQBACUkIyIbGhgWEhALCQAoASgICCtAPyYBAwAODQICBAIhAAQDAgMEAjUABQAGAAUGAAApBwEAAAMEAAMBACkAAgEBAgEAJgACAgEBACcAAQIBAQAkB7A7KwEyHgIVFA4CIyImJzceATMyNjU0JiMiBgcjND4CNzY3IRUjBz4BASEyVj8jKEZgOE57IE0dUy02RUEyITkRdQgMDggSFgFe/RwMLgE/ITxUMzZYPyNCOVAnLkE2NEAeGgMnPUsnXHJ6nw0QAAH/N//5AZICzgAFAAdABAIFAQ0rJwkBFwkByQEaAQQ9/uz+9i8BSQFWNv6+/qMAAAIAFf+BAhcCOwAKAA0ApkASAAAMCwAKAAoJCAcGBQQCAQcIK0uwCVBYQCYNAQIBAwEAAgIhAAECATcGAQQAAAQsBQECAgAAAicDAQAADQAjBRtLsBZQWEAlDQECAQMBAAICIQABAgE3BgEEAAQ4BQECAgAAAicDAQAADQAjBRtALw0BAgEDAQACAiEAAQIBNwYBBAAEOAUBAgAAAgAAJgUBAgIAAAInAwEAAgAAAiQGWVmwOysFNSE1ATMRMxUjFQEzNQE5/twBTlxYWP7crX+VdwGu/lN4lQEN4gACABUBNgF+AtoACgANAEBAEgAADAsACgAKCQgHBgUEAgEHCCtAJg0BAgEBIQMBAgEgBQECAwEABAIAAAApBgEEBAEAACcAAQEOBCMFsDsrEzUjNTczFTMVIxUnMzXy3fY2PT3fkwE2W077+05bqZoAAgAe/yECPQIVACQANwE0QBgmJQEALy0lNyY3HRsWFA8OCwkAJAEkCQgrS7AJUFhAPQ0BBgErKgIFBiIBAAUZGAIEAAQhAAYGAQEAJwIBAQEVIggBBQUAAQAnBwEAAA0iAAQEAwEAJwADAxEDIwcbS7AbUFhAPQ0BBgErKgIFBiIBAAUZGAIEAAQhAAYGAQEAJwIBAQEVIggBBQUAAQAnBwEAABMiAAQEAwEAJwADAxEDIwcbS7AsUFhAQQ0BBgIrKgIFBiIBAAUZGAIEAAQhAAICDyIABgYBAQAnAAEBFSIIAQUFAAEAJwcBAAATIgAEBAMBACcAAwMRAyMIG0A+DQEGAisqAgUGIgEABRkYAgQABCEABAADBAMBACgAAgIPIgAGBgEBACcAAQEVIggBBQUAAQAnBwEAABMAIwdZWVmwOysFIi4CNTQ+AjMyFhc1MxEUDgIjIiYnNx4BMzI+Aj0BDgEnMj4CNzUuASMiDgIVFB4CAQk0Vz4iJEBZNj5cHXUrTmo/V3UqSR5bNB85KxkaXggWKCEaBxJMKh8zJBMWJzUDKklgNjliSio3Llz+DTpcQCI5NEclKhEkOCZCLTFrDhggEn0uOBstOh8gOCoYAAAAAQA8//oCEQLKADQAe0AQNDMjIRwbFhQODAsJAQAHCCtLsCdQWEArLAEBAgEhAAIAAQACAQEAKQADAwUBACcABQUSIgAAAAQBACcGAQQEDQQjBhtALywBAQIBIQACAAEAAgEBACkAAwMFAQAnAAUFEiIABAQNIgAAAAYBACcABgYTBiMHWbA7KzcyPgI1NC4CKwE1MzI2NTQuAiMiDgIVESMRND4CMzIeAhUUDgIHHgEVFA4CB/YfNCYVEx8qFhQTJCkQFxwMGCAUCH8iO1EvKkg0Hg4YHxJBSi9OZjh1DRsoHBooHA54KSEVHBEHEx0kEf4NAgoqRjMdFyo9JhowJx0GEmZIOVE0GQEAAAEAN//lAd0CHwAGAAdABAUBAQ0rJQU1Nyc1BQHd/lrj4wGm3/qWiI6O/wAAAgAlAC4CUAHdAAYADQAJQAYIDAEFAg0rEyUVBxcVLQIVBxcVJSUBB52d/vkBIwEInp7++AEgvW1tZ26xQb1tbWdusQACADkALgJkAd0ABgANAAlABgwIBQECDSslBTU3JzUNAjU3JzUFAmT++J6eAQj+3f74np4BCN+xbmdtbb1BsW5nbW29AAEAJQAuASwB3QAGAAdABAEFAQ0rEyUVBxcVJSUBB52d/vkBIL1tbWdusQAAAQA5AC4BQQHdAAYAB0AEBQEBDSslBTU3JzUFAUH++J6eAQjfsW5nbW29AAABADwAAAIjAtoAFwA3QAwTEQ4NDAsGBAEABQgrQCMPAQEECgEAAQIhAAMDDiIAAQEEAQAnAAQEFSICAQAADQAjBbA7KyEjETQmIyIOAgcRIxEzET4BMzIeAhUCI4YuKhIoJB4HhoYdYzwzQCQOASY+OxAdKBj+zgLa/tEzNyM6SicAAAABADkA1gFoAU8AAwAqQAoAAAADAAMCAQMIK0AYAAABAQAAACYAAAABAAAnAgEBAAEAACQDsDsrNzUhFTkBL9Z5eQAAAAIAPAAAAMIC2gADAAcANEASBAQAAAQHBAcGBQADAAMCAQYIK0AaBQEDAwIAACcAAgIOIgAAAA8iBAEBAQ0BIwSwOyszETMRAzUzFTyGhoYCDP30AlWFhQACADwAAAD+AtoAAwAHAC1ADAQEBAcEBwYFAwIECCtAGQEAAgEAASEAAAAOIgABAQ8iAwECAg0CIwSwOysTJzczAxEzEaFWNn3ChgJJGnf9JgIM/fQAAAAAAv/kAAABGQLaAAYACgAwQAwHBwcKBwoJCAIBBAgrQBwGBQQDAAUBAAEhAAAADiIAAQEPIgMBAgINAiMEsDsrAzczFwcnBxMRMxEcamFqRVVVEoYCdWVlID8//asCDP30AAAAAAP/5wAAARYC0wADAAcACwA/QBoICAQEAAAICwgLCgkEBwQHBgUAAwADAgEJCCtAHQcDBgMBAQAAACcCAQAADiIABAQPIggBBQUNBSMEsDsrAzUzFTM1MxUDETMRGW9Rb9qGAlx3d3d3/aQCDP30AAAC//8AAADCAtoAAwAHAC1ADAAABQQAAwADAgEECCtAGQcGAgACASEAAgIOIgAAAA8iAwEBAQ0BIwSwOyszETMRAzMXBzyGw3w3VgIM/fQC2ncaAAAC/4f/PADCAtoAEQAVAHhAFBISAQASFRIVFBMMCwgGABEBEQcIK0uwH1BYQCsEAQECAwEAAQIhBgEEBAMAACcAAwMOIgACAg8iAAEBAAEAJwUBAAARACMGG0AoBAEBAgMBAAECIQABBQEAAQABACgGAQQEAwAAJwADAw4iAAICDwIjBVmwOysXIiYnNx4BMzI2NREzERQOAhM1MxUMJkQbOQwfEBonhhwyQgqGxBcYWwsLJR0CGv3wKkczHAMZhYUAAAAAAQA8AAACMQLaAAsAMkAOAAAACwALCQgGBQQDBQgrQBwKBwIBBAACASEAAQEOIgACAg8iBAMCAAANACMEsDsrIScHFSMRMxE3MwcTAaKYSIaG0o/E0uNHnALa/kXs3v7TAAAAAAEAO//4AT8C2gAOAFNACAwKBQMBAAMIK0uwCVBYQB0HAQEACAECAQIhAAAADiIAAQECAQInAAICEwIjBBtAHQcBAQAIAQIBAiEAAAAOIgABAQIBAicAAgIWAiMEWbA7KxMzERQzMjY3Fw4BIyImNTuGNwsdDRIbSB0/RQLa/dQ9CAVrDQ5DPgABACD/5QHGAh8ABgAHQAQBBQENKxMlFQcXFSUgAabj4/5aASD/jo6IlvoAAAEAPwBqAicBkAAFADJADAAAAAUABQQDAgEECCtAHgAAAQA4AwECAQECAAAmAwECAgEAACcAAQIBAAAkBLA7KwERIzUhNQIncv6KAZD+2q54AAAAAAEAPAAAA2oCFQAkAG9AEiAeGhgVFBMSDw0KCQYEAQAICCtLsBtQWEAkHBYCAQURCAIAAQIhAwEBAQUBACcHBgIFBQ8iBAICAAANACMEG0AoHBYCAQURCAIAAQIhAAUFDyIDAQEBBgEAJwcBBgYVIgQCAgAADQAjBVmwOyshIxE0JiMiBgcRIxE0JiMiBgcRIxEzFT4BMzIWFz4BMzIeAhUDaoYsJidGD4YrJidHD4Z5HWVBQkcLIGI/MD4iDQEmPzo9Mf7PASY/Ojwx/s4CDGEzN0AvNjkkOkomAAABAD4BEgHSAX0AAwAHQAQBAAENKxM1IRU+AZQBEmtrAAEARv8sAlUCDAAhALRAECEgGxkSDw0MCQgFAwEABwgrS7AYUFhAKAcBAQAfFRQOBAQBAiECAQAADyIDAQEBBAEAJwUBBAQTIgAGBhEGIwUbS7AuUFhALwcBAwAfFRQOBAQBAiEAAwABAAMBNQIBAAAPIgABAQQBACcFAQQEEyIABgYRBiMGG0AzBwEDAB8VFA4EBAECIQADAAEAAwE1AgEAAA8iAAQEEyIAAQEFAQAnAAUFFiIABgYRBiMHWVmwOysTMxEUMzI2NxEzERQWFxUOASMiJi8BDgMjIi4CJxMjRoZaJUkXhhAUFSAMIysFAgkhKzIaFB8WDgMJhwIM/tV5LzABRf6OFRIBcgQCIB0rEiYgFAwRFQn++wAAAQA1AFkBqgHKAAsAB0AECQEBDSslBycHJzcnNxc3FwcBqlVnZ1JlYlViY1JirFNnZ1RmY1NiY1RjAAAAAQA8AAACIwIVABcAX0AMExEODQwLBgQBAAUIK0uwG1BYQB8PAQEDCgEAAQIhAAEBAwEAJwQBAwMPIgIBAAANACMEG0AjDwEBAwoBAAECIQADAw8iAAEBBAEAJwAEBBUiAgEAAA0AIwVZsDsrISMRNCYjIg4CBxEjETMVPgEzMh4CFQIjhiwnFColHgeGeR1uRTE+Ig0BJj86EB0oGP7OAgxhMjgkOkomAAAAAAIAIP9mAikCOwAgADQAVEASIiEsKiE0IjQdGxcVEA4GBAcIK0A6GQEDBRMBAgMSAQECAyEAAAYBBAUABAEAKQAFAAMCBQMBACkAAgEBAgEAJgACAgEBACcAAQIBAQAkBrA7KxM0PgIzMh4CFRQOAiMiJic3HgEzMjY3DgEjIi4CJSIOAhUUHgIzMj4CNTQuAiAoRV83PGFEJSdHZj9DcidNGEwtQ08CFE4zNVpCJgEDGy8kFRUjMBsbMCMVFSQvAUQ0WkMmLFR5TWGVZTQ6NlQmKmphJCokQFe4FSUxGxsvJBQUJC8bGzEkFgAAAgA8AAACIwLaABcANwChQBwZGDMyLiwpJyMiHhwYNxk3ExEODQwLBgQBAAwIK0uwG1BYQDgPAQEDCgEAAQIhAAkHCwIFAwkFAQApAAYGCAEAJwoBCAgOIgABAQMBACcEAQMDDyICAQAADQAjBxtAPA8BAQMKAQABAiEACQcLAgUECQUBACkABgYIAQAnCgEICA4iAAMDDyIAAQEEAQAnAAQEFSICAQAADQAjCFmwOyshIxE0JiMiDgIHESMRMxU+ATMyHgIVAyIuAiMiDgIVIzQ+AjMyHgIzMj4CNTMUDgICI4YsJxQqJR4HhnkdbkUxPiINqRciHR0QERMKAkoMGy0hFyEdHRISFQsDSgwdLwEmPzoQHSgY/s4CDGEyOCQ6SiYBEw4RDg4SDwEJKyshDxEPDhIQAgcqLCMAAAIAJgAAAq4CxgAbAB8AW0AmHBwcHxwfHh0bGhkYFxYVFBMSERAPDg0MCwoJCAcGBQQDAgEAEQgrQC0QDwcDAQYEAgIDAQIAACkMAQoKDCIOCAIAAAkAACcNCwIJCQ8iBQEDAw0DIwWwOysBIwczFSMHIzcjByM3IzUzNyM1MzczBzM3MwczBTcjBwKukSGDmy5sL3gtbC5wiCF6kS9sMHgubC96/uMgdyEBqIlku7u7u2SJXsDAwMDniYkAAgAc//YCQQIVABMAJwAxQA4BACQiGhgLCQATARMFCCtAGwADAwEBACcAAQEVIgACAgABACcEAQAAFgAjBLA7KwUiLgI1ND4CMzIeAhUUDgIDFB4CMzI+AjU0LgIjIg4CAS9AZkcmJkdmQEBlRyYmRmbJFSUyHR0yJRUVJTIdHTIlFQosS2I2N2JLLCxLYjc2YkssAQ8jOSoXFyo6IyI6KhcYKjoAAAAAAwAc//YCQQLaAAMAFwArAD9AEAUEKCYeHA8NBBcFFwMCBggrQCcBAAICAAEhAAAADiIABAQCAQAnAAICFSIAAwMBAQAnBQEBARYBIwawOysBJzczAyIuAjU0PgIzMh4CFRQOAgMUHgIzMj4CNTQuAiMiDgIBUVY2fX9AZkcmJkdmQEBlRyYmRmbJFSUyHR0yJRUVJTIdHTIlFQJJGnf9HCxLYjY3YkssLEtiNzZiSywBDyM5KhcXKjojIjoqFxgqOgAAAAMAHP/2AkEC2gAGABoALgBCQBAIByspIR8SEAcaCBoCAQYIK0AqBgUEAwAFAgABIQAAAA4iAAQEAgEAJwACAhUiAAMDAQEAJwUBAQEWASMGsDsrEzczFwcnBxMiLgI1ND4CMzIeAhUUDgIDFB4CMzI+AjU0LgIjIg4ClGphakVVVVVAZkcmJkdmQEBlRyYmRmbJFSUyHR0yJRUVJTIdHTIlFQJ1ZWUgPz/9oSxLYjY3YkssLEtiNzZiSywBDyM5KhcXKjojIjoqFxgqOgAAAAAEABz/9gJBAtMAAwAHABsALwBRQB4JCAQEAAAsKiIgExEIGwkbBAcEBwYFAAMAAwIBCwgrQCsJAwgDAQEAAAAnAgEAAA4iAAcHBQEAJwAFBRUiAAYGBAEAJwoBBAQWBCMGsDsrEzUzFTM1MxUDIi4CNTQ+AjMyHgIVFA4CAxQeAjMyPgI1NC4CIyIOApdvUW+XQGZHJiZHZkBAZUcmJkZmyRUlMh0dMiUVFSUyHR0yJRUCXHd3d3f9mixLYjY3YkssLEtiNzZiSywBDyM5KhcXKjojIjoqFxgqOgAAAwAc//YD3gIVACsAPwBIAQdAIkBALSwBAEBIQEhGRDc1LD8tPyclHhwYFxAOCwkAKwErDQgrS7AMUFhANw0BCQcpISADBAMCIQwBCQADBAkDAAApCAEHBwEBACcCAQEBFSILBgIEBAABACcFCgIAABYAIwYbS7AOUFhARA0BCQcpISADBgMCIQwBCQADBgkDAAApCAEHBwEBACcCAQEBFSILAQYGAAEAJwUKAgAAFiIABAQAAQAnBQoCAAAWACMIG0BQDQEJBykhIAMGAwIhDAEJAAMGCQMAACkACAgBAQAnAgEBARUiAAcHAQEAJwIBAQEVIgsBBgYAAQAnBQoCAAAWIgAEBAABACcFCgIAABYAIwpZWbA7KwUiLgI1ND4CMzIWFzYzMh4CFxQGByEeAzMyNjcXDgMjIiYnDgEnMj4CNTQuAiMiDgIVFB4CJS4DIyIGBwEtO2RJKSlJZDtEaCNLhzpjSCkCAQL+bAIYJjIdKkcNbw8xP0soP2gtLmM9HjIkFRUkMh4dMiUVFSQyAkQDFyUxGzhLBAopSGM7O2RIKT87eidIZDwLGAgdMSQUKiAgIDIkEzw6PDpyGCo5IiI6KhgYKzoiIjkqF8YeMSQTSjwAAwAc//YCQQLaABMAJwArAD9AEAEAKSgkIhoYCwkAEwETBggrQCcrKgIBBAEhAAQEDiIAAwMBAQAnAAEBFSIAAgIAAQAnBQEAABYAIwawOysFIi4CNTQ+AjMyHgIVFA4CAxQeAjMyPgI1NC4CIyIOAhMzFwcBL0BmRyYmR2ZAQGVHJiZGZskVJTIdHTIlFRUlMh0dMiUVCnw3VgosS2I2N2JLLCxLYjc2YkssAQ8jOSoXFyo6IyI6KhcYKjoBs3caAAAAAAEAKwAAAdUCOwASAD9AEgAAABIAEhEQDAsKCQQDAgEHCCtAJQUBAgMBIQAEAwQ3AAMAAgEDAgEAKQYFAgEBAAACJwAAAA0AIwWwOyslFSE1MxEOAyM1Mj4CNzMRAdX+ao4JJi4yExI0MiYEiXl5eQEvDBkWDn0XIB8J/j4AAAAAAQAgATIBFQLbABIAPEASAAAAEgASERAMCwoJBAMCAQcIK0AiBQECAwEhAAMAAgEDAgEAKQYFAgEAAAEAAAIoAAQEDgQjBLA7KwEVIzUzEQ4DIzUyPgI1MxEBFeVOBRYbHAwPIRwSUAGATk4BBQcREAtQERUSAf6lAAAAAAMAK//5A5cC2wAjADYAPAB1QB4kJAAAJDYkNjU0MC8uLSgnJiUAIwAjIiEXFQ4MDAgrQE85AQcIOikCBgcRAQAFEAECBDcBAwIFITwBAx4ABwAGAQcGAQApAAEAAAQBAAEAKQsJAgUABAIFBAACKQAICA4iAAICAwAAJwoBAwMNAyMIsDsrITQ+Ajc+AzU0JiMiBgcnPgMzMhYVFA4CBw4BFTMVARUjNTMRDgMjNTI+AjUzEQMJARcJAQJKDR0vIxUsJBYqJyk5ETAHHyw6I0tPGSUsEjAm0/2J5U4FFhscDA8hHBJQTwEaAQQ9/uz+9ik9LiMPCRIWGxQaHSEROgoYFQ5GPyEtHhMGECsXTgGATk4BBQcREAtQERUSAf6l/q8BSQFWNv6+/qMAAAQAKv/5A34C2wAKAA0AIAAmAHtAIg4OAAAOIA4gHx4aGRgXEhEQDwwLAAoACgkIBwYFBAIBDggrQFEjAQkKJBMCCAkNAQYHAwEAAiEBBAAFISYBBB4ACQAIAQkIAQApDQsCBwAGAgcGAAIpBQECAwEABAIAAAApAAoKDiIAAQEEAAAnDAEEBA0EIwiwOyshNSM1NzMVMxUjFSczNSUVIzUzEQ4DIzUyPgI1MxEDCQEXCQEC8t32Nj0935P+KuVOBRYbHAwPIRwSUCkBGgEEPf7s/vZdTfz7Tl2rmTxOTgEFBxEQC1ARFRIB/qX+rwFJAVY2/r7+owAAAgAoAVMBjALJACUANADvQBonJgEAMC4mNCc0IR8cGxcVEQ8LCQAlASUKCCtLsAlQWEA8FAECAxMBAQIMAQcBLAEEByMdAgAEBSEAAQAHBAEHAQApCQYCBAUIAgAEAAEAKAACAgMBACcAAwMMAiMFG0uwDFBYQDwUAQIDEwEBAgwBBwEsAQQHIx0CAAQFIQABAAcEAQcBACkJBgIEBQgCAAQAAQAoAAICAwEAJwADAxICIwUbQEMUAQIDEwEBAgwBBwEsAQQHIx0CAAYFIQAEBwYHBAY1AAEABwQBBwEAKQkBBgUIAgAGAAEAKAACAgMBACcAAwMSAiMGWVmwOysTIi4CNTQ+AjMyFzU0JiMiBgcnNjMyFh0BFBcVDgEjJi8BDgEnMjY3Nj0BLgEjIgYVFBagGishEhYoNiExIyUmHTQdHkVQTlUaDhgJMwgCGEIJFCcLDg8jESAqIQFTER8qGBosHxIQEyElFBQ9L0xKaBwBVQICASsTICFIDwwMDicGBh0YFh0AAAACACMBUwGXAskAEwAfAE9ADgEAHhwYFgsJABMBEwUIK0uwCVBYQBgAAgQBAAIAAQAoAAMDAQEAJwABAQwDIwMbQBgAAgQBAAIAAQAoAAMDAQEAJwABARIDIwNZsDsrEyIuAjU0PgIzMh4CFRQOAicUFjMyNjU0JiMiBt0sRTAZGTBFLCxFMBkZMEWCMSUlMjIlJTEBUx8zRCUmRDMeHjNEJiVEMx+6LTk6LS05OQAAAAMAHP/2AkECFQAbACYAMADIQBIdHC0rHCYdJhsaFxUNDAkHBwgrS7AnUFhAMA4LAgUAKiklJAQEBRkAAgIEAyEABQUAAQAnAQEAABUiBgEEBAIBACcDAQICFgIjBRtLsC5QWEA0DgsCBQAqKSUkBAQFGQACAwQDIQAFBQABACcBAQAAFSIAAwMNIgYBBAQCAQAnAAICFgIjBhtAOA4LAgUBKiklJAQEBRkAAgMEAyEAAQEPIgAFBQABACcAAAAVIgADAw0iBgEEBAIBACcAAgIWAiMHWVmwOys3LgE1ND4CMzIWFzczBx4BFRQOAiMiJicHIzcyPgI1NCYnBxYnFBc3JiMiDgJsJykmR2ZAKkgeG0w4KCsmRmZALEofHEz9HTIlFQ8OtSFhG7MfJh0yJRVAJmY5N2JLLBQRIEMmZzs2YkssFBMhbBcqOiMdMxTsFp05KewUGCo6AAAAAAMAHP/2AkEC2gATACcARwBaQB4pKAEAQ0I+PDk3MzIuLChHKUckIhoYCwkAEwETDAgrQDQACAYLAgQBCAQBACkABQUHAQAnCQEHBw4iAAMDAQEAJwABARUiAAICAAEAJwoBAAAWACMHsDsrBSIuAjU0PgIzMh4CFRQOAgMUHgIzMj4CNTQuAiMiDgITIi4CIyIOAhUjND4CMzIeAjMyPgI1MxQOAgEvQGZHJiZHZkBAZUcmJkZmyRUlMh0dMiUVFSUyHR0yJRXIFyIdHRAREwoCSgwbLSEXIR0dEhIVCwNKDB0vCixLYjY3YkssLEtiNzZiSywBDyM5KhcXKjojIjoqFxgqOgEzDhEODhIPAQkrKyEPEQ8OEhACByosIwAAAAIAPP8rAlsCFQAUACcAjUAWFhUBACAeFScWJwwKBwYFBAAUARQICCtLsBtQWEAxCAEFAiUkAgQFAwEABAMhAAUFAgEAJwMBAgIPIgcBBAQAAQAnBgEAABYiAAEBEQEjBhtANQgBBQIlJAIEBQMBAAQDIQACAg8iAAUFAwEAJwADAxUiBwEEBAABACcGAQAAFiIAAQERASMHWbA7KwUiJicRIxEzFT4BMzIeAhUUDgInMj4CNTQuAiMiDgIHFR4BAXU9XBqGdR1cPDVaQSUiPVVeHjMkFBYnNR8TKCIbBxJKCjcv/s8C4VouNStJYzc5ZEoqchosOh8hOSoYDRggE3stOwAAAwAj/7ACZALGABEAGgAeAEJAFB4dHBsZGA4NDAsKCQgHBgUEAgkIK0AmFwEIASAEAQIDAjgACAUBAwIIAwEAKQcGAgEBAAEAJwAAAAwBIwWwOysTNDYzIRUjESMRIxEjESIuAjcUHgIXEQ4BJSMRMyOUhgEnRnIzcjRUPCBwEx8qGDc9ARkzMwHIeYVk/U4BIP7gASAkQVs7IzYmFgIBLgNSVf7SAAAAAQAi/8sBHQL1ABMAB0AEBQ8BDSsTND4CNxcOAxUUFhcHLgMiFyg2H2cQKyccRDZhIDYpFwFbM2VmZzUrGFNlbzNRrl0xLmNmZgAAAAEAF//LARIC9QATAAdABA8FAQ0rARQOAgcnPgE1NC4CJzceAwESFyk3H2I3RBwnKxBnHzYoFwFbM2ZmYy4xXa5RM29lUxgrNWdmZQAFACb/9gLyAtAAEwAlADkARwBNAGhAIjs6JyYVFAEAQT86RztHMS8mOSc5HRsUJRUlCwkAEwETDAgrQD5LSgIDAU1IAgQGAiEJAQIIAQAFAgABACkABQAHBgUHAQApAAMDAQEAJwABARIiCwEGBgQBACcKAQQEFgQjB7A7KxMiLgI1ND4CMzIeAhUUDgInMj4CNTQmIyIOAhUUHgIBIi4CNTQ+AjMyHgIVFA4CJzI2NTQmIyIOAhUUFgUJARcJAcsiPC0aGi08IiM8LRkZLTwjDxkUCyodDxkUCwsUGgGQIjwsGhosPCIjPC0ZGS08Ix4qKx0PGRQLKv4vARoBBD3+7P72AaEYKTcgHzgoGBgoOB8gNykYQw4XHxEjMQ4XHhESHxcN/hIYKDcgIDcpGBgpNyAgNygYQzIiIzIOFx8RIzEKAUkBVjb+vv6jAAEAOQAAAKcAkAADACFACgAAAAMAAwIBAwgrQA8AAAABAAAnAgEBAQ0BIwKwOyszNTMVOW6QkAAAAQAwALwBdwIKAAsANUASAAAACwALCgkIBwYFBAMCAQcIK0AbBgUCAwIBAAEDAAAAKQABAQQAACcABAQPASMDsDsrARUjFSM1IzUzNTMVAXdneGhoeAGZbHFxbHFxAAAAAgA7ABwBnQItAAMADwBRQBoEBAAABA8EDw4NDAsKCQgHBgUAAwADAgEKCCtALwkHAgUEAQIDBQIAACkABgADAAYDAAApAAABAQAAACYAAAABAAAnCAEBAAEAACQFsDsrNzUhFRMVIxUjNSM1MzUzFTsBYQF1eHV1eBxsbAGSa39/a39/AAAAAAIAHf8sAmACFQAdADAAp0AYHx4BACgmHjAfMBgWExIPDgsJAB0BHQkIK0uwG1BYQD0NAQYBIiECBQYbAQAFFAEEAwQhAAMABAADBDUABgYBAQAnAgEBARUiCAEFBQABACcHAQAAFiIABAQRBCMHG0BBDQEGAiIhAgUGGwEABRQBBAMEIQADAAQAAwQ1AAICDyIABgYBAQAnAAEBFSIIAQUFAAEAJwcBAAAWIgAEBBEEIwhZsDsrBSIuAjU0PgIzMhYXNTMRFBYXFQ4BIyImPQEOAScyNjc1LgMjIg4CFRQeAgECMlQ9IiVCWjQ8XB11EBQRKg8oOB1cCStAFwYbJCoVHzMlFRUlNAorSmM5OWJJKjctW/3AFhEBcgMDMyjVMzNyMCZ8FiYdEBotOh8hOCoYAAAAAgAkAAABxQLPACcAKwBHQBQoKAAAKCsoKyopACcAJxkXDgwHCCtAKxMSAgIAASEFAQIAAwACAzUAAAABAQAnAAEBEiIAAwMEAAAnBgEEBA0EIwawOys3NDY3PgM1NC4CIyIOAgcnPgMzMh4CFRQOAgcOAxUHNTMVfCAyDywqHRAaIxIWJB4WCFcNKzdAIiZKOyUPHCYYFCghFWxv6TFOHQkXICscFSAWCw8XHQ08HzAhERYwSzQgMSggDwwWGyMZ6YqKAAIAIv8rAcMB+gAnACsAeUAUKCgAACgrKCsqKQAnACcZFw4MBwgrS7AbUFhAKxMSAgACASEFAQIDAAMCADUAAwMEAAAnBgEEBA8iAAAAAQECJwABAREBIwYbQCkTEgIAAgEhBQECAwADAgA1BgEEAAMCBAMAACkAAAABAQInAAEBEQEjBVmwOysBFAYHDgMVFB4CMzI+AjcXDgMjIi4CNTQ+Ajc+AzU3FSM1AWsgMg8sKh0QGiMSFiQeFghXDSs3QCImSjslDxwmGBQoIRVsbwERMU4dCRcgKxwVIBYLDxccDjwfMCERFjBLNCAxKCAPDBYbIhrpiooAAgA5AhsBSQLTAAMABwAsQBIEBAAABAcEBwYFAAMAAwIBBggrQBIFAwQDAQEAAAAnAgEAAA4BIwKwOysTNTMVMzUzFTlyLHICG7i4uLgAAAACACD/jwFlAJAACwAXADZADhcWERANDAsKBQQBAAYIK0AgBAEBAAE3AwEAAgIAAQAmAwEAAAIBACcFAQIAAgEAJASwOysXMjY9ATMVFA4CIzcyNj0BMxUUDgIjIAcabhwqMhe2BxpuHCoyFxILFIObHicYCV8LFIObHicYCQAAAAEAIP+PAK8AkAALACxACAsKBQQBAAMIK0AcAAEAATcAAAICAAEAJgAAAAIBACcAAgACAQAkBLA7KxcyNj0BMxUUDgIjIAcabhwqMhcSCxSDmx4nGAkAAAACAC4B8AGAAtoACwAXADBADhcWExINDAsKBwYBAAYIK0AaFAgCAgEBIQUBAgMBAAIAAQAoBAEBAQ4BIwOwOysTIi4CPQEzFR4BMxciLgI9ATMVHgEzvhczKhxuAhkHwhczKhxuAhkHAfAJGCcehGsVC18JGCcehGsVCwAAAQAuAfAAvgLaAAsAJkAICwoHBgEAAwgrQBYIAQIBASEAAgAAAgABACgAAQEOASMDsDsrEyIuAj0BMxUeATO+FzMqHG4CGQcB8AkYJx6EaxULAAAAAgAsAfABfQLaAAsAFwAzQA4XFhMSDQwLCgcGAQAGCCtAHRQIAgECASEEAQECATgFAQICAAEAJwMBAAAOAiMEsDsrEzIeAh0BIzUuASM3Mh4CHQEjNS4BIywXMyocbgIZB8EXMyocbgIZBwLaCRgnHoRrFQtfCRgnHoRrFQsAAAABACwB8AC8AtoACwApQAgLCgcGAQADCCtAGQgBAQIBIQABAgE4AAICAAEAJwAAAA4CIwSwOysTMh4CHQEjNS4BIywXMyocbgIZBwLaCRgnHoRrFQsAAAAAAQA2AiEAqALTAAMAIUAKAAAAAwADAgEDCCtADwIBAQEAAAAnAAAADgEjArA7KxM1MxU2cgIhsrIAAAAAAQA8AAABdAIUAA4AY0AKDAoHBgUEAQAECCtLsB1QWEAiCAEAAgMBAQACIQ4BAh8AAAACAQAnAwECAg8iAAEBDQEjBRtAJg4BAgMIAQACAwEBAAMhAAICDyIAAAADAQAnAAMDFSIAAQENASMFWbA7KwEOAQcRIxEzFT4BMzIWFwF0PWAVhnsbVzALCwUBmAEtLf7DAgxwNkIBAQAABAAs//kDIALLABMAJwA3AEAAakAiOTgVFAEAPz04QDlANzY1NDMyKigfHRQnFScLCQATARMNCCtAQDEBBggBIQcBBQYCBgUCNQAEAAkIBAkBACkMAQgABgUIBgAAKQADAwEBACcAAQESIgsBAgIAAQAnCgEAABMAIwiwOysFIi4CNTQ+AjMyHgIVFA4CJzI+AjU0LgIjIg4CFRQeAgMzMh4CFRQGBxcjJyMVIzcyNjU0JisBFQGkUYplODhlilFRi2Y6OmaLUUR2VzIxVnZGRnVVMDBVdVzDHzMlFSwkZ2tcQF+7GR4iF1oHN2GETk2EYDc3YIRNToRhNzEuUnNEQnJUMDBUcUFCclUwAhYaKjQbKUgOppSU5iEeIB9+AAAAAQAR//YB5AIWAC4AQEAOAQAgHhkXCQcALgEuBQgrQCobAQMCHAYCAQMFAQABAyEAAwMCAQAnAAICFSIAAQEAAQAnBAEAABYAIwWwOysFIi4CJzcWMzI2NTQmJy4DNTQ+AjMyFhcHLgEjIgYVFBYXHgMVFA4CAQsgRUI8FzZkXSowOUMzSCwUIDlNLThvMDcsTickMS88OE8zFx84UQoKEhoQW0EeHBwbEAwaIiweKEAtGCMeUxwZHB8bGA8OHCQvISY+KxcAAAACACv/qAHrAssAPwBSAGNAEk5MREM5NzMxKigcGxIQCQcICCtASS8uAgUEUCECBwVFAAICBg4BAQINAQABBSEABgcCBwYCNQACAQcCATMABQAHBgUHAQApAAEAAAEAAQIoAAQEAwEAJwADAxIEIwewOyslHgEVFA4CIyIuAic3HgEzMj4CNTQuAicuATU0NjcuATU0PgIzMh4CFwcuASMiBhUUFhceAxUUBiUUHgIXPgE1NC4CIyImJw4BAcgQEyxCTiIoRDcpDFYePSERIBkPDxccDmRrDgUOGyE6TCwrRDMlDWcONSIkMDEjJU0+Jw3+8x8rLxAIChAZHQ0RHwgHCdcOMiY2TTAWFiAkDlIgGwkSGRESFQsEAQdeTR0jCg45JydFNB4ZJSsSMRobJSAlGAEBEidALh0rYh0bCgMGCBkMEhkPBgYDBxcAAAIAJv+PALUCBgADAA8AOEAQAAAPDgkIBQQAAwADAgEGCCtAIAADAQIBAwI1AAIABAIEAQAoBQEBAQAAACcAAAAPASMEsDsrEzUzFQMyNj0BMxUUDgIjR26PBxpuHCoyFwF2kJD+eAsUg5seJxgJAAABACX/gQI7AkcABQAsQAgFBAMCAQADCCtAHAACAAI4AAEAAAEAACYAAQEAAAAnAAABAAAAJASwOysBITUhASMBaP69Ahb+n5cBzXr9OgAAAAIALv/2AjcCywAgADQATUASIiEsKiE0IjQdGxcVEA4GBAcIK0AzEgECARMBAwIZAQUDAyEAAwAFBAMFAQApAAICAQEAJwABARIiBgEEBAABACcAAAAWACMGsDsrJRQOAiMiLgI1ND4CMzIWFwcuASMiBgc+ATMyHgIFMj4CNTQuAiMiDgIVFB4CAjcoRV83PGFEJSdHZj9DcidNGEwtQ08CFE4zNFtCJv79Gy8kFRUjMBsbMCMVFSQv7TRaQyYsVHlNYZVlNDo2VCYqamEkKiRAV7gVJTEbGy8kFBQkLxsbMSQWAAL/8gAAA7ACxgAPABIAVkAYEBAQEhASDw4NDAsKCQgHBgUEAwIBAAoIK0A2EQECAQEhAAIAAwgCAwAAKQkBCAAGBAgGAAApAAEBAAAAJwAAAAwiAAQEBQAAJwcBBQUNBSMHsDsrASEVIRUhFSEVIRUhNSMHIwERAwGuAfn+swEX/ukBVv4i5GmTAdafAsZ5p3m0ebGxASkBAv7+AAEAMv/xAfsCywA3AQpAFjc2MS8sKiUjIiAbGhkYEQ8KCAEACggrS7AOUFhAQQwBAgENAQACNCgnHgQIBTMBBwgEIQMBAAkBBAUABAAAKQACAgEBACcAAQESIgAICA0iBgEFBQcBACcABwcWByMHG0uwI1BYQEsMAQIBDQEAAiceAgYFNCgCCAYzAQcIBSEABQQGBAUGNQMBAAkBBAUABAAAKQACAgEBACcAAQESIgAICA0iAAYGBwEAJwAHBxYHIwgbQE4MAQIBDQEAAiceAgYFNCgCCAYzAQcIBSEABQQGBAUGNQAIBgcGCAc1AwEACQEEBQAEAAApAAICAQEAJwABARIiAAYGBwEAJwAHBxYHIwhZWbA7KxMzLgE1ND4CMzIWFwcuASMiBhUUHgIXMxUjFAYHPgEzMhYzMjY3Fw4BIyIuAiMiBgcnNjUjOEgSIyA4Sys9bSVGGU0lJS8LEBMJuKEnLhUlESVBIhIjFiEYPh0XLS4vGBpFIB5rZQF9JkwqJUEwHDgxUiMrLyMRIiMlFGYuUTAHBREICGQOEAkLCQwKX1loAAABABb/9wF3ArYAGQB3QBAXFRIREA8ODQwLCgkEAgcIK0uwH1BYQCsZAQYBAAEABgIhAAMDDCIFAQEBAgAAJwQBAgIPIgAGBgABAicAAAAWACMGG0ArGQEGAQABAAYCIQADAgM3BQEBAQIAACcEAQICDyIABgYAAQInAAAAFgAjBlmwOyslDgEjIi4CNREjNTM1MxUzFSMRFBYzMjY3AXcbTyscMSUWRESGb28eFRUoDBsMGA4fMSMBLWeqqmf/ABwXDgUAAgA8/ysCPQLGABQAJwCBQA4kIhsZEQ8MCwoJBgQGCCtLsCNQWEAyDQEEAx0BBQQIAQAFAyEAAgIMIgAEBAMBACcAAwMVIgAFBQABACcAAAAWIgABAREBIwcbQDANAQQDHQEFBAgBAAUDIQAFAAABBQABACkAAgIMIgAEBAMBACcAAwMVIgABAREBIwZZsDsrARQOAiMiJicVIxEzFT4BMzIeAgc0LgIjIgYHFRQeAjMyPgICPSpIXzYuOAuJiQ04NDpfQiSKESAvHSk2EhQfJxMcLyMTAQA4ZU0uIhHwA5vjEyUyUWUxIDosGi8joA4cFw4aKzsAAAABAB3/bQIJAkAAMABXQA4oJh8dGRcWFBAOCQcGCCtAQSIBBAUhAQMEAAECAwwBAQILAQABBSEABQAEAwUEAQApAAMAAgEDAgEAKQABAAABAQAmAAEBAAEAJwAAAQABACQGsDsrJR4BFRQOAiMiJic3HgEzMjY1NCYrATUzMjY1NCYjIgYHJz4DMzIeAhUUDgIBfT9NJURgO011JkwaRzY9QUpLHB89RDctLkkXVA8yP0onM1Q8IRIiL+wLYUYvTDUdMS9fISQwMjQ4ZDcrKSgqJl4XJRsPGi5BKB42LB4AAAEAHQEqAXYC2wAwAFJAEgEAIiAbGRMREA4KCAAwATAHCCtAOB4BBAUdAQMEKQECAwQBAQIDAQABBSEAAwACAQMCAQApAAEGAQABAAEAKAAEBAUBACcABQUOBCMFsDsrEyImJzceAzMyNjU0JisBNTMyNjU0LgIjIgYHJz4BMzIeAhUUBgceARUUDgLBP1cOKwIRHisbKj1QRRgYPEoQGB4PKDcSMxdaMyQ/LRoyLTE4HzJCASopJjsGFBINGRodG0kYHAwRCwYbFkAdHhIfKhkjLggHPCkfLR4OAAAEACj/+QOIAtsAMAA7AD4ARACLQCIxMQEAPTwxOzE7Ojk4NzY1MzIiIBsZExEQDgoIADABMA4IK0BhQkEeAwQFHQEDBCkBAgMEAQcCPgMCAAE0AQYIPwEKBgchRAEKHgADAAIHAwIBACkAAQwBAAgBAAEAKQsBCAkBBgoIBgAAKQAEBAUBACcABQUOIgAHBwoAACcNAQoKDQojCbA7KxMiJic3HgMzMjY1NCYrATUzMjY1NC4CIyIGByc+ATMyHgIVFAYHHgEVFA4CATUjNTczFTMVIxUnMzUJAhcJAcw/Vw4rAhEeKxsqPVBFGBg8ShAYHg8oNxIzF1ozJD8tGjItMTgfMkICDt32Nj0935P90QEaAQQ9/uz+9gEqKSY7BhQSDRkaHRtJGBwMEQsGGxZAHR4SHyoZIy4IBzwpHy0eDv7WXU38+05dq5n+6wFJAVY2/r7+owAAAAEAKQAAAgsCRQApADlADgAAACkAKSgnGRcODAUIK0AjEwEAARIBAgACIQABAAACAQABACkAAgIDAAAnBAEDAw0DIwSwOyszND4CNz4DNTQmIyIOAgcnPgMzMh4CFRQOAgcOAwchFSkOJDwvKD8rFjAtGCgjHQxWDTBBTy0zUDcdGigvFhIpKCEJAR8tST42GhYhHB0THisNFhsPYw4hHRMZLT8lIzYqHwwKGB0iE3kAAQAfATEBfwLbACIAOEAOAAAAIgAiISAWFA0LBQgrQCIQAQABDwECAAIhAAIEAQMCAwAAKAAAAAEBACcAAQEOACMEsDsrEzQ+Ajc+AzU0IyIGByc+AzMyFhUUDgIHDgEVMxUfDh4yJBgvJRhVLD4SMgcgLz0mUVMaKC4UMinTATEpPS4jDwoSFRsUNyAROQoYFQ5GPyEtHxMGDysXTgAAAAEAN//2AkYCDAAbAHBAEgEAFhQREA0MCQcFBAAbARsHCCtLsBhQWEAjCwECARkYEgMAAgIhAwEBAQ8iBAECAgABAicFBgIAABYAIwQbQCoLAQQBGRgSAwACAiEABAECAQQCNQMBAQEPIgACAgABAicFBgIAABYAIwVZsDsrFyImNREzERQzMjY3ETMRFBYXFQ4BIyImLwEOAdxRVIZXKEkXhhAUFSAMJCkFAyRtCmhmAUj+1XkvMAFF/o4VEgFyBAMhHSs2NgAAAgA3//YCRgLaAAMAHwCGQBQFBBoYFRQREA0LCQgEHwUfAwIICCtLsBhQWEAtAQACAgAPAQMCHRwWAwEDAyEAAAAOIgQBAgIPIgUBAwMBAQInBgcCAQEWASMFG0A0AQACAgAPAQUCHRwWAwEDAyEABQIDAgUDNQAAAA4iBAECAg8iAAMDAQECJwYHAgEBFgEjBlmwOysBJzczAyImNREzERQzMjY3ETMRFBYXFQ4BIyImLwEOAQFOVjZ9z1FUhlcoSReGEBQVIAwkKQUDJG0CSRp3/RxoZgFI/tV5LzABRf6OFRIBcgQDIR0rNjYAAAAAAgA3//YCRgLaAAYAIgCMQBQIBx0bGBcUExAODAsHIggiAgEICCtLsBhQWEAwBgUEAwAFAgASAQMCIB8ZAwEDAyEAAAAOIgQBAgIPIgUBAwMBAQInBgcCAQEWASMFG0A3BgUEAwAFAgASAQUCIB8ZAwEDAyEABQIDAgUDNQAAAA4iBAECAg8iAAMDAQECJwYHAgEBFgEjBlmwOysTNzMXBycHEyImNREzERQzMjY3ETMRFBYXFQ4BIyImLwEOAZFqYWpFVVUFUVSGVyhJF4YQFBUgDCQpBQMkbQJ1ZWUgPz/9oWhmAUj+1XkvMAFF/o4VEgFyBAMhHSs2NgAAAwA3//YCRgLTAAMABwAjAKBAIgkIBAQAAB4cGRgVFBEPDQwIIwkjBAcEBwYFAAMAAwIBDQgrS7AYUFhAMxMBBgUhIBoDBAYCIQsDCgMBAQAAACcCAQAADiIHAQUFDyIIAQYGBAECJwkMAgQEFgQjBhtAOhMBCAUhIBoDBAYCIQAIBQYFCAY1CwMKAwEBAAAAJwIBAAAOIgcBBQUPIgAGBgQBAicJDAIEBBYEIwdZsDsrEzUzFTM1MxUDIiY1ETMRFDMyNjcRMxEUFhcVDgEjIiYvAQ4BlG9Rb+dRVIZXKEkXhhAUFSAMJCkFAyRtAlx3d3d3/ZpoZgFI/tV5LzABRf6OFRIBcgQDIR0rNjYAAAACADf/9gJGAtoAGwAfAIZAFAEAHRwWFBEQDQwJBwUEABsBGwgIK0uwGFBYQC0fHgIBBgsBAgEZGBIDAAIDIQAGBg4iAwEBAQ8iBAECAgABAicFBwIAABYAIwUbQDQfHgIBBgsBBAEZGBIDAAIDIQAEAQIBBAI1AAYGDiIDAQEBDyIAAgIAAQInBQcCAAAWACMGWbA7KxciJjURMxEUMzI2NxEzERQWFxUOASMiJi8BDgEDMxcH3FFUhlcoSReGEBQVIAwkKQUDJG1yfDdWCmhmAUj+1XkvMAFF/o4VEgFyBAMhHSs2NgLkdxoAAAEACP+HAXYAAAADACpACgAAAAMAAwIBAwgrQBgAAAEBAAAAJgAAAAEAACcCAQEAAQAAJAOwOysXNSEVCAFueXl5AAAAAQA5ANYCIQFPAAMAKkAKAAAAAwADAgEDCCtAGAAAAQEAAAAmAAAAAQAAJwIBAQABAAAkA7A7Kzc1IRU5AejWeXkAAAAB//D/+QJ4As4AAwAHQAQBAwENKycBFwEQAjtN/cU4ApZA/WsAAAAAAQAGAAACGQIMAAYAKEAMAAAABgAGBQQCAQQIK0AUAwECAAEhAQEAAA8iAwECAg0CIwOwOyszAzMbATMDx8GKhYZ+wQIM/mEBn/30AAEABAAAA0kCDAARADFADg8ODAsIBwYFAwIBAAYIK0AbERANCgkEBgEAASEFBAMDAAAPIgIBAQENASMDsDsrATMDIycHIwMzEzcnMxc3MwcXAsmA225aWW7bf5xAXGw3OGxbPwIM/fTm5gIM/nKq46Gh46oAAQACAAACDgIMAA8ALkAOAAAADwAPDQwIBwUEBQgrQBgOCgYCBAEAASEEAwIAAA8iAgEBAQ0BIwOwOysTHwE/ATMDEyMvAQ8BIxMDj3AJCXCKur2KcwkJc4q+uwIMpBISpP75/vujERGjAQUBBwAAAAEAAP8bAhUCDAATAFZAChIQDQwKCQQCBAgrS7AdUFhAHwsAAgABEwEDAAIhAgEBAQ8iAAAAAwECJwADAxEDIwQbQBwLAAIAARMBAwACIQAAAAMAAwECKAIBAQEPASMDWbA7KxceATMyPgI3AzMbATMDDgEjIidDEh4LDRQTEwvQio9+ft0VXD0jJGYFBAkYKyMCDP5oAZj9jDxBCwAAAAACAAD/GwIVAtoAEwAXAGxADBcWEhANDAoJBAIFCCtLsB1QWEApFRQCAQQLAAIAARMBAwADIQAEBA4iAgEBAQ8iAAAAAwECJwADAxEDIwUbQCYVFAIBBAsAAgABEwEDAAMhAAAAAwADAQIoAAQEDiICAQEBDwEjBFmwOysXHgEzMj4CNwMzGwEzAw4BIyInEyc3M0MSHgsNFBMTC9CKj35+3RVcPSMk+VY2fWYFBAkYKyMCDP5oAZj9jDxBCwMjGncAAAAAAwAA/xsCFQLTABMAFwAbAIZAGhgYFBQYGxgbGhkUFxQXFhUSEA0MCgkEAgoIK0uwHVBYQC8LAAIAARMBAwACIQkHCAMFBQQAACcGAQQEDiICAQEBDyIAAAADAQInAAMDEQMjBhtALAsAAgABEwEDAAIhAAAAAwADAQIoCQcIAwUFBAAAJwYBBAQOIgIBAQEPASMFWbA7KxceATMyPgI3AzMbATMDDgEjIicTNTMVMzUzFUMSHgsNFBMTC9CKj35+3RVcPSMkP29Rb2YFBAkYKyMCDP5oAZj9jDxBCwM2d3d3dwAAAQAeAAACqgLGABgAUEAYGBcVFBMSERAODQwLCgkIBwYFAwIBAAsIK0AwFgEBAA8EAgIBAiEIAQAHAQECAAEAAikGAQIFAQMEAgMAACkKAQkJDCIABAQNBCMFsDsrATMVIwcVMxUjFSM1IzUzNScjNTMDMxsBMwH6SXgknZ2Jm5sieEqwlbCxlgGSV0MeV4ODVyBBVwE0/qoBVgAAAQAZAAABzgIMAAkANkAKCQgHBgQDAgEECCtAJAUBAAEAAQMCAiEAAAABAAAnAAEBDyIAAgIDAAAnAAMDDQMjBbA7KzcBITUhFQEhFSEZASP+6AGl/t4BJ/5LUgFcXlL+pF4AAAIAMf/2AjYCVQATACcAKkAKJCIaGBAOBgQECCtAGAABAAIDAQIBACkAAwMAAQAnAAAAFgAjA7A7KwEUDgIjIi4CNTQ+AjMyHgIHNC4CIyIOAhUUHgIzMj4CAjYnRV83OF9FJydFXzg3X0UnhxIhLRscLiESEiEuHBstIRIBJUJvUS0tUW9CQm9RLi5Rb0IoQzAaGjBDKChCMBoaMEIAAAABAAAA3AB7AAcAAAAAAAIAJAAvADwAAAB/B0kAAAAAAAAAAAAAAAAAAAAaAFwApADEARIBOgF8AZYBtAIYAlYCxgMQA3ADxAScBSAFYgWaBeAGLAZ+BsQHGAeYB8gIRgh4CJQIygj0CSQJWgmECbYJ2gn8CjIKXAqQCvYLSgvoDEoMsg0gDYIOEg4yDsIPBA+mD/IQchCYEOYRJBFwEcISGhJmEo4SzBL+EyoTZBOWFBoUrBVEFeQWnBcuF9wYkhi6GQgZOBo8GvwbfhueG8AcJhyMHModCB08HXAdvh6SHvQfIh9OH+YgeCC2IQ4hriHKIiwinCMSI5AkACSEJKYkyCT6JW4lnCXKJg4mjCcMKAIoTikIKXIpiin4KjArGiugK7Yr2Cv6LBAsJixoLIostiziLRQtTC12LdguCi5OLmQuji78Lwwvmi+4MA4whDEiMYAx1DI2Mp4zDDP2NFg0mDTWNWw16DasNwQ3sjhCOMQ5GDk+OWQ6CjomOlY6mjs0O5Y8Ejw6PHo8pjzkPQ49Tj16PZg95j52Pto/gD+4P+BAUkCgQXRB1kJSQsJDMEPcRDREhEToRWBF3kZmRtxG/kb+RyBHNEdaR5RHzEgcSH5I8Ek+SXBJwAAAAAEAAAACAEIg2cv8Xw889QAZA+gAAAAAzG+gjAAAAADMb3sI/zf/GwRzA5sAAQAJAAIAAAAAAAAAAAAAAAAAAAAAAAAA7wAAAP8ALwKjAAICowACAXEAHgKjAAIByQBNAqMAAgD/AC8BowA8AqMAAgEGACICowACAbUAHwKoAEoCngAgAp8AIQFGABUCzgBKAlwASgJcAEoCXABKAlwASgJcAEoC0gAfAwwAIgI7AEoCxQAhAukASgEeAEoB7wALAR4ASgEe//QBHv/3AR4ADwKbAEoCTQBKAOAAOQNhAEoC+wBKAqMAAgL7AEoC5AAhBEIAIQLkACEC5AAhAuQAIQLkACEC5gAhAroAHALkACECbQBKAuYAIQKiAEoCZwAXAmwADgJeAEoC7AA/AuwAPwLsAD8C7AA/AuwAPwKhAAAEHf//AoT//AKE//wChP/8Am8AHAJCABkCQgAZAkIAGQJCABkDqgAaAkIAGQLMACkCQgAZAksAKAIyADYBWQAzA0QAKwJCABkCeQA8An4AGgD9AEUBMgAnATIAKgEtAEcBLQAqAQEARwFrAE0CNAAcAjYAHQJTACkA8wBDAOwAIANLACwCiQAdAR8AKQH9ADUCegAiAP0APAJYABwCWAAcAlgAHAJYABwCWAAcAl0ALAOfADkCWgA5AbUAPgJlAB8BIQBOASIATgF9ABoCjQAaA0AAGgOaABoCOQAaApMAGgIrABwAyP83AjUAFQGaABUCeQAeAi4APAH9ADcCiQAlAokAOQFlACUBZQA5AloAPAGhADkA/QA8AP0APAD9/+QA/f/nAP3//wD9/4cCLQA8AT0AOwH9ACACZwA/A6EAPAIQAD4CfQBGAd4ANQJaADwCTQAgAloAPALUACYCXQAcAl0AHAJdABwCXQAcA/QAHAJdABwB7AArASoAIAO+ACsDowAqAbwAKAG7ACMCXQAcAl0AHAJ4ADwCjAAjATQAIgE0ABcDGQAmAOAAOQGoADAB2AA7AngAHQHqACQB4wAiAYIAOQGiACAA7AAgAbQALgDzAC4BtgAsAPQALADeADYBgwA8A0sALAH8ABECFQArAPoAJgI+ACUCXwAuA9X/8gIjADIBfgAWAlgAPAIvAB0BmAAdA7EAKAI5ACkBoQAfAm4ANwJuADcCbgA3Am4ANwJuADcBfgAIAO8AAAJaADkCaP/wAh8ABgNNAAQCEAACAiAAAAIgAAACIAAAAskAHgHqABkCZwAxAAEAAAOs/xYAAASU/zf/NgRzAAEAAAAAAAAAAAAAAAAAAADcAAMB4gK8AAUAAAK8AooAAACMArwCigAAAd0AMgD6AAACCwADAwEBBgADoAAAv1AAAFsAAAAAAAAAAHB5cnMAIAAg+wYDrP8WAAADrADqAAAAkwAAAAACDALGAAAAIAADAAAAAgAAAAMAAAAUAAMAAQAAABQABAI4AAAAJgAgAAQABgB+AKMA/wExAVMCxgLaAtwgFCAaIB4gIiA6IEQgdCCsIhIiFf//AAAAIACgAKUBMQFSAsYC2gLcIBMgGCAcICIgOSBEIHQgrCISIhX//wAAAAAAAP82AAD9Qf00/TQAAAAAAADgOuBK4DfgCd9w3oDevQABACYA4gDoAAABmgAAAAAAAAGWAZgBnAAAAAAAAAAAAAAAAAAAAAAAAwByALIAmABmAKsATQC5AKkAqgBRAK0AYQCGAKwANADbAJ8AyADFAHwAegDAAL8AbQCWAGAAvgCPAHAAgACwAFIAKwARABIAFQAWAB0AHgAfACAAIQAmACcAKQAqAC0ANgA3ADgAOQA6ADwAQQBCAEMARABGAFkAVQBaAE8AzwALAEcAVABdAGMAaAB0AH4AhQCHAIwAjQCOAJEAlQCZAKcArwC6ALwAwwDKANMA1ADVANYA2gBXAFYAWABQANAAcwBfAMIA2QBbAL0ACQBiAKMAgQCQANEAuwAMAGQArgDJAMYABACTAKgAKAAUAKAApACCAKIAoQDHALEACgAFAAYADwAIAA0AwQATABoAFwAYABkAJQAiACMAJAAbACwAMgAvADAANQAxAJQAMwBAAD0APgA/AEUAOwB/AEwASABJAFMASgBOAEsAXgBsAGkAagBrAIsAiACJAIoAcQCXAJ4AmgCbAKYAnABlAKUAzgDLAMwAzQDXAMQA2AAuAJ0AbwBuALYAuAC0ALUAtwCzsAAsIGSwIGBmI7AAUFhlWS2wASwgZCCwwFCwBCZasARFW1ghIyEbilggsFBQWCGwQFkbILA4UFghsDhZWSCwCkVhZLAoUFghsApFILAwUFghsDBZGyCwwFBYIGYgiophILAKUFhgGyCwIFBYIbAKYBsgsDZQWCGwNmAbYFlZWRuwACtZWSOwAFBYZVlZLbACLLAHI0KwBiNCsAAjQrAAQ7AGQ1FYsAdDK7IAAQBDYEKwFmUcWS2wAyywAEMgRSCwAkVjsAFFYmBELbAELLAAQyBFILAAKyOxBgQlYCBFiiNhIGQgsCBQWCGwABuwMFBYsCAbsEBZWSOwAFBYZVmwAyUjYURELbAFLLEFBUWwAWFELbAGLLABYCAgsAlDSrAAUFggsAkjQlmwCkNKsABSWCCwCiNCWS2wByywAEOwAiVCsgABAENgQrEJAiVCsQoCJUKwARYjILADJVBYsABDsAQlQoqKIIojYbAGKiEjsAFhIIojYbAGKiEbsABDsAIlQrACJWGwBiohWbAJQ0ewCkNHYLCAYiCwAkVjsAFFYmCxAAATI0SwAUOwAD6yAQEBQ2BCLbAILLEABUVUWAAgYLABYbMLCwEAQopgsQcCKxsiWS2wCSywBSuxAAVFVFgAIGCwAWGzCwsBAEKKYLEHAisbIlktsAosIGCwC2AgQyOwAWBDsAIlsAIlUVgjIDywAWAjsBJlHBshIVktsAsssAorsAoqLbAMLCAgRyAgsAJFY7ABRWJgI2E4IyCKVVggRyAgsAJFY7ABRWJgI2E4GyFZLbANLLEABUVUWACwARawDCqwARUwGyJZLbAOLLAFK7EABUVUWACwARawDCqwARUwGyJZLbAPLCA1sAFgLbAQLACwA0VjsAFFYrAAK7ACRWOwAUVisAArsAAWtAAAAAAARD4jOLEPARUqLbARLCA8IEcgsAJFY7ABRWJgsABDYTgtsBIsLhc8LbATLCA8IEcgsAJFY7ABRWJgsABDYbABQ2M4LbAULLECABYlIC4gR7AAI0KwAiVJiopHI0cjYWKwASNCshMBARUUKi2wFSywABawBCWwBCVHI0cjYbABK2WKLiMgIDyKOC2wFiywABawBCWwBCUgLkcjRyNhILAFI0KwASsgsGBQWCCwQFFYswMgBCAbswMmBBpZQkIjILAIQyCKI0cjRyNhI0ZgsAVDsIBiYCCwACsgiophILADQ2BkI7AEQ2FkUFiwA0NhG7AEQ2BZsAMlsIBiYSMgILAEJiNGYTgbI7AIQ0awAiWwCENHI0cjYWAgsAVDsIBiYCMgsAArI7AFQ2CwACuwBSVhsAUlsIBisAQmYSCwBCVgZCOwAyVgZFBYIRsjIVkjICCwBCYjRmE4WS2wFyywABYgICCwBSYgLkcjRyNhIzw4LbAYLLAAFiCwCCNCICAgRiNHsAArI2E4LbAZLLAAFrADJbACJUcjRyNhsABUWC4gPCMhG7ACJbACJUcjRyNhILAFJbAEJUcjRyNhsAYlsAUlSbACJWGwAUVjI2JjsAFFYmAjLiMgIDyKOCMhWS2wGiywABYgsAhDIC5HI0cjYSBgsCBgZrCAYiMgIDyKOC2wGywjIC5GsAIlRlJYIDxZLrELARQrLbAcLCMgLkawAiVGUFggPFkusQsBFCstsB0sIyAuRrACJUZSWCA8WSMgLkawAiVGUFggPFkusQsBFCstsB4ssAAVIEewACNCsgABARUUEy6wESotsB8ssAAVIEewACNCsgABARUUEy6wESotsCAssQABFBOwEiotsCEssBQqLbAmLLAVKyMgLkawAiVGUlggPFkusQsBFCstsCkssBYriiAgPLAFI0KKOCMgLkawAiVGUlggPFkusQsBFCuwBUMusAsrLbAnLLAAFrAEJbAEJiAuRyNHI2GwASsjIDwgLiM4sQsBFCstsCQssQgEJUKwABawBCWwBCUgLkcjRyNhILAFI0KwASsgsGBQWCCwQFFYswMgBCAbswMmBBpZQkIjIEewBUOwgGJgILAAKyCKimEgsANDYGQjsARDYWRQWLADQ2EbsARDYFmwAyWwgGJhsAIlRmE4IyA8IzgbISAgRiNHsAArI2E4IVmxCwEUKy2wIyywCCNCsCIrLbAlLLAVKy6xCwEUKy2wKCywFishIyAgPLAFI0IjOLELARQrsAVDLrALKy2wIiywABZFIyAuIEaKI2E4sQsBFCstsCossBcrLrELARQrLbArLLAXK7AbKy2wLCywFyuwHCstsC0ssAAWsBcrsB0rLbAuLLAYKy6xCwEUKy2wLyywGCuwGystsDAssBgrsBwrLbAxLLAYK7AdKy2wMiywGSsusQsBFCstsDMssBkrsBsrLbA0LLAZK7AcKy2wNSywGSuwHSstsDYssBorLrELARQrLbA3LLAaK7AbKy2wOCywGiuwHCstsDkssBorsB0rLbA6LCstsDsssQAFRVRYsDoqsAEVMBsiWS0AAABLuADIUlixAQGOWbkIAAgAYyCwASNEILADI3CwFUUgILAoYGYgilVYsAIlYbABRWMjYrACI0SzCgsDAiuzDBEDAiuzEhcDAitZsgQoB0VSRLMMEQQCK7gB/4WwBI2xBQBEAAAAAAAAAAAAAAAAAAAAAIkAcgCJAIoAcgByAsYAAALaAgwAAP8sAsv/+wLkAhX/9v8sAAAAAQAAKsIAAQceGAAAChK0AAMAIf/jAAMAK//hAAMAOv/kAAMAQf/dAAMAQv/dAAMAQ//8AAMARP/bAAMAsv/yAAMAuP/qAAMAuf/pAAMAwf/dAAMA0//mAAMA1P/kAAMA1v/lABEAIf/5ABEAK//yABEAOv/rABEAQf/sABEAQv/rABEAQ//yABEARP/jABEARv/+ABEAY//9ABEAcf/8ABEAdP/0ABEAiQAKABEAigAMABEAlf/9ABEAmf/9ABEAvP/5ABEAv//7ABEAwf/1ABEAw//1ABEAxf/9ABEAyv/9ABEA0//3ABEA1P/1ABEA1f/zABEA1v/2ABEA2v/7ABIAK//2ABIALf/4ABIAOf/+ABIAOv/8ABIAQf/1ABIAQv/1ABIAQ//6ABIARP/vABIAUQARABIAY//7ABIAcf/7ABIAdP/4ABIAiQASABIAigAfABIAlf/9ABIAmf/7ABIAvP/6ABIAwf/4ABIAw//7ABIAyv/9ABIA1P/9ABIA1v/8ABIA2v/8ABUAG//6ABUAIf/jABUAK//nABUANP/rABUAOf/8ABUAOv/qABUAQf/oABUAQv/mABUAQ//kABUARP/ZABUARv/zABUAR//4ABUAVf/xABUAcf/7ABUAfP/9ABUAhf/9ABUAh//9ABUAlf/7ABUAqv/0ABUArP/4ABUAtv/9ABUAuf/8ABUAvP/7ABUAwf/ZABUAyv/9ABUA1P/9ABUA1f/2ABUA1v/7ABUA2v/7ABYALf/0ABYAOf/3ABYAR//9ABYAY//yABYAcf/yABYAdP/yABYAg//6ABYAhv/5ABYAiQASABYAigAbABYAlf/+ABYAmf/yABYAvP/+ABYAv//5ABYAw//2ABYAyv/3ABYA0//2ABYA1P/yABYA1v/xABwAxf/9AB0AA//pAB0AIf+gAB0AK//HAB0ALf/yAB0ANP/LAB0AOf/vAB0AR//XAB0AUQAPAB0AUv/9AB0AYP/6AB0AY//lAB0AZ//rAB0Acf/bAB0AdP/zAB0Adf/2AB0Adv/2AB0Ad//2AB0Aev/zAB0AfP/eAB0Af//7AB0Ag//3AB0AhP/4AB0Ahv/2AB0AiP/4AB0AiQAlAB0AigAtAB0AiwANAB0Alf/rAB0Amf/lAB0An//6AB0AqgAEAB0ArP/LAB0AvP/fAB0Av//3AB0Awf+jAB0Aw//8AB0Axf/3AB0AyP/1AB0Ayv/uAB0A0//2AB0A1P/1AB0A1f/zAB0A1v/1AB0A2v/rAB4AOv/uAB4AQf/pAB4AQv/oAB4ARP/gAB4AVf/4AB4Acf/9AB4AdP/6AB4Auf/8AB4Aw//5AB4A0//0AB4A1P/yAB4A1v/0ACAAR//5ACAAY//4ACAAcf/1ACAAdP/4ACAAigAMACAAmf/3ACAAvP/6ACAAw//4ACAA1v/9ACAA2v/8ACEAIf/xACEAK//vACEANP/2ACEAR//2ACEAY//3ACEAcf/0ACEAdP/5ACEAhf/9ACEAh//9ACEAiQAJACEAigARACEAjv/9ACEAlf/7ACEAmf/3ACEArP/8ACEAvP/0ACEAwf/oACEAw//6ACEAyv/7ACEA1f/8ACEA2v/6ACQAVgAHACYAA//zACYAIQAEACYALf/bACYAM//yACYANAAWACYAOf/2ACYAR//7ACYAUQARACYAVQAKACYAWAAMACYAWgANACYAYQANACYAYv/xACYAY//hACYAcf/kACYAdP/tACYAfAAXACYAg//0ACYAhAAEACYAhv/pACYAiQAKACYAigA2ACYAiwAVACYAmf/gACYApf/xACYAqgAXACYAswANACYAtAANACYAu//xACYAvgAHACYAw//uACYAyAAPACYAyv/wACYA0//aACYA1P/XACYA1v/bACYA2//9ACcAA//lACcAKP+CACcALf/kACcAOf/+ACcAOv+cACcAPP/jACcAQf+mACcAQv+hACcARP+YACcAUf+bACcAVf+vACcAYv/2ACcAY//1ACcAcf/4ACcAdP/vACcAg//rACcAhv/iACcAmf/2ACcAo/+eACcApP+dACcAsP/4ACcAtv+cACcAuP+dACcAuf+eACcAu//2ACcAv//8ACcAwQAKACcAw//qACcAyv/7ACcA0//HACcA1P+7ACcA1v/DACgAfP/3ACgAjv/dACgAn//3ACgAv//zACgAxf/sACgAyP/7ACsAA//hACsAG//+ACsALf/mACsAM//3ACsANAANACsAOf/4ACsAOv++ACsAPP/kACsAQf/JACsAQv/IACsARP+7ACsAR//4ACsATf/zACsAUf/HACsAUv/8ACsAVf/GACsAWgADACsAYQAEACsAYv/tACsAY//vACsAbf/zACsAcf/xACsAdP/vACsAfAANACsAg//0ACsAhv/0ACsAjv/7ACsAmf/vACsAo//XACsApP/TACsAqgAOACsAsP/0ACsAswAEACsAtAAEACsAtv/EACsAuP/FACsAuf/FACsAu//tACsAvP/9ACsAv//1ACsAwP/xACsAw//lACsAyAAGACsAyv/1ACsA0//hACsA1P/dACsA1v/fACsA2//xAC0AG//5AC0AIf/jAC0AK//mAC0ANP/rAC0AOf/8AC0AOv/oAC0AQf/nAC0AQv/lAC0AQ//kAC0ARP/YAC0ARv/xAC0AR//4AC0AUf/9AC0AVf/vAC0Acf/7AC0AfP/8AC0Ahf/9AC0Ah//7AC0Alf/7AC0Aqv/yAC0ArP/3AC0Atv/9AC0AuP/9AC0Auf/6AC0AvP/7AC0Awf/XAC0Ayv/9AC0A1P/9AC0A1f/0AC0A1v/+AC0A2v/7ADMAQf/3ADMAQv/2ADMAQ//0ADMARP/wADMAUQAPADMAVQAHADMAqgAKADQAIf+2ADQAK//DADQALf/rADQANP74ADQAOf/3ADQAQQAOADQAQgAPADQAQwAQADQARAARADQAR//iADQAY//aADQAbf/4ADQAcf/cADQAdP/0ADQAev/cADQAfP+0ADQAigAmADQAiwAFADQAlf/pADQAlv/hADQAmf/aADQAn//qADQAvP/dADQAwP/wADQAwf+hADQAxf/nADQAyP/pADQAyv/qADQA0//wADQA1P/wADQA1f/2ADQA1v/xADQA2v/wADQA2//ZADYAA//lADYAIf+pADYAK//NADYANP/GADYAOv/+ADYAQf/0ADYAQv/0ADYAQ//sADYARP/wADYARv/5ADYAR//2ADYAY//0ADYAcf/oADYAev/3ADYAfP/eADYAg//0ADYAhv/0ADYAiQALADYAigAWADYAmf/zADYAqv/1ADYArP+/ADYAvP/3ADYAwf+pADYA0wAHADYA1AAJADYA1QAFADYA1gAMADcAIf/2ADcAK//5ADcANAAPADcAQ//1ADcAWAAGADcAWgAHADcAYQAHADcAfAARADcAqgARADcAswAHADcAtAAHADcAwf/zADcAyAAJADcA1v/7ADgAG//7ADgAK//8ADgALf/4ADgANAAGADgAOv/vADgAPP/5ADgAQf/lADgAQv/kADgARP/dADgAR//0ADgAVf/yADgAY//rADgAcf/lADgAdP/3ADgAfAAHADgAg//0ADgAhf/7ADgAhv/9ADgAh//5ADgAjv/3ADgAlf/5ADgAmf/qADgAqgAHADgAuP/7ADgAvP/+ADgAw//2ADgAyv/1ADgA0//4ADgA1P/2ADgA1v/3ADkAK//yADkAOv/8ADkAQf/xADkAQv/xADkAQ//3ADkARP/tADkAR//9ADkAcf/9ADkAdP/zADkAhf/9ADkAh//9ADkAiQAQADkAigAXADkAjv/9ADkAlf/7ADkAo//8ADkAvP/5ADkAv//8ADkAwf/5ADkAw//yADkAyv/7ADkA0//sADkA1P/qADkA1f/1ADkA1v/sADkA2v/6ADoAA//kADoAIf+iADoAK/++ADoALf/pADoANP/KADoAOf/5ADoAR/+wADoATf/8ADoAUQATADoAUv/VADoAU//BADoAYP/rADoAYv/1ADoAY/+pADoAZ//NADoAbf/9ADoAcf+vADoAdP/hADoAdf/wADoAdv/wADoAd//WADoAeP/0ADoAev/cADoAfP/FADoAf//3ADoAg//MADoAhP/oADoAhv/DADoAiP/zADoAiQAlADoAigAuADoAiwANADoAlf/NADoAlv/aADoAmf+nADoAn//hADoAqgAEADoArP/BADoAu//1ADoAvP+rADoAv//wADoAwP/5ADoAwf+rADoAw//8ADoAxf/pADoAyP/rADoAyv+9ADoA0//RADoA1P/RADoA1f/UADoA1v/TADoA2v/EADoA2//dADsAG//8ADsAIf/gADsAK//lADsANP/kADsAOf/8ADsAOv/cADsAQf/hADsAQv/gADsAQ//VADsARP/KADsARv/uADsAR//8ADsAUf/wADsAVf/kADsAWP/3ADsAWv/2ADsAhv/9ADsAqv/sADsArP/rADsAsP/8ADsAtv/nADsAuP/qADsAuf/iADsAwf/QADsA1P/+ADsA1f/4ADsA1v/6ADwAIf/kADwAK//lADwANP/rADwAR//zADwAY//1ADwAcf/yADwAdP/5ADwAfP/8ADwAhf/6ADwAh//6ADwAiQALADwAigAUADwAjv/6ADwAlf/3ADwAmf/1ADwArP/yADwAvP/yADwAwf/UADwAw//7ADwAyv/4ADwA1f/8ADwA2v/3AEEAA//dAEEAG//+AEEAIf+uAEEAK//JAEEALf/mAEEANP/EAEEAOf/tAEEAR//LAEEATf/vAEEAUQAYAEEAUv/dAEEAU//gAEEAVQANAEEAWgADAEEAYP/vAEEAYv/tAEEAY//GAEEAZ//XAEEAbf/xAEEAcf+/AEEAdP/lAEEAev/gAEEAfP/IAEEAf//qAEEAg//ZAEEAhP/qAEEAhv/bAEEAiP/tAEEAiQAeAEEAigA5AEEAiwAZAEEAlf/XAEEAlv/mAEEAmf/EAEEAn//uAEEAqgAPAEEArP/BAEEAtgAEAEEAuAAFAEEAu//tAEEAvP/MAEEAwP/vAEEAwf+rAEEAw//0AEEAxf/uAEEAyP/uAEEAyv/aAEEA0//yAEEA1P/0AEEA1f/zAEEA1v/0AEEA2v/lAEEA2//jAEIAA//dAEIAG//+AEIAIf+uAEIAK//IAEIALf/lAEIANP/BAEIAOf/sAEIAR//LAEIASv/gAEIATf/vAEIAUQAWAEIAUv/cAEIAU//gAEIAVQAPAEIAWAAEAEIAWgAFAEIAYP/uAEIAYv/tAEIAY//CAEIAZ//WAEIAbf/xAEIAcf+8AEIAdP/jAEIAev/fAEIAfP/HAEIAf//qAEIAg//YAEIAhP/pAEIAhv/ZAEIAiP/tAEIAiQAeAEIAigA8AEIAiwAbAEIAlf/WAEIAlv/kAEIAmf/BAEIAn//tAEIAqgARAEIArP++AEIAtgAGAEIAuAAGAEIAu//tAEIAvP/JAEIAwP/vAEIAwf+pAEIAw//0AEIAxf/uAEIAyP/uAEIAyv/YAEIA0//yAEIA1P/zAEIA1f/yAEIA1v/0AEIA2v/kAEIA2//jAEMAA//8AEMALf/jAEMAM//zAEMANAAKAEMAOf/5AEMAR//2AEMAUQAXAEMAVQAQAEMAWAAFAEMAWgAGAEMAYv/yAEMAY//bAEMAZ//5AEMAcf/cAEMAdP/rAEMAfAAMAEMAf//6AEMAg//wAEMAhv/nAEMAiP/5AEMAiQAUAEMAigA8AEMAiwAbAEMAlf/3AEMAmf/ZAEMApf/qAEMAqgASAEMAtgAHAEMAuAAHAEMAu//yAEMAw//yAEMAyAADAEMAyv/qAEMA0//iAEMA1P/gAEMA1v/jAEMA2//0AEQAA//aAEQAG//+AEQAIf+nAEQAK/+7AEQALf/ZAEQANP/BAEQAOf/mAEQAR/+zAEQASv/jAEQATf/qAEQAUQAYAEQAUv/PAEQAU//eAEQAVQARAEQAWAAHAEQAWgAHAEQAYP/kAEQAYv/kAEQAY/+xAEQAZ//GAEQAa//RAEQAbf/rAEQAcf+uAEQAdP/ZAEQAev/YAEQAfP+9AEQAf//hAEQAg//GAEQAhP/bAEQAhv/GAEQAiP/oAEQAiQAaAEQAigA+AEQAiwAeAEQAlf/GAEQAlv/YAEQAmf+vAEQAnP/RAEQAn//hAEQAqgAUAEQArP+3AEQAtgAJAEQAuAAKAEQAu//kAEQAvP+uAEQAwP/oAEQAwf+cAEQAw//tAEQAxf/kAEQAyP/kAEQAyv/IAEQA0//fAEQA1P/gAEQA1f/hAEQA1v/jAEQA2v/SAEQA2//WAEYALf/yAEYAR//7AEYAYv/7AEYAY//xAEYAZ//9AEYAcf/zAEYAdP/wAEYAg//8AEYAhv/5AEYAiQATAEYAigAbAEYAlf/4AEYAmf/xAEYAu//7AEYAvP/9AEYAw//0AEYAyv/0AEYA0//xAEYA1P/yAEYA1v/yAEYA2//9AEcAG//9AEcAIP/9AEcALf/3AEcAOf/+AEcAOv+qAEcAPP/xAEcAQf/JAEcAQv/HAEcARP+vAEcARv/+AEcAUf/kAEcAVf/RAEcAdP/9AEcAo//3AEcApP/xAEcAsP/7AEcAtv/hAEcAuP/lAEcAuf/nAEcAw//3AEcA0//rAEcA1P/mAEcA1v/sAE0AIQAPAE0AKwAgAE0AMwAaAE0AOv/WAE0APP/3AE0AQf/XAE0AQv/VAE0AQwAfAE0ARP/NAE0ARgAIAE0ApQALAE0AuP/dAE0Auf/bAE0AvAAIAE0AwQAwAE0A0//wAE0A1P/tAE0A1QAcAE0A1v/vAE0A2gAJAFEAIf+vAFEAK//HAFEALf/9AFEAOgATAFEAQQAEAFEAQgAWAFEAQwAXAFEARAAXAFEAR//5AFEAY//eAFEAcf/WAFEAdP/9AFEAiQApAFEAigAxAFEAiwALAFEAmf/lAFEAvP/uAFEAwf+nAFEA0wANAFEA1AAQAFEA1QARAFIAK//1AFIAOv/WAFIAQf/eAFIAQv/dAFIARP/QAFIAuP/lAFIAuf/mAFQAG//7AFQAIP/4AFQAIf/xAFQAK//wAFQAOf/2AFQAOv+pAFQAPP/1AFQAQf/FAFQAQv/CAFQAQ//bAFQARP+yAFQARv/uAFQAUf/eAFQAVf/aAFQAdP//AFQAo//9AFQApP/0AFQAqv/vAFQArP/9AFQAsP/5AFQAtv/TAFQAuP/YAFQAuf/RAFQAvP/9AFQAwf/rAFQAw//5AFQA0//wAFQA1P/tAFQA1f/tAFQA1v/wAFQA2v/3AFUAIQAFAFUAKwAMAFUALf/uAFUAMwAHAFUAOv/LAFUAPP/tAFUAQf/GAFUAQv/DAFUAQwAKAFUARP/DAFUAuP+vAFUAuf+uAFUAv//5AFUAwP/5AFUAwQAXAFUAw//3AFUA0//kAFUA1P/dAFUA1QAJAFUA1v/hAFUA2//5AFYAJAAHAFYAiQAFAFYAigAOAFYAjABEAFcAQgAEAFcAQwAFAFcARAAGAFcAiQAUAFcAigAcAFcAjAAWAFcAwQANAFkAKwADAFkAQQAEAFkAQgAFAFkAQwAGAFkARAAGAFkAiQAUAFkAigAcAFkAjAAaAFkAwQAOAF0AG//9AF0AK//6AF0ALf/7AF0AOf/4AF0AOv+wAF0APP/4AF0AQf/LAF0AQv/LAF0AQ//3AF0ARP+7AF0ARv/9AF0AUf/yAF0AVf/jAF0AY//6AF0Acf/5AF0Ag//7AF0Ahv/4AF0Amf/6AF0AsP/9AF0Atv/yAF0AuP/0AF0Auf/8AF0AvP/7AF0Awf/9AF0A0//5AF0A1P/3AF0A1f/8AF0A1v/2AF4AjAAOAGAAOv/rAGAAQf/vAGAAQv/uAGAARP/kAGEAjAAXAGMAG//7AGMALf/3AGMAOv/2AGMAPP/1AGMAQf/3AGMAQv/3AGMARP/2AGMAw//8AGMA0//7AGMA1P/5AGMA1v/8AGQAev/tAGQAfP+uAGQAlv/qAGQAn//7AGQAxf/5AGQA2//yAGYAv//8AGYAxf/1AGgAG//8AGgAIP/5AGgAIf/zAGgAK//yAGgAOf/3AGgAOv+kAGgAPP/4AGgAQf/IAGgAQv/GAGgAQ//lAGgARP+jAGgARv/vAGgAUf/oAGgAVf/bAGgApP/9AGgAqv/yAGgAsP/6AGgAtv/oAGgAuP/rAGgAuf/tAGgAwf/sAGgAw//7AGgA0//yAGgA1P/uAGgA1f/sAGgA1v/wAGgA2v/5AG0AK//zAG0AOv/8AG0AQf/xAG0AQv/xAG0ARP/rAG0Arf/9AG0Awf/xAHAAfP/8AHAAn//6AHAAv//3AHAAxf/2AHEAG//8AHEAIP/4AHEAIf/uAHEAK//uAHEANP/3AHEAOf/3AHEAOv/nAHEAPP/3AHEAQf/mAHEAQv/lAHEAQ//jAHEARP/fAHEARv/sAHEAUf/6AHEAVf/9AHEAqv/8AHEAtv/7AHEAuP/7AHEAuf/7AHEAwf/mAHEAw///AHEA0//2AHEA1P/zAHEA1f/xAHEA1v/0AHEA2v/6AHMAigAIAHQAA//vAHQAIf/JAHQAK//bAHQANP/pAHQAOf/9AHQAOgAfAHQAQQAsAHQAQgAtAHQAQwAxAHQARAAwAHQARgAEAHQAR//4AHQAUQANAHQAVQAWAHQAWAAIAHQAWgAJAHQAY//9AHQAcf/yAHQAg//1AHQAhv/zAHQAiQAoAHQAigBGAHQAiwAgAHQAmf/9AHQAqgAdAHQArP/jAHQAtgAHAHQAuAAHAHQAwf/SAHQA2v/+AHUAigADAHYAigAGAHgAigAHAHoAKP/7AHoAKwAKAHoAOv/sAHoAQf/xAHoAQv/xAHoARP/qAHoAVf/yAHoAhv/7AHoAkv/8AHoArf/0AHoAwQAJAHsAfP/kAHwAKP/zAHwAKwAIAHwAOv/dAHwAQf/hAHwAQv/gAHwAQwAFAHwARP/ZAHwAVf/gAHwAYQAHAHwAZP/yAHwAhv/8AHwAkv/0AHwArf/xAHwAuf/1AHwAv//7AHwAwQATAH4ALf/7AH4AOf/9AH4AOv/JAH4APP/3AH4AQf/XAH4AQv/UAH4AQ//3AH4ARP/GAH4ARv/5AH4AjAAhAH8AG//7AH8AIP/3AH8AIf/8AH8AK//0AH8ALf/6AH8AOf/5AH8AOv/lAH8APP/zAH8AQf/dAH8AQv/dAH8AQ//nAH8ARP/UAH8ARv/2AH8AUf/3AH8AVf/0AH8AdP/6AH8Ao//9AH8Atv/3AH8AuP/2AH8Auf/2AH8AvP/9AH8Awf/zAH8Aw//3AH8A0//wAH8A1P/uAH8A1f/wAH8A1v/vAH8A2v/6AIMAOv/oAIMAQf/qAIMAQv/pAIMARP/aAIQAG//9AIQAIf/0AIQAK//0AIQAOv/MAIQAQf/YAIQAQv/YAIQAQ//wAIQARP/GAIQARv/7AIQAdP/8AIQAuP/qAIQAuf/zAIQAvP/8AIQAwf/tAIQAw//8AIQA0//tAIQA1P/oAIQA1f/oAIQA1v/tAIQA2v/2AIUALf/7AIUAOf/7AIUAOv+vAIUAPP/0AIUAQf/MAIUAQv/LAIUAQ//5AIUARP+6AIUARv/4AIUAUf/nAIUAVf/fAIUApP/8AIUAsP/7AIUAtv/fAIUAuP/hAIUAuf/YAIUAw//+AIUA0//4AIUA1P/2AIUA1v/4AIYAIf/lAIYAK//0AIYAOv/CAIYAQf/bAIYAQv/ZAIYAQ//nAIYARP/GAIYARv/5AIYAdP/9AIYAfP/4AIYAn//2AIYAvP/9AIYAv//yAIYAwf/wAIYAw//9AIYAxf/fAIYAyP/9AIYA0//xAIYA1P/tAIYA1f/oAIYA1v/wAIYA2v/yAIcALf/8AIcAOf/9AIcAPP/6AIcARv/6AIcAiQAMAIcAigAUAIgAUQAGAIgAVQAGAIgAqgARAIgAtgAFAIgAuAAFAIkAUQApAIkAVgAFAIkAWAAUAIkAWgAUAIkAfwAFAIkAhQAMAIkAhwAMAIkAjgANAIkAowAGAIkApAARAIkAqgAJAIkAsAARAIkAtgAVAIkAuAAVAIkAuQAKAIoAUQAxAIoAVQAnAIoAVgAOAIoAWAAcAIoAWgAcAIoAcgAIAIoAfwANAIoAhQAUAIoAhwAUAIoAjgAWAIoAowAWAIoApAAeAIoAqgArAIoAsAAfAIoAtgAeAIoAuAAeAIoAuQATAIwAjAAkAI0ALf/xAI0ANAANAI0AOv/RAI0APP/7AI0AQf/wAI0AQv/vAI0ARP/eAI0AR//2AI0AUQANAI0AWAADAI0AWgAEAI0AYQAHAI0AY//oAI0Acf/jAI0AdP/9AI0Ag//oAI0Ahv/lAI0Amf/nAI0Apf/zAI0AqgAPAI0AswAHAI0AtAAHAI0Atv/7AI0AuP/8AI0Auf/tAI0AvP/7AI4AA//oAI4AIP/7AI4AKP+8AI4ALf/rAI4ANAAFAI4AOv/cAI4APP/mAI4AQf/XAI4AQv/WAI4ARP/TAI4AUf/pAI4AVf/vAI4AYv/9AI4AY//8AI4Acf/9AI4AdP/2AI4Ag//5AI4Ahv/5AI4Amf/8AI4Ao//rAI4ApP/rAI4AqgAIAI4Atv/qAI4AuP/qAI4Auf/qAI4Au//9AI4AwQADAI4Aw//zAI4A0//nAI4A1P/hAI4A1v/mAJIAfP/uAJIAn//3AJIAv//0AJIAxf/xAJUALf/7AJUAOf/7AJUAOv+vAJUAPP/0AJUAQf/MAJUAQv/LAJUAQ//5AJUARP+8AJUARv/4AJUAUf/xAJUAVf/fAJUAsP/8AJUAtv/xAJUAuP/yAJUAuf/2AJUAw//+AJUA0//4AJUA1P/2AJUA1v/4AJYAOv/YAJYAQf/hAJYAQv/hAJYARP/UAJYAVf/dAJYAZP/mAJYAuf/tAJYAv//6AJgAfP/8AJkAG//7AJkAIP/3AJkAIf/xAJkAK//vAJkAOf/1AJkAOv+mAJkAPP/1AJkAQf/DAJkAQv/BAJkAQ//ZAJkARP+vAJkARv/uAJkAUf/lAJkAVf/aAJkAdP/8AJkApP/8AJkAqv/vAJkAsP/6AJkAtv/kAJkAuP/oAJkAuf/qAJkAvP/9AJkAwf/pAJkAw//4AJkA0//wAJkA1P/sAJkA1f/rAJkA1v/vAJkA2v/2AJ8AKP/yAJ8AKwALAJ8AOv/WAJ8APP/8AJ8AQf/aAJ8AQv/ZAJ8AQwAIAJ8ARP/SAJ8AVf/YAJ8AZP/qAJ8AcP/8AJ8Ahv/5AJ8Akv/uAJ8AmAAGAJ8Arf/uAJ8Auf/sAJ8Av//8AJ8AwQAWAKUAUf/7AKkAIQAGAKkAKwAPAKkALf/xAKkAMwAJAKkAOgAEAKkAQQARAKkAQgARAKkAQwASAKkARAATAKkAY//vAKkAcf/yAKkAdP/5AKkAiQAJAKkAigArAKkAiwARAKkAjAAUAKkAmf/wAKkAwP/5AKkAwQAZAKkAyv/8AKkA0//zAKkA1P/yAKkA1QAKAKkA1v/7AKkA2//xAKwALf/3AKwAOv/BAKwAPP/yAKwAQf/AAKwAQv++AKwARP+4AKwAY//9AKwAdP/7AKwAtv+AAKwAuP+FAKwAuf+JAKwAv//nAKwAwQADAKwAw//5AKwA0//cAKwA1P/WAKwA1v/aAK0Abf/9AK0AfP/oAK0An//8AK0Av//3AK0Axf/4AK0AyP/8AK8ALf/7AK8AOf/9AK8AOv/JAK8APP/3AK8AQf/XAK8AQv/UAK8AQ//3AK8ARP/GAK8ARv/5AK8AYQAKAK8AjAB4AK8AswAKAK8AtAAKAK8AvgAFALEAG//3ALEAIP/6ALEAIf/rALEAK//3ALEALf/3ALEAOf/3ALEAOv/XALEAPP/3ALEAQf/aALEAQv/aALEAQ//4ALEARP/QALEARv/3ALEAR//1ALEAY//2ALEAcf/1ALEAdP/3ALEAhf/4ALEAh//4ALEAjABSALEAjv/3ALEAlf/4ALEAmf/2ALEAvP/1ALEAwf/4ALEAw//3ALEAyv/3ALEA0//sALEA1P/pALEA1f/5ALEA1v/1ALEA2v/4ALIAA//yALMAjAAXALQAjAAXALYAIf+vALYAK//LALYALf/9ALYAR//7ALYAY//eALYAcf/bALYAdP/9ALYAiQAKALYAigAYALYAmf/wALYArP+LALYAvP/8ALYAwf+qALgAA//rALgAIf+vALgAK//JALgALf/9ALgANP+qALgAR//7ALgAUv/qALgAY//dALgAcf/aALgAdP/9ALgAg//xALgAiQALALgAigAVALgAmf/vALgArP+KALgAvP/8ALgAwf+pALkAA//pALkAIf+wALkAK//FALkALf/6ALkANP+kALkAR//8ALkAUv/lALkAY//RALkAcf/VALkAdP/9ALkAev/wALkAfP+zALkAg//zALkAiQAKALkAigATALkAlv/zALkAmf/qALkArP+JALkAvP/1ALkAwf+mALkAxf/8ALkA2//7ALoAA//sALoAIP/8ALoAIf+2ALoAK//TALoANP/cALoAOf/8ALoAOv/TALoAQf/0ALoAQv/zALoAQ//cALoARP/jALoARv/sALoAR//4ALoAUv/7ALoAY//zALoAcf/pALoAg//nALoAhP/5ALoAhv/vALoAmf/yALoAqv/2ALoArP/SALoAvP/+ALoAwf/JALwAG//8ALwAIP/6ALwAK//3ALwALf/7ALwAOv+5ALwAPP/1ALwAQf/RALwAQv/OALwAQ//3ALwARP/AALwARv/+ALwAUf/8ALwAVf/mALwAdP/8ALwAhv/8ALwAtv/9ALwAuP/9ALwAw//9ALwA0//4ALwA1P/0ALwA1f/6ALwA1v/0AL4AjAATAL8AIf/PAL8AKP/vAL8AK//cAL8ANP/OAL8AOgAFAL8ARv/7AL8AX//wAL8AZAADAL8AcP/7AL8Aev/xAL8AfP/TAL8Ahv/oAL8Akv/xAL8ArP/GAL8Arf/7AL8AvwAHAL8Awf/OAMAAK//yAMAAOv/8AMAAQf/yAMAAQv/yAMAARP/tAMAAwf/vAMAAxf/4AMMAIP/9AMMALf/3AMMAOv/bAMMAPP/0AMMAQf/eAMMAQv/cAMMARP/LAMMAVf/uAMMAY//4AMMAcf/3AMMAdP/9AMMAg//3AMMAhv/5AMMAmf/4AMMAtv/9AMMAuP/9AMMAuf/5AMMAw//9AMMA0//9AMMA1P/9AMMA1v/9AMUAOv/hAMUAQf/oAMUAQv/nAMUAQwALAMUARP/bAMUAVf/iAMUAZP/xAMUAuf/7AMUAv//8AMUAwQAUAMgAOv/iAMgAQf/pAMgAQv/oAMgARP/dAMgAVf/lAMgAwQALAMoAG//7AMoALf/3AMoAOv+6AMoAPP/1AMoAQf/VAMoAQv/TAMoARP+8AMoARv/+AMoAUf/5AMoAVf/kAMoAtv/5AMoAuP/4AMoAw//8AMoA0//7AMoA1P/5AMoA1v/8ANMAA//mANMAG//8ANMAIf/CANMAK//hANMANP/iANMAOv/QANMAQf/zANMAQv/yANMAQ//iANMARP/eANMARv/wANMAR//0ANMAUQANANMAUv/9ANMAVf/1ANMAY//xANMAcf/nANMAg//tANMAhv/xANMAmf/wANMApAAEANMAqv/zANMArP/cANMAvP/zANMAwf/NANQAA//kANQAG//8ANQAIf+3ANQAK//dANQALf/9ANQANP/cANQAOf/8ANQAOv/RANQAQf/0ANQAQv/zANQAQ//gANQARP/gANQARv/wANQAR//yANQAUQAQANQAUv/9ANQAVf/0ANQAY//tANQAcf/iANQAg//oANQAhv/tANQAmf/sANQApAAFANQAqv/yANQArP/WANQAvP/wANQAwf/KANUALf/0ANUANAAJANUAOv/UANUAPP/8ANUAQf/zANUAQv/yANUARP/hANUAR//3ANUAUQARANUAY//tANUAcf/mANUAdP/9ANUAg//oANUAhv/oANUAmf/rANUAqgAKANUAvP/7ANYAA//nANYAG//8ANYAIP/+ANYAIf/EANYAK//hANYANP/lANYAOf/9ANYAOv/NANYAQf/vANYAQv/uANYAQ//fANYARP/aANYARv/vANYAR//0ANYATf/9ANYAUv/8ANYAVf/zANYAY//wANYAcf/nANYAg//tANYAhv/xANYAmf/vANYAqv/zANYArP/dANYAvP/yANYAwf/OANoAG//9ANoAIP/8ANoALf/7ANoAOv/GANoAPP/3ANoAQf/jANoAQv/iANoARP/PANoAVf/zANoAY//3ANoAcf/zANoAg//2ANoAhv/zANoAmf/3ANsAIf/2ANsAK//xANsANP/4ANsAOv/cANsAQf/jANsAQv/hANsAQ//zANsARP/WANsARv/7ANsAVf/eANsAZP/yANsAqv/xANsAuf/7ANsAv//5ANsAwf/sAAAAAAAHAFoAAwABBAkAAQAOAAAAAwABBAkAAgAIAA4AAwABBAkAAwCEABYAAwABBAkABAAYAJoAAwABBAkABQBcALIAAwABBAkABgAYAQ4AAwABBAkADgA0ASYAUgBhAGwAZQB3AGEAeQBCAG8AbABkAE0AYQB0AHQATQBjAEkAbgBlAHIAbgBlAHkALABQAGEAYgBsAG8ASQBtAHAAYQBsAGwAYQByAGkALABSAG8AZAByAGkAZwBvAEYAdQBlAG4AegBhAGwAaQBkAGEAOgAgAFIAYQBsAGUAdwBhAHkAIABCAG8AbABkADoAIAAyADAAMQAyAFIAYQBsAGUAdwBhAHkAIABCAG8AbABkAFYAZQByAHMAaQBvAG4AIAAyAC4AMAAwADEAOwAgAHQAdABmAGEAdQB0AG8AaABpAG4AdAAgACgAdgAwAC4AOAApACAALQBHACAAMgAwADAAIAAtAHIAIAA1ADAAUgBhAGwAZQB3AGEAeQAtAEIAbwBsAGQAaAB0AHQAcAA6AC8ALwBzAGMAcgBpAHAAdABzAC4AcwBpAGwALgBvAHIAZwAvAE8ARgBMAAIAAAAAAAD/tQAyAAAAAAAAAAAAAAAAAAAAAAAAAAAA3AAAAQIAAgADAI0AyQDHANgAYgCOAK0AQwDaAGMA3QCuANkAJQAmAGQA3gAnACgAZQDIAMoAywDpAQMAKQAqACsALAAtAMwAzQDOAM8ALgAvAMMAMAAxACQAZgAyALAA0ADRAGcA0wCRABIArwAzADQANQA2ADcA7QA4ANQA1QBoANYAOQA6ADsAPADrAD0ARABpAGsAbACgAGoACQBuAEEAYQANACMAbQBFAD8AXwBeAGAAPgBAAOgAhwBGAG8AhAAdAA8AiwBHAIMAuAAHANcASABwAHIAcwBxABsAswCyACAA6gAEAKMASQEEAQUBBgEHAQgAGAC8ABcBCQBKAIkAIQCpAKoAvgC/AEsAEABMAHQAdgB3AHUATQBOAE8AHwCkAFAA7wCXAPAAUQAcAHgABgBSAHkAewB8ALEAegAUAPEA9AD1AJ0AngChAH0AUwCIAAsADAAIABEADgCTAFQAIgCiAAUAxQDEALQAtgC1ALcACgBVAIoAVgCGAB4AGgAZAJAAhQBXAO4AFgDzAPYAFQDyAFgAfgCAAIEAfwBCAQoBCwEMAFkAWgBbAFwA7AC6AJYAXQATBE5VTEwERXVybwNmX2YFZl9mX2kFZl9mX2wDZl9pA2ZfbAxmb3Vyc3VwZXJpb3IHdW5pMDBBMAd1bmkwMEFEB3VuaTIyMTUAAAAAAQAB//8ADwABAAAACgAeACwAAWxhdG4ACAAEAAAAAP//AAEAAAABa2VybgAIAAAAAQAAAAEABAACAAAAAQAIAAEA2gAEAAAAaAGuAegCUgKwAyYDdAN6BCwEXgSIBN4E5AV6BfwGFgbYB1YHdAf+CHAIqgkkCY4KZArSCywMAgzgDXYOXA6yDxAPYg+4D9YQVBCqELwQ2hEAEXIReBoQEYoRuBHSEdwSShJoEnoS5BLqE2QTahNwE3YTpBOqE+wUFhSIFJoU7BU+FZgVshXIFgYWTBZSFrwXOhdMF5oXvBfCGDgYghiIGO4ZNBlOGYgaChoQGhAaFhpMGpIa7BtOG6gbrhv0HBIcaBySHKwc7h1UHcIeCB5yHqwAAQBoAAMAEQASABUAFgAcAB0AHgAgACEAJAAmACcAKAArAC0AMwA0ADYANwA4ADkAOgA7ADwAQQBCAEMARABGAEcATQBRAFIAVABVAFYAVwBZAF0AXgBgAGEAYwBkAGYAaABtAHAAcQBzAHQAdQB2AHgAegB7AHwAfgB/AIMAhACFAIYAhwCIAIkAigCMAI0AjgCSAJUAlgCYAJkAnwClAKkArACtAK8AsQCyALMAtAC2ALgAuQC6ALwAvgC/AMAAwwDFAMgAygDTANQA1QDWANoA2wAOACH/4wAr/+EAOv/kAEH/3QBC/90AQ//8AET/2wCy//IAuP/qALn/6QDB/90A0//mANT/5ADW/+UAGgAh//kAK//yADr/6wBB/+wAQv/rAEP/8gBE/+MARv/+AGP//QBx//wAdP/0AIkACgCKAAwAlf/9AJn//QC8//kAv//7AMH/9QDD//UAxf/9AMr//QDT//cA1P/1ANX/8wDW//YA2v/7ABcAK//2AC3/+AA5//4AOv/8AEH/9QBC//UAQ//6AET/7wBRABEAY//7AHH/+wB0//gAiQASAIoAHwCV//0Amf/7ALz/+gDB//gAw//7AMr//QDU//0A1v/8ANr//AAdABv/+gAh/+MAK//nADT/6wA5//wAOv/qAEH/6ABC/+YAQ//kAET/2QBG//MAR//4AFX/8QBx//sAfP/9AIX//QCH//0Alf/7AKr/9ACs//gAtv/9ALn//AC8//sAwf/ZAMr//QDU//0A1f/2ANb/+wDa//sAEwAt//QAOf/3AEf//QBj//IAcf/yAHT/8gCD//oAhv/5AIkAEgCKABsAlf/+AJn/8gC8//4Av//5AMP/9gDK//cA0//2ANT/8gDW//EAAQDF//0ALAAD/+kAIf+gACv/xwAt//IANP/LADn/7wBH/9cAUQAPAFL//QBg//oAY//lAGf/6wBx/9sAdP/zAHX/9gB2//YAd//2AHr/8wB8/94Af//7AIP/9wCE//gAhv/2AIj/+ACJACUAigAtAIsADQCV/+sAmf/lAJ//+gCqAAQArP/LALz/3wC///cAwf+jAMP//ADF//cAyP/1AMr/7gDT//YA1P/1ANX/8wDW//UA2v/rAAwAOv/uAEH/6QBC/+gARP/gAFX/+ABx//0AdP/6ALn//ADD//kA0//0ANT/8gDW//QACgBH//kAY//4AHH/9QB0//gAigAMAJn/9wC8//oAw//4ANb//QDa//wAFQAh//EAK//vADT/9gBH//YAY//3AHH/9AB0//kAhf/9AIf//QCJAAkAigARAI7//QCV//sAmf/3AKz//AC8//QAwf/oAMP/+gDK//sA1f/8ANr/+gABAFYABwAlAAP/8wAhAAQALf/bADP/8gA0ABYAOf/2AEf/+wBRABEAVQAKAFgADABaAA0AYQANAGL/8QBj/+EAcf/kAHT/7QB8ABcAg//0AIQABACG/+kAiQAKAIoANgCLABUAmf/gAKX/8QCqABcAswANALQADQC7//EAvgAHAMP/7gDIAA8Ayv/wANP/2gDU/9cA1v/bANv//QAgAAP/5QAo/4IALf/kADn//gA6/5wAPP/jAEH/pgBC/6EARP+YAFH/mwBV/68AYv/2AGP/9QBx//gAdP/vAIP/6wCG/+IAmf/2AKP/ngCk/50AsP/4ALb/nAC4/50Auf+eALv/9gC///wAwQAKAMP/6gDK//sA0//HANT/uwDW/8MABgB8//cAjv/dAJ//9wC///MAxf/sAMj/+wAwAAP/4QAb//4ALf/mADP/9wA0AA0AOf/4ADr/vgA8/+QAQf/JAEL/yABE/7sAR//4AE3/8wBR/8cAUv/8AFX/xgBaAAMAYQAEAGL/7QBj/+8Abf/zAHH/8QB0/+8AfAANAIP/9ACG//QAjv/7AJn/7wCj/9cApP/TAKoADgCw//QAswAEALQABAC2/8QAuP/FALn/xQC7/+0AvP/9AL//9QDA//EAw//lAMgABgDK//UA0//hANT/3QDW/98A2//xAB8AG//5ACH/4wAr/+YANP/rADn//AA6/+gAQf/nAEL/5QBD/+QARP/YAEb/8QBH//gAUf/9AFX/7wBx//sAfP/8AIX//QCH//sAlf/7AKr/8gCs//cAtv/9ALj//QC5//oAvP/7AMH/1wDK//0A1P/9ANX/9ADW//4A2v/7AAcAQf/3AEL/9gBD//QARP/wAFEADwBVAAcAqgAKACIAIf+2ACv/wwAt/+sANP74ADn/9wBBAA4AQgAPAEMAEABEABEAR//iAGP/2gBt//gAcf/cAHT/9AB6/9wAfP+0AIoAJgCLAAUAlf/pAJb/4QCZ/9oAn//qALz/3QDA//AAwf+hAMX/5wDI/+kAyv/qANP/8ADU//AA1f/2ANb/8QDa//AA2//ZABwAA//lACH/qQAr/80ANP/GADr//gBB//QAQv/0AEP/7ABE//AARv/5AEf/9gBj//QAcf/oAHr/9wB8/94Ag//0AIb/9ACJAAsAigAWAJn/8wCq//UArP+/ALz/9wDB/6kA0wAHANQACQDVAAUA1gAMAA4AIf/2ACv/+QA0AA8AQ//1AFgABgBaAAcAYQAHAHwAEQCqABEAswAHALQABwDB//MAyAAJANb/+wAeABv/+wAr//wALf/4ADQABgA6/+8APP/5AEH/5QBC/+QARP/dAEf/9ABV//IAY//rAHH/5QB0//cAfAAHAIP/9ACF//sAhv/9AIf/+QCO//cAlf/5AJn/6gCqAAcAuP/7ALz//gDD//YAyv/1ANP/+ADU//YA1v/3ABoAK//yADr//ABB//EAQv/xAEP/9wBE/+0AR//9AHH//QB0//MAhf/9AIf//QCJABAAigAXAI7//QCV//sAo//8ALz/+QC///wAwf/5AMP/8gDK//sA0//sANT/6gDV//UA1v/sANr/+gA1AAP/5AAh/6IAK/++AC3/6QA0/8oAOf/5AEf/sABN//wAUQATAFL/1QBT/8EAYP/rAGL/9QBj/6kAZ//NAG3//QBx/68AdP/hAHX/8AB2//AAd//WAHj/9AB6/9wAfP/FAH//9wCD/8wAhP/oAIb/wwCI//MAiQAlAIoALgCLAA0Alf/NAJb/2gCZ/6cAn//hAKoABACs/8EAu//1ALz/qwC///AAwP/5AMH/qwDD//wAxf/pAMj/6wDK/70A0//RANT/0QDV/9QA1v/TANr/xADb/90AGwAb//wAIf/gACv/5QA0/+QAOf/8ADr/3ABB/+EAQv/gAEP/1QBE/8oARv/uAEf//ABR//AAVf/kAFj/9wBa//YAhv/9AKr/7ACs/+sAsP/8ALb/5wC4/+oAuf/iAMH/0ADU//4A1f/4ANb/+gAWACH/5AAr/+UANP/rAEf/8wBj//UAcf/yAHT/+QB8//wAhf/6AIf/+gCJAAsAigAUAI7/+gCV//cAmf/1AKz/8gC8//IAwf/UAMP/+wDK//gA1f/8ANr/9wA1AAP/3QAb//4AIf+uACv/yQAt/+YANP/EADn/7QBH/8sATf/vAFEAGABS/90AU//gAFUADQBaAAMAYP/vAGL/7QBj/8YAZ//XAG3/8QBx/78AdP/lAHr/4AB8/8gAf//qAIP/2QCE/+oAhv/bAIj/7QCJAB4AigA5AIsAGQCV/9cAlv/mAJn/xACf/+4AqgAPAKz/wQC2AAQAuAAFALv/7QC8/8wAwP/vAMH/qwDD//QAxf/uAMj/7gDK/9oA0//yANT/9ADV//MA1v/0ANr/5QDb/+MANwAD/90AG//+ACH/rgAr/8gALf/lADT/wQA5/+wAR//LAEr/4ABN/+8AUQAWAFL/3ABT/+AAVQAPAFgABABaAAUAYP/uAGL/7QBj/8IAZ//WAG3/8QBx/7wAdP/jAHr/3wB8/8cAf//qAIP/2ACE/+kAhv/ZAIj/7QCJAB4AigA8AIsAGwCV/9YAlv/kAJn/wQCf/+0AqgARAKz/vgC2AAYAuAAGALv/7QC8/8kAwP/vAMH/qQDD//QAxf/uAMj/7gDK/9gA0//yANT/8wDV//IA1v/0ANr/5ADb/+MAJQAD//wALf/jADP/8wA0AAoAOf/5AEf/9gBRABcAVQAQAFgABQBaAAYAYv/yAGP/2wBn//kAcf/cAHT/6wB8AAwAf//6AIP/8ACG/+cAiP/5AIkAFACKADwAiwAbAJX/9wCZ/9kApf/qAKoAEgC2AAcAuAAHALv/8gDD//IAyAADAMr/6gDT/+IA1P/gANb/4wDb//QAOQAD/9oAG//+ACH/pwAr/7sALf/ZADT/wQA5/+YAR/+zAEr/4wBN/+oAUQAYAFL/zwBT/94AVQARAFgABwBaAAcAYP/kAGL/5ABj/7EAZ//GAGv/0QBt/+sAcf+uAHT/2QB6/9gAfP+9AH//4QCD/8YAhP/bAIb/xgCI/+gAiQAaAIoAPgCLAB4Alf/GAJb/2ACZ/68AnP/RAJ//4QCqABQArP+3ALYACQC4AAoAu//kALz/rgDA/+gAwf+cAMP/7QDF/+QAyP/kAMr/yADT/98A1P/gANX/4QDW/+MA2v/SANv/1gAVAC3/8gBH//sAYv/7AGP/8QBn//0Acf/zAHT/8ACD//wAhv/5AIkAEwCKABsAlf/4AJn/8QC7//sAvP/9AMP/9ADK//QA0//xANT/8gDW//IA2//9ABcAG//9ACD//QAt//cAOf/+ADr/qgA8//EAQf/JAEL/xwBE/68ARv/+AFH/5ABV/9EAdP/9AKP/9wCk//EAsP/7ALb/4QC4/+UAuf/nAMP/9wDT/+sA1P/mANb/7AAUACEADwArACAAMwAaADr/1gA8//cAQf/XAEL/1QBDAB8ARP/NAEYACAClAAsAuP/dALn/2wC8AAgAwQAwANP/8ADU/+0A1QAcANb/7wDaAAkAFQAh/68AK//HAC3//QA6ABMAQQAEAEIAFgBDABcARAAXAEf/+QBj/94Acf/WAHT//QCJACkAigAxAIsACwCZ/+UAvP/uAMH/pwDTAA0A1AAQANUAEQAHACv/9QA6/9YAQf/eAEL/3QBE/9AAuP/lALn/5gAfABv/+wAg//gAIf/xACv/8AA5//YAOv+pADz/9QBB/8UAQv/CAEP/2wBE/7IARv/uAFH/3gBV/9oAdP//AKP//QCk//QAqv/vAKz//QCw//kAtv/TALj/2AC5/9EAvP/9AMH/6wDD//kA0//wANT/7QDV/+0A1v/wANr/9wAVACEABQArAAwALf/uADMABwA6/8sAPP/tAEH/xgBC/8MAQwAKAET/wwC4/68Auf+uAL//+QDA//kAwQAXAMP/9wDT/+QA1P/dANUACQDW/+EA2//5AAQAJAAHAIkABQCKAA4AjABEAAcAQgAEAEMABQBEAAYAiQAUAIoAHACMABYAwQANAAkAKwADAEEABABCAAUAQwAGAEQABgCJABQAigAcAIwAGgDBAA4AHAAb//0AK//6AC3/+wA5//gAOv+wADz/+ABB/8sAQv/LAEP/9wBE/7sARv/9AFH/8gBV/+MAY//6AHH/+QCD//sAhv/4AJn/+gCw//0Atv/yALj/9AC5//wAvP/7AMH//QDT//kA1P/3ANX//ADW//YAAQCMAA4ABAA6/+sAQf/vAEL/7gBE/+QACwAb//sALf/3ADr/9gA8//UAQf/3AEL/9wBE//YAw//8ANP/+wDU//kA1v/8AAYAev/tAHz/rgCW/+oAn//7AMX/+QDb//IAAgC///wAxf/1ABsAG//8ACD/+QAh//MAK//yADn/9wA6/6QAPP/4AEH/yABC/8YAQ//lAET/owBG/+8AUf/oAFX/2wCk//0Aqv/yALD/+gC2/+gAuP/rALn/7QDB/+wAw//7ANP/8gDU/+4A1f/sANb/8ADa//kABwAr//MAOv/8AEH/8QBC//EARP/rAK3//QDB//EABAB8//wAn//6AL//9wDF//YAGgAb//wAIP/4ACH/7gAr/+4ANP/3ADn/9wA6/+cAPP/3AEH/5gBC/+UAQ//jAET/3wBG/+wAUf/6AFX//QCq//wAtv/7ALj/+wC5//sAwf/mAMP//wDT//YA1P/zANX/8QDW//QA2v/6AAEAigAIAB4AA//vACH/yQAr/9sANP/pADn//QA6AB8AQQAsAEIALQBDADEARAAwAEYABABH//gAUQANAFUAFgBYAAgAWgAJAGP//QBx//IAg//1AIb/8wCJACgAigBGAIsAIACZ//0AqgAdAKz/4wC2AAcAuAAHAMH/0gDa//4AAQCKAAMAAQCKAAYAAQCKAAcACwAo//sAKwAKADr/7ABB//EAQv/xAET/6gBV//IAhv/7AJL//ACt//QAwQAJAAEAfP/kABAAKP/zACsACAA6/90AQf/hAEL/4ABDAAUARP/ZAFX/4ABhAAcAZP/yAIb//ACS//QArf/xALn/9QC///sAwQATAAoALf/7ADn//QA6/8kAPP/3AEH/1wBC/9QAQ//3AET/xgBG//kAjAAhABwAG//7ACD/9wAh//wAK//0AC3/+gA5//kAOv/lADz/8wBB/90AQv/dAEP/5wBE/9QARv/2AFH/9wBV//QAdP/6AKP//QC2//cAuP/2ALn/9gC8//0Awf/zAMP/9wDT//AA1P/uANX/8ADW/+8A2v/6AAQAOv/oAEH/6gBC/+kARP/aABQAG//9ACH/9AAr//QAOv/MAEH/2ABC/9gAQ//wAET/xgBG//sAdP/8ALj/6gC5//MAvP/8AMH/7QDD//wA0//tANT/6ADV/+gA1v/tANr/9gAUAC3/+wA5//sAOv+vADz/9ABB/8wAQv/LAEP/+QBE/7oARv/4AFH/5wBV/98ApP/8ALD/+wC2/98AuP/hALn/2ADD//4A0//4ANT/9gDW//gAFgAh/+UAK//0ADr/wgBB/9sAQv/ZAEP/5wBE/8YARv/5AHT//QB8//gAn//2ALz//QC///IAwf/wAMP//QDF/98AyP/9ANP/8QDU/+0A1f/oANb/8ADa//IABgAt//wAOf/9ADz/+gBG//oAiQAMAIoAFAAFAFEABgBVAAYAqgARALYABQC4AAUADwBRACkAVgAFAFgAFABaABQAfwAFAIUADACHAAwAjgANAKMABgCkABEAqgAJALAAEQC2ABUAuAAVALkACgARAFEAMQBVACcAVgAOAFgAHABaABwAcgAIAH8ADQCFABQAhwAUAI4AFgCjABYApAAeAKoAKwCwAB8AtgAeALgAHgC5ABMAAQCMACQAGgAt//EANAANADr/0QA8//sAQf/wAEL/7wBE/94AR//2AFEADQBYAAMAWgAEAGEABwBj/+gAcf/jAHT//QCD/+gAhv/lAJn/5wCl//MAqgAPALMABwC0AAcAtv/7ALj//AC5/+0AvP/7AB8AA//oACD/+wAo/7wALf/rADQABQA6/9wAPP/mAEH/1wBC/9YARP/TAFH/6QBV/+8AYv/9AGP//ABx//0AdP/2AIP/+QCG//kAmf/8AKP/6wCk/+sAqgAIALb/6gC4/+oAuf/qALv//QDBAAMAw//zANP/5wDU/+EA1v/mAAQAfP/uAJ//9wC///QAxf/xABMALf/7ADn/+wA6/68APP/0AEH/zABC/8sAQ//5AET/vABG//gAUf/xAFX/3wCw//wAtv/xALj/8gC5//YAw//+ANP/+ADU//YA1v/4AAgAOv/YAEH/4QBC/+EARP/UAFX/3QBk/+YAuf/tAL//+gABAHz//AAdABv/+wAg//cAIf/xACv/7wA5//UAOv+mADz/9QBB/8MAQv/BAEP/2QBE/68ARv/uAFH/5QBV/9oAdP/8AKT//ACq/+8AsP/6ALb/5AC4/+gAuf/qALz//QDB/+kAw//4ANP/8ADU/+wA1f/rANb/7wDa//YAEgAo//IAKwALADr/1gA8//wAQf/aAEL/2QBDAAgARP/SAFX/2ABk/+oAcP/8AIb/+QCS/+4AmAAGAK3/7gC5/+wAv//8AMEAFgABAFH/+wAZACEABgArAA8ALf/xADMACQA6AAQAQQARAEIAEQBDABIARAATAGP/7wBx//IAdP/5AIkACQCKACsAiwARAIwAFACZ//AAwP/5AMEAGQDK//wA0//zANT/8gDVAAoA1v/7ANv/8QARAC3/9wA6/8EAPP/yAEH/wABC/74ARP+4AGP//QB0//sAtv+AALj/hQC5/4kAv//nAMEAAwDD//kA0//cANT/1gDW/9oABgBt//0AfP/oAJ///AC///cAxf/4AMj//AAOAC3/+wA5//0AOv/JADz/9wBB/9cAQv/UAEP/9wBE/8YARv/5AGEACgCMAHgAswAKALQACgC+AAUAIAAb//cAIP/6ACH/6wAr//cALf/3ADn/9wA6/9cAPP/3AEH/2gBC/9oAQ//4AET/0ABG//cAR//1AGP/9gBx//UAdP/3AIX/+ACH//gAjABSAI7/9wCV//gAmf/2ALz/9QDB//gAw//3AMr/9wDT/+wA1P/pANX/+QDW//UA2v/4AAEAA//yAAEAjAAXAA0AIf+vACv/ywAt//0AR//7AGP/3gBx/9sAdP/9AIkACgCKABgAmf/wAKz/iwC8//wAwf+qABEAA//rACH/rwAr/8kALf/9ADT/qgBH//sAUv/qAGP/3QBx/9oAdP/9AIP/8QCJAAsAigAVAJn/7wCs/4oAvP/8AMH/qQAWAAP/6QAh/7AAK//FAC3/+gA0/6QAR//8AFL/5QBj/9EAcf/VAHT//QB6//AAfP+zAIP/8wCJAAoAigATAJb/8wCZ/+oArP+JALz/9QDB/6YAxf/8ANv/+wAYAAP/7AAg//wAIf+2ACv/0wA0/9wAOf/8ADr/0wBB//QAQv/zAEP/3ABE/+MARv/sAEf/+ABS//sAY//zAHH/6QCD/+cAhP/5AIb/7wCZ//IAqv/2AKz/0gC8//4Awf/JABYAG//8ACD/+gAr//cALf/7ADr/uQA8//UAQf/RAEL/zgBD//cARP/AAEb//gBR//wAVf/mAHT//ACG//wAtv/9ALj//QDD//0A0//4ANT/9ADV//oA1v/0AAEAjAATABEAIf/PACj/7wAr/9wANP/OADoABQBG//sAX//wAGQAAwBw//sAev/xAHz/0wCG/+gAkv/xAKz/xgCt//sAvwAHAMH/zgAHACv/8gA6//wAQf/yAEL/8gBE/+0Awf/vAMX/+AAVACD//QAt//cAOv/bADz/9ABB/94AQv/cAET/ywBV/+4AY//4AHH/9wB0//0Ag//3AIb/+QCZ//gAtv/9ALj//QC5//kAw//9ANP//QDU//0A1v/9AAoAOv/hAEH/6ABC/+cAQwALAET/2wBV/+IAZP/xALn/+wC///wAwQAUAAYAOv/iAEH/6QBC/+gARP/dAFX/5QDBAAsAEAAb//sALf/3ADr/ugA8//UAQf/VAEL/0wBE/7wARv/+AFH/+QBV/+QAtv/5ALj/+ADD//wA0//7ANT/+QDW//wAGQAD/+YAG//8ACH/wgAr/+EANP/iADr/0ABB//MAQv/yAEP/4gBE/94ARv/wAEf/9ABRAA0AUv/9AFX/9QBj//EAcf/nAIP/7QCG//EAmf/wAKQABACq//MArP/cALz/8wDB/80AGwAD/+QAG//8ACH/twAr/90ALf/9ADT/3AA5//wAOv/RAEH/9ABC//MAQ//gAET/4ABG//AAR//yAFEAEABS//0AVf/0AGP/7QBx/+IAg//oAIb/7QCZ/+wApAAFAKr/8gCs/9YAvP/wAMH/ygARAC3/9AA0AAkAOv/UADz//ABB//MAQv/yAET/4QBH//cAUQARAGP/7QBx/+YAdP/9AIP/6ACG/+gAmf/rAKoACgC8//sAGgAD/+cAG//8ACD//gAh/8QAK//hADT/5QA5//0AOv/NAEH/7wBC/+4AQ//fAET/2gBG/+8AR//0AE3//QBS//wAVf/zAGP/8ABx/+cAg//tAIb/8QCZ/+8Aqv/zAKz/3QC8//IAwf/OAA4AG//9ACD//AAt//sAOv/GADz/9wBB/+MAQv/iAET/zwBV//MAY//3AHH/8wCD//YAhv/zAJn/9wAPACH/9gAr//EANP/4ADr/3ABB/+MAQv/hAEP/8wBE/9YARv/7AFX/3gBk//IAqv/xALn/+wC///kAwf/sAAAAAQAAAAoAHgAsAAFsYXRuAAgABAAAAAD//wABAAAAAWxpZ2EACAAAAAEAAAABAAQABAAAAAEACAABADYAAQAIAAUADAAUABwAIgAoAHYAAwB0AIcAdwADAHQAjgB1AAIAdAB4AAIAhwB5AAIAjgABAAEAdA==) format('truetype');
+}
+html{font-family:sans-serif;-ms-text-size-adjust:100%;-webkit-text-size-adjust:100%}body{margin:0}article,aside,details,figcaption,figure,footer,header,hgroup,main,menu,nav,section,summary{display:block}audio,canvas,progress,video{display:inline-block;vertical-align:baseline}audio:not([controls]){display:none;height:0}[hidden],template{display:none}a{background-color:transparent}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:bold}dfn{font-style:italic}h1{font-size:2em;margin:0.67em 0}mark{background:#ff0;color:#000}small{font-size:80%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-0.5em}sub{bottom:-0.25em}img{border:0}svg:not(:root){overflow:hidden}figure{margin:1em 40px}hr{-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box;height:0}pre{overflow:auto}code,kbd,pre,samp{font-family:monospace, monospace;font-size:1em}button,input,optgroup,select,textarea{color:inherit;font:inherit;margin:0}button{overflow:visible}button,select{text-transform:none}button,html input[type="button"],input[type="reset"],input[type="submit"]{-webkit-appearance:button;cursor:pointer}button[disabled],html input[disabled]{cursor:default}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}input{line-height:normal}input[type="checkbox"],input[type="radio"]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;padding:0}input[type="number"]::-webkit-inner-spin-button,input[type="number"]::-webkit-outer-spin-button{height:auto}input[type="search"]{-webkit-appearance:textfield;-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box}input[type="search"]::-webkit-search-cancel-button,input[type="search"]::-webkit-search-decoration{-webkit-appearance:none}fieldset{border:1px solid #c0c0c0;margin:0 2px;padding:0.35em 0.625em 0.75em}legend{border:0;padding:0}textarea{overflow:auto}optgroup{font-weight:bold}table{border-collapse:collapse;border-spacing:0}td,th{padding:0}@media print{*,*:before,*:after{background:transparent !important;color:#000 !important;-webkit-box-shadow:none !important;box-shadow:none !important;text-shadow:none !important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}abbr[title]:after{content:" (" attr(title) ")"}a[href^="#"]:after,a[href^="javascript:"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}p,h2,h3{orphans:3;widows:3}h2,h3{page-break-after:avoid}.navbar{display:none}.btn>.caret,.dropup>.btn>.caret{border-top-color:#000 !important}.label{border:1px solid #000}.table{border-collapse:collapse !important}.table td,.table th{background-color:#fff !important}.table-bordered th,.table-bordered td{border:1px solid #ddd !important}}@font-face{font-family:'Glyphicons Halflings';src:url(data:application/vnd.ms-fontobject;base64,n04AAEFNAAACAAIABAAAAAAABQAAAAAAAAABAJABAAAEAExQAAAAAAAAAAIAAAAAAAAAAAEAAAAAAAAAJxJ/LAAAAAAAAAAAAAAAAAAAAAAAACgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAAAADgBSAGUAZwB1AGwAYQByAAAAeABWAGUAcgBzAGkAbwBuACAAMQAuADAAMAA5ADsAUABTACAAMAAwADEALgAwADAAOQA7AGgAbwB0AGMAbwBuAHYAIAAxAC4AMAAuADcAMAA7AG0AYQBrAGUAbwB0AGYALgBsAGkAYgAyAC4ANQAuADUAOAAzADIAOQAAADgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzACAAUgBlAGcAdQBsAGEAcgAAAAAAQlNHUAAAAAAAAAAAAAAAAAAAAAADAKncAE0TAE0ZAEbuFM3pjM/SEdmjKHUbyow8ATBE40IvWA3vTu8LiABDQ+pexwUMcm1SMnNryctQSiI1K5ZnbOlXKmnVV5YvRe6RnNMFNCOs1KNVpn6yZhCJkRtVRNzEufeIq7HgSrcx4S8h/v4vnrrKc6oCNxmSk2uKlZQHBii6iKFoH0746ThvkO1kJHlxjrkxs+LWORaDQBEtiYJIR5IB9Bi1UyL4Rmr0BNigNkMzlKQmnofBHviqVzUxwdMb3NdCn69hy+pRYVKGVS/1tnsqv4LL7wCCPZZAZPT4aCShHjHJVNuXbmMrY5LeQaGnvAkXlVrJgKRAUdFjrWEah9XebPeQMj7KS7DIBAFt8ycgC5PLGUOHSE3ErGZCiViNLL5ZARfywnCoZaKQCu6NuFX42AEeKtKUGnr/Cm2Cy8tpFhBPMW5Fxi4Qm4TkDWh4IWFDClhU2hRWosUWqcKLlgyXB+lSHaWaHiWlBAR8SeSgSPCQxdVQgzUixWKSTrIQEbU94viDctkvX+VSjJuUmV8L4CXShI11esnp0pjWNZIyxKHS4wVQ2ime1P4RnhvGw0aDN1OLAXGERsB7buFpFGGBAre4QEQR0HOIO5oYH305G+KspT/FupEGGafCCwxSe6ZUa+073rXHnNdVXE6eWvibUS27XtRzkH838mYLMBmYysZTM0EM3A1fbpCBYFccN1B/EnCYu/TgCGmr7bMh8GfYL+BfcLvB0gRagC09w9elfldaIy/hNCBLRgBgtCC7jAF63wLSMAfbfAlEggYU0bUA7ACCJmTDpEmJtI78w4/BO7dN7JR7J7ZvbYaUbaILSQsRBiF3HGk5fEg6p9unwLvn98r+vnsV+372uf1xBLq4qU/45fTuqaAP+pssmCCCTF0mhEow8ZXZOS8D7Q85JsxZ+Azok7B7O/f6J8AzYBySZQB/QHYUSA+EeQhEWiS6AIQzgcsDiER4MjgMBAWDV4AgQ3g1eBgIdweCQmCjJEMkJ+PKRWyFHHmg1Wi/6xzUgA0LREoKJChwnQa9B+5RQZRB3IlBlkAnxyQNaANwHMowzlYSMCBgnbpzvqpl0iTJNCQidDI9ZrSYNIRBhHtUa5YHMHxyGEik9hDE0AKj72AbTCaxtHPUaKZdAZSnQTyjGqGLsmBStCejApUhg4uBMU6mATujEl+KdDPbI6Ag4vLr+hjY6lbjBeoLKnZl0UZgRX8gTySOeynZVz1wOq7e1hFGYIq+MhrGxDLak0PrwYzSXtcuyhXEhwOYofiW+EcI/jw8P6IY6ed+etAbuqKp5QIapT77LnAe505lMuqL79a0ut4rWexzFttsOsLDy7zvtQzcq3U1qabe7tB0wHWVXji+zDbo8x8HyIRUbXnwUcklFv51fvTymiV+MXLSmGH9d9+aXpD5X6lao41anWGig7IwIdnoBY2ht/pO9mClLo4NdXHAsefqWUKlXJkbqPOFhMoR4aiA1BXqhRNbB2Xwi+7u/jpAoOpKJ0UX24EsrzMfHXViakCNcKjBxuQX8BO0ZqjJ3xXzf+61t2VXOSgJ8xu65QKgtN6FibPmPYsXbJRHHqbgATcSZxBqGiDiU4NNNsYBsKD0MIP/OfKnlk/Lkaid/O2NbKeuQrwOB2Gq3YHyr6ALgzym5wIBnsdC1ZkoBFZSQXChZvlesPqvK2c5oHHT3Q65jYpNxnQcGF0EHbvYqoFw60WNlXIHQF2HQB7zD6lWjZ9rVqUKBXUT6hrkZOle0RFYII0V5ZYGl1JAP0Ud1fZZMvSomBzJ710j4Me8mjQDwEre5Uv2wQfk1ifDwb5ksuJQQ3xt423lbuQjvoIQByQrNDh1JxGFkOdlJvu/gFtuW0wR4cgd+ZKesSV7QkNE2kw6AV4hoIuC02LGmTomyf8PiO6CZzOTLTPQ+HW06H+tx+bQ8LmDYg1pTFrp2oJXgkZTyeRJZM0C8aE2LpFrNVDuhARsN543/FV6klQ6Tv1OoZGXLv0igKrl/CmJxRmX7JJbJ998VSIPQRyDBICzl4JJlYHbdql30NvYcOuZ7a10uWRrgoieOdgIm4rlq6vNOQBuqESLbXG5lzdJGHw2m0sDYmODXbYGTfSTGRKpssTO95fothJCjUGQgEL4yKoGAF/0SrpUDNn8CBgBcSDQByAeNkCXp4S4Ro2Xh4OeaGRgR66PVOsU8bc6TR5/xTcn4IVMLOkXSWiXxkZQCbvKfmoAvQaKjO3EDKwkwqHChCDEM5loQRPd5ACBki1TjF772oaQhQbQ5C0lcWXPFOzrfsDGUXGrpxasbG4iab6eByaQkQfm0VFlP0ZsDkvvqCL6QXMUwCjdMx1ZOyKhTJ7a1GWAdOUcJ8RSejxNVyGs31OKMyRyBVoZFjqIkmKlLQ5eHMeEL4MkUf23cQ/1SgRCJ1dk4UdBT7OoyuNgLs0oCd8RnrEIb6QdMxT2QjD4zMrJkfgx5aDMcA4orsTtKCqWb/Veyceqa5OGSmB28YwH4rFbkQaLoUN8OQQYnD3w2eXpI4ScQfbCUZiJ4yMOIKLyyTc7BQ4uXUw6Ee6/xM+4Y67ngNBknxIPwuppgIhFcwJyr6EIj+LzNj/mfR2vhhRlx0BILZoAYruF0caWQ7YxO66UmeguDREAFHYuC7HJviRgVO6ruJH59h/C/PkgSle8xNzZJULLWq9JMDTE2fjGE146a1Us6PZDGYle6ldWRqn/pdpgHKNGrGIdkRK+KPETT9nKT6kLyDI8xd9A1FgWmXWRAIHwZ37WyZHOVyCadJEmMVz0MadMjDrPho+EIochkVC2xgGiwwsQ6DMv2P7UXqT4x7CdcYGId2BJQQa85EQKmCmwcRejQ9Bm4oATENFPkxPXILHpMPUyWTI5rjNOsIlmEeMbcOCEqInpXACYQ9DDxmFo9vcmsDblcMtg4tqBerNngkIKaFJmrQAPnq1dEzsMXcwjcHdfdCibcAxxA+q/j9m3LM/O7WJka4tSidVCjsvo2lQ/2ewyoYyXwAYyr2PlRoR5MpgVmSUIrM3PQxXPbgjBOaDQFIyFMJvx3Pc5RSYj12ySVF9fwFPQu2e2KWVoL9q3Ayv3IzpGHUdvdPdrNUdicjsTQ2ISy7QU3DrEytIjvbzJnAkmANXjAFERA0MUoPF3/5KFmW14bBNOhwircYgMqoDpUMcDtCmBE82QM2YtdjVLB4kBuKho/bcwQdeboqfQartuU3CsCf+cXkgYAqp/0Ee3RorAZt0AvvOCSI4JICIlGlsV0bsSid/NIEALAAzb6HAgyWHBps6xAOwkJIGcB82CxRQq4sJf3FzA70A+TRqcqjEMETCoez3mkPcpnoALs0ugJY8kQwrC+JE5ik3w9rzrvDRjAQnqgEVvdGrNwlanR0SOKWzxOJOvLJhcd8Cl4AshACUkv9czdMkJCVQSQhp6kp7StAlpVRpK0t0SW6LHeBJnE2QchB5Ccu8kxRghZXGIgZIiSj7gEKMJDClcnX6hgoqJMwiQDigIXg3ioFLCgDgjPtYHYpsF5EiA4kcnN18MZtOrY866dEQAb0FB34OGKHGZQjwW/WDHA60cYFaI/PjpzquUqdaYGcIq+mLez3WLFFCtNBN2QJcrlcoELgiPku5R5dSlJFaCEqEZle1AQzAKC+1SotMcBNyQUFuRHRF6OlimSBgjZeTBCwLyc6A+P/oFRchXTz5ADknYJHxzrJ5pGuIKRQISU6WyKTBBjD8WozmVYWIsto1AS5rxzKlvJu4E/vwOiKxRtCWsDM+eTHUrmwrCK5BIfMzGkD+0Fk5LzBs0jMYXktNDblB06LMNJ09U8pzSLmo14MS0OMjcdrZ31pyQqxJJpRImlSvfYAK8inkYU52QY2FPEVsjoWewpwhRp5yAuNpkqhdb7ku9Seefl2D0B8SMTFD90xi4CSOwwZy9IKkpMtI3FmFUg3/kFutpQGNc3pCR7gvC4sgwbupDu3DyEN+W6YGLNM21jpB49irxy9BSlHrVDlnihGKHwPrbVFtc+h1rVQKZduxIyojccZIIcOCmhEnC7UkY68WXKQgLi2JCDQkQWJRQuk60hZp0D3rtCTINSeY9Ej2kIKYfGxwOs4j9qMM7fYZiipzgcf7TamnehqdhsiMiCawXnz4xAbyCkLAx5EGbo3Ax1u3dUIKnTxIaxwQTHehPl3V491H0+bC5zgpGz7Io+mjdhKlPJ01EeMpM7UsRJMi1nGjmJg35i6bQBAAxjO/ENJubU2mg3ONySEoWklCwdABETcs7ck3jgiuU9pcKKpbgn+3YlzV1FzIkB6pmEDOSSyDfPPlQskznctFji0kpgZjW5RZe6x9kYT4KJcXg0bNiCyif+pZACCyRMmYsfiKmN9tSO65F0R2OO6ytlEhY5Sj6uRKfFxw0ijJaAx/k3QgnAFSq27/2i4GEBA+UvTJKK/9eISNvG46Em5RZfjTYLdeD8kdXHyrwId/DQZUaMCY4gGbke2C8vfjgV/Y9kkRQOJIn/xM9INZSpiBnqX0Q9GlQPpPKAyO5y+W5NMPSRdBCUlmuxl40ZfMCnf2Cp044uI9WLFtCi4YVxKjuRCOBWIb4XbIsGdbo4qtMQnNOQz4XDSui7W/N6l54qOynCqD3DpWQ+mpD7C40D8BZEWGJX3tlAaZBMj1yjvDYKwCJBa201u6nBKE5UE+7QSEhCwrXfbRZylAaAkplhBWX50dumrElePyNMRYUrC99UmcSSNgImhFhDI4BXjMtiqkgizUGCrZ8iwFxU6fQ8GEHCFdLewwxYWxgScAYMdMLmcZR6b7rZl95eQVDGVoUKcRMM1ixXQtXNkBETZkVVPg8LoSrdetHzkuM7DjZRHP02tCxA1fmkXKF3VzfN1pc1cv/8lbTIkkYpqKM9VOhp65ktYk+Q46myFWBapDfyWUCnsnI00QTBQmuFjMZTcd0V2NQ768Fhpby04k2IzNR1wKabuGJqYWwSly6ocMFGTeeI+ejsWDYgEvr66QgqdcIbFYDNgsm0x9UHY6SCd5+7tpsLpKdvhahIDyYmEJQCqMqtCF6UlrE5GXRmbu+vtm3BFSxI6ND6UxIE7GsGMgWqghXxSnaRJuGFveTcK5ZVSPJyjUxe1dKgI6kNF7EZhIZs8y8FVqwEfbM0Xk2ltORVDKZZM40SD3qQoQe0orJEKwPfZwm3YPqwixhUMOndis6MhbmfvLBKjC8sKKIZKbJk8L11oNkCQzCgvjhyyEiQSuJcgCQSG4Mocfgc0Hkwcjal1UNgP0CBPikYqBIk9tONv4kLtBswH07vUCjEaHiFGlLf8MgXKzSgjp2HolRRccAOh0ILHz9qlGgIFkwAnzHJRjWFhlA7ROwINyB5HFj59PRZHFor6voq7l23EPNRwdWhgawqbivLSjRA4htEYUFkjESu67icTg5S0aW1sOkCiIysfJ9UnIWevOOLGpepcBxy1wEhd2WI3AZg7sr9WBmHWyasxMcvY/iOmsLtHSWNUWEGk9hScMPShasUA1AcHOtRZlqMeQ0OzYS9vQvYUjOLrzP07BUAFikcJNMi7gIxEw4pL1G54TcmmmoAQ5s7TGWErJZ2Io4yQ0ljRYhL8H5e62oDtLF8aDpnIvZ5R3GWJyAugdiiJW9hQAVTsnCBHhwu7rkBlBX6r3b7ejEY0k5GGeyKv66v+6dg7mcJTrWHbtMywbedYqCQ0FPwoytmSWsL8WTtChZCKKzEF7vP6De4x2BJkkniMgSdWhbeBSLtJZR9CTHetK1xb34AYIJ37OegYIoPVbXgJ/qDQK+bfCtxQRVKQu77WzOoM6SGL7MaZwCGJVk46aImai9fmam+WpHG+0BtQPWUgZ7RIAlPq6lkECUhZQ2gqWkMYKcYMYaIc4gYCDFHYa2d1nzp3+J1eCBay8IYZ0wQRKGAqvCuZ/UgbQPyllosq+XtfKIZOzmeJqRazpmmoP/76YfkjzV2NlXTDSBYB04SVlNQsFTbGPk1t/I4Jktu0XSgifO2ozFOiwd/0SssJDn0dn4xqk4GDTTKX73/wQyBLdqgJ+Wx6AQaba3BA9CKEzjtQYIfAsiYamapq80LAamYjinlKXUkxdpIDk0puXUEYzSalfRibAeDAKpNiqQ0FTwoxuGYzRnisyTotdVTclis1LHRQCy/qqL8oUaQzWRxilq5Mi0IJGtMY02cGLD69vGjkj3p6pGePKI8bkBv5evq8SjjyU04vJR2cQXQwSJyoinDsUJHCQ50jrFTT7yRdbdYQMB3MYCb6uBzJ9ewhXYPAIZSXfeEQBZZ3GPN3Nbhh/wkvAJLXnQMdi5NYYZ5GHE400GS5rXkOZSQsdZgIbzRnF9ueLnsfQ47wHAsirITnTlkCcuWWIUhJSbpM3wWhXNHvt2xUsKKMpdBSbJnBMcihkoDqAd1Zml/R4yrzow1Q2A5G+kzo/RhRxQS2lCSDRV8LlYLBOOoo1bF4jwJAwKMK1tWLHlu9i0j4Ig8qVm6wE1DxXwAwQwsaBWUg2pOOol2dHxyt6npwJEdLDDVYyRc2D0HbcbLUJQj8gPevQBUBOUHXPrsAPBERICpnYESeu2OHotpXQxRGlCCtLdIsu23MhZVEoJg8Qumj/UMMc34IBqTKLDTp76WzL/dMjCxK7MjhiGjeYAC/kj/jY/Rde7hpSM1xChrog6yZ7OWTuD56xBJnGFE+pT2ElSyCnJcwVzCjkqeNLfMEJqKW0G7OFIp0G+9mh50I9o8k1tpCY0xYqFNIALgIfc2me4n1bmJnRZ89oepgLPT0NTMLNZsvSCZAc3TXaNB07vail36/dBySis4m9/DR8izaLJW6bWCkVgm5T+ius3ZXq4xI+GnbveLbdRwF2mNtsrE0JjYc1AXknCOrLSu7Te/r4dPYMCl5qtiHNTn+TPbh1jCBHH+dMJNhwNgs3nT+OhQoQ0vYif56BMG6WowAcHR3DjQolxLzyVekHj00PBAaW7IIAF1EF+uRIWyXjQMAs2chdpaKPNaB+kSezYt0+CA04sOg5vx8Fr7Ofa9sUv87h7SLAUFSzbetCCZ9pmyLt6l6/TzoA1/ZBG9bIUVHLAbi/kdBFgYGyGwRQGBpkqCEg2ah9UD6EedEcEL3j4y0BQQCiExEnocA3SZboh+epgd3YsOkHskZwPuQ5OoyA0fTA5AXrHcUOQF+zkJHIA7PwCDk1gGVmGUZSSoPhNf+Tklauz98QofOlCIQ/tCD4dosHYPqtPCXB3agggQQIqQJsSkB+qn0rkQ1toJjON/OtCIB9RYv3PqRA4C4U68ZMlZn6BdgEvi2ziU+TQ6NIw3ej+AtDwMGEZk7e2IjxUWKdAxyaw9OCwSmeADTPPleyk6UhGDNXQb++W6Uk4q6F7/rg6WVTo82IoCxSIsFDrav4EPHphD3u4hR53WKVvYZUwNCCeM4PMBWzK+EfIthZOkuAwPo5C5jgoZgn6dUdvx5rIDmd58cXXdKNfw3l+wM2UjgrDJeQHhbD7HW2QDoZMCujgIUkk5Fg8VCsdyjOtnGRx8wgKRPZN5dR0zPUyfGZFVihbFRniXZFOZGKPnEQzU3AnD1KfR6weHW2XS6KbPJxUkOTZsAB9vTVp3Le1F8q5l+DMcLiIq78jxAImD2pGFw0VHfRatScGlK6SMu8leTmhUSMy8Uhdd6xBiH3Gdman4tjQGLboJfqz6fL2WKHTmrfsKZRYX6BTDjDldKMosaSTLdQS7oDisJNqAUhw1PfTlnacCO8vl8706Km1FROgLDmudzxg+EWTiArtHgLsRrAXYWdB0NmToNCJdKm0KWycZQqb+Mw76Qy29iQ5up/X7oyw8QZ75kP5F6iJAJz6KCmqxz8fEa/xnsMYcIO/vEkGRuMckhr4rIeLrKaXnmIzlNLxbFspOphkcnJdnz/Chp/Vlpj2P7jJQmQRwGnltkTV5dbF9fE3/fxoSqTROgq9wFUlbuYzYcasE0ouzBo+dDCDzxKAfhbAZYxQiHrLzV2iVexnDX/QnT1fsT/xuhu1ui5qIytgbGmRoQkeQooO8eJNNZsf0iALur8QxZFH0nCMnjerYQqG1pIfjyVZWxhVRznmmfLG00BcBWJE6hzQWRyFknuJnXuk8A5FRDCulwrWASSNoBtR+CtGdkPwYN2o7DOw/VGlCZPusRBFXODQdUM5zeHDIVuAJBLqbO/f9Qua+pDqEPk230Sob9lEZ8BHiCorjVghuI0lI4JDgHGRDD/prQ84B1pVGkIpVUAHCG+iz3Bn3qm2AVrYcYWhock4jso5+J7HfHVj4WMIQdGctq3psBCVVzupQOEioBGA2Bk+UILT7+VoX5mdxxA5fS42gISQVi/HTzrgMxu0fY6hE1ocUwwbsbWcezrY2n6S8/6cxXkOH4prpmPuFoikTzY7T85C4T2XYlbxLglSv2uLCgFv8Quk/wdesUdWPeHYIH0R729JIisN9Apdd4eB10aqwXrPt+Su9mA8k8n1sjMwnfsfF2j3jMUzXepSHmZ/BfqXvzgUNQQWOXO8YEuFBh4QTYCkOAPxywpYu1VxiDyJmKVcmJPGWk/gc3Pov02StyYDahwmzw3E1gYC9wkupyWfDqDSUMpCTH5e5N8B//lHiMuIkTNw4USHrJU67bjXGqNav6PBuQSoqTxc8avHoGmvqNtXzIaoyMIQIiiUHIM64cXieouplhNYln7qgc4wBVAYR104kO+CvKqsg4yIUlFNThVUAKZxZt1XA34h3TCUUiXVkZ0w8Hh2R0Z5L0b4LZvPd/p1gi/07h8qfwHrByuSxglc9cI4QIg2oqvC/qm0i7tjPLTgDhoWTAKDO2ONW5oe+/eKB9vZB8K6C25yCZ9RFVMnb6NRdRjyVK57CHHSkJBfnM2/j4ODUwRkqrtBBCrDsDpt8jhZdXoy/1BCqw3sSGhgGGy0a5Jw6BP/TExoCmNFYjZl248A0osgPyGEmRA+fAsqPVaNAfytu0vuQJ7rk3J4kTDTR2AlCHJ5cls26opZM4w3jMULh2YXKpcqGBtuleAlOZnaZGbD6DHzMd6i2oFeJ8z9XYmalg1Szd/ocZDc1C7Y6vcALJz2lYnTXiWEr2wawtoR4g3jvWUU2Ngjd1cewtFzEvM1NiHZPeLlIXFbBPawxNgMwwAlyNSuGF3zizVeOoC9bag1qRAQKQE/EZBWC2J8mnXAN2aTBboZ7HewnObE8CwROudZHmUM5oZ/Ugd/JZQK8lvAm43uDRAbyW8gZ+ZGq0EVerVGUKUSm/Idn8AQHdR4m7bue88WBwft9mSCeMOt1ncBwziOmJYI2ZR7ewNMPiCugmSsE4EyQ+QATJG6qORMGd4snEzc6B4shPIo4G1T7PgSm8PY5eUkPdF8JZ0VBtadbHXoJgnEhZQaODPj2gpODKJY5Yp4DOsLBFxWbvXN755KWylJm+oOd4zEL9Hpubuy2gyyfxh8oEfFutnYWdfB8PdESLWYvSqbElP9qo3u6KTmkhoacDauMNNjj0oy40DFV7Ql0aZj77xfGl7TJNHnIwgqOkenruYYNo6h724+zUQ7+vkCpZB+pGA562hYQiDxHVWOq0oDQl/QsoiY+cuI7iWq/ZIBtHcXJ7kks+h2fCNUPA82BzjnqktNts+RLdk1VSu+tqEn7QZCCsvEqk6FkfiOYkrsw092J8jsfIuEKypNjLxrKA9kiA19mxBD2suxQKCzwXGws7kEJvlhUiV9tArLIdZW0IORcxEzdzKmjtFhsjKy/44XYXdI5noQoRcvjZ1RMPACRqYg2V1+OwOepcOknRLLFdYgTkT5UApt/JhLM3jeFYprZV+Zow2g8fP+U68hkKFWJj2yBbKqsrp25xkZX1DAjUw52IMYWaOhab8Kp05VrdNftqwRrymWF4OQSjbdfzmRZirK8FMJELEgER2PHjEAN9pGfLhCUiTJFbd5LBkOBMaxLr/A1SY9dXFz4RjzoU9ExfJCmx/I9FKEGT3n2cmzl2X42L3Jh+AbQq6sA+Ss1kitoa4TAYgKHaoybHUDJ51oETdeI/9ThSmjWGkyLi5QAGWhL0BG1UsTyRGRJOldKBrYJeB8ljLJHfATWTEQBXBDnQexOHTB+Un44zExFE4vLytcu5NwpWrUxO/0ZICUGM7hGABXym0V6ZvDST0E370St9MIWQOTWngeoQHUTdCJUP04spMBMS8LSker9cReVQkULFDIZDFPrhTzBl6sed9wcZQTbL+BDqMyaN3RJPh/anbx+Iv+qgQdAa3M9Z5JmvYlh4qop+Ho1F1W5gbOE9YKLgAnWytXElU4G8GtW47lhgFE6gaSs+gs37sFvi0PPVvA5dnCBgILTwoKd/+DoL9F6inlM7H4rOTzD79KJgKlZO/Zgt22UsKhrAaXU5ZcLrAglTVKJEmNJvORGN1vqrcfSMizfpsgbIe9zno+gBoKVXgIL/VI8dB1O5o/R3Suez/gD7M781ShjKpIIORM/nxG+jjhhgPwsn2IoXsPGPqYHXA63zJ07M2GPEykQwJBYLK808qYxuIew4frk52nhCsnCYmXiR6CuapvE1IwRB4/QftDbEn+AucIr1oxrLabRj9q4ae0+fXkHnteAJwXRbVkR0mctVSwEbqhJiMSZUp9DNbEDMmjX22m3ABpkrPQQTP3S1sib5pD2VRKRd+eNAjLYyT0hGrdjWJZy24OYXRoWQAIhGBZRxuBFMjjZQhpgrWo8SiFYbojcHO8V5DyscJpLTHyx9Fimassyo5U6WNtquUMYgccaHY5amgR3PQzq3ToNM5ABnoB9kuxsebqmYZm0R9qxJbFXCQ1UPyFIbxoUraTJFDpCk0Wk9GaYJKz/6oHwEP0Q14lMtlddQsOAU9zlYdMVHiT7RQP3XCmWYDcHCGbVRHGnHuwzScA0BaSBOGkz3lM8CArjrBsyEoV6Ys4qgDK3ykQQPZ3hCRGNXQTNNXbEb6tDiTDLKOyMzRhCFT+mAUmiYbV3YQVqFVp9dorv+TsLeCykS2b5yyu8AV7IS9cxcL8z4Kfwp+xJyYLv1OsxQCZwTB4a8BZ/5EdxTBJthApqyfd9u3ifr/WILTqq5VqgwMT9SOxbSGWLQJUUWCVi4k9tho9nEsbUh7U6NUsLmkYFXOhZ0kmamaJLRNJzSj/qn4Mso6zb6iLLBXoaZ6AqeWCjHQm2lztnejYYM2eubnpBdKVLORZhudH3JF1waBJKA9+W8EhMj3Kzf0L4vi4k6RoHh3Z5YgmSZmk6ns4fjScjAoL8GoOECgqgYEBYUGFVO4FUv4/YtowhEmTs0vrvlD/CrisnoBNDAcUi/teY7OctFlmARQzjOItrrlKuPO6E2Ox93L4O/4DcgV/dZ7qR3VBwVQxP1GCieA4RIpweYJ5FoYrHxqRBdJjnqbsikA2Ictbb8vE1GYIo9dacK0REgDX4smy6GAkxlH1yCGGsk+tgiDhNKuKu3yNrMdxafmKTF632F8Vx4BNK57GvlFisrkjN9WDAtjsWA0ENT2e2nETUb/n7qwhvGnrHuf5bX6Vh/n3xffU3PeHdR+FA92i6ufT3AlyAREoNDh6chiMWTvjKjHDeRhOa9YkOQRq1vQXEMppAQVwHCuIcV2g5rBn6GmZZpTR7vnSD6ZmhdSl176gqKTXu5E+YbfL0adwNtHP7dT7t7b46DVZIkzaRJOM+S6KcrzYVg+T3wSRFRQashjfU18NutrKa/7PXbtuJvpIjbgPeqd+pjmRw6YKpnANFSQcpzTZgpSNJ6J7uiagAbir/8tNXJ/OsOnRh6iuIexxrmkIneAgz8QoLmiaJ8sLQrELVK2yn3wOHp57BAZJhDZjTBzyoRAuuZ4eoxHruY1pSb7qq79cIeAdOwin4GdgMeIMHeG+FZWYaiUQQyC5b50zKjYw97dFjAeY2I4Bnl105Iku1y0lMA1ZHolLx19uZnRdILcXKlZGQx/GdEqSsMRU1BIrFqRcV1qQOOHyxOLXEGcbRtAEsuAC2V4K3p5mFJ22IDWaEkk9ttf5Izb2LkD1MnrSwztXmmD/Qi/EmVEFBfiKGmftsPwVaIoZanlKndMZsIBOskFYpDOq3QUs9aSbAAtL5Dbokus2G4/asthNMK5UQKCOhU97oaOYNGsTah+jfCKsZnTRn5TbhFX8ghg8CBYt/BjeYYYUrtUZ5jVij/op7V5SsbA4mYTOwZ46hqdpbB6Qvq3AS2HHNkC15pTDIcDNGsMPXaBidXYPHc6PJAkRh29Vx8KcgX46LoUQBhRM+3SW6Opll/wgxxsPgKJKzr5QCmwkUxNbeg6Wj34SUnEzOemSuvS2OetRCO8Tyy+QbSKVJcqkia+GvDefFwMOmgnD7h81TUtMn+mRpyJJ349HhAnoWFTejhpYTL9G8N2nVg1qkXBeoS9Nw2fB27t7trm7d/QK7Cr4uoCeOQ7/8JfKT77KiDzLImESHw/0wf73QeHu74hxv7uihi4fTX+XEwAyQG3264dwv17aJ5N335Vt9sdrAXhPOAv8JFvzqyYXwfx8WYJaef1gMl98JRFyl5Mv5Uo/oVH5ww5OzLFsiTPDns7fS6EURSSWd/92BxMYQ8sBaH+j+wthQPdVgDGpTfi+JQIWMD8xKqULliRH01rTeyF8x8q/GBEEEBrAJMPf25UQwi0b8tmqRXY7kIvNkzrkvRWLnxoGYEJsz8u4oOyMp8cHyaybb1HdMCaLApUE+/7xLIZGP6H9xuSEXp1zLIdjk5nBaMuV/yTDRRP8Y2ww5RO6d2D94o+6ucWIqUAvgHIHXhZsmDhjVLczmZ3ca0Cb3PpKwt2UtHVQ0BgFJsqqTsnzZPlKahRUkEu4qmkJt+kqdae76ViWe3STan69yaF9+fESD2lcQshLHWVu4ovItXxO69bqC5p1nZLvI8NdQB9s9UNaJGlQ5mG947ipdDA0eTIw/A1zEdjWquIsQXXGIVEH0thC5M+W9pZe7IhAVnPJkYCCXN5a32HjN6nsvokEqRS44tGIs7s2LVTvcrHAF+RVmI8L4HUYk4x+67AxSMJKqCg8zrGOgvK9kNMdDrNiUtSWuHFpC8/p5qIQrEo/H+1l/0cAwQ2nKmpWxKcMIuHY44Y6DlkpO48tRuUGBWT0FyHwSKO72Ud+tJUfdaZ4CWNijzZtlRa8+CkmO/EwHYfPZFU/hzjFWH7vnzHRMo+aF9u8qHSAiEkA2HjoNQPEwHsDKOt6hOoK3Ce/+/9boMWDa44I6FrQhdgS7OnNaSzwxWKZMcyHi6LN4WC6sSj0qm2PSOGBTvDs/GWJS6SwEN/ULwpb4LQo9fYjUfSXRwZkynUazlSpvX9e+G2zor8l+YaMxSEomDdLHGcD6YVQPegTaA74H8+V4WvJkFUrjMLGLlvSZQWvi8/QA7yzQ8GPno//5SJHRP/OqKObPCo81s/+6WgLqykYpGAgQZhVDEBPXWgU/WzFZjKUhSFInufPRiMAUULC6T11yL45ZrRoB4DzOyJShKXaAJIBS9wzLYIoCEcJKQW8GVCx4fihqJ6mshBUXSw3wWVj3grrHQlGNGhIDNNzsxQ3M+GWn6ASobIWC+LbYOC6UpahVO13Zs2zOzZC8z7FmA05JhUGyBsF4tsG0drcggIFzgg/kpf3+CnAXKiMgIE8Jk/Mhpkc8DUJEUzDSnWlQFme3d0sHZDrg7LavtsEX3cHwjCYA17pMTfx8Ajw9hHscN67hyo+RJQ4458RmPywXykkVcW688oVUrQhahpPRvTWPnuI0B+SkQu7dCyvLRyFYlC1LG1gRCIvn3rwQeINzZQC2KXq31FaR9UmVV2QeGVqBHjmE+VMd3b1fhCynD0pQNhCG6/WCDbKPyE7NRQzL3BzQAJ0g09aUzcQA6mUp9iZFK6Sbp/YbHjo++7/Wj8S4YNa+ZdqAw1hDrKWFXv9+zaXpf8ZTDSbiqsxnwN/CzK5tPkOr4tRh2kY3Bn9JtalbIOI4b3F7F1vPQMfoDcdxMS8CW9m/NCW/HILTUVWQIPiD0j1A6bo8vsv6P1hCESl2abrSJWDrq5sSzUpwoxaCU9FtJyYH4QFMxDBpkkBR6kn0LMPO+5EJ7Z6bCiRoPedRZ/P0SSdii7ZnPAtVwwHUidcdyspwncz5uq6vvm4IEDbJVLUFCn/LvIHfooUBTkFO130FC7CmmcrKdgDJcid9mvVzsDSibOoXtIf9k6ABle3PmIxejodc4aob0QKS432srrCMndbfD454q52V01G4q913mC5HOsTzWF4h2No1av1VbcUgWAqyoZl+11PoFYnNv2HwAODeNRkHj+8SF1fcvVBu6MrehHAZK1Gm69ICcTKizykHgGFx7QdowTVAsYEF2tVc0Z6wLryz2FI1sc5By2znJAAmINndoJiB4sfPdPrTC8RnkW7KRCwxC6YvXg5ahMlQuMpoCSXjOlBy0Kij+bsCYPbGp8BdCBiLmLSAkEQRaieWo1SYvZIKJGj9Ur/eWHjiB7SOVdqMAVmpBvfRiebsFjger7DC+8kRFGtNrTrnnGD2GAJb8rQCWkUPYHhwXsjNBSkE6lGWUj5QNhK0DMNM2l+kXRZ0KLZaGsFSIdQz/HXDxf3/TE30+DgBKWGWdxElyLccJfEpjsnszECNoDGZpdwdRgCixeg9L4EPhH+RptvRMVRaahu4cySjS3P5wxAUCPkmn+rhyASpmiTaiDeggaIxYBmtLZDDhiWIJaBgzfCsAGUF1Q1SFZYyXDt9skCaxJsxK2Ms65dmdp5WAZyxik/zbrTQk5KmgxCg/f45L0jywebOWUYFJQAJia7XzCV0x89rpp/f3AVWhSPyTanqmik2SkD8A3Ml4NhIGLAjBXtPShwKYfi2eXtrDuKLk4QlSyTw1ftXgwqA2jUuopDl+5tfUWZNwBpEPXghzbBggYCw/dhy0ntds2yeHCDKkF/YxQjNIL/F/37jLPHCKBO9ibwYCmuxImIo0ijV2Wbg3kSN2psoe8IsABv3RNFaF9uMyCtCYtqcD+qNOhwMlfARQUdJ2tUX+MNJqOwIciWalZsmEjt07tfa8ma4cji9sqz+Q9hWfmMoKEbIHPOQORbhQRHIsrTYlnVTNvcq1imqmmPDdVDkJgRcTgB8Sb6epCQVmFZe+jGDiNJQLWnfx+drTKYjm0G8yH0ZAGMWzEJhUEQ4Maimgf/bkvo8PLVBsZl152y5S8+HRDfZIMCbYZ1WDp4yrdchOJw8k6R+/2pHmydK4NIK2PHdFPHtoLmHxRDwLFb7eB+M4zNZcB9NrAgjVyzLM7xyYSY13ykWfIEEd2n5/iYp3ZdrCf7fL+en+sIJu2W7E30MrAgZBD1rAAbZHPgeAMtKCg3NpSpYQUDWJu9bT3V7tOKv+NRiJc8JAKqqgCA/PNRBR7ChpiEulyQApMK1AyqcWnpSOmYh6yLiWkGJ2mklCSPIqN7UypWj3dGi5MvsHQ87MrB4VFgypJaFriaHivwcHIpmyi5LhNqtem4q0n8awM19Qk8BOS0EsqGscuuydYsIGsbT5GHnERUiMpKJl4ON7qjB4fEqlGN/hCky89232UQCiaeWpDYCJINXjT6xl4Gc7DxRCtgV0i1ma4RgWLsNtnEBRQFqZggCLiuyEydmFd7WlogpkCw5G1x4ft2psm3KAREwVwr1Gzl6RT7FDAqpVal34ewVm3VH4qn5mjGj+bYL1NgfLNeXDwtmYSpwzbruDKpTjOdgiIHDVQSb5/zBgSMbHLkxWWgghIh9QTFSDILixVwg0Eg1puooBiHAt7DzwJ7m8i8/i+jHvKf0QDnnHVkVTIqMvIQImOrzCJwhSR7qYB5gSwL6aWL9hERHCZc4G2+JrpgHNB8eCCmcIWIQ6rSdyPCyftXkDlErUkHafHRlkOIjxGbAktz75bnh50dU7YHk+Mz7wwstg6RFZb+TZuSOx1qqP5C66c0mptQmzIC2dlpte7vZrauAMm/7RfBYkGtXWGiaWTtwvAQiq2oD4YixPLXE2khB2FRaNRDTk+9sZ6K74Ia9VntCpN4BhJGJMT4Z5c5FhSepRCRWmBXqx+whVZC4me4saDs2iNqXMuCl6iAZflH8fscC1sTsy4PHeC+XYuqMBMUun5YezKbRKmEPwuK+CLzijPEQgfhahQswBBLfg/GBgBiI4QwAqzJkkyYAWtjzSg2ILgMAgqxYfwERRo3zruBL9WOryUArSD8sQOcD7fvIODJxKFS615KFPsb68USBEPPj1orNzFY2xoTtNBVTyzBhPbhFH0PI5AtlJBl2aSgNPYzxYLw7XTDBDinmVoENwiGzmngrMo8OmnRP0Z0i0Zrln9DDFcnmOoBZjABaQIbPOJYZGqX+RCMlDDbElcjaROLDoualmUIQ88Kekk3iM4OQrADcxi3rJguS4MOIBIgKgXrjd1WkbCdqxJk/4efRIFsavZA7KvvJQqp3Iid5Z0NFc5aiMRzGN3vrpBzaMy4JYde3wr96PjN90AYOIbyp6T4zj8LoE66OGcX1Ef4Z3KoWLAUF4BTg7ug/AbkG5UNQXAMkQezujSHeir2uTThgd3gpyzDrbnEdDRH2W7U6PeRvBX1ZFMP5RM+Zu6UUZZD8hDPHldVWntTCNk7To8IeOW9yn2wx0gmurwqC60AOde4r3ETi5pVMSDK8wxhoGAoEX9NLWHIR33VbrbMveii2jAJlrxwytTHbWNu8Y4N8vCCyZjAX/pcsfwXbLze2+D+u33OGBoJyAAL3jn3RuEcdp5If8O+a4NKWvxOTyDltG0IWoHhwVGe7dKkCWFT++tm+haBCikRUUMrMhYKZJKYoVuv/bsJzO8DwfVIInQq3g3BYypiz8baogH3r3GwqCwFtZnz4xMjAVOYnyOi5HWbFA8n0qz1OjSpHWFzpQOpvkNETZBGpxN8ybhtqV/DMUxd9uFZmBfKXMCn/SqkWJyKPnT6lq+4zBZni6fYRByJn6OK+OgPBGRAJluwGSk4wxjOOzyce/PKODwRlsgrVkdcsEiYrqYdXo0Er2GXi2GQZd0tNJT6c9pK1EEJG1zgDJBoTVuCXGAU8BKTvCO/cEQ1Wjk3Zzuy90JX4m3O5IlxVFhYkSUwuQB2up7jhvkm+bddRQu5F9s0XftGEJ9JSuSk+ZachCbdU45fEqbugzTIUokwoAKvpUQF/CvLbWW5BNQFqFkJg2f30E/48StNe5QwBg8zz3YAJ82FZoXBxXSv4QDooDo79NixyglO9AembuBcx5Re3CwOKTHebOPhkmFC7wNaWtoBhFuV4AkEuJ0J+1pT0tLkvFVZaNzfhs/Kd3+A9YsImlO4XK4vpCo/elHQi/9gkFg07xxnuXLt21unCIpDV+bbRxb7FC6nWYTsMFF8+1LUg4JFjVt3vqbuhHmDKbgQ4e+RGizRiO8ky05LQGMdL2IKLSNar0kNG7lHJMaXr5mLdG3nykgj6vB/KVijd1ARWkFEf3yiUw1v/WaQivVUpIDdSNrrKbjO5NPnxz6qTTGgYg03HgPhDrCFyYZTi3XQw3HXCva39mpLNFtz8AiEhxAJHpWX13gCTAwgm9YTvMeiqetdNQv6IU0hH0G+ZManTqDLPjyrOse7WiiwOJCG+J0pZYULhN8NILulmYYvmVcV2MjAfA39sGKqGdjpiPo86fecg65UPyXDIAOyOkCx5NQsLeD4gGVjTVDwOHWkbbBW0GeNjDkcSOn2Nq4cEssP54t9D749A7M1AIOBl0Fi0sSO5v3P7LCBrM6ZwFY6kp2FX6AcbGUdybnfChHPyu6WlRZ2Fwv9YM0RMI7kISRgR8HpQSJJOyTfXj/6gQKuihPtiUtlCQVPohUgzfezTg8o1b3n9pNZeco1QucaoXe40Fa5JYhqdTspFmxGtW9h5ezLFZs3j/N46f+S2rjYNC2JySXrnSAFhvAkz9a5L3pza8eYKHNoPrvBRESpxYPJdKVUxBE39nJ1chrAFpy4MMkf0qKgYALctGg1DQI1kIymyeS2AJNT4X240d3IFQb/0jQbaHJ2YRK8A+ls6WMhWmpCXYG5jqapGs5/eOJErxi2/2KWVHiPellTgh/fNl/2KYPKb7DUcAg+mCOPQFCiU9Mq/WLcU1xxC8aLePFZZlE+PCLzf7ey46INWRw2kcXySR9FDgByXzfxiNKwDFbUSMMhALPFSedyjEVM5442GZ4hTrsAEvZxIieSHGSgkwFh/nFNdrrFD4tBH4Il7fW6ur4J8Xaz7RW9jgtuPEXQsYk7gcMs2neu3zJwTyUerHKSh1iTBkj2YJh1SSOZL5pLuQbFFAvyO4k1Hxg2h99MTC6cTUkbONQIAnEfGsGkNFWRbuRyyaEZInM5pij73EA9rPIUfU4XoqQpHT9THZkW+oKFLvpyvTBMM69tN1Ydwv1LIEhHsC+ueVG+w+kyCPsvV3erRikcscHjZCkccx6VrBkBRusTDDd8847GA7p2Ucy0y0HdSRN6YIBciYa4vuXcAZbQAuSEmzw+H/AuOx+aH+tBL88H57D0MsqyiZxhOEQkF/8DR1d2hSPMj/sNOa5rxcUnBgH8ictv2J+cb4BA4v3MCShdZ2vtK30vAwkobnEWh7rsSyhmos3WC93Gn9C4nnAd/PjMMtQfyDNZsOPd6XcAsnBE/mRHtHEyJMzJfZFLE9OvQa0i9kUmToJ0ZxknTgdl/XPV8xoh0K7wNHHsnBdvFH3sv52lU7UFteseLG/VanIvcwycVA7+BE1Ulyb20BvwUWZcMTKhaCcmY3ROpvonVMV4N7yBXTL7IDtHzQ4CCcqF66LjF3xUqgErKzolLyCG6Kb7irP/MVTCCwGRxfrPGpMMGvPLgJ881PHMNMIO09T5ig7AzZTX/5PLlwnJLDAPfuHynSGhV4tPqR3gJ4kg4c06c/F1AcjGytKm2Yb5jwMotF7vro4YDLWlnMIpmPg36NgAZsGA0W1spfLSue4xxat0Gdwd0lqDBOgIaMANykwwDKejt5YaNtJYIkrSgu0KjIg0pznY0SCd1qlC6R19g97UrWDoYJGlrvCE05J/5wkjpkre727p5PTRX5FGrSBIfJqhJE/IS876PaHFkx9pGTH3oaY3jJRvLX9Iy3Edoar7cFvJqyUlOhAEiOSAyYgVEGkzHdug+oRHIEOXAExMiTSKU9A6nmRC8mp8iYhwWdP2U/5EkFAdPrZw03YA3gSyNUtMZeh7dDCu8pF5x0VORCTgKp07ehy7NZqKTpIC4UJJ89lnboyAfy5OyXzXtuDRbtAFjZRSyGFTpFrXwkpjSLIQIG3N0Vj4BtzK3wdlkBJrO18MNsgseR4BysJilI0wI6ZahLhBFA0XBmV8d4LUzEcNVb0xbLjLTETYN8OEVqNxkt10W614dd1FlFFVTIgB7/BQQp1sWlNolpIu4ekxUTBV7NmxOFKEBmmN+nA7pvF78/RII5ZHA09OAiE/66MF6HQ+qVEJCHxwymukkNvzqHEh52dULPbVasfQMgTDyBZzx4007YiKdBuUauQOt27Gmy8ISclPmEUCIcuLbkb1mzQSqIa3iE0PJh7UMYQbkpe+hXjTJKdldyt2mVPwywoODGJtBV1lJTgMsuSQBlDMwhEKIfrvsxGQjHPCEfNfMAY2oxvyKcKPUbQySkKG6tj9AQyEW3Q5rpaDJ5Sns9ScLKeizPRbvWYAw4bXkrZdmB7CQopCH8NAmqbuciZChHN8lVGaDbCnmddnqO1PQ4ieMYfcSiBE5zzMz+JV/4eyzrzTEShvqSGzgWimkNxLvUj86iAwcZuIkqdB0VaIB7wncLRmzHkiUQpPBIXbDDLHBlq7vp9xwuC9AiNkIptAYlG7Biyuk8ILdynuUM1cHWJgeB+K3wBP/ineogxkvBNNQ4AkW0hvpBOQGFfeptF2YTR75MexYDUy7Q/9uocGsx41O4IZhViw/2FvAEuGO5g2kyXBUijAggWM08bRhXg5ijgMwDJy40QeY/cQpUDZiIzmvskQpO5G1zyGZA8WByjIQU4jRoFJt56behxtHUUE/om7Rj2psYXGmq3llVOCgGYKNMo4pzwntITtapDqjvQtqpjaJwjHmDzSVGLxMt12gEXAdLi/caHSM3FPRGRf7dB7YC+cD2ho6oL2zGDCkjlf/DFoQVl8GS/56wur3rdV6ggtzZW60MRB3g+U1W8o8cvqIpMkctiGVMzXUFI7FacFLrgtdz4mTEr4aRAaQ2AFQaNeG7GX0yOJgMRYFziXdJf24kg/gBQIZMG/YcPEllRTVNoDYR6oSJ8wQNLuihfw81UpiKPm714bZX1KYjcXJdfclCUOOpvTxr9AAJevTY4HK/G7F3mUc3GOAKqh60zM0v34v+ELyhJZqhkaMA8UMMOU90f8RKEJFj7EqepBVwsRiLbwMo1J2zrE2UYJnsgIAscDmjPjnzI8a719Wxp757wqmSJBjXowhc46QN4RwKIxqEE6E5218OeK7RfcpGjWG1jD7qND+/GTk6M56Ig4yMsU6LUW1EWE+fIYycVV1thldSlbP6ltdC01y3KUfkobkt2q01YYMmxpKRvh1Z48uNKzP/IoRIZ/F6buOymSnW8gICitpJjKWBscSb9JJKaWkvEkqinAJ2kowKoqkqZftRqfRQlLtKoqvTRDi2vg/RrPD/d3a09J8JhGZlEkOM6znTsoMCsuvTmywxTCDhw5dd0GJOHCMPbsj3QLkTE3MInsZsimDQ3HkvthT7U9VA4s6G07sID0FW4SHJmRGwCl+Mu4xf0ezqeXD2PtPDnwMPo86sbwDV+9PWcgFcARUVYm3hrFQrHcgMElFGbSM2A1zUYA3baWfheJp2AINmTJLuoyYD/OwA4a6V0ChBN97E8YtDBerUECv0u0TlxR5yhJCXvJxgyM73Bb6pyq0jTFJDZ4p1Am1SA6sh8nADd1hAcGBMfq4d/UfwnmBqe0Jun1n1LzrgKuZMAnxA3NtCN7Klf4BH+14B7ibBmgt0TGUafVzI4uKlpF7v8NmgNjg90D6QE3tbx8AjSAC+OA1YJvclyPKgT27QpIEgVYpbPYGBsnyCNrGz9XUsCHkW1QAHgL2STZk12QGqmvAB0NFteERkvBIH7INDsNW9KKaAYyDMdBEMzJiWaJHZALqDxQDWRntumSDPcplyFiI1oDpT8wbwe01AHhW6+vAUUBoGhY3CT2tgwehdPqU/4Q7ZLYvhRl/ogOvR9O2+wkkPKW5vCTjD2fHRYXONCoIl4Jh1bZY0ZE1O94mMGn/dFSWBWzQ/VYk+Gezi46RgiDv3EshoTmMSlioUK6MQEN8qeyK6FRninyX8ZPeUWjjbMJChn0n/yJvrq5bh5UcCAcBYSafTFg7p0jDgrXo2QWLb3WpSOET/Hh4oSadBTvyDo10IufLzxiMLAnbZ1vcUmj3w7BQuIXjEZXifwukVxrGa9j+DXfpi12m1RbzYLg9J2wFergEwOxFyD0/JstNK06ZN2XdZSGWxcJODpQHOq4iKqjqkJUmPu1VczL5xTGUfCgLEYyNBCCbMBFT/cUP6pE/mujnHsSDeWxMbhrNilS5MyYR0nJyzanWXBeVcEQrRIhQeJA6Xt4f2eQESNeLwmC10WJVHqwx8SSyrtAAjpGjidcj1E2FYN0LObUcFQhafUKTiGmHWRHGsFCB+HEXgrzJEB5bp0QiF8ZHh11nFX8AboTD0PS4O1LqF8XBks2MpjsQnwKHF6HgaKCVLJtcr0XjqFMRGfKv8tmmykhLRzu+vqQ02+KpJBjaLt9ye1Ab+BbEBhy4EVdIJDrL2naV0o4wU8YZ2Lq04FG1mWCKC+UwkXOoAjneU/xHplMQo2cXUlrVNqJYczgYlaOEczVCs/OCgkyvLmTmdaBJc1iBLuKwmr6qtRnhowngsDxhzKFAi02tf8bmET8BO27ovJKF1plJwm3b0JpMh38+xsrXXg7U74QUM8ZCIMOpXujHntKdaRtsgyEZl5MClMVMMMZkZLNxH9+b8fH6+b8Lev30A9TuEVj9CqAdmwAAHBPbfOBFEATAPZ2CS0OH1Pj/0Q7PFUcC8hDrxESWdfgFRm+7vvWbkEppHB4T/1ApWnlTIqQwjcPl0VgS1yHSmD0OdsCVST8CQVwuiew1Y+g3QGFjNMzwRB2DSsAk26cmA8lp2wIU4p93AUBiUHFGOxOajAqD7Gm6NezNDjYzwLOaSXRBYcWipTSONHjUDXCY4mMI8XoVCR/Rrs/JLKXgEx+qkmeDlFOD1/yTQNDClRuiUyKYCllfMiQiyFkmuTz2vLsBNyRW+xz+5FElFxWB28VjYIGZ0Yd+5wIjkcoMaggxswbT0pCmckRAErbRlIlcOGdBo4djTNO8FAgQ+lT6vPS60BwTRSUAM3ddkEAZiwtEyArrkiDRnS7LJ+2hwbzd2YDQagSgACpsovmjil5wfPuXq3GuH0CyE7FK3M4FgRaFoIkaodORrPx1+JpI9psyNYIFuJogZa0/1AhOWdlHQxdAgbwacsHqPZo8u/ngAH2GmaTdhYnBfSDbBfh8CHq6Bx5bttP2+RdM+MAaYaZ0Y/ADkbNCZuAyAVQa2OcXOeICmDn9Q/eFkDeFQg5MgHEDXq/tVjj+jtd26nhaaolWxs1ixSUgOBwrDhRIGOLyOVk2/Bc0UxvseQCO2pQ2i+Krfhu/WeBovNb5dJxQtJRUDv2mCwYVpNl2efQM9xQHnK0JwLYt/U0Wf+phiA4uw8G91slC832pmOTCAoZXohg1fewCZqLBhkOUBofBWpMPsqg7XEXgPfAlDo2U5WXjtFdS87PIqClCK5nW6adCeXPkUiTGx0emOIDQqw1yFYGHEVx20xKjJVYe0O8iLmnQr3FA9nSIQilUKtJ4ZAdcTm7+ExseJauyqo30hs+1qSW211A1SFAOUgDlCGq7eTIcMAeyZkV1SQJ4j/e1Smbq4HcjqgFbLAGLyKxlMDMgZavK5NAYH19Olz3la/QCTiVelFnU6O/GCvykqS/wZJDhKN9gBtSOp/1SP5VRgJcoVj+kmf2wBgv4gjrgARBWiURYx8xENV3bEVUAAWWD3dYDKAIWk5opaCFCMR5ZjJExiCAw7gYiSZ2rkyTce4eNMY3lfGn+8p6+vBckGlKEXnA6Eota69OxDO9oOsJoy28BXOR0UoXNRaJD5ceKdlWMJlOFzDdZNpc05tkMGQtqeNF2lttZqNco1VtwXgRstLSQ6tSPChgqtGV5h2DcDReIQadaNRR6AsAYKL5gSFsCJMgfsaZ7DpKh8mg8Wz8V7H+gDnLuMxaWEIUPevIbClgap4dqmVWSrPgVYCzAoZHIa5z2Ocx1D/GvDOEqMOKLrMefWIbSWHZ6jbgA8qVBhYNHpx0P+jAgN5TB3haSifDcApp6yymEi6Ij/GsEpDYUgcHATJUYDUAmC1SCkJ4cuZXSAP2DEpQsGUjQmKJfJOvlC2x/pChkOyLW7KEoMYc5FDC4v2FGqSoRWiLsbPCiyg1U5yiHZVm1XLkHMMZL11/yxyw0UnGig3MFdZklN5FI/qiT65T+jOXOdO7XbgWurOAZR6Cv9uu1cm5LjkXX4xi6mWn5r5NjBS0gTliHhMZI2WNqSiSphEtiCAwnafS11JhseDGHYQ5+bqWiAYiAv6Jsf79/VUs4cIl+n6+WOjcgB/2l5TreoAV2717JzZbQIR0W1cl/dEqCy5kJ3ZSIHuU0vBoHooEpiHeQWVkkkOqRX27eD1FWw4BfO9CJDdKoSogQi3hAAwsPRFrN5RbX7bqLdBJ9JYMohWrgJKHSjVl1sy2xAG0E3sNyO0oCbSGOxCNBRRXTXenYKuwAoDLfnDcQaCwehUOIDiHAu5m5hMpKeKM4sIo3vxACakIxKoH2YWF2QM84e6F5C5hJU4g8uxuFOlAYnqtwxmHyNEawLW/PhoawJDrGAP0JYWHgAVUByo/bGdiv2T2EMg8gsS14/rAdzlOYazFE7w4OzxeKiWdm3nSOnQRRKXSlVo8HEAbBfyJMKqoq+SCcTSx5NDtbFwNlh8VhjGGDu7JG5/TAGAvniQSSUog0pNzTim8Owc6QTuSKSTXlQqwV3eiEnklS3LeSXYPXGK2VgeZBqNcHG6tZHvA3vTINhV0ELuQdp3t1y9+ogD8Kk/W7QoRN1UWPqM4+xdygkFDPLoTaumKReKiLWoPHOfY54m3qPx4c+4pgY3MRKKbljG8w4wvz8pxk3AqKsy4GMAkAtmRjRMsCxbb4Q2Ds0Ia9ci8cMT6DmsJG00XaHCIS+o3F8YVVeikw13w+OEDaCYYhC0ZE54kA4jpjruBr5STWeqQG6M74HHL6TZ3lXrd99ZX++7LhNatQaZosuxEf5yRA15S9gPeHskBIq3Gcw81AGb9/O53DYi/5CsQ51EmEh8Rkg4vOciClpy4d04eYsfr6fyQkBmtD+P8sNh6e+XYHJXT/lkXxT4KXU5F2sGxYyzfniMMQkb9OjDN2C8tRRgTyL7GwozH14PrEUZc6oz05Emne3Ts5EG7WolDmU8OB1LDG3VrpQxp+pT0KYV5dGtknU64JhabdqcVQbGZiAxQAnvN1u70y1AnmvOSPgLI6uB4AuDGhmAu3ATkJSw7OtS/2ToPjqkaq62/7WFG8advGlRRqxB9diP07JrXowKR9tpRa+jGJ91zxNTT1h8I2PcSfoUPtd7NejVoH03EUcqSBuFZPkMZhegHyo2ZAITovmm3zAIdGFWxoNNORiMRShgwdYwFzkPw5PA4a5MIIQpmq+nsp3YMuXt/GkXxLx/P6+ZJS0lFyz4MunC3eWSGE8xlCQrKvhKUPXr0hjpAN9ZK4PfEDrPMfMbGNWcHDzjA7ngMxTPnT7GMHar+gMQQ3NwHCv4zH4BIMYvzsdiERi6gebRmerTsVwZJTRsL8dkZgxgRxmpbgRcud+YlCIRpPwHShlUSwuipZnx9QCsEWziVazdDeKSYU5CF7UVPAhLer3CgJOQXl/zh575R5rsrmRnKAzq4POFdgbYBuEviM4+LVC15ssLNFghbTtHWerS1hDt5s4qkLUha/qpZXhWh1C6lTQAqCNQnaDjS7UGFBC6wTu8yFnKJnExCnAs3Ok9yj5KpfZESQ4lTy5pTGTnkAUpxI+yjEldJfSo4y0QhG4i4IwkRFGcjWY8+EzgYYJUK7BXQksLxAww/YYWBMhJILB9e8ePEJ4OP7z+4/wOQDl64iOYDp26DaONPxpKtBxq/aTzRGarm3VkPYTLJKx6Z/Mw2YbBGseJhPMwhhNswrIkyvV2BYzrvZbxLpKwcWJhYmFtVZ+lPEq91FzVp1HlQY1bZVLqeNR9SAUn6n0E28k/UuGkNpP1DBI5ch/EehZfjUQ9aE41NhETExoPT2gGQz0IhWJbEOvTQ4wgcXCHHFBhewYUiFHuhRSAUVmEHeCRQHQkXGFwkAgyzREJCVN7TRnTon36Zw3tPhx4EALwNdwDv+J41YSP4B2CQqz0EFgARZ4ESgBHQgROwAVn9GTI+HYexTUevLUeta4/DqKrbMVS+Yqb8hUwYCrlgKtmAq1YCrFgKrd4qpXiqZcKn1oqdWipjYKpWwVPVYqW6xUpVipKqFR3QKjagVEtAqHpxUMTitsnFaJOKx2cVhswq35RVpyiq9lFVNIKnOQVMkgqtYxVNxiqQjFS7GKlSIVIsQqPIhUWwioigFQ++KkN8VHr49HDw9Ebo9EDo9DTo9Crg9BDg9/Wx7gWx7YWwlobYrOGxWPNisAaAHEyALpkAVDIAeWAArsABVXACYuAD5cAF6wAKFQAQqgAbVAAsoAAlQAUaYAfkwAvogBWQACOgAD9AAHSAAKT4GUdMiOvFngBTwCn2AZ7Dv6B6k/90B8+yRnkV144AIBoAMTQATGgAjNAA4YABgwABZgB/mQCwyAVlwCguASlwCEuAQFwB4uAMlwBYuAJlQAUVAAhUD2KgdpUDaJgaRMDFJgX5MC1JgWJEAokQCWRAHxEAWkQBMRADpEAMkQAYROAEecC484DRpwBDTnwNOdw05tjTmiNOYwtswhYFwLA7BYG4LA2BYGOLAwRYFuLAsxYFQJAohIEyJAMwkAwiQC0JAJgkAeiQBkJAFokAPCQA0JABwcD4Dgc4cDdDgaYcDIDgYgUC6CgWgUClCgUYUAVBQBOFAEYMALgwAgDA9QYAdIn8AZzeBB2L5EcWrenUT1KXienEsuJJ7x5U8XlTjc1NVzUyXFTGb1LlpUtWlTDIjqwE4LsagowoCi2gJLKAkpoBgJQNpAIhNqaEoneI6kiiqQ6Go/n6j0cS+a2gEU8gIHJ+BwfgZX4GL+Bd/gW34FZ+BS/gUH4FN6BTegTvoEv6BJegRnYEF2A79gOvYDl2BdEjCkqkGtwXp0LNToIskOTXzh/F062yJ7AAAAEDAWAAABWhJ+KPEIJgBFxMVP7w2QJBGHASQnOBKXKFIdUK4igKA9IEaYJg);src:url(data:application/vnd.ms-fontobject;base64,n04AAEFNAAACAAIABAAAAAAABQAAAAAAAAABAJABAAAEAExQAAAAAAAAAAIAAAAAAAAAAAEAAAAAAAAAJxJ/LAAAAAAAAAAAAAAAAAAAAAAAACgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAAAADgBSAGUAZwB1AGwAYQByAAAAeABWAGUAcgBzAGkAbwBuACAAMQAuADAAMAA5ADsAUABTACAAMAAwADEALgAwADAAOQA7AGgAbwB0AGMAbwBuAHYAIAAxAC4AMAAuADcAMAA7AG0AYQBrAGUAbwB0AGYALgBsAGkAYgAyAC4ANQAuADUAOAAzADIAOQAAADgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzACAAUgBlAGcAdQBsAGEAcgAAAAAAQlNHUAAAAAAAAAAAAAAAAAAAAAADAKncAE0TAE0ZAEbuFM3pjM/SEdmjKHUbyow8ATBE40IvWA3vTu8LiABDQ+pexwUMcm1SMnNryctQSiI1K5ZnbOlXKmnVV5YvRe6RnNMFNCOs1KNVpn6yZhCJkRtVRNzEufeIq7HgSrcx4S8h/v4vnrrKc6oCNxmSk2uKlZQHBii6iKFoH0746ThvkO1kJHlxjrkxs+LWORaDQBEtiYJIR5IB9Bi1UyL4Rmr0BNigNkMzlKQmnofBHviqVzUxwdMb3NdCn69hy+pRYVKGVS/1tnsqv4LL7wCCPZZAZPT4aCShHjHJVNuXbmMrY5LeQaGnvAkXlVrJgKRAUdFjrWEah9XebPeQMj7KS7DIBAFt8ycgC5PLGUOHSE3ErGZCiViNLL5ZARfywnCoZaKQCu6NuFX42AEeKtKUGnr/Cm2Cy8tpFhBPMW5Fxi4Qm4TkDWh4IWFDClhU2hRWosUWqcKLlgyXB+lSHaWaHiWlBAR8SeSgSPCQxdVQgzUixWKSTrIQEbU94viDctkvX+VSjJuUmV8L4CXShI11esnp0pjWNZIyxKHS4wVQ2ime1P4RnhvGw0aDN1OLAXGERsB7buFpFGGBAre4QEQR0HOIO5oYH305G+KspT/FupEGGafCCwxSe6ZUa+073rXHnNdVXE6eWvibUS27XtRzkH838mYLMBmYysZTM0EM3A1fbpCBYFccN1B/EnCYu/TgCGmr7bMh8GfYL+BfcLvB0gRagC09w9elfldaIy/hNCBLRgBgtCC7jAF63wLSMAfbfAlEggYU0bUA7ACCJmTDpEmJtI78w4/BO7dN7JR7J7ZvbYaUbaILSQsRBiF3HGk5fEg6p9unwLvn98r+vnsV+372uf1xBLq4qU/45fTuqaAP+pssmCCCTF0mhEow8ZXZOS8D7Q85JsxZ+Azok7B7O/f6J8AzYBySZQB/QHYUSA+EeQhEWiS6AIQzgcsDiER4MjgMBAWDV4AgQ3g1eBgIdweCQmCjJEMkJ+PKRWyFHHmg1Wi/6xzUgA0LREoKJChwnQa9B+5RQZRB3IlBlkAnxyQNaANwHMowzlYSMCBgnbpzvqpl0iTJNCQidDI9ZrSYNIRBhHtUa5YHMHxyGEik9hDE0AKj72AbTCaxtHPUaKZdAZSnQTyjGqGLsmBStCejApUhg4uBMU6mATujEl+KdDPbI6Ag4vLr+hjY6lbjBeoLKnZl0UZgRX8gTySOeynZVz1wOq7e1hFGYIq+MhrGxDLak0PrwYzSXtcuyhXEhwOYofiW+EcI/jw8P6IY6ed+etAbuqKp5QIapT77LnAe505lMuqL79a0ut4rWexzFttsOsLDy7zvtQzcq3U1qabe7tB0wHWVXji+zDbo8x8HyIRUbXnwUcklFv51fvTymiV+MXLSmGH9d9+aXpD5X6lao41anWGig7IwIdnoBY2ht/pO9mClLo4NdXHAsefqWUKlXJkbqPOFhMoR4aiA1BXqhRNbB2Xwi+7u/jpAoOpKJ0UX24EsrzMfHXViakCNcKjBxuQX8BO0ZqjJ3xXzf+61t2VXOSgJ8xu65QKgtN6FibPmPYsXbJRHHqbgATcSZxBqGiDiU4NNNsYBsKD0MIP/OfKnlk/Lkaid/O2NbKeuQrwOB2Gq3YHyr6ALgzym5wIBnsdC1ZkoBFZSQXChZvlesPqvK2c5oHHT3Q65jYpNxnQcGF0EHbvYqoFw60WNlXIHQF2HQB7zD6lWjZ9rVqUKBXUT6hrkZOle0RFYII0V5ZYGl1JAP0Ud1fZZMvSomBzJ710j4Me8mjQDwEre5Uv2wQfk1ifDwb5ksuJQQ3xt423lbuQjvoIQByQrNDh1JxGFkOdlJvu/gFtuW0wR4cgd+ZKesSV7QkNE2kw6AV4hoIuC02LGmTomyf8PiO6CZzOTLTPQ+HW06H+tx+bQ8LmDYg1pTFrp2oJXgkZTyeRJZM0C8aE2LpFrNVDuhARsN543/FV6klQ6Tv1OoZGXLv0igKrl/CmJxRmX7JJbJ998VSIPQRyDBICzl4JJlYHbdql30NvYcOuZ7a10uWRrgoieOdgIm4rlq6vNOQBuqESLbXG5lzdJGHw2m0sDYmODXbYGTfSTGRKpssTO95fothJCjUGQgEL4yKoGAF/0SrpUDNn8CBgBcSDQByAeNkCXp4S4Ro2Xh4OeaGRgR66PVOsU8bc6TR5/xTcn4IVMLOkXSWiXxkZQCbvKfmoAvQaKjO3EDKwkwqHChCDEM5loQRPd5ACBki1TjF772oaQhQbQ5C0lcWXPFOzrfsDGUXGrpxasbG4iab6eByaQkQfm0VFlP0ZsDkvvqCL6QXMUwCjdMx1ZOyKhTJ7a1GWAdOUcJ8RSejxNVyGs31OKMyRyBVoZFjqIkmKlLQ5eHMeEL4MkUf23cQ/1SgRCJ1dk4UdBT7OoyuNgLs0oCd8RnrEIb6QdMxT2QjD4zMrJkfgx5aDMcA4orsTtKCqWb/Veyceqa5OGSmB28YwH4rFbkQaLoUN8OQQYnD3w2eXpI4ScQfbCUZiJ4yMOIKLyyTc7BQ4uXUw6Ee6/xM+4Y67ngNBknxIPwuppgIhFcwJyr6EIj+LzNj/mfR2vhhRlx0BILZoAYruF0caWQ7YxO66UmeguDREAFHYuC7HJviRgVO6ruJH59h/C/PkgSle8xNzZJULLWq9JMDTE2fjGE146a1Us6PZDGYle6ldWRqn/pdpgHKNGrGIdkRK+KPETT9nKT6kLyDI8xd9A1FgWmXWRAIHwZ37WyZHOVyCadJEmMVz0MadMjDrPho+EIochkVC2xgGiwwsQ6DMv2P7UXqT4x7CdcYGId2BJQQa85EQKmCmwcRejQ9Bm4oATENFPkxPXILHpMPUyWTI5rjNOsIlmEeMbcOCEqInpXACYQ9DDxmFo9vcmsDblcMtg4tqBerNngkIKaFJmrQAPnq1dEzsMXcwjcHdfdCibcAxxA+q/j9m3LM/O7WJka4tSidVCjsvo2lQ/2ewyoYyXwAYyr2PlRoR5MpgVmSUIrM3PQxXPbgjBOaDQFIyFMJvx3Pc5RSYj12ySVF9fwFPQu2e2KWVoL9q3Ayv3IzpGHUdvdPdrNUdicjsTQ2ISy7QU3DrEytIjvbzJnAkmANXjAFERA0MUoPF3/5KFmW14bBNOhwircYgMqoDpUMcDtCmBE82QM2YtdjVLB4kBuKho/bcwQdeboqfQartuU3CsCf+cXkgYAqp/0Ee3RorAZt0AvvOCSI4JICIlGlsV0bsSid/NIEALAAzb6HAgyWHBps6xAOwkJIGcB82CxRQq4sJf3FzA70A+TRqcqjEMETCoez3mkPcpnoALs0ugJY8kQwrC+JE5ik3w9rzrvDRjAQnqgEVvdGrNwlanR0SOKWzxOJOvLJhcd8Cl4AshACUkv9czdMkJCVQSQhp6kp7StAlpVRpK0t0SW6LHeBJnE2QchB5Ccu8kxRghZXGIgZIiSj7gEKMJDClcnX6hgoqJMwiQDigIXg3ioFLCgDgjPtYHYpsF5EiA4kcnN18MZtOrY866dEQAb0FB34OGKHGZQjwW/WDHA60cYFaI/PjpzquUqdaYGcIq+mLez3WLFFCtNBN2QJcrlcoELgiPku5R5dSlJFaCEqEZle1AQzAKC+1SotMcBNyQUFuRHRF6OlimSBgjZeTBCwLyc6A+P/oFRchXTz5ADknYJHxzrJ5pGuIKRQISU6WyKTBBjD8WozmVYWIsto1AS5rxzKlvJu4E/vwOiKxRtCWsDM+eTHUrmwrCK5BIfMzGkD+0Fk5LzBs0jMYXktNDblB06LMNJ09U8pzSLmo14MS0OMjcdrZ31pyQqxJJpRImlSvfYAK8inkYU52QY2FPEVsjoWewpwhRp5yAuNpkqhdb7ku9Seefl2D0B8SMTFD90xi4CSOwwZy9IKkpMtI3FmFUg3/kFutpQGNc3pCR7gvC4sgwbupDu3DyEN+W6YGLNM21jpB49irxy9BSlHrVDlnihGKHwPrbVFtc+h1rVQKZduxIyojccZIIcOCmhEnC7UkY68WXKQgLi2JCDQkQWJRQuk60hZp0D3rtCTINSeY9Ej2kIKYfGxwOs4j9qMM7fYZiipzgcf7TamnehqdhsiMiCawXnz4xAbyCkLAx5EGbo3Ax1u3dUIKnTxIaxwQTHehPl3V491H0+bC5zgpGz7Io+mjdhKlPJ01EeMpM7UsRJMi1nGjmJg35i6bQBAAxjO/ENJubU2mg3ONySEoWklCwdABETcs7ck3jgiuU9pcKKpbgn+3YlzV1FzIkB6pmEDOSSyDfPPlQskznctFji0kpgZjW5RZe6x9kYT4KJcXg0bNiCyif+pZACCyRMmYsfiKmN9tSO65F0R2OO6ytlEhY5Sj6uRKfFxw0ijJaAx/k3QgnAFSq27/2i4GEBA+UvTJKK/9eISNvG46Em5RZfjTYLdeD8kdXHyrwId/DQZUaMCY4gGbke2C8vfjgV/Y9kkRQOJIn/xM9INZSpiBnqX0Q9GlQPpPKAyO5y+W5NMPSRdBCUlmuxl40ZfMCnf2Cp044uI9WLFtCi4YVxKjuRCOBWIb4XbIsGdbo4qtMQnNOQz4XDSui7W/N6l54qOynCqD3DpWQ+mpD7C40D8BZEWGJX3tlAaZBMj1yjvDYKwCJBa201u6nBKE5UE+7QSEhCwrXfbRZylAaAkplhBWX50dumrElePyNMRYUrC99UmcSSNgImhFhDI4BXjMtiqkgizUGCrZ8iwFxU6fQ8GEHCFdLewwxYWxgScAYMdMLmcZR6b7rZl95eQVDGVoUKcRMM1ixXQtXNkBETZkVVPg8LoSrdetHzkuM7DjZRHP02tCxA1fmkXKF3VzfN1pc1cv/8lbTIkkYpqKM9VOhp65ktYk+Q46myFWBapDfyWUCnsnI00QTBQmuFjMZTcd0V2NQ768Fhpby04k2IzNR1wKabuGJqYWwSly6ocMFGTeeI+ejsWDYgEvr66QgqdcIbFYDNgsm0x9UHY6SCd5+7tpsLpKdvhahIDyYmEJQCqMqtCF6UlrE5GXRmbu+vtm3BFSxI6ND6UxIE7GsGMgWqghXxSnaRJuGFveTcK5ZVSPJyjUxe1dKgI6kNF7EZhIZs8y8FVqwEfbM0Xk2ltORVDKZZM40SD3qQoQe0orJEKwPfZwm3YPqwixhUMOndis6MhbmfvLBKjC8sKKIZKbJk8L11oNkCQzCgvjhyyEiQSuJcgCQSG4Mocfgc0Hkwcjal1UNgP0CBPikYqBIk9tONv4kLtBswH07vUCjEaHiFGlLf8MgXKzSgjp2HolRRccAOh0ILHz9qlGgIFkwAnzHJRjWFhlA7ROwINyB5HFj59PRZHFor6voq7l23EPNRwdWhgawqbivLSjRA4htEYUFkjESu67icTg5S0aW1sOkCiIysfJ9UnIWevOOLGpepcBxy1wEhd2WI3AZg7sr9WBmHWyasxMcvY/iOmsLtHSWNUWEGk9hScMPShasUA1AcHOtRZlqMeQ0OzYS9vQvYUjOLrzP07BUAFikcJNMi7gIxEw4pL1G54TcmmmoAQ5s7TGWErJZ2Io4yQ0ljRYhL8H5e62oDtLF8aDpnIvZ5R3GWJyAugdiiJW9hQAVTsnCBHhwu7rkBlBX6r3b7ejEY0k5GGeyKv66v+6dg7mcJTrWHbtMywbedYqCQ0FPwoytmSWsL8WTtChZCKKzEF7vP6De4x2BJkkniMgSdWhbeBSLtJZR9CTHetK1xb34AYIJ37OegYIoPVbXgJ/qDQK+bfCtxQRVKQu77WzOoM6SGL7MaZwCGJVk46aImai9fmam+WpHG+0BtQPWUgZ7RIAlPq6lkECUhZQ2gqWkMYKcYMYaIc4gYCDFHYa2d1nzp3+J1eCBay8IYZ0wQRKGAqvCuZ/UgbQPyllosq+XtfKIZOzmeJqRazpmmoP/76YfkjzV2NlXTDSBYB04SVlNQsFTbGPk1t/I4Jktu0XSgifO2ozFOiwd/0SssJDn0dn4xqk4GDTTKX73/wQyBLdqgJ+Wx6AQaba3BA9CKEzjtQYIfAsiYamapq80LAamYjinlKXUkxdpIDk0puXUEYzSalfRibAeDAKpNiqQ0FTwoxuGYzRnisyTotdVTclis1LHRQCy/qqL8oUaQzWRxilq5Mi0IJGtMY02cGLD69vGjkj3p6pGePKI8bkBv5evq8SjjyU04vJR2cQXQwSJyoinDsUJHCQ50jrFTT7yRdbdYQMB3MYCb6uBzJ9ewhXYPAIZSXfeEQBZZ3GPN3Nbhh/wkvAJLXnQMdi5NYYZ5GHE400GS5rXkOZSQsdZgIbzRnF9ueLnsfQ47wHAsirITnTlkCcuWWIUhJSbpM3wWhXNHvt2xUsKKMpdBSbJnBMcihkoDqAd1Zml/R4yrzow1Q2A5G+kzo/RhRxQS2lCSDRV8LlYLBOOoo1bF4jwJAwKMK1tWLHlu9i0j4Ig8qVm6wE1DxXwAwQwsaBWUg2pOOol2dHxyt6npwJEdLDDVYyRc2D0HbcbLUJQj8gPevQBUBOUHXPrsAPBERICpnYESeu2OHotpXQxRGlCCtLdIsu23MhZVEoJg8Qumj/UMMc34IBqTKLDTp76WzL/dMjCxK7MjhiGjeYAC/kj/jY/Rde7hpSM1xChrog6yZ7OWTuD56xBJnGFE+pT2ElSyCnJcwVzCjkqeNLfMEJqKW0G7OFIp0G+9mh50I9o8k1tpCY0xYqFNIALgIfc2me4n1bmJnRZ89oepgLPT0NTMLNZsvSCZAc3TXaNB07vail36/dBySis4m9/DR8izaLJW6bWCkVgm5T+ius3ZXq4xI+GnbveLbdRwF2mNtsrE0JjYc1AXknCOrLSu7Te/r4dPYMCl5qtiHNTn+TPbh1jCBHH+dMJNhwNgs3nT+OhQoQ0vYif56BMG6WowAcHR3DjQolxLzyVekHj00PBAaW7IIAF1EF+uRIWyXjQMAs2chdpaKPNaB+kSezYt0+CA04sOg5vx8Fr7Ofa9sUv87h7SLAUFSzbetCCZ9pmyLt6l6/TzoA1/ZBG9bIUVHLAbi/kdBFgYGyGwRQGBpkqCEg2ah9UD6EedEcEL3j4y0BQQCiExEnocA3SZboh+epgd3YsOkHskZwPuQ5OoyA0fTA5AXrHcUOQF+zkJHIA7PwCDk1gGVmGUZSSoPhNf+Tklauz98QofOlCIQ/tCD4dosHYPqtPCXB3agggQQIqQJsSkB+qn0rkQ1toJjON/OtCIB9RYv3PqRA4C4U68ZMlZn6BdgEvi2ziU+TQ6NIw3ej+AtDwMGEZk7e2IjxUWKdAxyaw9OCwSmeADTPPleyk6UhGDNXQb++W6Uk4q6F7/rg6WVTo82IoCxSIsFDrav4EPHphD3u4hR53WKVvYZUwNCCeM4PMBWzK+EfIthZOkuAwPo5C5jgoZgn6dUdvx5rIDmd58cXXdKNfw3l+wM2UjgrDJeQHhbD7HW2QDoZMCujgIUkk5Fg8VCsdyjOtnGRx8wgKRPZN5dR0zPUyfGZFVihbFRniXZFOZGKPnEQzU3AnD1KfR6weHW2XS6KbPJxUkOTZsAB9vTVp3Le1F8q5l+DMcLiIq78jxAImD2pGFw0VHfRatScGlK6SMu8leTmhUSMy8Uhdd6xBiH3Gdman4tjQGLboJfqz6fL2WKHTmrfsKZRYX6BTDjDldKMosaSTLdQS7oDisJNqAUhw1PfTlnacCO8vl8706Km1FROgLDmudzxg+EWTiArtHgLsRrAXYWdB0NmToNCJdKm0KWycZQqb+Mw76Qy29iQ5up/X7oyw8QZ75kP5F6iJAJz6KCmqxz8fEa/xnsMYcIO/vEkGRuMckhr4rIeLrKaXnmIzlNLxbFspOphkcnJdnz/Chp/Vlpj2P7jJQmQRwGnltkTV5dbF9fE3/fxoSqTROgq9wFUlbuYzYcasE0ouzBo+dDCDzxKAfhbAZYxQiHrLzV2iVexnDX/QnT1fsT/xuhu1ui5qIytgbGmRoQkeQooO8eJNNZsf0iALur8QxZFH0nCMnjerYQqG1pIfjyVZWxhVRznmmfLG00BcBWJE6hzQWRyFknuJnXuk8A5FRDCulwrWASSNoBtR+CtGdkPwYN2o7DOw/VGlCZPusRBFXODQdUM5zeHDIVuAJBLqbO/f9Qua+pDqEPk230Sob9lEZ8BHiCorjVghuI0lI4JDgHGRDD/prQ84B1pVGkIpVUAHCG+iz3Bn3qm2AVrYcYWhock4jso5+J7HfHVj4WMIQdGctq3psBCVVzupQOEioBGA2Bk+UILT7+VoX5mdxxA5fS42gISQVi/HTzrgMxu0fY6hE1ocUwwbsbWcezrY2n6S8/6cxXkOH4prpmPuFoikTzY7T85C4T2XYlbxLglSv2uLCgFv8Quk/wdesUdWPeHYIH0R729JIisN9Apdd4eB10aqwXrPt+Su9mA8k8n1sjMwnfsfF2j3jMUzXepSHmZ/BfqXvzgUNQQWOXO8YEuFBh4QTYCkOAPxywpYu1VxiDyJmKVcmJPGWk/gc3Pov02StyYDahwmzw3E1gYC9wkupyWfDqDSUMpCTH5e5N8B//lHiMuIkTNw4USHrJU67bjXGqNav6PBuQSoqTxc8avHoGmvqNtXzIaoyMIQIiiUHIM64cXieouplhNYln7qgc4wBVAYR104kO+CvKqsg4yIUlFNThVUAKZxZt1XA34h3TCUUiXVkZ0w8Hh2R0Z5L0b4LZvPd/p1gi/07h8qfwHrByuSxglc9cI4QIg2oqvC/qm0i7tjPLTgDhoWTAKDO2ONW5oe+/eKB9vZB8K6C25yCZ9RFVMnb6NRdRjyVK57CHHSkJBfnM2/j4ODUwRkqrtBBCrDsDpt8jhZdXoy/1BCqw3sSGhgGGy0a5Jw6BP/TExoCmNFYjZl248A0osgPyGEmRA+fAsqPVaNAfytu0vuQJ7rk3J4kTDTR2AlCHJ5cls26opZM4w3jMULh2YXKpcqGBtuleAlOZnaZGbD6DHzMd6i2oFeJ8z9XYmalg1Szd/ocZDc1C7Y6vcALJz2lYnTXiWEr2wawtoR4g3jvWUU2Ngjd1cewtFzEvM1NiHZPeLlIXFbBPawxNgMwwAlyNSuGF3zizVeOoC9bag1qRAQKQE/EZBWC2J8mnXAN2aTBboZ7HewnObE8CwROudZHmUM5oZ/Ugd/JZQK8lvAm43uDRAbyW8gZ+ZGq0EVerVGUKUSm/Idn8AQHdR4m7bue88WBwft9mSCeMOt1ncBwziOmJYI2ZR7ewNMPiCugmSsE4EyQ+QATJG6qORMGd4snEzc6B4shPIo4G1T7PgSm8PY5eUkPdF8JZ0VBtadbHXoJgnEhZQaODPj2gpODKJY5Yp4DOsLBFxWbvXN755KWylJm+oOd4zEL9Hpubuy2gyyfxh8oEfFutnYWdfB8PdESLWYvSqbElP9qo3u6KTmkhoacDauMNNjj0oy40DFV7Ql0aZj77xfGl7TJNHnIwgqOkenruYYNo6h724+zUQ7+vkCpZB+pGA562hYQiDxHVWOq0oDQl/QsoiY+cuI7iWq/ZIBtHcXJ7kks+h2fCNUPA82BzjnqktNts+RLdk1VSu+tqEn7QZCCsvEqk6FkfiOYkrsw092J8jsfIuEKypNjLxrKA9kiA19mxBD2suxQKCzwXGws7kEJvlhUiV9tArLIdZW0IORcxEzdzKmjtFhsjKy/44XYXdI5noQoRcvjZ1RMPACRqYg2V1+OwOepcOknRLLFdYgTkT5UApt/JhLM3jeFYprZV+Zow2g8fP+U68hkKFWJj2yBbKqsrp25xkZX1DAjUw52IMYWaOhab8Kp05VrdNftqwRrymWF4OQSjbdfzmRZirK8FMJELEgER2PHjEAN9pGfLhCUiTJFbd5LBkOBMaxLr/A1SY9dXFz4RjzoU9ExfJCmx/I9FKEGT3n2cmzl2X42L3Jh+AbQq6sA+Ss1kitoa4TAYgKHaoybHUDJ51oETdeI/9ThSmjWGkyLi5QAGWhL0BG1UsTyRGRJOldKBrYJeB8ljLJHfATWTEQBXBDnQexOHTB+Un44zExFE4vLytcu5NwpWrUxO/0ZICUGM7hGABXym0V6ZvDST0E370St9MIWQOTWngeoQHUTdCJUP04spMBMS8LSker9cReVQkULFDIZDFPrhTzBl6sed9wcZQTbL+BDqMyaN3RJPh/anbx+Iv+qgQdAa3M9Z5JmvYlh4qop+Ho1F1W5gbOE9YKLgAnWytXElU4G8GtW47lhgFE6gaSs+gs37sFvi0PPVvA5dnCBgILTwoKd/+DoL9F6inlM7H4rOTzD79KJgKlZO/Zgt22UsKhrAaXU5ZcLrAglTVKJEmNJvORGN1vqrcfSMizfpsgbIe9zno+gBoKVXgIL/VI8dB1O5o/R3Suez/gD7M781ShjKpIIORM/nxG+jjhhgPwsn2IoXsPGPqYHXA63zJ07M2GPEykQwJBYLK808qYxuIew4frk52nhCsnCYmXiR6CuapvE1IwRB4/QftDbEn+AucIr1oxrLabRj9q4ae0+fXkHnteAJwXRbVkR0mctVSwEbqhJiMSZUp9DNbEDMmjX22m3ABpkrPQQTP3S1sib5pD2VRKRd+eNAjLYyT0hGrdjWJZy24OYXRoWQAIhGBZRxuBFMjjZQhpgrWo8SiFYbojcHO8V5DyscJpLTHyx9Fimassyo5U6WNtquUMYgccaHY5amgR3PQzq3ToNM5ABnoB9kuxsebqmYZm0R9qxJbFXCQ1UPyFIbxoUraTJFDpCk0Wk9GaYJKz/6oHwEP0Q14lMtlddQsOAU9zlYdMVHiT7RQP3XCmWYDcHCGbVRHGnHuwzScA0BaSBOGkz3lM8CArjrBsyEoV6Ys4qgDK3ykQQPZ3hCRGNXQTNNXbEb6tDiTDLKOyMzRhCFT+mAUmiYbV3YQVqFVp9dorv+TsLeCykS2b5yyu8AV7IS9cxcL8z4Kfwp+xJyYLv1OsxQCZwTB4a8BZ/5EdxTBJthApqyfd9u3ifr/WILTqq5VqgwMT9SOxbSGWLQJUUWCVi4k9tho9nEsbUh7U6NUsLmkYFXOhZ0kmamaJLRNJzSj/qn4Mso6zb6iLLBXoaZ6AqeWCjHQm2lztnejYYM2eubnpBdKVLORZhudH3JF1waBJKA9+W8EhMj3Kzf0L4vi4k6RoHh3Z5YgmSZmk6ns4fjScjAoL8GoOECgqgYEBYUGFVO4FUv4/YtowhEmTs0vrvlD/CrisnoBNDAcUi/teY7OctFlmARQzjOItrrlKuPO6E2Ox93L4O/4DcgV/dZ7qR3VBwVQxP1GCieA4RIpweYJ5FoYrHxqRBdJjnqbsikA2Ictbb8vE1GYIo9dacK0REgDX4smy6GAkxlH1yCGGsk+tgiDhNKuKu3yNrMdxafmKTF632F8Vx4BNK57GvlFisrkjN9WDAtjsWA0ENT2e2nETUb/n7qwhvGnrHuf5bX6Vh/n3xffU3PeHdR+FA92i6ufT3AlyAREoNDh6chiMWTvjKjHDeRhOa9YkOQRq1vQXEMppAQVwHCuIcV2g5rBn6GmZZpTR7vnSD6ZmhdSl176gqKTXu5E+YbfL0adwNtHP7dT7t7b46DVZIkzaRJOM+S6KcrzYVg+T3wSRFRQashjfU18NutrKa/7PXbtuJvpIjbgPeqd+pjmRw6YKpnANFSQcpzTZgpSNJ6J7uiagAbir/8tNXJ/OsOnRh6iuIexxrmkIneAgz8QoLmiaJ8sLQrELVK2yn3wOHp57BAZJhDZjTBzyoRAuuZ4eoxHruY1pSb7qq79cIeAdOwin4GdgMeIMHeG+FZWYaiUQQyC5b50zKjYw97dFjAeY2I4Bnl105Iku1y0lMA1ZHolLx19uZnRdILcXKlZGQx/GdEqSsMRU1BIrFqRcV1qQOOHyxOLXEGcbRtAEsuAC2V4K3p5mFJ22IDWaEkk9ttf5Izb2LkD1MnrSwztXmmD/Qi/EmVEFBfiKGmftsPwVaIoZanlKndMZsIBOskFYpDOq3QUs9aSbAAtL5Dbokus2G4/asthNMK5UQKCOhU97oaOYNGsTah+jfCKsZnTRn5TbhFX8ghg8CBYt/BjeYYYUrtUZ5jVij/op7V5SsbA4mYTOwZ46hqdpbB6Qvq3AS2HHNkC15pTDIcDNGsMPXaBidXYPHc6PJAkRh29Vx8KcgX46LoUQBhRM+3SW6Opll/wgxxsPgKJKzr5QCmwkUxNbeg6Wj34SUnEzOemSuvS2OetRCO8Tyy+QbSKVJcqkia+GvDefFwMOmgnD7h81TUtMn+mRpyJJ349HhAnoWFTejhpYTL9G8N2nVg1qkXBeoS9Nw2fB27t7trm7d/QK7Cr4uoCeOQ7/8JfKT77KiDzLImESHw/0wf73QeHu74hxv7uihi4fTX+XEwAyQG3264dwv17aJ5N335Vt9sdrAXhPOAv8JFvzqyYXwfx8WYJaef1gMl98JRFyl5Mv5Uo/oVH5ww5OzLFsiTPDns7fS6EURSSWd/92BxMYQ8sBaH+j+wthQPdVgDGpTfi+JQIWMD8xKqULliRH01rTeyF8x8q/GBEEEBrAJMPf25UQwi0b8tmqRXY7kIvNkzrkvRWLnxoGYEJsz8u4oOyMp8cHyaybb1HdMCaLApUE+/7xLIZGP6H9xuSEXp1zLIdjk5nBaMuV/yTDRRP8Y2ww5RO6d2D94o+6ucWIqUAvgHIHXhZsmDhjVLczmZ3ca0Cb3PpKwt2UtHVQ0BgFJsqqTsnzZPlKahRUkEu4qmkJt+kqdae76ViWe3STan69yaF9+fESD2lcQshLHWVu4ovItXxO69bqC5p1nZLvI8NdQB9s9UNaJGlQ5mG947ipdDA0eTIw/A1zEdjWquIsQXXGIVEH0thC5M+W9pZe7IhAVnPJkYCCXN5a32HjN6nsvokEqRS44tGIs7s2LVTvcrHAF+RVmI8L4HUYk4x+67AxSMJKqCg8zrGOgvK9kNMdDrNiUtSWuHFpC8/p5qIQrEo/H+1l/0cAwQ2nKmpWxKcMIuHY44Y6DlkpO48tRuUGBWT0FyHwSKO72Ud+tJUfdaZ4CWNijzZtlRa8+CkmO/EwHYfPZFU/hzjFWH7vnzHRMo+aF9u8qHSAiEkA2HjoNQPEwHsDKOt6hOoK3Ce/+/9boMWDa44I6FrQhdgS7OnNaSzwxWKZMcyHi6LN4WC6sSj0qm2PSOGBTvDs/GWJS6SwEN/ULwpb4LQo9fYjUfSXRwZkynUazlSpvX9e+G2zor8l+YaMxSEomDdLHGcD6YVQPegTaA74H8+V4WvJkFUrjMLGLlvSZQWvi8/QA7yzQ8GPno//5SJHRP/OqKObPCo81s/+6WgLqykYpGAgQZhVDEBPXWgU/WzFZjKUhSFInufPRiMAUULC6T11yL45ZrRoB4DzOyJShKXaAJIBS9wzLYIoCEcJKQW8GVCx4fihqJ6mshBUXSw3wWVj3grrHQlGNGhIDNNzsxQ3M+GWn6ASobIWC+LbYOC6UpahVO13Zs2zOzZC8z7FmA05JhUGyBsF4tsG0drcggIFzgg/kpf3+CnAXKiMgIE8Jk/Mhpkc8DUJEUzDSnWlQFme3d0sHZDrg7LavtsEX3cHwjCYA17pMTfx8Ajw9hHscN67hyo+RJQ4458RmPywXykkVcW688oVUrQhahpPRvTWPnuI0B+SkQu7dCyvLRyFYlC1LG1gRCIvn3rwQeINzZQC2KXq31FaR9UmVV2QeGVqBHjmE+VMd3b1fhCynD0pQNhCG6/WCDbKPyE7NRQzL3BzQAJ0g09aUzcQA6mUp9iZFK6Sbp/YbHjo++7/Wj8S4YNa+ZdqAw1hDrKWFXv9+zaXpf8ZTDSbiqsxnwN/CzK5tPkOr4tRh2kY3Bn9JtalbIOI4b3F7F1vPQMfoDcdxMS8CW9m/NCW/HILTUVWQIPiD0j1A6bo8vsv6P1hCESl2abrSJWDrq5sSzUpwoxaCU9FtJyYH4QFMxDBpkkBR6kn0LMPO+5EJ7Z6bCiRoPedRZ/P0SSdii7ZnPAtVwwHUidcdyspwncz5uq6vvm4IEDbJVLUFCn/LvIHfooUBTkFO130FC7CmmcrKdgDJcid9mvVzsDSibOoXtIf9k6ABle3PmIxejodc4aob0QKS432srrCMndbfD454q52V01G4q913mC5HOsTzWF4h2No1av1VbcUgWAqyoZl+11PoFYnNv2HwAODeNRkHj+8SF1fcvVBu6MrehHAZK1Gm69ICcTKizykHgGFx7QdowTVAsYEF2tVc0Z6wLryz2FI1sc5By2znJAAmINndoJiB4sfPdPrTC8RnkW7KRCwxC6YvXg5ahMlQuMpoCSXjOlBy0Kij+bsCYPbGp8BdCBiLmLSAkEQRaieWo1SYvZIKJGj9Ur/eWHjiB7SOVdqMAVmpBvfRiebsFjger7DC+8kRFGtNrTrnnGD2GAJb8rQCWkUPYHhwXsjNBSkE6lGWUj5QNhK0DMNM2l+kXRZ0KLZaGsFSIdQz/HXDxf3/TE30+DgBKWGWdxElyLccJfEpjsnszECNoDGZpdwdRgCixeg9L4EPhH+RptvRMVRaahu4cySjS3P5wxAUCPkmn+rhyASpmiTaiDeggaIxYBmtLZDDhiWIJaBgzfCsAGUF1Q1SFZYyXDt9skCaxJsxK2Ms65dmdp5WAZyxik/zbrTQk5KmgxCg/f45L0jywebOWUYFJQAJia7XzCV0x89rpp/f3AVWhSPyTanqmik2SkD8A3Ml4NhIGLAjBXtPShwKYfi2eXtrDuKLk4QlSyTw1ftXgwqA2jUuopDl+5tfUWZNwBpEPXghzbBggYCw/dhy0ntds2yeHCDKkF/YxQjNIL/F/37jLPHCKBO9ibwYCmuxImIo0ijV2Wbg3kSN2psoe8IsABv3RNFaF9uMyCtCYtqcD+qNOhwMlfARQUdJ2tUX+MNJqOwIciWalZsmEjt07tfa8ma4cji9sqz+Q9hWfmMoKEbIHPOQORbhQRHIsrTYlnVTNvcq1imqmmPDdVDkJgRcTgB8Sb6epCQVmFZe+jGDiNJQLWnfx+drTKYjm0G8yH0ZAGMWzEJhUEQ4Maimgf/bkvo8PLVBsZl152y5S8+HRDfZIMCbYZ1WDp4yrdchOJw8k6R+/2pHmydK4NIK2PHdFPHtoLmHxRDwLFb7eB+M4zNZcB9NrAgjVyzLM7xyYSY13ykWfIEEd2n5/iYp3ZdrCf7fL+en+sIJu2W7E30MrAgZBD1rAAbZHPgeAMtKCg3NpSpYQUDWJu9bT3V7tOKv+NRiJc8JAKqqgCA/PNRBR7ChpiEulyQApMK1AyqcWnpSOmYh6yLiWkGJ2mklCSPIqN7UypWj3dGi5MvsHQ87MrB4VFgypJaFriaHivwcHIpmyi5LhNqtem4q0n8awM19Qk8BOS0EsqGscuuydYsIGsbT5GHnERUiMpKJl4ON7qjB4fEqlGN/hCky89232UQCiaeWpDYCJINXjT6xl4Gc7DxRCtgV0i1ma4RgWLsNtnEBRQFqZggCLiuyEydmFd7WlogpkCw5G1x4ft2psm3KAREwVwr1Gzl6RT7FDAqpVal34ewVm3VH4qn5mjGj+bYL1NgfLNeXDwtmYSpwzbruDKpTjOdgiIHDVQSb5/zBgSMbHLkxWWgghIh9QTFSDILixVwg0Eg1puooBiHAt7DzwJ7m8i8/i+jHvKf0QDnnHVkVTIqMvIQImOrzCJwhSR7qYB5gSwL6aWL9hERHCZc4G2+JrpgHNB8eCCmcIWIQ6rSdyPCyftXkDlErUkHafHRlkOIjxGbAktz75bnh50dU7YHk+Mz7wwstg6RFZb+TZuSOx1qqP5C66c0mptQmzIC2dlpte7vZrauAMm/7RfBYkGtXWGiaWTtwvAQiq2oD4YixPLXE2khB2FRaNRDTk+9sZ6K74Ia9VntCpN4BhJGJMT4Z5c5FhSepRCRWmBXqx+whVZC4me4saDs2iNqXMuCl6iAZflH8fscC1sTsy4PHeC+XYuqMBMUun5YezKbRKmEPwuK+CLzijPEQgfhahQswBBLfg/GBgBiI4QwAqzJkkyYAWtjzSg2ILgMAgqxYfwERRo3zruBL9WOryUArSD8sQOcD7fvIODJxKFS615KFPsb68USBEPPj1orNzFY2xoTtNBVTyzBhPbhFH0PI5AtlJBl2aSgNPYzxYLw7XTDBDinmVoENwiGzmngrMo8OmnRP0Z0i0Zrln9DDFcnmOoBZjABaQIbPOJYZGqX+RCMlDDbElcjaROLDoualmUIQ88Kekk3iM4OQrADcxi3rJguS4MOIBIgKgXrjd1WkbCdqxJk/4efRIFsavZA7KvvJQqp3Iid5Z0NFc5aiMRzGN3vrpBzaMy4JYde3wr96PjN90AYOIbyp6T4zj8LoE66OGcX1Ef4Z3KoWLAUF4BTg7ug/AbkG5UNQXAMkQezujSHeir2uTThgd3gpyzDrbnEdDRH2W7U6PeRvBX1ZFMP5RM+Zu6UUZZD8hDPHldVWntTCNk7To8IeOW9yn2wx0gmurwqC60AOde4r3ETi5pVMSDK8wxhoGAoEX9NLWHIR33VbrbMveii2jAJlrxwytTHbWNu8Y4N8vCCyZjAX/pcsfwXbLze2+D+u33OGBoJyAAL3jn3RuEcdp5If8O+a4NKWvxOTyDltG0IWoHhwVGe7dKkCWFT++tm+haBCikRUUMrMhYKZJKYoVuv/bsJzO8DwfVIInQq3g3BYypiz8baogH3r3GwqCwFtZnz4xMjAVOYnyOi5HWbFA8n0qz1OjSpHWFzpQOpvkNETZBGpxN8ybhtqV/DMUxd9uFZmBfKXMCn/SqkWJyKPnT6lq+4zBZni6fYRByJn6OK+OgPBGRAJluwGSk4wxjOOzyce/PKODwRlsgrVkdcsEiYrqYdXo0Er2GXi2GQZd0tNJT6c9pK1EEJG1zgDJBoTVuCXGAU8BKTvCO/cEQ1Wjk3Zzuy90JX4m3O5IlxVFhYkSUwuQB2up7jhvkm+bddRQu5F9s0XftGEJ9JSuSk+ZachCbdU45fEqbugzTIUokwoAKvpUQF/CvLbWW5BNQFqFkJg2f30E/48StNe5QwBg8zz3YAJ82FZoXBxXSv4QDooDo79NixyglO9AembuBcx5Re3CwOKTHebOPhkmFC7wNaWtoBhFuV4AkEuJ0J+1pT0tLkvFVZaNzfhs/Kd3+A9YsImlO4XK4vpCo/elHQi/9gkFg07xxnuXLt21unCIpDV+bbRxb7FC6nWYTsMFF8+1LUg4JFjVt3vqbuhHmDKbgQ4e+RGizRiO8ky05LQGMdL2IKLSNar0kNG7lHJMaXr5mLdG3nykgj6vB/KVijd1ARWkFEf3yiUw1v/WaQivVUpIDdSNrrKbjO5NPnxz6qTTGgYg03HgPhDrCFyYZTi3XQw3HXCva39mpLNFtz8AiEhxAJHpWX13gCTAwgm9YTvMeiqetdNQv6IU0hH0G+ZManTqDLPjyrOse7WiiwOJCG+J0pZYULhN8NILulmYYvmVcV2MjAfA39sGKqGdjpiPo86fecg65UPyXDIAOyOkCx5NQsLeD4gGVjTVDwOHWkbbBW0GeNjDkcSOn2Nq4cEssP54t9D749A7M1AIOBl0Fi0sSO5v3P7LCBrM6ZwFY6kp2FX6AcbGUdybnfChHPyu6WlRZ2Fwv9YM0RMI7kISRgR8HpQSJJOyTfXj/6gQKuihPtiUtlCQVPohUgzfezTg8o1b3n9pNZeco1QucaoXe40Fa5JYhqdTspFmxGtW9h5ezLFZs3j/N46f+S2rjYNC2JySXrnSAFhvAkz9a5L3pza8eYKHNoPrvBRESpxYPJdKVUxBE39nJ1chrAFpy4MMkf0qKgYALctGg1DQI1kIymyeS2AJNT4X240d3IFQb/0jQbaHJ2YRK8A+ls6WMhWmpCXYG5jqapGs5/eOJErxi2/2KWVHiPellTgh/fNl/2KYPKb7DUcAg+mCOPQFCiU9Mq/WLcU1xxC8aLePFZZlE+PCLzf7ey46INWRw2kcXySR9FDgByXzfxiNKwDFbUSMMhALPFSedyjEVM5442GZ4hTrsAEvZxIieSHGSgkwFh/nFNdrrFD4tBH4Il7fW6ur4J8Xaz7RW9jgtuPEXQsYk7gcMs2neu3zJwTyUerHKSh1iTBkj2YJh1SSOZL5pLuQbFFAvyO4k1Hxg2h99MTC6cTUkbONQIAnEfGsGkNFWRbuRyyaEZInM5pij73EA9rPIUfU4XoqQpHT9THZkW+oKFLvpyvTBMM69tN1Ydwv1LIEhHsC+ueVG+w+kyCPsvV3erRikcscHjZCkccx6VrBkBRusTDDd8847GA7p2Ucy0y0HdSRN6YIBciYa4vuXcAZbQAuSEmzw+H/AuOx+aH+tBL88H57D0MsqyiZxhOEQkF/8DR1d2hSPMj/sNOa5rxcUnBgH8ictv2J+cb4BA4v3MCShdZ2vtK30vAwkobnEWh7rsSyhmos3WC93Gn9C4nnAd/PjMMtQfyDNZsOPd6XcAsnBE/mRHtHEyJMzJfZFLE9OvQa0i9kUmToJ0ZxknTgdl/XPV8xoh0K7wNHHsnBdvFH3sv52lU7UFteseLG/VanIvcwycVA7+BE1Ulyb20BvwUWZcMTKhaCcmY3ROpvonVMV4N7yBXTL7IDtHzQ4CCcqF66LjF3xUqgErKzolLyCG6Kb7irP/MVTCCwGRxfrPGpMMGvPLgJ881PHMNMIO09T5ig7AzZTX/5PLlwnJLDAPfuHynSGhV4tPqR3gJ4kg4c06c/F1AcjGytKm2Yb5jwMotF7vro4YDLWlnMIpmPg36NgAZsGA0W1spfLSue4xxat0Gdwd0lqDBOgIaMANykwwDKejt5YaNtJYIkrSgu0KjIg0pznY0SCd1qlC6R19g97UrWDoYJGlrvCE05J/5wkjpkre727p5PTRX5FGrSBIfJqhJE/IS876PaHFkx9pGTH3oaY3jJRvLX9Iy3Edoar7cFvJqyUlOhAEiOSAyYgVEGkzHdug+oRHIEOXAExMiTSKU9A6nmRC8mp8iYhwWdP2U/5EkFAdPrZw03YA3gSyNUtMZeh7dDCu8pF5x0VORCTgKp07ehy7NZqKTpIC4UJJ89lnboyAfy5OyXzXtuDRbtAFjZRSyGFTpFrXwkpjSLIQIG3N0Vj4BtzK3wdlkBJrO18MNsgseR4BysJilI0wI6ZahLhBFA0XBmV8d4LUzEcNVb0xbLjLTETYN8OEVqNxkt10W614dd1FlFFVTIgB7/BQQp1sWlNolpIu4ekxUTBV7NmxOFKEBmmN+nA7pvF78/RII5ZHA09OAiE/66MF6HQ+qVEJCHxwymukkNvzqHEh52dULPbVasfQMgTDyBZzx4007YiKdBuUauQOt27Gmy8ISclPmEUCIcuLbkb1mzQSqIa3iE0PJh7UMYQbkpe+hXjTJKdldyt2mVPwywoODGJtBV1lJTgMsuSQBlDMwhEKIfrvsxGQjHPCEfNfMAY2oxvyKcKPUbQySkKG6tj9AQyEW3Q5rpaDJ5Sns9ScLKeizPRbvWYAw4bXkrZdmB7CQopCH8NAmqbuciZChHN8lVGaDbCnmddnqO1PQ4ieMYfcSiBE5zzMz+JV/4eyzrzTEShvqSGzgWimkNxLvUj86iAwcZuIkqdB0VaIB7wncLRmzHkiUQpPBIXbDDLHBlq7vp9xwuC9AiNkIptAYlG7Biyuk8ILdynuUM1cHWJgeB+K3wBP/ineogxkvBNNQ4AkW0hvpBOQGFfeptF2YTR75MexYDUy7Q/9uocGsx41O4IZhViw/2FvAEuGO5g2kyXBUijAggWM08bRhXg5ijgMwDJy40QeY/cQpUDZiIzmvskQpO5G1zyGZA8WByjIQU4jRoFJt56behxtHUUE/om7Rj2psYXGmq3llVOCgGYKNMo4pzwntITtapDqjvQtqpjaJwjHmDzSVGLxMt12gEXAdLi/caHSM3FPRGRf7dB7YC+cD2ho6oL2zGDCkjlf/DFoQVl8GS/56wur3rdV6ggtzZW60MRB3g+U1W8o8cvqIpMkctiGVMzXUFI7FacFLrgtdz4mTEr4aRAaQ2AFQaNeG7GX0yOJgMRYFziXdJf24kg/gBQIZMG/YcPEllRTVNoDYR6oSJ8wQNLuihfw81UpiKPm714bZX1KYjcXJdfclCUOOpvTxr9AAJevTY4HK/G7F3mUc3GOAKqh60zM0v34v+ELyhJZqhkaMA8UMMOU90f8RKEJFj7EqepBVwsRiLbwMo1J2zrE2UYJnsgIAscDmjPjnzI8a719Wxp757wqmSJBjXowhc46QN4RwKIxqEE6E5218OeK7RfcpGjWG1jD7qND+/GTk6M56Ig4yMsU6LUW1EWE+fIYycVV1thldSlbP6ltdC01y3KUfkobkt2q01YYMmxpKRvh1Z48uNKzP/IoRIZ/F6buOymSnW8gICitpJjKWBscSb9JJKaWkvEkqinAJ2kowKoqkqZftRqfRQlLtKoqvTRDi2vg/RrPD/d3a09J8JhGZlEkOM6znTsoMCsuvTmywxTCDhw5dd0GJOHCMPbsj3QLkTE3MInsZsimDQ3HkvthT7U9VA4s6G07sID0FW4SHJmRGwCl+Mu4xf0ezqeXD2PtPDnwMPo86sbwDV+9PWcgFcARUVYm3hrFQrHcgMElFGbSM2A1zUYA3baWfheJp2AINmTJLuoyYD/OwA4a6V0ChBN97E8YtDBerUECv0u0TlxR5yhJCXvJxgyM73Bb6pyq0jTFJDZ4p1Am1SA6sh8nADd1hAcGBMfq4d/UfwnmBqe0Jun1n1LzrgKuZMAnxA3NtCN7Klf4BH+14B7ibBmgt0TGUafVzI4uKlpF7v8NmgNjg90D6QE3tbx8AjSAC+OA1YJvclyPKgT27QpIEgVYpbPYGBsnyCNrGz9XUsCHkW1QAHgL2STZk12QGqmvAB0NFteERkvBIH7INDsNW9KKaAYyDMdBEMzJiWaJHZALqDxQDWRntumSDPcplyFiI1oDpT8wbwe01AHhW6+vAUUBoGhY3CT2tgwehdPqU/4Q7ZLYvhRl/ogOvR9O2+wkkPKW5vCTjD2fHRYXONCoIl4Jh1bZY0ZE1O94mMGn/dFSWBWzQ/VYk+Gezi46RgiDv3EshoTmMSlioUK6MQEN8qeyK6FRninyX8ZPeUWjjbMJChn0n/yJvrq5bh5UcCAcBYSafTFg7p0jDgrXo2QWLb3WpSOET/Hh4oSadBTvyDo10IufLzxiMLAnbZ1vcUmj3w7BQuIXjEZXifwukVxrGa9j+DXfpi12m1RbzYLg9J2wFergEwOxFyD0/JstNK06ZN2XdZSGWxcJODpQHOq4iKqjqkJUmPu1VczL5xTGUfCgLEYyNBCCbMBFT/cUP6pE/mujnHsSDeWxMbhrNilS5MyYR0nJyzanWXBeVcEQrRIhQeJA6Xt4f2eQESNeLwmC10WJVHqwx8SSyrtAAjpGjidcj1E2FYN0LObUcFQhafUKTiGmHWRHGsFCB+HEXgrzJEB5bp0QiF8ZHh11nFX8AboTD0PS4O1LqF8XBks2MpjsQnwKHF6HgaKCVLJtcr0XjqFMRGfKv8tmmykhLRzu+vqQ02+KpJBjaLt9ye1Ab+BbEBhy4EVdIJDrL2naV0o4wU8YZ2Lq04FG1mWCKC+UwkXOoAjneU/xHplMQo2cXUlrVNqJYczgYlaOEczVCs/OCgkyvLmTmdaBJc1iBLuKwmr6qtRnhowngsDxhzKFAi02tf8bmET8BO27ovJKF1plJwm3b0JpMh38+xsrXXg7U74QUM8ZCIMOpXujHntKdaRtsgyEZl5MClMVMMMZkZLNxH9+b8fH6+b8Lev30A9TuEVj9CqAdmwAAHBPbfOBFEATAPZ2CS0OH1Pj/0Q7PFUcC8hDrxESWdfgFRm+7vvWbkEppHB4T/1ApWnlTIqQwjcPl0VgS1yHSmD0OdsCVST8CQVwuiew1Y+g3QGFjNMzwRB2DSsAk26cmA8lp2wIU4p93AUBiUHFGOxOajAqD7Gm6NezNDjYzwLOaSXRBYcWipTSONHjUDXCY4mMI8XoVCR/Rrs/JLKXgEx+qkmeDlFOD1/yTQNDClRuiUyKYCllfMiQiyFkmuTz2vLsBNyRW+xz+5FElFxWB28VjYIGZ0Yd+5wIjkcoMaggxswbT0pCmckRAErbRlIlcOGdBo4djTNO8FAgQ+lT6vPS60BwTRSUAM3ddkEAZiwtEyArrkiDRnS7LJ+2hwbzd2YDQagSgACpsovmjil5wfPuXq3GuH0CyE7FK3M4FgRaFoIkaodORrPx1+JpI9psyNYIFuJogZa0/1AhOWdlHQxdAgbwacsHqPZo8u/ngAH2GmaTdhYnBfSDbBfh8CHq6Bx5bttP2+RdM+MAaYaZ0Y/ADkbNCZuAyAVQa2OcXOeICmDn9Q/eFkDeFQg5MgHEDXq/tVjj+jtd26nhaaolWxs1ixSUgOBwrDhRIGOLyOVk2/Bc0UxvseQCO2pQ2i+Krfhu/WeBovNb5dJxQtJRUDv2mCwYVpNl2efQM9xQHnK0JwLYt/U0Wf+phiA4uw8G91slC832pmOTCAoZXohg1fewCZqLBhkOUBofBWpMPsqg7XEXgPfAlDo2U5WXjtFdS87PIqClCK5nW6adCeXPkUiTGx0emOIDQqw1yFYGHEVx20xKjJVYe0O8iLmnQr3FA9nSIQilUKtJ4ZAdcTm7+ExseJauyqo30hs+1qSW211A1SFAOUgDlCGq7eTIcMAeyZkV1SQJ4j/e1Smbq4HcjqgFbLAGLyKxlMDMgZavK5NAYH19Olz3la/QCTiVelFnU6O/GCvykqS/wZJDhKN9gBtSOp/1SP5VRgJcoVj+kmf2wBgv4gjrgARBWiURYx8xENV3bEVUAAWWD3dYDKAIWk5opaCFCMR5ZjJExiCAw7gYiSZ2rkyTce4eNMY3lfGn+8p6+vBckGlKEXnA6Eota69OxDO9oOsJoy28BXOR0UoXNRaJD5ceKdlWMJlOFzDdZNpc05tkMGQtqeNF2lttZqNco1VtwXgRstLSQ6tSPChgqtGV5h2DcDReIQadaNRR6AsAYKL5gSFsCJMgfsaZ7DpKh8mg8Wz8V7H+gDnLuMxaWEIUPevIbClgap4dqmVWSrPgVYCzAoZHIa5z2Ocx1D/GvDOEqMOKLrMefWIbSWHZ6jbgA8qVBhYNHpx0P+jAgN5TB3haSifDcApp6yymEi6Ij/GsEpDYUgcHATJUYDUAmC1SCkJ4cuZXSAP2DEpQsGUjQmKJfJOvlC2x/pChkOyLW7KEoMYc5FDC4v2FGqSoRWiLsbPCiyg1U5yiHZVm1XLkHMMZL11/yxyw0UnGig3MFdZklN5FI/qiT65T+jOXOdO7XbgWurOAZR6Cv9uu1cm5LjkXX4xi6mWn5r5NjBS0gTliHhMZI2WNqSiSphEtiCAwnafS11JhseDGHYQ5+bqWiAYiAv6Jsf79/VUs4cIl+n6+WOjcgB/2l5TreoAV2717JzZbQIR0W1cl/dEqCy5kJ3ZSIHuU0vBoHooEpiHeQWVkkkOqRX27eD1FWw4BfO9CJDdKoSogQi3hAAwsPRFrN5RbX7bqLdBJ9JYMohWrgJKHSjVl1sy2xAG0E3sNyO0oCbSGOxCNBRRXTXenYKuwAoDLfnDcQaCwehUOIDiHAu5m5hMpKeKM4sIo3vxACakIxKoH2YWF2QM84e6F5C5hJU4g8uxuFOlAYnqtwxmHyNEawLW/PhoawJDrGAP0JYWHgAVUByo/bGdiv2T2EMg8gsS14/rAdzlOYazFE7w4OzxeKiWdm3nSOnQRRKXSlVo8HEAbBfyJMKqoq+SCcTSx5NDtbFwNlh8VhjGGDu7JG5/TAGAvniQSSUog0pNzTim8Owc6QTuSKSTXlQqwV3eiEnklS3LeSXYPXGK2VgeZBqNcHG6tZHvA3vTINhV0ELuQdp3t1y9+ogD8Kk/W7QoRN1UWPqM4+xdygkFDPLoTaumKReKiLWoPHOfY54m3qPx4c+4pgY3MRKKbljG8w4wvz8pxk3AqKsy4GMAkAtmRjRMsCxbb4Q2Ds0Ia9ci8cMT6DmsJG00XaHCIS+o3F8YVVeikw13w+OEDaCYYhC0ZE54kA4jpjruBr5STWeqQG6M74HHL6TZ3lXrd99ZX++7LhNatQaZosuxEf5yRA15S9gPeHskBIq3Gcw81AGb9/O53DYi/5CsQ51EmEh8Rkg4vOciClpy4d04eYsfr6fyQkBmtD+P8sNh6e+XYHJXT/lkXxT4KXU5F2sGxYyzfniMMQkb9OjDN2C8tRRgTyL7GwozH14PrEUZc6oz05Emne3Ts5EG7WolDmU8OB1LDG3VrpQxp+pT0KYV5dGtknU64JhabdqcVQbGZiAxQAnvN1u70y1AnmvOSPgLI6uB4AuDGhmAu3ATkJSw7OtS/2ToPjqkaq62/7WFG8advGlRRqxB9diP07JrXowKR9tpRa+jGJ91zxNTT1h8I2PcSfoUPtd7NejVoH03EUcqSBuFZPkMZhegHyo2ZAITovmm3zAIdGFWxoNNORiMRShgwdYwFzkPw5PA4a5MIIQpmq+nsp3YMuXt/GkXxLx/P6+ZJS0lFyz4MunC3eWSGE8xlCQrKvhKUPXr0hjpAN9ZK4PfEDrPMfMbGNWcHDzjA7ngMxTPnT7GMHar+gMQQ3NwHCv4zH4BIMYvzsdiERi6gebRmerTsVwZJTRsL8dkZgxgRxmpbgRcud+YlCIRpPwHShlUSwuipZnx9QCsEWziVazdDeKSYU5CF7UVPAhLer3CgJOQXl/zh575R5rsrmRnKAzq4POFdgbYBuEviM4+LVC15ssLNFghbTtHWerS1hDt5s4qkLUha/qpZXhWh1C6lTQAqCNQnaDjS7UGFBC6wTu8yFnKJnExCnAs3Ok9yj5KpfZESQ4lTy5pTGTnkAUpxI+yjEldJfSo4y0QhG4i4IwkRFGcjWY8+EzgYYJUK7BXQksLxAww/YYWBMhJILB9e8ePEJ4OP7z+4/wOQDl64iOYDp26DaONPxpKtBxq/aTzRGarm3VkPYTLJKx6Z/Mw2YbBGseJhPMwhhNswrIkyvV2BYzrvZbxLpKwcWJhYmFtVZ+lPEq91FzVp1HlQY1bZVLqeNR9SAUn6n0E28k/UuGkNpP1DBI5ch/EehZfjUQ9aE41NhETExoPT2gGQz0IhWJbEOvTQ4wgcXCHHFBhewYUiFHuhRSAUVmEHeCRQHQkXGFwkAgyzREJCVN7TRnTon36Zw3tPhx4EALwNdwDv+J41YSP4B2CQqz0EFgARZ4ESgBHQgROwAVn9GTI+HYexTUevLUeta4/DqKrbMVS+Yqb8hUwYCrlgKtmAq1YCrFgKrd4qpXiqZcKn1oqdWipjYKpWwVPVYqW6xUpVipKqFR3QKjagVEtAqHpxUMTitsnFaJOKx2cVhswq35RVpyiq9lFVNIKnOQVMkgqtYxVNxiqQjFS7GKlSIVIsQqPIhUWwioigFQ++KkN8VHr49HDw9Ebo9EDo9DTo9Crg9BDg9/Wx7gWx7YWwlobYrOGxWPNisAaAHEyALpkAVDIAeWAArsABVXACYuAD5cAF6wAKFQAQqgAbVAAsoAAlQAUaYAfkwAvogBWQACOgAD9AAHSAAKT4GUdMiOvFngBTwCn2AZ7Dv6B6k/90B8+yRnkV144AIBoAMTQATGgAjNAA4YABgwABZgB/mQCwyAVlwCguASlwCEuAQFwB4uAMlwBYuAJlQAUVAAhUD2KgdpUDaJgaRMDFJgX5MC1JgWJEAokQCWRAHxEAWkQBMRADpEAMkQAYROAEecC484DRpwBDTnwNOdw05tjTmiNOYwtswhYFwLA7BYG4LA2BYGOLAwRYFuLAsxYFQJAohIEyJAMwkAwiQC0JAJgkAeiQBkJAFokAPCQA0JABwcD4Dgc4cDdDgaYcDIDgYgUC6CgWgUClCgUYUAVBQBOFAEYMALgwAgDA9QYAdIn8AZzeBB2L5EcWrenUT1KXienEsuJJ7x5U8XlTjc1NVzUyXFTGb1LlpUtWlTDIjqwE4LsagowoCi2gJLKAkpoBgJQNpAIhNqaEoneI6kiiqQ6Go/n6j0cS+a2gEU8gIHJ+BwfgZX4GL+Bd/gW34FZ+BS/gUH4FN6BTegTvoEv6BJegRnYEF2A79gOvYDl2BdEjCkqkGtwXp0LNToIskOTXzh/F062yJ7AAAAEDAWAAABWhJ+KPEIJgBFxMVP7w2QJBGHASQnOBKXKFIdUK4igKA9IEaYJg) format('embedded-opentype'),url(data:application/font-woff;base64,d09GRgABAAAAAFuAAA8AAAAAsVwAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAABWAAAABwAAAAcbSqX3EdERUYAAAF0AAAAHwAAACABRAAET1MvMgAAAZQAAABFAAAAYGe5a4ljbWFwAAAB3AAAAsAAAAZy2q3jgWN2dCAAAAScAAAABAAAAAQAKAL4Z2FzcAAABKAAAAAIAAAACP//AANnbHlmAAAEqAAATRcAAJSkfV3Cb2hlYWQAAFHAAAAANAAAADYFTS/YaGhlYQAAUfQAAAAcAAAAJApEBBFobXR4AABSEAAAAU8AAAN00scgYGxvY2EAAFNgAAACJwAAAjBv+5XObWF4cAAAVYgAAAAgAAAAIAFqANhuYW1lAABVqAAAAZ4AAAOisyygm3Bvc3QAAFdIAAAELQAACtG6o+U1d2ViZgAAW3gAAAAGAAAABsMYVFAAAAABAAAAAMw9os8AAAAA0HaBdQAAAADQdnOXeNpjYGRgYOADYgkGEGBiYGRgZBQDkixgHgMABUgASgB42mNgZulmnMDAysDCzMN0gYGBIQpCMy5hMGLaAeQDpRCACYkd6h3ux+DAoPD/P/OB/wJAdSIM1UBhRiQlCgyMADGWCwwAAAB42u2UP2hTQRzHf5ekaVPExv6JjW3fvTQ0sa3QLA5xylBLgyBx0gzSWEUaXbIoBBQyCQGHLqXUqYNdtIIgIg5FHJxEtwqtpbnfaV1E1KFaSvX5vVwGEbW6OPngk8/vvXfv7pt3v4SImojIDw6BViKxRgIVBaZwVdSv+xvXA+Iuzqcog2cOkkvDNE8Lbqs74k64i+5Sf3u8Z2AnIRLbyVCyTflVSEXVoEqrrMqrgiqqsqqqWQ5xlAc5zWOc5TwXucxVnuE5HdQhHdFRHdNJndZZndeFLc/zsKJLQ/WV6BcrCdWkwspVKZVROaw0qUqqoqZZcJhdTnGGxznHBS5xhad5VhNWCuturBTXKZ3RObuS98pb9c57k6ql9rp2v1as5deb1r6s9q1GV2IrHSt73T631424YXzjgPwqt+Rn+VG+lRvyirwsS/KCPCfPytPypDwhj8mjctRZd9acF86y89x55jxxHjkPnXstXfbt/pNjj/nwXW+cHa6/SYvZ7yEwbDYazDcIgoUGzY3h2HtqgUcs1AFPWKgTXrRQF7xkoQhRf7uF9hPFeyzUTTSwY6EoUUJY6AC8bSGMS4Ys1Au3WaiPSGGsMtkdGH2rzJgYHAaYjxIwQqtB1CnYkEZ9BM6ALOpROAfyqI/DBQudgidBETXuqRIooz4DV0AV9UV4GsyivkTEyMMmw1UYGdhkuAYjA5sMGMvIwCbDDRgZeAz1TXgcmDy3YeRhk+cOjCxsMjyAkYFNhscwMrDJ8BQ2886gXoaRhedQvyTSkDZ7uA6HLLQBI5vGntAbGHugTc53cMxC7+E4SKL+ACOzNpk3YWTWJid+iRo5NXIKM3fBItAPW55FdJLY3FeHBDr90606JCIU9Jk+Ms3/Y/8L8jUq3y79bJ/0/+ROoP4v9v/4/mj+i7HBXUd0/elU6IHfHt8Aj9EPGAAoAvgAAAAB//8AAnjaxb0JfBvVtTA+dxaN1hltI1m2ZVuSJVneLVlSHCdy9oTEWchqtrBEJRAgCYEsQNhC2EsbWmpI2dqkQBoSYgKlpaQthVL0yusrpW77aEubfq/ly+ujvJampSTW5Dvnzmi1E+jr//3+Xmbu3Llz77nnbuece865DMu0MAy5jGtiOEZkOp8lTNeUwyLP/DH+rEH41ZTDHAtB5lkOowWMPiwayNiUwwTjE46AI5xwhFrINPXYn/7ENY0dbWHfZAiTZbL8ID/InAd5xz2NpIH4STpDGonHIJNE3OP1KG4ISaSNeBuITAyRLgIxoiEUhFAnmUpEiXSRSGqAQEw0kuyFUIb0k2gnGSApyBFi0il2SI5YLGb5MdFjXCey4mNHzQ7WwLGEdZiPPgYR64we8THZHAt+wnT84D/x8YTpGPgheKH4CMEDVF9xBOIeP3EbQgGH29BGgpGkIxCMTCW9qUTA0Zsir+QUP1mt+P2KusevwIO6Bx/Iaj8/OD5O0VNrZW2EsqZBWbO1skRiEKE0DdlKKaSVO5VAuRpqk8VQJAqY7ydxaK44YJvrO2EWjOoDBoFYzQbDNkON+UbiKoRkywMWWf1j4bEY2iIY1AeMgvmEz/kVo9v4FSc/aMZMrFbjl4zWLL0+Y5FlyzNlEVYDudJohg8gPUP7kcB/mn+G6cd+5PV4Q72dXCgocWJADBgUuDTwiXiGSyZo14HOEQ2lE6k0XDIEusexDzZOMXwt1Dutz+tqmxTvlskNWXXUQIbhaurum9GrePqm9Yaeabjkiqf+bUvzDOvb2Y1E+EX2DnemcTP/zLcuu7xjQXdAtjR0Lo5n4/Hs/GtntMlysHt+29NXbH6se//WbFcyu+r28H0MwzI30DYeYTLMXIA2EG8QlHpAsyS0EfEToR0a3utIxFPJ3kiIHCCrZ66b0e2xEmL1dM9YN/MwS5p01N5jMX/BLKt/1R83l0LyC29M6+iYxo/UNg/EF7c2WyyW5tYl8WnhWg2/hyySbD5UhnDyS7OcU0dnrFw+DfGdI7v4QfYIIzOMq9hFtY55gmvC7jZ2FK7sEdrn6IXBuucYhjsGdQ8z0yEbWkkczjjsE5hNAIZrPx2zOLZDmKNXcXtg7EMqidAEEWg+SJCBBNwxvxJfc/bZa+KKf+xoKZybnq5vaqpPTye7CiF+ZFjxZ8/7Qij0hfOG/cowPA1rT1l4ymWnrKmxxqfErTVrpgwPlz1kC+Oy8NMDz6c+IO38K/x0xkPnLW8Kx6qGAoQdL+TD9V9rb+/ctn//trxz8dUrZrD/zk/ferF0cNt1BzctmX2FZPXt/jnFCQNz4Ah/iKllGiCMs1w5Lkg0kiEwj6VTXCDKsX9rMpnvIj9pcDecXAIXMnqn2dTUbN6w0XQ9ue6FV/nnXCH7S3lPWGltVcLsH75ub3ab7A8M28caNrIeOr3o5Q0yFsYL80xaa0EY/UEczV7icUMY5pnelAkmUAXmHYjvFWFGxuqlSaow3OM+/iYY7/l/hVELF4EjRqNR/bvRbOY+DUGzGR/Oh3EqmE/ugIQQguGt/eMYz/+L0cimjeZfQDI3phXMbMQsqH+CjwVz/hf4idHovgVmB8gLvjbicDcC/NypP536E/9N/puMibExdohBmNwyiaZdJGoigos7GpF222xrfnZhML/7Z+ylaqP63Hr+m7bdUkQ6/2cXqdfmvwixY+s2ksXFeXcE+iX0Z+Iow76DBNgjJ7TOdUK18iPsPflfQD+DPsZG2Aj9VmKMMJ4fYRrhIaxhTDR0Elh2vA6h/AE6xUb29mj3sjmL72petXjejPy+oel60M99tFduCI59N3221xe7apOvxs6aHs7vab1IqY2tv7q2xsHeHGml/cV06u/8S/xTjJ+JYc0bWEX0ukW6YmIbGkJRMdjJ9mYIH5QIdJF4hvRGyK7cC7ctImQRcUET99fGXOoft35GYLMQu+g2smnkgZUrH8AL/9Si217IssJ916nv14ZrJrvdxLkQvrvtBcjgPC0NXOicO8Qf4mcxPqh3hgUw3DDfdvLJXngg7N3dN2zbPJSaed3OfZnMU7dvmznp3C3bruO+Nmue0LFsy7S+6265+fCKFYdvvuW6vmlblnUI8xCXp37CrOZv4B9gauDBlYp7adcUXB5DNCwYImlXOJJKkAdvExXxVvKEYnCo+3eIskP9qrrfIYs71CccBjfXRC52udTHHdaP1A1ui/VvH1otbrLrpNXBsGX5B89QghDyimlvNB2KfkxZ5C9/em3+d1+d//IfFp2+2Oxn/s+9n/79p39S3s8idN6g0yZObwJOgKUpNB3GyU0Ls0PbRzIRq4lcarLKOJBkLRzJQD4j2090XrbA7DW8K3jNF5hlGS5e4V2D17zgss4T20egOJte5iD0bReM9yjTxnQxCRj3c5kFzGJmGbNKmwGw39IJDJcXJZGMkaAB4jyJAKw0jt5IAuIE+A+U3cVAZZrq9zhDyBrU8oosuxcGNTzCKJfla7JjNVmuSb/+tuzN2H+X4vlB+PpdfMXXmuVsNiub1T34SFbjYw5itEvVi0K0Nt9pNJUMI7SLGRhf2xipfCYf8z5OdlGKayOucFeVPeS/dbo3lBrbSMmwUiQN5/ed7g0Ds1s17IuZC5kNzM3MZ6EWCa0DtekdJfAxz+R/OX28sND7yRMTBcf++s8mQCQWHya4qBv/ufeMoWyslPA9DtMxUknxkH/yfTnm2CMYzs+Cq3r7PxY/MXomrvTEsRpfEGHa+WN8E1AHjElb7d06ddA7oK/+5Mdsv9EtPms0jv0Z5kf1FqPxWdFtfFr0kHfgDX0Y+5PRSG7RUj0tQr7rmfX8DH4G5W28kKeJLtmQsQkuwMP1pk16EV4sl7vrMJATfyUWo/GwEco4rh4XFQgaiUX9qxZHrMQqKnz/c2d8b9TysYrAuXpP/Rf/Gr8b1qwwc5a+euLa6S6sneNXToG2XrEJi4R5SGs8Sq2S3d97bsfCRaTdaLwKClRHt37mkudvXbjwVrLhuYeGhh56bvfQkHpk2CwvwClqgWwuBfndC3c8dwmstj81KkagcUgbfPY8Zje0W/82VPWJHmSq6pP8hPWpotc/EexDOK3qU+wngPhOCiO9MJRm8TJefjelrzoKnG2Bn+1NCUmPE4gHFmBN9jrTigRIpsACrc9Gstg58ULkp9467+Gf/eFnD5/31lNrt2967dhrm7bzI+VT5m+fzKhvf2MzpICEm79Bopkn07lt1762adNr127LwVqQLdJ5+lpQDcvHPQtVY5knhYrK6q8/JsiP6EuhGZdFdaNszjvpqvc+PI0CdjN0AXsFOC3ZfALDJwr4q2Xq+GF+GNbsxUg5NLLIEXi8otcDQcUts0D8eQ1iVDRAMBTsYiNdRIxE09EIBJO9A2xqgERTaW86BUFn0OD2xFO97FAgFhF6OoQ7prYt4XwSeUgQHiJyDbeke9IdQntciLQ1FlJMaYcUNvZBg+FB1ubjlnRNvl3o6IEU2w7fdNPhm/hh+FLysUu6++DLHkOkrSHYEjH0tEPe7WdD3uyDgvAgK/m4szFFR7ch0toUgBTdWHr7EpaWru6+6dmbbnqWEbV2EtxAsXiZAPTtGPSbHsotI2leoM8TePEqgSQprs7AGFf8kuOkPdZPXGb55POAW1d/jLST9v5YflasP6v/CO7+GNAPC2BMZWmsOjp2NNbfHwMCJD+LPVL+D/OYlWEEI/9jpPddOFkB5d1GSuKZYggmCCd7JUxD7EXAzxyirYnNDLdDZoFdx14kivkvGc3579Jm36reTTvDgBnaO6vzyQ6chQmlsMoIkIQ2+bBDWBud1Va4pcCn8CPqxlh/fgtG8IPaPH8C5wk6/nZDv69jurV5QhtwE0x2iqOsj9Mx8B9/0EaUdiPfOYYDCi/q9jhWRuupMDEU0+CtX0sDFxv07T/K5niBPqN9+tQjgEc31NGCXFeMcCEuQBIc/BK4CO78u7EPYvl3yaEfK3vcb6qP1R2tI7vUjVDDUdKubsSrNjYKY1qBEa2P50SJoaXiksIoLiCwnxS6EBuBde87botNfdEWwYvF/R0/u5yCqhGeEOR2ynSeyXjt6ka7neyye8kryBSWE52y+RBgogrXPZ8E1yIHoHIFUM+AbJhE7lbMtt8ApL+xmZW7PwbjAO0fAVoXQOuiSP/ksIVdFZ0aulsamKUzwPZ/NYDMJRBPCxsBqLzqHyneXF6Ej9HlIFo7+pg+jUb3unRmGpstGkm6etOuDBGA5wCMefp1gTHcdZlvPBXlOslvYTp1cd8UjYLVd/J5awNrIOKLnIt9MD9qdrKrWCvA6ALm3QV9VrsPm60Q7+RHJHP+2hqfugo/MvI2H/mqr4b9tFnKSRY1Y5Ek80Nm/WIhr1ikKnxGz9TWXrokf9xwujfvcOTtNTWnxd0F37Y2W79tteBqZ4G5qLCuomw+nSr28QESCRVLTyYKILGJOPfcnaIFOsewhRdvv+rWa/Wih0vlbX6Zb75T5C0qNKVFvH1QL/vazSWgC2s6oWXXIuUxQelKiJbowuJDQViatLmLijg9CQBMg8WiPgiw3LEeYRmm5f+XdnvkDnxLLjMLxtvX74C3OlwPQqx4xwIdpPx38LrlDphiyWUWHWKAzzxurS/xTo+P5wGFak62ap1PVFFN4v/y+xuR39WnIO7lsWfwgVsK17wxrs9K8ltIKuhkw7f/6dhK6gQokFKhWX3urrjk/rnI0pgfpGMeuQIUaEM7+GF5q2iMkCaMQwxxOzcvU0eXbsnS9XknXvP7Gtw5dwPXlFu2ecvSHEZgNDsU6x/GdXBYXyOQjzZReSedeEPY6nEv9gJR4oBQJtFO6Kd0fwC6BO4LNHDeBujB6dSNcUQC9zIv2LnAzGk99bUDrdFY+9yGFQtEo0GQPNv6vS2drj4+1jHbv3aJSMUWP+QTZrmbNTjU8wyG/iXNNpskybLcJ3CiTF5Ir+JYzmJwE0mSVhlxbtbmvweB3ulB6Til5UuUZydpgiFVeobhU0WaBqpJ198d+/XeNRTZ9/1OPfG7+2hwzd5W3D+hmyjsRcUg/+Cavb++Vh2ls3L7zT/etOnHNxeerv313vzLVqPai4nJv+K1FC6040/4udw7sAb3laSg0XCkAAs0npBO6VJabS4Elk/U+D4gTXW+j0wnrMlqNamq4tMIYB87tE10i0FR3LZNhJsb7/R561btmes8YBCRkhYNByRtKd55mqTas9FYhJnbRGHuOh3M4QTdgQSqmgRxuzGdSvZGcbMxNQGk5C3ebLjoXIOFM4l+WKHmLTJwRv9E8GWJ6dYvf/FmEyEGr+gyrr1p5zrgkz0Cw2j94Hv8Jdx7dIVegBSNtgsqGsRQEYiIBoXwD0LNvQ5d7s5Z00QzwNhqZA0b+tMG1tQq5nd84uq8R0zPvX35G8uRaze4jcOHzz0w1+Q2BIRvf6J6Kgatnrbiem+CFvAxfkrndzD9MFPP1GWTUHclpASUkCNAQkpCCcCgDSUDAhDZ+CuEkgn8J7i9nMA7pA4lISappxILKfAeSAbIcSDuN2bJcfZILqeO5rLs0MnngSHYRdrHjmaz7JEsEPw51ZqDJDmUIOZIe34WaQeegNsJn1qz8AIpT3yCjyEih/xELkuJ0lEMYTLVCiWpo5oYMleMH6USyYJcD+uOe+kWKpn1Qns34iyYDjkSLvgnZXcgVQNeqINXr48m3iS7cjm8tedyY0f1QvTnHHdsrKby/+SSbPY8/NH6vpl/Esq3Ae4ZU1HC44KFiI9o7CEgab/RqHbj7s5KAg06s39ZP/zxI/mVuF/TbTSy+3Fb8If9/cv7+wt91yy8RfP1QXtW5RzQn7qIiZyuFM5QfJ5E9uVnqT85TanFx0lkP3ukBAMprvsRyi/C8NAJL1xbIIirSvnSj4O5netb4JxmNANHPssHAcHMHsFRgEug816gDBeMbdfiuRcghqYcm0+Xxx/5IAEtN3fqFF3LzAXqwoT0PN0OVTNqxo8sxMkd5Ig6k79Zk7VxxX6gMLOZFQgvpW2RrMW1D0BDihaXQ9wVRoBxPLfpknmkeMtoB/qM9cRc9IqmMD2XUmdZ7GSRKPUZvChf8BoykriM2MnKYbOHX8R7cLdNCxSFFVQqoYswnlWtlFS2mNkhswVpZiQW1J/UKFfipHGlUkM6UKBhMz1istELIHJLMSctu3ugzfaVSOjKvUgc/THK4Sdg2Wscz69leKIkkrwuuWiOe9yGYKQXRumkC3qbRcMwrvhjNXgdZk3RxAUEhuSPvn3nnd++U/3vlVOmrJzCD8JLxV1OHRjrZifbcFDOuRNTGqdgQm1tSNJ2OcQ04YiEXuxtII1ECSQRoQGYioEsgCfchB4ghAtw7FfJre4WZ9hkVi9MtjuWqtdNDlpMrfEG9fOT6q21okg+e4As38MfGquNt7oUws6Ysarj1/efE+yst86YUVNvDdts3Pv5c8m/aP0C+f8/Qb+IMnGq09BgwN01oIOAnAdagI8mBSrqk1gxTDUBOtk2ousEtBH2z4Ir2d3f6k8PXXVlt2qN9RODxRuoJT/v27wm09jRYVc/e++iyx2tyzJb/n3J0htXP87eSsQaf2Ly0s6Zmxela88REy1cf4273mI3iXNJ7KxrZibOm9xm6rl4fqy/t27smU8tOfdW2ucBzg2UfmOIVyLIl3kpYlwphDISTXJXsctmiDtN7fNV6zelgxwnWxsVr83Aj/S5ki1jL/a0GC6+2L6Um+aoddlNFuj+bJ8mH/iaLh8I0/U51NspIEfq0dohwyFXKgm4NggwQ4rRhCOUFtxxo8XnitT4cnGfT93IS8FaT85XE3H5LMY4zIEPL1hw443wz+1UmhTJyJGxZzw+wsKkKZgUiVtKOKMEb2AKHTv61FNc01PQFwKnvsZ/9pPA4RKTASWahmh+8MxwzHxKy74IRn5LGRjsPUUwTu64UYNY38caqd7HKucZ/tHnODtENw/2UfHRMaq1UUPDJQ0OKkWCeet5fYOhII1VRz8+/Elg5j4Gxur3J8o2PJ4rg+2d08T/fwEzSVbyZ9XPro95T477lRKqUSRXQnauHNsISAl27oWi6Fv9z48JMv8r/aMMj8onCP/DuDZOuN+GPPr/+p7bx+7JlbYdppcNhzKU/1Px5aiaGDn/s1iGMaBcleKUo/v9rcxkZj7DBEKOfrayytXNLYiUdBY+pleQXdnscKlQcpzuWluxsieeyuXIK6SdxozitWyGOV3vOHHjguyCQ6fpIYy2JwvrQEF/Qa9Pdf/QqOSqCiE/EE1/XIVKTc2tzWbHnimrEd+Vyz311Ml3P0GVTj7PD5aDnsvCvH36alEaPMePcMegXs7x8igTu4B9v7G9vTHvhCu/kzIdx+BxC0ay9zRSvoS0F2lIxI+X7klU63I40gLQ3w5ep5na+SFnba3z5D64zv+QtM4n4ffG3tq4aNHGRfxgrXPMim+5487abL7xhdseIRn1KDl+7aINixdv0OD+JSPwKf5+xoP6aiTeQIDVlIhMcL1H5R9PYXvprs3fv2bO7MOplCmweuiq2JRZ1zz+9a/v2PH1Hfz9236w+ZrPXvWfAxlj4NLLHpq3c/PQ3uvmvbrjG7fe+o2y/cLdtE6VUlXi0ASb1VLUBVSUWSU4HdvAraTyS8xzM8NxvxFkXV6pUVRiJwcgC5zEeht4rwcp7ki0k41G0qlQhG1Vzlq8alEmnFi58caB5Q9vn988MLhqyVlHvLEWjtQFeupdiocF/tkkOGPW2ibWaBTkeZ/dvPWazXfOnnvL6jkRXpi85sFzZt+55ZptW3bl1cCCHZPD06MhySha7UFzjcjbp8fOecFCirzAG/yVjBX6OFIaadSjQq1nNhyIe8tVbaaSdHlXIWKacMeuZA1uxS95zILhyrxAdsXTL6m7kNQlx2P9uZf2qhufePFFbpI6/OU0WcP99RrCsrwseVot5mtytpf6Y0gm9sdeyKnPQ7onyK4nXlR/rg7H95M1upzu89DH6pgUcikoiihJ6NJKmRxV1x+MJiOA3YwhDRQrWU0u/0rvq0VYXnyCwsLeTJYBq3dAtJDavuzyoVpzZ99Z0+a0uoiFH/xcqgDR7rUFeOrUn6Cywb8ZeNMbhLV5ugP9l0zv9UN5b5mFkjzxUcpPJCn3V402pRxtJd2GrnLdhtVk9ZSZh9W91fCSH5B7ofxPiWL+j3D/uwhBRdyAyozeZwvQzs79soi+BKSnafLviZCcfrpBpLyimfLfTyJtbyruIQKD01tUwJyKEo/ybaxkSNFUMdMkhQoJyRBQFhnUkDQSXhTM+3NmY0EDM7ffLIjqWEGt8lCO6mLia3PukFnghosJD5p5SIho/VDkzQfLE+IrYoJXkD19pdP7OwG/voIUtagiWiZ4PAFTHHlTVhRZ7dYmPar+NJ+8JhmR6DFK5DV1foHoLNO/pHrvZfmWZ15RQlwvoVDKhCWNK3CCch9lfFBuAqUgpFSShmNaPj+i5++WZfKeViJfW5HnUakVL4UCNVkA4+ETfIqx4B5xSaP2L1yn0zn2ltPn4+OqZGmwwEVCaCSqG53ldtL1oLGAhdMLd09MpCCF6tD6ZnAZBY9hDaYsP0jzZ0j5ZjKsF4i1UmLuhbJMCnYJPt5VwFNvmZawXjEvLJqIH8STonZjq7BZ8gKgR20C9MDFqJAX1H64QW2NEup6qgzLP8cvppL/NNTOBTCJABOHeWoXzLhw4Wuy7gaBtjKr9kgKq8ZlRYBS32Lpxc8vIhpNDTfyNXWybMJbn2RyQ5EmWc2QF9wmSZ0KYCE+cPuYO6b15Uotj2Kd4MItLS7gtFbkTdrFND6pvEZqv5Yv7jXAus7Pg7avo7KDot50NX3CPkP+Kps8J9/3mGQIteY/LGPC+L7872SPR2br5fy8MtKBMHedGuM28/MZmPJMrGgi3Gb1S+Si1/L/zrZwO9XH1ce/z7ZQ1WSoY/+pMb5FT4ua0Wm+Jf/298nFmChEQ+Ti71est4mq9VYI6RsymoRJKYidElT2FGnDTZvqtfhGAFTbeqEw68GqtfmbVa/1IFO1/jdWr/8BDRRtQh9XNjubEm4aWVpVonpTGR7PVGc+KJNoBIWF7kYi4gUV3r1U6723i6TxUl3n3/tM27aZfKb7THiHW9VzFSwHJ05VfK6Ar7kaB0XgPPE0BSkSFKsBUpaLihEWoA9wBt8qirh2VSOkZwXEwyrxZ5jyt2rJmSo9gX7cg6jsEUGJU9z9xJPOEM3uQQxKgkh35DNATnVyrmJ3mbCNyIB/yox4wH1bg2DwN7q9kov4pFqny8oSm3RQbGgJ1QQTs6ZMLilOVYJ9v6Wha3HcJ9jddsXp9YhGUXLXt/qMDnvLpPNTXfNa60z5/yjXQOMq+lNmwh5egpYrdfZQZV9rI47xlRkuyTjpzsmCBSWNkAXVoK8sgYWqQJWbo1RLo6QH0YW6pxqfCnRgkd+RiFjUQUQ7poIaYoakgXxwFd9BuuI38H1xBxXSFb/pBDIKQFn7YB3dB36l7sG1FLaKiBdp1KxLvfswap/30lnVESgNnvjbUoT6w9N+Xoio0qcYOIM+heg940YimsucQVvli9NEcft2UZwGQwLuilj1fFr1i3NP94X+PE7Hpvtj6lBJfJ4R6NvWiaL6MgzWHxiN66DExa+dAdAbMYX6HVF8A+7rjEZIXAVbDe7PVI9rmN69JOLV1DOSvRPxWNPZBZf/Nf+Ny65BhYxxxV+77XJ2wfQ389/IQPgajXbwMsuAz/0IaQcXJavKbRqR2IqyZruXjVC2+hdee/5vdnYOedpmVtR3NGXldxSzDSIiBVpkGb9by89UpEPKrSLZmyFDzMab/wXl2CNe7s/qCtTvWgG5kpBmCBlSzDS/r8N4uwBwohRW63JTS1y32f0TQsPfXVGEHQrV8/NCfiOUVirYcBbIeA2+iF68rQIo3B/S628vYESr79ehzS7Q9LEL9UXmik9XVHb1yBO3Ngvt5935+k1efkV51mzzrM0LL3/20avnwMeKuWyOUZg2TasSqZ+KcZQiOn1Iu2Vh497ALUVZiCKt/gh6IvTIj1ZLRjWAkpHKOKovNwp00eqPROiAbiNEKieXwMLcXhVJ1/uzmLP4tfxaHR59cBdJVG1kTAgl9ze9QKUEQ946Hkb+okJ5JRDyf54Axur1D+WS49cLr0tTPEu7UmXrxcSr3XNvumv4yXzInXKH4F7Tc7p17Zt+t/qW2+93k063X7VW6lALxTY7i1nBXMxcxmzQbabxz+tJo+wijYaIGMNS8AoSMgAPt84DdHOoMPfjXhF+kuH1tZvuFQrRCN07xGcXRX9MYxYchDe5BcHj+Z4i+42WyPc8Xofi7bbZJN5nJLJ5qr6IqRtzqNlM17SpFsnkEyTWoABEjz4JXOQvzWYuwdnV5LNGOwTM5v9r4RpQ8ZXsYodks3o31JBlzbYtNotisnm22MxiwGFXam5oN1n0TA/hRvshvTSDwHff4nNzRo9Dum6PaJbMXzDz+x+Fkj4L4bFNBb1asqsgH7Dyh4DvbkPtf5yMDKzEwyoaESMSNS9P9gJVA3/RTlwoMwZvxECFWxIPNw9gi01nOHjP32esZTtmXHnxvZd8ZtakqQ7ekajbXetpNa6ocTVxJtY+uSe69OLz77zh5bDR3xjZMzUz6fxrz1nqrZGcHQHfPVefN+fiK86LeXj+Sc5lPKy+k/vCUI/DaLFYCWHr6nbXuILTIsb5imNKY/rCm28fSMxPhkN1XbNMNZGuqwOBhtTSxWuTk6bw0ZaG86b1hKddePOKuBvmiguYBn4T/yOqOyGRBt7bKUI1GjioBC8aUKwF7Q319UgcmtFGIzCJGBqwQij0ynDsfdFGc3TS3BlNfJ25xmzniMkpXXTPvCaD3ZaZvyzjmZdudBostmhb0ORZNN2sJBeed1HXkrUsywueQH+L0eCPxmsa5ZpgRJSDZ11yDv+jmbd86vxZfc1WcZJ3UkMq1BOOOVtvu/+pB+en186d3GTwWAw2jheaJs09/+LNfZft37DALyrNj1wABMuUKbODyTVnT/KYbJ3Tpq8IrNh92dkxOj5P/YpZx4/ycyiVcDYdn4JbEoKdQi9054iBKsygLW46FRGxAb0NPNCm8BSNCPjoKcj6EAus4SuP3rB+cV99/eTF6294dA8+TK6v74MHVpYNRt/I30e8QGTOOdfGWzzxcy+87a7bLjw37rHw1nPzp0KyyRSeZO+QQhInt3dYgvycjrPOv+T8s1rptaP84VeywdWX2T4ysr0/7TLIs6+x9zib56ye1dM9e/XsZmePY3NDs9zlnNVt4+WgHJbbz3Livg4P9WWgviOMm4kCRT6I8vw0NbUUEnFvOuFKoxQW1gTsvFirsF5pb7qTUCx4i7VmtToveaDxvK9uOaedVvPRpVOnNz0Q6bry7uiSdQ8t7Vy4JQKVS+XPplV2ts4bvCwZu+KzgITtxepaPRzWdpv74muvv6RO0SorX6cu/dqKn/XWnrtp/Zragz13DUCl5myiFW2Ycvb0PtsXnU+tx8pvLFbUspLX68mdegwmOif/NPDONajTGoUh6tU56HBJCTBASVvNUB5VIiKpc9kd7kludodSFz7xQbiOmMk5dOYk56gzL6uaf7N8a6MQOHm0ae6snZpFDfuT3/jdYzjzwkXXIVHoXNuCfQslQZqBZjTsoHMqrkE4jaYdgkGz2ATOgB3cPkSukD01DnV3ttb1wx+6arPqbkcNAHoFPzKUUQ+qL0k97pjbZv1I/egC9zTFbrrlFpNdmea+gIgfWW3wqkcis8ky5FAcRd1If5nNZrl2FFpungc8wpoCl1BpQV/ScS+zjlASyUTVv/AJ46gkJI4bHX4lTnloctxPZE1ckS3+jG2fKIjkQFyzuo8jvYQG1OrGvJPSTu/nSp9PHNTl4z5hK/8gtXVKF6gEKiglgcKiRlCESsQCV5QIlKWKpr34lt/wkSx/JCmP5/cBKQfl/5gd+rOS/+p91/+YCg5CXK2W4M9fu+/6xxX+vnelVuldIDCG0VQTpU9Dw4pRfei+6zWx0MLie0gPbyrkmRU7OwT16JGeyXLHqOLqAfVN1GPlBzWtFNzj0TRTCjogtP1NjIvu5habN5Aoa1k66wGpqriVetJgiGdwDZtKhnN0y4n9sXYnsqGmZfDSR15+5NLBlhoDaedEm7sxmpqRija6ZEEg2EAnTiAC8IrmFbGz1q08P9PSkjl/5bqzYqT9hMmptEXDgTqP3Wiye+sD4Wir4jCeoHbbp5hRfpB7BakUIppIlPCD30dR1GtslDz8OsqbXmejFC/v8wu5X2myq7SJ8Avzv9DFUJySf5uNvq4+Ti7W9D/OZrLChdwxmPNiBRqVjnpK/aGxRCDspVYKAW9AN1JANoo8wP4BJUlGqdgw6m1qPQ2QW3+OfU5/ieLS/NuKpDU3uf8bcAXyBal5jMR2NEAbPAZt0K3hvxHBEDlUxfIGcD+N2gNSNx36nfqlAYow0puatNpRz0e4W2oahKzQHsjf2c16ad/3t2KTtPobnX6D8C8pd0MDP+Kx7wnXqGGlLQcvikMErm6TmfsuxJXbSAxqNjOogJLQBLiKEHAE+JGTS3JoEhTrz8/CB+5YlupJ58aOat8Kv4JvregxwcU5Cp8GFAFm1FyOfto6GS2m1NGTS6CPNKkbsTdCBlnN9onMho55BX8IJZtEQ35lk+htwN5A0V3RCPoD/yXAcv6pAtbZczRUA64JmcUf4q7Q89ZHLeJVZ5D1Ps/t+0iCT3AHVtZC7JDCXfR7OSb/Xja5H3zQbZL1B+ULX1BMTEk3AseSpmnKEK4T9ekMIidUCRQFfcbj7z8gNLvzF7mbhQN8h6ZbRset+nQWdS/ZX3k7WpS8P9sfo0iGS64wV516pOhjI6TZ2dApgI5+LhxywYoWxKUrykKJsIoDsR4mSrCTg0egMPnLW/3Q5Nn8BZEuzqEI7HK3n0+zFmuO3TtWQ5WJoG9YqCD6Gc32SxnbnVPfsxvrFXK2dILl7bLthDp6glhcsfp4bYvbSmj/mQ94uBTw0E73x2jbNRCvC6VL6GCFDwU7eWQDcC5FY5s0slieRDwtAbRsbLXbaXAuu14e2OJw1dc6jQ3ZdY8v7rv2/BWZLqvFWVvvcmwZkK9f5jS4muO9yR5res4kfkRxhV03L1RfPOiPtYi8pd7jNEsOpyTwxpaY/yCZu/Amd5Or9uS3DYaeqVOhH7gZN/8I/wi1fEuLXvyNivibjuKvN+1Nc01HF/3h+ef/sOhox8MPd5SFucPjorQwXT+ytA8EmA5mamHNFDVhBI5pjZbQpugBNkO8MvRub8KVDKST1Wag7D3xlin1ZF7LFP/79nbvCXFOY+PUjrT7/otsPXXZ4exdPzuhZuL5LUXVAn7k7PbhG89uz3b41X01gbjP1xwlu5rrvvf9+pbs6E/Vu7Nk642/PYRaAiUBdrmO6CDTBLPQFA1ur0uXoBR1INDMkypKpoTqnSMx5GiEdTEaSHLs0Alvu/19/5QW9Rv1U1ridT22i+53pzumbs+XFFXYC++CGsTj5JUT/GCgRt3n78i2n71FHG4/u6X++9+raya7os3ZbDmgWfXun44e+u2NZKuGZ0HiF8M4TlMPR+EU6rPKRJ8wOU2RFUFLex3egEsz3YqEAq0cqhAAW19dBZIlVzR61tuIdTnpXH7l+uXrbjPUyep+8cl6aXKWhPHpDcXl9KiTWDNr4mBQc8Tq+NzK/OKSbsfl79o9G20R+brBXYvUg0rLHhtrc4TN81TTOWSZ0gL1ZVlOYH2ery/7XVUjFMbzYpg7UswcqJPQwBd0LKLabJ8IaCr2otcjSkIrGwootKECaUd4XH1+SdazRrfddkBU98t1htvWrbjqSqjaCguxrffM/5zDCpBALUycmajhd+R6ww4SWafuZ5eU+tPid4lgd3gt+b/Y9rQoZNmiXYPXyRHbRs8zX/f4WIFjWZJtUdSD55AP3xtXH+ZipC0EqdBGDA4CoYEU6gRLGPU11QhkLTBiEYPiqOeQgwTCl9aok1Qr5pFf71qEeNxjy/8F0GoqYPv75Yh9j3x4DuJ+uEzHRpAq2lMqb+qfTdiq6kGtzfOWsv0c7lSeMXDHBDe1MT+LUgx0Pg/p87u2UicdIvqQi8DkxhcUwUXCedMpb4NQjwY3npTmgsURJavLwCRyEcN2HfWsDVGfv/u9ZUWUx+PYFueUKwaNvbtu+Xps3eVWbN1GcgVrdMnWJ7WmJz9SD66EBidag0NF1Ukep0t5A7sFCWdhzvYwHv6L/BehXuHqfaBwBEU7hfVLcXvS4VQv+T/vaSIl7cbeMc7ekv9i8S3e1L5xxpvMGcu1EYPbKyCiijjGXcDKckm43PqU2qNWlXusZMiqF82cuVzolUHN9NNR0HZPxFPV9V0wLtvq+k4DqOwVWDlzuQLVdqFiP08cRX7aRlBVfR8cb55bWe5LExnlcsDp1vAP8Q9BucPMk1Ulh4GnN0SAdxcNHv3q9ohx1Ati4S/tkWjIDe3hQdkUGrGRaFBiUdiTSkI41UkMuuQHP+EaSQYlPQTFWJF03BNPpTu5KFAdkWgDukzsZKMG0Q1TAQQglScOaP/dsZ8+fP75D/9Uu5Gs3FY/2SxPld0DHOciXI9gqjcEidXjE+3BLosy0OcX3T7O5g65ROGyzQ2BZs7WbZVnO5ydLe32hMwTQ4wnnKXW6XW5LAa7oaXOIHoUl0FgLQLH2by8wSTWeAx2Y5PDazK3BqZbeJZwXGPaYhX87ZNszoDdaRxotXO1nNlpdvAPFWHDm8PqEE0sZxDEqGzxisFNnuCWetPcGrObN0p23tTZwMuRVodSV8+LTrOV3eRvzjQZiSjaLYS1WEJe0kNsJlZu9LFun7++wW4gRDRbaxw2nrOGm+xOj9cmtbp9ZqeTM1m8UXfQQCSTVSQox6pvtjot/FpHvIUjJovFEoYvHYV9C5Y/xN9OfcalvII37UEhTbTg/AQIaPb4Vz6j5u8/aViycMod/fkDcpu8QZbZoeBi/vbzP3XPsZvOubMtaPHkD9jt6+U2O7vqU/9C9SMvgrXpQNG/E0oJxun+CiElUa0IKQSUwERxOntKSV7ekcuh9VBZBBo3VUcB58ofKBHCwLyf9qFosz9Ibf8dGqwaBMjRig4SGOZ2UkWI7UiO9OfUPdxOYFApUZyfpY7mgEc5rtNGGk2H1lPhAk1Hp/VAMqQEHEUfEYkkUQq1JMdzsX7kklRrTrUi1wMcDjmu1YYfATj7Y+pGpPEBXuoQIj8rR9mgCl4C9yqmF7xnVWxGVniNqtpVmXBvQ6iwni5YQ8a1jYrXtc2J13HvgkvqWxuva1sbr+P2S5ceKGyBwDv2DbrToe1u6BkAJV7xnVLUaq0sJB8pFqcUIPi3yuwxi4JuLr+P30f3OkPQ72aO0xYo3/EsmO3QO5qEF8S0qQH0UsKXv0brnl9+8M7jF174+DsfvPOl1au/RL5/9DsbNnwHL2pHR1NTRxMZhJtHktOOxLxErPF6YlLvpC9YP73x+4ofw+3xVdrHcDE0dQQCmCRgvt9b35xINDf1CDcRSfJ+pYl+Sf8YcurfmXP5F/kj6J82jNsrkWiEuhVlgFfyNkB3S5MUzLhoNiwSCYcxQ7Ui4J0Xh7fmqRbaPa1tzujxkBRlsEHy0/OM4pYLPb7g9O6BQJN6l9zQ0OGyCaZz0vMTbHOzXfQ7a2tsterTcqxeInODoemdktw+1SbVhKwtW9ffe8VKadK0OVuC3bWzyKm5LeddsWTeorWyY9IMtUFutdu5g+Rn533qkocdvLs2HmhU75br/MmWtD8zA3OP2t1ea636jEzqYxJZGAwFiDEd61oTsrRuW3/3pYNi3bS+Rd+GjOfVpAPNd6y64Gsz1GaZleWIPoYL/v9mTeQBENVEguiF1aC4YeXxFETw6QyPfn0m9g8IrMFAvKM1EI11DARnbqibHk/Iojy5rSdgCyZi06y8sS024PeuO4MfwQ5Y9yKRZCqyYaF30vzeHlmUprR21tR0t0yz8KZY66zWuGvxVQB/36kP+K38t2Hu6NQ9SFJfw0AdpqPEK2qTMpf2VCqJwqPoJezTL824b8akoL+x03nhh+oNo5e77psxg9Q5LzebIKD+fsY34f2MtB9fk9v5b8PT6tYrgv4kRPwd0q9z3gdJSJ0653KjCYPwCaR5aUY63eW48O/kdo33yxX9wCiMv2QTrk8eGSI6Ag6moG9t2P/F7GRNlDjl0gw7pJ5aOXXqyqn8SENnXBmbSwUYLyqJjv3UmY1nKr4t80no0faXsaIEiF/BRaIBnItSce4OUif7W6Vm9T9H1X9Vj71BEm+RdmIJQST/ZfVdudUvh9S/qqNvqT98g9SQ3lHibZY0mRVHooyDN/FHmTgzjdozKw28NwQ0hwN6BCoPKaEk3YtKwNhwRLXuk076CGoZNXDQcRwZvreTZY9EZi+d0s4+ztv8iei04JQl6ZbDD2eHV7X4uHuFVfPrOmcs6m6Kr7hssr+1VZFcEZ/PdJkn1hOs8SXS/NFFgqt94PIZzZ3tdaL6Q5vo6piSzdy737pwsX1VyxUrF15iJ4uNkq+rbyg1Z+O8VsNC1UmcvORPRfxtPrfRwL2p/oA1eZp6Z/aGffoewaXcA/xBlKlQLfhQL/oPgBGP3qsA7IQS8qDVNswHKRSheDUvA3Q7MZoRcJMxlEygujn1QdyzfPfq3dEp/bXh5e5YXW2Ngfvza0ZF6UgFL/E0fTq4LBlvTE2qb/KuuzYSXVnjTfM1osvqMHVbm9950quIZlbqaL6YP7jk3kUtA0GnX2nvq53f3WoSsvEdDRnULgo2fN7lNZJgI8/VWi33c3bBZnGY05+dm+3qc7fNmj4YGKLj2nfqFP+g7jdDlxEV5XsJQZP6hYrS1l0VQr4c69Xueixp90gnZPmE5OF22j+SYEWHlZ0K/Hgsh/Ztsbh6h2DNRlvv6jJh9XaJaHCZDiUDKNTMkvb8vsqCyf3ZNdSmO0fa0Y4baJTtpbKzuVzeeSI7fCKr2Z0WypapnXJ4gnoWy3PoUIlIQ1TXdqhQJIXp9Wx5fYdpeWh2TY5D+YVyKd0jw3iumwi/BC3cEy4o83QlZnW79MrCgCjbhWXBlRZVVZZv4rIKpXC01HFlHdHLoeWVl6UVc/J5uGm6CViW5mulYMk+HqNYr0AyUPivLg2oMs2MPqtuhHyRyiwvNJej1Br+fcLyoAyu8D9B7bgmzUqfFobF5nKnK4+t8MPJkI/xHUNWk117jugWF+xazTAALQn6+UE9lhoI5ApGA/iuJOsrlNP28SVVuBVajXmircLel46w2bJS1Q0Ft0KDuikDFL/3pYrid1Q4FvofwRIo4R9h2ftSwc6jHAMqLcCql8YPHtlzGoByNXYN6v8hXnRaOhUvx0sVLCexwupGDR4NOYC7PePa5keIPACnuAdD7dEadRuTIiS6Lb7uskb381My5yjzF8lGCjBRqdwrWJCagfB3yCy7XT1i92hbcZ5Ci1FJkgYMDf6n+jspIsHFjJrTOdzSMuOa9DbDcj/nH9N9bIoGVgzHPWIQuFuYtaMRaq8eCKI0gEF6lPOZjBz3EEvaaxwSUT9U/8JbJZPJJLBLolH1La/RbF9AbC8JJjv/mMnssKjLRBJyqj9QXxNko0Ux/X79epfiXkm6fmKwF/en1HLc6LxloXWKvGa5rVCVL83VuiPcDEX/K5pTXOxHfx6HHB0t2FI0qI2rCZFTrvPWU67zVuS/kTsLnc7IKhFg30e4FOkqNSfH5PtkmUy6Cpiv/36k2sbqCeCFNa+URpoY0sZoYmCgCr3qgZz6s8I0gP1bYiR+D79H56NOz0EVWCTy2/fffvSCCx59W7uRV9995eqrX8GLesOXNm360iZ+T/El3uZqL+FyzSZ8XxpTiI/G0nkT4zznFZ0t4ipMz5v4q9ssqbdKUZt6u82knPCrt6PZwsnn0XySVnyPR1ZXAn72yx48bWJsu7apnI3Hy8bygUK5Js32qcytapqgmn95uexccj205vGgJ+euOeG2SORmKZr/qKzcx9SFctMJdwMUFZDJITs7dnOp1EKZCxg304Cevyfya+vlKqv6aXK1qIj3imL+L6hL+yvUlFfE0VKZ7E8gBY3M/8VoJCFgizH1W6VyC76nH6b7jiibYVxUmVIEspry/LgZIlCeP11Z4zs/AwvVwtGFEut5S1JY4lfyT0N/evOLo+rUEgjcqc9IkGpQbv3iW7Co5b+KgjvpzYdH85PLcc4X21ouwEGl/S4qnUAvoSlXUUhR1eKr2VWFTB+GMl6FsiQsVD1R3urlAAIoSn7JQkmiVVCHSpCwDH/qPepXQ0Db77CJOAImohB+RPWr31ev5g/kE+zTa4lbvZo8xdWPffQu9yJTPCNB66s+zXoJt/0L6hSoCuBIoK8fnBGG87OoRckJpLqyWe4YbpGi50g0+3I3UD85Oa0fzubfoXxPLbW3FDWzigmyJeM0tQkax7PqTy80+UxfUHPlBZIRVNQ+v0xRm8REKPoLmNr0+Uo48v9GFbXPKylqQ2IKm00QddgyWGMROCTxdLB9nCY8P7j2DjlsV/+mfr0C0r/NkeXbbpPlOTBBwT0mVz1zx9S/wJecBF9Wgv3p032iP2v4VSgfgW2G+HUEdEXU6iq4CtpLJfIN9XQG8dwa1VoO8XC2SrPDDyCOQptXgbcPvlAgBfxBoGwftQKeKFrNTASPt3pGGqDt/QRasn2kri+H6L80MJRsmVYJrAKyDItpJUy3/15WYIJqcJ9Q5N/LFJ4c3dc1URpWl9hW6mu50MUIelg4ucTPf15zs5DFo1c0VSp1tKB9jkwIyuM45kb+IP8gHed+6jO3v0KbIknzLy636E8KPTdCuUpB0wLo9JKnAO6pv0vS31EtBha/fJemkgLVVnd8KCk4qBTpQ5m7FbifBKrPJcq0pZAFVG/XbOFz+Tcq2MLrcmV28Nmi/OHskh82bau0k8eWCaPijQPWQ5lUvslwVCfHkXBMIehqUgtDNLeauH1huvZTbYmw+luPjyWoNGEuxRLR7LK5fSyXFUyK7PURQv2v8D3XOt2NJ6liBbmPGOsakw1kbeOs+31Wm5qpH+iJWSzqdPr2O7zc2TmtnrzCig6bBd/vgQmzOlz0STWIlmZEQfupogOZFHUZ7EkUnMn0RrpIMqAgHRJAOjIJ3yGw1I/MAp9q9S3Q/clADNm1wEeO+xbwg5OIYHZLY3ehG5lJk2xhco+6JWybpEVz2wrR6hZyD0QXZbeDVB+onmlimpkWprdAs4WEZDSQppsDlcdCBJJESIYFuAtUnC4GIF2C3Uu2Kv7L1bdz6FxtqxpG4TqQOqOUNAJ2HLvPWA2GgDy4O4vaDrtyl6P+1fAll+SyFcQ28GHqh7fvvf37udylf0fNwhzgz87Y+cf5x9GnF6ygHu18sAbipWeF0YPBgp2GaKeQduxxdEr3SgbH1kvH7tvqSLhedomOvZyts2dw8acu3dY/f+ucuMtCuP/e4zC4XnH3OLZ8ZuxTWxy8dJfU5dhDeKPSlJy5pn/+7u3XrJhmr9C5CuleGflGQocKnlAUaRKp0BAHV0ZwUt9VCqk6zYOgRIuMfePJzdmBdpPJ7/6B23+f+sp9NMDZevovvfYHG5dGPISQq1DojqNckchVrCcCYz/Q0hI0m3NKDRfkgsrnamo+p0CAq1FyvC3a3Nak/s5VX282x9Ufy3E39VAx6o7LpCvO2wK+ch9jNqpJCutcIOooKnYWtDK8gTRVYygRQfwgzKM5+jP2jOZdx3r32Py7rQUPOzAnoRs95NvRAR0qLGU11Taqu1bUYSzMcWjMEir067JQQHfIrLBHsrgv00/Wavd8HRLMEEYFSW3HCSNQehnrHztKqHcDyo4VfZ6gPKCR+gufwA8GegxUEo4A+gd0BASHiH6jYMLIsUdQJTs/C641KN4oCHWolCMLlMfIdtWKScjx7SM5LD9HnfmhrGI0S139UWfUnxgOXdJFW+AMcGjKr6eHAttHF5sUoeArYKDcxMSYcKA/xUDhPiEOEAPafSIUFArN0r24ynI91EPARDXvIDYyvqZaWeroBOUABQA/E+DXC7PWafDLQY2oiwpUEyj4RQtVlUp1GrM7In2p2A7VuiOW6otMiGOo5Mrp05ejVuTy6dNX/k/7mybZQ0nUmfrbx3U4KueDnlHm5wdh8FFeKnoaKKh/TK18StOPhwG9Xo5mqXAxvw/79YQwwDR+nAKQQ4izVXioB84qcppWB7IqjU45z4CE17OvF1Dw+oTFqxtz8dxwtogBnF9MjIl/in+K8s3hM9laIn0TiCbTAXL0T798bPXqx36p3chrv0O+GC9Xaj48Ecv8U8UEeBvUEsDlTepiU5OvlpeNGvpnKF0RvUooWhIjnx6GeBapXCQYTw9DNg6/OC3gZjp76oNTj9Kz6Jqobxb9NDqc08vcKReOpcsQV2K8InXFaXW3aI6Ofr1k48rp7CX7rx+v1UKPsfvzQU0Kc83i2VdILmd2/yX55zT9luN2+Cu4nKfwPcK/CvDVU+pHh8+LaldIf1fA5h3ndT6Fln9/W/9Ce1vndfvJtnPVO2xhm3qbafHVCN1X363UXHq9xuVD8OSD29Z8pZ5cZrern9cAdGW/uib/ud+VK0L9a42r6C90kL8KzxwLQw9NkIQJL0ASU8M+VG0KsUdgdvpgP/6NqqP0/gHZFUfGEijZLHpiIgvV5/Bltrj8Qd7XQd5p4P+7tJo30NMO6VGBwahSPMYiaaBYoLY6uEnciyhhh1Z/vvacG/rjpsvnpzs0B1Id6fmX8119l88XnOxe/uGrzzHcdu7UtY3+2vmXN5zUyj3ZcPl8p1sZSs6/nGXtwrV7Ka0XZdz83fwjjINpZWYw85lL8BRK4nGyIir2RiOsEyipuEcIakpGjWgBjLiHWOgj0Yi34gW1kKPxHt2Na5q+lwg1RdRSpFDNzosb44YJXnAfoEOpZW//6u1lhYA6leevezbI26zNHO811M2dc5HFxpk4i1jPC0s21/BWW5DnPQbn2X1WK43/aM2n18DfSoybbNHijFpamzXI31eRibGUOxSu/lT96YZlq1Yt20DaSBuG6knw2eusHs5EPBfNmVvHKdaQzcDfz9ZsXmLDWGXy2U5OsYSsIn8CS12jQIyD12KKqZrLPy7mSPdICmd6WGHG8NDZkkHuE4h9TU8FpmUO/VjC/EinToFyoNDz2p9XD6g78WgQdPG7Z3R0T/Z5dTM9lsL8Ktek7szl2L+gQwGgwkZHc2g5Su7NvVqwGy2Ua4KSXUwt1X4PaM5paaEu6jQ5zVFyNabxvUksVt2T/4VeamYPlLtffdQsk+2sUTY/zDXl/05W53/Bz9UK3p7LjapZ2ZxOm+UlZXrL3HHGqO8+wVroDaCTTnTxitMxmiAAYQzVJQH+nj3oIHnPaN6Zq6sNSLjBl8tKgVr2mj/9CWi9dnKca8rBQBsd5R1tzVlgrl5pbnPw6kZclCr2CHxMnHohLz+3KRQokzALyeIKFU1TNCiayJdoHvDYe7K6mZLm8S3uJ9dojuaJ62/qN/tjQxnSnhnKPw+LNrLi8ZKyJ3x1YhiI1aNAtP6NzCGzYv3DmaGh/LvQZnt0evgIhTFV0kE/PYxAnOHhCQUZdCWY5JWJwMzlAGl1mpNbDU7yyGnhRMILsYhH3VRAijrPcBU8/Cj1Y9NY6cnGVW0CjTLaz7E3epvaT/LtTV72Rs+0WVVmd0dz/MGTI5F0OsIviaqDlbbO5X6xT3PeXbXHRtf/z+fdka+eKPr8KF7IF4vBsT9MFPuPJMBTBMq9hQxXelQ+bewnf18ap4Ib+mSMrtDU5zqlD8QANa5MBGh/OwOvSDfcV2d66mfEWsbGWmIz6nsyZDWQSmqmxDneYyvjHPmRXHZxeueyRGLZzvRioKnGto9nIPkibAJA16adcOZRQr1iAP3bUyBR7T4RgAWTKxhkCYFwshq+7iV9r0whk50cmRcTg4fy5x4OmmNkHndIA2+YuMbmE9dwGYB4KFTsvnDE6Ah47r/fE3AYI+oXADpkdlENcZ8OZEEf8FFGZNxMs6ZLpG3SUFLL7Q2kcFU/A/Jsw+vWDa/7emewLaoeibaF1B9qUNnuqWK3+UfXYVL1v/omD15xxeDkPnXTOKSVcCbDGtOu0YQNpGAP7U1HU58UrqGu8xIbHtkQ3LVhb7Dx46ET3Ffcm1q0YcOizNmf3bC3VjWfAcpSv3MyTlgJ23FHQgmgvk+gk8pL0mcCDOn08MDAQlf+/SlTZ1z12fnqntOhbOTL9/ZdevbAPN+yby1f/uUtC/ixm8ZBo59LTXEW060hGrTDplNprWd58fwB/b/E27BdS/s7U+rGVCeQ46nzaw9QccnmZerGZZs3Yw9aVHt+Kh6HN4ti6lxIhT/wahnZtWwzlY9QHQ2c79C+dxzvVDKy8GqKWQERO9YAKbpsDUTLdWV5dE8PVPjvj9pqw7ah/PFVtkit7aj6G5xY9mfJrCz1j1e0BcnPol4UjtrCdbahIVtd2HaURujnFJR8CuOuUUfhrGhgKKgjCYNSvCc1WKlEp8wHUaAYynFNyzZn+2MnYv36dbMDBTonl/T/ma5IKAyEGz+4eRnVtaX6tss2o34u8mWorFtuFgm4A6qK/yp/gLEBVat5WnPDdKA574ubuFJ/IUfZ/Y2Nt6mN+ZNNTSTaeI56gKwkXerTe9DDHUw8/H35FY3nNN7GGuBKWhrV9ep+0k1WjNWVaHkW1yA+QHWNu8rtBw2a5YXuE40rs7/GA+j09V3hA98yRnFPOGr8ltGlsFdD/7tRce3LH6Trcneuiy7K7J3khKu+3qUaXPWaX7T6/Kfj9BX2eZq2XAcZT79u1ClJzUtHUqfqSMWBcZS43Ena0cUGLgpkKxB1QM+0Fxz10wgg6r5rltnFpH05pepUq3Y2HfYqeKRntmUFNz+XmcOs1H31U6cC6RTVLfCg7RNBF1UF2/wBgu0fFQtPEU1sSg3VcNsR7dWq3af87tUFn1l3ltXpaJxpNvtcZkH2WmMst3JqRpxUH+WC0E1qOGtP66s1MYv+VLu8/XFXvV/ZbunYYBeVN64ls0ur6NzpV9xzlmQwB5qC4Tq70WC0tk8dWJXeHvkD0h9zJOM0vD86/1NJMaIAolctvlByferCsqOKDKceOfUu1PsmoFCamV5mCrMUOCi6V6FJosMF22AcrKJgQDVhfYh6tepp/lYgvnCEAbJQ1L0rOpajEmRcasMiPfxhgGoVo4rwreQpV6fUJHH2e8fa1s2c13Apl1b89a58ozdoap2sjgLN9uISl7P1DrulyeIkt0zr6JjWocoPOZsaXPb6jtqBblsgsaRre2xHi4nELm0MhG1+x1SXwLpFi53b+aHRYo/IrbZtuWAKu5cSEXfybnnmUCaXGTpQr0xK2O2WWY76f+nAjNVf7nCZHU5XqIkTnpt6VtvsFlPXg1031g/VRdpkkyVpD7jnmax88QwDvg/66NnMRdRXTcGTmQc3cuINwN5IQqi0yzb+YFVHuVqI5s4ADfg5oE4ybDLd28mFSFmYvRoomsWXEdLU2Wl3GJy93ZNb/d5gqmNaqJZSO1l6PVRy0nZIj/45EetjLguh1rLqR+SK0hO6NrsqcNX8zoUdjQYDJ7tb4os6+i+Y0qpY2AWlnLRDWdGFTfGY1gV0zNAtJ7pdo24se0D88AwLY/gZmE9iuP4V5v7CSR/RThaHLh+UeBkXwU6BC7lGOevK65udTv+tS/PfW7qj3ljTcj3b9OkbV85t8xsMj7Ddj7DGpthZKwKPvso/c/1K9aLE12fMWLV1y1D9ua8lyJdWXr/bG+noCFutf/mLILe39ITUV4igr3876fpX5g2zeB52sWnIL4fXHlgeUzOx5QfIvJQyrKQE9wHUqVq+PEaOrz0wVvNbJZVSfsuMzxN4l9PkedFzw9V5Dj+nzpgoT4ZxCxJfC5RWLc74YVHxKlExCYt0JAOMatREhHBSCAtSfod6x6Ls8HCWECLwXZ9nd5Dz1T24JUdWs6fU3++fcnT49Qe+kBs+wdsMZgPXMp3U5S958snPP/EE7bvkOPCuTUDTUQ/UzirLhML9yPahoe1D5Fj5jWsaoveyP00PehdUAHk/seDVWsvDWXXXsyn/4wfpXc2V3/Qxli3jl/5hj/83avSCfpTNxOEKLmTjxOEKuxgNlsQn0xgct724mhynupNW1Ph6o3RYS3/+2TJrzLlkFz+ip3qCHKf6eqW02QJLjBYuuj4sobhCWqa/YHGEHpcnumuWSOhxeaL7sOakNR6vvmo+YcfFA8UFXEPZf9UjyudIOyNwx/i90DdsujS/FX2UAwvWSVK4NxaMhAGw3oowp/uc8CTi7D2rBgZWwb/60faR7SPsEbjkXy4G0XaqhXPwe2cePjxjxuHD6ssQuR1fq6PF0E+o2t1nePTn8TUmxz/A3crMoCc7egESuoTHYc7mYdg6etORoOhR7BBGD+qJopELrl4S6cJNRtEAsLP/OdvnJq0Wo0GolY2Et9VFB2Kf+4bZvVyxfOMz3WdFfSIryj6DwWghre7aQbdiDrkTL3A3vNDuDpk93HqXwam+bWmUJZfNn5ozKV5Pmmq8PF/jVY+2Tlk2M2RzSXKjmbQ4RZcQavEYrN/9rlXwtIQqzxQNMzPPfHYLvuPoO9TbT8bpGw5CQPGd+SyX/Cyf0Vxjd2R9NmsunnXYa8xGHzn+sSfM5J0y0DZEXWWxkXjcR75KBLNLHi7XvX2G8VOrf4Ykg0AMdBESIpo7MgAfyakA6rkqpI6UjNs0px7cMV+D5BF49Tez1VGnYmq0WIijp985m4Sn2gJR9b07riPPFo97OYbUZbxJCpot7H/lpZBicglCPN7WOfJkcHqc3ElWqvvz/1E6bIQrG+tz6WkM1SM9FBTR7FSs8KyBBytSmNEoquJNFN5EQyTiCrnKDx1h58yxCepPHU5nxGoxEQeeOZi2m80DxNxncVhr6BmEfUarxejw+WSiHhWk19bSY7aKR5MsteblJpfTLtjimBouXsm3d3djjYM+wEW0El9dM/ueVRWIsXwe43R7SgbVZqrnqoJ1X/kuF7pcgf8duv4q6vayV5U9zMV91GxO59UUjW8rHV6u799WzKMT7umRCXbYUKM+foaCcwgaoqZUtmodV3p+X7akb4dnU9B9La38RPFUG2SCC90tVA4XwEFhyOpZZrUCsgWYHsczLFBBVGNtstoN1bw0Z+O4fYIbvZVt4EUcJEKOhHeincWqONw+q6w5Go+WGOSR7LhKV+KBqbBPpfUvOf9QqkpDyVhBeyyZQGMsdA5FBUqvFMtUyGq9vjnsAJU4UcrxldP1CCaofyDkSAifoP5QwWx+SyUGxp75BzGAvtG7uQ38LehlyEQMeh0TeE6Bm7tYdXqdkt0uOb3kfYlNwmOdDyacOq/qlFo1v+PTmTi3E/glC9W11b34A22zmLzvb231Q0L2Bgg60OTW4YdstO+YOJnO38TtpH7zy9ymokWyA79qlVSn38HtpFlImFnhu3b4boNWXklOXV0Iwo7lQ1hrZyPFcwtjwFP7iEKSHSSJw509kh8kj6pr+H1jR7km9vcvqN9657vffefkv+fKxge1X+7RdjYUPIESN7gTvRkB/RMYtEkaVkdHApmdBPpnKmz0n1xSWFOyVIuLrinZwpoCRe6kyiVZoHX088F+UX4+WKS4iBTP0IWxGtZgOdMaV4KTayqHQF/VihBwTbgDXTCmKoOBJeNhwJMzEVjtjIFLuU38fPR7hqNG1JS7g/qRCuy3vmQ3W9Vu8qbVbP+SzazGRJH83MzP90Ck2m31mMjP8TiLn5uwD2Ugr2PFvPQjB5BnSJvQxGQZZEB+LopqzGzDbMmbkAPkZVJjeO5FzOSBKCgJze2ZS4Gemc9twrwY6u9H61iUQTcRvtdT9RW3tRxAWwFs2tcuJRnI6xjmBdWjbgFNRHMHiF1uHYBfUR/ut5Ug2jXAaT96+9RH/FToRwIzGbKmVJ1AZQnoabSB1yyIg7ByAridHApPMjyw0OiV6RjSbCuzwLAvFizBliWJua1tsuAgvNPbmljYbpt8lkWam7b3XZiOiKJskMOtmfScnsbPW208knwjuXrXK4Q1iKIgNyYXXDVT9C2Ye/78GQ5BEEXfFdde2RwauOysdJNL5AzCy84ard/nGAVN8alecnFdgu5Gbd5DJTL+hHZK0vApVy3OfU8XTSJg1TlssivsPYUlIqvn66PzrVTymCc4wgF6SDNR0pDf+9Gp+VnsUH5WtpHYsuhOaey8zdwLN47V8MTbm78g687+P3cx6tcAeNpjYGRgYGBk8s0/zBIfz2/zlUGeZQNQhOFCWfF0GP0/8P8c1jusIkAuBwMTSBQAYwQM6HjaY2BkYGAV+d8KJgP/XWG9wwAUQQGLAYqPBl942n1TvUoDQRCe1VM8kWARjNrZGIurBAsRBIuA2vkAFsJiKTYW4guIjT5ARMgTxCLoA1hcb5OgDyGHrY7f7M65e8fpLF++2W/nZ2eTmGfaIJi5I0qGDlZZcD51QzTTJirZPAI9JIwVA+wT8L5nOdMaV0AuMJ+icRHq8of6LSD18fzq8ds7xjpwBnQiSI9V5QVl6NwPvgM15NXn/AtWZyj3W0HjEXitOc/dIdbetPdFTZ+P6t+X7xU0/k6GJtOe1/B3arN0/pmz1J4UZc+D6ExwjD7vioeGd5HvhvU+R+DZcGZ6YBPNfAi0G97iBPwFXqph2cW8+D7kjMfwtinHb6kLb6Wygk3cZytSEoptGrlScdHtLPeri1JKueACMZfU1ViJG1Sq5E43dIt7SZZFl1zuRhb/GOs44xFVDbrJzB5tYs35OmaXTrEmkv0DajnMWQB42mNgYNCCwk0MLxheMPrhgUuY2JiUmOqY2pjWMD1hdmPOY+5hPsLCwWLEksSyiOUOawzrLrYiti/sCuxJ7Kc45DiSOPZxmnG2cG7jvMelweXDNYXrEbcBdxf3KR4OngheLd443g18fHwZfFv4NfiX8T8TEBIIEZggsEpQS7BMcJsQl5CFUI3QAWEp4RLhCyJaIldEbURXiJ4RYxEzE0sQ2yD2TzxIfJkEk4SeRJbENIkNEg8k/klqSGZITpE8InlL8p2UmVSG1A6pb9Jx0ltkjGSmyDySlZF1kc2RnSK7R/aZnJ5cmdwB+ST5SwpuCvsUjRTLFHcoOShNU9qhzKespGyhXKV8SPmBCpOKgUqcyjSVR6omqgmqe9RE1OrUnqkHqO9R/6FholGgsUZzgeYZLTUtL60WbS7tKh0OnQydXTpvdGV0O3S/6Gnopekt0ruhz6fvpl+nv0n/h4GdQYvBJUMhwwTDdYYvjFSM4oxmGd0zVjK2M84w3mYiYZJgssLkkqmO6TzTF2Z2ZjVmd8ylzP3MJ5lfsRCwcLJoszhhyWXpZdlhecZKxirHapbVPesF1ndsJGwCbBbZ/LA1sn1jZ2XXY3fFXsM+z36V/S8HD4cGh2OOTI51ThJOK5zeOUs4OzmXOS9wPuUi4JLgss7lm2uU6zY3NrcSty1u39zN3Mvct7l/8xDzMPLw88jyaPM44ynkaeEZ59niucqLyUvPKwgAn3OqOQAAAQAAARcApwARAAAAAAACAAAAAQABAAAAQAAuAAAAAHjarZK9TgJBEMf/d6CRaAyRhMLqCgsbL4ciglTGRPEjSiSKlnLycXJ86CEniU/hM9jYWPgIFkYfwd6nsDD+d1mBIIUx3mZnfzs3MzszuwDCeIYG8UUwQxmAFgxxPeeuyxrmcaNYxzTuFAewi0fFQSTxqXgM11pC8TgS2oPiCUS1d8Uh8ofiSczpYcVT5LjiCPlY8Qui+ncOr7D02y6/BTCrP/m+b5bdTrPi2I26Z9qNGtbRQBMdXMJBGRW0YOCecxEWYoiTCvxrYBunqHPdoX2bLOyrMKlZg8thDETw5K7Itci1TXlGy0124QRZZLDFU/exhxztMozlosTpMH6ZPge0L+OKGnFKjJ4WRwppHPL0PP3SI2P9jLQwFOu3GRhDfkeyDo//G7IHgzllZQxLdquvrdCyBVvat3seJlYo06gxapUxhU2JWnFygR03sSxnEkvcpf5Y5eibGq315TDp7fKWm8zbUVl71Aqq/ZtNnlkWmLnQtno9ycvXYbA6W2pF3aKfCayyC0Ja7Fr/PW70/HO4YM0OKxFvzf0C1MyPjwAAeNpt1VWUU2cYRuHsgxenQt1d8/3JOUnqAyR1d/cCLQVKO22pu7tQd3d3d3d3d3cXmGzumrWy3pWLs/NdPDMpZaWu1783l1Lpf14MnfzO6FbqVupfGkD30iR60JNe9KYP09CXfvRnAAMZxGCGMG3pW6ZjemZgKDMyEzMzC7MyG7MzB3MyF3MzD/MyH/OzAAuyEAuzCIuyGIuzBGWCRIUqOQU16jRYkqVYmmVYluVYng6GMZwRNGmxAiuyEiuzCquyGquzBmuyFmuzDuuyHuuzARuyERuzCZuyGZuzBVuyFVuzDduyHdszklGMZgd2ZAw7MZZxjGdnJrALu9LJbuzOHkxkT/Zib/ZhX/Zjfw7gQA7iYA7hUA7jcI7gSI7iaI7hWI7jeE7gRE7iZE5hEqdyGqdzBmdyFmdzDudyHudzARdyERdzCZdyGZdzBVdyFVdzDddyHddzAzdyEzdzC7dyG7dzB3dyF3dzD/dyH/fzAA/yEA/zCI/yGI/zBE/yFE/zDM/yHM/zAi/yEi/zCq/yGq/zBm/yFm/zDu/yHu/zAR/yER/zCZ/yGZ/zBV/yFV/zDd/yHd/zAz/yEz/zC7/yG7/zB3/yF3/zD/9mpYwsy7pl3bMeWc+sV9Y765NNk/XN+mX9swHZwGxQNjgb0nPkmInjR0V7Uq/OsaPL5Y7ylE3l8tQNN7kVt+rmbuHW3LrbcDvam1rtzVvdm50TxrU/DBvRtZUY1rV5a3jXFn550Wo/XDNWK3dFmh7X9LimxzU9qulRTY9qelTTo5rlKLt2wk7YiaprL+yFvbAX9pK9ZC/ZS/aSvWQv2Uv2kr1kr2KvYq9ir2KvYq9ir2KvYq9ir2Kvaq9qr2qvaq9qr2qvaq9qr2qvai+3l9vL7eX2cnu5vdxebi+3l9sr7BV2CjuFncJOYaewU9gp7NTs1LyrZq9mr2avZq9mr2avZq9mr26vbq9ur26vbq9ur26vbq9ur26vYa9hr2GvYa9hr2GvYa/R7oXuQ/eh+2j/UU7e3C3cqc/V3fYdof/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D92H7kP3ofvQfeg+dB+6D92H7kP3ofvQfRT29B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6D/2H/kP/of/Qf+g/9B/6j6nuG3Ya7U5q/0hN3nCTW3Grbu4Wrs/rP+k/6T/pP+k/6T/pP+k+6T7pPek86TzpPOk86TzpOuk66TrpOuk66TrpOlWmPu/36zrpOuk66TrpOuk66TrpOvl/Pek76TvpO+k76TvpO+k76TvpO+k76TvpO7V9t+qtVs/OaOURU6bo6PgPt6rZbwAAAAABVFDDFwAA) format('woff'),url(data:application/x-font-truetype;base64,AAEAAAAPAIAAAwBwRkZUTW0ql9wAAAD8AAAAHEdERUYBRAAEAAABGAAAACBPUy8yZ7lriQAAATgAAABgY21hcNqt44EAAAGYAAAGcmN2dCAAKAL4AAAIDAAAAARnYXNw//8AAwAACBAAAAAIZ2x5Zn1dwm8AAAgYAACUpGhlYWQFTS/YAACcvAAAADZoaGVhCkQEEQAAnPQAAAAkaG10eNLHIGAAAJ0YAAADdGxvY2Fv+5XOAACgjAAAAjBtYXhwAWoA2AAAorwAAAAgbmFtZbMsoJsAAKLcAAADonBvc3S6o+U1AACmgAAACtF3ZWJmwxhUUAAAsVQAAAAGAAAAAQAAAADMPaLPAAAAANB2gXUAAAAA0HZzlwABAAAADgAAABgAAAAAAAIAAQABARYAAQAEAAAAAgAAAAMEiwGQAAUABAMMAtAAAABaAwwC0AAAAaQAMgK4AAAAAAUAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAFVLV04AQAAg//8DwP8QAAAFFAB7AAAAAQAAAAAAAAAAAAAAIAABAAAABQAAAAMAAAAsAAAACgAAAdwAAQAAAAAEaAADAAEAAAAsAAMACgAAAdwABAGwAAAAaABAAAUAKAAgACsAoAClIAogLyBfIKwgvSISIxsl/CYBJvonCScP4APgCeAZ4CngOeBJ4FngYOBp4HngieCX4QnhGeEp4TnhRuFJ4VnhaeF54YnhleGZ4gbiCeIW4hniIeIn4jniSeJZ4mD4////AAAAIAAqAKAApSAAIC8gXyCsIL0iEiMbJfwmASb6JwknD+AB4AXgEOAg4DDgQOBQ4GDgYuBw4IDgkOEB4RDhIOEw4UDhSOFQ4WDhcOGA4ZDhl+IA4gniEOIY4iHiI+Iw4kDiUOJg+P/////j/9r/Zv9i4Ajf5N+132nfWd4F3P3aHdoZ2SHZE9kOIB0gHCAWIBAgCiAEH/4f+B/3H/Ef6x/lH3wfdh9wH2ofZB9jH10fVx9RH0sfRR9EHt4e3B7WHtUezh7NHsUevx65HrMIFQABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAAAAAACjAAAAAAAAAA1AAAAIAAAACAAAAADAAAAKgAAACsAAAAEAAAAoAAAAKAAAAAGAAAApQAAAKUAAAAHAAAgAAAAIAoAAAAIAAAgLwAAIC8AAAATAAAgXwAAIF8AAAAUAAAgrAAAIKwAAAAVAAAgvQAAIL0AAAAWAAAiEgAAIhIAAAAXAAAjGwAAIxsAAAAYAAAl/AAAJfwAAAAZAAAmAQAAJgEAAAAaAAAm+gAAJvoAAAAbAAAnCQAAJwkAAAAcAAAnDwAAJw8AAAAdAADgAQAA4AMAAAAeAADgBQAA4AkAAAAhAADgEAAA4BkAAAAmAADgIAAA4CkAAAAwAADgMAAA4DkAAAA6AADgQAAA4EkAAABEAADgUAAA4FkAAABOAADgYAAA4GAAAABYAADgYgAA4GkAAABZAADgcAAA4HkAAABhAADggAAA4IkAAABrAADgkAAA4JcAAAB1AADhAQAA4QkAAAB9AADhEAAA4RkAAACGAADhIAAA4SkAAACQAADhMAAA4TkAAACaAADhQAAA4UYAAACkAADhSAAA4UkAAACrAADhUAAA4VkAAACtAADhYAAA4WkAAAC3AADhcAAA4XkAAADBAADhgAAA4YkAAADLAADhkAAA4ZUAAADVAADhlwAA4ZkAAADbAADiAAAA4gYAAADeAADiCQAA4gkAAADlAADiEAAA4hYAAADmAADiGAAA4hkAAADtAADiIQAA4iEAAADvAADiIwAA4icAAADwAADiMAAA4jkAAAD1AADiQAAA4kkAAAD/AADiUAAA4lkAAAEJAADiYAAA4mAAAAETAAD4/wAA+P8AAAEUAAH1EQAB9REAAAEVAAH2qgAB9qoAAAEWAAYCCgAAAAABAAABAAAAAAAAAAAAAAAAAAAAAQACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAwAAAAAAAAAAAAAAAAAAAAAAAAAEAAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAL4AAAAAf//AAIAAgAoAAABaAMgAAMABwAusQEALzyyBwQA7TKxBgXcPLIDAgDtMgCxAwAvPLIFBADtMrIHBgH8PLIBAgDtMjMRIRElMxEjKAFA/ujw8AMg/OAoAtAAAQBkAGQETARMAFsAAAEyFh8BHgEdATc+AR8BFgYPATMyFhcWFRQGDwEOASsBFx4BDwEGJi8BFRQGBwYjIiYvAS4BPQEHDgEvASY2PwEjIiYnJjU0Nj8BPgE7AScuAT8BNhYfATU0Njc2AlgPJgsLCg+eBxYIagcCB57gChECBgMCAQIRCuCeBwIHaggWB54PCikiDyYLCwoPngcWCGoHAgee4AoRAgYDAgECEQrgngcCB2oIFgeeDwopBEwDAgECEQrgngcCB2oIFgeeDwopIg8mCwsKD54HFghqBwIHnuAKEQIGAwIBAhEK4J4HAgdqCBYHng8KKSIPJgsLCg+eBxYIagcCB57gChECBgAAAAABAAAAAARMBEwAIwAAATMyFhURITIWHQEUBiMhERQGKwEiJjURISImPQE0NjMhETQ2AcLIFR0BXhUdHRX+oh0VyBUd/qIVHR0VAV4dBEwdFf6iHRXIFR3+ohUdHRUBXh0VyBUdAV4VHQAAAAABAHAAAARABEwARQAAATMyFgcBBgchMhYPAQ4BKwEVITIWDwEOASsBFRQGKwEiJj0BISImPwE+ATsBNSEiJj8BPgE7ASYnASY2OwEyHwEWMj8BNgM5+goFCP6UBgUBDAoGBngGGAp9ARMKBgZ4BhgKfQ8LlAsP/u0KBgZ4BhgKff7tCgYGeAYYCnYFBv6UCAUK+hkSpAgUCKQSBEwKCP6UBgwMCKAIDGQMCKAIDK4LDw8LrgwIoAgMZAwIoAgMDAYBbAgKEqQICKQSAAABAGQABQSMBK4AOwAAATIXFhcjNC4DIyIOAwchByEGFSEHIR4EMzI+AzUzBgcGIyInLgEnIzczNjcjNzM+ATc2AujycDwGtSM0QDkXEys4MjAPAXtk/tQGAZZk/tQJMDlCNBUWOUA0I64eYmunznYkQgzZZHABBdpkhhQ+H3UErr1oaS1LMCEPCx4uTzJkMjJkSnRCKw8PIjBKK6trdZ4wqndkLzVkV4UljQAAAgB7AAAETASwAD4ARwAAASEyHgUVHAEVFA4FKwEHITIWDwEOASsBFRQGKwEiJj0BISImPwE+ATsBNSEiJj8BPgE7ARE0NhcRMzI2NTQmIwGsAV5DakIwFgwBAQwWMEJqQ7ICASAKBgZ4BhgKigsKlQoP/vUKBgZ4BhgKdf71CgYGeAYYCnUPtstALS1ABLAaJD8yTyokCwsLJCpQMkAlGmQMCKAIDK8LDg8KrwwIoAgMZAwIoAgMAdsKD8j+1EJWVEAAAAEAyAGQBEwCvAAPAAATITIWHQEUBiMhIiY9ATQ2+gMgFR0dFfzgFR0dArwdFcgVHR0VyBUdAAAAAgDIAAAD6ASwACUAQQAAARUUBisBFRQGBx4BHQEzMhYdASE1NDY7ATU0NjcuAT0BIyImPQEXFRQWFx4BFAYHDgEdASE1NCYnLgE0Njc+AT0BA+gdFTJjUVFjMhUd/OAdFTJjUVFjMhUdyEE3HCAgHDdBAZBBNxwgIBw3QQSwlhUdZFuVIyOVW5YdFZaWFR2WW5UjI5VbZB0VlshkPGMYDDI8MgwYYzyWljxjGAwyPDIMGGM8ZAAAAAEAAAAAAAAAAAAAAAAxAAAB//IBLATCBEEAFgAAATIWFzYzMhYVFAYjISImNTQ2NyY1NDYB9261LCwueKqqeP0ST3FVQgLYBEF3YQ6teHmtclBFaw4MGZnXAAAAAgAAAGQEsASvABoAHgAAAB4BDwEBMzIWHQEhNTQ2OwEBJyY+ARYfATc2AyEnAwL2IAkKiAHTHhQe+1AeFB4B1IcKCSAkCm9wCXoBebbDBLMTIxC7/RYlFSoqFSUC6rcQJBQJEJSWEPwecAIWAAAAAAQAAABkBLAETAALABcAIwA3AAATITIWBwEGIicBJjYXARYUBwEGJjURNDYJATYWFREUBicBJjQHARYGIyEiJjcBNjIfARYyPwE2MhkEfgoFCP3MCBQI/cwIBQMBCAgI/vgICgoDjAEICAoKCP74CFwBbAgFCvuCCgUIAWwIFAikCBQIpAgUBEwKCP3JCAgCNwgK2v74CBQI/vgIBQoCJgoF/vABCAgFCv3aCgUIAQgIFID+lAgKCggBbAgIpAgIpAgAAAAD//D/8AS6BLoACQANABAAAAAyHwEWFA8BJzcTAScJAQUTA+AmDpkNDWPWXyL9mdYCZv4f/rNuBLoNmQ4mDlzWYP50/ZrWAmb8anABTwAAAAEAAAAABLAEsAAPAAABETMyFh0BITU0NjsBEQEhArz6FR384B0V+v4MBLACiv3aHRUyMhUdAiYCJgAAAAEADgAIBEwEnAAfAAABJTYWFREUBgcGLgE2NzYXEQURFAYHBi4BNjc2FxE0NgFwAoUnMFNGT4gkV09IQv2oWEFPiCRXT0hCHQP5ow8eIvzBN1EXGSltchkYEAIJm/2iKmAVGilucRoYEQJ/JioAAAACAAn/+AS7BKcAHQApAAAAMh4CFQcXFAcBFgYPAQYiJwEGIycHIi4CND4BBCIOARQeATI+ATQmAZDItoNOAQFOARMXARY7GikT/u13jgUCZLaDTk6DAXKwlFZWlLCUVlYEp06DtmQCBY15/u4aJRg6FBQBEk0BAU6Dtsi2g1tWlLCUVlaUsJQAAQBkAFgErwREABkAAAE+Ah4CFRQOAwcuBDU0PgIeAQKJMHt4dVg2Q3mEqD4+p4V4Qzhadnh5A7VESAUtU3ZAOXmAf7JVVbJ/gHk5QHZTLQVIAAAAAf/TAF4EewSUABgAAAETNjIXEyEyFgcFExYGJyUFBiY3EyUmNjMBl4MHFQeBAaUVBhH+qoIHDxH+qf6qEQ8Hgv6lEQYUAyABYRMT/p8RDPn+bxQLDPb3DAsUAZD7DBEAAv/TAF4EewSUABgAIgAAARM2MhcTITIWBwUTFgYnJQUGJjcTJSY2MwUjFwc3Fyc3IycBl4MHFQeBAaUVBhH+qoIHDxH+qf6qEQ8Hgv6lEQYUAfPwxUrBw0rA6k4DIAFhExP+nxEM+f5vFAsM9vcMCxQBkPsMEWSO4ouM5YzTAAABAAAAAASwBLAAJgAAATIWHQEUBiMVFBYXBR4BHQEUBiMhIiY9ATQ2NyU+AT0BIiY9ATQ2Alh8sD4mDAkBZgkMDwr7ggoPDAkBZgkMJj6wBLCwfPouaEsKFwbmBRcKXQoPDwpdChcF5gYXCktoLvp8sAAAAA0AAAAABLAETAAPABMAIwAnACsALwAzADcARwBLAE8AUwBXAAATITIWFREUBiMhIiY1ETQ2FxUzNSkBIgYVERQWMyEyNjURNCYzFTM1BRUzNSEVMzUFFTM1IRUzNQchIgYVERQWMyEyNjURNCYFFTM1IRUzNQUVMzUhFTM1GQR+Cg8PCvuCCg8PVWQCo/3aCg8PCgImCg8Pc2T8GGQDIGT8GGQDIGTh/doKDw8KAiYKDw/872QDIGT8GGQDIGQETA8K++YKDw8KBBoKD2RkZA8K/qIKDw8KAV4KD2RkyGRkZGTIZGRkZGQPCv6iCg8PCgFeCg9kZGRkZMhkZGRkAAAEAAAAAARMBEwADwAfAC8APwAAEyEyFhURFAYjISImNRE0NikBMhYVERQGIyEiJjURNDYBITIWFREUBiMhIiY1ETQ2KQEyFhURFAYjISImNRE0NjIBkBUdHRX+cBUdHQJtAZAVHR0V/nAVHR39vQGQFR0dFf5wFR0dAm0BkBUdHRX+cBUdHQRMHRX+cBUdHRUBkBUdHRX+cBUdHRUBkBUd/agdFf5wFR0dFQGQFR0dFf5wFR0dFQGQFR0AAAkAAAAABEwETAAPAB8ALwA/AE8AXwBvAH8AjwAAEzMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2ATMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2ATMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2MsgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR389cgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR389cgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR0ETB0VyBUdHRXIFR0dFcgVHR0VyBUdHRXIFR0dFcgVHf5wHRXIFR0dFcgVHR0VyBUdHRXIFR0dFcgVHR0VyBUd/nAdFcgVHR0VyBUdHRXIFR0dFcgVHR0VyBUdHRXIFR0ABgAAAAAEsARMAA8AHwAvAD8ATwBfAAATMzIWHQEUBisBIiY9ATQ2KQEyFh0BFAYjISImPQE0NgEzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2ATMyFh0BFAYrASImPQE0NikBMhYdARQGIyEiJj0BNDYyyBUdHRXIFR0dAaUCvBUdHRX9RBUdHf6FyBUdHRXIFR0dAaUCvBUdHRX9RBUdHf6FyBUdHRXIFR0dAaUCvBUdHRX9RBUdHQRMHRXIFR0dFcgVHR0VyBUdHRXIFR3+cB0VyBUdHRXIFR0dFcgVHR0VyBUd/nAdFcgVHR0VyBUdHRXIFR0dFcgVHQAAAAABACYALAToBCAAFwAACQE2Mh8BFhQHAQYiJwEmND8BNjIfARYyAdECOwgUB7EICPzxBxUH/oAICLEHFAirBxYB3QI7CAixBxQI/PAICAGACBQHsQgIqwcAAQBuAG4EQgRCACMAAAEXFhQHCQEWFA8BBiInCQEGIi8BJjQ3CQEmND8BNjIXCQE2MgOIsggI/vUBCwgIsggVB/70/vQHFQiyCAgBC/71CAiyCBUHAQwBDAcVBDuzCBUH/vT+9AcVCLIICAEL/vUICLIIFQcBDAEMBxUIsggI/vUBDAcAAwAX/+sExQSZABkAJQBJAAAAMh4CFRQHARYUDwEGIicBBiMiLgI0PgEEIg4BFB4BMj4BNCYFMzIWHQEzMhYdARQGKwEVFAYrASImPQEjIiY9ATQ2OwE1NDYBmcSzgk1OASwICG0HFQj+1HeOYrSBTU2BAW+zmFhYmLOZWFj+vJYKD0sKDw8KSw8KlgoPSwoPDwpLDwSZTYKzYo15/tUIFQhsCAgBK01NgbTEs4JNWJmzmFhYmLOZIw8KSw8KlgoPSwoPDwpLDwqWCg9LCg8AAAMAF//rBMUEmQAZACUANQAAADIeAhUUBwEWFA8BBiInAQYjIi4CND4BBCIOARQeATI+ATQmBSEyFh0BFAYjISImPQE0NgGZxLOCTU4BLAgIbQcVCP7Ud45itIFNTYEBb7OYWFiYs5lYWP5YAV4KDw8K/qIKDw8EmU2Cs2KNef7VCBUIbAgIAStNTYG0xLOCTViZs5hYWJizmYcPCpYKDw8KlgoPAAAAAAIAFwAXBJkEsAAPAC0AAAEzMhYVERQGKwEiJjURNDYFNRYSFRQOAiIuAjU0EjcVDgEVFB4BMj4BNTQmAiZkFR0dFWQVHR0BD6fSW5vW6tabW9KnZ3xyxejFcnwEsB0V/nAVHR0VAZAVHeGmPv7ZuHXWm1tbm9Z1uAEnPqY3yHh0xXJyxXR4yAAEAGQAAASwBLAADwAfAC8APwAAATMyFhURFAYrASImNRE0NgEzMhYVERQGKwEiJjURNDYBMzIWFREUBisBIiY1ETQ2BTMyFh0BFAYrASImPQE0NgQBlgoPDwqWCg8P/t6WCg8PCpYKDw/+3pYKDw8KlgoPD/7elgoPDwqWCg8PBLAPCvuCCg8PCgR+Cg/+cA8K/RIKDw8KAu4KD/7UDwr+PgoPDwoBwgoPyA8K+goPDwr6Cg8AAAAAAgAaABsElgSWAEcATwAAATIfAhYfATcWFwcXFh8CFhUUDwIGDwEXBgcnBwYPAgYjIi8CJi8BByYnNycmLwImNTQ/AjY/ASc2Nxc3Nj8CNhIiBhQWMjY0AlghKSYFMS0Fhj0rUAMZDgGYBQWYAQ8YA1AwOIYFLDIFJisfISkmBTEtBYY8LFADGQ0ClwYGlwINGQNQLzqFBS0xBSYreLJ+frJ+BJYFmAEOGQJQMDmGBSwxBiYrHiIoJgYxLAWGPSxRAxkOApcFBZcCDhkDUTA5hgUtMAYmKiAhKCYGMC0Fhj0sUAIZDgGYBf6ZfrF+frEABwBkAAAEsAUUABMAFwAhACUAKQAtADEAAAEhMhYdASEyFh0BITU0NjMhNTQ2FxUhNQERFAYjISImNREXETMRMxEzETMRMxEzETMRAfQBLCk7ARMKD/u0DwoBEzspASwBLDsp/UQpO2RkZGRkZGRkBRQ7KWQPCktLCg9kKTtkZGT+1PzgKTs7KQMgZP1EArz9RAK8/UQCvP1EArwAAQAMAAAFCATRAB8AABMBNjIXARYGKwERFAYrASImNREhERQGKwEiJjURIyImEgJsCBUHAmAIBQqvDwr6Cg/+1A8K+goPrwoFAmoCYAcH/aAICv3BCg8PCgF3/okKDw8KAj8KAAIAZAAAA+gEsAARABcAAAERFBYzIREUBiMhIiY1ETQ2MwEjIiY9AQJYOykBLB0V/OAVHR0VA1L6FR0EsP5wKTv9dhUdHRUETBUd/nAdFfoAAwAXABcEmQSZAA8AGwAwAAAAMh4CFA4CIi4CND4BBCIOARQeATI+ATQmBTMyFhURMzIWHQEUBisBIiY1ETQ2AePq1ptbW5vW6tabW1ubAb/oxXJyxejFcnL+fDIKD68KDw8K+goPDwSZW5vW6tabW1ub1urWmztyxejFcnLF6MUNDwr+7Q8KMgoPDwoBXgoPAAAAAAL/nAAABRQEsAALAA8AACkBAyMDIQEzAzMDMwEDMwMFFP3mKfIp/eYBr9EVohTQ/p4b4BsBkP5wBLD+1AEs/nD+1AEsAAAAAAIAZAAABLAEsAAVAC8AAAEzMhYVETMyFgcBBiInASY2OwERNDYBMzIWFREUBiMhIiY1ETQ2OwEyFh0BITU0NgImyBUdvxQLDf65DSYN/rkNCxS/HQJUMgoPDwr75goPDwoyCg8DhA8EsB0V/j4XEP5wEBABkBAXAcIVHfzgDwr+ogoPDwoBXgoPDwqvrwoPAAMAFwAXBJkEmQAPABsAMQAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgUzMhYVETMyFgcDBiInAyY2OwERNDYB4+rWm1tbm9bq1ptbW5sBv+jFcnLF6MVycv58lgoPiRUKDd8NJg3fDQoViQ8EmVub1urWm1tbm9bq1ps7csXoxXJyxejFDQ8K/u0XEP7tEBABExAXARMKDwAAAAMAFwAXBJkEmQAPABsAMQAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JiUTFgYrAREUBisBIiY1ESMiJjcTNjIB4+rWm1tbm9bq1ptbW5sBv+jFcnLF6MVycv7n3w0KFYkPCpYKD4kVCg3fDSYEmVub1urWm1tbm9bq1ps7csXoxXJyxejFAf7tEBf+7QoPDwoBExcQARMQAAAAAAIAAAAABLAEsAAZADkAABMhMhYXExYVERQGBwYjISImJyY1EzQ3Ez4BBSEiBgcDBhY7ATIWHwEeATsBMjY/AT4BOwEyNicDLgHhAu4KEwO6BwgFDBn7tAweAgYBB7kDEwKX/dQKEgJXAgwKlgoTAiYCEwr6ChMCJgITCpYKDAJXAhIEsA4K/XQYGf5XDB4CBggEDRkBqRkYAowKDsgOC/4+Cw4OCpgKDg4KmAoODgsBwgsOAAMAFwAXBJkEmQAPABsAJwAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgUXFhQPAQYmNRE0NgHj6tabW1ub1urWm1tbmwG/6MVycsXoxXJy/ov9ERH9EBgYBJlbm9bq1ptbW5vW6tabO3LF6MVycsXoxV2+DCQMvgwLFQGQFQsAAQAXABcEmQSwACgAAAE3NhYVERQGIyEiJj8BJiMiDgEUHgEyPgE1MxQOAiIuAjQ+AjMyA7OHBwsPCv6WCwQHhW2BdMVycsXoxXKWW5vW6tabW1ub1nXABCSHBwQL/pYKDwsHhUxyxejFcnLFdHXWm1tbm9bq1ptbAAAAAAIAFwABBJkEsAAaADUAAAE3NhYVERQGIyEiJj8BJiMiDgEVIzQ+AjMyEzMUDgIjIicHBiY1ETQ2MyEyFg8BFjMyPgEDs4cHCw8L/pcLBAeGboF0xXKWW5vWdcDrllub1nXAnIYHCw8LAWgKBQiFboJ0xXIEJIcHBAv+lwsPCweGS3LFdHXWm1v9v3XWm1t2hggFCgFoCw8LB4VMcsUAAAAKAGQAAASwBLAADwAfAC8APwBPAF8AbwB/AI8AnwAAEyEyFhURFAYjISImNRE0NgUhIgYVERQWMyEyNjURNCYFMzIWHQEUBisBIiY9ATQ2MyEyFh0BFAYjISImPQE0NgczMhYdARQGKwEiJj0BNDYzITIWHQEUBiMhIiY9ATQ2BzMyFh0BFAYrASImPQE0NjMhMhYdARQGIyEiJj0BNDYHMzIWHQEUBisBIiY9ATQ2MyEyFh0BFAYjISImPQE0Nn0EGgoPDwr75goPDwPA/K4KDw8KA1IKDw/9CDIKDw8KMgoPD9IBwgoPDwr+PgoPD74yCg8PCjIKDw/SAcIKDw8K/j4KDw++MgoPDwoyCg8P0gHCCg8PCv4+Cg8PvjIKDw8KMgoPD9IBwgoPDwr+PgoPDwSwDwr7ggoPDwoEfgoPyA8K/K4KDw8KA1IKD2QPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKDwAAAAACAAAAAARMBLAAGQAjAAABNTQmIyEiBh0BIyIGFREUFjMhMjY1ETQmIyE1NDY7ATIWHQEDhHVT/tRSdmQpOzspA4QpOzsp/ageFMgUHgMgyFN1dlLIOyn9qCk7OykCWCk7lhUdHRWWAAIAZAAABEwETAAJADcAABMzMhYVESMRNDYFMhcWFREUBw4DIyIuAScuAiMiBwYjIicmNRE+ATc2HgMXHgIzMjc2fTIKD2QPA8AEBRADIUNAMRwaPyonKSxHHlVLBwgGBQ4WeDsXKC4TOQQpLUUdZ1AHBEwPCvvNBDMKDzACBhH+WwYGO1AkDQ0ODg8PDzkFAwcPAbY3VwMCAwsGFAEODg5XCAAAAwAAAAAEsASXACEAMQBBAAAAMh4CFREUBisBIiY1ETQuASAOARURFAYrASImNRE0PgEDMzIWFREUBisBIiY1ETQ2ITMyFhURFAYrASImNRE0NgHk6N6jYw8KMgoPjeT++uSNDwoyCg9joyqgCAwMCKAIDAwCYKAIDAwIoAgMDASXY6PedP7UCg8PCgEsf9FyctF//tQKDw8KASx03qP9wAwI/jQIDAwIAcwIDAwI/jQIDAwIAcwIDAAAAAACAAAA0wRHA90AFQA5AAABJTYWFREUBiclJisBIiY1ETQ2OwEyBTc2Mh8BFhQPARcWFA8BBiIvAQcGIi8BJjQ/AScmND8BNjIXAUEBAgkMDAn+/hUZ+goPDwr6GQJYeAcUByIHB3h4BwciBxQHeHgHFAciBwd3dwcHIgcUBwMurAYHCv0SCgcGrA4PCgFeCg+EeAcHIgcUB3h4BxQHIgcHd3cHByIHFAd4eAcUByIICAAAAAACAAAA0wNyA90AFQAvAAABJTYWFREUBiclJisBIiY1ETQ2OwEyJTMWFxYVFAcGDwEiLwEuATc2NTQnJjY/ATYBQQECCQwMCf7+FRn6Cg8PCvoZAdIECgZgWgYLAwkHHQcDBkhOBgMIHQcDLqwGBwr9EgoHBqwODwoBXgoPZAEJgaGafwkBAQYXBxMIZ36EaggUBxYFAAAAAAMAAADEBGID7AAbADEASwAAATMWFxYVFAYHBgcjIi8BLgE3NjU0JicmNj8BNgUlNhYVERQGJyUmKwEiJjURNDY7ATIlMxYXFhUUBwYPASIvAS4BNzY1NCcmNj8BNgPHAwsGh0RABwoDCQcqCAIGbzs3BgIJKgf9ggECCQwMCf7+FRn6Cg8PCvoZAdIECgZgWgYLAwkHHQcDBkhOBgMIHQcD7AEJs9lpy1QJAQYiBhQIlrJarEcJFAYhBb6sBgcK/RIKBwasDg8KAV4KD2QBCYGhmn8JAQEGFwcTCGd+hGoIFQYWBQAAAAANAAAAAASwBLAACQAVABkAHQAhACUALQA7AD8AQwBHAEsATwAAATMVIxUhFSMRIQEjFTMVIREjESM1IQURIREhESERBSM1MwUjNTMBMxEhETM1MwEzFSMVIzUjNTM1IzUhBREhEQcjNTMFIzUzASM1MwUhNSEB9GRk/nBkAfQCvMjI/tTIZAJY+7QBLAGQASz84GRkArxkZP1EyP4MyGQB9MhkyGRkyAEs/UQBLGRkZAOEZGT+DGRkAfT+1AEsA4RkZGQCWP4MZMgBLAEsyGT+1AEs/tQBLMhkZGT+DP4MAfRk/tRkZGRkyGTI/tQBLMhkZGT+1GRkZAAAAAAJAAAAAASwBLAAAwAHAAsADwATABcAGwAfACMAADcjETMTIxEzASMRMxMjETMBIxEzASE1IRcjNTMXIzUzBSM1M2RkZMhkZAGQyMjIZGQBLMjI/OD+1AEsyGRkyGRkASzIyMgD6PwYA+j8GAPo/BgD6PwYA+j7UGRkW1tbW1sAAAIAAAAKBKYEsAANABUAAAkBFhQHAQYiJwETNDYzBCYiBhQWMjYB9AKqCAj+MAgUCP1WAQ8KAUM7Uzs7UzsEsP1WCBQI/jAICAKqAdsKD807O1Q7OwAAAAADAAAACgXSBLAADQAZACEAAAkBFhQHAQYiJwETNDYzIQEWFAcBBiIvAQkBBCYiBhQWMjYB9AKqCAj+MAgUCP1WAQ8KAwYCqggI/jAIFAg4Aaj9RP7TO1M7O1M7BLD9VggUCP4wCAgCqgHbCg/9VggUCP4wCAg4AaoCvM07O1Q7OwAAAAABAGQAAASwBLAAJgAAASEyFREUDwEGJjURNCYjISIPAQYWMyEyFhURFAYjISImNRE0PwE2ASwDOUsSQAgKDwr9RBkSQAgFCgK8Cg8PCvyuCg8SixIEsEv8fBkSQAgFCgO2Cg8SQAgKDwr8SgoPDwoDzxkSixIAAAABAMj//wRMBLAACgAAEyEyFhURCQERNDb6AyAVHf4+/j4dBLAdFfuCAbz+QwR/FR0AAAAAAwAAAAAEsASwABUARQBVAAABISIGBwMGHwEeATMhMjY/ATYnAy4BASMiBg8BDgEjISImLwEuASsBIgYVERQWOwEyNj0BNDYzITIWHQEUFjsBMjY1ETQmASEiBg8BBhYzITI2LwEuAQM2/kQLEAFOBw45BhcKAcIKFwY+DgdTARABVpYKFgROBBYK/doKFgROBBYKlgoPDwqWCg8PCgLuCg8PCpYKDw/+sf4MChMCJgILCgJYCgsCJgITBLAPCv7TGBVsCQwMCWwVGAEtCg/+cA0JnAkNDQmcCQ0PCv12Cg8PCpYKDw8KlgoPDwoCigoP/agOCpgKDg4KmAoOAAAAAAQAAABkBLAETAAdACEAKQAxAAABMzIeAh8BMzIWFREUBiMhIiY1ETQ2OwE+BAEVMzUEIgYUFjI2NCQyFhQGIiY0AfTIOF00JAcGlik7Oyn8GCk7OymWAgknM10ByGT+z76Hh76H/u9WPDxWPARMKTs7FRQ7Kf2oKTs7KQJYKTsIG0U1K/7UZGRGh76Hh74IPFY8PFYAAAAAAgA1AAAEsASvACAAIwAACQEWFx4BHwEVITUyNi8BIQYHBh4CMxUhNTY3PgE/AQEDIQMCqQGBFCgSJQkK/l81LBFS/nk6IgsJKjIe/pM4HAwaBwcBj6wBVKIEr/waMioTFQECQkJXLd6RWSIuHAxCQhgcDCUNDQPu/VoByQAAAAADAGQAAAPwBLAAJwAyADsAAAEeBhUUDgMjITU+ATURNC4EJzUFMh4CFRQOAgclMzI2NTQuAisBETMyNjU0JisBAvEFEzUwOyodN1htbDD+DCk7AQYLFyEaAdc5dWM+Hy0tEP6Pi05pESpTPnbYUFJ9Xp8CgQEHGB0zOlIuQ3VONxpZBzMoAzsYFBwLEAkHRwEpSXNDM1s6KwkxYUopOzQb/K5lUFqBAAABAMgAAANvBLAAGQAAARcOAQcDBhYXFSE1NjcTNjQuBCcmJzUDbQJTQgeECSxK/gy6Dq0DAw8MHxUXDQYEsDkTNSj8uTEoBmFhEFIDQBEaExAJCwYHAwI5AAAAAAL/tQAABRQEsAAlAC8AAAEjNC4FKwERFBYfARUhNTI+AzURIyIOBRUjESEFIxEzByczESM3BRQyCAsZEyYYGcgyGRn+cAQOIhoWyBkYJhMZCwgyA+j7m0tLfX1LS30DhBUgFQ4IAwH8rhYZAQJkZAEFCRUOA1IBAwgOFSAVASzI/OCnpwMgpwACACH/tQSPBLAAJQAvAAABIzQuBSsBERQWHwEVITUyPgM1ESMiDgUVIxEhEwc1IRUnNxUhNQRMMggLGRMmGBnIMhkZ/nAEDiIaFsgZGCYTGQsIMgPoQ6f84KenAyADhBUgFQ4IAwH9dhYZAQJkZAEFCRUOAooBAwgOFSAVASz7gn1LS319S0sABAAAAAAEsARMAA8AHwAvAD8AABMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYyAlgVHR0V/agVHR0VA+gVHR0V/BgVHR0VAyAVHR0V/OAVHR0VBEwVHR0V+7QVHR0ETB0VZBUdHRVkFR3+1B0VZBUdHRVkFR3+1B0VZBUdHRVkFR3+1B0VZBUdHRVkFR0ABAAAAAAEsARMAA8AHwAvAD8AABMhMhYdARQGIyEiJj0BNDYDITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NgMhMhYdARQGIyEiJj0BNDb6ArwVHR0V/UQVHR2zBEwVHR0V+7QVHR3dArwVHR0V/UQVHR2zBEwVHR0V+7QVHR0ETB0VZBUdHRVkFR3+1B0VZBUdHRVkFR3+1B0VZBUdHRVkFR3+1B0VZBUdHRVkFR0ABAAAAAAEsARMAA8AHwAvAD8AAAE1NDYzITIWHQEUBiMhIiYBNTQ2MyEyFh0BFAYjISImEzU0NjMhMhYdARQGIyEiJgE1NDYzITIWHQEUBiMhIiYB9B0VAlgVHR0V/agVHf5wHRUD6BUdHRX8GBUdyB0VAyAVHR0V/OAVHf7UHRUETBUdHRX7tBUdA7ZkFR0dFWQVHR3+6WQVHR0VZBUdHf7pZBUdHRVkFR0d/ulkFR0dFWQVHR0AAAQAAAAABLAETAAPAB8ALwA/AAATITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2MgRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dBEwdFWQVHR0VZBUd/tQdFWQVHR0VZBUd/tQdFWQVHR0VZBUd/tQdFWQVHR0VZBUdAAgAAAAABLAETAAPAB8ALwA/AE8AXwBvAH8AABMzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2ATMyFh0BFAYrASImPQE0NikBMhYdARQGIyEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2KQEyFh0BFAYjISImPQE0NgEzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2MmQVHR0VZBUdHQFBAyAVHR0V/OAVHR3+6WQVHR0VZBUdHQFBAyAVHR0V/OAVHR3+6WQVHR0VZBUdHQFBAyAVHR0V/OAVHR3+6WQVHR0VZBUdHQFBAyAVHR0V/OAVHR0ETB0VZBUdHRVkFR0dFWQVHR0VZBUd/tQdFWQVHR0VZBUdHRVkFR0dFWQVHf7UHRVkFR0dFWQVHR0VZBUdHRVkFR3+1B0VZBUdHRVkFR0dFWQVHR0VZBUdAAAG/5wAAASwBEwAAwATACMAKgA6AEoAACEjETsCMhYdARQGKwEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2BQc1IzUzNQUhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2AZBkZJZkFR0dFWQVHR0VAfQVHR0V/gwVHR3++qfIyAHCASwVHR0V/tQVHR0VAlgVHR0V/agVHR0ETB0VZBUdHRVkFR3+1B0VZBUdHRVkFR36fUtkS68dFWQVHR0VZBUd/tQdFWQVHR0VZBUdAAAABgAAAAAFFARMAA8AEwAjACoAOgBKAAATMzIWHQEUBisBIiY9ATQ2ASMRMwEhMhYdARQGIyEiJj0BNDYFMxUjFSc3BSEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYyZBUdHRVkFR0dA2dkZPyuAfQVHR0V/gwVHR0EL8jIp6f75gEsFR0dFf7UFR0dFQJYFR0dFf2oFR0dBEwdFWQVHR0VZBUd+7QETP7UHRVkFR0dFWQVHchkS319rx0VZBUdHRVkFR3+1B0VZBUdHRVkFR0AAAAAAgAAAMgEsAPoAA8AEgAAEyEyFhURFAYjISImNRE0NgkCSwLuHywsH/0SHywsBIT+1AEsA+gsH/12HywsHwKKHyz9RAEsASwAAwAAAAAEsARMAA8AFwAfAAATITIWFREUBiMhIiY1ETQ2FxE3BScBExEEMhYUBiImNCwEWBIaGhL7qBIaGkr3ASpKASXs/NJwTk5wTgRMGhL8DBIaGhID9BIaZP0ftoOcAT7+4AH0dE5vT09vAAAAAAIA2wAFBDYEkQAWAB4AAAEyHgEVFAcOAQ8BLgQnJjU0PgIWIgYUFjI2NAKIdcZzRkWyNjYJIV5YbSk8RHOft7eCgreCBJF4ynVzj23pPz4IIWZomEiEdVijeUjDgriBgbgAAAACABcAFwSZBJkADwAXAAAAMh4CFA4CIi4CND4BAREiDgEUHgEB4+rWm1tbm9bq1ptbW5sBS3TFcnLFBJlbm9bq1ptbW5vW6tab/G8DVnLF6MVyAAACAHUAAwPfBQ8AGgA1AAABHgYVFA4DBy4DNTQ+BQMOAhceBBcWNj8BNiYnLgInJjc2IyYCKhVJT1dOPiUzVnB9P1SbfEokP0xXUEm8FykoAwEbITEcExUWAgYCCQkFEikMGiACCAgFD0iPdXdzdYdFR4BeRiYEBTpjl1lFh3ZzeHaQ/f4hS4I6JUEnIw4IBwwQIgoYBwQQQSlZtgsBAAAAAwAAAAAEywRsAAwAKgAvAAABNz4CHgEXHgEPAiUhMhcHISIGFREUFjMhMjY9ATcRFAYjISImNRE0NgkBBzcBA+hsAgYUFR0OFgoFBmz9BQGQMje7/pApOzspAfQpO8i7o/5wpbm5Azj+lqE3AWMD9XMBAgIEDw4WKgsKc8gNuzsp/gwpOzsptsj+tKW5uaUBkKW5/tf+ljKqAWMAAgAAAAAEkwRMABsANgAAASEGByMiBhURFBYzITI2NTcVFAYjISImNRE0NgUBFhQHAQYmJzUmDgMHPgY3NT4BAV4BaaQ0wyk7OykB9Ck7yLml/nClubkCfwFTCAj+rAcLARo5ZFRYGgouOUlARioTAQsETJI2Oyn+DCk7OymZZ6W5uaUBkKW5G/7TBxUH/s4GBAnLAQINFjAhO2JBNB0UBwHSCgUAAAAAAgAAAAAEnQRMAB0ANQAAASEyFwchIgYVERQWMyEyNj0BNxUUBiMhIiY1ETQ2CQE2Mh8BFhQHAQYiLwEmND8BNjIfARYyAV4BXjxDsv6jKTs7KQH0KTvIuaX+cKW5uQHKAYsHFQdlBwf97QcVB/gHB2UHFQdvCBQETBexOyn+DCk7OylFyNulubmlAZCluf4zAYsHB2UHFQf97AcH+AcVB2UHB28HAAAAAQAKAAoEpgSmADsAAAkBNjIXARYGKwEVMzU0NhcBFhQHAQYmPQEjFTMyFgcBBiInASY2OwE1IxUUBicBJjQ3ATYWHQEzNSMiJgE+AQgIFAgBBAcFCqrICggBCAgI/vgICsiqCgUH/vwIFAj++AgFCq/ICgj++AgIAQgICsivCgUDlgEICAj++AgKyK0KBAf+/AcVB/73BwQKrcgKCP74CAgBCAgKyK0KBAcBCQcVBwEEBwQKrcgKAAEAyAAAA4QETAAZAAATMzIWFREBNhYVERQGJwERFAYrASImNRE0NvpkFR0B0A8VFQ/+MB0VZBUdHQRMHRX+SgHFDggV/BgVCA4Bxf5KFR0dFQPoFR0AAAABAAAAAASwBEwAIwAAEzMyFhURATYWFREBNhYVERQGJwERFAYnAREUBisBIiY1ETQ2MmQVHQHQDxUB0A8VFQ/+MBUP/jAdFWQVHR0ETB0V/koBxQ4IFf5KAcUOCBX8GBUIDgHF/koVCA4Bxf5KFR0dFQPoFR0AAAABAJ0AGQSwBDMAFQAAAREUBicBERQGJwEmNDcBNhYVEQE2FgSwFQ/+MBUP/hQPDwHsDxUB0A8VBBr8GBUIDgHF/koVCA4B4A4qDgHgDggV/koBxQ4IAAAAAQDIABYEMwQ2AAsAABMBFhQHAQYmNRE0NvMDLhIS/NISGRkEMv4OCx4L/g4LDhUD6BUOAAIAyABkA4QD6AAPAB8AABMzMhYVERQGKwEiJjURNDYhMzIWFREUBisBIiY1ETQ2+sgVHR0VyBUdHQGlyBUdHRXIFR0dA+gdFfzgFR0dFQMgFR0dFfzgFR0dFQMgFR0AAAEAyABkBEwD6AAPAAABERQGIyEiJjURNDYzITIWBEwdFfzgFR0dFQMgFR0DtvzgFR0dFQMgFR0dAAAAAAEAAAAZBBMEMwAVAAABETQ2FwEWFAcBBiY1EQEGJjURNDYXAfQVDwHsDw/+FA8V/jAPFRUPAmQBthUIDv4gDioO/iAOCBUBtv47DggVA+gVCA4AAAH//gACBLMETwAjAAABNzIWFRMUBiMHIiY1AwEGJjUDAQYmNQM0NhcBAzQ2FwEDNDYEGGQUHgUdFWQVHQL+MQ4VAv4yDxUFFQ8B0gIVDwHSAh0ETgEdFfwYFR0BHRUBtf46DwkVAbX+OQ4JFAPoFQkP/j4BthQJDv49AbYVHQAAAQEsAAAD6ARMABkAAAEzMhYVERQGKwEiJjURAQYmNRE0NhcBETQ2A1JkFR0dFWQVHf4wDxUVDwHQHQRMHRX8GBUdHRUBtv47DggVA+gVCA7+OwG2FR0AAAIAZADIBLAESAALABsAAAkBFgYjISImNwE2MgEhMhYdARQGIyEiJj0BNDYCrgH1DwkW++4WCQ8B9Q8q/fcD6BUdHRX8GBUdHQQ5/eQPFhYPAhwP/UgdFWQVHR0VZBUdAAEAiP/8A3UESgAFAAAJAgcJAQN1/qABYMX92AIoA4T+n/6fxgIoAiYAAAAAAQE7//wEKARKAAUAAAkBJwkBNwQo/dnGAWH+n8YCI/3ZxgFhAWHGAAIAFwAXBJkEmQAPADMAAAAyHgIUDgIiLgI0PgEFIyIGHQEjIgYdARQWOwEVFBY7ATI2PQEzMjY9ATQmKwE1NCYB4+rWm1tbm9bq1ptbW5sBfWQVHZYVHR0Vlh0VZBUdlhUdHRWWHQSZW5vW6tabW1ub1urWm7odFZYdFWQVHZYVHR0Vlh0VZBUdlhUdAAAAAAIAFwAXBJkEmQAPAB8AAAAyHgIUDgIiLgI0PgEBISIGHQEUFjMhMjY9ATQmAePq1ptbW5vW6tabW1ubAkX+DBUdHRUB9BUdHQSZW5vW6tabW1ub1urWm/5+HRVkFR0dFWQVHQACABcAFwSZBJkADwAzAAAAMh4CFA4CIi4CND4BBCIPAScmIg8BBhQfAQcGFB8BFjI/ARcWMj8BNjQvATc2NC8BAePq1ptbW5vW6tabW1ubAeUZCXh4CRkJjQkJeHgJCY0JGQl4eAkZCY0JCXh4CQmNBJlbm9bq1ptbW5vW6tabrQl4eAkJjQkZCXh4CRkJjQkJeHgJCY0JGQl4eAkZCY0AAgAXABcEmQSZAA8AJAAAADIeAhQOAiIuAjQ+AQEnJiIPAQYUHwEWMjcBNjQvASYiBwHj6tabW1ub1urWm1tbmwEVVAcVCIsHB/IHFQcBdwcHiwcVBwSZW5vW6tabW1ub1urWm/4xVQcHiwgUCPEICAF3BxUIiwcHAAAAAAMAFwAXBJkEmQAPADsASwAAADIeAhQOAiIuAjQ+AQUiDgMVFDsBFjc+ATMyFhUUBgciDgUHBhY7ATI+AzU0LgMTIyIGHQEUFjsBMjY9ATQmAePq1ptbW5vW6tabW1ubAT8dPEIyIRSDHgUGHR8UFw4TARkOGhITDAIBDQ6tBx4oIxgiM0Q8OpYKDw8KlgoPDwSZW5vW6tabW1ub1urWm5ELHi9PMhkFEBQQFRIXFgcIBw4UHCoZCBEQKDhcNi9IKhsJ/eMPCpYKDw8KlgoPAAADABcAFwSZBJkADwAfAD4AAAAyHgIUDgIiLgI0PgEFIyIGHQEUFjsBMjY9ATQmAyMiBh0BFBY7ARUjIgYdARQWMyEyNj0BNCYrARE0JgHj6tabW1ub1urWm1tbmwGWlgoPDwqWCg8PCvoKDw8KS0sKDw8KAV4KDw8KSw8EmVub1urWm1tbm9bq1ptWDwqWCg8PCpYKD/7UDwoyCg/IDwoyCg8PCjIKDwETCg8AAgAAAAAEsASwAC8AXwAAATMyFh0BHgEXMzIWHQEUBisBDgEHFRQGKwEiJj0BLgEnIyImPQE0NjsBPgE3NTQ2ExUUBisBIiY9AQ4BBzMyFh0BFAYrAR4BFzU0NjsBMhYdAT4BNyMiJj0BNDY7AS4BAg2WCg9nlxvCCg8PCsIbl2cPCpYKD2eXG8IKDw8KwhuXZw+5DwqWCg9EZheoCg8PCqgXZkQPCpYKD0RmF6gKDw8KqBdmBLAPCsIbl2cPCpYKD2eXG8IKDw8KwhuXZw8KlgoPZ5cbwgoP/s2oCg8PCqgXZkQPCpYKD0RmF6gKDw8KqBdmRA8KlgoPRGYAAwAXABcEmQSZAA8AGwA/AAAAMh4CFA4CIi4CND4BBCIOARQeATI+ATQmBxcWFA8BFxYUDwEGIi8BBwYiLwEmND8BJyY0PwE2Mh8BNzYyAePq1ptbW5vW6tabW1ubAb/oxXJyxejFcnKaQAcHfHwHB0AHFQd8fAcVB0AHB3x8BwdABxUHfHwHFQSZW5vW6tabW1ub1urWmztyxejFcnLF6MVaQAcVB3x8BxUHQAcHfHwHB0AHFQd8fAcVB0AHB3x8BwAAAAMAFwAXBJkEmQAPABsAMAAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgcXFhQHAQYiLwEmND8BNjIfATc2MgHj6tabW1ub1urWm1tbmwG/6MVycsXoxXJyg2oHB/7ACBQIyggIagcVB0/FBxUEmVub1urWm1tbm9bq1ps7csXoxXJyxejFfWoHFQf+vwcHywcVB2oICE/FBwAAAAMAFwAXBJkEmQAPABgAIQAAADIeAhQOAiIuAjQ+AQUiDgEVFBcBJhcBFjMyPgE1NAHj6tabW1ub1urWm1tbmwFLdMVyQQJLafX9uGhzdMVyBJlbm9bq1ptbW5vW6tabO3LFdHhpAktB0P24PnLFdHMAAAAAAQAXAFMEsAP5ABUAABMBNhYVESEyFh0BFAYjIREUBicBJjQnAgoQFwImFR0dFf3aFxD99hACRgGrDQoV/t0dFcgVHf7dFQoNAasNJgAAAAABAAAAUwSZA/kAFQAACQEWFAcBBiY1ESEiJj0BNDYzIRE0NgJ/AgoQEP32EBf92hUdHRUCJhcD8f5VDSYN/lUNChUBIx0VyBUdASMVCgAAAAEAtwAABF0EmQAVAAAJARYGIyERFAYrASImNREhIiY3ATYyAqoBqw0KFf7dHRXIFR3+3RUKDQGrDSYEif32EBf92hUdHRUCJhcQAgoQAAAAAQC3ABcEXQSwABUAAAEzMhYVESEyFgcBBiInASY2MyERNDYCJsgVHQEjFQoN/lUNJg3+VQ0KFQEjHQSwHRX92hcQ/fYQEAIKEBcCJhUdAAABAAAAtwSZBF0AFwAACQEWFAcBBiY1EQ4DBz4ENxE0NgJ/AgoQEP32EBdesKWBJAUsW4fHfhcEVf5VDSYN/lUNChUBIwIkRHVNabGdcUYHAQYVCgACAAAAAASwBLAAFQArAAABITIWFREUBi8BBwYiLwEmND8BJyY2ASEiJjURNDYfATc2Mh8BFhQPARcWBgNSASwVHRUOXvkIFAhqBwf5Xg4I/iH+1BUdFQ5e+QgUCGoHB/leDggEsB0V/tQVCA5e+QcHaggUCPleDhX7UB0VASwVCA5e+QcHaggUCPleDhUAAAACAEkASQRnBGcAFQArAAABFxYUDwEXFgYjISImNRE0Nh8BNzYyASEyFhURFAYvAQcGIi8BJjQ/AScmNgP2agcH+V4OCBX+1BUdFQ5e+QgU/QwBLBUdFQ5e+QgUCGoHB/leDggEYGoIFAj5Xg4VHRUBLBUIDl75B/3xHRX+1BUIDl75BwdqCBQI+V4OFQAAAAADABcAFwSZBJkADwAfAC8AAAAyHgIUDgIiLgI0PgEFIyIGFxMeATsBMjY3EzYmAyMiBh0BFBY7ATI2PQE0JgHj6tabW1ub1urWm1tbmwGz0BQYBDoEIxQ2FCMEOgQYMZYKDw8KlgoPDwSZW5vW6tabW1ub1urWm7odFP7SFB0dFAEuFB3+DA8KlgoPDwqWCg8AAAAABQAAAAAEsASwAEkAVQBhAGgAbwAAATIWHwEWHwEWFxY3Nj8BNjc2MzIWHwEWHwIeATsBMhYdARQGKwEiBh0BIREjESE1NCYrASImPQE0NjsBMjY1ND8BNjc+BAUHBhY7ATI2LwEuAQUnJgYPAQYWOwEyNhMhIiY1ESkBERQGIyERAQQJFAUFFhbEFQ8dCAsmxBYXERUXMA0NDgQZCAEPCj0KDw8KMgoP/nDI/nAPCjIKDw8KPQsOCRkFDgIGFRYfAp2mBwQK2woKAzMDEP41sQgQAzMDCgrnCwMe/okKDwGQAlgPCv6JBLAEAgIKDXYNCxUJDRZ2DQoHIREQFRh7LAkLDwoyCg8PCq8BLP7UrwoPDwoyCg8GBQQwgBkUAwgWEQ55ogcKDgqVCgSqnQcECo8KDgr8cg8KAXf+iQoPAZAAAAAAAgAAAAwErwSmACsASQAAATYWFQYCDgQuAScmByYOAQ8BBiY1NDc+ATc+AScuAT4BNz4GFyYGBw4BDwEOBAcOARY2Nz4CNz4DNz4BBI0IGgItQmxhi2KORDg9EQQRMxuZGhYqCFUYEyADCQIQOjEnUmFch3vAJQgdHyaiPT44XHRZUhcYDhItIRmKcVtGYWtbKRYEBKYDEwiy/t3IlVgxEQgLCwwBAQIbG5kYEyJAJghKFRE8Hzdff4U/M0o1JSMbL0QJGCYvcSEhHjZST2c1ODwEJygeW0AxJUBff1UyFAABAF0AHgRyBM8ATwAAAQ4BHgQXLgc+ATceAwYHDgQHBicmNzY3PgQuAScWDgMmJy4BJyY+BDcGHgM3PgEuAicmPgMCjScfCic4R0IgBBsKGAoQAwEJEg5gikggBhANPkpTPhZINx8SBgsNJysiCRZOQQoVNU1bYC9QZwICBAUWITsoCAYdJzIYHw8YIiYHDyJJYlkEz0OAZVxEOSQMBzgXOB42IzElKRIqg5Gnl0o3Z0c6IAYWCwYNAwQFIDhHXGF1OWiqb0sdBxUknF0XNTQ8PEUiNWNROBYJDS5AQVUhVZloUSkAAAAAA//cAGoE1ARGABsAPwBRAAAAMh4FFA4FIi4FND4EBSYGFxYVFAYiJjU0NzYmBwYHDgEXHgQyPgM3NiYnJgUHDgEXFhcWNj8BNiYnJicuAQIGpJ17bk85HBw6T257naKde25POhwcOU9uewIPDwYIGbD4sBcIBw5GWg0ECxYyWl+DiINfWjIWCwQMWv3/Iw8JCSU4EC0OIw4DDywtCyIERi1JXGJcSSpJXGJcSS0tSVxiXEkqSVxiXEncDwYTOT58sLB8OzcTBg9FcxAxEiRGXkQxMEVeRSQSMRF1HiQPLxJEMA0EDyIPJQ8sSRIEAAAABP/cAAAE1ASwABQAJwA7AEwAACEjNy4ENTQ+BTMyFzczEzceARUUDgMHNz4BNzYmJyYlBgcOARceBBc3LgE1NDc2JhcHDgEXFhcWNj8CJyYnLgECUJQfW6l2WSwcOU9ue51SPUEglCYvbIknUGqYUi5NdiYLBAw2/VFGWg0ECxIqSExoNSlrjxcIB3wjDwkJJTgQLQ4MFgMsLQsieBRhdHpiGxVJXGJcSS0Pef5StVXWNBpacm5jGq0xiD8SMRFGckVzEDESHjxRQTkNmhKnbjs3EwZwJA8vEkQwDQQPC1YELEkSBAAAAAP/ngAABRIEqwALABgAKAAAJwE2FhcBFgYjISImJSE1NDY7ATIWHQEhAQczMhYPAQ4BKwEiJi8BJjZaAoIUOBQCghUbJfryJRsBCgFZDwqWCg8BWf5DaNAUGAQ6BCMUNhQjBDoEGGQEKh8FIfvgIEdEhEsKDw8KSwLT3x0U/BQdHRT8FB0AAAABAGQAFQSwBLAAKAAAADIWFREBHgEdARQGJyURFh0BFAYvAQcGJj0BNDcRBQYmPQE0NjcBETQCTHxYAWsPFhgR/plkGhPNzRMaZP6ZERgWDwFrBLBYPv6t/rsOMRQpFA0M+f75XRRAFRAJgIAJEBVAFF0BB/kMDRQpFDEOAUUBUz4AAAARAAAAAARMBLAAHQAnACsALwAzADcAOwA/AEMARwBLAE8AUwBXAFsAXwBjAAABMzIWHQEzMhYdASE1NDY7ATU0NjsBMhYdASE1NDYBERQGIyEiJjURFxUzNTMVMzUzFTM1MxUzNTMVMzUFFTM1MxUzNTMVMzUzFTM1MxUzNQUVMzUzFTM1MxUzNTMVMzUzFTM1A1JkFR0yFR37tB0VMh0VZBUdAfQdAQ8dFfwYFR1kZGRkZGRkZGRk/HxkZGRkZGRkZGT8fGRkZGRkZGRkZASwHRUyHRWWlhUdMhUdHRUyMhUd/nD9EhUdHRUC7shkZGRkZGRkZGRkyGRkZGRkZGRkZGTIZGRkZGRkZGRkZAAAAAMAAAAZBXcElwAZACUANwAAARcWFA8BBiY9ASMBISImPQE0NjsBATM1NDYBBycjIiY9ATQ2MyEBFxYUDwEGJj0BIyc3FzM1NDYEb/kPD/kOFZ/9qP7dFR0dFdECWPEV/amNetEVHR0VASMDGvkPD/kOFfG1jXqfFQSN5g4qDuYOCBWW/agdFWQVHQJYlhUI/piNeh0VZBUd/k3mDioO5g4IFZa1jXqWFQgAAAABAAAAAASwBEwAEgAAEyEyFhURFAYjIQERIyImNRE0NmQD6Ck7Oyn9rP7QZCk7OwRMOyn9qCk7/tQBLDspAlgpOwAAAAMAZAAABEwEsAAJABMAPwAAEzMyFh0BITU0NiEzMhYdASE1NDYBERQOBSIuBTURIRUUFRwBHgYyPgYmNTQ9AZbIFR3+1B0C0cgVHf7UHQEPBhgoTGacwJxmTCgYBgEsAwcNFB8nNkI2Jx8TDwUFAQSwHRX6+hUdHRX6+hUd/nD+1ClJalZcPigoPlxWakkpASz6CRIVKyclIRsWEAgJEBccISUnKhURCPoAAAAB//8A1ARMA8IABQAAAQcJAScBBEzG/p/+n8UCJwGbxwFh/p/HAicAAQAAAO4ETQPcAAUAAAkCNwkBBE392v3ZxgFhAWEDFf3ZAifH/p8BYQAAAAAC/1EAZAVfA+gAFAApAAABITIWFREzMhYPAQYiLwEmNjsBESElFxYGKwERIRchIiY1ESMiJj8BNjIBlALqFR2WFQgO5g4qDuYOCBWW/oP+HOYOCBWWAYHX/RIVHZYVCA7mDioD6B0V/dkVDvkPD/kOFQGRuPkOFf5wyB0VAiYVDvkPAAABAAYAAASeBLAAMAAAEzMyFh8BITIWBwMOASMhFyEyFhQGKwEVFAYiJj0BIRUUBiImPQEjIiYvAQMjIiY0NjheERwEJgOAGB4FZAUsIf2HMAIXFR0dFTIdKh3+1B0qHR8SHQYFyTYUHh4EsBYQoiUY/iUVK8gdKh0yFR0dFTIyFR0dFTIUCQoDwR0qHQAAAAACAAAAAASwBEwACwAPAAABFSE1MzQ2MyEyFhUFIREhBLD7UMg7KQEsKTv9RASw+1AD6GRkKTs7Kcj84AACAAAAAAXcBEwADAAQAAATAxEzNDYzITIWFSEVBQEhAcjIyDspASwqOgH0ASz+1PtQASwDIP5wAlgpOzspyGT9RAK8AAEBRQAAA2sErwAbAAABFxYGKwERMzIWDwEGIi8BJjY7AREjIiY/ATYyAnvmDggVlpYVCA7mDioO5g4IFZaWFQgO5g4qBKD5DhX9pxUO+Q8P+Q4VAlkVDvkPAAAAAQABAUQErwNrABsAAAEXFhQPAQYmPQEhFRQGLwEmND8BNhYdASE1NDYDqPkODvkPFf2oFQ/5Dg75DxUCWBUDYOUPKQ/lDwkUl5cUCQ/lDykP5Q8JFZWVFQkAAAAEAAAAAASwBLAACQAZAB0AIQAAAQMuASMhIgYHAwUhIgYdARQWMyEyNj0BNCYFNTMVMzUzFQSRrAUkFP1gFCQFrAQt/BgpOzspA+gpOzv+q2RkZAGQAtwXLSgV/R1kOylkKTs7KWQpO8hkZGRkAAAAA/+cAGQEsARMAAsAIwAxAAAAMhYVERQGIiY1ETQDJSMTFgYjIisBIiYnAj0BNDU0PgE7ASUBFSIuAz0BND4CNwRpKh0dKh1k/V0mLwMRFQUCVBQdBDcCCwzIAqP8GAQOIhoWFR0dCwRMHRX8rhUdHRUDUhX8mcj+7BAIHBUBUQ76AgQQDw36/tT6AQsTKRwyGigUDAEAAAACAEoAAARmBLAALAA1AAABMzIWDwEeARcTFzMyFhQGBw4EIyIuBC8BLgE0NjsBNxM+ATcnJjYDFjMyNw4BIiYCKV4UEgYSU3oPP3YRExwaEggeZGqfTzl0XFU+LwwLEhocExF2Pw96UxIGEyQyNDUxDDdGOASwFRMlE39N/rmtHSkoBwQLHBYSCg4REg4FBAgoKR2tAUdNfhQgExr7vgYGMT09AAEAFAAUBJwEnAAXAAABNwcXBxcHFycHJwcnBzcnNyc3Jxc3FzcDIOBO6rS06k7gLZubLeBO6rS06k7gLZubA7JO4C2bmy3gTuq0tOpO4C2bmy3gTuq0tAADAAAAZASwBLAAIQAtAD0AAAEzMhYdAQchMhYdARQHAw4BKwEiJi8BIyImNRE0PwI+ARcPAREzFzMTNSE3NQEzMhYVERQGKwEiJjURNDYCijIoPBwBSCg8He4QLBf6B0YfHz0tNxSRYA0xG2SWZIjW+v4+Mv12ZBUdHRVkFR0dBLBRLJZ9USxkLR3+qBghMhkZJCcBkCQbxMYcKGTU1f6JZAF3feGv/tQdFf4MFR0dFQH0FR0AAAAAAwAAAAAEsARMACAAMAA8AAABMzIWFxMWHQEUBiMhFh0BFAYrASImLwImNRE0NjsBNgUzMhYVERQGKwEiJjURNDYhByMRHwEzNSchNQMCWPoXLBDuHTwo/rgcPCgyGzENYJEUNy09fP3pZBUdHRVkFR0dAl+IZJZkMjIBwvoETCEY/qgdLWQsUXYHlixRKBzGxBskAZAnJGRkHRX+DBUdHRUB9BUdZP6J1dSv4X0BdwADAAAAZAUOBE8AGwA3AEcAAAElNh8BHgEPASEyFhQGKwEDDgEjISImNRE0NjcXERchEz4BOwEyNiYjISoDLgQnJj8BJwUzMhYVERQGKwEiJjURNDYBZAFrHxZuDQEMVAEuVGxuVGqDBhsP/qoHphwOOmQBJYMGGw/LFRMSFv44AgoCCQMHAwUDAQwRklb9T2QVHR0VZBUdHQNp5hAWcA0mD3lMkE7+rRUoog0CDRElCkj+CVkBUxUoMjIBAgIDBQIZFrdT5B0V/gwVHR0VAfQVHQAAAAP/nABkBLAETwAdADYARgAAAQUeBBURFAYjISImJwMjIiY0NjMhJyY2PwE2BxcWBw4FKgIjIRUzMhYXEyE3ESUFMzIWFREUBisBIiY1ETQ2AdsBbgIIFBANrAf+qg8bBoNqVW1sVAEuVQsBDW4WSpIRDAIDBQMHAwkDCgH+Jd0PHAaCASZq/qoCUGQVHR0VZBUdHQRP5gEFEBEXC/3zDaIoFQFTTpBMeQ8mDXAWrrcWGQIFAwICAWQoFf6tWQH37OQdFf4MFR0dFQH0FR0AAAADAGEAAARMBQ4AGwA3AEcAAAAyFh0BBR4BFREUBiMhIiYvAQMmPwE+AR8BETQXNTQmBhURHAMOBAcGLwEHEyE3ESUuAQMhMhYdARQGIyEiJj0BNDYB3pBOAVMVKKIN/fMRJQoJ5hAWcA0mD3nGMjIBAgIDBQIZFrdT7AH3Wf6tFSiWAfQVHR0V/gwVHR0FDm5UaoMGGw/+qgemHA4OAWsfFm4NAQxUAS5U1ssVExIW/jgCCgIJAwcDBQMBDBGSVv6tZAElgwYb/QsdFWQVHR0VZBUdAAP//QAGA+gFFAAPAC0ASQAAASEyNj0BNCYjISIGHQEUFgEVFAYiJjURBwYmLwEmNxM+BDMhMhYVERQGBwEDFzc2Fx4FHAIVERQWNj0BNDY3JREnAV4B9BUdHRX+DBUdHQEPTpBMeQ8mDXAWEOYBBRARFwsCDQ2iKBX9iexTtxYZAgUDAgIBMjIoFQFTWQRMHRVkFR0dFWQVHfzmalRubFQBLlQMAQ1uFh8BawIIEw8Mpgf+qg8bBgHP/q1WkhEMAQMFAwcDCQIKAv44FhITFcsPGwaDASVkAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEBJSYGHQEhIgYdARQWMyEVFBY3JTY0AeLs1ptbW5vW7NabW1ubAob+7RAX/u0KDw8KARMXEAETEASaW5vW7NabW1ub1uzWm/453w0KFYkPCpYKD4kVCg3fDSYAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgENAQYUFwUWNj0BITI2PQE0JiMhNTQmAeLs1ptbW5vW7NabW1ubASX+7RAQARMQFwETCg8PCv7tFwSaW5vW7NabW1ub1uzWm+jfDSYN3w0KFYkPCpYKD4kVCgAAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEBAyYiBwMGFjsBERQWOwEyNjURMzI2AeLs1ptbW5vW7NabW1ubAkvfDSYN3w0KFYkPCpYKD4kVCgSaW5vW7NabW1ub1uzWm/5AARMQEP7tEBf+7QoPDwoBExcAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEFIyIGFREjIgYXExYyNxM2JisBETQmAeLs1ptbW5vW7NabW1ubAZeWCg+JFQoN3w0mDd8NChWJDwSaW5vW7NabW1ub1uzWm7sPCv7tFxD+7RAQARMQFwETCg8AAAMAGAAYBJgEmAAPAJYApgAAADIeAhQOAiIuAjQ+ASUOAwcGJgcOAQcGFgcOAQcGFgcUFgcyHgEXHgIXHgI3Fg4BFx4CFxQGFBcWNz4CNy4BJy4BJyIOAgcGJyY2NS4BJzYuAQYHBicmNzY3HgIXHgMfAT4CJyY+ATc+AzcmNzIWMjY3LgMnND4CJiceAT8BNi4CJwYHFB4BFS4CJz4BNxYyPgEB5OjVm1xcm9Xo1ZtcXJsBZA8rHDoKDz0PFD8DAxMBAzEFCRwGIgEMFhkHECIvCxU/OR0HFBkDDRQjEwcFaHUeISQDDTAMD0UREi4oLBAzDwQBBikEAQMLGhIXExMLBhAGKBsGBxYVEwYFAgsFAwMNFwQGCQcYFgYQCCARFwkKKiFBCwQCAQMDHzcLDAUdLDgNEiEQEgg/KhADGgMKEgoRBJhcm9Xo1ZtcXJvV6NWbEQwRBwkCAwYFBycPCxcHInIWInYcCUcYChQECA4QBAkuHgQPJioRFRscBAcSCgwCch0kPiAIAQcHEAsBAgsLIxcBMQENCQIPHxkCFBkdHB4QBgEBBwoMGBENBAMMJSAQEhYXDQ4qFBkKEhIDCQsXJxQiBgEOCQwHAQ0DBAUcJAwSCwRnETIoAwEJCwsLJQcKDBEAAAAAAQAAAAIErwSFABYAAAE2FwUXNxYGBw4BJwEGIi8BJjQ3ASY2AvSkjv79kfsGUE08hjv9rA8rD28PDwJYIk8EhVxliuh+WYcrIgsW/awQEG4PKxACV2XJAAYAAABgBLAErAAPABMAIwAnADcAOwAAEyEyFh0BFAYjISImPQE0NgUjFTMFITIWHQEUBiMhIiY9ATQ2BSEVIQUhMhYdARQGIyEiJj0BNDYFIRUhZAPoKTs7KfwYKTs7BBHIyPwYA+gpOzsp/BgpOzsEEf4MAfT8GAPoKTs7KfwYKTs7BBH+1AEsBKw7KWQpOzspZCk7ZGTIOylkKTs7KWQpO2RkyDspZCk7OylkKTtkZAAAAAIAZAAABEwEsAALABEAABMhMhYUBiMhIiY0NgERBxEBIZYDhBUdHRX8fBUdHQI7yP6iA4QEsB0qHR0qHf1E/tTIAfQB9AAAAAMAAABkBLAEsAAXABsAJQAAATMyFh0BITIWFREhNSMVIRE0NjMhNTQ2FxUzNQEVFAYjISImPQEB9MgpOwEsKTv+DMj+DDspASw7KcgB9Dsp/BgpOwSwOylkOyn+cGRkAZApO2QpO2RkZP1EyCk7OynIAAAABAAAAAAEsASwABUAKwBBAFcAABMhMhYPARcWFA8BBiIvAQcGJjURNDYpATIWFREUBi8BBwYiLwEmND8BJyY2ARcWFA8BFxYGIyEiJjURNDYfATc2MgU3NhYVERQGIyEiJj8BJyY0PwE2MhcyASwVCA5exwcHaggUCMdeDhUdAzUBLBUdFQ5exwgUCGoHB8deDgj+L2oHB8deDggV/tQVHRUOXscIFALLXg4VHRX+1BUIDl7HBwdqCBQIBLAVDl7HCBQIagcHx14OCBUBLBUdHRX+1BUIDl7HBwdqCBQIx14OFf0maggUCMdeDhUdFQEsFQgOXscHzl4OCBX+1BUdFQ5exwgUCGoHBwAAAAYAAAAABKgEqAAPABsAIwA7AEMASwAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JiQyFhQGIiY0JDIWFAYjIicHFhUUBiImNTQ2PwImNTQEMhYUBiImNCQyFhQGIiY0Advy3Z9fX5/d8t2gXl6gAcbgv29vv+C/b2/+LS0gIC0gAUwtICAWDg83ETNIMykfegEJ/octICAtIAIdLSAgLSAEqF+f3fLdoF5eoN3y3Z9Xb7/gv29vv+C/BiAtISEtICAtIQqRFxwkMzMkIDEFfgEODhekIC0gIC0gIC0gIC0AAf/YAFoEuQS8AFsAACUBNjc2JicmIyIOAwcABw4EFx4BMzI3ATYnLgEjIgcGBwEOASY0NwA3PgEzMhceARcWBgcOBgcGIyImJyY2NwE2NzYzMhceARcWBgcBDgEnLgECIgHVWwgHdl8WGSJBMD8hIP6IDx4eLRMNBQlZN0ozAiQkEAcdEhoYDRr+qw8pHA4BRyIjQS4ODyw9DQ4YIwwod26La1YOOEBGdiIwGkQB/0coW2tQSE5nDxE4Qv4eDyoQEAOtAdZbZWKbEQQUGjIhH/6JDxsdNSg3HT5CMwIkJCcQFBcMGv6uDwEcKQ4BTSIjIQEINykvYyMLKnhuiWZMBxtAOU6+RAH/SBg3ISSGV121Qv4kDwIPDyYAAAACAGQAWASvBEQAGQBEAAABPgIeAhUUDgMHLgQ1ND4CHgEFIg4DIi4DIyIGFRQeAhcWFx4EMj4DNzY3PgQ1NCYCiTB7eHVYNkN5hKg+PqeFeEM4WnZ4eQEjIT8yLSohJyktPyJDbxtBMjMPBw86KzEhDSIzKUAMBAgrKT8dF2oDtURIBS1TdkA5eYB/slVVsn+AeTlAdlMtBUgtJjY1JiY1NiZvTRc4SjQxDwcOPCouGBgwKEALBAkpKkQqMhNPbQACADn/8gR3BL4AFwAuAAAAMh8BFhUUBg8BJi8BNycBFwcvASY0NwEDNxYfARYUBwEGIi8BJjQ/ARYfAQcXAQKru0KNQjgiHR8uEl/3/nvUaRONQkIBGxJpCgmNQkL+5UK6Qo1CQjcdLhJf9wGFBL5CjUJeKmsiHTUuEl/4/nvUahKNQrpCARv+RmkICY1CukL+5UJCjUK7Qjc3LxFf+AGFAAAAAAMAyAAAA+gEsAARABUAHQAAADIeAhURFAYjISImNRE0PgEHESERACIGFBYyNjQCBqqaZDo7Kf2oKTs8Zj4CWP7/Vj09Vj0EsB4uMhX8Ryk7OykDuRUzLar9RAK8/RY9Vj09VgABAAAAAASwBLAAFgAACQEWFAYiLwEBEScBBRMBJyEBJyY0NjIDhgEbDx0qDiT+6dT+zP7oywEz0gEsAQsjDx0qBKH+5g8qHQ8j/vX+1NL+zcsBGAE01AEXJA4qHQAAAAADAScAEQQJBOAAMgBAAEsAAAEVHgQXIy4DJxEXHgQVFAYHFSM1JicuASczHgEXEScuBDU0PgI3NRkBDgMVFB4DFxYXET4ENC4CArwmRVI8LAKfBA0dMydAIjxQNyiym2SWVygZA4sFV0obLkJOMCAyVWg6HSoqFQ4TJhkZCWgWKTEiGBkzNwTgTgUTLD9pQiQuLBsH/s0NBxMtPGQ+i6oMTU8QVyhrVk1iEAFPCA4ZLzlYNkZwSCoGTf4SARIEDh02Jh0rGRQIBgPQ/soCCRYgNEM0JRkAAAABAGQAZgOUBK0ASgAAATIeARUjNC4CIyIGBwYVFB4BFxYXMxUjFgYHBgc+ATM2FjMyNxcOAyMiLgEHDgEPASc+BTc+AScjNTMmJy4CPgE3NgIxVJlemSc8OxolVBQpGxoYBgPxxQgVFS02ImIWIIwiUzUyHzY4HCAXanQmJ1YYFzcEGAcTDBEJMAwk3aYXFQcKAg4tJGEErVCLTig/IhIdFSw5GkowKgkFZDKCHj4yCg8BIh6TExcIASIfBAMaDAuRAxAFDQsRCjePR2QvORQrREFMIVgAAAACABn//wSXBLAADwAfAAABMzIWDwEGIi8BJjY7AREzBRcWBisBESMRIyImPwE2MgGQlhUIDuYOKg7mDggVlsgCF+YOCBWWyJYVCA7mDioBLBYO+g8P+g4WA4QQ+Q4V/HwDhBUO+Q8AAAQAGf//A+gEsAAHABcAGwAlAAABIzUjFSMRIQEzMhYPAQYiLwEmNjsBETMFFTM1EwczFSE1NyM1IQPoZGRkASz9qJYVCA7mDioO5g4IFZbIAZFkY8jI/tTIyAEsArxkZAH0/HwWDvoPD/oOFgOEZMjI/RL6ZJb6ZAAAAAAEABn//wPoBLAADwAZACEAJQAAATMyFg8BBiIvASY2OwERMwUHMxUhNTcjNSERIzUjFSMRIQcVMzUBkJYVCA7mDioO5g4IFZbIAljIyP7UyMgBLGRkZAEsx2QBLBYO+g8P+g4WA4SW+mSW+mT7UGRkAfRkyMgAAAAEABn//wRMBLAADwAVABsAHwAAATMyFg8BBiIvASY2OwERMwEjESM1MxMjNSMRIQcVMzUBkJYVCA7mDioO5g4IFZbIAlhkZMhkZMgBLMdkASwWDvoPD/oOFgOE/gwBkGT7UGQBkGTIyAAAAAAEABn//wRMBLAADwAVABkAHwAAATMyFg8BBiIvASY2OwERMwEjNSMRIQcVMzUDIxEjNTMBkJYVCA7mDioO5g4IFZbIArxkyAEsx2QBZGTIASwWDvoPD/oOFgOE/gxkAZBkyMj7tAGQZAAAAAAFABn//wSwBLAADwATABcAGwAfAAABMzIWDwEGIi8BJjY7AREzBSM1MxMhNSETITUhEyE1IQGQlhUIDuYOKg7mDggVlsgB9MjIZP7UASxk/nABkGT+DAH0ASwWDvoPD/oOFgOEyMj+DMj+DMj+DMgABQAZ//8EsASwAA8AEwAXABsAHwAAATMyFg8BBiIvASY2OwERMwUhNSEDITUhAyE1IQMjNTMBkJYVCA7mDioO5g4IFZbIAyD+DAH0ZP5wAZBk/tQBLGTIyAEsFg76Dw/6DhYDhMjI/gzI/gzI/gzIAAIAAAAABEwETAAPAB8AAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmAV4BkKK8u6P+cKW5uQJn/gwpOzspAfQpOzsETLuj/nClubmlAZClucg7Kf4MKTs7KQH0KTsAAAAAAwAAAAAETARMAA8AHwArAAABITIWFREUBiMhIiY1ETQ2BSEiBhURFBYzITI2NRE0JgUXFhQPAQYmNRE0NgFeAZClubml/nCju7wCZP4MKTs7KQH0KTs7/m/9ERH9EBgYBEy5pf5wpbm5pQGQo7vIOyn+DCk7OykB9Ck7gr4MJAy+DAsVAZAVCwAAAAADAAAAAARMBEwADwAfACsAAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmBSEyFg8BBiIvASY2AV4BkKO7uaX+cKW5uQJn/gwpOzspAfQpOzv+FQGQFQsMvgwkDL4MCwRMvKL+cKW5uaUBkKO7yDsp/gwpOzspAfQpO8gYEP0REf0QGAAAAAMAAAAABEwETAAPAB8AKwAAASEyFhURFAYjISImNRE0NgUhIgYVERQWMyEyNjURNCYFFxYGIyEiJj8BNjIBXgGQpbm5pf5wo7u5Amf+DCk7OykB9Ck7O/77vgwLFf5wFQsMvgwkBEy5pf5wo7u8ogGQpbnIOyn+DCk7OykB9Ck7z/0QGBgQ/REAAAAAAgAAAAAFFARMAB8ANQAAASEyFhURFAYjISImPQE0NjMhMjY1ETQmIyEiJj0BNDYHARYUBwEGJj0BIyImPQE0NjsBNTQ2AiYBkKW5uaX+cBUdHRUBwik7Oyn+PhUdHb8BRBAQ/rwQFvoVHR0V+hYETLml/nCluR0VZBUdOykB9Ck7HRVkFR3p/uQOJg7+5A4KFZYdFcgVHZYVCgAAAQDZAAID1wSeACMAAAEXFgcGAgclMhYHIggBBwYrAScmNz4BPwEhIicmNzYANjc2MwMZCQgDA5gCASwYEQ4B/vf+8wQMDgkJCQUCUCcn/tIXCAoQSwENuwUJEASeCQoRC/5TBwEjEv7K/sUFDwgLFQnlbm4TFRRWAS/TBhAAAAACAAAAAAT+BEwAHwA1AAABITIWHQEUBiMhIgYVERQWMyEyFh0BFAYjISImNRE0NgUBFhQHAQYmPQEjIiY9ATQ2OwE1NDYBXgGQFR0dFf4+KTs7KQHCFR0dFf5wpbm5AvEBRBAQ/rwQFvoVHR0V+hYETB0VZBUdOyn+DCk7HRVkFR25pQGQpbnp/uQOJg7+5A4KFZYdFcgVHZYVCgACAAAAAASwBLAAFQAxAAABITIWFREUBi8BAQYiLwEmNDcBJyY2ASMiBhURFBYzITI2PQE3ERQGIyEiJjURNDYzIQLuAZAVHRUObf7IDykPjQ8PAThtDgj+75wpOzspAfQpO8i7o/5wpbm5pQEsBLAdFf5wFQgObf7IDw+NDykPAThtDhX+1Dsp/gwpOzsplMj+1qW5uaUBkKW5AAADAA4ADgSiBKIADwAbACMAAAAyHgIUDgIiLgI0PgEEIg4BFB4BMj4BNCYEMhYUBiImNAHh7tmdXV2d2e7ZnV1dnQHD5sJxccLmwnFx/nugcnKgcgSiXZ3Z7tmdXV2d2e7ZnUdxwubCcXHC5sJzcqBycqAAAAMAAAAABEwEsAAVAB8AIwAAATMyFhURMzIWBwEGIicBJjY7ARE0NgEhMhYdASE1NDYFFTM1AcLIFR31FAoO/oEOJw3+hQ0JFfod/oUD6BUd+7QdA2dkBLAdFf6iFg/+Vg8PAaoPFgFeFR38fB0V+voVHWQyMgAAAAMAAAAABEwErAAVAB8AIwAACQEWBisBFRQGKwEiJj0BIyImNwE+AQEhMhYdASE1NDYFFTM1AkcBeg4KFfQiFsgUGPoUCw4Bfw4n/fkD6BUd+7QdA2dkBJ7+TQ8g+hQeHRX6IQ8BrxAC/H8dFfr6FR1kMjIAAwAAAAAETARLABQAHgAiAAAJATYyHwEWFAcBBiInASY0PwE2MhcDITIWHQEhNTQ2BRUzNQGMAXEHFQeLBwf98wcVB/7cBweLCBUH1APoFR37tB0DZ2QC0wFxBweLCBUH/fMICAEjCBQIiwcH/dIdFfr6FR1kMjIABAAAAAAETASbAAkAGQAjACcAABM3NjIfAQcnJjQFNzYWFQMOASMFIiY/ASc3ASEyFh0BITU0NgUVMzWHjg4qDk3UTQ4CFtIOFQIBHRX9qxUIDtCa1P49A+gVHfu0HQNnZAP/jg4OTdRMDyqa0g4IFf2pFB4BFQ7Qm9T9Oh0V+voVHWQyMgAAAAQAAAAABEwEsAAPABkAIwAnAAABBR4BFRMUBi8BByc3JyY2EwcGIi8BJjQ/AQEhMhYdASE1NDYFFTM1AV4CVxQeARUO0JvUm9IOCMNMDyoOjg4OTf76A+gVHfu0HQNnZASwAgEdFf2rFQgO0JrUmtIOFf1QTQ4Ojg4qDk3+WB0V+voVHWQyMgACAAT/7ASwBK8ABQAIAAAlCQERIQkBFQEEsP4d/sb+cQSs/TMCq2cBFP5xAacDHPz55gO5AAAAAAIAAABkBEwEsAAVABkAAAERFAYrAREhESMiJjURNDY7AREhETMHIzUzBEwdFZb9RJYVHR0V+gH0ZMhkZAPo/K4VHQGQ/nAdFQPoFB7+1AEsyMgAAAMAAABFBN0EsAAWABoALwAAAQcBJyYiDwEhESMiJjURNDY7AREhETMHIzUzARcWFAcBBiIvASY0PwE2Mh8BATYyBEwC/tVfCRkJlf7IlhUdHRX6AfRkyGRkAbBqBwf+XAgUCMoICGoHFQdPASkHFQPolf7VXwkJk/5wHRUD6BQe/tQBLMjI/c5qBxUH/lsHB8sHFQdqCAhPASkHAAMAAAANBQcEsAAWABoAPgAAAREHJy4BBwEhESMiJjURNDY7AREhETMHIzUzARcWFA8BFxYUDwEGIi8BBwYiLwEmND8BJyY0PwE2Mh8BNzYyBExnhg8lEP72/reWFR0dFfoB9GTIZGQB9kYPD4ODDw9GDykPg4MPKQ9GDw+Dgw8PRg8pD4ODDykD6P7zZ4YPAw7+9v5wHRUD6BQe/tQBLMjI/YxGDykPg4MPKQ9GDw+Dgw8PRg8pD4ODDykPRg8Pg4MPAAADAAAAFQSXBLAAFQAZAC8AAAERISIGHQEhESMiJjURNDY7AREhETMHIzUzEzMyFh0BMzIWDwEGIi8BJjY7ATU0NgRM/qIVHf4MlhUdHRX6AfRkyGRklmQVHZYVCA7mDioO5g4IFZYdA+j+1B0Vlv5wHRUD6BQe/tQBLMjI/agdFfoVDuYODuYOFfoVHQAAAAADAAAAAASXBLAAFQAZAC8AAAERJyYiBwEhESMiJjURNDY7AREhETMHIzUzExcWBisBFRQGKwEiJj0BIyImPwE2MgRMpQ4qDv75/m6WFR0dFfoB9GTIZGTr5g4IFZYdFWQVHZYVCA7mDioD6P5wpQ8P/vf+cB0VA+gUHv7UASzIyP2F5Q8V+hQeHhT6FQ/lDwADAAAAyASwBEwACQATABcAABMhMhYdASE1NDYBERQGIyEiJjURExUhNTIETBUd+1AdBJMdFfu0FR1kAZAETB0VlpYVHf7U/doVHR0VAib+1MjIAAAGAAMAfQStBJcADwAZAB0ALQAxADsAAAEXFhQPAQYmPQEhNSE1NDYBIyImPQE0NjsBFyM1MwE3NhYdASEVIRUUBi8BJjQFIzU7AjIWHQEUBisBA6f4Dg74DhX+cAGQFf0vMhUdHRUyyGRk/oL3DhUBkP5wFQ73DwOBZGRkMxQdHRQzBI3mDioO5g4IFZbIlhUI/oUdFWQVHcjI/cvmDggVlsiWFQgO5g4qecgdFWQVHQAAAAACAGQAAASwBLAAFgBRAAABJTYWFREUBisBIiY1ES4ENRE0NiUyFh8BERQOAg8BERQGKwEiJjURLgQ1ETQ+AzMyFh8BETMRPAE+AjMyFh8BETMRND4DA14BFBklHRXIFR0EDiIaFiX+4RYZAgEVHR0LCh0VyBUdBA4iGhYBBwoTDRQZAgNkBQkVDxcZAQFkAQUJFQQxdBIUH/uuFR0dFQGNAQgbHzUeAWcfRJEZDA3+Phw/MSkLC/5BFR0dFQG/BA8uLkAcAcICBxENCxkMDf6iAV4CBxENCxkMDf6iAV4CBxENCwABAGQAAASwBEwAMwAAARUiDgMVERQWHwEVITUyNjURIREUFjMVITUyPgM1ETQmLwE1IRUiBhURIRE0JiM1BLAEDiIaFjIZGf5wSxn+DBlL/nAEDiIaFjIZGQGQSxkB9BlLBEw4AQUKFA78iBYZAQI4OA0lAYr+diUNODgBBQoUDgN4FhkBAjg4DSX+dgGKJQ04AAAABgAAAAAETARMAAwAHAAgACQAKAA0AAABITIWHQEjBTUnITchBSEyFhURFAYjISImNRE0NhcVITUBBTUlBRUhNQUVFAYjIQchJyE3MwKjAXcVHWn+2cj+cGQBd/4lASwpOzsp/tQpOzspASwCvP5wAZD8GAEsArwdFf6JZP6JZAGQyGkD6B0VlmJiyGTIOyn+DCk7OykB9Ck7ZMjI/veFo4XGyMhm+BUdZGTIAAEAEAAQBJ8EnwAmAAATNzYWHwEWBg8BHgEXNz4BHwEeAQ8BBiIuBicuBTcRohEuDosOBhF3ZvyNdxEzE8ATBxGjAw0uMUxPZWZ4O0p3RjITCwED76IRBhPCFDERdo78ZXYRBA6IDi8RogEECBUgNUNjO0qZfHNVQBAAAAACAAAAAASwBEwAIwBBAAAAMh4EHwEVFAYvAS4BPQEmIAcVFAYPAQYmPQE+BRIyHgIfARUBHgEdARQGIyEiJj0BNDY3ATU0PgIB/LimdWQ/LAkJHRTKFB2N/sKNHRTKFB0DDTE7ZnTKcFImFgEBAW0OFR0V+7QVHRUOAW0CFiYETBUhKCgiCgrIFRgDIgMiFZIYGJIVIgMiAxgVyAQNJyQrIP7kExwcCgoy/tEPMhTUFR0dFdQUMg8BLzIEDSEZAAADAAAAAASwBLAADQAdACcAAAEHIScRMxUzNTMVMzUzASEyFhQGKwEXITcjIiY0NgMhMhYdASE1NDYETMj9qMjIyMjIyPyuArwVHR0VDIn8SokMFR0dswRMFR37UB0CvMjIAfTIyMjI/OAdKh1kZB0qHf7UHRUyMhUdAAAAAwBkAAAEsARMAAkAEwAdAAABIyIGFREhETQmASMiBhURIRE0JgEhETQ2OwEyFhUCvGQpOwEsOwFnZCk7ASw7/Rv+1DspZCk7BEw7KfwYA+gpO/7UOyn9RAK8KTv84AGQKTs7KQAAAAAF/5wAAASwBEwADwATAB8AJQApAAATITIWFREUBiMhIiY1ETQ2FxEhEQUjFTMRITUzNSMRIQURByMRMwcRMxHIArx8sLB8/UR8sLAYA4T+DMjI/tTIyAEsAZBkyMhkZARMsHz+DHywsHwB9HywyP1EArzIZP7UZGQBLGT+1GQB9GT+1AEsAAAABf+cAAAEsARMAA8AEwAfACUAKQAAEyEyFhURFAYjISImNRE0NhcRIREBIzUjFSMRMxUzNTMFEQcjETMHETMRyAK8fLCwfP1EfLCwGAOE/gxkZGRkZGQBkGTIyGRkBEywfP4MfLCwfAH0fLDI/UQCvP2oyMgB9MjIZP7UZAH0ZP7UASwABP+cAAAEsARMAA8AEwAbACMAABMhMhYVERQGIyEiJjURNDYXESERBSMRMxUhESEFIxEzFSERIcgCvHywsHz9RHywsBgDhP4MyMj+1AEsAZDIyP7UASwETLB8/gx8sLB8AfR8sMj9RAK8yP7UZAH0ZP7UZAH0AAAABP+cAAAEsARMAA8AEwAWABkAABMhMhYVERQGIyEiJjURNDYXESERAS0BDQERyAK8fLCwfP1EfLCwGAOE/gz+1AEsAZD+1ARMsHz+DHywsHwB9HywyP1EArz+DJaWlpYBLAAAAAX/nAAABLAETAAPABMAFwAgACkAABMhMhYVERQGIyEiJjURNDYXESERAyERIQcjIgYVFBY7AQERMzI2NTQmI8gCvHywsHz9RHywsBgDhGT9RAK8ZIImOTYpgv4Mgik2OSYETLB8/gx8sLB8AfR8sMj9RAK8/agB9GRWQUFUASz+1FRBQVYAAAAF/5wAAASwBEwADwATAB8AJQApAAATITIWFREUBiMhIiY1ETQ2FxEhEQUjFTMRITUzNSMRIQEjESM1MwMjNTPIArx8sLB8/UR8sLAYA4T+DMjI/tTIyAEsAZBkZMjIZGQETLB8/gx8sLB8AfR8sMj9RAK8yGT+1GRkASz+DAGQZP4MZAAG/5wAAASwBEwADwATABkAHwAjACcAABMhMhYVERQGIyEiJjURNDYXESERBTMRIREzASMRIzUzBRUzNQEjNTPIArx8sLB8/UR8sLAYA4T9RMj+1GQCWGRkyP2oZAEsZGQETLB8/gx8sLB8AfR8sMj9RAK8yP5wAfT+DAGQZMjIyP7UZAAF/5wAAASwBEwADwATABwAIgAmAAATITIWFREUBiMhIiY1ETQ2FxEhEQEHIzU3NSM1IQEjESM1MwMjNTPIArx8sLB8/UR8sLAYA4T+DMdkx8gBLAGQZGTIx2RkBEywfP4MfLCwfAH0fLDI/UQCvP5wyDLIlmT+DAGQZP4MZAAAAAMACQAJBKcEpwAPABsAJQAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgchFSEVISc1NyEB4PDbnl5entvw255eXp4BxeTCcXHC5MJxcWz+1AEs/tRkZAEsBKdentvw255eXp7b8NueTHHC5MJxccLkwtDIZGTIZAAAAAAEAAkACQSnBKcADwAbACcAKwAAADIeAhQOAiIuAjQ+AQQiDgEUHgEyPgE0JgcVBxcVIycjFSMRIQcVMzUB4PDbnl5entvw255eXp4BxeTCcXHC5MJxcWwyZGRklmQBLMjIBKdentvw255eXp7b8NueTHHC5MJxccLkwtBkMmQyZGQBkGRkZAAAAv/y/50EwgRBACAANgAAATIWFzYzMhYUBisBNTQmIyEiBh0BIyImNTQ2NyY1ND4BEzMyFhURMzIWDwEGIi8BJjY7ARE0NgH3brUsLC54qqp4gB0V/tQVHd5QcFZBAmKqepYKD4kVCg3fDSYN3w0KFYkPBEF3YQ6t8a36FR0dFfpzT0VrDhMSZKpi/bMPCv7tFxD0EBD0EBcBEwoPAAAAAAL/8v+cBMMEQQAcADMAAAEyFhc2MzIWFxQGBwEmIgcBIyImNTQ2NyY1ND4BExcWBisBERQGKwEiJjURIyImNzY3NjIB9m62LCsueaoBeFr+hg0lDf6DCU9xVkECYqnm3w0KFYkPCpYKD4kVCg3HGBMZBEF3YQ+teGOkHAFoEBD+k3NPRWsOExNkqWP9kuQQF/7tCg8PCgETFxDMGBMAAAABAGQAAARMBG0AGAAAJTUhATMBMwkBMwEzASEVIyIGHQEhNTQmIwK8AZD+8qr+8qr+1P7Uqv7yqv7yAZAyFR0BkB0VZGQBLAEsAU3+s/7U/tRkHRUyMhUdAAAAAAEAeQAABDcEmwAvAAABMhYXHgEVFAYHFhUUBiMiJxUyFh0BITU0NjM1BiMiJjU0Ny4BNTQ2MzIXNCY1NDYCWF6TGll7OzIJaUo3LRUd/tQdFS03SmkELzlpSgUSAqMEm3FZBoNaPWcfHRpKaR77HRUyMhUd+x5pShIUFVg1SmkCAhAFdKMAAAAGACcAFASJBJwAEQAqAEIASgBiAHsAAAEWEgIHDgEiJicmAhI3PgEyFgUiBw4BBwYWHwEWMzI3Njc2Nz4BLwEmJyYXIgcOAQcGFh8BFjMyNz4BNz4BLwEmJyYWJiIGFBYyNjciBw4BBw4BHwEWFxYzMjc+ATc2Ji8BJhciBwYHBgcOAR8BFhcWMzI3PgE3NiYvASYD8m9PT29T2dzZU29PT29T2dzZ/j0EBHmxIgQNDCQDBBcGG0dGYAsNAwkDCwccBAVQdRgEDA0iBAQWBhJROQwMAwkDCwf5Y4xjY4xjVhYGElE6CwwDCQMLBwgEBVB1GAQNDCIEjRcGG0dGYAsNAwkDCwcIBAR5sSIEDQwkAwPyb/7V/tVvU1dXU28BKwErb1NXVxwBIrF5DBYDCQEWYEZHGwMVDCMNBgSRAhh1UA0WAwkBFTpREgMVCyMMBwT6Y2OMY2MVFTpREQQVCyMMBwQCGHVQDRYDCQEkFmBGRxsDFQwjDQYEASKxeQwWAwkBAAAABQBkAAAD6ASwAAwADwAWABwAIgAAASERIzUhFSERNDYzIQEjNQMzByczNTMDISImNREFFRQGKwECvAEstP6s/oQPCgI/ASzIZKLU1KJktP51Cg8DhA8KwwMg/oTIyALzCg/+1Mj84NTUyP4MDwoBi8jDCg8AAAAABQBkAAAD6ASwAAkADAATABoAIQAAASERCQERNDYzIQEjNRMjFSM1IzcDISImPQEpARUUBisBNQK8ASz+ov3aDwoCPwEsyD6iZKLUqv6dCg8BfAIIDwqbAyD9+AFe/doERwoP/tTI/HzIyNT+ZA8KNzcKD1AAAAAAAwAAAAAEsAP0AAgAGQAfAAABIxUzFyERIzcFMzIeAhUhFSEDETM0PgIBMwMhASEEiqJkZP7UotT9EsgbGiEOASz9qMhkDiEaAnPw8PzgASwB9AMgyGQBLNTUBBErJGT+ogHCJCsRBP5w/nAB9AAAAAMAAAAABEwETAAZADIAOQAAATMyFh0BMzIWHQEUBiMhIiY9ATQ2OwE1NDYFNTIWFREUBiMhIic3ARE0NjMVFBYzITI2AQc1IzUzNQKKZBUdMhUdHRX+1BUdHRUyHQFzKTs7Kf2oARP2/ro7KVg+ASw+WP201MjIBEwdFTIdFWQVHR0VZBUdMhUd+pY7KfzgKTsE9gFGAUQpO5Y+WFj95tSiZKIAAwBkAAAEvARMABkANgA9AAABMzIWHQEzMhYdARQGIyEiJj0BNDY7ATU0NgU1MhYVESMRMxQOAiMhIiY1ETQ2MxUUFjMhMjYBBzUjNTM1AcJkFR0yFR0dFf7UFR0dFTIdAXMpO8jIDiEaG/2oKTs7KVg+ASw+WAGc1MjIBEwdFTIdFWQVHR0VZBUdMhUd+pY7Kf4M/tQkKxEEOykDICk7lj5YWP3m1KJkogAAAAP/ogAABRYE1AALABsAHwAACQEWBiMhIiY3ATYyEyMiBhcTHgE7ATI2NxM2JgMVMzUCkgJ9FyAs+wQsIBcCfRZARNAUGAQ6BCMUNhQjBDoEGODIBK37sCY3NyYEUCf+TB0U/tIUHR0UAS4UHf4MZGQAAAAACQAAAAAETARMAA8AHwAvAD8ATwBfAG8AfwCPAAABMzIWHQEUBisBIiY9ATQ2EzMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2ITMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2ITMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBqfoKDw8K+goPDwr6Cg8PCvoKDw8BmvoKDw8K+goPD/zq+goPDwr6Cg8PAZr6Cg8PCvoKDw8BmvoKDw8K+goPD/zq+goPDwr6Cg8PAZr6Cg8PCvoKDw8BmvoKDw8K+goPDwRMDwqWCg8PCpYKD/7UDwqWCg8PCpYKDw8KlgoPDwqWCg/+1A8KlgoPDwqWCg8PCpYKDw8KlgoPDwqWCg8PCpYKD/7UDwqWCg8PCpYKDw8KlgoPDwqWCg8PCpYKDw8KlgoPAAAAAwAAAAAEsAUUABkAKQAzAAABMxUjFSEyFg8BBgchJi8BJjYzITUjNTM1MwEhMhYUBisBFyE3IyImNDYDITIWHQEhNTQ2ArxkZAFePjEcQiko/PwoKUIcMT4BXmRkyP4+ArwVHR0VDIn8SooNFR0dswRMFR37UB0EsMhkTzeEUzMzU4Q3T2TIZPx8HSodZGQdKh3+1B0VMjIVHQAABAAAAAAEsAUUAAUAGQArADUAAAAyFhUjNAchFhUUByEyFg8BIScmNjMhJjU0AyEyFhQGKwEVBSElNSMiJjQ2AyEyFh0BITU0NgIwUDnCPAE6EgMBSCkHIq/9WrIiCikBSAOvArwVHR0VlgET/EoBE5YVHR2zBEwVHftQHQUUOykpjSUmCBEhFpGRFiERCCb+lR0qHcjIyMgdKh39qB0VMjIVHQAEAAAAAASwBJ0ABwAUACQALgAAADIWFAYiJjQTMzIWFRQXITY1NDYzASEyFhQGKwEXITcjIiY0NgMhMhYdASE1NDYCDZZqapZqty4iKyf+vCcrI/7NArwVHR0VDYr8SokMFR0dswRMFR37UB0EnWqWamqW/us5Okxra0w6Of5yHSodZGQdKh3+1B0VMjIVHQAEAAAAAASwBRQADwAcACwANgAAATIeARUUBiImNTQ3FzcnNhMzMhYVFBchNjU0NjMBITIWFAYrARchNyMiJjQ2AyEyFh0BITU0NgJYL1szb5xvIpBvoyIfLiIrJ/68Jysj/s0CvBUdHRUNivxKiQwVHR2zBEwVHftQHQUUa4s2Tm9vTj5Rj2+jGv4KOTpMa2tMOjn+ch0qHWRkHSod/tQdFTIyFR0AAAADAAAAAASwBRIAEgAiACwAAAEFFSEUHgMXIS4BNTQ+AjcBITIWFAYrARchNyMiJjQ2AyEyFh0BITU0NgJYASz+1CU/P00T/e48PUJtj0r+ogK8FR0dFQ2K/EqJDBUdHbMETBUd+1AdBLChizlmUT9IGVO9VFShdksE/H4dKh1kZB0qHf7UHRUyMhUdAAIAyAAAA+gFFAAPACkAAAAyFh0BHgEdASE1NDY3NTQDITIWFyMVMxUjFTMVIxUzFAYjISImNRE0NgIvUjsuNv5wNi5kAZA2XBqsyMjIyMh1U/5wU3V1BRQ7KU4aXDYyMjZcGk4p/kc2LmRkZGRkU3V1UwGQU3UAAAMAZP//BEwETAAPAC8AMwAAEyEyFhURFAYjISImNRE0NgMhMhYdARQGIyEXFhQGIi8BIQcGIiY0PwEhIiY9ATQ2BQchJ5YDhBUdHRX8fBUdHQQDtgoPDwr+5eANGiUNWP30Vw0mGg3g/t8KDw8BqmQBRGQETB0V/gwVHR0VAfQVHf1EDwoyCg/gDSUbDVhYDRslDeAPCjIKD2RkZAAAAAAEAAAAAASwBEwAGQAjAC0ANwAAEyEyFh0BIzQmKwEiBhUjNCYrASIGFSM1NDYDITIWFREhETQ2ExUUBisBIiY9ASEVFAYrASImPQHIAyBTdWQ7KfopO2Q7KfopO2R1EQPoKTv7UDvxHRVkFR0D6B0VZBUdBEx1U8gpOzspKTs7KchTdf4MOyn+1AEsKTv+DDIVHR0VMjIVHR0VMgADAAEAAASpBKwADQARABsAAAkBFhQPASEBJjQ3ATYyCQMDITIWHQEhNTQ2AeACqh8fg/4f/fsgIAEnH1n+rAFWAS/+q6IDIBUd/HwdBI39VR9ZH4MCBh9ZHwEoH/5u/qoBMAFV/BsdFTIyFR0AAAAAAgCPAAAEIQSwABcALwAAAQMuASMhIgYHAwYWMyEVFBYyNj0BMzI2AyE1NDY7ATU0NjsBETMRMzIWHQEzMhYVBCG9CCcV/nAVJwi9CBMVAnEdKh19FROo/a0dFTIdFTDILxUdMhUdAocB+hMcHBP+BhMclhUdHRWWHP2MMhUdMhUdASz+1B0VMh0VAAAEAAAAAASwBLAADQAQAB8AIgAAASERFAYjIREBNTQ2MyEBIzUBIREUBiMhIiY1ETQ2MyEBIzUDhAEsDwr+if7UDwoBdwEsyP2oASwPCv12Cg8PCgF3ASzIAyD9wQoPAk8BLFQKD/7UyP4M/cEKDw8KA7YKD/7UyAAC/5wAZAUUBEcARgBWAAABMzIeAhcWFxY2NzYnJjc+ARYXFgcOASsBDgEPAQ4BKwEiJj8BBisBIicHDgErASImPwEmLwEuAT0BNDY7ATY3JyY2OwE2BSMiBh0BFBY7ATI2PQE0JgHkw0uOakkMEhEfQwoKGRMKBQ8XDCkCA1Y9Pgc4HCcDIhVkFRgDDDEqwxgpCwMiFWQVGAMaVCyfExwdFXwLLW8QBxXLdAFF+goPDwr6Cg8PBEdBa4pJDgYKISAiJRsQCAYIDCw9P1c3fCbqFB0dFEYOCEAUHR0UnUplNQcmFTIVHVdPXw4TZV8PCjIKDw8KMgoPAAb/nP/mBRQEfgAJACQANAA8AFIAYgAAASU2Fh8BFgYPASUzMhYfASEyFh0BFAYHBQYmJyYjISImPQE0NhcjIgYdARQ7ATI2NTQmJyYEIgYUFjI2NAE3PgEeARceAT8BFxYGDwEGJi8BJjYlBwYfAR4BPwE2Jy4BJy4BAoEBpxMuDiAOAxCL/CtqQ0geZgM3FR0cE/0fFyIJKjr+1D5YWLlQExIqhhALIAsSAYBALS1ALf4PmBIgHhMQHC0aPzANITNQL3wpgigJASlmHyElDR0RPRMFAhQHCxADhPcICxAmDyoNeMgiNtQdFTIVJgeEBBQPQ1g+yD5YrBwVODMQEAtEERzJLUAtLUD+24ITChESEyMgAwWzPUkrRSgJL5cvfRxYGyYrDwkLNRAhFEgJDAQAAAAAAwBkAAAEOQSwAFEAYABvAAABMzIWHQEeARcWDgIPATIeBRUUDgUjFRQGKwEiJj0BIxUUBisBIiY9ASMiJj0BNDY7AREjIiY9ATQ2OwE1NDY7ATIWHQEzNTQ2AxUhMj4CNTc0LgMjARUhMj4CNTc0LgMjAnGWCg9PaAEBIC4uEBEGEjQwOiodFyI2LUAjGg8KlgoPZA8KlgoPrwoPDwpLSwoPDwqvDwqWCg9kD9cBBxwpEwsBAQsTKRz++QFrHCkTCwEBCxMpHASwDwptIW1KLk0tHwYGAw8UKDJOLTtdPCoVCwJLCg8PCktLCg8PCksPCpYKDwJYDwqWCg9LCg8PCktLCg/+1MgVHR0LCgQOIhoW/nDIFR0dCwoEDiIaFgAAAwAEAAIEsASuABcAKQAsAAATITIWFREUBg8BDgEjISImJy4CNRE0NgQiDgQPARchNy4FAyMT1AMMVnokEhIdgVL9xFKCHAgYKHoCIIx9VkcrHQYGnAIwnAIIIClJVSGdwwSuelb+YDO3QkJXd3ZYHFrFMwGgVnqZFyYtLSUMDPPzBQ8sKDEj/sIBBQACAMgAAAOEBRQADwAZAAABMzIWFREUBiMhIiY1ETQ2ARUUBisBIiY9AQHblmesVCn+PilUrAFINhWWFTYFFKxn/gwpVFQpAfRnrPwY4RU2NhXhAAACAMgAAAOEBRQADwAZAAABMxQWMxEUBiMhIiY1ETQ2ARUUBisBIiY9AQHbYLOWVCn+PilUrAFINhWWFTYFFJaz/kIpVFQpAfRnrPwY4RU2NhXhAAACAAAAFAUOBBoAFAAaAAAJASUHFRcVJwc1NzU0Jj4CPwEnCQEFJTUFJQUO/YL+hk5klpZkAQEBBQQvkwKCAVz+ov6iAV4BXgL//uWqPOCWx5SVyJb6BA0GCgYDKEEBG/1ipqaTpaUAAAMAZAH0BLADIAAHAA8AFwAAEjIWFAYiJjQkMhYUBiImNCQyFhQGIiY0vHxYWHxYAeh8WFh8WAHofFhYfFgDIFh8WFh8WFh8WFh8WFh8WFh8AAAAAAMBkAAAArwETAAHAA8AFwAAADIWFAYiJjQSMhYUBiImNBIyFhQGIiY0Aeh8WFh8WFh8WFh8WFh8WFh8WARMWHxYWHz+yFh8WFh8/shYfFhYfAAAAAMAZABkBEwETAAPAB8ALwAAEyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2fQO2Cg8PCvxKCg8PCgO2Cg8PCvxKCg8PCgO2Cg8PCvxKCg8PBEwPCpYKDw8KlgoP/nAPCpYKDw8KlgoP/nAPCpYKDw8KlgoPAAAABAAAAAAEsASwAA8AHwAvADMAAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmBSEyFhURFAYjISImNRE0NhcVITUBXgH0ory7o/4Mpbm5Asv9qCk7OykCWCk7O/2xAfQVHR0V/gwVHR1HAZAEsLuj/gylubmlAfSlucg7Kf2oKTs7KQJYKTtkHRX+1BUdHRUBLBUdZMjIAAAAAAEAZABkBLAETAA7AAATITIWFAYrARUzMhYUBisBFTMyFhQGKwEVMzIWFAYjISImNDY7ATUjIiY0NjsBNSMiJjQ2OwE1IyImNDaWA+gVHR0VMjIVHR0VMjIVHR0VMjIVHR0V/BgVHR0VMjIVHR0VMjIVHR0VMjIVHR0ETB0qHcgdKh3IHSodyB0qHR0qHcgdKh3IHSodyB0qHQAAAAYBLAAFA+gEowAHAA0AEwAZAB8AKgAAAR4BBgcuATYBMhYVIiYlFAYjNDYBMhYVIiYlFAYjNDYDFRQGIiY9ARYzMgKKVz8/V1c/P/75fLB8sAK8sHyw/cB8sHywArywfLCwHSodKAMRBKNDsrJCQrKy/sCwfLB8fLB8sP7UsHywfHywfLD+05AVHR0VjgQAAAH/tQDIBJQDgQBCAAABNzYXAR4BBw4BKwEyFRQOBCsBIhE0NyYiBxYVECsBIi4DNTQzIyImJyY2NwE2HwEeAQ4BLwEHIScHBi4BNgLpRRkUASoLCAYFGg8IAQQNGyc/KZK4ChRUFQu4jjBJJxkHAgcPGQYGCAsBKhQaTBQVCiMUM7YDe7YsFCMKFgNuEwYS/tkLHw8OEw0dNkY4MhwBIBgXBAQYF/7gKjxTQyMNEw4PHwoBKBIHEwUjKBYGDMHBDAUWKCMAAAAAAgAAAAAEsASwACUAQwAAASM0LgUrAREUFh8BFSE1Mj4DNREjIg4FFSMRIQEjNC4DKwERFBYXMxUjNTI1ESMiDgMVIzUhBLAyCAsZEyYYGcgyGRn+cAQOIhoWyBkYJhMZCwgyA+j9RBkIChgQEWQZDQzIMmQREBgKCBkB9AOEFSAVDggDAfyuFhkBAmRkAQUJFQ4DUgEDCA4VIBUBLP0SDxMKBQH+VwsNATIyGQGpAQUKEw+WAAAAAAMAAAAABEwErgAdACAAMAAAATUiJy4BLwEBIwEGBw4BDwEVITUiJj8BIRcWBiMVARsBARUUBiMhIiY9ATQ2MyEyFgPoGR4OFgUE/t9F/tQSFQkfCwsBETE7EkUBJT0NISf+7IZ5AbEdFfwYFR0dFQPoFR0BLDIgDiIKCwLr/Q4jFQkTBQUyMisusKYiQTIBhwFW/qr942QVHR0VZBUdHQADAAAAAASwBLAADwBHAEoAABMhMhYVERQGIyEiJjURNDYFIyIHAQYHBgcGHQEUFjMhMjY9ATQmIyInJj8BIRcWBwYjIgYdARQWMyEyNj0BNCYnIicmJyMBJhMjEzIETBUdHRX7tBUdHQJGRg0F/tUREhImDAsJAREIDAwINxAKCj8BCjkLEQwYCAwMCAE5CAwLCBEZGQ8B/uAFDsVnBLAdFfu0FR0dFQRMFR1SDP0PIBMSEAUNMggMDAgyCAwXDhmjmR8YEQwIMggMDAgyBwwBGRskAuwM/gUBCAAABAAAAAAEsASwAAMAEwAjACcAAAEhNSEFITIWFREUBiMhIiY1ETQ2KQEyFhURFAYjISImNRE0NhcRIREEsPtQBLD7ggGQFR0dFf5wFR0dAm0BkBUdHRX+cBUdHUcBLARMZMgdFfx8FR0dFQOEFR0dFf5wFR0dFQGQFR1k/tQBLAAEAAAAAASwBLAADwAfACMAJwAAEyEyFhURFAYjISImNRE0NgEhMhYVERQGIyEiJjURNDYXESEREyE1ITIBkBUdHRX+cBUdHQJtAZAVHR0V/nAVHR1HASzI+1AEsASwHRX8fBUdHRUDhBUd/gwdFf5wFR0dFQGQFR1k/tQBLP2oZAAAAAACAAAAZASwA+gAJwArAAATITIWFREzNTQ2MyEyFh0BMxUjFRQGIyEiJj0BIxEUBiMhIiY1ETQ2AREhETIBkBUdZB0VAZAVHWRkHRX+cBUdZB0V/nAVHR0CnwEsA+gdFf6ilhUdHRWWZJYVHR0Vlv6iFR0dFQMgFR3+1P7UASwAAAQAAAAABLAEsAADABMAFwAnAAAzIxEzFyEyFhURFAYjISImNRE0NhcRIREBITIWFREUBiMhIiY1ETQ2ZGRklgGQFR0dFf5wFR0dRwEs/qIDhBUdHRX8fBUdHQSwZB0V/nAVHR0VAZAVHWT+1AEs/gwdFf5wFR0dFQGQFR0AAAAAAgBkAAAETASwACcAKwAAATMyFhURFAYrARUhMhYVERQGIyEiJjURNDYzITUjIiY1ETQ2OwE1MwcRIRECWJYVHR0VlgHCFR0dFfx8FR0dFQFelhUdHRWWZMgBLARMHRX+cBUdZB0V/nAVHR0VAZAVHWQdFQGQFR1kyP7UASwAAAAEAAAAAASwBLAAAwATABcAJwAAISMRMwUhMhYVERQGIyEiJjURNDYXESERASEyFhURFAYjISImNRE0NgSwZGT9dgGQFR0dFf5wFR0dRwEs/K4DhBUdHRX8fBUdHQSwZB0V/nAVHR0VAZAVHWT+1AEs/gwdFf5wFR0dFQGQFR0AAAEBLAAwA28EgAAPAAAJAQYjIiY1ETQ2MzIXARYUA2H+EhcSDhAQDhIXAe4OAjX+EhcbGQPoGRsX/hIOKgAAAAABAUEAMgOEBH4ACwAACQE2FhURFAYnASY0AU8B7h0qKh3+Eg4CewHuHREp/BgpER0B7g4qAAAAAAEAMgFBBH4DhAALAAATITIWBwEGIicBJjZkA+gpER3+Eg4qDv4SHREDhCod/hIODgHuHSoAAAAAAQAyASwEfgNvAAsAAAkBFgYjISImNwE2MgJ7Ae4dESn8GCkRHQHuDioDYf4SHSoqHQHuDgAAAAACAAgAAASwBCgABgAKAAABFQE1LQE1ASE1IQK8/UwBnf5jBKj84AMgAuW2/r3dwcHd+9jIAAAAAAIAAABkBLAEsAALADEAAAEjFTMVIREzNSM1IQEzND4FOwERFAYPARUhNSIuAzURMzIeBRUzESEEsMjI/tTIyAEs+1AyCAsZEyYYGWQyGRkBkAQOIhoWZBkYJhMZCwgy/OADhGRkASxkZP4MFSAVDggDAf3aFhkBAmRkAQUJFQ4CJgEDCA4VIBUBLAAAAgAAAAAETAPoACUAMQAAASM0LgUrAREUFh8BFSE1Mj4DNREjIg4FFSMRIQEjFTMVIREzNSM1IQMgMggLGRMmGBlkMhkZ/nAEDiIaFmQZGCYTGQsIMgMgASzIyP7UyMgBLAK8FSAVDggDAf3aFhkCAWRkAQUJFQ4CJgEDCA4VIBUBLPzgZGQBLGRkAAABAMgAZgNyBEoAEgAAATMyFgcJARYGKwEiJwEmNDcBNgK9oBAKDP4wAdAMChCgDQr+KQcHAdcKBEoWDP4w/jAMFgkB1wgUCAHXCQAAAQE+AGYD6ARKABIAAAEzMhcBFhQHAQYrASImNwkBJjYBU6ANCgHXBwf+KQoNoBAKDAHQ/jAMCgRKCf4pCBQI/ikJFgwB0AHQDBYAAAEAZgDIBEoDcgASAAAAFh0BFAcBBiInASY9ATQ2FwkBBDQWCf4pCBQI/ikJFgwB0AHQA3cKEKANCv4pBwcB1woNoBAKDP4wAdAAAAABAGYBPgRKA+gAEgAACQEWHQEUBicJAQYmPQE0NwE2MgJqAdcJFgz+MP4wDBYJAdcIFAPh/ikKDaAQCgwB0P4wDAoQoA0KAdcHAAAAAgDZ//kEPQSwAAUAOgAAARQGIzQ2BTMyFh8BNjc+Ah4EBgcOBgcGIiYjIgYiJy4DLwEuAT4EHgEXJyY2A+iwfLD+VmQVJgdPBQsiKFAzRyorDwURAQQSFyozTSwNOkkLDkc3EDlfNyYHBw8GDyUqPjdGMR+TDA0EsHywfLDIHBPCAQIGBwcFDx81S21DBxlLR1xKQhEFBQcHGWt0bCQjP2hJNyATBwMGBcASGAAAAAACAMgAFQOEBLAAFgAaAAATITIWFREUBisBEQcGJjURIyImNRE0NhcVITX6AlgVHR0Vlv8TGpYVHR2rASwEsB0V/nAVHf4MsgkQFQKKHRUBkBUdZGRkAAAAAgDIABkETASwAA4AEgAAEyEyFhURBRElIREjETQ2ARU3NfoC7ic9/UQCWP1EZB8BDWQEsFEs/Ft1A7Z9/BgEARc0/V1kFGQAAQAAAAECTW/DBF9fDzz1AB8EsAAAAADQdnOXAAAAANB2c5f/Uf+cBdwFFAAAAAgAAgAAAAAAAAABAAAFFP+FAAAFFP9R/tQF3AABAAAAAAAAAAAAAAAAAAAAowG4ACgAAAAAAZAAAASwAAAEsABkBLAAAASwAAAEsABwAooAAAUUAAACigAABRQAAAGxAAABRQAAANgAAADYAAAAogAAAQQAAABIAAABBAAAAUUAAASwAGQEsAB7BLAAyASwAMgB9AAABLD/8gSwAAAEsAAABLD/8ASwAAAEsAAOBLAACQSwAGQEsP/TBLD/0wSwAAAEsAAABLAAAASwAAAEsAAABLAAJgSwAG4EsAAXBLAAFwSwABcEsABkBLAAGgSwAGQEsAAMBLAAZASwABcEsP+cBLAAZASwABcEsAAXBLAAAASwABcEsAAXBLAAFwSwAGQEsAAABLAAZASwAAAEsAAABLAAAASwAAAEsAAABLAAAASwAAAEsAAABLAAZASwAMgEsAAABLAAAASwADUEsABkBLAAyASw/7UEsAAhBLAAAASwAAAEsAAABLAAAASwAAAEsP+cBLAAAASwAAAEsAAABLAA2wSwABcEsAB1BLAAAASwAAAEsAAABLAACgSwAMgEsAAABLAAnQSwAMgEsADIBLAAyASwAAAEsP/+BLABLASwAGQEsACIBLABOwSwABcEsAAXBLAAFwSwABcEsAAXBLAAFwSwAAAEsAAXBLAAFwSwABcEsAAXBLAAAASwALcEsAC3BLAAAASwAAAEsABJBLAAFwSwAAAEsAAABLAAXQSw/9wEsP/cBLD/nwSwAGQEsAAABLAAAASwAAAEsABkBLD//wSwAAAEsP9RBLAABgSwAAAEsAAABLABRQSwAAEEsAAABLD/nASwAEoEsAAUBLAAAASwAAAEsAAABLD/nASwAGEEsP/9BLAAFgSwABYEsAAWBLAAFgSwABgEsAAABMQAAASwAGQAAAAAAAD/2ABkADkAyAAAAScAZAAZABkAGQAZABkAGQAZAAAAAAAAAAAAAADZAAAAAAAOAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAMAZABkAAAAEAAAAAAAZP+c/5z/nP+c/5z/nP+c/5wACQAJ//L/8gBkAHkAJwBkAGQAAAAAAGT/ogAAAAAAAAAAAAAAAADIAGQAAAABAI8AAP+c/5wAZAAEAMgAyAAAAGQBkABkAAAAZAEs/7UAAAAAAAAAAAAAAAAAAABkAAABLAFBADIAMgAIAAAAAADIAT4AZgBmANkAyADIAAAAKgAqACoAKgCyAOgA6AFOAU4BTgFOAU4BTgFOAU4BTgFOAU4BTgFOAU4BpAIGAiICfgKGAqwC5ANGA24DjAPEBAgEMgRiBKIE3AVcBboGcgb0ByAHYgfKCB4IYgi+CTYJhAm2Cd4KKApMCpQK4gswC4oLygwIDFgNKg1eDbAODg5oDrQPKA+mD+YQEhBUEJAQqhEqEXYRthIKEjgSfBLAExoTdBPQFCoU1BU8FagVzBYEFjYWYBawFv4XUhemGAIYLhhqGJYYsBjgGP4ZKBloGZQZxBnaGe4aNhpoGrga9hteG7QcMhyUHOIdHB1EHWwdlB28HeYeLh52HsAfYh/SIEYgviEyIXYhuCJAIpYiuCMOIyIjOCN6I8Ij4CQCJDAkXiSWJOIlNCVgJbwmFCZ+JuYnUCe8J/goNChwKKwpoCnMKiYqSiqEKworeiwILGgsuizsLRwtiC30LiguZi6iLtgvDi9GL34vsi/4MD4whDDSMRIxYDGuMegyJDJeMpoy3jMiMz4zaDO2NBg0YDSoNNI1LDWeNeg2PjZ8Ntw3GjdON5I31DgQOEI4hjjIOQo5SjmIOcw6HDpsOpo63jugO9w8GDxQPKI8+D0yPew+Oj6MPtQ/KD9uP6o/+kBIQIBAxkECQX5CGEKoQu5DGENCQ3ZDoEPKRBBEYESuRPZFWkW2RgZGdEa0RvZHNkd2R7ZH9kgWSDJITkhqSIZIzEkSSThJXkmESapKAkouSlIAAQAAARcApwARAAAAAAACAAAAAQABAAAAQAAuAAAAAAAAABAAxgABAAAAAAATABIAAAADAAEECQAAAGoAEgADAAEECQABACgAfAADAAEECQACAA4ApAADAAEECQADAEwAsgADAAEECQAEADgA/gADAAEECQAFAHgBNgADAAEECQAGADYBrgADAAEECQAIABYB5AADAAEECQAJABYB+gADAAEECQALACQCEAADAAEECQAMACQCNAADAAEECQATACQCWAADAAEECQDIABYCfAADAAEECQDJADACkgADAAEECdkDABoCwnd3dy5nbHlwaGljb25zLmNvbQBDAG8AcAB5AHIAaQBnAGgAdAAgAKkAIAAyADAAMQA0ACAAYgB5ACAASgBhAG4AIABLAG8AdgBhAHIAaQBrAC4AIABBAGwAbAAgAHIAaQBnAGgAdABzACAAcgBlAHMAZQByAHYAZQBkAC4ARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAFIAZQBnAHUAbABhAHIAMQAuADAAMAA5ADsAVQBLAFcATgA7AEcATABZAFAASABJAEMATwBOAFMASABhAGwAZgBsAGkAbgBnAHMALQBSAGUAZwB1AGwAYQByAEcATABZAFAASABJAEMATwBOAFMAIABIAGEAbABmAGwAaQBuAGcAcwAgAFIAZQBnAHUAbABhAHIAVgBlAHIAcwBpAG8AbgAgADEALgAwADAAOQA7AFAAUwAgADAAMAAxAC4AMAAwADkAOwBoAG8AdABjAG8AbgB2ACAAMQAuADAALgA3ADAAOwBtAGEAawBlAG8AdABmAC4AbABpAGIAMgAuADUALgA1ADgAMwAyADkARwBMAFkAUABIAEkAQwBPAE4AUwBIAGEAbABmAGwAaQBuAGcAcwAtAFIAZQBnAHUAbABhAHIASgBhAG4AIABLAG8AdgBhAHIAaQBrAEoAYQBuACAASwBvAHYAYQByAGkAawB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQBXAGUAYgBmAG8AbgB0ACAAMQAuADAAVwBlAGQAIABPAGMAdAAgADIAOQAgADAANgA6ADMANgA6ADAANwAgADIAMAAxADQARgBvAG4AdAAgAFMAcQB1AGkAcgByAGUAbAAAAAIAAAAAAAD/tQAyAAAAAAAAAAAAAAAAAAAAAAAAAAABFwAAAQIBAwADAA0ADgEEAJYBBQEGAQcBCAEJAQoBCwEMAQ0BDgEPARABEQESARMA7wEUARUBFgEXARgBGQEaARsBHAEdAR4BHwEgASEBIgEjASQBJQEmAScBKAEpASoBKwEsAS0BLgEvATABMQEyATMBNAE1ATYBNwE4ATkBOgE7ATwBPQE+AT8BQAFBAUIBQwFEAUUBRgFHAUgBSQFKAUsBTAFNAU4BTwFQAVEBUgFTAVQBVQFWAVcBWAFZAVoBWwFcAV0BXgFfAWABYQFiAWMBZAFlAWYBZwFoAWkBagFrAWwBbQFuAW8BcAFxAXIBcwF0AXUBdgF3AXgBeQF6AXsBfAF9AX4BfwGAAYEBggGDAYQBhQGGAYcBiAGJAYoBiwGMAY0BjgGPAZABkQGSAZMBlAGVAZYBlwGYAZkBmgGbAZwBnQGeAZ8BoAGhAaIBowGkAaUBpgGnAagBqQGqAasBrAGtAa4BrwGwAbEBsgGzAbQBtQG2AbcBuAG5AboBuwG8Ab0BvgG/AcABwQHCAcMBxAHFAcYBxwHIAckBygHLAcwBzQHOAc8B0AHRAdIB0wHUAdUB1gHXAdgB2QHaAdsB3AHdAd4B3wHgAeEB4gHjAeQB5QHmAecB6AHpAeoB6wHsAe0B7gHvAfAB8QHyAfMB9AH1AfYB9wH4AfkB+gH7AfwB/QH+Af8CAAIBAgICAwIEAgUCBgIHAggCCQIKAgsCDAINAg4CDwIQAhECEgZnbHlwaDEGZ2x5cGgyB3VuaTAwQTAHdW5pMjAwMAd1bmkyMDAxB3VuaTIwMDIHdW5pMjAwMwd1bmkyMDA0B3VuaTIwMDUHdW5pMjAwNgd1bmkyMDA3B3VuaTIwMDgHdW5pMjAwOQd1bmkyMDBBB3VuaTIwMkYHdW5pMjA1RgRFdXJvB3VuaTIwQkQHdW5pMjMxQgd1bmkyNUZDB3VuaTI2MDEHdW5pMjZGQQd1bmkyNzA5B3VuaTI3MEYHdW5pRTAwMQd1bmlFMDAyB3VuaUUwMDMHdW5pRTAwNQd1bmlFMDA2B3VuaUUwMDcHdW5pRTAwOAd1bmlFMDA5B3VuaUUwMTAHdW5pRTAxMQd1bmlFMDEyB3VuaUUwMTMHdW5pRTAxNAd1bmlFMDE1B3VuaUUwMTYHdW5pRTAxNwd1bmlFMDE4B3VuaUUwMTkHdW5pRTAyMAd1bmlFMDIxB3VuaUUwMjIHdW5pRTAyMwd1bmlFMDI0B3VuaUUwMjUHdW5pRTAyNgd1bmlFMDI3B3VuaUUwMjgHdW5pRTAyOQd1bmlFMDMwB3VuaUUwMzEHdW5pRTAzMgd1bmlFMDMzB3VuaUUwMzQHdW5pRTAzNQd1bmlFMDM2B3VuaUUwMzcHdW5pRTAzOAd1bmlFMDM5B3VuaUUwNDAHdW5pRTA0MQd1bmlFMDQyB3VuaUUwNDMHdW5pRTA0NAd1bmlFMDQ1B3VuaUUwNDYHdW5pRTA0Nwd1bmlFMDQ4B3VuaUUwNDkHdW5pRTA1MAd1bmlFMDUxB3VuaUUwNTIHdW5pRTA1Mwd1bmlFMDU0B3VuaUUwNTUHdW5pRTA1Ngd1bmlFMDU3B3VuaUUwNTgHdW5pRTA1OQd1bmlFMDYwB3VuaUUwNjIHdW5pRTA2Mwd1bmlFMDY0B3VuaUUwNjUHdW5pRTA2Ngd1bmlFMDY3B3VuaUUwNjgHdW5pRTA2OQd1bmlFMDcwB3VuaUUwNzEHdW5pRTA3Mgd1bmlFMDczB3VuaUUwNzQHdW5pRTA3NQd1bmlFMDc2B3VuaUUwNzcHdW5pRTA3OAd1bmlFMDc5B3VuaUUwODAHdW5pRTA4MQd1bmlFMDgyB3VuaUUwODMHdW5pRTA4NAd1bmlFMDg1B3VuaUUwODYHdW5pRTA4Nwd1bmlFMDg4B3VuaUUwODkHdW5pRTA5MAd1bmlFMDkxB3VuaUUwOTIHdW5pRTA5Mwd1bmlFMDk0B3VuaUUwOTUHdW5pRTA5Ngd1bmlFMDk3B3VuaUUxMDEHdW5pRTEwMgd1bmlFMTAzB3VuaUUxMDQHdW5pRTEwNQd1bmlFMTA2B3VuaUUxMDcHdW5pRTEwOAd1bmlFMTA5B3VuaUUxMTAHdW5pRTExMQd1bmlFMTEyB3VuaUUxMTMHdW5pRTExNAd1bmlFMTE1B3VuaUUxMTYHdW5pRTExNwd1bmlFMTE4B3VuaUUxMTkHdW5pRTEyMAd1bmlFMTIxB3VuaUUxMjIHdW5pRTEyMwd1bmlFMTI0B3VuaUUxMjUHdW5pRTEyNgd1bmlFMTI3B3VuaUUxMjgHdW5pRTEyOQd1bmlFMTMwB3VuaUUxMzEHdW5pRTEzMgd1bmlFMTMzB3VuaUUxMzQHdW5pRTEzNQd1bmlFMTM2B3VuaUUxMzcHdW5pRTEzOAd1bmlFMTM5B3VuaUUxNDAHdW5pRTE0MQd1bmlFMTQyB3VuaUUxNDMHdW5pRTE0NAd1bmlFMTQ1B3VuaUUxNDYHdW5pRTE0OAd1bmlFMTQ5B3VuaUUxNTAHdW5pRTE1MQd1bmlFMTUyB3VuaUUxNTMHdW5pRTE1NAd1bmlFMTU1B3VuaUUxNTYHdW5pRTE1Nwd1bmlFMTU4B3VuaUUxNTkHdW5pRTE2MAd1bmlFMTYxB3VuaUUxNjIHdW5pRTE2Mwd1bmlFMTY0B3VuaUUxNjUHdW5pRTE2Ngd1bmlFMTY3B3VuaUUxNjgHdW5pRTE2OQd1bmlFMTcwB3VuaUUxNzEHdW5pRTE3Mgd1bmlFMTczB3VuaUUxNzQHdW5pRTE3NQd1bmlFMTc2B3VuaUUxNzcHdW5pRTE3OAd1bmlFMTc5B3VuaUUxODAHdW5pRTE4MQd1bmlFMTgyB3VuaUUxODMHdW5pRTE4NAd1bmlFMTg1B3VuaUUxODYHdW5pRTE4Nwd1bmlFMTg4B3VuaUUxODkHdW5pRTE5MAd1bmlFMTkxB3VuaUUxOTIHdW5pRTE5Mwd1bmlFMTk0B3VuaUUxOTUHdW5pRTE5Nwd1bmlFMTk4B3VuaUUxOTkHdW5pRTIwMAd1bmlFMjAxB3VuaUUyMDIHdW5pRTIwMwd1bmlFMjA0B3VuaUUyMDUHdW5pRTIwNgd1bmlFMjA5B3VuaUUyMTAHdW5pRTIxMQd1bmlFMjEyB3VuaUUyMTMHdW5pRTIxNAd1bmlFMjE1B3VuaUUyMTYHdW5pRTIxOAd1bmlFMjE5B3VuaUUyMjEHdW5pRTIyMwd1bmlFMjI0B3VuaUUyMjUHdW5pRTIyNgd1bmlFMjI3B3VuaUUyMzAHdW5pRTIzMQd1bmlFMjMyB3VuaUUyMzMHdW5pRTIzNAd1bmlFMjM1B3VuaUUyMzYHdW5pRTIzNwd1bmlFMjM4B3VuaUUyMzkHdW5pRTI0MAd1bmlFMjQxB3VuaUUyNDIHdW5pRTI0Mwd1bmlFMjQ0B3VuaUUyNDUHdW5pRTI0Ngd1bmlFMjQ3B3VuaUUyNDgHdW5pRTI0OQd1bmlFMjUwB3VuaUUyNTEHdW5pRTI1Mgd1bmlFMjUzB3VuaUUyNTQHdW5pRTI1NQd1bmlFMjU2B3VuaUUyNTcHdW5pRTI1OAd1bmlFMjU5B3VuaUUyNjAHdW5pRjhGRgZ1MUY1MTEGdTFGNkFBAAAAAAFUUMMXAAA=) format('truetype'),url() format('svg')}.glyphicon{position:relative;top:1px;display:inline-block;font-family:'Glyphicons Halflings';font-style:normal;font-weight:normal;line-height:1;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.glyphicon-asterisk:before{content:"\002a"}.glyphicon-plus:before{content:"\002b"}.glyphicon-euro:before,.glyphicon-eur:before{content:"\20ac"}.glyphicon-minus:before{content:"\2212"}.glyphicon-cloud:before{content:"\2601"}.glyphicon-envelope:before{content:"\2709"}.glyphicon-pencil:before{content:"\270f"}.glyphicon-glass:before{content:"\e001"}.glyphicon-music:before{content:"\e002"}.glyphicon-search:before{content:"\e003"}.glyphicon-heart:before{content:"\e005"}.glyphicon-star:before{content:"\e006"}.glyphicon-star-empty:before{content:"\e007"}.glyphicon-user:before{content:"\e008"}.glyphicon-film:before{content:"\e009"}.glyphicon-th-large:before{content:"\e010"}.glyphicon-th:before{content:"\e011"}.glyphicon-th-list:before{content:"\e012"}.glyphicon-ok:before{content:"\e013"}.glyphicon-remove:before{content:"\e014"}.glyphicon-zoom-in:before{content:"\e015"}.glyphicon-zoom-out:before{content:"\e016"}.glyphicon-off:before{content:"\e017"}.glyphicon-signal:before{content:"\e018"}.glyphicon-cog:before{content:"\e019"}.glyphicon-trash:before{content:"\e020"}.glyphicon-home:before{content:"\e021"}.glyphicon-file:before{content:"\e022"}.glyphicon-time:before{content:"\e023"}.glyphicon-road:before{content:"\e024"}.glyphicon-download-alt:before{content:"\e025"}.glyphicon-download:before{content:"\e026"}.glyphicon-upload:before{content:"\e027"}.glyphicon-inbox:before{content:"\e028"}.glyphicon-play-circle:before{content:"\e029"}.glyphicon-repeat:before{content:"\e030"}.glyphicon-refresh:before{content:"\e031"}.glyphicon-list-alt:before{content:"\e032"}.glyphicon-lock:before{content:"\e033"}.glyphicon-flag:before{content:"\e034"}.glyphicon-headphones:before{content:"\e035"}.glyphicon-volume-off:before{content:"\e036"}.glyphicon-volume-down:before{content:"\e037"}.glyphicon-volume-up:before{content:"\e038"}.glyphicon-qrcode:before{content:"\e039"}.glyphicon-barcode:before{content:"\e040"}.glyphicon-tag:before{content:"\e041"}.glyphicon-tags:before{content:"\e042"}.glyphicon-book:before{content:"\e043"}.glyphicon-bookmark:before{content:"\e044"}.glyphicon-print:before{content:"\e045"}.glyphicon-camera:before{content:"\e046"}.glyphicon-font:before{content:"\e047"}.glyphicon-bold:before{content:"\e048"}.glyphicon-italic:before{content:"\e049"}.glyphicon-text-height:before{content:"\e050"}.glyphicon-text-width:before{content:"\e051"}.glyphicon-align-left:before{content:"\e052"}.glyphicon-align-center:before{content:"\e053"}.glyphicon-align-right:before{content:"\e054"}.glyphicon-align-justify:before{content:"\e055"}.glyphicon-list:before{content:"\e056"}.glyphicon-indent-left:before{content:"\e057"}.glyphicon-indent-right:before{content:"\e058"}.glyphicon-facetime-video:before{content:"\e059"}.glyphicon-picture:before{content:"\e060"}.glyphicon-map-marker:before{content:"\e062"}.glyphicon-adjust:before{content:"\e063"}.glyphicon-tint:before{content:"\e064"}.glyphicon-edit:before{content:"\e065"}.glyphicon-share:before{content:"\e066"}.glyphicon-check:before{content:"\e067"}.glyphicon-move:before{content:"\e068"}.glyphicon-step-backward:before{content:"\e069"}.glyphicon-fast-backward:before{content:"\e070"}.glyphicon-backward:before{content:"\e071"}.glyphicon-play:before{content:"\e072"}.glyphicon-pause:before{content:"\e073"}.glyphicon-stop:before{content:"\e074"}.glyphicon-forward:before{content:"\e075"}.glyphicon-fast-forward:before{content:"\e076"}.glyphicon-step-forward:before{content:"\e077"}.glyphicon-eject:before{content:"\e078"}.glyphicon-chevron-left:before{content:"\e079"}.glyphicon-chevron-right:before{content:"\e080"}.glyphicon-plus-sign:before{content:"\e081"}.glyphicon-minus-sign:before{content:"\e082"}.glyphicon-remove-sign:before{content:"\e083"}.glyphicon-ok-sign:before{content:"\e084"}.glyphicon-question-sign:before{content:"\e085"}.glyphicon-info-sign:before{content:"\e086"}.glyphicon-screenshot:before{content:"\e087"}.glyphicon-remove-circle:before{content:"\e088"}.glyphicon-ok-circle:before{content:"\e089"}.glyphicon-ban-circle:before{content:"\e090"}.glyphicon-arrow-left:before{content:"\e091"}.glyphicon-arrow-right:before{content:"\e092"}.glyphicon-arrow-up:before{content:"\e093"}.glyphicon-arrow-down:before{content:"\e094"}.glyphicon-share-alt:before{content:"\e095"}.glyphicon-resize-full:before{content:"\e096"}.glyphicon-resize-small:before{content:"\e097"}.glyphicon-exclamation-sign:before{content:"\e101"}.glyphicon-gift:before{content:"\e102"}.glyphicon-leaf:before{content:"\e103"}.glyphicon-fire:before{content:"\e104"}.glyphicon-eye-open:before{content:"\e105"}.glyphicon-eye-close:before{content:"\e106"}.glyphicon-warning-sign:before{content:"\e107"}.glyphicon-plane:before{content:"\e108"}.glyphicon-calendar:before{content:"\e109"}.glyphicon-random:before{content:"\e110"}.glyphicon-comment:before{content:"\e111"}.glyphicon-magnet:before{content:"\e112"}.glyphicon-chevron-up:before{content:"\e113"}.glyphicon-chevron-down:before{content:"\e114"}.glyphicon-retweet:before{content:"\e115"}.glyphicon-shopping-cart:before{content:"\e116"}.glyphicon-folder-close:before{content:"\e117"}.glyphicon-folder-open:before{content:"\e118"}.glyphicon-resize-vertical:before{content:"\e119"}.glyphicon-resize-horizontal:before{content:"\e120"}.glyphicon-hdd:before{content:"\e121"}.glyphicon-bullhorn:before{content:"\e122"}.glyphicon-bell:before{content:"\e123"}.glyphicon-certificate:before{content:"\e124"}.glyphicon-thumbs-up:before{content:"\e125"}.glyphicon-thumbs-down:before{content:"\e126"}.glyphicon-hand-right:before{content:"\e127"}.glyphicon-hand-left:before{content:"\e128"}.glyphicon-hand-up:before{content:"\e129"}.glyphicon-hand-down:before{content:"\e130"}.glyphicon-circle-arrow-right:before{content:"\e131"}.glyphicon-circle-arrow-left:before{content:"\e132"}.glyphicon-circle-arrow-up:before{content:"\e133"}.glyphicon-circle-arrow-down:before{content:"\e134"}.glyphicon-globe:before{content:"\e135"}.glyphicon-wrench:before{content:"\e136"}.glyphicon-tasks:before{content:"\e137"}.glyphicon-filter:before{content:"\e138"}.glyphicon-briefcase:before{content:"\e139"}.glyphicon-fullscreen:before{content:"\e140"}.glyphicon-dashboard:before{content:"\e141"}.glyphicon-paperclip:before{content:"\e142"}.glyphicon-heart-empty:before{content:"\e143"}.glyphicon-link:before{content:"\e144"}.glyphicon-phone:before{content:"\e145"}.glyphicon-pushpin:before{content:"\e146"}.glyphicon-usd:before{content:"\e148"}.glyphicon-gbp:before{content:"\e149"}.glyphicon-sort:before{content:"\e150"}.glyphicon-sort-by-alphabet:before{content:"\e151"}.glyphicon-sort-by-alphabet-alt:before{content:"\e152"}.glyphicon-sort-by-order:before{content:"\e153"}.glyphicon-sort-by-order-alt:before{content:"\e154"}.glyphicon-sort-by-attributes:before{content:"\e155"}.glyphicon-sort-by-attributes-alt:before{content:"\e156"}.glyphicon-unchecked:before{content:"\e157"}.glyphicon-expand:before{content:"\e158"}.glyphicon-collapse-down:before{content:"\e159"}.glyphicon-collapse-up:before{content:"\e160"}.glyphicon-log-in:before{content:"\e161"}.glyphicon-flash:before{content:"\e162"}.glyphicon-log-out:before{content:"\e163"}.glyphicon-new-window:before{content:"\e164"}.glyphicon-record:before{content:"\e165"}.glyphicon-save:before{content:"\e166"}.glyphicon-open:before{content:"\e167"}.glyphicon-saved:before{content:"\e168"}.glyphicon-import:before{content:"\e169"}.glyphicon-export:before{content:"\e170"}.glyphicon-send:before{content:"\e171"}.glyphicon-floppy-disk:before{content:"\e172"}.glyphicon-floppy-saved:before{content:"\e173"}.glyphicon-floppy-remove:before{content:"\e174"}.glyphicon-floppy-save:before{content:"\e175"}.glyphicon-floppy-open:before{content:"\e176"}.glyphicon-credit-card:before{content:"\e177"}.glyphicon-transfer:before{content:"\e178"}.glyphicon-cutlery:before{content:"\e179"}.glyphicon-header:before{content:"\e180"}.glyphicon-compressed:before{content:"\e181"}.glyphicon-earphone:before{content:"\e182"}.glyphicon-phone-alt:before{content:"\e183"}.glyphicon-tower:before{content:"\e184"}.glyphicon-stats:before{content:"\e185"}.glyphicon-sd-video:before{content:"\e186"}.glyphicon-hd-video:before{content:"\e187"}.glyphicon-subtitles:before{content:"\e188"}.glyphicon-sound-stereo:before{content:"\e189"}.glyphicon-sound-dolby:before{content:"\e190"}.glyphicon-sound-5-1:before{content:"\e191"}.glyphicon-sound-6-1:before{content:"\e192"}.glyphicon-sound-7-1:before{content:"\e193"}.glyphicon-copyright-mark:before{content:"\e194"}.glyphicon-registration-mark:before{content:"\e195"}.glyphicon-cloud-download:before{content:"\e197"}.glyphicon-cloud-upload:before{content:"\e198"}.glyphicon-tree-conifer:before{content:"\e199"}.glyphicon-tree-deciduous:before{content:"\e200"}.glyphicon-cd:before{content:"\e201"}.glyphicon-save-file:before{content:"\e202"}.glyphicon-open-file:before{content:"\e203"}.glyphicon-level-up:before{content:"\e204"}.glyphicon-copy:before{content:"\e205"}.glyphicon-paste:before{content:"\e206"}.glyphicon-alert:before{content:"\e209"}.glyphicon-equalizer:before{content:"\e210"}.glyphicon-king:before{content:"\e211"}.glyphicon-queen:before{content:"\e212"}.glyphicon-pawn:before{content:"\e213"}.glyphicon-bishop:before{content:"\e214"}.glyphicon-knight:before{content:"\e215"}.glyphicon-baby-formula:before{content:"\e216"}.glyphicon-tent:before{content:"\26fa"}.glyphicon-blackboard:before{content:"\e218"}.glyphicon-bed:before{content:"\e219"}.glyphicon-apple:before{content:"\f8ff"}.glyphicon-erase:before{content:"\e221"}.glyphicon-hourglass:before{content:"\231b"}.glyphicon-lamp:before{content:"\e223"}.glyphicon-duplicate:before{content:"\e224"}.glyphicon-piggy-bank:before{content:"\e225"}.glyphicon-scissors:before{content:"\e226"}.glyphicon-bitcoin:before{content:"\e227"}.glyphicon-btc:before{content:"\e227"}.glyphicon-xbt:before{content:"\e227"}.glyphicon-yen:before{content:"\00a5"}.glyphicon-jpy:before{content:"\00a5"}.glyphicon-ruble:before{content:"\20bd"}.glyphicon-rub:before{content:"\20bd"}.glyphicon-scale:before{content:"\e230"}.glyphicon-ice-lolly:before{content:"\e231"}.glyphicon-ice-lolly-tasted:before{content:"\e232"}.glyphicon-education:before{content:"\e233"}.glyphicon-option-horizontal:before{content:"\e234"}.glyphicon-option-vertical:before{content:"\e235"}.glyphicon-menu-hamburger:before{content:"\e236"}.glyphicon-modal-window:before{content:"\e237"}.glyphicon-oil:before{content:"\e238"}.glyphicon-grain:before{content:"\e239"}.glyphicon-sunglasses:before{content:"\e240"}.glyphicon-text-size:before{content:"\e241"}.glyphicon-text-color:before{content:"\e242"}.glyphicon-text-background:before{content:"\e243"}.glyphicon-object-align-top:before{content:"\e244"}.glyphicon-object-align-bottom:before{content:"\e245"}.glyphicon-object-align-horizontal:before{content:"\e246"}.glyphicon-object-align-left:before{content:"\e247"}.glyphicon-object-align-vertical:before{content:"\e248"}.glyphicon-object-align-right:before{content:"\e249"}.glyphicon-triangle-right:before{content:"\e250"}.glyphicon-triangle-left:before{content:"\e251"}.glyphicon-triangle-bottom:before{content:"\e252"}.glyphicon-triangle-top:before{content:"\e253"}.glyphicon-console:before{content:"\e254"}.glyphicon-superscript:before{content:"\e255"}.glyphicon-subscript:before{content:"\e256"}.glyphicon-menu-left:before{content:"\e257"}.glyphicon-menu-right:before{content:"\e258"}.glyphicon-menu-down:before{content:"\e259"}.glyphicon-menu-up:before{content:"\e260"}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}*:before,*:after{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:10px;-webkit-tap-highlight-color:rgba(0,0,0,0)}body{font-family:Georgia,"Times New Roman",Times,serif;font-size:16px;line-height:1.42857143;color:#333333;background-color:#ffffff}input,button,select,textarea{font-family:inherit;font-size:inherit;line-height:inherit}a{color:#4582ec;text-decoration:none}a:hover,a:focus{color:#134fb8;text-decoration:underline}a:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}figure{margin:0}img{vertical-align:middle}.img-responsive,.thumbnail>img,.thumbnail a>img,.carousel-inner>.item>img,.carousel-inner>.item>a>img{display:block;max-width:100%;height:auto}.img-rounded{border-radius:6px}.img-thumbnail{padding:4px;line-height:1.42857143;background-color:#ffffff;border:1px solid #dddddd;border-radius:4px;-webkit-transition:all .2s ease-in-out;-o-transition:all .2s ease-in-out;transition:all .2s ease-in-out;display:inline-block;max-width:100%;height:auto}.img-circle{border-radius:50%}hr{margin-top:22px;margin-bottom:22px;border:0;border-top:1px solid #eeeeee}.sr-only{position:absolute;width:1px;height:1px;margin:-1px;padding:0;overflow:hidden;clip:rect(0, 0, 0, 0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}[role="button"]{cursor:pointer}h1,h2,h3,h4,h5,h6,.h1,.h2,.h3,.h4,.h5,.h6{font-family:"Raleway","Helvetica Neue",Helvetica,Arial,sans-serif;font-weight:bold;line-height:1.1;color:inherit}h1 small,h2 small,h3 small,h4 small,h5 small,h6 small,.h1 small,.h2 small,.h3 small,.h4 small,.h5 small,.h6 small,h1 .small,h2 .small,h3 .small,h4 .small,h5 .small,h6 .small,.h1 .small,.h2 .small,.h3 .small,.h4 .small,.h5 .small,.h6 .small{font-weight:normal;line-height:1;color:#b3b3b3}h1,.h1,h2,.h2,h3,.h3{margin-top:22px;margin-bottom:11px}h1 small,.h1 small,h2 small,.h2 small,h3 small,.h3 small,h1 .small,.h1 .small,h2 .small,.h2 .small,h3 .small,.h3 .small{font-size:65%}h4,.h4,h5,.h5,h6,.h6{margin-top:11px;margin-bottom:11px}h4 small,.h4 small,h5 small,.h5 small,h6 small,.h6 small,h4 .small,.h4 .small,h5 .small,.h5 .small,h6 .small,.h6 .small{font-size:75%}h1,.h1{font-size:41px}h2,.h2{font-size:34px}h3,.h3{font-size:28px}h4,.h4{font-size:20px}h5,.h5{font-size:16px}h6,.h6{font-size:14px}p{margin:0 0 11px}.lead{margin-bottom:22px;font-size:18px;font-weight:300;line-height:1.4}@media (min-width:768px){.lead{font-size:24px}}small,.small{font-size:87%}mark,.mark{background-color:#fcf8e3;padding:.2em}.text-left{text-align:left}.text-right{text-align:right}.text-center{text-align:center}.text-justify{text-align:justify}.text-nowrap{white-space:nowrap}.text-lowercase{text-transform:lowercase}.text-uppercase{text-transform:uppercase}.text-capitalize{text-transform:capitalize}.text-muted{color:#b3b3b3}.text-primary{color:#4582ec}a.text-primary:hover,a.text-primary:focus{color:#1863e6}.text-success{color:#3fad46}a.text-success:hover,a.text-success:focus{color:#318837}.text-info{color:#5bc0de}a.text-info:hover,a.text-info:focus{color:#31b0d5}.text-warning{color:#f0ad4e}a.text-warning:hover,a.text-warning:focus{color:#ec971f}.text-danger{color:#d9534f}a.text-danger:hover,a.text-danger:focus{color:#c9302c}.bg-primary{color:#fff;background-color:#4582ec}a.bg-primary:hover,a.bg-primary:focus{background-color:#1863e6}.bg-success{background-color:#dff0d8}a.bg-success:hover,a.bg-success:focus{background-color:#c1e2b3}.bg-info{background-color:#d9edf7}a.bg-info:hover,a.bg-info:focus{background-color:#afd9ee}.bg-warning{background-color:#fcf8e3}a.bg-warning:hover,a.bg-warning:focus{background-color:#f7ecb5}.bg-danger{background-color:#f2dede}a.bg-danger:hover,a.bg-danger:focus{background-color:#e4b9b9}.page-header{padding-bottom:10px;margin:44px 0 22px;border-bottom:1px solid #dddddd}ul,ol{margin-top:0;margin-bottom:11px}ul ul,ol ul,ul ol,ol ol{margin-bottom:0}.list-unstyled{padding-left:0;list-style:none}.list-inline{padding-left:0;list-style:none;margin-left:-5px}.list-inline>li{display:inline-block;padding-left:5px;padding-right:5px}dl{margin-top:0;margin-bottom:22px}dt,dd{line-height:1.42857143}dt{font-weight:bold}dd{margin-left:0}@media (min-width:768px){.dl-horizontal dt{float:left;width:160px;clear:left;text-align:right;overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.dl-horizontal dd{margin-left:180px}}abbr[title],abbr[data-original-title]{cursor:help;border-bottom:1px dotted #b3b3b3}.initialism{font-size:90%;text-transform:uppercase}blockquote{padding:11px 22px;margin:0 0 22px;font-size:20px;border-left:5px solid #4582ec}blockquote p:last-child,blockquote ul:last-child,blockquote ol:last-child{margin-bottom:0}blockquote footer,blockquote small,blockquote .small{display:block;font-size:80%;line-height:1.42857143;color:#333333}blockquote footer:before,blockquote small:before,blockquote .small:before{content:'\2014 \00A0'}.blockquote-reverse,blockquote.pull-right{padding-right:15px;padding-left:0;border-right:5px solid #4582ec;border-left:0;text-align:right}.blockquote-reverse footer:before,blockquote.pull-right footer:before,.blockquote-reverse small:before,blockquote.pull-right small:before,.blockquote-reverse .small:before,blockquote.pull-right .small:before{content:''}.blockquote-reverse footer:after,blockquote.pull-right footer:after,.blockquote-reverse small:after,blockquote.pull-right small:after,.blockquote-reverse .small:after,blockquote.pull-right .small:after{content:'\00A0 \2014'}address{margin-bottom:22px;font-style:normal;line-height:1.42857143}code,kbd,pre,samp{font-family:monospace}code{padding:2px 4px;font-size:90%;color:#c7254e;background-color:#f9f2f4;border-radius:4px}kbd{padding:2px 4px;font-size:90%;color:#ffffff;background-color:#333333;border-radius:3px;-webkit-box-shadow:inset 0 -1px 0 rgba(0,0,0,0.25);box-shadow:inset 0 -1px 0 rgba(0,0,0,0.25)}kbd kbd{padding:0;font-size:100%;font-weight:bold;-webkit-box-shadow:none;box-shadow:none}pre{display:block;padding:10.5px;margin:0 0 11px;font-size:15px;line-height:1.42857143;word-break:break-all;word-wrap:break-word;color:#333333;background-color:#f5f5f5;border:1px solid #cccccc;border-radius:4px}pre code{padding:0;font-size:inherit;color:inherit;white-space:pre-wrap;background-color:transparent;border-radius:0}.pre-scrollable{max-height:340px;overflow-y:scroll}.container{margin-right:auto;margin-left:auto;padding-left:15px;padding-right:15px}@media (min-width:768px){.container{width:750px}}@media (min-width:992px){.container{width:970px}}@media (min-width:1200px){.container{width:1170px}}.container-fluid{margin-right:auto;margin-left:auto;padding-left:15px;padding-right:15px}.row{margin-left:-15px;margin-right:-15px}.col-xs-1,.col-sm-1,.col-md-1,.col-lg-1,.col-xs-2,.col-sm-2,.col-md-2,.col-lg-2,.col-xs-3,.col-sm-3,.col-md-3,.col-lg-3,.col-xs-4,.col-sm-4,.col-md-4,.col-lg-4,.col-xs-5,.col-sm-5,.col-md-5,.col-lg-5,.col-xs-6,.col-sm-6,.col-md-6,.col-lg-6,.col-xs-7,.col-sm-7,.col-md-7,.col-lg-7,.col-xs-8,.col-sm-8,.col-md-8,.col-lg-8,.col-xs-9,.col-sm-9,.col-md-9,.col-lg-9,.col-xs-10,.col-sm-10,.col-md-10,.col-lg-10,.col-xs-11,.col-sm-11,.col-md-11,.col-lg-11,.col-xs-12,.col-sm-12,.col-md-12,.col-lg-12{position:relative;min-height:1px;padding-left:15px;padding-right:15px}.col-xs-1,.col-xs-2,.col-xs-3,.col-xs-4,.col-xs-5,.col-xs-6,.col-xs-7,.col-xs-8,.col-xs-9,.col-xs-10,.col-xs-11,.col-xs-12{float:left}.col-xs-12{width:100%}.col-xs-11{width:91.66666667%}.col-xs-10{width:83.33333333%}.col-xs-9{width:75%}.col-xs-8{width:66.66666667%}.col-xs-7{width:58.33333333%}.col-xs-6{width:50%}.col-xs-5{width:41.66666667%}.col-xs-4{width:33.33333333%}.col-xs-3{width:25%}.col-xs-2{width:16.66666667%}.col-xs-1{width:8.33333333%}.col-xs-pull-12{right:100%}.col-xs-pull-11{right:91.66666667%}.col-xs-pull-10{right:83.33333333%}.col-xs-pull-9{right:75%}.col-xs-pull-8{right:66.66666667%}.col-xs-pull-7{right:58.33333333%}.col-xs-pull-6{right:50%}.col-xs-pull-5{right:41.66666667%}.col-xs-pull-4{right:33.33333333%}.col-xs-pull-3{right:25%}.col-xs-pull-2{right:16.66666667%}.col-xs-pull-1{right:8.33333333%}.col-xs-pull-0{right:auto}.col-xs-push-12{left:100%}.col-xs-push-11{left:91.66666667%}.col-xs-push-10{left:83.33333333%}.col-xs-push-9{left:75%}.col-xs-push-8{left:66.66666667%}.col-xs-push-7{left:58.33333333%}.col-xs-push-6{left:50%}.col-xs-push-5{left:41.66666667%}.col-xs-push-4{left:33.33333333%}.col-xs-push-3{left:25%}.col-xs-push-2{left:16.66666667%}.col-xs-push-1{left:8.33333333%}.col-xs-push-0{left:auto}.col-xs-offset-12{margin-left:100%}.col-xs-offset-11{margin-left:91.66666667%}.col-xs-offset-10{margin-left:83.33333333%}.col-xs-offset-9{margin-left:75%}.col-xs-offset-8{margin-left:66.66666667%}.col-xs-offset-7{margin-left:58.33333333%}.col-xs-offset-6{margin-left:50%}.col-xs-offset-5{margin-left:41.66666667%}.col-xs-offset-4{margin-left:33.33333333%}.col-xs-offset-3{margin-left:25%}.col-xs-offset-2{margin-left:16.66666667%}.col-xs-offset-1{margin-left:8.33333333%}.col-xs-offset-0{margin-left:0%}@media (min-width:768px){.col-sm-1,.col-sm-2,.col-sm-3,.col-sm-4,.col-sm-5,.col-sm-6,.col-sm-7,.col-sm-8,.col-sm-9,.col-sm-10,.col-sm-11,.col-sm-12{float:left}.col-sm-12{width:100%}.col-sm-11{width:91.66666667%}.col-sm-10{width:83.33333333%}.col-sm-9{width:75%}.col-sm-8{width:66.66666667%}.col-sm-7{width:58.33333333%}.col-sm-6{width:50%}.col-sm-5{width:41.66666667%}.col-sm-4{width:33.33333333%}.col-sm-3{width:25%}.col-sm-2{width:16.66666667%}.col-sm-1{width:8.33333333%}.col-sm-pull-12{right:100%}.col-sm-pull-11{right:91.66666667%}.col-sm-pull-10{right:83.33333333%}.col-sm-pull-9{right:75%}.col-sm-pull-8{right:66.66666667%}.col-sm-pull-7{right:58.33333333%}.col-sm-pull-6{right:50%}.col-sm-pull-5{right:41.66666667%}.col-sm-pull-4{right:33.33333333%}.col-sm-pull-3{right:25%}.col-sm-pull-2{right:16.66666667%}.col-sm-pull-1{right:8.33333333%}.col-sm-pull-0{right:auto}.col-sm-push-12{left:100%}.col-sm-push-11{left:91.66666667%}.col-sm-push-10{left:83.33333333%}.col-sm-push-9{left:75%}.col-sm-push-8{left:66.66666667%}.col-sm-push-7{left:58.33333333%}.col-sm-push-6{left:50%}.col-sm-push-5{left:41.66666667%}.col-sm-push-4{left:33.33333333%}.col-sm-push-3{left:25%}.col-sm-push-2{left:16.66666667%}.col-sm-push-1{left:8.33333333%}.col-sm-push-0{left:auto}.col-sm-offset-12{margin-left:100%}.col-sm-offset-11{margin-left:91.66666667%}.col-sm-offset-10{margin-left:83.33333333%}.col-sm-offset-9{margin-left:75%}.col-sm-offset-8{margin-left:66.66666667%}.col-sm-offset-7{margin-left:58.33333333%}.col-sm-offset-6{margin-left:50%}.col-sm-offset-5{margin-left:41.66666667%}.col-sm-offset-4{margin-left:33.33333333%}.col-sm-offset-3{margin-left:25%}.col-sm-offset-2{margin-left:16.66666667%}.col-sm-offset-1{margin-left:8.33333333%}.col-sm-offset-0{margin-left:0%}}@media (min-width:992px){.col-md-1,.col-md-2,.col-md-3,.col-md-4,.col-md-5,.col-md-6,.col-md-7,.col-md-8,.col-md-9,.col-md-10,.col-md-11,.col-md-12{float:left}.col-md-12{width:100%}.col-md-11{width:91.66666667%}.col-md-10{width:83.33333333%}.col-md-9{width:75%}.col-md-8{width:66.66666667%}.col-md-7{width:58.33333333%}.col-md-6{width:50%}.col-md-5{width:41.66666667%}.col-md-4{width:33.33333333%}.col-md-3{width:25%}.col-md-2{width:16.66666667%}.col-md-1{width:8.33333333%}.col-md-pull-12{right:100%}.col-md-pull-11{right:91.66666667%}.col-md-pull-10{right:83.33333333%}.col-md-pull-9{right:75%}.col-md-pull-8{right:66.66666667%}.col-md-pull-7{right:58.33333333%}.col-md-pull-6{right:50%}.col-md-pull-5{right:41.66666667%}.col-md-pull-4{right:33.33333333%}.col-md-pull-3{right:25%}.col-md-pull-2{right:16.66666667%}.col-md-pull-1{right:8.33333333%}.col-md-pull-0{right:auto}.col-md-push-12{left:100%}.col-md-push-11{left:91.66666667%}.col-md-push-10{left:83.33333333%}.col-md-push-9{left:75%}.col-md-push-8{left:66.66666667%}.col-md-push-7{left:58.33333333%}.col-md-push-6{left:50%}.col-md-push-5{left:41.66666667%}.col-md-push-4{left:33.33333333%}.col-md-push-3{left:25%}.col-md-push-2{left:16.66666667%}.col-md-push-1{left:8.33333333%}.col-md-push-0{left:auto}.col-md-offset-12{margin-left:100%}.col-md-offset-11{margin-left:91.66666667%}.col-md-offset-10{margin-left:83.33333333%}.col-md-offset-9{margin-left:75%}.col-md-offset-8{margin-left:66.66666667%}.col-md-offset-7{margin-left:58.33333333%}.col-md-offset-6{margin-left:50%}.col-md-offset-5{margin-left:41.66666667%}.col-md-offset-4{margin-left:33.33333333%}.col-md-offset-3{margin-left:25%}.col-md-offset-2{margin-left:16.66666667%}.col-md-offset-1{margin-left:8.33333333%}.col-md-offset-0{margin-left:0%}}@media (min-width:1200px){.col-lg-1,.col-lg-2,.col-lg-3,.col-lg-4,.col-lg-5,.col-lg-6,.col-lg-7,.col-lg-8,.col-lg-9,.col-lg-10,.col-lg-11,.col-lg-12{float:left}.col-lg-12{width:100%}.col-lg-11{width:91.66666667%}.col-lg-10{width:83.33333333%}.col-lg-9{width:75%}.col-lg-8{width:66.66666667%}.col-lg-7{width:58.33333333%}.col-lg-6{width:50%}.col-lg-5{width:41.66666667%}.col-lg-4{width:33.33333333%}.col-lg-3{width:25%}.col-lg-2{width:16.66666667%}.col-lg-1{width:8.33333333%}.col-lg-pull-12{right:100%}.col-lg-pull-11{right:91.66666667%}.col-lg-pull-10{right:83.33333333%}.col-lg-pull-9{right:75%}.col-lg-pull-8{right:66.66666667%}.col-lg-pull-7{right:58.33333333%}.col-lg-pull-6{right:50%}.col-lg-pull-5{right:41.66666667%}.col-lg-pull-4{right:33.33333333%}.col-lg-pull-3{right:25%}.col-lg-pull-2{right:16.66666667%}.col-lg-pull-1{right:8.33333333%}.col-lg-pull-0{right:auto}.col-lg-push-12{left:100%}.col-lg-push-11{left:91.66666667%}.col-lg-push-10{left:83.33333333%}.col-lg-push-9{left:75%}.col-lg-push-8{left:66.66666667%}.col-lg-push-7{left:58.33333333%}.col-lg-push-6{left:50%}.col-lg-push-5{left:41.66666667%}.col-lg-push-4{left:33.33333333%}.col-lg-push-3{left:25%}.col-lg-push-2{left:16.66666667%}.col-lg-push-1{left:8.33333333%}.col-lg-push-0{left:auto}.col-lg-offset-12{margin-left:100%}.col-lg-offset-11{margin-left:91.66666667%}.col-lg-offset-10{margin-left:83.33333333%}.col-lg-offset-9{margin-left:75%}.col-lg-offset-8{margin-left:66.66666667%}.col-lg-offset-7{margin-left:58.33333333%}.col-lg-offset-6{margin-left:50%}.col-lg-offset-5{margin-left:41.66666667%}.col-lg-offset-4{margin-left:33.33333333%}.col-lg-offset-3{margin-left:25%}.col-lg-offset-2{margin-left:16.66666667%}.col-lg-offset-1{margin-left:8.33333333%}.col-lg-offset-0{margin-left:0%}}table{background-color:transparent}caption{padding-top:8px;padding-bottom:8px;color:#b3b3b3;text-align:left}th{}.table{width:100%;max-width:100%;margin-bottom:22px}.table>thead>tr>th,.table>tbody>tr>th,.table>tfoot>tr>th,.table>thead>tr>td,.table>tbody>tr>td,.table>tfoot>tr>td{padding:8px;line-height:1.42857143;vertical-align:top;border-top:1px solid #dddddd}.table>thead>tr>th{vertical-align:bottom;border-bottom:2px solid #dddddd}.table>caption+thead>tr:first-child>th,.table>colgroup+thead>tr:first-child>th,.table>thead:first-child>tr:first-child>th,.table>caption+thead>tr:first-child>td,.table>colgroup+thead>tr:first-child>td,.table>thead:first-child>tr:first-child>td{border-top:0}.table>tbody+tbody{border-top:2px solid #dddddd}.table .table{background-color:#ffffff}.table-condensed>thead>tr>th,.table-condensed>tbody>tr>th,.table-condensed>tfoot>tr>th,.table-condensed>thead>tr>td,.table-condensed>tbody>tr>td,.table-condensed>tfoot>tr>td{padding:5px}.table-bordered{border:1px solid #dddddd}.table-bordered>thead>tr>th,.table-bordered>tbody>tr>th,.table-bordered>tfoot>tr>th,.table-bordered>thead>tr>td,.table-bordered>tbody>tr>td,.table-bordered>tfoot>tr>td{border:1px solid #dddddd}.table-bordered>thead>tr>th,.table-bordered>thead>tr>td{border-bottom-width:2px}.table-striped>tbody>tr:nth-of-type(odd){background-color:#f9f9f9}.table-hover>tbody>tr:hover{background-color:#f5f5f5}table col[class*="col-"]{position:static;float:none;display:table-column}table td[class*="col-"],table th[class*="col-"]{position:static;float:none;display:table-cell}.table>thead>tr>td.active,.table>tbody>tr>td.active,.table>tfoot>tr>td.active,.table>thead>tr>th.active,.table>tbody>tr>th.active,.table>tfoot>tr>th.active,.table>thead>tr.active>td,.table>tbody>tr.active>td,.table>tfoot>tr.active>td,.table>thead>tr.active>th,.table>tbody>tr.active>th,.table>tfoot>tr.active>th{background-color:#f5f5f5}.table-hover>tbody>tr>td.active:hover,.table-hover>tbody>tr>th.active:hover,.table-hover>tbody>tr.active:hover>td,.table-hover>tbody>tr:hover>.active,.table-hover>tbody>tr.active:hover>th{background-color:#e8e8e8}.table>thead>tr>td.success,.table>tbody>tr>td.success,.table>tfoot>tr>td.success,.table>thead>tr>th.success,.table>tbody>tr>th.success,.table>tfoot>tr>th.success,.table>thead>tr.success>td,.table>tbody>tr.success>td,.table>tfoot>tr.success>td,.table>thead>tr.success>th,.table>tbody>tr.success>th,.table>tfoot>tr.success>th{background-color:#dff0d8}.table-hover>tbody>tr>td.success:hover,.table-hover>tbody>tr>th.success:hover,.table-hover>tbody>tr.success:hover>td,.table-hover>tbody>tr:hover>.success,.table-hover>tbody>tr.success:hover>th{background-color:#d0e9c6}.table>thead>tr>td.info,.table>tbody>tr>td.info,.table>tfoot>tr>td.info,.table>thead>tr>th.info,.table>tbody>tr>th.info,.table>tfoot>tr>th.info,.table>thead>tr.info>td,.table>tbody>tr.info>td,.table>tfoot>tr.info>td,.table>thead>tr.info>th,.table>tbody>tr.info>th,.table>tfoot>tr.info>th{background-color:#d9edf7}.table-hover>tbody>tr>td.info:hover,.table-hover>tbody>tr>th.info:hover,.table-hover>tbody>tr.info:hover>td,.table-hover>tbody>tr:hover>.info,.table-hover>tbody>tr.info:hover>th{background-color:#c4e3f3}.table>thead>tr>td.warning,.table>tbody>tr>td.warning,.table>tfoot>tr>td.warning,.table>thead>tr>th.warning,.table>tbody>tr>th.warning,.table>tfoot>tr>th.warning,.table>thead>tr.warning>td,.table>tbody>tr.warning>td,.table>tfoot>tr.warning>td,.table>thead>tr.warning>th,.table>tbody>tr.warning>th,.table>tfoot>tr.warning>th{background-color:#fcf8e3}.table-hover>tbody>tr>td.warning:hover,.table-hover>tbody>tr>th.warning:hover,.table-hover>tbody>tr.warning:hover>td,.table-hover>tbody>tr:hover>.warning,.table-hover>tbody>tr.warning:hover>th{background-color:#faf2cc}.table>thead>tr>td.danger,.table>tbody>tr>td.danger,.table>tfoot>tr>td.danger,.table>thead>tr>th.danger,.table>tbody>tr>th.danger,.table>tfoot>tr>th.danger,.table>thead>tr.danger>td,.table>tbody>tr.danger>td,.table>tfoot>tr.danger>td,.table>thead>tr.danger>th,.table>tbody>tr.danger>th,.table>tfoot>tr.danger>th{background-color:#f2dede}.table-hover>tbody>tr>td.danger:hover,.table-hover>tbody>tr>th.danger:hover,.table-hover>tbody>tr.danger:hover>td,.table-hover>tbody>tr:hover>.danger,.table-hover>tbody>tr.danger:hover>th{background-color:#ebcccc}.table-responsive{overflow-x:auto;min-height:0.01%}@media screen and (max-width:767px){.table-responsive{width:100%;margin-bottom:16.5px;overflow-y:hidden;-ms-overflow-style:-ms-autohiding-scrollbar;border:1px solid #dddddd}.table-responsive>.table{margin-bottom:0}.table-responsive>.table>thead>tr>th,.table-responsive>.table>tbody>tr>th,.table-responsive>.table>tfoot>tr>th,.table-responsive>.table>thead>tr>td,.table-responsive>.table>tbody>tr>td,.table-responsive>.table>tfoot>tr>td{white-space:nowrap}.table-responsive>.table-bordered{border:0}.table-responsive>.table-bordered>thead>tr>th:first-child,.table-responsive>.table-bordered>tbody>tr>th:first-child,.table-responsive>.table-bordered>tfoot>tr>th:first-child,.table-responsive>.table-bordered>thead>tr>td:first-child,.table-responsive>.table-bordered>tbody>tr>td:first-child,.table-responsive>.table-bordered>tfoot>tr>td:first-child{border-left:0}.table-responsive>.table-bordered>thead>tr>th:last-child,.table-responsive>.table-bordered>tbody>tr>th:last-child,.table-responsive>.table-bordered>tfoot>tr>th:last-child,.table-responsive>.table-bordered>thead>tr>td:last-child,.table-responsive>.table-bordered>tbody>tr>td:last-child,.table-responsive>.table-bordered>tfoot>tr>td:last-child{border-right:0}.table-responsive>.table-bordered>tbody>tr:last-child>th,.table-responsive>.table-bordered>tfoot>tr:last-child>th,.table-responsive>.table-bordered>tbody>tr:last-child>td,.table-responsive>.table-bordered>tfoot>tr:last-child>td{border-bottom:0}}fieldset{padding:0;margin:0;border:0;min-width:0}legend{display:block;width:100%;padding:0;margin-bottom:22px;font-size:24px;line-height:inherit;color:#333333;border:0;border-bottom:1px solid #e5e5e5}label{display:inline-block;max-width:100%;margin-bottom:5px;font-weight:bold}input[type="search"]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type="radio"],input[type="checkbox"]{margin:4px 0 0;margin-top:1px \9;line-height:normal}input[type="file"]{display:block}input[type="range"]{display:block;width:100%}select[multiple],select[size]{height:auto}input[type="file"]:focus,input[type="radio"]:focus,input[type="checkbox"]:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}output{display:block;padding-top:9px;font-size:16px;line-height:1.42857143;color:#333333}.form-control{display:block;width:100%;height:40px;padding:8px 12px;font-size:16px;line-height:1.42857143;color:#333333;background-color:#ffffff;background-image:none;border:1px solid #dddddd;border-radius:4px;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-webkit-transition:border-color ease-in-out .15s,-webkit-box-shadow ease-in-out .15s;-o-transition:border-color ease-in-out .15s,box-shadow ease-in-out .15s;transition:border-color ease-in-out .15s,box-shadow ease-in-out .15s}.form-control:focus{border-color:#66afe9;outline:0;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 8px rgba(102,175,233,0.6);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 8px rgba(102,175,233,0.6)}.form-control::-moz-placeholder{color:#b3b3b3;opacity:1}.form-control:-ms-input-placeholder{color:#b3b3b3}.form-control::-webkit-input-placeholder{color:#b3b3b3}.form-control::-ms-expand{border:0;background-color:transparent}.form-control[disabled],.form-control[readonly],fieldset[disabled] .form-control{background-color:#eeeeee;opacity:1}.form-control[disabled],fieldset[disabled] .form-control{cursor:not-allowed}textarea.form-control{height:auto}input[type="search"]{-webkit-appearance:none}@media screen and (-webkit-min-device-pixel-ratio:0){input[type="date"].form-control,input[type="time"].form-control,input[type="datetime-local"].form-control,input[type="month"].form-control{line-height:40px}input[type="date"].input-sm,input[type="time"].input-sm,input[type="datetime-local"].input-sm,input[type="month"].input-sm,.input-group-sm input[type="date"],.input-group-sm input[type="time"],.input-group-sm input[type="datetime-local"],.input-group-sm input[type="month"]{line-height:33px}input[type="date"].input-lg,input[type="time"].input-lg,input[type="datetime-local"].input-lg,input[type="month"].input-lg,.input-group-lg input[type="date"],.input-group-lg input[type="time"],.input-group-lg input[type="datetime-local"],.input-group-lg input[type="month"]{line-height:57px}}.form-group{margin-bottom:15px}.radio,.checkbox{position:relative;display:block;margin-top:10px;margin-bottom:10px}.radio label,.checkbox label{min-height:22px;padding-left:20px;margin-bottom:0;font-weight:normal;cursor:pointer}.radio input[type="radio"],.radio-inline input[type="radio"],.checkbox input[type="checkbox"],.checkbox-inline input[type="checkbox"]{position:absolute;margin-left:-20px;margin-top:4px \9}.radio+.radio,.checkbox+.checkbox{margin-top:-5px}.radio-inline,.checkbox-inline{position:relative;display:inline-block;padding-left:20px;margin-bottom:0;vertical-align:middle;font-weight:normal;cursor:pointer}.radio-inline+.radio-inline,.checkbox-inline+.checkbox-inline{margin-top:0;margin-left:10px}input[type="radio"][disabled],input[type="checkbox"][disabled],input[type="radio"].disabled,input[type="checkbox"].disabled,fieldset[disabled] input[type="radio"],fieldset[disabled] input[type="checkbox"]{cursor:not-allowed}.radio-inline.disabled,.checkbox-inline.disabled,fieldset[disabled] .radio-inline,fieldset[disabled] .checkbox-inline{cursor:not-allowed}.radio.disabled label,.checkbox.disabled label,fieldset[disabled] .radio label,fieldset[disabled] .checkbox label{cursor:not-allowed}.form-control-static{padding-top:9px;padding-bottom:9px;margin-bottom:0;min-height:38px}.form-control-static.input-lg,.form-control-static.input-sm{padding-left:0;padding-right:0}.input-sm{height:33px;padding:5px 10px;font-size:14px;line-height:1.5;border-radius:3px}select.input-sm{height:33px;line-height:33px}textarea.input-sm,select[multiple].input-sm{height:auto}.form-group-sm .form-control{height:33px;padding:5px 10px;font-size:14px;line-height:1.5;border-radius:3px}.form-group-sm select.form-control{height:33px;line-height:33px}.form-group-sm textarea.form-control,.form-group-sm select[multiple].form-control{height:auto}.form-group-sm .form-control-static{height:33px;min-height:36px;padding:6px 10px;font-size:14px;line-height:1.5}.input-lg{height:57px;padding:14px 16px;font-size:20px;line-height:1.3333333;border-radius:6px}select.input-lg{height:57px;line-height:57px}textarea.input-lg,select[multiple].input-lg{height:auto}.form-group-lg .form-control{height:57px;padding:14px 16px;font-size:20px;line-height:1.3333333;border-radius:6px}.form-group-lg select.form-control{height:57px;line-height:57px}.form-group-lg textarea.form-control,.form-group-lg select[multiple].form-control{height:auto}.form-group-lg .form-control-static{height:57px;min-height:42px;padding:15px 16px;font-size:20px;line-height:1.3333333}.has-feedback{position:relative}.has-feedback .form-control{padding-right:50px}.form-control-feedback{position:absolute;top:0;right:0;z-index:2;display:block;width:40px;height:40px;line-height:40px;text-align:center;pointer-events:none}.input-lg+.form-control-feedback,.input-group-lg+.form-control-feedback,.form-group-lg .form-control+.form-control-feedback{width:57px;height:57px;line-height:57px}.input-sm+.form-control-feedback,.input-group-sm+.form-control-feedback,.form-group-sm .form-control+.form-control-feedback{width:33px;height:33px;line-height:33px}.has-success .help-block,.has-success .control-label,.has-success .radio,.has-success .checkbox,.has-success .radio-inline,.has-success .checkbox-inline,.has-success.radio label,.has-success.checkbox label,.has-success.radio-inline label,.has-success.checkbox-inline label{color:#3fad46}.has-success .form-control{border-color:#3fad46;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075)}.has-success .form-control:focus{border-color:#318837;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #81d186;box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #81d186}.has-success .input-group-addon{color:#3fad46;border-color:#3fad46;background-color:#dff0d8}.has-success .form-control-feedback{color:#3fad46}.has-warning .help-block,.has-warning .control-label,.has-warning .radio,.has-warning .checkbox,.has-warning .radio-inline,.has-warning .checkbox-inline,.has-warning.radio label,.has-warning.checkbox label,.has-warning.radio-inline label,.has-warning.checkbox-inline label{color:#f0ad4e}.has-warning .form-control{border-color:#f0ad4e;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075)}.has-warning .form-control:focus{border-color:#ec971f;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #f8d9ac;box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #f8d9ac}.has-warning .input-group-addon{color:#f0ad4e;border-color:#f0ad4e;background-color:#fcf8e3}.has-warning .form-control-feedback{color:#f0ad4e}.has-error .help-block,.has-error .control-label,.has-error .radio,.has-error .checkbox,.has-error .radio-inline,.has-error .checkbox-inline,.has-error.radio label,.has-error.checkbox label,.has-error.radio-inline label,.has-error.checkbox-inline label{color:#d9534f}.has-error .form-control{border-color:#d9534f;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075)}.has-error .form-control:focus{border-color:#c9302c;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #eba5a3;box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #eba5a3}.has-error .input-group-addon{color:#d9534f;border-color:#d9534f;background-color:#f2dede}.has-error .form-control-feedback{color:#d9534f}.has-feedback label~.form-control-feedback{top:27px}.has-feedback label.sr-only~.form-control-feedback{top:0}.help-block{display:block;margin-top:5px;margin-bottom:10px;color:#737373}@media (min-width:768px){.form-inline .form-group{display:inline-block;margin-bottom:0;vertical-align:middle}.form-inline .form-control{display:inline-block;width:auto;vertical-align:middle}.form-inline .form-control-static{display:inline-block}.form-inline .input-group{display:inline-table;vertical-align:middle}.form-inline .input-group .input-group-addon,.form-inline .input-group .input-group-btn,.form-inline .input-group .form-control{width:auto}.form-inline .input-group>.form-control{width:100%}.form-inline .control-label{margin-bottom:0;vertical-align:middle}.form-inline .radio,.form-inline .checkbox{display:inline-block;margin-top:0;margin-bottom:0;vertical-align:middle}.form-inline .radio label,.form-inline .checkbox label{padding-left:0}.form-inline .radio input[type="radio"],.form-inline .checkbox input[type="checkbox"]{position:relative;margin-left:0}.form-inline .has-feedback .form-control-feedback{top:0}}.form-horizontal .radio,.form-horizontal .checkbox,.form-horizontal .radio-inline,.form-horizontal .checkbox-inline{margin-top:0;margin-bottom:0;padding-top:9px}.form-horizontal .radio,.form-horizontal .checkbox{min-height:31px}.form-horizontal .form-group{margin-left:-15px;margin-right:-15px}@media (min-width:768px){.form-horizontal .control-label{text-align:right;margin-bottom:0;padding-top:9px}}.form-horizontal .has-feedback .form-control-feedback{right:15px}@media (min-width:768px){.form-horizontal .form-group-lg .control-label{padding-top:15px;font-size:20px}}@media (min-width:768px){.form-horizontal .form-group-sm .control-label{padding-top:6px;font-size:14px}}.btn{display:inline-block;margin-bottom:0;font-weight:normal;text-align:center;vertical-align:middle;-ms-touch-action:manipulation;touch-action:manipulation;cursor:pointer;background-image:none;border:1px solid transparent;white-space:nowrap;padding:8px 12px;font-size:16px;line-height:1.42857143;border-radius:4px;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none}.btn:focus,.btn:active:focus,.btn.active:focus,.btn.focus,.btn:active.focus,.btn.active.focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}.btn:hover,.btn:focus,.btn.focus{color:#333333;text-decoration:none}.btn:active,.btn.active{outline:0;background-image:none;-webkit-box-shadow:inset 0 3px 5px rgba(0,0,0,0.125);box-shadow:inset 0 3px 5px rgba(0,0,0,0.125)}.btn.disabled,.btn[disabled],fieldset[disabled] .btn{cursor:not-allowed;opacity:0.65;filter:alpha(opacity=65);-webkit-box-shadow:none;box-shadow:none}a.btn.disabled,fieldset[disabled] a.btn{pointer-events:none}.btn-default{color:#333333;background-color:#ffffff;border-color:#dddddd}.btn-default:focus,.btn-default.focus{color:#333333;background-color:#e6e6e6;border-color:#9d9d9d}.btn-default:hover{color:#333333;background-color:#e6e6e6;border-color:#bebebe}.btn-default:active,.btn-default.active,.open>.dropdown-toggle.btn-default{color:#333333;background-color:#e6e6e6;border-color:#bebebe}.btn-default:active:hover,.btn-default.active:hover,.open>.dropdown-toggle.btn-default:hover,.btn-default:active:focus,.btn-default.active:focus,.open>.dropdown-toggle.btn-default:focus,.btn-default:active.focus,.btn-default.active.focus,.open>.dropdown-toggle.btn-default.focus{color:#333333;background-color:#d4d4d4;border-color:#9d9d9d}.btn-default:active,.btn-default.active,.open>.dropdown-toggle.btn-default{background-image:none}.btn-default.disabled:hover,.btn-default[disabled]:hover,fieldset[disabled] .btn-default:hover,.btn-default.disabled:focus,.btn-default[disabled]:focus,fieldset[disabled] .btn-default:focus,.btn-default.disabled.focus,.btn-default[disabled].focus,fieldset[disabled] .btn-default.focus{background-color:#ffffff;border-color:#dddddd}.btn-default .badge{color:#ffffff;background-color:#333333}.btn-primary{color:#ffffff;background-color:#4582ec;border-color:#4582ec}.btn-primary:focus,.btn-primary.focus{color:#ffffff;background-color:#1863e6;border-color:#1045a1}.btn-primary:hover{color:#ffffff;background-color:#1863e6;border-color:#175fdd}.btn-primary:active,.btn-primary.active,.open>.dropdown-toggle.btn-primary{color:#ffffff;background-color:#1863e6;border-color:#175fdd}.btn-primary:active:hover,.btn-primary.active:hover,.open>.dropdown-toggle.btn-primary:hover,.btn-primary:active:focus,.btn-primary.active:focus,.open>.dropdown-toggle.btn-primary:focus,.btn-primary:active.focus,.btn-primary.active.focus,.open>.dropdown-toggle.btn-primary.focus{color:#ffffff;background-color:#1455c6;border-color:#1045a1}.btn-primary:active,.btn-primary.active,.open>.dropdown-toggle.btn-primary{background-image:none}.btn-primary.disabled:hover,.btn-primary[disabled]:hover,fieldset[disabled] .btn-primary:hover,.btn-primary.disabled:focus,.btn-primary[disabled]:focus,fieldset[disabled] .btn-primary:focus,.btn-primary.disabled.focus,.btn-primary[disabled].focus,fieldset[disabled] .btn-primary.focus{background-color:#4582ec;border-color:#4582ec}.btn-primary .badge{color:#4582ec;background-color:#ffffff}.btn-success{color:#ffffff;background-color:#3fad46;border-color:#3fad46}.btn-success:focus,.btn-success.focus{color:#ffffff;background-color:#318837;border-color:#1d5020}.btn-success:hover{color:#ffffff;background-color:#318837;border-color:#2f8034}.btn-success:active,.btn-success.active,.open>.dropdown-toggle.btn-success{color:#ffffff;background-color:#318837;border-color:#2f8034}.btn-success:active:hover,.btn-success.active:hover,.open>.dropdown-toggle.btn-success:hover,.btn-success:active:focus,.btn-success.active:focus,.open>.dropdown-toggle.btn-success:focus,.btn-success:active.focus,.btn-success.active.focus,.open>.dropdown-toggle.btn-success.focus{color:#ffffff;background-color:#286d2c;border-color:#1d5020}.btn-success:active,.btn-success.active,.open>.dropdown-toggle.btn-success{background-image:none}.btn-success.disabled:hover,.btn-success[disabled]:hover,fieldset[disabled] .btn-success:hover,.btn-success.disabled:focus,.btn-success[disabled]:focus,fieldset[disabled] .btn-success:focus,.btn-success.disabled.focus,.btn-success[disabled].focus,fieldset[disabled] .btn-success.focus{background-color:#3fad46;border-color:#3fad46}.btn-success .badge{color:#3fad46;background-color:#ffffff}.btn-info{color:#ffffff;background-color:#5bc0de;border-color:#5bc0de}.btn-info:focus,.btn-info.focus{color:#ffffff;background-color:#31b0d5;border-color:#1f7e9a}.btn-info:hover{color:#ffffff;background-color:#31b0d5;border-color:#2aabd2}.btn-info:active,.btn-info.active,.open>.dropdown-toggle.btn-info{color:#ffffff;background-color:#31b0d5;border-color:#2aabd2}.btn-info:active:hover,.btn-info.active:hover,.open>.dropdown-toggle.btn-info:hover,.btn-info:active:focus,.btn-info.active:focus,.open>.dropdown-toggle.btn-info:focus,.btn-info:active.focus,.btn-info.active.focus,.open>.dropdown-toggle.btn-info.focus{color:#ffffff;background-color:#269abc;border-color:#1f7e9a}.btn-info:active,.btn-info.active,.open>.dropdown-toggle.btn-info{background-image:none}.btn-info.disabled:hover,.btn-info[disabled]:hover,fieldset[disabled] .btn-info:hover,.btn-info.disabled:focus,.btn-info[disabled]:focus,fieldset[disabled] .btn-info:focus,.btn-info.disabled.focus,.btn-info[disabled].focus,fieldset[disabled] .btn-info.focus{background-color:#5bc0de;border-color:#5bc0de}.btn-info .badge{color:#5bc0de;background-color:#ffffff}.btn-warning{color:#ffffff;background-color:#f0ad4e;border-color:#f0ad4e}.btn-warning:focus,.btn-warning.focus{color:#ffffff;background-color:#ec971f;border-color:#b06d0f}.btn-warning:hover{color:#ffffff;background-color:#ec971f;border-color:#eb9316}.btn-warning:active,.btn-warning.active,.open>.dropdown-toggle.btn-warning{color:#ffffff;background-color:#ec971f;border-color:#eb9316}.btn-warning:active:hover,.btn-warning.active:hover,.open>.dropdown-toggle.btn-warning:hover,.btn-warning:active:focus,.btn-warning.active:focus,.open>.dropdown-toggle.btn-warning:focus,.btn-warning:active.focus,.btn-warning.active.focus,.open>.dropdown-toggle.btn-warning.focus{color:#ffffff;background-color:#d58512;border-color:#b06d0f}.btn-warning:active,.btn-warning.active,.open>.dropdown-toggle.btn-warning{background-image:none}.btn-warning.disabled:hover,.btn-warning[disabled]:hover,fieldset[disabled] .btn-warning:hover,.btn-warning.disabled:focus,.btn-warning[disabled]:focus,fieldset[disabled] .btn-warning:focus,.btn-warning.disabled.focus,.btn-warning[disabled].focus,fieldset[disabled] .btn-warning.focus{background-color:#f0ad4e;border-color:#f0ad4e}.btn-warning .badge{color:#f0ad4e;background-color:#ffffff}.btn-danger{color:#ffffff;background-color:#d9534f;border-color:#d9534f}.btn-danger:focus,.btn-danger.focus{color:#ffffff;background-color:#c9302c;border-color:#8b211e}.btn-danger:hover{color:#ffffff;background-color:#c9302c;border-color:#c12e2a}.btn-danger:active,.btn-danger.active,.open>.dropdown-toggle.btn-danger{color:#ffffff;background-color:#c9302c;border-color:#c12e2a}.btn-danger:active:hover,.btn-danger.active:hover,.open>.dropdown-toggle.btn-danger:hover,.btn-danger:active:focus,.btn-danger.active:focus,.open>.dropdown-toggle.btn-danger:focus,.btn-danger:active.focus,.btn-danger.active.focus,.open>.dropdown-toggle.btn-danger.focus{color:#ffffff;background-color:#ac2925;border-color:#8b211e}.btn-danger:active,.btn-danger.active,.open>.dropdown-toggle.btn-danger{background-image:none}.btn-danger.disabled:hover,.btn-danger[disabled]:hover,fieldset[disabled] .btn-danger:hover,.btn-danger.disabled:focus,.btn-danger[disabled]:focus,fieldset[disabled] .btn-danger:focus,.btn-danger.disabled.focus,.btn-danger[disabled].focus,fieldset[disabled] .btn-danger.focus{background-color:#d9534f;border-color:#d9534f}.btn-danger .badge{color:#d9534f;background-color:#ffffff}.btn-link{color:#4582ec;font-weight:normal;border-radius:0}.btn-link,.btn-link:active,.btn-link.active,.btn-link[disabled],fieldset[disabled] .btn-link{background-color:transparent;-webkit-box-shadow:none;box-shadow:none}.btn-link,.btn-link:hover,.btn-link:focus,.btn-link:active{border-color:transparent}.btn-link:hover,.btn-link:focus{color:#134fb8;text-decoration:underline;background-color:transparent}.btn-link[disabled]:hover,fieldset[disabled] .btn-link:hover,.btn-link[disabled]:focus,fieldset[disabled] .btn-link:focus{color:#b3b3b3;text-decoration:none}.btn-lg,.btn-group-lg>.btn{padding:14px 16px;font-size:20px;line-height:1.3333333;border-radius:6px}.btn-sm,.btn-group-sm>.btn{padding:5px 10px;font-size:14px;line-height:1.5;border-radius:3px}.btn-xs,.btn-group-xs>.btn{padding:1px 5px;font-size:14px;line-height:1.5;border-radius:3px}.btn-block{display:block;width:100%}.btn-block+.btn-block{margin-top:5px}input[type="submit"].btn-block,input[type="reset"].btn-block,input[type="button"].btn-block{width:100%}.fade{opacity:0;-webkit-transition:opacity 0.15s linear;-o-transition:opacity 0.15s linear;transition:opacity 0.15s linear}.fade.in{opacity:1}.collapse{display:none}.collapse.in{display:block}tr.collapse.in{display:table-row}tbody.collapse.in{display:table-row-group}.collapsing{position:relative;height:0;overflow:hidden;-webkit-transition-property:height, visibility;-o-transition-property:height, visibility;transition-property:height, visibility;-webkit-transition-duration:0.35s;-o-transition-duration:0.35s;transition-duration:0.35s;-webkit-transition-timing-function:ease;-o-transition-timing-function:ease;transition-timing-function:ease}.caret{display:inline-block;width:0;height:0;margin-left:2px;vert
| 584,303
| 991,967
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.953125
| 3
|
CC-MAIN-2022-21
|
latest
|
en
| 0.107094
|
https://www.homeworkminutes.com/shop/purchase/7104/7399
| 1,542,788,161,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2018-47/segments/1542039747369.90/warc/CC-MAIN-20181121072501-20181121094501-00532.warc.gz
| 872,284,312
| 6,480
|
# Purchase Tutorial
Available for
\$15.00
#### maths!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! solver ques
Tutorial # 00007104
Posted On: 01/28/2014 10:08 AM
Posted By: spqr
Tutorial Preview …value xx the xxxxxxxxxxx Since the xxxxx is given xx m x xx the xxxxxxxx for this xxxx has the xxxxx y x xx + x Substituting in xxx given point xxx 2) xxxxxx x = xxxx + b x = 3 x b xxxxxxx xxx b xxxxxx b = x – 3 x = xx xxxxxxxxxxxx this xxxxx of b xxxx the equation xxxxxx y x xx – x Solution: y x 2x – x 5 xxxx xxx graph xx the following xxxxxx function and xxxx the xxxxxx xxx range: xxxx = - xxxxx This line xxx a xxxxx xx -1/2, xxx a y-intercept xx 5 Plot x point xx xxx 5) xxxx move one xxxx to the xxxxxx and x xxxxx down, xxx plot a xxxxxx point at xxx 3) xxx xxxxx of xxx line looks xxxx this: The xxxxxx of xxx xxxxxxxx is xxx real numbers xx interval notation, xxx domain xx xxxx ?) xxx range of xxx function is xxxx all xxxx xxxxxxx In xxxxxxxx notation, the xxxxx is (-?, xx 6 xxxxx xxx following xxxxxxxxx | x| x 3 By xxxxxxxxxxx the xxxxxxxxx xxx x x 3 and x = -3 x Evaluate xxx xxxxxxxxx expression xxxx x = x and y x 2: xxx xxx x² x Substituting x x 3 and x = x xxxx the xxxxxxxxxx gives: Solution: xx 8 Completely xxxxxx the xxxxxxxxx xxxxxxxxxxx 16x^4 xxx 81y^4 This xx the difference xx two xxxxxxx xxx…
Attachments
AlgebraSolutions.doc (631 KB)
| 404
| 1,355
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.25
| 3
|
CC-MAIN-2018-47
|
latest
|
en
| 0.548981
|
https://mathexamination.com/class/ces%C3%A0ro-equation.php
| 1,628,061,483,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2021-31/segments/1627046154796.71/warc/CC-MAIN-20210804045226-20210804075226-00608.warc.gz
| 360,930,623
| 6,907
|
## Take My CesàRo Equation Class
A "CesàRo Equation Class" QE" is a basic mathematical term for a generalized continuous expression which is used to solve differential formulas and has services which are regular. In differential Class solving, a CesàRo Equation function, or "quad" is used.
The CesàRo Equation Class in Class type can be expressed as: Q( x) = -kx2, where Q( x) are the CesàRo Equation Class and it is a crucial term. The q part of the Class is the CesàRo Equation consistent, whereas the x part is the CesàRo Equation function.
There are four CesàRo Equation functions with appropriate option: K4, K7, K3, and L4. We will now take a look at these CesàRo Equation functions and how they are fixed.
K4 - The K part of a CesàRo Equation Class is the CesàRo Equation function. This CesàRo Equation function can also be written in partial portions such as: (x2 - y2)/( x+ y). To resolve for K4 we multiply it by the appropriate CesàRo Equation function: k( x) = x2, y2, or x-y.
K7 - The K7 CesàRo Equation Class has a service of the kind: x4y2 - y4x3 = 0. The CesàRo Equation function is then multiplied by x to get: x2 + y2 = 0. We then have to multiply the CesàRo Equation function with k to get: k( x) = x2 and y2.
K3 - The CesàRo Equation function Class is K3 + K2 = 0. We then increase by k for K3.
K3( t) - The CesàRo Equation function equationis K3( t) + K2( t). We increase by k for K3( t). Now we multiply by the CesàRo Equation function which gives: K2( t) = K( t) times k.
The CesàRo Equation function is also known as "K4" because of the initials of the letters K and 4. K means CesàRo Equation, and the word "quad" is noticable as "kah-rab".
The CesàRo Equation Class is among the main approaches of solving differential equations. In the CesàRo Equation function Class, the CesàRo Equation function is first multiplied by the proper CesàRo Equation function, which will provide the CesàRo Equation function.
The CesàRo Equation function is then divided by the CesàRo Equation function which will divide the CesàRo Equation function into a genuine part and a fictional part. This offers the CesàRo Equation term.
Finally, the CesàRo Equation term will be divided by the numerator and the denominator to get the ratio. We are entrusted the right-hand man side and the term "q".
The CesàRo Equation Class is an essential principle to comprehend when resolving a differential Class. The CesàRo Equation function is just one method to resolve a CesàRo Equation Class. The approaches for fixing CesàRo Equation formulas consist of: particular value decay, factorization, optimal algorithm, numerical service or the CesàRo Equation function approximation.
## Pay Me To Do Your CesàRo Equation Class
If you would like to become acquainted with the Quartic Class, then you need to very first begin by browsing the online Quartic page. This page will show you how to utilize the Class by utilizing your keyboard. The description will likewise reveal you how to produce your own algebra formulas to assist you study for your classes.
Prior to you can comprehend how to study for a CesàRo Equation Class, you need to first understand the use of your keyboard. You will find out how to click on the function keys on your keyboard, in addition to how to type the letters. There are 3 rows of function keys on your keyboard. Each row has 4 functions: Alt, F1, F2, and F3.
By pressing Alt and F2, you can increase and divide the worth by another number, such as the number 6. By pressing Alt and F3, you can use the 3rd power.
When you push Alt and F3, you will key in the number you are attempting to increase and divide. To increase a number by itself, you will press Alt and X, where X is the number you want to multiply. When you press Alt and F3, you will enter the number you are trying to divide.
This works the same with the number 6, other than you will just type in the two digits that are 6 apart. Lastly, when you press Alt and F3, you will use the fourth power. Nevertheless, when you press Alt and F4, you will use the real power that you have actually found to be the most appropriate for your problem.
By utilizing the Alt and F function keys, you can increase, divide, and then utilize the formula for the third power. If you require to multiply an odd variety of x's, then you will require to get in an even number.
This is not the case if you are attempting to do something complex, such as increasing two even numbers. For instance, if you want to multiply an odd variety of x's, then you will require to go into odd numbers. This is especially real if you are trying to figure out the response of a CesàRo Equation Class.
If you wish to convert an odd number into an even number, then you will require to press Alt and F4. If you do not know how to multiply by numbers on their own, then you will require to utilize the letters x, a b, c, and d.
While you can increase and divide by utilize of the numbers, they are much easier to utilize when you can look at the power tables for the numbers. You will need to do some research study when you first begin to utilize the numbers, but after a while, it will be force of habit. After you have developed your own algebra formulas, you will be able to produce your own multiplication tables.
The CesàRo Equation Solution is not the only method to resolve CesàRo Equation equations. It is very important to learn about trigonometry, which utilizes the Pythagorean theorem, and after that utilize CesàRo Equation formulas to fix issues. With this technique, you can understand about angles and how to resolve problems without needing to take another algebra class.
It is very important to try and type as quickly as possible, due to the fact that typing will assist you know about the speed you are typing. This will help you write your responses faster.
## Hire Someone To Take My CesàRo Equation Class
A CesàRo Equation Class is a generalization of a linear Class. For example, when you plug in x=a+b for a given Class, you acquire the worth of x. When you plug in x=a for the Class y=c, you obtain the values of x and y, which provide you a result of c. By applying this standard principle to all the formulas that we have attempted, we can now solve CesàRo Equation formulas for all the values of x, and we can do it rapidly and effectively.
There are many online resources offered that offer complimentary or budget friendly CesàRo Equation equations to fix for all the values of x, consisting of the cost of time for you to be able to make the most of their CesàRo Equation Class project aid service. These resources generally do not need a membership charge or any sort of financial investment.
The answers offered are the outcome of complex-variable CesàRo Equation equations that have been fixed. This is also the case when the variable utilized is an unknown number.
The CesàRo Equation Class is a term that is an extension of a direct Class. One benefit of using CesàRo Equation equations is that they are more general than the linear equations. They are much easier to resolve for all the worths of x.
When the variable utilized in the CesàRo Equation Class is of the type x=a+b, it is easier to solve the CesàRo Equation Class since there are no unknowns. As a result, there are fewer points on the line specified by x and a continuous variable.
For a right-angle triangle whose base points to the right and whose hypotenuse points to the left, the right-angle tangent and curve chart will form a CesàRo Equation Class. This Class has one unknown that can be found with the CesàRo Equation formula. For a CesàRo Equation Class, the point on the line specified by the x variable and a consistent term are called the axis.
The existence of such an axis is called the vertex. Because the axis, vertex, and tangent, in a CesàRo Equation Class, are a given, we can find all the worths of x and they will sum to the provided worths. This is achieved when we use the CesàRo Equation formula.
The factor of being a consistent element is called the system of formulas in CesàRo Equation formulas. This is in some cases called the main Class.
CesàRo Equation formulas can be fixed for other worths of x. One method to resolve CesàRo Equation equations for other values of x is to divide the x variable into its aspect part.
If the variable is offered as a positive number, it can be divided into its element parts to get the typical part of the variable. This variable has a magnitude that amounts to the part of the x variable that is a continuous. In such a case, the formula is a third-order CesàRo Equation Class.
If the variable x is negative, it can be divided into the exact same part of the x variable to get the part of the x variable that is increased by the denominator. In such a case, the formula is a second-order CesàRo Equation Class.
Service assistance service in resolving CesàRo Equation formulas. When using an online service for resolving CesàRo Equation formulas, the Class will be fixed instantly.
| 2,065
| 9,034
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.0625
| 4
|
CC-MAIN-2021-31
|
latest
|
en
| 0.912212
|
https://oeis.org/A318099
| 1,620,822,425,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2021-21/segments/1620243989693.19/warc/CC-MAIN-20210512100748-20210512130748-00302.warc.gz
| 458,013,824
| 4,258
|
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.
Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318099 Number of non-isomorphic weight-n antichains of (not necessarily distinct) multisets whose dual is also an antichain of (not necessarily distinct) multisets. 32
1, 1, 4, 7, 19, 32, 81, 142, 337, 659, 1564 (list; graph; refs; listen; history; text; internal format)
OFFSET 0,3 COMMENTS The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. LINKS EXAMPLE Non-isomorphic representatives of the a(1) = 1 through a(3) = 7 antichains: 1: {{1}} 2: {{1,1}} {{1,2}} {{1},{1}} {{1},{2}} 3: {{1,1,1}} {{1,2,3}} {{1},{2,2}} {{1},{2,3}} {{1},{1},{1}} {{1},{2},{2}} {{1},{2},{3}} CROSSREFS Cf. A000219, A006126, A007716, A049311, A059201, A283877, A306007, A316980, A316983, A319558, A319560, A319616-A319646, A300913. Sequence in context: A164265 A174465 A006381 * A274691 A102991 A298350 Adjacent sequences: A318096 A318097 A318098 * A318100 A318101 A318102 KEYWORD nonn,more AUTHOR Gus Wiseman, Sep 25 2018 STATUS approved
Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.
Last modified May 12 07:28 EDT 2021. Contains 343821 sequences. (Running on oeis4.)
| 566
| 1,762
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.015625
| 3
|
CC-MAIN-2021-21
|
latest
|
en
| 0.7218
|
https://academiaservices.net/21147685379/
| 1,618,873,146,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2021-17/segments/1618038917413.71/warc/CC-MAIN-20210419204416-20210419234416-00069.warc.gz
| 189,291,552
| 10,157
|
## (solution) Consider the Switching AR(1) model y t = ( μ 0 + φ 0 y t − 1 ) + ( μ 1 + φ
Consider the Switching AR(1) model y t = ( μ 0 + φ 0 y t − 1 ) + ( μ 1 + φ 1 y t − 1 ) s t + ε t for t = 1 ,..., T with ε t ∼ N (0 ,σ 2 ), where s t is a latent binary random variable with exp( δ + γ y t − 1 ) Pr[ s t = 1] = F ( δ + γ y t − 1 ) = 1 + exp( δ . + γ y t − 1 ) What is/are the key difference(s) between the Switching AR(1) model and the LSTAR(1) model given by y t = ( μ 0 + φ 0 y t − 1 ) + ( μ 1 + φ 1 y t − 1 ) F ( δ + γ y t − 1 ) + ε t for t = 1 ,..., T with ε t ∼ N (0 ,σ 2 ) or are both models the same? Derive the unbiased 1-step ahead forecasts of y T + 1 made at time T for the Switching AR(1) model and for the LSTAR(1) model. Consider the Switching AR(1) model with exp( δ + γ s t − 1 ) Pr[ s t = 1] = 1 + exp( δ . + γ s t − 1 ) Show that this model is the same as a Markov Switching AR(1) model where Pr[ s t = 1| s t − 1 = 1] = p and Pr[ s t = 0| s t − 1 = 0] = q . Express p and q in terms of δ and γ . Suppose that you have observed yt for t = 1,..., T . A recession is defined as a period where for at least 2 consecutive periods st = 1. Suppose that ST = 0. Derive the probability in terms of p and q that the period [T + 1, T + 3] contains a recession.
Solution details:
STATUS
QUALITY
Approved
Sep 13, 2020
EXPERT
Tutor
| 511
| 1,347
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.953125
| 3
|
CC-MAIN-2021-17
|
latest
|
en
| 0.826824
|
ocd-cribbing.blogspot.com
| 1,532,284,568,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2018-30/segments/1531676593438.33/warc/CC-MAIN-20180722174538-20180722194538-00532.warc.gz
| 273,621,272
| 17,594
|
## Monday, June 1, 2009
### Confusion with numbers
As if other things were not enough!! The Dutch punctuation system can catch you off-guard sometimes. Okie, so what is this - Euro 3.990? haha! that is not 3 euro and 99 cents my dear friend, that is Euro 3990 and 3,99 is 3 euro and 99 cents. Of course, looking at a bag of noodles you would know that it is not going to cost Euro 399 but cosmetics and jwellery, not so sure! Especially scientific measurements - 1.399,02 - what the heck is that??
The Dutch clock reading is yet another complication - the hour is divided into four quarters. For example -
10:00 - tien uur (perfect!)
10:05 - vijf over tien (5 past 10, fair enough)
10:15 - kwart over tien (quarter over 10, not bad)
10:20 - tien voor half elf (10 minutes of for half eleven - whhhaaa?)
10:30 - half elf (half eleven - why why? why can't it be simple ten thirty?)
10:35 - vijf over half elf (5 past half eleven...I am already lost)
10:45 - kwart voor elf (quarter for eleven - makes perfect sense)
10:50 - tien voor elf (10 minutes for eleven)
11:00 - elf uur (sigh!!)
All that in reading is comprehendable, but in super fast speaking, leaves you wondering which quarter you are in!
Even more confusing is the way they say the numbers. Till 20, perfect, no problem
but 21 - een en twintig (one and twenty)
and 43 - drie en veertig (three and forty)
okie, that is also fine but here is the tricky part. The Dutch speak all numbers in pairs. For instance, if your postcode is -
2143 QK, then they would say - een en twintig drie en veertig QK and you are mentally expecting something like - two one four three QK in regular English. So when you quickly hear - een en twintig drie en veertig you write it as 1234 QK!!! Phone numbers are equally complicated. Sigh!! Thankfully the Dutch are very polite and they immediately switch to English, seeing the lost expression on your face but its not easy in telephone conversations.
Time and only time with some actual practice of my Dutch lessons will help me. For anyone interested, www.taalklas.nl is a good website for basic Dutch.
| 550
| 2,101
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.546875
| 3
|
CC-MAIN-2018-30
|
latest
|
en
| 0.813899
|
https://math.answers.com/Q/Somthing_divided_by_somthing_5
| 1,696,100,762,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2023-40/segments/1695233510707.90/warc/CC-MAIN-20230930181852-20230930211852-00576.warc.gz
| 406,803,442
| 43,412
|
0
# Somthing divided by somthing 5
Updated: 8/17/2019
Wiki User
14y ago
25/5=5 or, twenty five divided by five is equal to five.
Wiki User
14y ago
Earn +20 pts
Q: Somthing divided by somthing 5
Submit
Still have questions?
Related questions
One tenth
40
### How do you solve x 2 and x 5?
you times somthing by 2 then somthing by 5 2*5 = 10 5*2 = 10
### What is a net?
a net is somthing to catch somthing with or trap
4X2
...equal...
### What is the size of UK?
somthing somthing somthing I know its somthing BIG
### What does relished mean?
To relieve from somthing that holds , burdens or oppressesTo relieve from somthing that holds , burdens or oppressesTo relieve from somthing that holds , burdens or oppressesTo relieve from somthing that holds , burdens or oppressesTo relieve from somthing that holds , burdens or oppresses
### What present to get a boyfriend?
You should het him somthing that resembles your relationship, or somthing that he cant eat! Get him somthing like cologne. Or perfume, whatev.
### What is a wilderness target?
somthing you hit when your out in the open somthing you hit when your out in the open
### What is it called t eat?
to snack on somthing or to chew somthing and swallow it
### What does remarkeble mean?
Its somthing that canot be marked twice by someone or somthing.
| 355
| 1,338
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.65625
| 3
|
CC-MAIN-2023-40
|
latest
|
en
| 0.943533
|
http://openstudy.com/updates/50b121e7e4b0e906b4a6115e
| 1,448,722,714,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2015-48/segments/1448398453553.36/warc/CC-MAIN-20151124205413-00326-ip-10-71-132-137.ec2.internal.warc.gz
| 169,987,912
| 12,774
|
## vivalakoda 3 years ago Solve for x?
1. vivalakoda
$-4\sqrt{x+9}=20$
2. AntarAzri
sqrt(x+9)=-(20/4)
3. vivalakoda
I know how to solve is, I'm just not sure how to get rid of the -4 in the front of the radical.
you need to remove the square from x+9 the way you do that is by squaring both side and you end up with x+9=-(20/4)^2. then solve from there.
5. AntarAzri
yes that 's it
x+9=-20/4)^2. -20/4^2 = -25 then take -25 subtract 9. you will get the answer of x=-34
7. dpaInc
it's easy to see that this has NO SOLUTION: (-4)*(-5) = 20 so that means: $$\large -4\sqrt{x+9}=20 \rightarrow \sqrt{x+9}=-5$$ $$\large \sqrt{x+9}=-5$$ which has no solution because the left side is always positive but the right side is negative
8. vivalakoda
Can't you just square both sides to get rid of the square root, then solve like an equation?
9. dpaInc
yes you can try to do that... it's one technique you should try to solve it. but why continue when you know this is an impossible equation to solve?
10. dpaInc
not impossible, no solution... if you do solve it, the solution is an extraneous solution....
11. vivalakoda
If according to your answer it is √x+9 = -5 then you'd square both sides to have: x+9 = -25 subtract 9 from both sides and get -16 as x?
12. AntarAzri
Difficult equation in history
13. dpaInc
squaring both sides you get positive 25
14. vivalakoda
Oh, that's right thanks so then x+9=25 subtract 9 then positive 16?
15. dpaInc
yes... now let's see if the solution of x=16 works....
16. AntarAzri
no no no no =-20
17. AntarAzri
that's wrong
18. dpaInc
$$\large (-4)(\sqrt{x+9})=20$$ $$\large (-4)(\sqrt{\color {red}{16}+9})=20$$ $$\large (-4)(\sqrt{\color {red}{25}})=20$$ $$\large -4 \cdot 5 = 20$$ $$\large -20=20$$ ???? not a true statement
19. dpaInc
so the solution of x=16 is extraneous and not really a solution.
20. AntarAzri
solution $\left| -4 \right|$
21. AntarAzri
suggestion hhhh
22. dpaInc
@AntarAzri , what's the solution?
23. AntarAzri
$\left| -4 \right|$
24. dpaInc
$$\large (-4)(\sqrt{x+9})=20$$ $$\large (-4)(\sqrt{|-4|+9})=20$$ $$\large (-4)(\sqrt{4+9})=20$$ $$\large (-4)(\sqrt{13})=20$$ x=|-4| doesn't seem to work. That's not a solution.
25. vivalakoda
my oh my I have headaches because of this problem..
26. AntarAzri
no no i dont mean the x |−4|=4
27. dpaInc
ok. whatever... my answer stands... NO SOLUTION to the equation: $$\large (-4)(\sqrt{x+9})=20$$ \)
28. AntarAzri
$(\left| -4 \right|)(\sqrt{16+9})=20$
29. dpaInc
30. AntarAzri
good
31. AntarAzri
http://www.wolframalpha.com/input/?i=solve+ |%E2%88%924|*sqrt%28x%2B9%29%3D20
32. vivalakoda
?
33. dpaInc
if u don't understand my answer and expanation maybe someone else can give u a better answer... i will not argue my point further....
34. AntarAzri
Do we agree that it can not be the root of a negative number gives a positive number ?
35. vivalakoda
I'll see what my teacher says when she grades it. Thanks for your time
| 1,004
| 2,981
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.09375
| 4
|
CC-MAIN-2015-48
|
longest
|
en
| 0.824471
|
https://plainmath.net/84073/evaluate-f-x-x-x
| 1,669,454,781,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2022-49/segments/1669446706285.92/warc/CC-MAIN-20221126080725-20221126110725-00736.warc.gz
| 505,076,117
| 14,495
|
# Evaluate. f(x) = x^3-4x
Faith Welch 2022-07-25 Answered
Evaluate. $f\left(x\right)={x}^{3}-4x$
You can still ask an expert for help
• Live experts 24/7
• Questions are typically answered in as fast as 30 minutes
• Personalized clear answers
Solve your problem for the price of one coffee
• Math expert for every subject
• Pay only if we can solve it
nezivande0u
A function is said to be even if and only if
f(x)=f(-x)
a function is said to be odd if and only if
-f(x)=f(-x)
sp we got:
$f\left(x\right)={x}^{3}-4x$
lets work on f(-x) because is unavoidable
if a function is even, it can't be odd
$f\left(-x\right)=\left(-x{\right)}^{3}-4\left(-x\right)=-{x}^{3}+4x$
now lets work on the even function
f(x)=f(-x)
${x}^{3}-4x=-{x}^{3}+4$ false, so this os not even function
checking for odd-function:
$-f\left(x\right)=-\left({x}^{3}-4x\right)=-{x}^{3}+4x$
$-{x}^{3}+4x=-{x}^{3}+4x$
###### Did you like this example?
Greyson Landry
For this equation,
Evenmeans, that the graphed line is symmetric to the y-axis. Odd meansthat the graphed line is symmetric to the y-axis. To figure if afunction is even or odd, you change the variables. For thisequation, the line is, an odd function. This is because, if youchange the x's to -x's (even function) it is not the same equation.If, you change the x's to -x's and the y's to -y's (odd function)it is the same equation. Example: (even)
$f\left(x\right)={x}^{3}-4x\ne f\left(x\right)=-\left({x}^{3}\right)-\left(-4x\right)$ (odd)
$f\left(x\right)={x}^{3}-4x=f\left(-x\right)=-\left({x}^{3}\right)-\left(-4x\right)$
| 558
| 1,562
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 50, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.21875
| 4
|
CC-MAIN-2022-49
|
latest
|
en
| 0.750638
|
https://homework.cpm.org/category/CCI_CT/textbook/calc/chapter/4/lesson/4.2.3/problem/4-78
| 1,579,439,076,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2020-05/segments/1579250594603.8/warc/CC-MAIN-20200119122744-20200119150744-00039.warc.gz
| 501,987,465
| 15,590
|
### Home > CALC > Chapter 4 > Lesson 4.2.3 > Problem4-78
4-78.
Given f(x) = 2x, find the equation of a vertical line that would divide in half. Homework Help ✎
Sketch a graph of
Find the area under the graph from [0, 10] through integration.
Because you want to find the equation that would divide the area of the graph in half, you must solve the following equation:
Use the eTool below to examine the graph.
Click the link at right for the full version of the eTool: Calc 4-78 HW eTool
| 132
| 493
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.5625
| 3
|
CC-MAIN-2020-05
|
longest
|
en
| 0.920764
|
https://www.hellovaia.com/textbooks/math/fundamentals-of-differential-equations-and-boundary-value-problems-9th/introduction-to-systems-and-phase-plane-analysis/q31e-two-large-tanks-each-holding-100-l-of-liquid-are-interc/
| 1,696,248,759,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2023-40/segments/1695233510994.61/warc/CC-MAIN-20231002100910-20231002130910-00217.warc.gz
| 874,353,111
| 21,665
|
Suggested languages for you:
Americas
Europe
Q31E
Expert-verified
Found in: Page 250
### Fundamentals Of Differential Equations And Boundary Value Problems
Book edition 9th
Author(s) R. Kent Nagle, Edward B. Saff, Arthur David Snider
Pages 616 pages
ISBN 9780321977069
# Two large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure 5.2). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The (diluted) solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt, determine the mass of salt in each tank at a time ${\mathbf{t}}{⩾}{\mathbf{0}}$.
The mass of salt in each tank at the time $\mathbf{t}⩾\mathbf{0}$ is;
$\mathbf{x}\left(\mathbf{t}\right)\mathbf{=}\mathbf{-}\left(\mathbf{10}\mathbf{-}\frac{\mathbf{20}}{\sqrt{\mathbf{7}}}\right){\mathbf{e}}^{\left(\frac{\mathbf{-}\mathbf{5}\mathbf{+}\sqrt{\mathbf{7}}}{\mathbf{100}}\right)\mathbf{t}}\mathbf{-}\left(\mathbf{10}\mathbf{+}\frac{\mathbf{20}}{\sqrt{\mathbf{7}}}\right){\mathbf{e}}^{\left(\frac{\mathbf{-}\mathbf{5}\mathbf{-}\sqrt{\mathbf{7}}}{\mathbf{100}}\right)\mathbf{t}}\mathbf{+}\mathbf{20}$
and $\mathbf{y}\left(\mathbf{t}\right)\mathbf{=}\mathbf{-}\frac{\mathbf{30}}{\sqrt{\mathbf{7}}}{\mathbf{e}}^{\left(\frac{\mathbf{-}\mathbf{5}\mathbf{+}\sqrt{\mathbf{7}}}{\mathbf{100}}\right)\mathbf{t}}\mathbf{+}\frac{\mathbf{30}}{\sqrt{\mathbf{7}}}{\mathbf{e}}^{\left(\frac{\mathbf{-}\mathbf{5}\mathbf{-}\sqrt{\mathbf{7}}}{\mathbf{100}}\right)\mathbf{t}}\mathbf{+}\mathbf{20}$
.
See the step by step solution
## Step 1: General form
Elimination Procedure for 2 × 2 Systems:
To find a general solution for the system
${\mathbf{L}}_{\mathbf{1}}\left[\mathbf{x}\right]\mathbf{+}{\mathbf{L}}_{\mathbf{2}}\left[\mathbf{y}\right]\mathbf{=}{\mathbf{f}}_{\mathbf{1}}\mathbf{,}\phantom{\rule{0ex}{0ex}}{\mathbf{L}}_{\mathbf{3}}\left[\mathbf{x}\right]\mathbf{+}{\mathbf{L}}_{\mathbf{4}}\left[\mathbf{y}\right]\mathbf{=}{\mathbf{f}}_{\mathbf{2}}\mathbf{,}$
Where ${\mathbf{L}}_{\mathbf{1}}\mathbf{,}{\mathbf{L}}_{\mathbf{2}}\mathbf{,}{\mathbf{L}}_{\mathbf{3}}\mathbf{,}$ and ${\mathbf{L}}_{\mathbf{4}}$ are polynomials in $D=\frac{d}{dt}$
1. Make sure that the system is written in operator form.
2. Eliminate one of the variables, say, y, and solve the resulting equation for x(t). If the system is degenerating, stop! A separate analysis is required to determine whether or not there are solutions.
3. (Shortcut) If possible, use the system to derive an equation that involves y(t) but not its derivatives. [Otherwise, go to step (d).] Substitute the found expression for x(t) into this equation to get a formula for y(t). The expressions for x(t), and y(t) give the desired general solution.
4. Eliminate x from the system and solve for y(t). [Solving for y(t) gives more constants- twice as many as needed.]
5. Remove the extra constants by substituting the expressions for x(t) and y(t) into one or both of the equations in the system. Write the expressions for x(t) and y(t) in terms of the remaining constants.
Vieta’s formulas for finding roots:
For function y(t) to be bounded when $t\to +\infty$ we need for both roots of the auxiliary equation to be non-positive if they are reals and, if they are complex, then the real part has to be non-positive. In other words
1. If ${r}_{1},{r}_{2}\in R$, then ${r}_{1}·{r}_{2}⩾0,{r}_{1}+{r}_{2}⩽0$,
2. If ${r}_{1},{r}_{2}=\alpha ±\beta i$, $\beta \ne 0$ , then $\alpha =\frac{{r}_{1}+{r}_{2}}{2}⩽0$.
## Step 2: Evaluate the given equation
Given that, the volume of both tanks is 100 L. Then, the fluid is flowing from tank A to tank B at the rate of 3 L/min and from B into A at a rate of 1 L/min.
A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min.
The solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min.
Let us take, the amount of salt in tank A be x(t) kg and the amount of salt in tank B be y(t) kg.
Then, $x\left(0\right)=0$ and $y\left(0\right)=20$.
Let us create the system of equations first.
For tank A:
Rate of inflow $=6×0.2+1×\frac{y\left(t\right)}{100}=1.2+0.01y$
Rate of outflow $=3×\frac{x\left(t\right)}{100}+4×\frac{x\left(t\right)}{100}=0.07x$
$\text{Rate of change}x=\text{Rate of inflow}--\text{Rate of outflow}$
$Dx=1.2+0.01y-0.07x\phantom{\rule{0ex}{0ex}}\left(D+0.07\right)\left[x\right]-0.01y=1.2\phantom{\rule{0ex}{0ex}}\left(D+0.07\right)\left[x\right]-0.01y=1.2 ......\mathbf{\left(}\mathbf{1}\mathbf{\right)}$
For tank B:
Rate of inflow $=3×\frac{x\left(t\right)}{100}=0.03x$
Rate of outflow $=1×\frac{y\left(t\right)}{100}+2×\frac{y\left(t\right)}{100}=0.03y$
$\text{Rate of change}y=\text{Rate of inflow}--\text{Rate of outflow}$
$Dy=0.03x-0.03y\phantom{\rule{0ex}{0ex}}0.03x-\left(D+0.03\right)\left[y\right]=0\phantom{\rule{0ex}{0ex}}0.03x-\left(D+0.03\right)\left[y\right]=0 ......\mathbf{\left(}\mathbf{2}\mathbf{\right)}$
## Step 3: Solve the equations
Multiply 0.03 on equation (3) and multiply D+0.07 on equation (4). Then, subtract them together.
$0.03\left(D+0.07\right)\left[x\right]-0.0003y-\left(0.03\left(D+0.07\right)x-\left(D+0.07\right)\left(D+0.03\right)\left[y\right]\right)=0.036\phantom{\rule{0ex}{0ex}}\left(D+0.07\right)\left(D+0.03\right)\left[y\right]-0.0003\left[y\right]=0.036\phantom{\rule{0ex}{0ex}}\left({D}^{2}+0.1D+0.0021-0.0003\right)\left[y\right]=0.036\phantom{\rule{0ex}{0ex}}\left({D}^{2}+0.1D+0.0018\right)\left[y\right]=0.036\phantom{\rule{0ex}{0ex}}$
$\left({D}^{2}+0.1D+0.0018\right)\left[y\right]=0.036 ......\mathbf{\left(}\mathbf{5}\mathbf{\right)}$
## Step 4: Substitution method
Since the auxiliary equation to the corresponding homogeneous equation is .
${r}^{2}+0.1r+0.0018=0$
Then,
$r=\frac{-0.1±\sqrt{{\left(0.1\right)}^{2}-4×0.0018}}{2}\phantom{\rule{0ex}{0ex}}=\frac{-0.1±\sqrt{0.01-0.0072}}{2}\phantom{\rule{0ex}{0ex}}=\frac{-0.1±\sqrt{0.0028}}{2}\phantom{\rule{0ex}{0ex}}=\frac{-\frac{1}{10}±\sqrt{\frac{28}{10000}}}{2}\phantom{\rule{0ex}{0ex}}=\frac{-5±\sqrt{7}}{100}$
So, the roots are $r=\frac{-5+\sqrt{7}}{100}$ and $r=\frac{-5-\sqrt{7}}{100}$.
Then, the general solution of y is ${y}_{h}\left(t\right)=A{e}^{\left(\frac{-5+\sqrt{7}}{100}\right)t}+B{e}^{\left(\frac{-5-\sqrt{7}}{100}\right)t} ......\mathbf{\left(}\mathbf{6}\mathbf{\right)}$
Let us assume that, ${y}_{p}\left(t\right)=C ......\mathbf{\left(}\mathbf{7}\mathbf{\right)}$
Substitute equation (7) in equation (5).
$\left({D}^{2}+0.1D+0.0018\right)\left[y\right]=0.036\phantom{\rule{0ex}{0ex}}\left({D}^{2}+0.1D+0.0018\right)\left[C\right]=0.036\phantom{\rule{0ex}{0ex}}0.0018C=0.036\phantom{\rule{0ex}{0ex}}C=\frac{0.036}{0.0018}\phantom{\rule{0ex}{0ex}}=20$
Substitute the value of C in equations (7) and y(t).
$y\left(t\right)={y}_{h}\left(t\right)+{y}_{p}\left(t\right)\phantom{\rule{0ex}{0ex}}=A{e}^{\left(\frac{-5+\sqrt{7}}{100}\right)t}+B{e}^{\left(\frac{-5-\sqrt{7}}{100}\right)t}+20$
So, $y\left(t\right)=A{e}^{\left(\frac{-5+\sqrt{7}}{100}\right)t}+B{e}^{\left(\frac{-5-\sqrt{7}}{100}\right)t}+20 ......\mathbf{\left(}\mathbf{8}\mathbf{\right)}$
## Step 5: Substitution method
Now substitute equation (8) in equation (4).
$0.03x-\left(D+0.03\right)\left[y\right]=0\phantom{\rule{0ex}{0ex}}0.03x=\left(D+0.03\right)\left[y\right]\phantom{\rule{0ex}{0ex}}0.03x=\left(D+0.03\right)\left[A{e}^{\left(\frac{-5+\sqrt{7}}{100}\right)t}+B{e}^{\left(\frac{-5-\sqrt{7}}{100}\right)t}+20\right]\phantom{\rule{0ex}{0ex}}=\frac{-5+\sqrt{7}}{100}A{e}^{\left(\frac{-5+\sqrt{7}}{100}\right)t}+\frac{-5-\sqrt{7}}{100}B{e}^{\left(\frac{-5-\sqrt{7}}{100}\right)t}+0.03A{e}^{\left(\frac{-5+\sqrt{7}}{100}\right)t}+0.03B{e}^{\left(\frac{-5-\sqrt{7}}{100}\right)t}+0.6$
$=\frac{-5+3+\sqrt{7}}{100}A{e}^{\left(\frac{-5+\sqrt{7}}{100}\right)t}+\frac{-5+3-\sqrt{7}}{100}B{e}^{\left(\frac{-5-\sqrt{7}}{100}\right)t}+0.6\phantom{\rule{0ex}{0ex}}=\frac{-2+\sqrt{7}}{100}A{e}^{\left(\frac{-5+\sqrt{7}}{100}\right)t}+\frac{-2-\sqrt{7}}{100}B{e}^{\left(\frac{-5-\sqrt{7}}{100}\right)t}+0.6\phantom{\rule{0ex}{0ex}}x=\frac{-2+\sqrt{7}}{100}\left(\frac{100}{3}\right)A{e}^{\left(\frac{-5+\sqrt{7}}{100}\right)t}+\frac{-2-\sqrt{7}}{100}\left(\frac{100}{3}\right)B{e}^{\left(\frac{-5-\sqrt{7}}{100}\right)t}+\left(\frac{0.6×100}{3}\right)\phantom{\rule{0ex}{0ex}}=\frac{-2+\sqrt{7}}{3}A{e}^{\left(\frac{-5+\sqrt{7}}{100}\right)t}+\frac{-2-\sqrt{7}}{3}B{e}^{\left(\frac{-5-\sqrt{7}}{100}\right)t}+20$
$x\left(t\right)=\frac{-2+\sqrt{7}}{3}A{e}^{\left(\frac{-5+\sqrt{7}}{100}\right)t}+\frac{-2-\sqrt{7}}{3}B{e}^{\left(\frac{-5-\sqrt{7}}{100}\right)t}+20 ......\mathbf{\left(}\mathbf{9}\mathbf{\right)}$
## Step 6: Initial value problem
Given that, $x\left(0\right)=0$ and $y\left(0\right)=20$.
Substitute the values in equations (8) and (9).
Case (1):
$x\left(t\right)=\frac{-2+\sqrt{7}}{3}A{e}^{\left(\frac{-5+\sqrt{7}}{100}\right)t}+\frac{-2-\sqrt{7}}{3}B{e}^{\left(\frac{-5-\sqrt{7}}{100}\right)t}+20\phantom{\rule{0ex}{0ex}}x\left(0\right)=\frac{-2+\sqrt{7}}{3}A{e}^{\left(\frac{-5+\sqrt{7}}{100}\right)0}+\frac{-2-\sqrt{7}}{3}B{e}^{\left(\frac{-5-\sqrt{7}}{100}\right)0}+20\phantom{\rule{0ex}{0ex}}0=\frac{-2+\sqrt{7}}{3}A+\frac{-2-\sqrt{7}}{3}B+20$
Hence, $\frac{-2+\sqrt{7}}{3}A+\frac{-2-\sqrt{7}}{3}B=-20 ......\mathbf{\left(}\mathbf{a}\mathbf{\right)}$
Case (2):
$y\left(t\right)=A{e}^{\left(\frac{-5+\sqrt{7}}{100}\right)t}+B{e}^{\left(\frac{-5-\sqrt{7}}{100}\right)t}+20\phantom{\rule{0ex}{0ex}}y\left(0\right)=A{e}^{\left(\frac{-5+\sqrt{7}}{100}\right)0}+B{e}^{\left(\frac{-5-\sqrt{7}}{100}\right)0}+20\phantom{\rule{0ex}{0ex}}20=A+B+20\phantom{\rule{0ex}{0ex}}0=A+B$
Thereafter, $A+B=0 ......\mathbf{\left(}\mathbf{b}\mathbf{\right)}$
Solve the equation (a) and (b).
$\frac{-2+\sqrt{7}}{3}A+\frac{-2-\sqrt{7}}{3}B-\frac{-2-\sqrt{7}}{3}A-\frac{-2-\sqrt{7}}{3}B=-20\phantom{\rule{0ex}{0ex}}\frac{-2+\sqrt{7}+2+\sqrt{7}}{3}A=-20\phantom{\rule{0ex}{0ex}}\frac{2\sqrt{7}}{3}A=-20\phantom{\rule{0ex}{0ex}}A=\frac{-20×3}{2\sqrt{7}}\phantom{\rule{0ex}{0ex}}=\frac{-30}{\sqrt{7}}$
Substitute the value of A in equation (b).
$A+B=0\phantom{\rule{0ex}{0ex}}-\frac{30}{\sqrt{7}}+B=0\phantom{\rule{0ex}{0ex}}B=\frac{30}{\sqrt{7}}$
Finally, substitute the values of A and B in equations (8) and (9).
$x\left(t\right)=\frac{-2+\sqrt{7}}{3}\left(\frac{-30}{\sqrt{7}}\right){e}^{\left(\frac{-5+\sqrt{7}}{100}\right)t}+\frac{-2-\sqrt{7}}{3}\left(\frac{30}{\sqrt{7}}\right){e}^{\left(\frac{-5-\sqrt{7}}{100}\right)t}+20\phantom{\rule{0ex}{0ex}}=-\left(10-\frac{20}{\sqrt{7}}\right){e}^{\left(\frac{-5+\sqrt{7}}{100}\right)t}-\left(10+\frac{20}{\sqrt{7}}\right){e}^{\left(\frac{-5-\sqrt{7}}{100}\right)t}+20\phantom{\rule{0ex}{0ex}}y\left(t\right)=-\frac{30}{\sqrt{7}}{e}^{\left(\frac{-5+\sqrt{7}}{100}\right)t}+\frac{30}{\sqrt{7}}{e}^{\left(\frac{-5-\sqrt{7}}{100}\right)t}+20$
Therefore, the solution is founded.
| 4,639
| 11,111
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 52, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.453125
| 3
|
CC-MAIN-2023-40
|
latest
|
en
| 0.504541
|
http://www.chegg.com/homework-help/questions-and-answers/train-300m-long-frame-tunnel-500-m-long-frame-ivan-sits-front-train-veronica-sits-near-tra-q1352221
| 1,472,340,991,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2016-36/segments/1471982931818.60/warc/CC-MAIN-20160823200851-00094-ip-10-153-172-175.ec2.internal.warc.gz
| 366,545,200
| 13,929
|
A train is 300m long in its own frame, and a tunnel is 500 m long in its own frame. Ivan sits at the very front of the train and Veronica sits at the very near. The train speeds from west to east through the tunnel at V=5/4c (so that√(1-(v/c)^w = 3/5)
The moving tunnel is length contracted to be exactly 300m
Ivan and Veronica both stick out their heads and glance up at the instant that the train exactly fits within the tunnel, so Veronica sees the west portal of the tunnel and Ivan sees the east portal of the tunnel. Al of these questions deal with the situation in the tunnels frame. Explain your answers briefly but cogently in the space provided. Sketches might be helpful.
i.) In the tunnels fram, how long is the train?
ii.) In the tunnels frame, Veronical glances before Ivan does because her clock is set ahead of his. By how much is Veronicas clock set ahead?
iii.) While Ivans watch ticks off 729 nans, how much time elapses in the tunnel's fram? (In other words, how much time elapses between Veronicas glance and Ivans glance?)
iv.) During the time between glances, how far does the train move (in the tunnels frame)?
v. Sum your answer to question 1 and your answer to question 4 to find Ivans position when he glances up. How does this compare to the situation as found in the trains frame?
| 319
| 1,318
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.578125
| 4
|
CC-MAIN-2016-36
|
latest
|
en
| 0.953757
|
http://stackoverflow.com/questions/6333450/why-are-pure-functions-faster-in-mathematica-code/6334109
| 1,394,943,173,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2014-10/segments/1394678701207/warc/CC-MAIN-20140313024501-00074-ip-10-183-142-35.ec2.internal.warc.gz
| 141,202,753
| 18,347
|
# Why are pure functions faster in Mathematica code? [duplicate]
Possible Duplicate:
Performance difference between functions and pattern matching in Mathematica
I often find a heavy use of pure functions in a lot of the answers posted here, and often those solutions are much faster than using named patterns etc. Why is this so? Why are pure functions faster than others? Does it have to do with the mma interpreter having to do less work?
-
– belisarius Jun 13 '11 at 16:46
Damn! It's happening again. The Mma tag gets confused with "maths" – belisarius Jun 13 '11 at 16:51
where's @Leonid when you need him... – acl Jun 13 '11 at 17:15
Sorry I came in a little late :) – Leonid Shifrin Jun 13 '11 at 17:49
@belisarius: All of the close votes are for "exact duplicate" - I'm guessing to the link that you provided. – Simon Jun 13 '11 at 22:11
## marked as duplicate by Nemo, WReach, yoda, Mr.Wizard, GravitonJun 14 '11 at 4:28
First, let us consider some sample benchmarks:
``````In[100]:= f[x_]:=x^2;
In[102]:= Do[#^2&[i],{i,300000}]//Timing
Out[102]= {0.406,Null}
In[103]:= Do[f[i],{i,300000}]//Timing
Out[103]= {0.484,Null}
In[104]:= Do[Function[x,x^2][i],{i,300000}]//Timing
Out[104]= {0.578,Null}
``````
Pure functions are often (much) faster for 2 reasons. First, anonymous pure functions (those defined with the slots - `#` and `&`) do not need to resolve name conflicts for variable names. Therefore, they are somewhat faster than pattern-defined ones, where some name conflict resolution takes place. But you see that pure functions with named variables are actually slower, not faster, than pattern-defined ones. I can speculate that this is because they also have to resolve possible conflicts inside their body, while rule-based ones ignore such conflicts. In nay case, speed differences are of the order of 10-20 %.
Another, and much more dramatic, difference is when they are used in functions such as Map, Scan, Table, etc, because the latter auto-compile on large numerical (packed) lists. But while pure functions can often be compiled, pattern-defined ones fundamentally can not, so this speed gain is inaccessible to them. For example:
``````In[117]:= ff[x_] := Sqrt[x];
In[116]:= Map[Sqrt[#] &, N@Range[100000]]; // Timing
Out[116]= {0.015, Null}
In[114]:= Map[ff, N@Range[100000]]; // Timing
Out[114]= {0.094, Null}
``````
-
those limits (for autocompilation) may be found by SystemOptions["CompileOptions"]. They may be set by eg SetSystemOptions["CompileOptions"->"CompileReportExternal"->True]. this particular example is interesting, but irritating if you use Histogram a lot :) – acl Jun 13 '11 at 18:00
Good answer but I don't understand why you say "pattern-defined ones fundamentally can not"? – Jon Harrop Nov 26 '11 at 15:50
Oh, and it might be worth pointing out that "pure function" has a well known meaning and this isn't it. :-) – Jon Harrop Nov 26 '11 at 15:57
@Jon For pattern-defined functions, I meant - within Mathematica. You can probably write a compiler that would somehow compile Mathematica pattern-based functions into some target machine, but reproducing all of the semantics of Mathematica pattern-matcher seems to be a pretty hard problem (you probably know much more about this than I do). For the pure functions, I again meant what is understood by "pure function" in Mathematica. – Leonid Shifrin Nov 26 '11 at 16:14
@LeonidShifrin: Yes, there is a huge body of research on pattern match compilation mostly focussed on ML-style patterns but also lots of good stuff on unification. Interesting to think what I'd optimize in MMA if I had the chance... – Jon Harrop Nov 29 '11 at 1:10
Pure function have several advantages : - Result can be cached. - Computation can be safely parralelized. - In some cases, result can be calculated at compilation time (CTFE) and the function never executed at the end. - As the outer scope isn't modified, you don't need to pass all arguments by copy.
So, if the compiler is able to manage the optimization relative the these function, your program will be faster. Whatever the langage is.
-
mathematica does not have a compiler, or at least not of the type you have in mind :) (this is a question about pure functions in mma, not in general, unless I am mistaken) – acl Jun 13 '11 at 16:46
mma interpreter can do several of those things, like don't pass argument by copy, but I see no drawback to answer in a general case. – deadalnix Jun 13 '11 at 16:46
@acl Mathematica will compile the function in `Map`, depending on the size of the list being mapped across. (It will do the same for many other functions also, see `SystemOptions["CompileOptions"]` to get a feel for the various limits.) – Brett Champion Jun 13 '11 at 16:59
@Brett thanks. I've spent quite a bit of time playing with whatever internals I can access so I know that (and have decreased the limit in my init.m). maybe I am missing something, but I got the impression this answer referred to compilation as it is used in C or most Lisps etc. In short, I thought the answer isn't answering the question but a different question, regarding the difference between functional and imperative programming (hence references to safe parallelization etc) – acl Jun 13 '11 at 17:06
actually, pattern matching seems typically faster than `Function[{u},...]` constructions and as fast as `#&`-type constructions (ignoring the possibility of compiling, which has become more exciting in mma 8).
To see this define a function to time short pieces of code:
``````SetAttributes[timeshort, HoldAll];
timeshort[expr_] := Module[{t = Timing[expr;][[1]], tries = 1},
While[t < 1.,
tries *= 2;
t = Timing[Do[expr, {tries}];][[1]]];
Return[t/tries]]
``````
then try this:
``````ClearAll[f]; f[x_] := Cos[x]
Trace[f[5.]]
f[5] // timeshort
ClearAll[f]; f = Function[x, Cos[x]]
Trace[f[5.]]
f[5] // timeshort
ClearAll[f]; f = Cos[#] &
Trace[f[5.]]
f[5] // timeshort
``````
which give
``````{f[5.],Cos[5.],0.283662}
8.45641\[Times]10^-7
Function[x,Cos[x]]
{{f,Function[x,Cos[x]]},Function[x,Cos[x]][5.],Cos[5.],0.283662}
1.51906\[Times]10^-6
Cos[#1]&
{{f,Cos[#1]&},(Cos[#1]&)[5.],Cos[5.],0.283662}
8.04602\[Times]10^-7
``````
that is, pattern matching and `#&` are faster than `Function`. I have no idea why.
EDIT: Guess I should have checked the question belisarius suggested earlier... See here for essentially the same answer as I gave, and read the comments too for some interesting discussion.
-
| 1,754
| 6,474
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.890625
| 3
|
CC-MAIN-2014-10
|
latest
|
en
| 0.908969
|
https://www.geeksforgeeks.org/how-to-sort-a-scala-map-by-value/?ref=rp
| 1,590,387,705,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2020-24/segments/1590347387219.0/warc/CC-MAIN-20200525032636-20200525062636-00244.warc.gz
| 755,859,021
| 24,583
|
# How to sort a Scala Map by value
In this article, we will learn how to sort a Scala Map by value. We can sort the map by key, from low to high or high to low, using sortBy method.
Syntax:
`MapName.toSeq.sortBy(_._2):_*`
Let’s try to understand it with better example.
Example #1:
`// Scala program to sort given map by value ` `import` `scala.collection.immutable.ListMap ` ` ` `// Creating object ` `object` `GfG ` `{ ` ` ` ` ``// Main method ` ` ``def` `main(args``:``Array[String]) ` ` ``{ ` ` ` ` ``// Creating a map ` ` ``val` `mapIm ``=` `Map(``"Zash"` `-``>` `30``, ` ` ``"Jhavesh"` `-``>` `20``, ` ` ``"Charlie"` `-``>` `50``) ` ` ` ` ` ` ``// Sort the map by value ` ` ``val` `res ``=` `ListMap(mapIm.toSeq.sortBy(``_``.``_``2``)``:_``*) ` ` ``println(res) ` ` ``} ` `} `
Output:
```Map(Jhavesh -> 20, Zash -> 30, Charlie -> 50)
```
In above example, we can see `mapIm.toSeq.sortBy` method is used to sort the map by key values.
Example #2:
`// Scala program to sort given map by value ` `// in ascending order ` `import` `scala.collection.immutable.ListMap ` ` ` `// Creating object ` `object` `GfG ` `{ ` ` ` ` ``// Main method ` ` ``def` `main(args``:``Array[String]) ` ` ``{ ` ` ` ` ``// Creating a map ` ` ``val` `mapIm ``=` `Map(``"Zash"` `-``>` `30``, ` ` ``"Jhavesh"` `-``>` `20``, ` ` ``"Charlie"` `-``>` `50``) ` ` ` ` ``// Sort map value in ascending order ` ` ``val` `res ``=` `ListMap(mapIm.toSeq.sortWith(``_``.``_``2` `<` `_``.``_``2``)``:_``*) ` ` ``println(res) ` ` ``} ` `} `
Output:
```Map(Jhavesh -> 20, Zash -> 30, Charlie -> 50)
```
Here, In above example we are sorting map in ascending order by using `mapIm.toSeq.sortWith(_._2 < _._2):_*`
Example #3:
`// Scala program to sort given map by value ` `// in decending order ` `import` `scala.collection.immutable.ListMap ` ` ` `// Creating object ` `object` `GfG ` `{ ` ` ` ` ``// Main method ` ` ``def` `main(args``:``Array[String]) ` ` ``{ ` ` ` ` ``// Creating a map ` ` ``val` `mapIm ``=` `Map(``"Zash"` `-``>` `30``, ` ` ``"Jhavesh"` `-``>` `20``, ` ` ``"Charlie"` `-``>` `50``) ` ` ` ` ``// Sort map value in descending order ` ` ``val` `res ``=` `ListMap(mapIm.toSeq.sortWith(``_``.``_``2` `>` `_``.``_``2``)``:_``*) ` ` ``println(res) ` ` ``} ` `} `
Output:
```Map(Charlie -> 50, Zash -> 30, Jhavesh -> 20)
```
Above example show to sorting map in descending order.
My Personal Notes arrow_drop_up
Check out this Author's contributed articles.
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.
Article Tags :
Be the First to upvote.
Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.
| 1,084
| 3,332
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.5625
| 3
|
CC-MAIN-2020-24
|
longest
|
en
| 0.421022
|
https://www.machine-learning.news/example/21709371
| 1,601,094,984,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2020-40/segments/1600400234232.50/warc/CC-MAIN-20200926040104-20200926070104-00426.warc.gz
| 900,577,480
| 41,610
|
# A 2020 Vision of Linear Algebra | MIT OpenCourseWare
These six brief videos, recorded in 2020, contain ideas and suggestions from Professor Strang about the recommended order of topics in teaching and learning linear algebra. The first topic is called A New Way to Start Linear Algebra. The key point is to start right in with the columns of a matrix A and the multiplication Ax that combines those columns.That leads to The Column Space of a Matrix and the idea of independent columns and the factorization A = CR that tells so much about A. With good numbers, every student can see dependent columns.The remaining videos outline very briefly the full course: The Big Picture of Linear Algebra; Orthogonal Vectors; Eigenvalues & Eigenvectors; and Singular Values & Singular Vectors. Singular values have become so important and they come directly from the eigenvalues of A'A.You can see this new idea developing in the first video lecture of Professor Strang’s 2019 course 18.065 Matrix Methods in Data Analysis, Signal Processing, and
12 mentions:
Keywords:
Date: 2020/05/09 12:52
## Referring Tweets
@GotaMorishita Linear algebraでこうやって教える方法があるのか…という眼から鱗だった. t.co/gxD1Xubyrc
@alfcnz «A 2020 Vision of Linear Algebra» six brief videos for teaching and learning linear algebra by… yasss! Him! A 85 years old William Gilbert Strang! ❤️❤️❤️ I hope to have just a fraction of your stamina, dear Gilbert! I’ll try to keep opening eyes! t.co/wXMJfchynv
@johntigue This guy wrote the book (books) on linear algebra. These are his latest thoughts on how to chop up the topic for easy learning. t.co/cHHEYJDKYQ
@djavko Another wonderful video series about linear algebra by Prof. Strang (presentation prepared with Beamer, I think): t.co/O51CzZlGSA
## Related Entries
Acceleration without pain – Machine Learning Research Blog
0 users, 5 mentions 2020/02/06 23:20
Complete Statistical Theory of Learning (Vladimir Vapnik) | MIT Deep Learning Series - YouTube
0 users, 6 mentions 2020/02/18 14:21
[2007.01179] Relating by Contrasting: A Data-efficient Framework for Multimodal Generative Modelsope...
0 users, 3 mentions 2020/07/04 14:22
Knowledge Graphs in Natural Language Processing @ ACL 2020 | by Michael Galkin | Jul, 2020 | Towards...
1 users, 7 mentions 2020/07/11 21:49
Adversarial Score Matching and Consistent Sampling – Alexia Jolicoeur-Martineau
0 users, 6 mentions 2020/09/14 00:30
| 632
| 2,408
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.859375
| 3
|
CC-MAIN-2020-40
|
latest
|
en
| 0.801769
|
https://help.libreoffice.org/latest/uk/text/scalc/01/statistics_regression.html
| 1,718,240,978,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-26/segments/1718198861319.37/warc/CC-MAIN-20240612234213-20240613024213-00644.warc.gz
| 278,107,814
| 4,989
|
# Regression Analysis
Performs linear, logarithmic, or power regression analysis of a data set comprising one dependent variable and multiple independent variables.
For example, a crop yield (dependent variable) may be related to rainfall, temperature conditions, sunshine, humidity, soil quality and more, all of them independent variables.
Щоб скористатися цією командою…
Choose Data - Statistics - Regression
For more information on regression analysis, refer to the corresponding Wikipedia article.
## Data
### Independent variable(s) (X) range:
Enter a single range that contains multiple independent variable observations (along columns or rows). All X variable observations need to be entered adjacent to each other in the same table.
### Dependent variable (Y) range:
Enter the range that contains the dependent variable whose regression is to be calculated.
### Both X and Y ranges have labels
Check to use the first line (or column) of the data sets as variable names in the output range.
### Results to:
The reference of the top left cell of the range where the results will be displayed.
#### Grouped By
Select whether the input data has columns or rows layout.
## Output Regression Types
Set the regression type. Three types are available:
• Linear Regression: finds a linear function in the form of y = b + a1.[x1] + a2.[x2] + a3.[x3] ..., where ai is the i-th slope, [xi] is the i-th independent variable, and b is the intercept that best fits the data.
• Logarithmic regression: finds a logarithmic curve in the form of y = b + a1.ln[x1] + a2.ln[x2] + a3.ln[x3] ..., where ai is the i-th coefficient, b is the intercept and ln[xi] is the natural logarithm of the i-th independent variable, that best fits the data.
• Power regression: finds a power curve in the form of y = exp( b + a1.ln[x1] + a2.ln[x2] + a3.ln[x3] ...), where ai is the i-th power, [xi] is the i-th independent variable, and b is intercept that best fits the data.
## Options
### Confidence level
A numeric value between 0 and 1 (exclusive), default is 0.95. Calc uses this percentage to compute the corresponding confidence intervals for each of the estimates (namely the slopes and intercept).
### Calculate residuals
Select whether to opt in or out of computing the residuals, which may be beneficial in cases where you are interested only in the slopes and intercept estimates and their statistics. The residuals give information on how far the actual data points deviate from the predicted data points, based on the regression model.
### Force intercept to be zero
Calculates the regression model using zero as the intercept, thus forcing the model to pass through the origin.
Будь ласка, підтримайте нас!
| 616
| 2,724
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.28125
| 3
|
CC-MAIN-2024-26
|
latest
|
en
| 0.781923
|
https://hwkhlp.com/Math/Solver
| 1,620,898,683,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2021-21/segments/1620243990584.33/warc/CC-MAIN-20210513080742-20210513110742-00254.warc.gz
| 288,451,049
| 18,679
|
Math and Solver
Subject
Topic
Level
Middle School
6
6x+2=11
6x+2=11
Solution:
\left\{\frac{3}{2}\right\}
Calculated: \left\{1.5\right\}
Subject
Topic
Level
Highschool
7
Division
Subject
Topic
Level
Homeschool
5
What gives you 125
Subject
Topic
Level
Middle School
6
How to do this?I'm confuse
Subject
Topic
Level
Highschool
9
Estimate 651-376
738-227
Solution:
511
Subject
Topic
Level
Primary
3
Express each of following equations in the forme ax +by +c=0 and indicate values a,b,c in each case
3x+5y=7.5
Subject
Topic
Level
Highschool
9
2a^3\times4a^4
Solution:
\left\{0\right\}
Subject
Topic
Level
Highschool
8
How to convert to a decimal?
Subject
Topic
Level
Middle School
7
express 18 hours as% of 3 days
Subject
Topic
Level
Middle School
7
Subject
Topic
Level
Junior High
6
What is Rectangle formula
2(l+b)
Solution:
- b
Series expansion around 0
2 b + 2 l
Subject
Topic
Level
Primary
3
Ratios
Subject
Topic
Level
Middle School
6
Use a proportion to find the missing measurement
Subject
Topic
Level
Middle School
7
Subject
Topic
Level
Middle School
4
Subject
Topic
Level
Middle School
5
What is the formula
85\times85
Solution:
7225
Subject
Topic
Level
Primary
5
\text{4)}\frac{1}{2}\cdot\frac{-2}{3}\cdot3=-
Solution:
\left\{0\right\}
Complex Roots
0
Derivative
e t^{2}
Series expansion around 0
e t^{2} x
Subject
Topic
Level
Middle School
7
37/9=
Subject
Topic
Level
Junior High
7
Subject
Topic
Level
Primary
6
Subject
Topic
Level
Highschool
8
(a+1)²+16(a+1)+60
Subject
Topic
Level
Highschool
8
speed =distance /time
Subject
Topic
Level
Highschool
7
Kilo, Hecto, Decka, Basic Unit, Deci, Centi, milli
Subject
Topic
Level
Middle School
8
$$7\times9$$
Subject
Topic
Level
Learning For Fun
(x+3y)(3x -y)
Subject
Topic
Level
Primary
1
Subject
Topic
Level
Learning For Fun
7
\text{1)JoeSmithscored}37\text{ofhisteams}100\text{pointsinagame.Whatpercentageofpointsdidhescore?}
Solution:
\left\{0\right\}
Subject
Topic
Level
Middle School
6
• Solve x (x-3)(x+2)=0
Subject
Topic
Level
Highschool
12
2x+5y=7;3x_7y=5 with unique solution
$$2x+5y=7$$ $$2x+5y=7.3x-7y=5$$
Subject
Topic
Level
Homeschool
10
Subject
Topic
Level
Primary
5
Subject
Topic
Level
Highschool
8
Subject
Topic
Level
Highschool
9
Mental maths
Subject
Topic
Level
Middle School
8
Subject
Topic
Level
Middle School
7
Subject
Topic
Level
Middle School
7
4÷365.
Subject
Topic
Level
Middle School
5
5^2+8^2
Solution:
89
Subject
Topic
Level
Homeschool
6
Subject
Topic
Level
Learning For Fun
Undefined
Subject
Topic
Level
Middle School
7
Subject
Topic
Level
Primary
6
Write the common ratio or differrence if it has one? 3 6 9 12
Subject
Topic
Level
Middle School
5
Salman paid 2400 as zakat what were his yearly saving
Subject
Topic
Level
Junior High
7
Subject
Topic
Level
Middle School
6
Subject
Topic
Level
Middle School
| 988
| 2,883
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.875
| 4
|
CC-MAIN-2021-21
|
latest
|
en
| 0.659249
|
https://socratic.org/questions/how-do-you-use-the-binomial-formula-to-find-the-coefficient-of-the-z-19-q-2-term
| 1,585,532,626,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2020-16/segments/1585370496330.1/warc/CC-MAIN-20200329232328-20200330022328-00460.warc.gz
| 638,328,370
| 6,020
|
# How do you use the binomial formula to find the coefficient of the z^19 q^2 term in the expansion of (z+2q)^21?
Jan 19, 2016
$210$
#### Explanation:
The coefficient will be the second term in the twenty-first row of Pascal's triangle (excluding the inside and outside ones).
This can be represented as ""_21C_2, or $21$ choose $2$.
Algebraically represented, this is
(21!)/((2!)(19!))=(21xx20)/2=210
| 121
| 408
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 5, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.921875
| 4
|
CC-MAIN-2020-16
|
longest
|
en
| 0.86392
|
https://blog.your-writers.org/the-following-returns-over-time/
| 1,638,209,738,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2021-49/segments/1637964358786.67/warc/CC-MAIN-20211129164711-20211129194711-00546.warc.gz
| 209,258,823
| 8,822
|
##### The Following Returns Over Time
You have observed the following returns over time:
Assume that the risk-free rate is 3% and the market risk premium is 14%
1. What is the beta of Stock X? Round your answer to two decimal places.
I. Stock Y is undervalued, because its expected return is below its required rate of return.
II. Stock X is overvalued, because its expected return exceeds its required rate of return.
III. Stock X is undervalued, because its expected return its exceeds required rate of return.
IV. Stock Y is undervalued, because its expected return exceeds its required rate of return.
V. Stock X is undervalued, because its expected return is below its required rate of return.
Your-Writers’ team of experts is available 24/7 to assist you in completing such tasks. We assure you of a well written and plagiarism free paper. Place your order at Your-Writers.org by clicking on the ORDER NOW option and get a 20% discount on your first assignment.
| 223
| 974
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.515625
| 3
|
CC-MAIN-2021-49
|
latest
|
en
| 0.93944
|
https://www.scirra.com/forum/physics-impulse-on-objects-within-radius_t72474
| 1,527,438,031,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2018-22/segments/1526794869272.81/warc/CC-MAIN-20180527151021-20180527171021-00507.warc.gz
| 837,841,316
| 10,881
|
# physics - impulse on objects within radius
Get help using Construct 2
### » Mon Aug 06, 2012 10:10 pm
Hi,
Been playing around with Construct 2 for a couple of days now - very impressive.
I'd like any suggestions / links on how to do this:
2 Objects with Physics: Bomb, Crate->Bounding Box
In the scene there is 1 Bomb and several Crates.
I can click the Bomb and apply an impulse.
But it seems to apply the impulse equally to all instances of Crate, regardless of their position.
I'd like to check the position of each Crate instance relative to the Bomb and then decide whether to apply an impulse to that Crate instance.
Pretty straightforward to do in JS or AS3:
Loop thru an array of Crate instances, get the current X,Y of each instance, compare it to Bomb X,Y, and make a decision.
How would you accomplish this within the Event Sheet?
Or is there a way to inject and call a custom function ?
Thx.
sam3d2012-08-06 22:18:53
B
7
S
1
Posts: 11
Reputation: 929
### » Tue Aug 07, 2012 6:35 am
On bomb clicked
For each crate
compare two variables: distance(bomb.x,bomb.y,crate.x,crate.y ) < bomb.radius
---> apply force ....keepee2012-08-07 06:36:38
B
28
S
8
G
1
Posts: 469
Reputation: 4,683
### » Wed Aug 08, 2012 2:06 pm
keepee - yes, I know how to use distance. I was asking about how to use it and arrays within the context of the Event Sheet. But thanks.
I found this, which I don't quite understand yet re Event Sheet, but it is a good starting point:
http://www.scirra.com/forum/physics-explosion-with-impact_topic45047.html
B
7
S
1
Posts: 11
Reputation: 929
### » Wed Aug 08, 2012 3:54 pm
Why do you want to use an array? The "For each object" loop @keepee mentioned should do the trick. It will loop through all the instances and apply the action only to the objects that meet the conditions.
B
27
S
8
G
8
Posts: 903
Reputation: 8,452
### » Wed Aug 08, 2012 4:53 pm
I prefer to use a mask around the bomb and check if it's colliding with the object, the mask can be pinned to the bomb and still invisible.
The bounciness and density will make the rest ^^
B
110
S
24
G
18
Posts: 1,391
Reputation: 23,017
### » Wed Aug 08, 2012 6:24 pm
Nimtrix - yes, the For Each loop is what I wanted (duh).
Telles0808 - you prefer a mask because it allows for fewer calculations via collide as opposed to relative distance ?
I need the latter as I don't want to rely on collision, but was wondering.
I have an example working using keepee's suggestion...
Thx for the replies - very helpful in getting oriented. sam3d2012-08-10 14:06:23
B
7
S
1
Posts: 11
Reputation: 929
### » Thu Nov 01, 2012 12:47 pm
Hate to revive an old thread, but as I was looking to do the same thing this may help others:
I found simple way to do this based on the discussion in this thread:
http://www.scirra.com/forum/black-hole-physics_topic41431.html
I simply added a click event on my "bomb", with an "apply impulse towards position" action on my crates using this formula:
[code]
Impulse: -bombForce/distance(bomb.X,bomb.Y,crate.X,crate.y)^2
X: bomb.X
Y: bomb.Y
Image point: 0
[/code]
where "bombForce" is a variable that can be adjusted to suit your needs (I used 250). Works a treat!
B
8
Posts: 32
Reputation: 1,039
### » Sat Jul 13, 2013 5:15 am
@thatjoshguy Nice method, it works for me. But I think the variable needs a large value for a big impulse.tetriser0162013-07-13 05:17:12
Banned User
B
16
S
3
G
3
Posts: 74
Reputation: 3,125
| 1,031
| 3,451
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.546875
| 3
|
CC-MAIN-2018-22
|
latest
|
en
| 0.893442
|
https://docs.juliahub.com/General/CalculusWithJulia/stable/
| 1,723,447,419,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-33/segments/1722641036271.72/warc/CC-MAIN-20240812061749-20240812091749-00746.warc.gz
| 151,024,063
| 8,088
|
# CalculusWithJulia.jl
Documentation for CalculusWithJulia.jl, a package to accompany the notes "Calculus with Julia" for using Julia for Calculus.
To suggest corrections to the notes, please submit a pull request to https://github.com/jverzani/CalculusWithJuliaNotes.jl/. The Quarto pages makes this easy, as they have an "Edit this page" link.
## Index
CalculusWithJulia.CalculusWithJuliaModule
CalculusWithJulia
A package to accompany notes at https://calculuswithjulia.github.io on using Julia for topics from the calculus sequence.
This package does two things:
• It loads a few other packages making it easier to use (and install) the functionality provided by them and
• It defines a handful of functions for convenience. The exported ones
are e, unzip, rangeclamp tangent, secant, D (and the prime notation), divergence, gradient, curl, and ∇, along with some plotting functions
Packages loaded by CalculusWithJulia
• The SpecialFunctions is loaded giving access to a few special functions used in these notes, e.g., airyai, gamma
• The ForwardDiff package is loaded giving access to its derivative, gradient, jacobian, and hessian functions for finding automatic derivatives of functions. In addition, this package defines ' (for functions) to return a derivative (which commits type piracy), ∇ to find the gradient (∇(f)), the divergence (∇⋅F). and the curl (∇×F), along with divergence and curl.
• The LinearAlgebra package is loaded for access to several of its functions fr working with vectors norm, cdot (⋅), cross (×), det.
• The PlotUtils package is loaded so that its adapted_grid function is available.
The Julia package Requires allows for additional code to be run when another package is loaded. The following packages have additional code to load:
• SymPy: for symbolic math.
• Plots: the Plots package provides a plotting interface.
Several plot recipes are provided to ease the creation of plots in the notes. plotif, trimplot, and signchart are used for plotting univariate functions; plot_polar and plot_parametric are used to plot curves in 2 or 3 dimensions; plot_parametric also makes the plotting og parameterically defined surfaces easier; vectorfieldplot and vectorfieldplot3d can be used to plot vector fields; and arrow is a simplified interface to quiver that also indicates 3D vectors.
The plot_implicit function can plot 2D implicit plots. (It is borrowed from ImplicitPlots.jl, which is avoided, as it has dependencies that hold other packages back.)
Other packages with a recurring role in the accompanying notes:
• Roots is used to find zeros of univariate functions
• SymPy for symbolic math
• QuadGK and HCubature are used for numeric integration
CalculusWithJulia.DFunction
D(f)
Function interface to ForwardDiff.derivative.
Also overrides f' to take take a derivative.
CalculusWithJulia.arrowFunction
arrow!(p, v)
Add the vector v to the plot anchored at p.
This would just be a call to quiver, but there is no 3-D version of that. As well, the syntax for quiver is a bit awkward for plotting just a single arrow. (Though efficient if plotting many).
using Plots
r(t) = [sin(t), cos(t), t]
rp(t) = [cos(t), -sin(t), 1]
plot(unzip(r, 0, 2pi)...)
t0 = 1
arrow!(r(t0), rp(t0))
CalculusWithJulia.fisheyeMethod
fisheye(f)
Transform f defined on (-∞, ∞) to a new function whose domain is in (-π/2, π/2) and range is within (-π/2, π/2). Useful for finding all zeros over the real line. For example
f(x) = 1 + 100x^2 - x^3
fzeros(f, -100, 100) # empty just misses the zero found with:
fzeros(fisheye(f), -pi/2, pi/2) .|> tan # finds 100.19469143521222, not perfect but easy to get
By Gunter Fuchs.
CalculusWithJulia.fubiniMethod
fubini(f, [zs], [ys], xs; rtol=missing, kws...)
Integrate f of 1, 2, or 3 input variables.
The zs may depend (x,y), the ys may depend on x
Examples
# integrate over the unit square
fubini((x,y) -> sin(x-y), (0,1), (0,1))
# integrate over a triangle
fubini((x,y) -> 1, (0,identity), (0,1 ))
#
f(x,y,z) = x*y^2*z^3
fubini(f, (0,(x,y) -> x+ y), (0, x -> x), (0,1))
!!! Note This uses nested calls to quadgk. The use of hcubature is recommended, typically after a change of variables to make a rectangular domain. The relative tolerance increases at each nested level.
CalculusWithJulia.limMethod
lim(f, c; n=6, m=1, dir="+-")
lim(f, c, dir; n-5)
Means to generate numeric table of values of f as h gets close to c.
• n, m: powers of 10 to add (subtract) to (from) c.
• dir: Either "+-" (show left and right), "+" (right limit), or "-" (left limit). Can also use functions +, -, ±.
Example:
julia> f(x) = sin(x) / x
f (generic function with 1 method)
julia> lim(f, 0)
0.1 0.9983341664682815
0.01 0.9999833334166665
0.001 0.9999998333333416
0.0001 0.9999999983333334
1.0e-5 0.9999999999833332
1.0e-6 0.9999999999998334
⋮ ⋮
c L?
⋮ ⋮
-1.0e-6 0.9999999999998334
-1.0e-5 0.9999999999833332
-0.0001 0.9999999983333334
-0.001 0.9999998333333416
-0.01 0.9999833334166665
-0.1 0.9983341664682815
CalculusWithJulia.newton_plot!Function
newton_plot!(f, x0; steps=5, annotate_steps::Int=0, kwargs...)
Add trace of Newton's method to plot.
• steps: how many steps from x0 to illustrate
• annotate_steps::Int: how may steps to annotate
CalculusWithJulia.plot_implicit_surfaceFunction
Visualize F(x,y,z) = c by plotting assorted contour lines
This graphic makes slices in the x, y, and/or z direction of the 3-D level surface and plots them accordingly. Which slices (and their colors) are specified through a dictionary.
Examples:
F(x,y,z) = x^2 + y^2 + x^2
plot_implicit_surface(F, 20) # 20 slices in z direction
plot_implicit_surface(F, 20, slices=Dict(:x=>:blue, :y=>:red, :z=>:green), nlevels=6) # all 3 shown
# A heart
a,b = 1,3
F(x,y,z) = (x^2+((1+b)*y)^2+z^2-1)^3-x^2*z^3-a*y^2*z^3
plot_implicit_surface(F, xlims=-2..2,ylims=-1..1,zlims=-1..2)
Note: Idea from.
Not exported.
CalculusWithJulia.plot_parametricFunction
plot_parametric(ab, r; kwargs...)
plot_parametric!(ab, r; kwargs...)
plot_parametric(u, v, F; kwargs...)
plot_parametric!(u, v, F; kwargs...)
Make a parametric plot of a space curve or parametrized surface
The intervals to plot over are specifed using a..b notation, from IntervalSets
CalculusWithJulia.plotifFunction
plotif(f, g, a, b)
Plot of f over [a,b] with the intervals where g ≥ 0 highlighted in many ways.
CalculusWithJulia.rangeclampFunction
rangeclamp(f, hi=20, lo=-hi; replacement=NaN)
Modify f so that values of f(x) outside of [lo,hi] are replaced by replacement.
Examples
f(x) = 1/x
plot(rangeclamp(f), -1, 1)
plot(rangeclamp(f, 10), -1, 1) # no abs(y) values exceeding 10
CalculusWithJulia.riemannMethod
riemann(f, a, b, n; method="right"
Compute an approximations to the definite integral of f over [a,b] using an equal-sized partition of size n+1.
method: "right" (default), "left", "trapezoid", "simpsons", "ct", "m̃" (minimum over interval), "M̃" (maximum over interval)
Example:
f(x) = exp(x^2)
riemann(f, 0, 1, 1000) # default right-Riemann sums
riemann(f, 0, 1, 1000; method="left") # left sums
riemann(f, 0, 1, 1000; method="trapezoid") # use trapezoid rule
riemann(f, 0, 1, 1000; method="simpsons") # use Simpson's rule
CalculusWithJulia.riemann_plot!Function
riemann_plot!(f, a, b, n; method="method", fill, kwargs...)
riemann_plot(f, a, b, n; method="method", fill, kwargs...)
Add visualization of riemann sum in a layer.
• method: one of right, left, trapezoid, simpsons
• fill: to specify fill color, something like ("green", 0.25, 0) will fill in green with an alpha transparency.
CalculusWithJulia.secantMethod
secant(f::Function, a, b)
Returns a function describing the secant line to the graph of f at x=a and x=b.
Example. Where does the secant line intersect the y axis?
f(x) = sin(x)
a, b = pi/4, pi/3
sl(x) = secant(f, a, b)(x) # or sl = sl(f, a, b) to use a non-generic function
sl(0)
CalculusWithJulia.sign_chartMethod
sign_chart(f, a, b; atol=1e-4)
Create a sign chart for f over (a,b). Returns a collection of named tuples, each with an identified zero or vertical asymptote and the corresponding sign change. The tolerance is used to disambiguate numerically found values.
Example
julia> sign_chart(x -> (x-1/2)/(x*(1-x)), 0, 1)
3-element Vector{NamedTuple{(:zero_oo_NaN, :sign_change)}}:
(zero_oo_NaN = 0.0, sign_change = an endpoint)
(zero_oo_NaN = 0.5, sign_change = - to +)
(zero_oo_NaN = 1.0, sign_change = an endpoint)
Warning
This uses find_zeros to find zeros of f and x -> 1/f(x). The find_zeros function is a hueristic and can miss answers.
CalculusWithJulia.tangentMethod
tangent(f::Function, c)
Returns a function describing the tangent line to the graph of f at x=c.
Example. Where does the tangent line intersect the y axis?
f(x) = sin(x)
tl(x) = tangent(f, pi/4)(x) # or tl = tangent(f, pi/3) to use a non-generic function
tl(0)
Uses the automatic derivative of f to find the slope of the tangent line at x=c.
CalculusWithJulia.unzipMethod
unzip(vs)
unzip(v1, v2, ...)
unzip(r::Function, a, b)
Take a vector of points described by vectors (as returned by, say r(t)=[sin(t),cos(t)], r.([1,2,3]), and return a tuple of collected x values, y values, and optionally z values.
Wrapper around the invert function of SplitApplyCombine.
If the argument is specified as a comma separated collection of vectors, then these are combined and passed along.
If the argument is a function and two end points, then the function is evaluated at 100 points between a and b.
This is useful for plotting when the data is more conveniently represented in terms of vectors, but the plotting interface requires the x and y values collected.
Examples:
using Plots
r(t) = [sin(t), cos(t)]
rp(t) = [cos(t), -sin(t)]
plot(unzip(r, 0, 2pi)...) # calls plot(xs, ys)
t0, t1 = pi/6, pi/4
p, v = r(t0), rp(t0)
plot!(unzip(p, p+v)...) # connect p to p+v with line
p, v = r(t1), rp(t1)
quiver!(unzip([p])..., quiver=unzip([v]))
Based on unzip from the Plots package. Implemented through invert of SplitApplyCombine
Note: for a vector of points, xs, each of length 2, a similar functionality would be (first.(xs), last.(xs)). If each point had length 3, then with second(x)=x[2], a similar functionality would be (first.(xs), second.(xs), last.(xs)).
CalculusWithJulia.vectorfieldplotFunction
vectorfieldplot(V; xlim=(-5,5), ylim=(-5,5), n=10; kwargs...)
V is a function that takes a point and returns a vector (2D dimensions), such as V(x) = x[1]^2 + x[2]^2.
The grid xlim × ylim is paritioned into (n+1) × (n+1) points. At each point, pt, a vector proportional to V(pt) is drawn.
This is written to add to an existing plot.
plot() # make a plot
V(x,y) = [x, y-x]
vectorfield_plot!(p, V)
p`
| 3,243
| 10,795
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.546875
| 3
|
CC-MAIN-2024-33
|
latest
|
en
| 0.868134
|
https://community.smartsheet.com/discussion/106871/parent-status-based-on-children-harvy-ball-status
| 1,722,977,549,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-33/segments/1722640508059.30/warc/CC-MAIN-20240806192936-20240806222936-00503.warc.gz
| 144,855,186
| 107,048
|
# Parent Status based on Children Harvy ball status.
Options
Dear team,
I am trying to build a status update tracker, for teams to update each milestone. They are expected to update each milestone using the harvey ball status (0% /25% /50 % /75% /100%). I am trying to automate the status of parent based on children's Harvey ball status as below with logic as " If the status of all children in 0% the parent status will return as " Not started". If all the children are 100% the parent will return as " Completed". If the children has any other status individually the parent will return as " In progress"
=IF(COUNTIF(CHILDREN(),<0.25)=COUNT(CHILDREN()),"Not Started",IF(COUNTIF(CHILDREN(),=1)=COUNT(CHILDREN()),"Completed","In Progress")))
The above formula is returning #UNPARSEABLE". Can you please help me what is the error i am making here?. I am a newbie on smartsheets. you help is highly appreciated.
• ✭✭✭✭✭✭
Options
With the symbols you are using, the options would typically be represented by the text entries [Empty, Quarter, Half, Three Quarter, Full]. In this case, this should work:
=IF(COUNTIF(CHILDREN([BallCell]@row), "Empty") = COUNT(CHILDREN([BallCell]@row)), "Not Started", IF(COUNTIF(CHILDREN([BallCell]@row), "Full") = COUNT(CHILDREN([BallCell]@row)), "Completed", "In Progress"))
If you do have your sheet setup somehow so that the entries are respresented by [0, 0.25, 0.50, 0.75, 1], then this should work:
=IF(COUNTIF(CHILDREN([BallCell]@row), < 0.25) = COUNT(CHILDREN([BallCell]@row)), "Not Started", IF(COUNTIF(CHILDREN([BallCell]@row), 1) = COUNT(CHILDREN([BallCell]@row)), "Completed", "In Progress"))
In either case, you will need to substitute [BallCell] with the name of the column with your symbols. The column name is not visible in your screenshot.
Options
Thanks a million Carson!. Formula works like charm!!
• ✭✭✭✭✭✭
Options
With the symbols you are using, the options would typically be represented by the text entries [Empty, Quarter, Half, Three Quarter, Full]. In this case, this should work:
=IF(COUNTIF(CHILDREN([BallCell]@row), "Empty") = COUNT(CHILDREN([BallCell]@row)), "Not Started", IF(COUNTIF(CHILDREN([BallCell]@row), "Full") = COUNT(CHILDREN([BallCell]@row)), "Completed", "In Progress"))
If you do have your sheet setup somehow so that the entries are respresented by [0, 0.25, 0.50, 0.75, 1], then this should work:
=IF(COUNTIF(CHILDREN([BallCell]@row), < 0.25) = COUNT(CHILDREN([BallCell]@row)), "Not Started", IF(COUNTIF(CHILDREN([BallCell]@row), 1) = COUNT(CHILDREN([BallCell]@row)), "Completed", "In Progress"))
In either case, you will need to substitute [BallCell] with the name of the column with your symbols. The column name is not visible in your screenshot.
| 778
| 2,744
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.703125
| 3
|
CC-MAIN-2024-33
|
latest
|
en
| 0.8517
|
https://argoprep.com/consequences-if-then/
| 1,582,013,420,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2020-10/segments/1581875143635.54/warc/CC-MAIN-20200218055414-20200218085414-00201.warc.gz
| 292,374,150
| 13,554
|
# Consequences (IF/THEN)
No doubt, your parents and grandparents talk to you about consequences. If you make this decision, this other thing will be the consequence, or result, of your action. Did you know that you won’t be your best at figuring out the consequences of ideas or actions until you’re 24? We’re learning so much about the brain, that we’ve found out that the brain’s ability to make inferences does not fully mature until the age of 24.
That means you are just over half way old enough to getting really good at making inferences, but you are faced with figuring out the consequences of actions and ideas all of the time… including on the SHSAT! On the exam, inferences most often show up in two ways: questions will ask you to figure out what the consequence of a view will be, and questions will ask you to organize a paragraph’s sentences to make the most sense. (Pro Tip! Inferences are called logical sequence, because they have a logical structure that’s built around the order of things happening.) You might be given a passage that includes a lot of data or historical facts, and then you have to figure out the consequence of what would happen if some person responded to those facts in a particular way. Or, you might be given a passage in which each sentence is numbered, and you’ll have to tell the writers where the best place for sentence 3 is.
We’re going to practice both kinds of logical sequencing. Right now, we’ll focus on what we mean by IF/THEN statements, and how to figure out the right answers.
SHSAT writers *love* IF/THEN questions! Here’s one example, from a practice test: “Which of the following would have been the most likely result if the candidates had not debated on television in 1960?” Another way to say the question is, “If the candidates had not debated on television in 1960, then FILL IN THE BLANK would have most likely resulted.” You will see these throughout the ELA part of the exam. Are there general tips about answering IF/THEN questions?
There are two main things to keep in mind when you do IF/THEN questions: 1. Look at the relationship between what is said in the first part—the if part—and what is suggested as the consequence—the then part. 2. Know that if your if part is true, then the consequence has to occur. If you find out that the consequence cannot occur, you know that the whole IF/THEN statement or argument is false. Here’s more.
# The IF/THEN Relationship
In an IF/THEN statement (and argument), the “if” statement sets up what can be true later. When I say, “If you prepare for the SHSAT, you will perform better than if you didn’t,” I’m saying there is a relationship between your prep for the SHSAT and how well you do on the exam. Whether the relationship is true depends on whether the IF leads to the THEN.
But, IF/THEN statements are actually pretty fun, because you can figure out whether they lead to good arguments if they follow two types of math-like equations. These equations are super easy. Learning them will not only help you do better on the exam—they’ll help you win arguments in every day life! Here’s why: if an argument follows one of these two types, they will always be a strong argument. You’ve already looked at ways that arguments can go wrong (see “Big, Ugly, Hairy, Wrong Fallacies”). It makes sense to do yourself a favor and see how reasoning works well.
## Version 1, MP
We’ll call Version 1 of these always strong arguments IF/THEN arguments MP. (Pro-Tip: this stands for modus ponens.) Just like the Pythagorean Theorem works to prove the side of any triangle, any argument that follows an MP form will be a strong argument. Here’s Version 1’s form:
1. If this is true, then that must occur.
2. This is true.
3. Then, that must occur.
You might not believe this, but any argument that follows an MP form is a strong argument. You can fill in any content for “this” and “that”, and it will be a strong argument. Here’s some examples that make complete sense:
1. If you get good sleep, you will feel rested.
2. You got 8 solid hours last night.
3. Of course, you feel great!
And, another:
1. If Superman touches Kryptonite, he loses his powers.
2. Lex Luther thrusts Kryptonite onto Superman’s chest.
3. Superman passes out, completely weak.
1. Whenever Beyonce produces her next album, I’m buying it!
2. The news just reported she is putting out an album in July.
3. I am going to be buying a Beyonce record in July.
What all of these arguments have in common isn’t that they are in fact true—it’s that all of their conclusions (all given in the #3 sentences) are guaranteed by what comes with their #1 and #2 reasons. The relationship in #1 says that “IF something happens, THEN another thing will happen”. And, then #2 says something factual—that something happens! There is only one thing we can conclude with the #1 and #2, and that is what is listed in the conclusion.
Remember, any argument that has MP’s form is a strong argument. That means that these arguments are also strong:
1. If Lucky Charms loses its marshmallows, treble clefs will bottom out.
2. Sofie ate all of the Lucky Charms marshmallows.
3. The treble clefs bottomed out.
As well as:
1. When the cow jumps over the moon, the little dog laughs.
2. The cow jumps over the moon.
3. The little dog laughs.
And try:
1. If Dinglehoppers sniff jumbleweeds, musclekrays snorkel with kresselbums.
2. Dinglehoppers love to sniff jumbleweeds.
3. Musclekrays snorkel with kresselbums.
Just as in the original three examples, each of these follow the MP form, and are strong arguments. What makes them strong? Their conclusions (#3) are guaranteed by their reasons. That might seem weird, since they don’t actually make sense. But, what makes them strong arguments is that they are guaranteed.
This means that even strong arguments might not be the best arguments for IF/THEN statements. The relationship between the IF and the THEN should be true. In the first set of arguments, the IF/THEN relationships are true: it is true that you feel rested if you get good sleep, that Superman loses his powers when there is Kryptonite, and that I will buy the next Beyonce record when it’s cut. In the second set, there isn’t a true relationship between the IF and the THEN: it doesn’t make sense to say that treble clefs bottom out, little dogs laugh, and musclekrays snorkel with kresselbums. So, even guaranteed arguments need truth to be the best arguments.
Make sure that you aren’t duped by a.) arguments that don’t have the right form and b.) arguments that have the right form but aren’t actually true.
## Version 2: MT
When we have IF/THEN statements, there is one more argument form that is always strong, but also require truth to be good arguments. We’re calling Version 2 MT arguments (Pro-Tip, we call this modus tollens). MT arguments all have this form:
1. If this is true, then that must occur.
2. That does not
3. Then, that cannot
We only have two things we can say about any IF/THEN statement. It’s either going to be true that the “if” thing is true, or that the “if” thing is not true. That’s it. We can’t say more—the thing is either true or not. In MP arguments, we learn that the thing is true in the #2 sentence, and the result has to be that the consequence stated in #1 is stated. In MT arguments, we learn that the consequence could not occur, and so our conclusion has to be that the “if” does not occur. Here’s an example:
1. If you eat the pizza, you will need the soda.
2. You don’t need the soda.
3. You didn’t eat the pizza.
This is a strong argument! The conclusion (#3) is guaranteed by #1 and #2. So, for IF/THEN arguments, we can say in #2 either that the thing does occur, or that the consequence didn’t occur. (Any other option is not a strong argument.) Just as in MP arguments, we want the best arguments, which require a true relationship between the “IF” and the “THEN” in the argument. If the relationship in #1 is not true, then we need to steer clear of thinking that the argument will be true.
| 1,939
| 8,090
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.140625
| 3
|
CC-MAIN-2020-10
|
latest
|
en
| 0.945007
|
https://cmouhot.wordpress.com/2011/02/01/cercignanis-conjecture/
| 1,532,181,013,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2018-30/segments/1531676592579.77/warc/CC-MAIN-20180721125703-20180721145703-00590.warc.gz
| 619,325,634
| 28,918
|
# Cercignani’s conjecture
Carlo Cercignani 1983 (Photo credit Kazuo Aoki)
Soon will happen a Conference in memory of Carlo Cercignani at IHP, Paris 9-11 february which I am co-organizing together with François Bolley, Laurent Desvillettes and Silvia Lorenzani. Moreover several works quoted for the Fields medal 2010 of Cédric Villani are directly related and somehow motivated by the so-called Cercignani’s conjecture in kinetic theory.
As a tribute to Carlo Cercignani, one of founder of the modern mathematical kinetic theory and a great scientist, here is a short presentation about Cercignani’s conjecture. More details (including references and latest results about the conjecture) can be found in this review paper.
Boltzmann equation
The Boltzmann equation describes the behavior of a rarefied gas when the only interactions taken into account are binary collisions. In the case when this distribution function is assumed to be independent of the position, it reduces to the spatially homogeneous Boltzmann equation
$\displaystyle \frac{\partial f}{\partial t}(t,v) = Q(f,f)(t,v), \quad v \in \mathbb{R}^d, \quad t \geq 0$
where ${Q}$ is the quadratic Boltzmann collision operator, defined by the bilinear form
${Q(g,f) = \int B (g'_* f' - g_* f) \, dv_* \, d\sigma}$
with the shorthands ${f'=f(v')}$, ${g_*=g(v_*)}$ and ${g'_*=g(v'_*)}$, where
$\displaystyle {v' = (v+v_*)/2 + \sigma |v-v_*|/2 }$
and
$\displaystyle {v'_* = (v+v_*)/2 - \sigma |v-v_*|/2 }$
stand for the pre-collisional velocities of particles which after collision have velocities ${v}$ and ${v_*}$. The function ${B}$ is called the Boltzmann collision kernel and it is determined by physics (it is related to the physical cross-section ${\Sigma(v-v_*,\sigma)}$ by the formula ${B=|v-v_*| \, \Sigma}$). On physical grounds (in particular galilean invariance), it is assumed that ${B \geq 0}$ and ${B}$ is a function of ${|v-v_*|}$ and ${\cos\theta}$ only.
The collision kernel
In the theory of Maxwell and Boltzmann, the interaction between particles is reflected in the formula for the collision kernel ${B}$. It may be short-range or long-range. The most important case of short-range interaction is the hard spheres model, where particles are spheres interacting by contact. In that case, ${B=|v-v_*|}$ in dimension ${d=3}$ (constant cross-section). Typical models of long-range interactions are given by inverse power-law forces. In dimension ${d=3}$, if the intermolecular force scales like ${r^{-s}}$ with ${s > 2}$, then
$\displaystyle B(|v-v_*|, \cos \theta) = |v-v_*|^\gamma \, b(\theta), \quad \theta \in [0,\pi],$
where ${b}$ is smooth except near ${\theta =0}$,
$\displaystyle b(\theta) \sim_{\theta =0} \mbox{cst} \, \theta^{-2 - \nu},$
and
$\displaystyle \gamma = \frac{s-5}{s-1}, \qquad \nu = \frac{2}{s-1}.$
Conserved quantities and entropy structure
Boltzmann’s and Landau’s collision operators have the fundamental properties of conserving mass, momentum and energy
$\displaystyle \int Q(f,f)(v) \, \phi(v)\,dv = 0$
for $\phi(v)=1,v,|v|^2/2$ and satisfying (the first part of) Boltzmann’s ${H}$ theorem, which can be formally written as
$\displaystyle {\mathcal D}(f):= - \int Q(f,f)\log f \, dv \ge 0$
where Boltzmann’s so-called “${{\mathcal H}}$ functional”
$\displaystyle {\mathcal H}(f) = \int f \, \log f\, dv$
is the opposite of the entropy of the gas. The second part of Boltzmann’s ${H}$ theorem states that under appropriate boundary conditions, any equilibrium distribution function (that is, such that ${v\cdot\nabla_x f = Q(f,f)}$) satisfies ${{\mathcal D}(f)=0}$, or equivalently ${Q(f,f)=0}$, and takes the form of a Maxwellian (gaussian) distribution associated with the parameters ${\rho= 0}$, ${u\in\mathbb{R}^d}$ and ${T\geq 0}$ which are interpreted as respectively the density, mean velocity and temperature of the gas.
The linearized collision operators
We introduce the fluctuation around the Maxwellian equilibrium ${M}$ computed above:
$\displaystyle f = M + Mh, \quad v \mapsto h(v) \in L^2(M)$
where ${L^2(M)}$ denotes the Lebesgue space ${L^2}$ on ${\mathbb{R}^d}$ with reference measure ${M(v) \, dv}$. Then the linearized collision operator writes
$\displaystyle Lh = M^{-1} \left[ Q(Mh,M) + Q(M,Mh) \right].$
It is easy to check that ${L}$ is symmetric in the Hilbert space ${L^2(M)}$ and that it is non-positive in this space (this is the linearized form of the ${H}$ theorem). The dissipation of squared ${L^2}$ norm, that is the opposite of the Dirichlet form associated with ${L}$, is
$\displaystyle D(h) \frac{1}{4} \int (h' + h'_* - h - h_* )^2 \, B \, M \, M_* \, dv\, dv_* \, d\sigma \ge 0.$
It is straightforward from this formula that the null space of ${L}$ has dimension ${d+2}$, and is spanned by the so-called collisional invariants ${1,v_1, \dots, v_d, |v|^2}$.
Comparison with usual differential operators and classification
The Boltzmann collision operators are a priori extremely intricate, partly due to their integral or integro-differential nature (and partly of course due to their nonlinear nature!). Therefore it is useful, in order to grab an intuition of these operators, to draw a parallel with usual differential operators which are more familiar.
For the Boltzmann collision operators, say with collision kernel of the form ${B = \Phi(|v-v_*|) \, b(|\theta|)}$, the most important two “parameters” interplaying and determining its behavior are (1) the growth or decay of ${\Phi}$, and (2) the singularity of ${b}$ at grazing collisions ${\theta \sim 0}$. To be more precise, let us consider the model case ${\Phi(z)=z^\gamma}$, ${\gamma \in (-d,+\infty)}$ and ${b(|\theta|) \sim \theta^{-(d-1)-\nu}}$, ${\nu \in (-\infty,2)}$ as ${\theta \sim 0}$, for the Boltzmann collision operator. Then the order of singularity (2) plays the role of the order (highest number of derivatives) in a differential operator. For instance ${\nu <0}$ in the model means a zero order operator, whereas ${\nu \in (0,2)}$ means a fractional differential operator with order ${\nu}$. And the growth or decay of ${\Phi}$ (1) plays the role of the growth or decay of the coefficients in a differential operator. Therefore ${\gamma=0}$ (the so-called Maxwell or pseudo-Maxwell molecules cases) would correspond to a constant coefficients differential operator, and ${\gamma =1}$ (similar to hard spheres) would correspond to unbounded polynomially growing coefficients. From this comparison it becomes natural to consider the Landau collision operator with ${\Phi(z)=z^\gamma}$ formally as the limit case ${\nu=2}$ in the above classification.
Estimating relaxation to equilibrium
The relaxation to equilibrium has been studied since the works of Boltzmann and it is at the core of kinetic theory. The motivation is to provide an analytic basis for the second principle of thermodynamics for a statistical physics model of a gas out of equilibrium. Indeed, Boltzmann’s famous ${H}$ theorem gives an analytic meaning to the entropy production process and identifies possible equilibrium states. In this context, proving convergence towards equilibrium is a fundamental step to justify Boltzmann model, but cannot be fully satisfactory as long as it remains based on non-constructive arguments. Indeed, as suggested implicitly by Boltzmann when answering critics of his theory based on Poincaré’s recurrence Theorem, the validity of the Boltzmann equation breaks for very large time for a discussion). It is therefore crucial to obtain constructive quantitative informations on the time scale of the convergence, in order to show that this time scale is much smaller than the time scale of validity of the model. Cercignani’s conjecture is an attempt to provide such constructive quantitative estimates. In the words of Cercignani: “The present contribution is intended as a step toward the solution of the first main problem of kinetic theory, as defined by Truesdell and Muncaster, i.e. “to discover and specify the circumstances that give rise to solutions which persist forever”.” It is inspired by the entropy – entropy production method, that we now briefly describe.
The entropy – entropy production method
This method was first used in kinetic theory for the Fokker-Planck equation
$\displaystyle \partial_t f = \nabla_v \cdot ( \nabla f + v\, f), \quad v \in \mathbb{R}^d, \quad \int_{\mathbb{R}^d} f(w) \,dw =1.$
In that case, the equilibrium ${M}$ is given by the formula
$\displaystyle M(v) = (2\pi)^{-d/2} \, e^{- |v|^2/2}$
and the entropy production is
$\displaystyle {\mathcal D}_{FP}(f) = \int_{\mathbb{R}^d} f(v)\, \bigg| \nabla \log \frac{f}{M} \bigg|^2\, dv.$
The exponential convergence is then obtained thanks to the logarithmic Sobolev inequality, which exactly means in this setting
$\displaystyle {\mathcal D}_{FP}(f) \ge 2\, \bigg[ {\mathcal H}(f) - {\mathcal H}(M) \bigg].$
Consider the more general case of an equation for which a Lyapunov functional ${\mathcal{H}_*}$ exists, that is
$\displaystyle {\mathcal D}_{*}(f(t)):= - \frac{d}{dt} {\mathcal H}_{*}(f(t)) \ge 0$
and assume that the entropy ${-{\mathcal H}_{*}}$ is maximal for a unique function ${M_*}$ (among the functions belonging to a space depending on the conserved quantities in the equation). As seen in the previous section, this structure is provided by the ${H}$ theorem for Boltzmann and Landau equations. The entropy – entropy production method consists in looking for (functional) estimates like
$\displaystyle {\mathcal D}_*(f) \ge \Theta\bigl( {\mathcal H}_*(f) - {\mathcal H}_*(M_*) \bigr),$
where ${\Theta : \mathbb{R}_+ \rightarrow \mathbb{R}_+}$ is a function such that
$\displaystyle \Theta(x) = 0 \qquad \iff \qquad x=0.$
The stronger ${\Theta}$ increases near ${0}$ the better the rate of relaxation to equilibrium, since the differential inequality
$\displaystyle \frac{d}{dt} \bigl({\mathcal H}_*(f) - {\mathcal H}_*(M_*) \bigr) \le -\, \Theta\bigl( {\mathcal H}_*(f) - {\mathcal H}_*(M_*) \bigr)$
$\displaystyle {\mathcal H}_*(f(t)) - {\mathcal H}_*(M_*) \le R(t),$
where ${R}$ is the reciprocal of a primitive of {${ - 1/\Theta}$}. Then, if the relative entropy ${{\mathcal H}_*(f) - {\mathcal H}_*(M_*)}$ is coercive in the sense that it controls from below some distance or some norm (denoted by ${\|\,\,\|_*}$) between ${f}$ and its associated equilibrium distribution ${M_*}$ (for the Boltzmann entropy this is precisely provided by the so-called Czizsar-Kullback-Pinsker inequality, we obtain
$\displaystyle \| f(t) - M_* \|_* \le S(t),$
where (generically) $S(t) = C \sqrt{R(t)}.$ In the particular case ${\Phi(x) = C x}$ (like in the case of the Fokker-Planck equation), one gets
$\displaystyle R(t) \le C e^{-C't}$
i.e., exponential convergence towards equilibrium (with explicit rate). In the slightly worse case ${\Phi(x) = C_{\varepsilon}x^{1+\varepsilon}}$ for some (or all) ${\varepsilon>0}$ we can deduce
$\displaystyle R(t) \le C_{\varepsilon} ' t^{-1/\varepsilon},$
and we thus get algebraic convergence towards equilibrium (with explicit rate). When ${\varepsilon>0}$ can be taken as small as one wishes, we speak of almost exponential convergence.
Cercignani’s conjecture
The original Cercignani’s conjecture is written in the following form: for any ${f}$ and its associated maxwellian state ${M}$ with same mass, momentum and temperature
$\displaystyle {\mathcal D}(f) \ge \lambda \, \rho \, \big[ {\mathcal H}(f) - {\mathcal H}(M) \big],$
where ${\rho}$ is the density (mass of ${f}$) and ${\lambda >0}$ is a “suitable constant”. We shall now develop this very general statement into a layer of more specified conjectures. Let us fix ${\rho=1}$ without loss of generality. In the case when the constant ${\lambda}$ only depends on the collision kernel ${B}$, the temperature of ${M}$ (or ${f}$), and some bound on the entropy of ${f}$ (i.e., only the basic physical a priori estimates), we shall call this inequality the strong form of Cercignani’s conjecture. In the case when the constant ${\lambda}$ also depends on some additional bounds on ${f}$ (typically of smoothness, moments and lower bounds), we shall call such an inequality the weak form of Cercignani’s conjecture. Let us point out that it is of crucial importance to know whether the bounds used can be shown to be propagated by the Boltzmann equation, in order to be able to “apply” the weak form of Cercignani’s conjecture to the relaxation to equilibrium of its solutions. This of course guides which bounds are natural or not. In the slightly different case when the following inequality holds
$\displaystyle {\mathcal D}(f) \ge \lambda_\varepsilon \, \big[ {\mathcal H}(f) - {\mathcal H}(M) \big]^{1+\varepsilon}, \quad \varepsilon >0$
we shall speak of the ${\varepsilon}$-polynomial Cercignani’s conjecture and it can be divided again into weak and strong versions according to how much the constant ${\lambda_\varepsilon}$ depends on ${f}$. Finally a strictly similar hierarchy of conjectures can be formulated on the Landau entropy production functional, and we shall call it Cercignani’s conjecture for the Landau equation.
A linearized counterpart to the conjecture
A natural linearized counterpart of Cercignani’s conjecture for the Boltzmann or Landau equation consists in replacing the entropy production functional and the Boltzmann entropy by their linearized approximation, i.e., respectively the Dirichlet form of the collision operators discussed above and the ${L^2(M)}$ norm. This spectral gap question was already well-known for a long time and used by Cercignani as an inspiration and supportive argument for his conjecture. So let us call this the linearized Cercignani’s conjecture:
$\displaystyle D(h) \ge \lambda \, \| h - \Pi(h)\|_{L^2(M)} ^2,$
where ${\Pi}$ denotes the orthogonal projector in ${L^2(M)}$ onto the null space of the linearized collision operator, and ${\lambda}$ only depends on the collision kernel ${B}$ and the temperature of ${M}$. Note that due the linear homogeneity of this relation, no weak version (with constant depending on the function ${h}$) would make sense. Again obviously the same question can be asked on the Dirichlet form of the Landau collision operators and leads to the linearized Cercignani’s conjecture for the Landau equation.
Comparison with differential operators
In the light of the comparison we have made with usual differential operators, a functional inequality interpretation of Cercignani’s conjecture is the following. Its nonlinear form is an intricate (because of strong nonlinearity and average over additional angular variables) amplified version of a logarithmic Sobolev inequality. Its linearized form is an intricate (because again of average over additional angular variables) amplified version of a Poincaré inequality.
| 3,959
| 14,812
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 132, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.96875
| 3
|
CC-MAIN-2018-30
|
latest
|
en
| 0.853864
|
https://www.usingenglish.com/forum/threads/diagram-same-modifier-modifying-two-simple-subjects-in-a-compound-subect.283306/
| 1,642,439,661,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2022-05/segments/1642320300574.19/warc/CC-MAIN-20220117151834-20220117181834-00592.warc.gz
| 1,108,168,681
| 16,406
|
# diagram same modifier modifying two simple subjects in a compound subect
#### krishnap
##### Member
I am learning diagramming. I searched a lot for this, but could not find it on google. How do I diagram this sentence, for example: My dog and cat are white. My is modifying dog and cat. I do not want to put two 'My' in the diagram ...
#### GoesStation
##### Moderator
Staff member
Hi, and welcome to the forum. :hi:
done
#### PaulMatthews
##### Senior Member
I am learning diagramming. I searched a lot for this, but could not find it on google. How do I diagram this sentence, for example: My dog and cat are white. My is modifying dog and cat. I do not want to put two 'My' in the diagram ...
My dog and cat are white.
"My" is a genitive (possessive) pronoun functioning as determiner. It determines the noun phrase "my dog and cat", functioning as subject. "Are white" is a verb phrase functioning as predicate.
The nominal consists of a coordination of the two nouns "dog" and "cat". Each coordinate has the label 'coordinate - noun' assigned to it, linked by the coordinator "and".
My [dog and cat] are white. (the bracketed bit is the nominal)
The adjective phrase "white" is the subjective predicative complement of "be".
Last edited:
#### krishnap
##### Member
Why do you want to omit the determiner "my" from the tree?
I do not want to omit "my". But I want to use only one "my". I do not want to put a "my" under dog and another "my" under cat. How do I diagram with only one "my" in the tree?
My son is learning online, and the teacher usually counts the number of words in the sentence and the tree, and the numbers match. In this case, the teacher went ahead and put "my" under dog and "my" under cat, and did not explain why the numbers don't match. He just mentioned that this is one way to do it. I am trying to find out what is the other way to do it where the numbers do match.
#### krishnap
##### Member
"My" is a genitive (possessive) pronoun. "My dog and cat" is a noun phrase functioning as subject.
The nominal consists of a coordination of the two nouns "dog" and "cat". Each coordinate has the label 'coordinate - noun' assigned to it, linked by the coordinator "and".
My [dog and cat] are white. (the bracketed bit is the nominal)
The noun phrase "my dog and cat" is the subject and "are white" is the verb phrase predicate.
The noun phrase "white" is the subjective predicative complement of "be".
How do you diagram it?
line with dog, line with cat joined by a fork and by a dotted line with 'and'.
my can go on a slanted line under dog AND my can go on a slanted line under cat
but if I want to use only one "my" in the diagram, how do i do it?
#### PaulMatthews
##### Senior Member
I do not want to omit "my". But I want to use only one "my". I do not want to put a "my" under dog and another "my" under cat. How do I diagram with only one "my" in the tree?
My son is learning online, and the teacher usually counts the number of words in the sentence and the tree, and the numbers match. In this case, the teacher went ahead and put "my" under dog and "my" under cat, and did not explain why the numbers don't match. He just mentioned that this is one way to do it. I am trying to find out what is the other way to do it where the numbers do match.
I don't know what you mean by the numbers matching / not matching.
You don't need two "mys".
I don't recognise the kind of diagram you describe. I thought you wanted a conventional parse that could be used in a tree diagram.
#### TheParser
##### VIP Member
I do not want to put two 'My' in the diagram ...
NOT A TEACHER
Krishnap, when you use the word "diagram," are you referring to the Reed-Kellogg system of diagramming? The one in which you draw vertical and horizontal lines? If you are, hopefully someone who knows that system will post the diagram. I know a little about that system, but I do not know how to post diagrams. So I shall just use words. Of course, a picture [diagram] is worth a thousand words.
1. You write the word "dog" on a short horizontal line.
2. Under that horizontal line, draw another short horizontal line with "cat."
3. You connect those two horizontal lines with the word "and." (I assume that you know how to do that. I cannot explain how to do so in words.)
4. You then draw a long horizontal line. Under that line, you draw a short slanted line with the word "my" on it.
Congratulations on learning diagramming. Although almost all teachers nowadays think that the Reed-Kellogg diagramming system is a waste of time and does not help the student learn English, I respectfully disagree. (At the university, tree diagrams are used in linguistic classes.)
#### jutfrank
##### VIP Member
"My" is a genitive (possessive) pronoun functioning as determiner.
How is my a pronoun? Surely that's not right?
The noun phrase "white" is the subjective predicative complement of "be".
What reason do you have for thinking white is a noun phrase as opposed to an adjective phrase?
#### krishnap
##### Member
NOT A TEACHER
Krishnap, when you use the word "diagram," are you referring to the Reed-Kellogg system of diagramming? The one in which you draw vertical and horizontal lines? If you are, hopefully someone who knows that system will post the diagram. I know a little about that system, but I do not know how to post diagrams. So I shall just use words. Of course, a picture [diagram] is worth a thousand words.
1. You write the word "dog" on a short horizontal line.
2. Under that horizontal line, draw another short horizontal line with "cat."
3. You connect those two horizontal lines with the word "and." (I assume that you know how to do that. I cannot explain how to do so in words.)
4. You then draw a long horizontal line. Under that line, you draw a short slanted line with the word "my" on it.
Congratulations on learning diagramming. Although almost all teachers nowadays think that the Reed-Kellogg diagramming system is a waste of time and does not help the student learn English, I respectfully disagree. (At the university, tree diagrams are used in linguistic classes.)
Thanks.
the horizontal line you mention in bullet 4 must somehow be connected to the simple subjects (dog/cat), i feel. how is that done?
#### PaulMatthews
##### Senior Member
How is my a pronoun? Surely that's not right?
What reason do you have for thinking white is a noun phrase as opposed to an adjective phrase?
"My" is a genitive personal pronoun. What else could it be?
"White" is of course an adjective, not a noun. I've corrected my slip.
#### jutfrank
##### VIP Member
"My" is a genitive personal pronoun.
Would you mind explaining this, please?
I thought a pronoun must be able to substitute for a noun phrase. Is that not the definition of what a pronoun is?
#### PaulMatthews
##### Senior Member
A determinative?
No: Its function is determiner, but its word class (part of speech) is pronoun.
They are pronouns because all except "he" and "it" exhibit a distinction between dependent (my", "your" etc.) and independent forms ("mine", "yours" etc.) that is found only in personal pronouns (and the determinative "no")
"My", "your" etc. are called 'dependent' forms because they require a following noun, while "mine", "yours" etc, are the 'independent' forms, which can of course occur alone.
Last edited:
#### jutfrank
##### VIP Member
No: Its function is determiner, but its word class (part of speech) is pronoun.
But my question is why anyone would class it as a pronoun. Is it because it can substitute for another noun (e.g. John's)?
#### jutfrank
##### VIP Member
They are pronouns because all except "he" and "it" exhibit a distinction between dependent (my", "your" etc.) and independent forms ("mine", "yours" etc.) that is found only in the personal pronouns (and the determinative "no")
Okay, I hadn't seen this part when I made my last post.
I'm not sure I follow. So what are the dependent/independent forms of the personal pronouns?
#### PaulMatthews
##### Senior Member
But my question is why anyone would class it as a pronoun. Is it because it can substitute for another noun (e.g. John's)?
And of course they inflect for person (and gender in 3rd sing) which is typical of personal pronouns.
Last edited:
#### TheParser
##### VIP Member
Thanks.
the horizontal line you mention in bullet 4 must somehow be connected to the simple subjects (dog/cat), i feel. how is that done?
NOT A TEACHER
It is impossible for me to describe the process in words. But I have just remembered a website that gives hundreds of example diagrams. I think that you will find the answer among all the examples. Just google these words: german latin english.com (I do not know how to link. Sorry.)
I am so glad that you are learning Reed-Kellogg!
#### jutfrank
##### VIP Member
May I ask two more questions to you, PaulMatthews?
1) EFL teachers tend to include 'determiner' as a part of speech. Is it fair to say that most schools of grammar do not do that?
2) What part of speech is, say, the word this? Is it also seen as a pronoun, but with identical dependent and independent forms. How about articles? What part of speech is the word the?
(Apologies to the OP and anyone else following this thread for my sidetracking.)
| 2,235
| 9,310
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.96875
| 3
|
CC-MAIN-2022-05
|
latest
|
en
| 0.947217
|
http://www.greguide.com/gre-math-problems.html
| 1,529,637,686,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2018-26/segments/1529267864343.37/warc/CC-MAIN-20180622030142-20180622050142-00101.warc.gz
| 421,898,998
| 5,536
|
# GRE Math Problems
data-share="true">
It was a common conception that the verbal section of the GRE test is tougher, whereas the quantitative section of the GMAT test is more difficult. However, the revised version of the GRE test is very much different as it attempts to attract business schools as well. As a result, the problems are closer to real life problems. As the test focuses more on real life scenarios, now you are allowed to use a calculator to shift focus from minor calculations while solving You can take a look at the GRE website to learn more about the revised math problems in GRE. This page will introduce you to the Quantitative Reasoning section of the GRE test and to the kind of questions that you might face in the test:
### GRE Math Problems You Might Face in the Test:
Questions of the Quantitative Reasoning section of the GRE test measure your ability to solve math problems with quantitative reasoning skills. In this section, you may face questions on quantitative comparison, problem solving or data interpretation. There have been a few changes in this section of the test, and there are new question types that you may not be familiar with. You can take a look at sample problems to understand the quantitative section better. The pages below will give you an idea of the structure of this section of the test and the kind of math questions you have to solve:
### Quantitative Comparison GRE Math Problems:
The quantitative comparison problems provide two quantities that you need to compare and four answer choices from which you need to select the correct one as your answer. The four options will let you choose whether the first quantity is greater than the second one, the second one is greater, they are equal or the relationship is unresolved. The answer choices are similar for the quantitative comparison math problems; as a result, there is a good chance of confusing the answer choices of different questions. Be sure to read the questions carefully before choosing your answer.
You may want to follow some sample questions of this type to get accustomed to this section of the test. Here are a few sample math problems of this type:
Once you are prepared to test your skills, you can visit these pages to take sample tests on this type of questions:
### Problem Solving GRE Math Problems:
The questions of this type, as the name implies, ask you to solve the given problems to select the correct answer from the five answer choices that you will get. The problems of this type do not require you to have higher mathematical skills; however, you need to have good understanding of the basic mathematical formulas. You can start practicing this type of questions with these samples:
The following links will take you to practice tests for problems of this type:
### Problem Solving Select Many GRE Math Practice:
In the revised version of the GRE test, the problem solving questions can have multiple correct answers. In that case, you are to select all the correct answers accordingly, as no marks will be given for partially correct answers. Take a look at these sample problems:
Take these sample tests once you are comfortable with such questions:
### Numeric Entry GRE Math Practice:
This type of math questions require you to write down your answers instead of providing multiple answer choices. The Numeric Entry sums have been introduced with the revised version of the test. It may take you some time to understand this type of questions; and as you do not get answer choices, these questions may seem even more difficult. You need to follow sample math problems of this type and take practice tests. Here you will find some samples for these questions:
The links below will take you to GRE practice tests for this type of questions:
| 728
| 3,806
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.40625
| 4
|
CC-MAIN-2018-26
|
latest
|
en
| 0.941942
|
https://www.allinterview.com/showanswers/87928/what-is-the-working-principle-of-ceiling-fan.html
| 1,632,662,048,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2021-39/segments/1631780057861.0/warc/CC-MAIN-20210926114012-20210926144012-00222.warc.gz
| 655,166,916
| 9,839
|
Follow Our FB Page << CircleMedia.in >> for Daily Laughter. We Post Funny, Viral, Comedy Videos, Memes, Vines...
What is the working principle of ceiling fan?
Answers were Sorted based on User's Feedback
What is the working principle of ceiling fan?..
The celing fan motor works on principle of single phase
induction motor using capacitor.
Working of capacitor start motor: The stator consists of
the main winding and a starting winding (auxiliary). The
starting winding is connected in parallel with the main
winding and is placed physically at right angles to it. A
90-degree electrical phase difference between the two
windings is obtained by connecting the auxiliary winding in
series with a capacitor and starting switch. When the motor
is first energized, the starting switch is closed. This
places the capacitor in series with the auxiliary winding.
The capacitor is of such value that the auxiliary circuit
is effectively a resistive-capacitive circuit (referred to
as capacitive reactance and expressed as XC). In this
(because XC about equals R). The main winding has enough
resistance-inductance (referred to as inductive reactance
and expressed as XL) to cause the current to lag the line
currents in each winding are therefore 90° out of phase -
so are the magnetic fields that are generated. The effect
is that the two windings act like a two-phase stator and
produce the rotating field required to start the motor.
When nearly full speed is obtained, a centrifugal device
(the starting switch) cuts out the starting winding. The
motor then runs as a plain single-phase induction motor.
Since the auxiliary winding is only a light winding, the
motor does not develop sufficient torque to start heavy
loads. Split-phase motors, therefore, come only in small
sizes.
Is This Answer Correct ? 398 Yes 61 No
What is the working principle of ceiling fan?..
Ceiling fan is a Single phase Induction motor.Generally we use a capacitor start &Run AC Motor for ceiling Fans.
Motor principle: whenever current carrying conductor is placed in a magnetic field-it experiences force.
Stator: supplied by 1-phase voltage, current will produce in the stator winding-so magnetic field. But AC motor needs a rotating magnetic field in order turn the motor shaft (fan blades). This is done by applying voltage with different phases to different windings. In a single phase system (like at your house where you would use a ceiling fan) there is only one voltage phase. The capacitor is used to provide a phase shift (i.e. a time offset between currents) in the windings of the motor, making it appear that the motor is operating in a multiphase system.In Simple Terms, A single Phase is Split Into Two. There are also other methods to split Phase But using a capacitor is less expensive.
Now we have magnetic field.
We need current carrying conductor:
Because of Induction, voltage will develop in rotor as It is a closed circuit current will produce-so current carrying conductorp laced in magnetic field.
Rotor will rotate.
Is This Answer Correct ? 121 Yes 60 No
What is the working principle of ceiling fan?..
See Gobindarout! we are not discussing here about
mechanical principles & air floating directions. The ques
related to how the ceiling fan working means what is the
electrical principle involved in that (working) while it
rotates, what is the reason to rotate?how it is starting &
whats the reason. think in that
manner............k
Is This Answer Correct ? 165 Yes 114 No
What is the working principle of ceiling fan?..
Ceiling fan is a Single phase Induction
motor. Generally we use a capacitor
start &Run AC Motor for ceiling Fans.
Motor principle: whenever current
carrying conductor is placed in a
magnetic field-it experiences force.
Stator: supplied by 1-phase voltage,
current will produce in the stator
winding-so magnetic field. But AC
motor needs a rotating magnetic
field in
order turn the motor shaft (fan
blades). This is done by applying
voltage with
different phases to different windings.
In a single phase system (like at your
house where you would use a ceiling
fan) there is only one voltage phase.
The capacitor is used to provide a
phase shift (i.e. a time offset between
currents)
in the windings of the motor, making
it
appear that the motor is operating in
a
multiphase system.In Simple Terms, A
single Phase is Split Into Two. There
are
also other methods to split Phase But
using a capacitor is less expensive.
Now we have magnetic field.
We need current carrying conductor:
Because of Induction, voltage will
develop in rotor as It is a closed
circuit
current will produce-so current
carrying conductor placed in
magnetic field.
Rotor will rotate.
Is This Answer Correct ? 63 Yes 19 No
What is the working principle of ceiling fan?..
http://www.electrobees.com/2017/05/bldc-secret-of-superfan.html
Is This Answer Correct ? 2 Yes 4 No
What is the working principle of ceiling fan?..
When fan rotates with the higer speed than air from top
side goes to the down side and the pressure of the top side
is negative pressure and pressuer bowards buttom side is
positive so, air moves from tp bottom
Is This Answer Correct ? 79 Yes 278 No
More Electrical Engineering Interview Questions
EXPLAIN THE TERMS "INTEREST AND DEPRECIATION" AS APPLIED TO ECONOMICS OF POWER GENERATION.
What kind of maintenance is conducted for generator
WHAT IS THE FAULT WHEN 100HP TURBINE MOTOR TRIPS, LIST THE FAULTS AND ITS TRABULESHOOTING TIPS.. MY AUTO TARNSFORMER STARTER TRIPS
Why the stator is rotated in ceiling fans not Rator?
how does commutator convert a.c to d.c?
Which of the following plant has less plant factor ? -Nuclear -Hydro -Diesel -Pumped storage
How many types of circuit loads are there in a common electrical circuit?
In CDG type IDMTL realy O/L , E/F, O/C which are used for out going feedrs,on R-phase o/c element, Y-phase , e/f elecment and on b -phase o/c element will be connected . Why the earth fault on center phase only, why not on other two phases?
we all know voltage is a force(emf), and the force always devides if 2 or more than2 loads are there but why does the voltage remains same is parallel, it must devide na ???
how vfd drives energy save
How is operate breaker failure scheme in substation
may anybody tell me the names of institute where plc programing course are conducted
Categories
• Civil Engineering (5076)
• Mechanical Engineering (4445)
• Electrical Engineering (16607)
• Electronics Communications (3915)
• Chemical Engineering (1092)
• Aeronautical Engineering (214)
• Bio Engineering (96)
• Metallurgy (361)
• Industrial Engineering (258)
• Instrumentation (2992)
• Automobile Engineering (332)
• Mechatronics Engineering (97)
• Marine Engineering (123)
• Power Plant Engineering (172)
• Textile Engineering (575)
• Production Engineering (0)
• Satellite Systems Engineering (106)
• Engineering AllOther (1378)
| 1,584
| 6,914
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.53125
| 3
|
CC-MAIN-2021-39
|
latest
|
en
| 0.937448
|
https://www.fractii.ro/fractions-addition-results-explained.php?added_fractions=58%2F2756%2B39
| 1,713,941,575,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-18/segments/1712296819067.85/warc/CC-MAIN-20240424045636-20240424075636-00206.warc.gz
| 711,878,937
| 8,546
|
Adding common (ordinary) fractions, online calculator: add fractions with different (unlike) or equal (like) denominators, by the method of building up their denominators the same (up to a common denominator), by expanding the fractions. Result and the addition process explained
How to: Adding ordinary (simple, common) fractions. Steps.
There are two cases regarding the denominators when we add ordinary fractions:
• A. the fractions have like denominators;
• B. the fractions have unlike denominators.
A. How to add ordinary fractions that have like denominators?
• Simply add the numerators of the fractions.
• The denominator of the resulting fraction will be the common denominator of the fractions.
• Reduce the resulting fraction.
An example of adding ordinary fractions that have like denominators, with explanations
• 3/18 + 4/18 + 5/18 = (3 + 4 + 5)/18 = 12/18;
• We simply added the numerators of the fractions: 3 + 4 + 5 = 12;
• The denominator of the resulting fraction is: 18;
B. To add fractions with different denominators (unlike denominators), build up the fractions to the same denominator. How is it done?
• 1. Reduce the fractions to the lowest terms (simplifying).
• Factor the numerator and the denominator of each fraction down to prime factors (prime factorization).
• Factor numbers online down to their prime factors.
• Calculate GCF, the greatest common factor (also called GCD, greatest common divisor, HCF, greatest common factor) of each fraction's numerator and denominator.
• GCF is the product of all the unique common prime factors of the numerator and the denominator, taken by the lowest exponents.
• Calculate online the greatest common factor, GCF.
• Divide the numerator and the denominator of each fraction by their greatest common factor, GCF - after this operation the fraction is reduced to its lowest terms equivalent.
• 2. Calculate the least common multiple, LCM, of all the fractions' new denominators:
• LCM is going to be the common denominator of the added fractions.
• Factor all the new denominators of the reduced fractions (run the prime factorization).
• The least common multiple, LCM, is the product of all the unique prime factors of the denominators, taken by the largest exponents.
• 3. Calculate each fraction's expanding number:
• The expanding number is the non-zero number that will be used to multiply both the numerator and the denominator of each fraction, in order to build all the fractions up to the same common denominator.
• Divide the least common multiple, LCM, calculated above, by each fraction's denominator, in order to calculate each fraction's expanding number.
• 4. Expand each fraction:
• Multiply each fraction's both numerator and denominator by expanding number.
• At this point, fractions are built up to the same denominator.
| 609
| 2,833
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.71875
| 5
|
CC-MAIN-2024-18
|
latest
|
en
| 0.897892
|
https://www.citizenmath.com/lessons/second-degree
| 1,721,253,517,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-30/segments/1720763514809.11/warc/CC-MAIN-20240717212939-20240718002939-00498.warc.gz
| 614,570,214
| 9,003
|
Citizen Math used to be called Mathalicious. If you have a current account on Mathalicious, you can use those credentials to log in to your Citizen Math account. Learn more here.
# Second Degree
## How dangerous are heat and humidity?
How dangerous are heat and humidity? A hot day can feel uncomfortable. But if there’s enough humidity in the air, a hot day can be deadly. The head index describes the "feels like" temperature that combines air temperature and humidity.
In this lesson, students use polynomial functions to explore the heat index and discuss the life-and-death consequences that cities around the world will face in the coming years.
### REAL WORLD TAKEAWAYS
• The heat index describes how hot it feels and is a function of temperature and relative humidity.
• In very hot temperatures, an increase in relative humidity raises the heat index more than it would at moderate temps.
• When the heat index reaches high levels, it is dangerous for humans to go outside. Heat indexes are expected to reach dangerous levels in various places over the next century.
### MATH OBJECTIVES
• Evaluate and simplify polynomial expressions
• Graph and compare quadratic equations, and interpret those graphs in a real-world context
Appropriate most times as students are developing conceptual understanding.
Algebra 2
Polynomial Functions
Algebra 2
Polynomial Functions
Content Standards A.APR.1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (a) Graph linear and quadratic functions and show intercepts, maxima, and minima. (b) Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. (c) Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. (d) (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior. (e) Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
Mathematical Practices MP.2 Reason abstractly and quantitatively. MP.4 Model with mathematics. MP.6 Attend to precision. MP.7 Look for and make use of structure.
| 596
| 2,961
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.125
| 4
|
CC-MAIN-2024-30
|
latest
|
en
| 0.890303
|
https://workforce.libretexts.org/Bookshelves/Electronics_Technology/Book%3A_Electric_Circuits_II_-_Alternating_Current_(Kuphaldt)/07%3A_Polyphase_AC_Circuits/7.08%3A_Harmonic_Phase_Sequences
| 1,708,472,553,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-10/segments/1707947473347.0/warc/CC-MAIN-20240220211055-20240221001055-00066.warc.gz
| 692,695,725
| 29,089
|
# 7.8: Harmonic Phase Sequences
$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$
In the last section, we saw how the 3rd harmonic and all of its integer multiples (collectively called triplen harmonics) generated by 120o phase-shifted fundamental waveforms are actually in phase with each other. In a 60 Hz three-phase power system, where phases A, B, and C are 120o apart, the third-harmonic multiples of those frequencies (180 Hz) fall perfectly into phase with each other. This can be thought of in graphical terms, (Figure below) and/or in mathematical terms:
Harmonic currents of Phases A, B, C all coincide, that is, no rotation.
If we extend the mathematical table to include higher odd-numbered harmonics, we will notice an interesting pattern develop with regard to the rotation or sequence of the harmonic frequencies:
Harmonics such as the 7th, which “rotate” with the same sequence as the fundamental, are called positive sequence. Harmonics such as the 5th, which “rotate” in the opposite sequence as the fundamental, are called negative sequence. Triplen harmonics (3rd and 9th shown in this table) which don’t “rotate” at all because they’re in phase with each other, are called zero sequence.
This pattern of positive-zero-negative-positive continues indefinitely for all odd-numbered harmonics, lending itself to expression in a table like this:
This page titled 7.8: Harmonic Phase Sequences is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Tony R. Kuphaldt (All About Circuits) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
| 756
| 2,675
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.859375
| 4
|
CC-MAIN-2024-10
|
longest
|
en
| 0.66071
|
https://trans4mind.com/personal_development/mathematics/series/gammaPlotting.htm
| 1,532,292,595,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2018-30/segments/1531676593586.54/warc/CC-MAIN-20180722194125-20180722214125-00431.warc.gz
| 765,024,591
| 10,192
|
How to plot the gamma function
# Ken Ward's Mathematics Pages
## Series: How to plot the Gamma Function
Series Contents
### Page Contents
We seek to compute the values of gamma and produce a graph:
Note: The tables on this page are to illustrate calculating gamma values, not for reference. Although the gamma values are believed accurate to 5 decimals, they are often shown to 6 because they are meant to illustrate the use of the Stirling Approximation.
## The Basic Formulae
We are seeking a formula for gamma in terms of factorials. We wish to use Stirling's approximation to calculated the factorials, so we want to be able to use large factorials.
We will start with the following formulae, which have been derived elsewhere.
[1.02] (derived from: BinomialCoefficientsGamma.htm#[4.01] )
## A Closed Formula For Γ(x)
When we have no values for gamma, we need to calculate them using a closed formula.
By writing x=x+n in [1.01], we obtain:
[1.03]
By recursively applying [1.01], we obtain:
[1.04]
Because Γ(n+x+1)=(x+n)!, we can write [1.04] as:
[1.05]
We therefore have a closed formula for gamma. This is the same formula that was derived here. In the formula, we also have an arbitrary n which we can make sufficiently large to give us the accuracy we require when applying Stirling's Approximation
[2.01 repeated here]
(n+x) must be at least one and the factors must not be zero. However, if we know the value of (n+x)!, it can be negative
For instance, when x=4 and n=2, we have Γ(4)=6!/(4·5·6)=3·2·1, as expected.
### Making a Basic Table of Gamma Values
If we have a basic table of gamma values, we can use this to calculate other gamma values with the same increment or step value. I chose 0.05, but using a spreadsheet, it is easy to use a much smaller step than this, if we had need of it.
We can calculate gamma to any accuracy we choose (arbitrary precision) by choosing a sufficiently large n. I chose 20. The table is accurate to approximately 5 decimal places. The table contains the raw data for comparison purposes.
They are called 'basic' values because they form the basis of calculating other values.
Gamma Stirling Corrections (Add to Stirling Factorial
x n n+1 √(2·π·(n+1) Stirling Factorial
=((n+1)/e)n·√(2·π·(n+1)
+1/(12·n) +1/(288·n2 ) Gamma x Value
0.00
0.05 20 20.05 11.223986 2817967749445040000 11712251660203800 24339675104330 19.470091784
0.10 20 20.10 11.237972 3278005144267250000 13590402754010100 28172476687417 9.513510838
0.15 20 20.15 11.251941 3813606825253560000 15771740385664000 32613193518743 6.220274911
0.20 20 20.20 11.265893 4437258676401800000 18305522592416700 37758916238483 4.590845205
0.25 20 20.25 11.279827 5163521590693230000 21249060044005100 43722345769558 3.625611078
0.30 20 20.30 11.293744 6009378240916120000 24669040397849400 50634319371612 2.991569946
0.35 20 20.35 11.307644 6994638116543560000 28643071730317600 58646748014573 2.546147787
0.40 20 20.40 11.321527 8142410668407310000 33261481488591900 67936032452189 2.218160244
0.45 20 20.45 11.335393 9479658073805080000 38629413503688200 78707036478582 1.968137017
0.50 20 20.50 11.349242 11037841090658000000 44869272726251900 91197708793195 1.772454402
0.55 20 20.55 11.363074 12853673759298200000 52123575666253800 105684459988349 1.616124768
0.60 20 20.60 11.376890 14970005391687600000 60558274238218600 122488418766623 1.489192705
0.65 20 20.65 11.390688 17436851427548500000 70366632072431200 141982712010555 1.384795523
0.70 20 20.70 11.404470 20312598413771700000 81773745627100300 164600937252617 1.298055725
0.75 20 20.75 11.418235 23665412669932000000 95041817951534000 190847023999064 1.225417070
0.80 20 20.80 11.431984 27574887247081000000 110476311086062000 221306712912784 1.164230060
0.85 20 20.85 11.445716 32133967696265600000 128433124285634000 256660919835400 1.112484066
0.90 20 20.90 11.459432 37451204086402800000 149326970041479000 297701295935962 1.068629016
0.95 20 20.95 11.473131 43653384823073700000 173641148858686000 345348346974316 1.031453618
1.00 20 21.00 11.486814 50888617325509700000 201938957640912000 400672535001809 1.000000289
## Calculating Higher Values of gamma from Γ(x)
After calculating a number of gamma values in a given range, we can use these values to find the values of higher gamma. By higher, I mean greater in magnitude. So as we have a basic table for 0-1, the higher values are 2, 3, 4, etc.
By using [1.01] when x=x+n−1, we note:
[2.01]
By applying [1.01] recursively, we find:
[2.02]
For instance, a trivial example, n=3 and x=1, Γ(4)=3·Γ(3)=3·2·1, as before.
However, for creating a table after we have found an initial set of values, all we need is:
[1.01 repeated]
We can use this formula when x≠0.
The values in the following table are calculated using [1.01]. The first values on the left come from table 1.
Table 2: Higher Gamma Values
x Γ(x) x Γ(x) x Γ(x) x Γ(x)
0.00 =infinity 1 1 2 1 3.00 2
0.05 19.47 1.05 0.973504589 2.05 1.022179819 3.05 2.0954686
0.10 9.5135 1.10 0.951351084 2.10 1.046486192 3.10 2.197621
0.15 6.2203 1.15 0.933041237 2.15 1.072997422 3.15 2.3069445
0.20 4.5908 1.20 0.918169041 2.20 1.101802849 3.20 2.4239663
0.25 3.6256 1.25 0.90640277 2.25 1.133003462 3.25 2.5492578
0.30 2.9916 1.30 0.897470984 2.30 1.166712279 3.30 2.6834382
0.35 2.5461 1.35 0.891151725 2.35 1.203054829 3.35 2.8271788
0.40 2.2182 1.40 0.887264098 2.40 1.242169737 3.40 2.9812074
0.45 1.9681 1.45 0.885661658 2.45 1.284209404 3.45 3.146313
0.50 1.7725 1.50 0.886227201 2.50 1.329340802 3.50 3.323352
0.55 1.6161 1.55 0.888868622 2.55 1.377746365 3.55 3.5132532
0.60 1.4892 1.60 0.893515623 2.60 1.429624997 3.60 3.717025
0.65 1.3848 1.65 0.90011709 2.65 1.485193199 3.65 3.935762
0.70 1.2981 1.70 0.908639007 2.70 1.544686313 3.70 4.170653
0.75 1.2254 1.75 0.919062803 2.75 1.608359904 3.75 4.4229897
0.80 1.1642 1.80 0.931384048 2.80 1.676491287 3.80 4.6941756
0.85 1.1125 1.85 0.945611456 2.85 1.749381194 3.85 4.9857364
0.90 1.0686 1.90 0.961766114 2.90 1.827355617 3.90 5.2993313
0.95 1.0315 1.95 0.979880937 2.95 1.910767827 3.95 5.6367651
1.00 1 2.00 1.000000289 3.00 2.000000579 4.00 6.0000017
## Calculating Lower Values of Gamma from Γ(x)
With our list of gamma values in a given range, we seek a formula to compute those in lower ranges. This is just our previous formula, [2.02], with Γ(x) made the subject:
[3.01]
For instance, x=4, n=3, Γ(4)=6!/(4·5·6)=3·2·1, as before.
We can use the formula [3.01] to compute Γ(−1.5), by setting n=2 and x=−1.5:
Γ(−1.5)=Γ(2−1.5)/((−1.5)·(−0.5))
=Γ(1/2)/(0.75)
=2.363272 (six decimals)
However, we can use [1.01] with negative gamma (except negative integers and zero). So we can use the easy formula, when we know Γ(x+1):
[1.01b, repeated]
The first two columns are from the basic values, written in descending order. The reason becomes apparent from the formula:
Γ(-0.05)=Γ(-0.05+1)/(-0.05). So we compute Γ(-0.05) from Γ(0.95)
Lower Gamma Values
x Γ(x) x Γ(x)=Γ(x+1)/x x Γ(x)=Γ(x+1)/x x Γ(x)=Γ(x+1)/x x Γ(x)=Γ(x+1)/x x Γ(x)=Γ(x+1)/x
1.00 1 0 -1.00 -2.00 -3.00 -4.00
0.95 1.031454 -0.05 -20.62907235 -1.05 19.646736 -2.05 -9.583773 -3.05 3.142221 -4.05 -0.775857
0.90 1.068629 -0.10 -10.68629016 -1.10 9.714809 -2.10 -4.626100 -3.10 1.492290 -4.10 -0.363973
0.85 1.112484 -0.15 -7.416560439 -1.15 6.449183 -2.15 -2.999620 -3.15 0.952260 -4.15 -0.229460
0.80 1.164230 -0.20 -5.821150302 -1.20 4.850959 -2.20 -2.204981 -3.20 0.689057 -4.20 -0.164061
0.75 1.225417 -0.25 -4.90166828 -1.25 3.921335 -2.25 -1.742815 -3.25 0.536251 -4.25 -0.126177
0.70 1.298056 -0.30 -4.326852416 -1.30 3.328348 -2.30 -1.447108 -3.30 0.438518 -4.30 -0.101981
0.65 1.384796 -0.35 -3.956558638 -1.35 2.930784 -2.35 -1.247142 -3.35 0.372281 -4.35 -0.085582
0.60 1.489193 -0.40 -3.722981763 -1.40 2.659273 -2.40 -1.108030 -3.40 0.325891 -4.40 -0.074066
0.55 1.616125 -0.45 -3.591388373 -1.45 2.476820 -2.45 -1.010947 -3.45 0.293028 -4.45 -0.065849
0.50 1.772454 -0.50 -3.544908804 -1.50 2.363273 -2.50 -0.945309 -3.50 0.270088 -4.50 -0.060020
0.45 1.968137 -0.55 -3.578430941 -1.55 2.308665 -2.55 -0.905359 -3.55 0.255031 -4.55 -0.056051
0.40 2.218160 -0.60 -3.69693374 -1.60 2.310584 -2.60 -0.888686 -3.60 0.246857 -4.60 -0.053665
0.35 2.546148 -0.65 -3.917150441 -1.65 2.374031 -2.65 -0.895861 -3.65 0.245441 -4.65 -0.052783
0.30 2.991570 -0.70 -4.273671351 -1.70 2.513924 -2.70 -0.931083 -3.70 0.251644 -4.70 -0.053541
0.25 3.625611 -0.75 -4.834148104 -1.75 2.762370 -2.75 -1.004498 -3.75 0.267866 -4.75 -0.056393
0.20 4.590845 -0.80 -5.738556506 -1.80 3.188087 -2.80 -1.138602 -3.80 0.299632 -4.80 -0.062423
0.15 6.220275 -0.85 -7.317970484 -1.85 3.955660 -2.85 -1.387951 -3.85 0.360507 -4.85 -0.074331
0.10 9.513511 -0.90 -10.5705676 -1.90 5.563457 -2.90 -1.918433 -3.90 0.491906 -4.90 -0.100389
0.05
19.4701
-0.95 -20.49483346 -1.95 10.510171 -2.95 -3.562770 -3.95 0.901967 -4.95 -0.182216
0.00 -1.00 -2.00 -3.00 -4.00 -5.00
Γ(x.5): Calculated from π
1.77245
-3.544907702 2.363271801 -0.945309 0.270088 -0.06002
Error: 5.5E-07 -1.1E-06 7.4E-07 -2.9E-07 8.4E-08 -1.9E-08
Ken Ward's Mathematics Pages
# Faster Arithmetic - by Ken Ward
Ken's book is packed with examples and explanations that enable you to discover more than 150 techniques to speed up your arithmetic and increase your understanding of numbers. Paperback and Kindle:
Buy now at Amazon.com
| 4,034
| 9,340
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.59375
| 5
|
CC-MAIN-2018-30
|
longest
|
en
| 0.919251
|
https://mathinsight.org/assess/math1241/bifurcation_diagram_introduction
| 1,718,842,583,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-26/segments/1718198861853.72/warc/CC-MAIN-20240619220908-20240620010908-00414.warc.gz
| 334,756,295
| 77,567
|
Math Insight
Introduction to a bifurcation diagram
Math 1241, Fall 2020
Name:
ID #:
Due date: Dec. 9, 2020, 11:59 p.m.
Table/group #:
Group members:
Total points: 3
1. Consider the dynamical system \begin{align*} \diff{ z }{t} &= \alpha - 2 \left(z - 8\right)^{2} + 4, \end{align*} where $\alpha$ is a parameter.
1. Let $\alpha=4$ so that the dynamical system becomes \begin{align*} \diff{ z }{t} &= - 2 \left(z - 8\right)^{2} + 8. \end{align*} How many equilibria are there?
Sketch a phase line of the dynamical system showing equilibria and vector field, using solid points for any stable equilibria and unfilled points for any unstable equilibria.
Feedback from applet
equilibria:
number of equilibria:
stability of equilibria:
vector field:
2. Let $\alpha=-2$ so that the dynamical system becomes \begin{align*} \diff{ z }{t} &= - 2 \left(z - 8\right)^{2} + 2. \end{align*} How many equilibria are there?
Sketch a phase line of the dynamical system showing equilibria and vector field, using solid points for any stable equilibria and unfilled points for any unstable equilibria.
Feedback from applet
equilibria:
number of equilibria:
stability of equilibria:
vector field:
3. Let $\alpha=-4$ so that the dynamical system becomes \begin{align*} \diff{ z }{t} &= - 2 \left(z - 8\right)^{2}. \end{align*} How many equilibria are there?
Sketch a phase line of the dynamical system showing equilibria and vector field. For this value of the parameter, the stability theorem might not help you determine stability (remember, the stability theorem only works if the derivative is positive or is negative). Instead, determine the vector field on either side of each equilibrium (by checking the value of $\diff{ z }{t}$). If the vector field is pointing toward an equilbrium, it is stable; if it is pointing away from an equilibrium, it is unstable. If on the other hand, the vector field is pointing toward an equilibrium on one side and away from the equilibrium on the other, we might call the equilibrium semi-stable. However, we'll still just call it unstable and represent it with an open circle.
Feedback from applet
equilibria:
number of equilibria:
stability of equilibria:
vector field:
4. Let $\alpha=-6$ so that the dynamical system becomes \begin{align*} \diff{ z }{t} &= - 2 \left(z - 8\right)^{2} - 2. \end{align*} How many equilibria are there?
Sketch a phase line of the dynamical system showing equilibria and vector field, using solid points for any stable equilibria and unfilled points for any unstable equilibria.
Feedback from applet
number of equilibria:
vector field:
5. For the above cases with $\alpha = 4, -2, -4, -6$, flip the phase lines to be vertical and draw the equilibria on a plot where $\alpha$ is the horizontal axis and $z$ is the vertical axis. The plot should contain up to four columns of points corresponding to the equilibria at each value of $\alpha$. Use closed points for stable equilibria and open points for unstable equilibria.
Feedback from applet
bifurcation point:
branches of equilibria:
Equilibria:
Number of equilibria:
Stability of equilibria:
stability of equilibrium branches:
6. We just calculated the phase lines for four different values of $\alpha$, as they are representative of the different phase lines we would get as we change $\alpha$. Except for one special value of $\alpha$, the number of equilibria doesn't change as you vary $\alpha$ and the locations of the equilibria change smoothly as you change $\alpha$. Therefore, rather than calculate the equilibria for zillions of phase lines, we can show what the equilibria would be for those phase lines by drawing smooth curves through the points we drew on the above diagram. Draw this “curve of equilibria” on the above diagram, using a solid line for stable equilibria and a dashed line for unstable equilibria. Each vertical cross section will correspond to a phase line at the given value of $\alpha$, so the diagram allows you to immediately see what the different phase lines will look like. The resulting plot is called a bifurcation diagram.
7. On the bifurcation diagram, there should be one special value of $\alpha$ where the number or stability of the equilibria in the phase line changes. Let's denote this particular value by $\alpha^*$, which is called a bifurcation point. What is the value of the bifurcation point $\alpha^*$? $\alpha^* =$
How does the number of equilibria of the dynamical system change as $\alpha$ changes from being less than $\alpha^*$ to being greater than $\alpha^*$? The number of equilibria
. For $\alpha < \alpha^*$, there are
equilibria. For $\alpha > \alpha^*$, there are
equilibria.
2. For the dynamical system $\diff{ v }{t} = g(v,\alpha),$ the function $f$ of $v$ depends on a parameter $\alpha$. Rather than show the formula for $f$, you can see its behavior through these graphs for $\alpha=-23, -11, -7, -3$.
{}
$\alpha=-7$
$\alpha=-11$
$\alpha=-3$
For values of $\alpha$ in between those shown, $f$ changes smoothly, so its graph will be somewhere in between the snapshots shown. Online, you can change the value of $\alpha$ in the upper left graph using the slider to see how $f$ changes with $\alpha$ in more detail.
1. There is a bifurcation that occurs for a particular value of $\alpha$, which we'll denote by $\alpha^*$. What is the value of $\alpha^*$? $\alpha^*=$
($\alpha^*$ is one of the original four values of $\alpha$ shown above.)
2. At the bifurcation point, the number of equilibria changes.
For $-23 \le \alpha < \alpha^*$, the number of equilibria =
.
For $\alpha^* < \alpha \le -3$, the number of equilibria =
.
3. Sketch a bifurcation diagram with respect to the parameter $\alpha$. The bifurcation diagram should represent how the number, location, and stability of the equilibria depend on the value of $\alpha$ for $-23 \le \alpha \le -3$. Draw curves to show the location of the equilibria as a function $\alpha$. Use a solid line to indicate stable equilibria and a dashed line to indicate unstable equilibria.
Feedback from applet
bifurcation point:
branches of equilibria:
stability of equilibrium branches:
3. For the dynamical system \begin{align*} \diff{ x }{t} = f(x, a), \end{align*} where the function $f$ of $x$ also depends on a parameter $a$, a bifurcation diagram with respect to the parameter $a$ is shown below. In this diagram, solid lines represent stable equilibria and dashed lines represent unstable equilibria.
1. When $a= -8$, how many equilibria are there?
Determine their values, rounded to the nearest integer, and their stability.
Equilibria:
(Enter rounded equilibria in increasing order, separated by commas.)
Stability of equilibria:
(Enter stable for stable and unstable for unstable. Enter in same order as equilibria, separated by commas.)
Sketch the phase line for when $a= -8$, including equilibria and direction field. Use a solid circle for stable equilibria and an open circle for unstable equilibria.
Feedback from applet
equilibria:
number of equilibria:
stability of equilibria:
vector field:
2. When $a= -1$, how many equilibria are there?
Determine their values, rounded to the nearest integer, and their stability.
Equilibria:
(Enter rounded equilibria in increasing order, separated by commas.)
Stability of equilibria:
(Enter stable for stable and unstable for unstable. Enter in same order as equilibria, separated by commas.)
Sketch the phase line for when $a= -1$, including equilibria and direction field. Use a solid circle for stable equilibria and an open circle for unstable equilibria.
Feedback from applet
equilibria:
number of equilibria:
stability of equilibria:
vector field:
3. When $a= 7$, how many equilibria are there?
Determine their values, rounded to the nearest integer, and their stability.
Equilibria:
(Enter rounded equilibria in increasing order, separated by commas.)
Stability of equilibria:
(Enter stable for stable and unstable for unstable. Enter in same order as equilibria, separated by commas.)
Sketch the phase line for when $a= 7$, including equilibria and direction field. Use a solid circle for stable equilibria and an open circle for unstable equilibria.
Feedback from applet
equilibria:
number of equilibria:
stability of equilibria:
vector field:
4. Identify any bifurcation points.
Bifurcations points are at $a =$
.
| 2,140
| 8,328
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.15625
| 4
|
CC-MAIN-2024-26
|
latest
|
en
| 0.780606
|
https://www.physicsforums.com/threads/differential-equation.225664/
| 1,576,349,224,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2019-51/segments/1575541288287.53/warc/CC-MAIN-20191214174719-20191214202719-00256.warc.gz
| 811,107,944
| 16,637
|
# Differential Equation
## Main Question or Discussion Point
dy/dx = (3x^2)(e^-y)
1/(e^-y) dy = 3x^2 dx
1/(e^-y) = x^3 + C
Can anybody please give me any help or advice on to where to go from here? I'm having a really tough time with this one.
$$\frac{dy}{dx}=3x^{2}e^{-y}$$
this diff. eq. can be solved with separation of variables.So:
$$e^{y}dy=3x^{2}dx$$ now integrate both sides and solve for y.
So, y = ln(x^3+C)?
So, y = ln(x^3+C)?
Looks like it is right.
Thanks stupidmath!!! Now, if I wanted to solve, for example y(0)=1
ln (C) = y - ln(x^3)
ln (C) = 1 - 0
C = e^1 ?
y = ln(x^3) + e^1 ?
Well, to impose the initial condition y(0)=1, you actually here have that when x=0, y=1.
So it means:
$$1=ln(c)=>C=e$$
so our particular solution would be
$$y=ln(x^{3}+e)$$
Ah, thanks a bunch stupidmath!!!
One last question stupidmath. wouldn't dy/dx = 4(2y-1) end up being y = Ce^-32x?
HallsofIvy
Homework Helper
It is not "stupidmath". Beware of his ire!
You should be able to do this one yourself now. If dy/dx= 4(2y-1) then dy/(2y-1)= 4dx.
Integrating on both sides (1/2)ln|2y-1|= 4x+ C so ln|2y-1|= 8x+ C' (C'= 2C). Then 2y-1= C"e^(8c).
arildno
Homework Helper
Gold Member
Dearly Missed
It is suttypud-math, not stupidmath!
Oh, I apologize for the faux pas sutupidmath. I also appreciate the help, thanks.
It is suttypud-math, not stupidmath!
Is there any meaning to this?
Mute
Homework Helper
Thanks stupidmath!!! Now, if I wanted to solve, for example y(0)=1
ln (C) = y - ln(x^3)
ln (C) = 1 - 0
C = e^1 ?
y = ln(x^3) + e^1 ?
Remember that ln(a + b) =/= ln(a) + ln(b), which is what you did here.
| 600
| 1,625
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.09375
| 4
|
CC-MAIN-2019-51
|
latest
|
en
| 0.882545
|
https://which.wiki/wk/which-graph-shows-a-negative-correlation-24962/
| 1,695,787,177,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2023-40/segments/1695233510259.52/warc/CC-MAIN-20230927035329-20230927065329-00480.warc.gz
| 662,783,443
| 11,749
|
## What is negative correlation example?
A negative correlation is a relationship between two variables in which an increase in one variable is associated with a decrease in the other. An example of negative correlation would be height above sea level and temperature. As you climb the mountain (increase in height) it gets colder (decrease in temperature).
## What does it mean if there is a negative correlation?
Negative correlation is a relationship between two variables in which one variable increases as the other decreases, and vice versa. … A perfect negative correlation means the relationship that exists between two variables is exactly opposite all of the time.
## Which best describes the strength of the correlation?
Which best describes the strength of the correlation, and what is true about the causation between the variables? It is a weak negative correlation, and it is not likely causal.
## How do you tell if there is a positive or negative correlation?
When the y variable tends to increase as the x variable increases, we say there is a positive correlation between the variables. When the y variable tends to decrease as the x variable increases, we say there is a negative correlation between the variables.
## Which statement best illustrates a negative correlation?
What statement best illustrates a negative correlation between the number of hours spent watching TV the week before an exam and the grade on that exam? Students who watch more TV perform more poorly on their exams.
## Which R value represents the strongest negative correlation?
-1
Explanation: According to the rule of correlation coefficients, the strongest correlation is considered when the value is closest to +1 (positive correlation) or -1 (negative correlation). A positive correlation coefficient indicates that the value of one variable depends on the other variable directly.
## Which correlation represents a moderate negative correlation?
Negative correlation is measured from -0.1 to -1.0. Weak negative correlation being -0.1 to -0.3, moderate -0.3 to -0.5, and strong negative correlation from -0.5 to -1.0.
## Which relationships could have a negative correlation?
Negative correlation describes an inverse relationship between two factors or variables. For instance, X and Y would be negatively correlated if the price of X typically goes up when Y falls; and Y goes up when X falls.
## Which of the following indicates the strongest correlation?
The strongest linear relationship is indicated by a correlation coefficient of -1 or 1. The weakest linear relationship is indicated by a correlation coefficient equal to 0.
## Which are value represents the weakest correlation?
-0.15
(a) -0.15 represents the weakest correlation.
## Which of the following indicates a strong positive correlation?
Understanding Correlation
The possible range of values for the correlation coefficient is -1.0 to 1.0. In other words, the values cannot exceed 1.0 or be less than -1.0. A correlation of -1.0 indicates a perfect negative correlation, and a correlation of 1.0 indicates a perfect positive correlation.
## Which of the following indicates a negative correlation of lower degree?
A perfect negative correlation has a coefficient of -1, indicating that an increase in one variable reliably predicts a decrease in the other one. … Lower degrees of correlation are expressed by non-zero coefficents between +1 and -1.
## Which scatter diagram shows the strongest positive correlation?
As compare to other scatterplots, scatterplot 3 indicates that most of the data points form a straight line or lies close to the straight line, hence this scatterplot represents the strongest linear correlation.
## What does a positive correlation show?
A positive correlation is a relationship between two variables that move in tandem—that is, in the same direction. A positive correlation exists when one variable decreases as the other variable decreases, or one variable increases while the other increases.
| 768
| 4,028
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.5625
| 5
|
CC-MAIN-2023-40
|
latest
|
en
| 0.929773
|
http://oyc.yale.edu/physics/phys-200/lecture-20
| 1,513,367,340,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2017-51/segments/1512948579564.61/warc/CC-MAIN-20171215192327-20171215214327-00189.warc.gz
| 202,228,567
| 31,712
|
# PHYS 200: Fundamentals of Physics I
### Lecture Chapters
• 0
• 254
• 1249
• 1592
• 2196
• 2352
• 3221
Transcript Audio Low Bandwidth Video High Bandwidth Video
html
# Fundamentals of Physics I
## PHYS 200 - Lecture 20 - Fluid Dynamics and Statics and Bernoulli's Equation
### Chapter 1. Introduction to Fluid Dynamics and Statics — The Notion of Pressure [00:00:00]
Professor Ramamurti Shankar: This is a relatively simple topic. In fact, any of you who took any kind of high school physics, you would have done this thing with fluids. So, this is the subject for today. Fluid dynamics and statics. So, I’ll start with the simple static problem. We are going to take–Whenever I say fluid, you are free to imagine water or oil. That’s the–that’s a good enough example of a fluid. One important property of the fluid, the density, denoted by ρ; the density of water I would probably note by a subscript w. And you know that’s mass per unit volume. For water that happens to be 1,000 kilograms per cubic meter. So, let’s not linger there. I think that’s a fairly simple concept.
The more subtle concept is the one of pressure. So, you have the notion of a pressure if you go in a swimming pool and you dive down to the bottom, you know, the pressure is going up. So, what’s the formal definition of pressure? Is it a vector? Is it a scale? Or does it have magnitude? Does it have a direction? That’s what I want to explain to you. So, you can pick a point on the fluid, there, and say the pressure there is such and such. But what do we mean by that? We mean by that the following. If you get into that fluid and you want to carve out a little space for yourself, you know, make a little cube, maybe a glass cube, and you want to live inside that cube. So, I’m going to blow up the cube like this. The water is trying to push you in from all sides and compress this cube. You therefore have to push out on the two, on all the walls. If the force you exert on this wall is some F and the area of that wall is A, that ratio is called a pressure. So, pressure is an intensive measure of how hard the water is trying to push in. If you don’t put the cube, that pressure is still there, but one way to measure the pressure is to try to go in there and push the fluid out and ask how hard does it push you. And the unit for pressure Newton per meters square–and we use another name for that called a Pascal. One Pascal is one Newton per meter squared.
Here’s another example of pressure. You have a gas. We’ll do a lot of this after the break. There is a gas inside a cylinder. There’s a piston. Now, if the pressure of the gas and the pressure of the outside world are the same, there’s nothing you have to do, assuming the piston is massless. But if you want to increase the pressure in the gas, you put some extra weight. That mg will push down, and mg divided by the area of the piston will be extra pressure you apply. That’s also the pressure of the gas. That pressure is the atmospheric pressure, plus the extra weight you apply, divided by the area of this piston. The atmospheric pressure is everywhere. So, when you push down on the piston here to compress the gas further, you’re adding to the atmospheric pressure this extra force divided by area. Sometimes–I mean, this is called the absolute pressure. And that’s called the atmospheric pressure, and that’s called the gauge pressure. So, the gauge pressure is the pressure on top of atmospheric pressure. For example, when your car has a flat, the bright side of it is the pressure inside the tire is in fact equal to atmospheric pressure. It doesn’t help you because there’s a pressure inside and there’s a pressure outside, and if you want to keep your car moving, you really have to increase the pressure in the tire. And when you stick this gauge in and you measure something, 32 pounds per square inch, that’s the gauge pressure. That’s in excess of the atmospheric pressure.
### Chapter 2. Fluid Pressure as a Function of Height [00:04:14]
So, you should understand that the pressure is a condition in a fluid, and one of the important properties of pressure, is that if you took a fluid and you went to a certain height, all points at that height have the same pressure. And we understand that as follows. So, I go to this fluid. I imagine in my mind a little cylindrical section of the same fluid. Just draw a dotted line around that region and focus on that little chunk of fluid and say, “Can the pressure on the two sides – this face and that face – be different?” The answer is “no.” Because if the pressure on the left was bigger than the pressure on the right, I take a cylinder of some area A, pressure times area on the left will exceed pressure time area on the right. And therefore, the fluid should move to the right. But it’s not doing anything. It’s in equilibrium, and the only way that can happen is if it’s pushed equally from both sides. So, notice that the pressure on this chunk from the left points this way, and then that chunk points that way. They’re trying to push it in. So, pressure cannot change at a given depth.
But let’s take a cylinder that looks like this [draws on board]. Remember this is not a real cylinder. This is the same water, and mentally, I have isolated a part of the water that looks like a cylinder; maybe you want to draw it in dotted lines. But it’s just a fluid of cylindrical shape, base area A and height h. I can ask the following question. Let’s say h1 is the measure of that one from the surface, and h2 is the depth from the surface to the lower face of the cylinder. We can now argue the pressure in the top and bottom really should not be equal. You should think about it, by the same argument I gave earlier will tell me it cannot be equal. If they were equal, since these two areas are equal, the forces pushing up and pushing down will cancel. With no net force on the cylinder, you can ask then, “What’s keeping the cylinder of water from falling down?” Well, there has to be a force to equal the weight of that cylinder. Therefore, there has to be a net upward force. That means the pressure down here, pushing up, better be higher than the pressure on the top.
We are now going to calculate what the pressure difference is. So, let’s call the pressure downstairs P2 and upstairs P1. So, the upward force is P1 [correction: should have said P2] times A. The downward force is P2 [correction: should have said P1] times A. That’s the net upward force. That’s got to be equal to the weight of that amount of water. The weight is found by first the mass, which is area times h2 - h1. That’s the volume of the cylinder, times the density of water or whatever fluid you have. That’s the mass of the cylinder. That’s the weight of that cylinder of liquid. All I have done is balance the gravitational force on this cylinder with the net upward force due to the different pressures. I think I made one mistake here. Upward force, in magnitude–I want to write this P2 times A, and downward force I want to write as P1. How we keep track of signs is a little subtle. I’m balancing two magnitudes. I’m balancing net upward force, namely P2 is considered positive upward, and this is the force of gravity down. I’m balancing the magnitudes. So, the area cancels out. Because this area – see the pressure between two points – should not depend on the area of this fictitious cylinder I took. In fact, I find it is equal to ρg times h2 - h1, which is the difference in the depth of these two points. Yes?
Student: It’s actually like a [inaudible]
Professor Ramamurti Shankar: Which one?
Student: [inaudible]
Professor Ramamurti Shankar: Yeah. In fact, it really happens to be normal, or perpendicular to area because the pressure will push straight up and straight down. How about forces on the sides of cylinder? They cancel at every height. Because at every height the push from the left and right are equal; I already showed you that. So, for the mechanical stability of this chunk, I need all forces to add up to zero. Horizontally, there is no gravity and the pressure at every height is equal. So, that cancels out. Vertically, there is the force of gravity, and it’s cancelled by the difference in pressure.
So, we can see that P2 = P1 plus ρg times the height difference. And people write this formula as follows. It’s very standard to take P1 to be the point right at the surface, and P2 to be any point inside, and to call the depth of that simply as h. Then the pressure at the point P in the fluid is the pressure at the top, which is usually atmospheric pressure, plus ρgh. So, I don’t have an h1 and an h2 because h1 I’ve chosen to be zero. And h2 I’m simply calling h. This says something very simple. If you go to a lake, at the surface of the lake the pressure is due to the atmosphere. You take a dive, you go down some depth h, the pressure goes up by this amount. Now, if you go to the bottom of the ocean, it’s going to be an incredible amount of pressure. That’s why you and I cannot survive in the bottom of the ocean, because the outside pressure – inside is usual atmospheric pressure – you’re breathing the air into your lungs, you go down with that. Outside is atmospheric plus this, and that can kill you. That’s why when you build a submarine, you’ve got to make sure it can withstand the pressure. But fish don’t have the problem, because fish are breathing the water. The water is going into their system and outside their system. So, that’s one way for you to live. If you’re 20,000 feet under the sea, start drinking the water. But it’s not a long-term solution. It’ll work in the short time because you’ll be equalizing the pressure.
Okay. Now, how about the atmospheric pressure? What’s the origin of that? And the origin of the atmospheric pressure is that we are ourselves living in the bottom of a pool, but it’s filled with air. The air above our heads goes on for maybe 100 miles, but the density decreases, eventually vanishes. So, I cannot tell you precisely where the atmosphere ends, but I can say the following. If I go far above where the absolute pressure is zero, in free space there is just vacuum. The pressure here is the atmospheric pressure. Atmospheric pressure at the bottom of Earth is equal to zero plus ρgh, where ρ is the density of air, g is g, and h is the height of the atmosphere. And that happens to be 105 Pascals. So, we are living in the bottom of a pool where the pressure is 105 Pascals, relative to empty space–interstellar space. But as I said, that pressure doesn’t kills us because the pressure can be felt both from the outside pushing in and inside going through your nostrils and everything else, pushing out. But you have all seen the dramatic experiment where you take a can of something and you heat it up so the air goes out; then you seal it. The air that’s been driven out reduces the pressure. So, when you seal it and you cool it, then the pressure drops. And even the drop in pressure–it doesn’t even drop down to zero, but it’s big enough for the while can to implode.
Now, let’s see what you get here. Let’s do the following. This is ρgh, and you can ask yourself the following question. If this was a swimming pool, how high would the water be? In other words, what height of water above the Earth would produce the same pressure as our atmosphere does? Then I say, if I want 105 Pascals, that’s the density of water at 103, g, let’s pretend it’s ten. And h is what I’m looking for. Cancel all the powers of 10; h is like 10 meters. And it turns out it’s – to the best of my knowledge – it’s 32 feet. These are the units we don’t use in the book, but it’s a very common way of thinking, 32 feet. So, we are at the bottom of a pool. If it was filled with water, it would be 32 feet of water.
Alright. So, now we are going to take this formula P = P0 + ρgh and put it to work. Get some mileage out of that. So, what are the things we can do with that formula? First thing you can do is to build yourself a barometer. Barometer you know is a way to tell what the pressure is today. Now, the atmospheric pressure, when I said it’s 105, that’s the typical pressure. It doesn’t really stay locked into the value. Each day there are fluctuations. That’s why the weather person tells you pressure is going up, pressure is going down. So, let’s find a way to measure the pressure, and here is one way to do that. You take a can of something, fill it with some liquid, take a test tube. Evacuate it completely, suck all the air out of it and stick it into this. When you do, there is a complete vacuum here and the atmosphere is pushing down, so the fluid will rise up to some height h.
And you can ask, “How high will it go? What’s going to be the height?” Well, it’ll go to a height so that zero pressure here, plus this ρgh, which is the pressure there, will be the same as the pressure here, because they are two points at the same height. Pressure here is the atmospheric pressure. So pressure here, atmospheric pressure, is zero at the top of the tube, plus ρgh. So, if you build this gadget, this barometer out of water, the water column will rise to the height of 32 feet. But now, nobody wants a gadget 32-feet high, so what you use instead is mercury, because it’s very dense. So, you want to get the same atmospheric pressure, but you want to have a bigger ρ and get a smaller h. If you go look up a book and find the density of mercury, you’re going to find the height is something like, I don’t know, 750, 780 millimeters. That’s why the weather guy says the pressure today is so many millimeters, and the mercury is dropping. Now, I’m not sure why they bother to give the numbers, because for most of us, including me, those numbers don’t mean anything. Here’s a number, 746 millimeters. Does it speak to you? Not to me. So it–it speaks to one of you guys?
Student: [inaudible]
Professor Ramamurti Shankar: Yeah. Okay. Some number. It’s not like saying today is 67 degree Fahrenheit. I guess I know what that means, but when I hear the mercury, I think it’s just a waste of time. Anyway, they’re telling you how much the mercury is. Okay? You can use any fluid you like, but you’ve got to agree on using mercury because if it’s 760 millimeters, and it’s water the person is talking about, of course you are in serious trouble. So understood, we’re talking about mercury. Also, mercury is used in thermometers. That’s the subject for after the break. So there, the mercury falling could stand for falling temperatures and rising temperatures, but here it’s for falling pressure and rising pressure. So, this is the first gadget you can build with what I’ve taught you.
So, one more example of this P = P0 + ρgh, is if I give you another fluid, it doesn’t mix with water and I tell you find the density, there are many ways. One is to just find mass and volume of that fluid and divide. But here is another thing people use. You take what’s called a U-tube. Yeah, that’s not–I know, that’s where they post all the embarrassing videos, but this was physics contribution to pop culture long before any of this happened. This is the U-tube. And the U-tube, let’s say you fill it up with one fluid and this is the other fluid. So, this is oil, and this is water. If the two heights were equal, then you know we’re talking about the same fluid. But this is supposed to tell you that oil is less dense than water, and we can check that by comparing two points in this fluid at the same height, and saying the pressure must be the same at those points. You understand how I get that? That pressure and that pressure are equal because you can draw a cylinder there horizontally, which cannot be pushed sideways. From here, to this pressure add that ρgh and that ρgh, and you come to that point; you conclude that pressure is also equal. You cannot jump into the new fluid here because the ρ for here and the ρ for this are different. But these two points have the same pressure and they are in the same fluid. So, let me write that statement that this pressure and this pressure are equal by saying, atmospheric pressure is on the top for both of them. That, plus ρ1gh1 is equal to atmospheric pressure plus ρ2,gh2, where this is the second fluid , height goes to h2, first fluid, the height is equal to h1, the densities are ρ1 and ρ2. Atmospheric pressure is cancelled; then you find h1/h2 = ρ2/ρ1. So, by comparing the heights you can find the relative density. If one of them is water, then, well, whatever it is. If you know the density of one fluid, you can find the density of the other.
### Chapter 3. The Hydraulic Press [00:20:49]
Okay, yet another application of this law that the pressure is equal at a given height is the famous hydraulic press. So, here is a–Here are two pistons of different radii. This has got cross section area A1; this has got cross section area A2. And here I want to put some incompressible fluid. Incompressible fluid is something whose volume cannot be changed no matter how much you press it. Now, water is pretty close to incompressible. It does have a compressibility, but it’s not going to change very much for our purposes. So now here, I have a piston, and I have a piston here. And I push down here with a force F1, and I ask, “What will I get at the other side?” You might think F1 = F2, but since these fluids are at the same height, we only know P1 = P2. That means F1/A1 = F2/A2. So, this fluid here will push up here with a force F2, which is equal to F1 times A2 over A1. Did I get it right? Ah.
Student: [inaudible]
Professor Ramamurti Shankar: Pardon me.
Student: [inaudible]
Professor Ramamurti Shankar: Did I make a mistake here?
Student: [inaudible]
Professor Ramamurti Shankar: But I want to amplify the force. So, what do we really want to do? Well, it’s a matter of who you want to emphasize. So, what you want to emphasize here–Maybe if I drew a picture I will know exactly what I’m trying to do. This picture is fine. In practice, this is not what you do. You want to push down here and raise something there. Because what you really imagine is some elephant. There’s an elephant standing here, and you want to lift the elephant by applying a force here. So, let’s still call your force F2, and the force on the other side is the force you apply times A1/A2. So A1/A2 could be a hundred. What that means is, if you apply one Newton here, you’ll get a hundred Newtons on the other side. So, that’s the way to max–to convert a small force into a large force.
But this is the oldest trick in the book. An even older one invented by cave people, is that if you have a support like this you can put a weight here and, uh, let me see, that’s right. So, a tiny weight here can lift a big weight here because that mg times that distance and this mg times this distance will be equal. But you must know even from that example that you don’t get something for nothing. In other words, if you lift the elephant here by pushing down here, the fact that the forces don’t match is perfectly okay. But the work you do here must be the work delivered to the other side. The Law of Conservation of Energy. The work you do on this side is the force multiplied by the distance. Now, force multiplied by distance I’m going to write as the pressure times the cross section area, times distance. But what is A times–A2 times dX2? A2 times dX2–if you push the liquid here–if you moved it a distance ΔX2, area times ΔX2 is the volume of fluid you push down here. That’s the volume that’ll come up on the other side. So, you’re free to write that as P2 times A1 ΔX1.
Okay, but P2A1–I’m sorry, yes, now, let’s write P2 is the same as P1. P1 times A1 is F1. So, it just says that the force times distance on one side is the force times distance on the other side. That means the work you actually do is not amplified by the process. You cannot get more joules out of one side by any device. What you put in is what you’ll get out. But still it’s useful, because in practice you may have to move a whole meter here to lift the elephant by one centimeter. But the point is, you can lift elephants this way. That’s the important thing. Okay, that’s why it’s worth doing. And this is how you–the brake in your car works. You know, you pump the brake pedal. There’s a little cylinder there and there’s a fluid there, and the fluid is pushed by your feet. And you push it quite a bit, several centimeters. At the other end, there’s another cylinder whose piston is right next to the drum that’s rotating, and pushes on the drum. And it exerts an enormous amount of force, but it moves a very tiny amount. The shoes that grab your rotating drum move a very tiny amount, whereas, your feet move a large amount. But that’s the ratio of the force that’s transmitted. The fluid has the same pressure. The brake fluid has the same pressure, but the force you apply with your feet is much, much smaller than the force that the drum will exert on the rotating–that the disc brakes will exert on the rotating drum. So, a lot of hydraulics is based on this simple amplification of force.
### Chapter 4. Archimedes’s Principle [00:26:32]
Alright. Now, I move to the next topic in this field, which is the Archimedes’ principle. So, we all know the conditions under which this was discovered. So, I will not go into that, other than to say that Mr. Archimedes noticed that if you immerse something in a fluid it seems to weigh less. What I mean by that is that if you attached it to some kind of a spring balance, and you weighed it so that the kx of the spring was the mg of the object, and if you did the same thing now you will find it seems to weigh less. And the question was, “How much less?” Archimedes’ answer is very simple. The amount by which you lose the weight, or the weight loss, equals the weight of liquid displaced.
Now, how do you show that? Because we don’t, right now, so many years after Archimedes, we will not accept this on faith. We want to be able to show this is the case. There are several ways to prove this. One way, which I like, is to say if you, if the thing you are hanging here, was itself a chunk of water shaped like that, you don’t have to do anything. Because that chunk of water can float at that height for free. But now, if you took the chunk of water and put a stone here of the same shape, the rest of the fluid doesn’t know what you’re doing. It applies the same force that it would to its own colleagues. Namely, if this is water, the rest of the water is in a configuration ready to support that amount of water. So, if you took that water out and put something in, the water will apply the same amount of force and the rest of it is your problem. You apply the remaining force. So, the water is ready to support its own kind of any volume. That’s the meaning of being in equilibrium. Any chunk of water is in equilibrium; therefore, it’s getting an upward force equal to the weight.
What we are saying is, if without disturbing the environment, you take the water out and put something in its place, the rest of the guys will apply the same force. Now, one formal way to prove that–you can take various geometries, but I prefer a cylindrical geometry. So this is, in this example, not a piece of water, but a new material you’ve introduced inside the water. And we want to find the buoyancy force. What is the net force of buoyancy? Well, it’s the pressure at the bottom times the area, minus pressure at the top times the area. We have already seen the difference in the pressure is ρgh A, but h is now this height. Well, h times A is the volume of the water, ρ times that is the weight of the water, the mass of the water. That times g is the weight of the liquid displaced. You can prove this for a cylinder; you can prove this for all oddball shapes, by thinking a little harder. But this is good enough. So, basically the body weighs less in water because the lower part of the body is being pushed up harder than the upper part of the body is being pushed down, because the pressure increases with depth. That’s why you get this result from Archimedes.
Now, you have to be a little careful on writing the equation, because if this was made of a material like iron, then the density of iron is less than–is more than the density of water. So, the weight of that chunk of iron will be more than the weight of the water displaced. So, you will have to provide a net force, and you can support it with the cable. But suppose this was not made of iron, but made of cork? If it’s cork, it won’t want to be there. Right? Because then, the applied force by the water is more than the weight it takes to support it. So, the cork will then bob up to the surface. It will look like this. If you want to keep it down, it’s like a rubber ducky. You want to keep the rubber ducky inside the water level, you’ve got to pull it down, or you want to tie it to the–I think one of the problems I gave you–has somebody tied this piece of whatever to the floor. Then it’ll stay. But things will bob up to the surface. And the question is, “How far up will it go?” We know part of it’s going to be inside and part of it’s going to be outside. And you can ask how much will be outside and how much will be inside?
You can already guess the answer, but let’s prove it. Let f be the fraction immersed, fractional volume immersed. Then, we can say the weight of the liquid displaced is equal to the fractional volume times ρ, times g, times the total volume, is the ρ of water. You understand? This is the weight of water equal to the full volume; this is the fraction of water displaced. So, this is simply the weight of this shaded region here. And that is going to be equal to the weight of the thing that’s floating; that is the ρg times full volume. If you cancel the g, and you cancel the volume, you find that the fraction that is immersed is the density of the material divided by density of water. In other words, if this material is 90 percent the density of water, it will be immersed by 90 percent. That’s exactly what happens with ice. As you all know, ice has a smaller density than water. One of the great mysteries. Normally, when you cool something it condenses and reduces in volume and the density will go up. But ice actually expands when you cool it. That’s why the density of ice is less than the density of water. That’s why ice floats on water. That’s the reason icebergs look like this, because the big part of the iceberg–;that’s the very peculiar property of ice. That’s why you have those movies like the Titanic where you’ve got a huge ice thing and it’s floating. First of all, if the density of ice was more than the density of water, these two actors would still be alive. Okay? But what happens is it is floating, and not only that; what you see is maybe a small fraction of the whole thing. That’s why those big ships went down. Okay, but it’s all thanks to this accident of nature that, here is one substance which, when cold, increases its–decreases in density.
Alright. Now, Archimedes’ principle has got hundreds of applications. If you want to build a boat, here’s how we build a boat. Here is the steel boat. Now, you cannot come to me and say, “How do you make a steel boat float in water?” Okay. It’s not a solid steel boat. Okay? If you are thinking about a solid steel boat, you should get in another line of work. This is a thing made out of steel, but it’s completely hollow. So, what we claim is, this amount of water weighs the same amount as that amount of–see, the shaded region. So, you can easily calculate how deep this one should sink to balance its weight. Right? That, I assume you know how to do that. Take this to be a rectangular boat. The cross section is rectangular; it’s gone down to a depth ρ, and to a depth h. Therefore, the volume of water displaced, is h times the area of the boat, cross sectional of the area of the floor of the boat. That’s the volume of water, that’s the mass of water, that’s the weight of water. That’s the weight of the boat. If you tell me how many tons the boat weighs and you give me the area of the base and g, and density of water, I’ll tell you what height it’ll sink. Then, of course, you can load more and more cargo in this, you know, if you have a top here, start putting more and more cargo; this will go down until the boat looks like this. And that’s as far as you can push it. That’s the kind of simple calculation you will be asked. How much cargo can the boat take? Well, that’s very simple. The weight of the boat plus weight of the cargo is maximal in this critical situation, when it’s just about to go under. Therefore, the total volume of water displaced, times the density, times g, will be the weight of your boat plus cargo.
And these are all elementary applications, and they came from two principles. One is the pressure increases with depth; the second is that the weight of the liquid displaced is the weight of the–is the reduction in weight. So, you can imagine three cases, one where the density of the material is more than the density of water, in which case it’ll start going down and you will have to hold it up with a cable, but you won’t have to apply the same force as you would outside. The second example is when the density of the object is less than the density of water, in which case it will float, with a certain fraction of it immersed, and a certain fraction of it outside. The fraction immersed is simply the same fraction as what you get by dividing its density by the density of water. Also, the density of water changes. In the Dead Sea, because of the salt concentration, density is a lot higher. So, it’s a lot easier for people to float.
### Chapter 5. Bernoulli’s Equation [00:36:36]
Okay. Now, for the last and final topic that’s called Bernoulli’s Equation. This is the first time I’m going to consider fluids in motion. So far, my fluids were at rest. And it’s really very simple. But notice one more time, all I ever invoked was Newton’s Law of Motion. You realize that? I just took this fluid and took that fluid, balanced the forces, and said there should be no acceleration. If I can convince you of the one thing, I have accomplished something. To realize that all the mechanics we have done does not appeal to any other law than F = ma. In all these problems of equilibrium, a is zero, F is zero. Just from that fact, and clever applications of F = ma. For example, it’s very clever to think of a piece of the water and demand that it be in equilibrium. That’s how we find how the pressure varies with depth. But there’s no new principle so far. In fact, there’s going to be no new principles at all this term. And relativity was different. The old space-time was modified, but non-relativistic mechanics is all coming from Newton’s law, as is this problem.
So, we’re going to display for the first time, fluid motion. We’re going to take the most general case of fluid motion, where there’s water in some pipe. This is the most famous picture in all the textbooks. We have not thought of a better picture now. We’re all working on it, but this is all we can come up with after 300 years. Water flowing in a pipe. This point is going to be called 1; this point is going to be called 2. Everything here will have a subscript 1. That means, measured from some ground, that’s at a height h1, that’s at a height h2. The velocity of the fluid here is some V1, the velocity of the fluid there is V2. And ρ is the density of the fluid, and that’s not variable. So, imagine now a steady flow of some fluid through a pipe, whose area of cross section is changing, and the overall altitude is also changing. You can have a huge, you know, pipe in the basement where the whole supply to the house comes, branches out into little pipes maybe; this could be the pipe in the attic. Small cross section possibly at a bigger height, it doesn’t matter. But we’re not considering pipes that break up into four or five pipes. This is just a single pipe.
### Chapter 6. The Equation of Continuity [00:39:12]
So, here is the first law that you have to satisfy. If the fluid is incompressible, there’s a certain law. And we are going to talk about that law. That’s called the “equation of continuity.” It relates the area here and the velocity here, to the area here and the velocity here. And the relationship should not surprise you. The basic premise is going to be you’re shoving in water from the left, and the water cannot pile up between here and here because it’s incompressible. That means in that volume, you can only pack in so much water. So, what comes in has to go out. It follows that it’s got to go out much faster here because the area is smaller. And what’s the relation? You can almost guess it, but let’s prove that. How much water do you think comes in through this phase, if you wait one second? Can you visualize in your mind that in one second a certain amount of fluid comes in, maybe until that point, and the cross section of that fluid is A, the distance it travels is V. So, the volume of the fluid coming in from the left is really A1V1. That’s called the flow rate coming in. And that’s got to flow out, and that’s the flow rate outside. So, in an incompressible fluid, if I tell you the flow rate at one point, I’ve told you the flow rate everywhere. Think of cars going down a freeway, and the freeway’s getting narrow, but unlike in real life, we don’t allow the cars to pile up. We want the density of cars to be the same. That means if there’s a narrow road, they’ve got to go faster to maintain the traffic. That follows–Then, it follows, that if I go to one checkpoint and see how many cars cross me per second here, the same number will cross anywhere else. But the speeds will be in inverse proportion to the area so that the product remains the same.
Now, let me show this to you in another way. It’s going to be helpful. Let me wait a small time Δt. In a small time Δt, this front that was here would advance there. It’ll go a distance V1 times the Δt. On the other end, this front will advance the distance, V2 times Δt. Now, the volume that got pushed in the time Δt is A1V1 Δt, and that’s the volume that came out on the other side. And you can cancel the Δts and come up with the result I gave you. So wait a short time, see what comes into the left phase, and see what goes out of the right phase and equate them.
Okay. Now, we are going to find a constraint between the state of the fluid here and the state of the fluid there. What I’m going to do–Look, think about what’s going to happen before you derive any formula. Suppose you’re going uphill. Does it make sense to you that when the fluid climbs uphill it’s going to slow down? It will slow down on the way to the top, because it’s got to work against gravity. Even if you threw a rock up there, it’s going to go up and slow down. Therefore, there’s going to be some connection between the gain in height and the velocity of the fluid. Just from the Law of Conservation of Energy. That’s all I’m going to do. Here is what I’m going to do. You remember if there are no external forces on a system, kinetic plus potential is kinetic plus potential. If there are external forces on a system, kinetic plus potential after minus kinetic plus potential, before, is the work done by external forces. That’s what I’m going to use here.
What are the external forces, and what’s the energy is what I’m going to think about. So, here’s what I’m going to focus on. Take this region of fluid trapped between these two cross sections at t = 0. Wait a short time Δt. What happens to the body of fluid? It does what I told you. In the front, it advances to the new region there. Maybe I should draw better pictures here. This is the advance of the rear guard, and in the front, the fluid that used to terminate here has gone up to there. In other words, if I colored this fluid, just this part of the fluid between here and here, a different color from the rest of the fluid, a short time later that colored liquid will be occupying this new volume. It’s the same numerical volume, but it’s a slightly different volume. I’m going to compare the energy of this chunk of fluid before and after. You realize that in that comparison this region in between the shaded regions is common to both the chunks of fluid. Pointwise, the fluid in the same location is going at the same velocity. So, I don’t have to worry about that. That’s common to before and after. The only difference between final minus initial is the energy contained in that region minus the energy contained in this region. The rest of it, like here, it was part of the old fluid; it’s part of the new fluid, it’s at the same height going at the same speed. So, you don’t have to worry about it.
So, what’s the volume? What’s the energy of this region? The energy is going to be ρ times A2 times Δx2. Δx2 is the distance it advances here. That’s the volume of the fluid; that’s the mass of the fluid. Sorry, that times g is the mass of the fluid. And the kinetic energy will be mass times V2 over 2. Potential energy will be–I’m sorry, am I doing something right? I think I made a mistake. Sorry about that. There is no g here. Let me do it more slowly. What’s the mass of the shaded region? It’s got a base A2; it’s got a height Δx2. That’s a volume, times density is the mass, mv2 over 2 is the kinetic energy. Potential energy would be the same mass times gh, but I should call it gh2. Yep?
Student: [inaudible]
Professor Ramamurti Shankar: Oh, you’re worried about the height varying over the tube. Yeah, we are neglecting that aspect. That’s an important point. You can ask, when you say h2 are you talking about the middle or the end and so on. But we are going to be dealing with problems where the height differences are much bigger than the cross section of the pipe. So, we don’t worry about that.
Okay. Now, what is the same quantity here? It’s going to be minus ρA1 ΔX1, times V12 over 2 plus ρ times gh1. That’s the final energy minus initial energy. That’s got to be equal to the work done. Now, who is doing the work on this? Can you guys understand? Where is the work coming from? Yep?
Student: [inaudible]
Professor Ramamurti Shankar: Ah. No. Gravity you don’t count as a force when you have a potential energy for gravity. Gravity is included. The minute you write ρgh or mgh, you don’t count gravity again.
Student: [inaudible]
Professor Ramamurti Shankar: Right. But if I’m looking at the fluid in question, who is acting on that fluid? Not what it’s doing to others. Who are the others doing something to this fluid? Yep.
Student: [inaudible]
Professor Ramamurti Shankar: Now, the walls of the pipe will apply a normal force, and that will not do any work. Yes?
Student: [inaudible]
Professor Ramamurti Shankar: Yeah, but that person is somewhere here. But remember, in mechanics you don’t have to go to people in remote places. I’ve told you, when you apply Newton’s law, the only kinds of forces are what? Remember from day one? Contact forces. Except for gravity, which reaches out and grabs everything. We’ve included gravity. Who is this body of fluid in contact with? Yes?
Student: [inaudible]
Professor Ramamurti Shankar: This fluid? In between? No, but I’m talking about this fluid. I’m talking about all of this fluid. My taking the difference of that shaded region and that shaded region was a convenience, but I’m looking at the energy change in all of this fluid.
Student: [inaudible]
Professor Ramamurti Shankar: Yeah, but the point is the fluid to the left here is pushing it, and it is pushing the fluid to the right. Okay? That’s the only way. It is true there’s a pump somewhere pushing the fluid in the beginning, but you don’t have to go all the way to the pump. In the end you only ask, who is in contact with me? Well, it’s the guys to the left. So, they will exert a force P1, times A1, times Δx1 because that’s the force, that’s the distance, that’s the work done on the fluid. And the work done by the fluid is P2, A2, Δx2, because if it moves to the right it is doing work on the left because it has work done on it. There you go. Now you can see that A1 Δx1 and A2 Δx2 are all equal because that is just the volume of the fluid displaced in a short time. That is just the continuity equation. If you divide everything by Δt, if you like, then you will find that Δx2 over Δt is V2. I’m just using the fact A1V1 is A2V2. So, if you cancelled those factors, what do I get? I’m going to just write it for you. Now, you guys can go home and check it. P1 - P2 = ½ ρV22 + ρgh2, minus ½ ρV12 - ρgh1.
Now, this is a derivation that you can go home and study at leisure in any book you like. They’re all the same; the story is the same. I can only tell you, if you like to know, what the trick behind the derivation was. I don’t mind going over that because maybe there are different volumes in question and you may have gotten confused. But first, let me write down the result. By writing everything with 1 on the one side, and 2 on the other side I get this result: P1 + ρV12 over 2 + ρgh1 = P2 + ρgh2 + ½ ρV22. This is nothing other than the Law of Conservation of Energy applied to unit volume. If you take one meter cubed of the fluid, its mass is ρ times 1. So, this is really a mass of one cubic meter of the fluid. This is its kinetic energy; that’s its potential energy. That’s the kinetic and that’s the potential. You might say, “Why aren’t we just equating kinetic plus potential to kinetic plus potential?” It’s because this chunk of fluid that I focused on is not an isolated system. It’s getting pushed from people behind it, and it’s pushing people ahead of it. So, you’ve got to take the difference between the work done on it, and the work done by it. Then, you will find they don’t quite cancel because the pressures are not equal. If the pressures are unequal, you get an extra contribution. But this is simply the Law of Conservation of Energy. I got it by writing the Law of Conservation of Energy.
But it takes a while for you guys to get used to applying the Law of Conservation of Energy. Maybe you are always used to saying kinetic plus potential is kinetic plus potential. You got used to that, or you also remember kinetic plus potential may be less at the end than the beginning, because there is friction. This is yet another thing. Where there’s no friction, but there are external forces acting on a body, there is gravity, which is included the minute you write a potential energy mgh. There’s the walls, too. I think some of you brought up a very good point. The walls are exerting a force, but that’s perpendicular to the fluid. In a real fluid, the walls will in fact exert a force parallel to the fluid, and it’s called viscosity. So, in a real fluid there will be a drag on the fluid because the fluid really doesn’t like to move right up against the walls. It doesn’t mind moving in the middle of the tube. So, as you go near the edges, the speed of the fluid will relax to zero. There’s a region where there’s a lot of dissipation. So, we’re ignoring what’s called viscosity. We’re ignoring all other losses. Then, this is simply the Law of Conservation of Energy.
And as to what I did with those two volumes, maybe I’ll repeat this so you can all follow this. I’m saying, take all that fluid now, find the total energy in it, and ask what happened to that fluid a little later. Well, fortunately, here the pipe also had some problems [laughter]. Okay. Where is this fluid a short time later? I want you to think about it. This end has moved here, this end has moved there. So, the fluid at the end of the day is sitting there. I want the energy of all of these guys minus the energy of all of this. Then, you can see in the comparison, it’s only this part that has gained, and this part that has lost. This part is common. When I say common, not only is the mass common–the location–at every location the height and velocity are the same. So, in the subtraction this will cancel that. That’ll cancel that. This will have nothing to cancel and this will have nothing to cancel. So, just focus on the relative increments, and that difference is what gives you the net change in energy, and you equate that to the work done.
### Chapter 7. Applications of Bernoulli’s Equation [00:53:41]
Okay. So now, we are going to learn how to use this Bernoulli. The main thing to notice about Bernoulli is, for a minute, if you focus on fluid at the same height. Just think about the same height. He tells you whenever the fluid picks up speed, it’s going to lose pressure. Because P + V2 or something, is P + V2 afterwards. If you increase V, you’re going to decrease P. And that’s the thrust of Bernoulli on a qualitative level.
I’ll give you some quantitative examples. So, one example is a baseball. Here’s as baseball coursing through air. If you like, you can sit and ride with the baseball, and say the air going backwards and the baseball is going that way. Now, suppose you spin the baseball like this. If you spin the baseball, it carries some of its own air due to friction between the leather and the air. So, that velocity is counter to the velocity of the drift here on the top and additive on the bottom. So, the actual air velocity on the bottom will be more on the bottom and less on the top because you’re subtracting this vector from the top and adding this vector on the bottom. So, if the velocity is different, this is the higher velocity region, this is the lower velocity region. So, pressure here will be less than the pressure there. So, the ball will sink down. If you spun it the opposite way, the ball will rise up. If you spun the ball side to side, the ball will curve from left to right. So, that’s the spin on the ball. If I spin the ball and release it, then it produces extra forces. This rising and falling is on top of the falling due to gravity. Even in a planet without gravity you will have this extra force. It’s coming simply because the velocity of the top and bottom have been modified.
Here’s another example. Here’s an airplane wing. The plane is going like this. You’ll go right with the plane, in which case the air seems to be doing this. Far from the plane, everything looks the same as if the wing were not there. But near the wing, this is the flow of air past the wing. Notice that these guys above the wing have to travel further than the particles below the wing so they can catch up here, where everything is the same. So, the velocity on top of the airfoil is faster; therefore, pressure is lower. Pressure is lower than on the bottom, then the difference in pressure times the area of the wing will push the wing up. That’s the lift you get when you start a plane. When you’re on the runway, this is why the plane goes up. Once you’re airborne, you can tilt your wing. When you tilt your wing to this angle, then of course it’s very clear that you can get a component of lift. But I’m talking about when the wing is not tilted but horizontal. That’s what gives you the lift. Now, what if you made a wing that looks like this? Okay. So, you’re all laughing. But this has a use too. Have you seen it anywhere?
Student: [inaudible]
Professor Ramamurti Shankar: Yes? NASCAR. On the racetrack you want the opposite effect, because you want to push down on the car, and therefore you manufacture wings. You go to the factory where by mistake they built a wing that looks like this, and you can bring it to your race car and attach it, then it will keep the race car down. Of course, you also have the other option of going to the wing and tipping it over and applying it to the airplane. But if it did not occur to you, if you thought once the wing is made like I’m stuck with this wing, well, go take it to your race car, attach it. That’ll push it down. Because you want to get traction. So, you can get the upward lift or the downward lift. Now, it turns out this lift theory is actually somewhat naïve. And I believed it for a long time. Now, I know the story is more complicated. There is a lot of truth to this, but it’s not the whole story. If you go into aeronautic engineering, you will find out that it’s a little more complicated. The reason, the way to calculate it precisely–But this general notion that when the air moves fast it loses pressure is true.
So, here’s another example. If you have an atomizer, you know, you have a perfume here and you’ve got a pump. And then, you have a tube here. When you squeeze the pump, the instant you squeeze the pump, you’re driving a lot of air here at high velocity, whereas the air here, is at rest. So, high velocity air has a lower pressure than low velocity air. Therefore, it will suck the perfume and spray it right on your face [laughter]. Yes. Okay. Very good. You know, I’ve taught you so many things, planet and supernovae, and galaxies, but now I got a rise out of this class. They said, now we are telling you something useful [laughter].
Alright. So, now I’m going to do two problems where I really start putting numbers in. This is very qualitative. I’m going to do quantitative problems. And there are only two kinds. So, when we are done, we are done.
Here is a tank of water. And I poke a hole in this somewhere here, at a depth, let’s call it h. The question is, “How fast will the water come out of here?” Turns out you can use this Bernoulli’s, whether it is called Bernoulli’s equation. You can use Bernoulli to derive this. We just have to pick the points one and two cleverly. So, this is going to be point 1; this is going to be point 2. Point 2, in fact, is just outside that hole. So, what does Bernoulli say? P1, which is atmospheric pressure, plus ½ ρV12 + ρgh1 = P2 + ½ ρV22 + ρgh2. Let’s modify this as follows: let’s pick h2 to be zero, then h1 is just this. I mean, you can pick the zero any way you like. So, where the hole is I’m calling zero. So, I don’t have to worry about this one. V2 is what I’m after. What about P1 and P2? P1 is atmospheric pressure there, and right outside the hole it’s also the atmospheric pressure. So, P1 and P2 you cancel because they’re both equal to atmospheric pressure. How about the velocity here? You know that if you punch a hole in the tank and you drain it, it’s going to start moving down. But we’re going to imagine that’s a huge tank, ten meters diameter, and this is a tiny pinprick. Then, this velocity is negligible. You can put that back in if you like. I’m just going to ignore that for now. That tells me ρgh1 = ½ ρV22; cancel the ρ, and you find V2 = 2gh. V22 = 2gh.
Now, you remember this formula from day one. This is the velocity a droplet would have if it, say, spilled over the top and fell straight down. Because that is just the mgh being converted to ½ mv2. Because by the Law of Conversation of Energy, the minute the fluid starts coming out of here and draining out of the top, I have traded droplets of water at the top for droplets of water at the bottom. Therefore, since they had potential energy at the top, they most likely have kinetic energy at the bottom. But be clear about one thing: the drop coming here is not the same drop moving at the top. If I push it over the top, that would be the same drop, and that’s very clear to all of us. The beauty of this is this water is pushing down and something’s coming out here. It’s coming out with the right speed so that drop by drop, the kinetic energy of what comes out here, is the potential energy of what’s draining at the top. So, you can punch the hole at various places. You know, once you punch a hole here it’s going to land there. And you can imagine the fun you can have with this kind of problem. Where do I punch the hole so that if my dog is standing here it’s going to feed the dog? Or don’t feed the dog, go up in front of the dog, go past the dog. Get the biggest range, smallest range, a whole bunch of problems. They will combine this Bernoulli who will tell you how fast it’s coming out with chapter one of how to do trajectories once the fluid is coming out this way.
Okay. Last topic. It’s again–it’s not even a new topic. The last application of Bernoulli has to do with the–what you call the Venturi meter. By the way, you can imagine this is just a cross section of possible applications of fluid dynamics. You can take a whole course on fluid dynamics.
So, let’s take the following problem. So, you’re going in an airplane, and you want to find out how fast the plane is going. How do you think you find out? I will show you know one device people use to find the flow rate, to find the speed of the plane through the atmosphere. So, you go to the plane and you attach the following device to the underside of the plane. Well, this, I’m imagining in my mind a symmetric thing. This is a pipe with a constriction. Here the air is coming in at the speed of the plane itself. See, in real life the plane is going through the air, but go sit with the plane, because the air is going backwards at the speed of the plane. So, that’s a cross section A1 here. V1 is what we are trying to find. I hope you understand. That’s our goal. Then it comes to this region where it has to speed up, because A1V1 is A2V2. If it speeds up, the pressure of the air is going to be lower. Let’s first calculate the pressure difference between this point and this point. Now they’re both at the same altitude.
Here’s another example. You’re 5,000 feet above the ground; don’t worry about altitude to here or there or there. That’s, 5,000 is the big height, and that ρgh cancels on both sides. We don’t worry about the variation in height over this gadget. It’s a very, very tiny thing you attach to the underside of the plane. So then, I can say P1 + ½ ρV12 + ρgh1, I’m not going to write because h1 and h2 are going be equal. Then, it’s P2 ½ ρV22. Therefore, P2 - P1 = ½ ρV12 - V22. Now, V1 is the speed of the plane. Now, V2 is not the speed of the plane, but we know what V2 is because V2 times A2 is equal to V1 times A1. So, we can write here ½ ρV12 - V22 = V12 times A1 over A22. So, pull out the V1, and you write it as ½ ρV12 times one minus (A1/A2)2.
So, let’s digest this formula for a second. In this problem, A1 is bigger than A2. So, you may worry that 1 - A1/A22 is negative, but so is P2 - P1 because P2 here is certainly going to be lower than P1 here. So, if you’re happier, you can flip it backwards and write P1 - P2 is something. You see that? You can flip it over, provided you flip it over here. But ask yourself, “What do I need to know to find the speed of the plane?” The speed of the plane is here. The ρ is the density of what? Can you tell me, ρ is density of what? Air; ρ is the density of air. A1 and A2 are known, because you designed the tube. So, if you can find the pressure difference, somehow, you can read off the speed of the plane. So, what people do to find the pressure difference is they go and they take–they punch a hole there and they put here a fluid, like oil. If the plane is not moving, you can tell these two heights must be equal because that’s a condition for the hydrostatic equilibrium. Because these two pressures are equal. But if the plane starts moving and the pressure here is lower than the pressure here.
Imagine this is a high pressure; that’s low pressure. It’ll push the fluid up and it’ll start looking like this, with a little extra on the other side. And how much extra is it? Well, let’s think about it. The pressure at these two points is the same; the pressure here is what I called P1; the pressure here is P2 + ρg times the height of this fluid. This ρ is not the density of air. This ρ is the density of, oil let’s say. So, the minute the plane begins to move, the pressure here will be higher than pressure here; the fluid will be pushed up. And the difference in these two heights directly is a measure of the pressure difference. That, in turn, is a measure of the velocity. So, what you will try to do is then, forget all about the height difference, and if you’re clever enough you can put marking so that by counting the difference in the markings you can translate to the speed of the plane.
You can also use this to find the rate at which oil is flowing. Suppose oil is flowing in a pipe and you want to know the rate at which oil is flowing. Again, create a constriction in the flow, then put some tubes. This cannot be oil; this has got to be some other fluid. Once again, there’ll be pressure difference and there’ll be height difference. And from the height difference you can find the rate at which the fluid is flowing here. So, what’s the trick we use? Yes?
Student: [inaudible]
Professor Ramamurti Shankar: Oh, for this one?
Student: [inaudible]
Professor Ramamurti Shankar: Well, I don’t–I think all I’m–As far as I can tell, there’s going to be a pressure difference and that’s going to translate into height difference. And if the two do not mix, I don’t know the danger. I think one danger you may have is if the fluid comes in here, and if it can penetrate this, it will start mixing. Right? So, for that purpose it may be better if this one is a higher density than the one on top.
Now in practice, I am not really sure what kind of fluids people use in any engineering thing. My–I get very shaky when you start going to the real world. It’s been my practice to avoid it as much as possible, which is why I chose this career. But people who really want to build something have to worry about what fluid to use, you know, what starts mixing, what doesn’t mix, what’s the accuracy. So, I don’t. If I thought hard about it, I would try to reduce everything to Newton’s laws or some laws of thermodynamics. But it would take years and years to go from there to something practical. So, I don’t know in practice what fluids people use. So, this is another example of Bernoulli’s principle.
Final one, which is the kind of a problem you sometimes do get. I’m not going to write the equations or do the numbers, but I’ll tell you how to think about it. Suppose you have a tank of water. And I make another tube here and I cap it. And the fluid here comes to some height. First question you can ask is, “What’s the height to which fluid will rise here?” Now, you know from your high school days it will rise to the same height, but what’s the argument that you will give today for why that height has to be the same? You will use Bernoulli’s principle, and you will take two points here, for example. Luckily, there’s no velocity to worry about. There is no height to worry about. So, P1 = P2, which is what we did use by other considerations. Those pressures are equal. If that is atmospheric pressure, that’s atmospheric pressure; then, these columns have to be equal. They’re starting with atmosphere plus ρgh; you want to hit the same number here as there. But now, if you open this pipe and let the fluid really start flowing, then the story is different. The minute fluid stops flowing here–starts flowing–remember from the Bernoulli, if you’ve got a velocity, you lose pressure. Pressure here will be lower than the atmosphere, and then this will drop. It will drop so that atmosphere, plus that height gives a pressure here, that is atmosphere plus the bigger height gives the pressure here. And the velocity here is assumed to be negligible, and the velocity here is some velocity with which the fluid is coming out. Okay. So guys, have a good holiday in spite of what I’ve done to you most reluctantly, and I’ll see you all after the break.
[end of transcript]
| 14,339
| 59,698
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.65625
| 4
|
CC-MAIN-2017-51
|
latest
|
en
| 0.944847
|
https://convertoctopus.com/8060-ounces-to-pounds
| 1,670,193,490,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2022-49/segments/1669446710980.82/warc/CC-MAIN-20221204204504-20221204234504-00384.warc.gz
| 207,546,346
| 7,276
|
## Conversion formula
The conversion factor from ounces to pounds is 0.0625, which means that 1 ounce is equal to 0.0625 pounds:
1 oz = 0.0625 lb
To convert 8060 ounces into pounds we have to multiply 8060 by the conversion factor in order to get the mass amount from ounces to pounds. We can also form a simple proportion to calculate the result:
1 oz → 0.0625 lb
8060 oz → M(lb)
Solve the above proportion to obtain the mass M in pounds:
M(lb) = 8060 oz × 0.0625 lb
M(lb) = 503.75 lb
The final result is:
8060 oz → 503.75 lb
We conclude that 8060 ounces is equivalent to 503.75 pounds:
8060 ounces = 503.75 pounds
## Alternative conversion
We can also convert by utilizing the inverse value of the conversion factor. In this case 1 pound is equal to 0.001985111662531 × 8060 ounces.
Another way is saying that 8060 ounces is equal to 1 ÷ 0.001985111662531 pounds.
## Approximate result
For practical purposes we can round our final result to an approximate numerical value. We can say that eight thousand sixty ounces is approximately five hundred three point seven five pounds:
8060 oz ≅ 503.75 lb
An alternative is also that one pound is approximately zero point zero zero two times eight thousand sixty ounces.
## Conversion table
### ounces to pounds chart
For quick reference purposes, below is the conversion table you can use to convert from ounces to pounds
ounces (oz) pounds (lb)
8061 ounces 503.813 pounds
8062 ounces 503.875 pounds
8063 ounces 503.938 pounds
8064 ounces 504 pounds
8065 ounces 504.063 pounds
8066 ounces 504.125 pounds
8067 ounces 504.188 pounds
8068 ounces 504.25 pounds
8069 ounces 504.313 pounds
8070 ounces 504.375 pounds
| 449
| 1,679
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.03125
| 4
|
CC-MAIN-2022-49
|
latest
|
en
| 0.789059
|
http://www.singaporemathguru.com/question?cr=GL0PorHhaevscKYxGOuq&mode=chapterquiz&sts1=str
| 1,548,005,879,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2019-04/segments/1547583728901.52/warc/CC-MAIN-20190120163942-20190120185942-00251.warc.gz
| 403,790,275
| 11,384
|
### Primary 4 Problem Sums/Word Problems - Try FREE
Score :
Disabled
#### Question 1 of 4
The combined length of three running tracks A, B and C is 10.05 m.
The combined length of tracks A and C is 7.40 m.
The combined length of tracks B and C is 6.20 m.
(a) Calculate the length of track C.
(b) Find the difference in length of tracks A and C.
Notes to students:
1. If the question above has parts, (e.g. (a) and (b)), given that the answer for part (a) is 10 and the answer for part (b) is 12, give your answer as:10,12
| 154
| 530
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.9375
| 3
|
CC-MAIN-2019-04
|
latest
|
en
| 0.903687
|
http://talkchess.com/forum/viewtopic.php?topic_view=threads&p=390237&t=37762
| 1,371,659,596,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2013-20/segments/1368708882773/warc/CC-MAIN-20130516125442-00040-ip-10-60-113-184.ec2.internal.warc.gz
| 250,029,322
| 25,671
|
TalkChess.com
Hosted by Your Move Chess & Games
Author Message
Sven Schüle
Joined: 15 May 2008
Posts: 2276
Location: Berlin, Germany
Post subject: Re: Fabien's open letter to the community Posted: Tue Jan 25, 2011 1:28 pm
Sven Schüle wrote:
Sven Schüle wrote: If B is derived from A, and C is derived from B, then C is also derived from A. But if B (Strelka) is derived from A (Rybka 1.0) and B is also derived from C (Fruit 2.1) then there is no "is-derived-from" relationship between A and C. To make it simple, let's use "A --> B" for "B is derived from A". This is correct: (A --> B and B --> C) implies (A --> C) But this is wrong: (A --> B and C --> B) implies (A --> C) Therefore your last sentence, if you would have finished it in the way most readers would expect, would be lacking some logical foundation.
That is wrong, I agree:
"But this is wrong:
(A --> B and C --> B) implies (A --> C)
"
Yes. But it has nothing to do with my post.
What I was saying, and Vasik said half of that, Fabien said another half is the correct one:
(A = B and C --> B) implies (C --> A)
I confirmed what was Vasik saying in my post with similarity graph in this thread. In fact this similarity graph probably confirms what Fabien is saying too (Rybka 1.0 is shown closer to Fruit 2.1 than Houdini 1.5 is to Rybka 3).
Your "A = B", intended as "Rybka = Strelka", is clearly wrong. It is a known fact that Strelka was based on both Fruit and Rybka.
http://www.talkchess.com/forum/viewtopic.php?p=347815#347815
Therefore any connection between Fruit and Rybka can't be concluded based on Strelka but needs a _direct_ comparison.
Sven
Vasik claimed Strelka 2.0 sources as his own. My similarity test shows Strelka 1.8 as being identical to Rybka 1.0 within error margins. I don't think the fact that Strelka 1.8 is arguably almost an identical clone of Rybka 1.0 or it is exactly 100% Rybka 1.0 changes something. This is an argument ad absurdum just to defend a preferred soccer team. Take Vasik words that Strelka's code is his as granted.
The real issue is what Fabien is saying, confirms the findings or else, that second half of the of assumptions.
Kai
I gave a link to the statement of the Strelka author where he explained exactly what he did to create Strelka. That tells you that A != B. Yuri Osipov also explained that he did not succeed in creating a compilable codebase by only using disassembled R1 code.
So I have to reject your view of my argument being "an argument ad absurdum just to defend a preferred soccer team".
The same post of Yuri Osipov which I linked to above also contains his statement "[...] I gradually added the parts of code and tables from Rybka. It was easy, because Rybka was made on the same way." I do not say this is wrong, I can only say he cannot know exactly that Rybka was made like this. He thinks so. But he can only know for sure what he did by himself, not what someone else did.
Using Don's similarity test is not valid to prove that two programs are "identical". It was not intended for this purpose, I may assume that you know that. Surely you can show that two programs _behave_ very similar. And in case of Strelka vs. R1 this is no big surprise, since Strelka was explicitly designed for exact that purpose.
My point remains that Strelka can't be used to conclude anything about Fruit-R1 connections.
Sven
Display posts from previous: All Posts1 Day7 Days2 Weeks1 Month3 Months6 Months1 Year Oldest FirstNewest First
Subject Author Date/Time
Tord Romstad Sun Jan 23, 2011 9:13 pm
Julien MARCEL Sun Jan 23, 2011 9:22 pm
Ted Summers Sun Jan 23, 2011 9:23 pm
Ben-Hur Carlos Langoni Sun Jan 23, 2011 9:29 pm
Juan Molina Sun Jan 23, 2011 10:10 pm
fernando Sun Jan 23, 2011 10:38 pm
Julien MARCEL Sun Jan 23, 2011 10:41 pm
Roger Brown Sun Jan 23, 2011 10:43 pm
Ingo Bauer Sun Jan 23, 2011 10:50 pm
Dr.Wael Deeb Mon Jan 24, 2011 5:40 am
Peter Skinner Mon Jan 24, 2011 12:01 pm
Julien MARCEL Mon Jan 24, 2011 12:15 pm
H.G.Muller Mon Jan 24, 2011 12:33 pm
Julien MARCEL Mon Jan 24, 2011 12:43 pm
Gian-Carlo Pascutto Mon Jan 24, 2011 1:04 pm
Julien MARCEL Mon Jan 24, 2011 1:21 pm
Gian-Carlo Pascutto Mon Jan 24, 2011 2:01 pm
Julien MARCEL Mon Jan 24, 2011 2:10 pm
Gian-Carlo Pascutto Mon Jan 24, 2011 2:30 pm
Julien MARCEL Mon Jan 24, 2011 2:43 pm
H.G.Muller Mon Jan 24, 2011 1:18 pm
Julien MARCEL Mon Jan 24, 2011 1:33 pm
Julien MARCEL Mon Jan 24, 2011 1:59 pm
Gian-Carlo Pascutto Mon Jan 24, 2011 2:06 pm
Fabien Letouzey Mon Jan 24, 2011 5:48 pm
Gian-Carlo Pascutto Tue Jan 25, 2011 9:25 am
Fabien Letouzey Tue Jan 25, 2011 3:48 pm
Gian-Carlo Pascutto Mon Jan 24, 2011 12:34 pm
Eelco de Groot Mon Jan 24, 2011 12:30 pm
Robert Flesher Mon Jan 24, 2011 4:26 pm
H.G.Muller Mon Jan 24, 2011 4:39 pm
Dr.Wael Deeb Mon Jan 24, 2011 4:59 pm
Robert Flesher Mon Jan 24, 2011 5:06 pm
Gabor Szots Mon Jan 24, 2011 5:44 pm
Slobodan R Stojanovic Mon Jan 24, 2011 5:47 pm
Gabor Szots Mon Jan 24, 2011 5:49 pm
Slobodan R Stojanovic Mon Jan 24, 2011 5:53 pm
Gabor Szots Mon Jan 24, 2011 5:57 pm
Dr.Wael Deeb Mon Jan 24, 2011 5:59 pm
Ulysses P. Mon Jan 24, 2011 11:43 pm
H.G.Muller Mon Jan 24, 2011 5:50 pm
Kai Laskos Mon Jan 24, 2011 5:51 pm
Dr.Wael Deeb Mon Jan 24, 2011 5:52 pm
Gabor Szots Mon Jan 24, 2011 5:56 pm
Kai Laskos Mon Jan 24, 2011 6:00 pm
Dr.Wael Deeb Mon Jan 24, 2011 6:01 pm
Julien MARCEL Mon Jan 24, 2011 6:04 pm
Dr.Wael Deeb Mon Jan 24, 2011 7:27 pm
Steve B Mon Jan 24, 2011 11:35 pm
Ted Summers Mon Jan 24, 2011 6:07 pm
Dr.Wael Deeb Mon Jan 24, 2011 7:29 pm
Steve B Mon Jan 24, 2011 11:50 pm
Roger Brown Tue Jan 25, 2011 2:56 am
Steve B Wed Jan 26, 2011 12:30 am
Miguel A. Ballicora Mon Jan 24, 2011 5:59 pm
Gabor Szots Mon Jan 24, 2011 6:05 pm
Rob Osborne Mon Jan 24, 2011 6:11 pm
Kai Laskos Mon Jan 24, 2011 6:13 pm
Sven Schüle Mon Jan 24, 2011 10:01 pm
Kai Laskos Mon Jan 24, 2011 10:16 pm
Sven Schüle Mon Jan 24, 2011 11:29 pm
Kai Laskos Mon Jan 24, 2011 11:51 pm
Re: Fabien's open letter to the community Sven Schüle Tue Jan 25, 2011 1:28 pm
Robert Hyatt Tue Jan 25, 2011 10:06 pm
Fabien Letouzey Wed Jan 26, 2011 4:52 am
Robert Hyatt Wed Jan 26, 2011 2:18 pm
Uri Blass Wed Jan 26, 2011 2:47 pm
Robert Hyatt Thu Jan 27, 2011 1:02 am
Dann Corbit Thu Jan 27, 2011 1:18 am
Sven Schüle Wed Jan 26, 2011 6:44 pm
Robert Hyatt Thu Jan 27, 2011 1:04 am
Graham Banks Thu Jan 27, 2011 1:07 am
Robert Hyatt Fri Jan 28, 2011 3:40 am
Ryan Benitez Fri Jan 28, 2011 4:42 am
Eelco de Groot Fri Jan 28, 2011 9:37 am
Gian-Carlo Pascutto Fri Jan 28, 2011 9:47 am
Christopher Conkie Fri Jan 28, 2011 10:07 am
Ted Summers Fri Jan 28, 2011 10:04 am
Miguel A. Ballicora Fri Jan 28, 2011 10:07 am
Ted Summers Fri Jan 28, 2011 10:14 am
Don Dailey Fri Jan 28, 2011 1:20 pm
Ted Summers Fri Jan 28, 2011 1:28 pm
Don Dailey Fri Jan 28, 2011 1:43 pm
Graham Banks Fri Jan 28, 2011 10:15 am
Ted Summers Fri Jan 28, 2011 10:21 am
Graham Banks Fri Jan 28, 2011 10:23 am
Matthew Hull Sun Jan 30, 2011 11:02 pm
Roger Brown Mon Jan 31, 2011 12:02 am
Rolf Mon Jan 31, 2011 12:35 am
Rolf Mon Jan 31, 2011 12:35 am
Julien MARCEL Mon Jan 31, 2011 12:38 am
Matthew Hull Mon Jan 31, 2011 6:37 am
Gino Figlio Mon Jan 31, 2011 12:47 am
Osipov Jury Mon Jan 31, 2011 1:04 am
Milos Stanisavljevic Mon Jan 31, 2011 1:29 am
Robert Hyatt Tue Feb 01, 2011 1:27 am
Osipov Jury Tue Feb 01, 2011 8:00 pm
Gian-Carlo Pascutto Tue Feb 01, 2011 8:32 pm
Gerd Isenberg Wed Feb 02, 2011 7:42 am
Robert Hyatt Wed Feb 02, 2011 11:30 pm
Robert Hyatt Mon Jan 31, 2011 4:05 pm
Zach Wegner Fri Jan 28, 2011 9:25 pm
Christopher Conkie Fri Jan 28, 2011 9:35 pm
Chan Rasjid Fri Jan 28, 2011 9:43 pm
Gian-Carlo Pascutto Fri Jan 28, 2011 9:47 pm
Christopher Conkie Fri Jan 28, 2011 9:59 pm
Chan Rasjid Fri Jan 28, 2011 11:02 pm
Robert Hyatt Sat Jan 29, 2011 2:29 am
Graham Banks Sat Jan 29, 2011 5:53 am
Albert Silver Sat Jan 29, 2011 5:58 am
Robert Hyatt Sat Jan 29, 2011 4:56 pm
Rob Osborne Sat Jan 29, 2011 7:15 am
Robert Flesher Sat Jan 29, 2011 1:01 pm
John Manis Sat Jan 29, 2011 1:23 pm
John Manis Sat Jan 29, 2011 3:29 pm
Robert Flesher Sat Jan 29, 2011 4:33 pm
Gabor Szots Sat Jan 29, 2011 4:55 pm
K I Hyams Sat Jan 29, 2011 5:25 pm
John Manis Sat Jan 29, 2011 5:25 pm
Robert Hyatt Sat Jan 29, 2011 4:58 pm
Robert Flesher Sat Jan 29, 2011 9:22 pm
Robert Flesher Sat Jan 29, 2011 9:52 pm
John Manis Sat Jan 29, 2011 10:03 pm
Christopher Conkie Sat Jan 29, 2011 9:32 am
Robert Hyatt Sat Jan 29, 2011 4:55 pm
Matthew Hull Sat Jan 29, 2011 5:05 pm
Rolf Sat Jan 29, 2011 12:49 am
K I Hyams Sun Jan 30, 2011 12:51 pm
Rolf Fri Jan 28, 2011 4:09 pm
Dr.Wael Deeb Fri Jan 28, 2011 5:08 pm
Christopher Conkie Fri Jan 28, 2011 8:41 pm
Dr.Wael Deeb Fri Jan 28, 2011 8:56 pm
Richard Allbert Fri Jan 28, 2011 9:31 pm
Rolf Fri Jan 28, 2011 4:09 pm
Robert Hyatt Fri Jan 28, 2011 4:48 pm
John Manis Sat Jan 29, 2011 12:13 am
Wim Sjoho Sat Jan 29, 2011 12:23 am
John Manis Sat Jan 29, 2011 1:01 am
John Manis Sat Jan 29, 2011 1:11 am
Benjamin Handelman Sat Jan 29, 2011 5:04 am
John Manis Sat Jan 29, 2011 10:23 am
Benjamin Handelman Sat Jan 29, 2011 5:33 pm
John Manis Sat Jan 29, 2011 5:42 pm
George Speight Thu Feb 03, 2011 4:54 am
Matthew Hull Thu Feb 03, 2011 6:29 am
Sven Schüle Thu Jan 27, 2011 7:41 am
Gian-Carlo Pascutto Thu Jan 27, 2011 7:56 am
Robert Hyatt Thu Jan 27, 2011 8:01 pm
Robert Hyatt Thu Jan 27, 2011 7:58 pm
Kai Laskos Wed Jan 26, 2011 2:46 am
Miguel A. Ballicora Wed Jan 26, 2011 3:32 am
Kai Laskos Wed Jan 26, 2011 4:06 am
Miguel A. Ballicora Wed Jan 26, 2011 4:23 am
Kai Laskos Wed Jan 26, 2011 4:47 am
Miguel A. Ballicora Wed Jan 26, 2011 7:10 am
Adam Hair Thu Jan 27, 2011 7:03 am
Kai Laskos Thu Jan 27, 2011 2:11 pm
Adam Hair Fri Jan 28, 2011 1:39 am
Kai Laskos Fri Jan 28, 2011 2:34 am
Adam Hair Fri Jan 28, 2011 12:27 pm
Kai Laskos Fri Jan 28, 2011 1:33 pm
Adam Hair Sat Jan 29, 2011 12:13 am
Kai Laskos Sun Jan 30, 2011 2:23 pm
Adam Hair Sun Jan 30, 2011 7:50 pm
Kai Laskos Mon Jan 31, 2011 11:44 pm
Adam Hair Wed Feb 02, 2011 1:28 am
Matthias Gemuh Mon Jan 24, 2011 6:06 pm
Gabor Szots Mon Jan 24, 2011 6:10 pm
Matthias Gemuh Mon Jan 24, 2011 6:41 pm
Gabor Szots Mon Jan 24, 2011 7:27 pm
Kai Laskos Mon Jan 24, 2011 7:34 pm
Gabor Szots Mon Jan 24, 2011 7:42 pm
Kai Laskos Mon Jan 24, 2011 7:49 pm
Djordje Vidanovic Tue Jan 25, 2011 5:44 pm
Guenther Simon Tue Jan 25, 2011 5:56 pm
Djordje Vidanovic Tue Jan 25, 2011 6:10 pm
Guenther Simon Tue Jan 25, 2011 7:51 pm
Slobodan R Stojanovic Tue Jan 25, 2011 8:06 pm
Dann Corbit Tue Jan 25, 2011 8:09 pm
Robert Hyatt Tue Jan 25, 2011 10:12 pm
Gabor Szots Wed Jan 26, 2011 1:22 pm
Matthias Gemuh Wed Jan 26, 2011 1:48 pm
Gabor Szots Wed Jan 26, 2011 2:01 pm
Leon Coleman Mon Jan 24, 2011 6:12 pm
George Speight Wed Feb 02, 2011 9:59 pm
George Speight Wed Feb 02, 2011 10:35 pm
Dr.Wael Deeb Wed Feb 02, 2011 10:38 pm
George Speight Wed Feb 02, 2011 10:48 pm
Robert Hyatt Thu Feb 03, 2011 1:26 am
George Speight Thu Feb 03, 2011 3:49 am
George Speight Wed Feb 02, 2011 10:26 pm
Tony Mokonen Wed Feb 02, 2011 11:18 pm
Robert Hyatt Thu Feb 03, 2011 1:23 am
Tony Mokonen Thu Feb 03, 2011 2:13 am
Robert Hyatt Thu Feb 03, 2011 2:38 am
Slobodan R Stojanovic Mon Jan 24, 2011 5:35 pm
H.G.Muller Mon Jan 24, 2011 5:52 pm
Tom Giampietro Mon Jan 24, 2011 5:53 pm
Tom Giampietro Mon Jan 24, 2011 5:51 pm
H.G.Muller Mon Jan 24, 2011 5:54 pm
Julien MARCEL Mon Jan 24, 2011 5:56 pm
Slobodan R Stojanovic Mon Jan 24, 2011 5:59 pm
Roger Brown Mon Jan 24, 2011 6:32 pm
H.G.Muller Mon Jan 24, 2011 6:37 pm
Fabien Letouzey Mon Jan 24, 2011 5:16 pm
Dr.Wael Deeb Mon Jan 24, 2011 5:51 pm
George Tsavdaris Tue Jan 25, 2011 12:40 pm
Dr.Wael Deeb Tue Jan 25, 2011 2:08 pm
George Tsavdaris Tue Jan 25, 2011 2:15 pm
Dr.Wael Deeb Tue Jan 25, 2011 2:22 pm
H.G.Muller Tue Jan 25, 2011 2:33 pm
Dr.Wael Deeb Tue Jan 25, 2011 2:39 pm
George Tsavdaris Tue Jan 25, 2011 3:00 pm
Roger Brown Tue Jan 25, 2011 9:12 pm
George Tsavdaris Tue Jan 25, 2011 9:48 pm
Dr.Wael Deeb Tue Jan 25, 2011 10:43 pm
Graham Banks Tue Jan 25, 2011 10:48 pm
Fabien Letouzey Wed Jan 26, 2011 5:20 am
Graham Banks Wed Jan 26, 2011 5:25 am
Fabien Letouzey Wed Jan 26, 2011 6:55 am
Graham Banks Wed Jan 26, 2011 6:57 am
George Tsavdaris Tue Jan 25, 2011 10:58 pm
Fabien Letouzey Tue Jan 25, 2011 3:29 pm
Dr.Wael Deeb Tue Jan 25, 2011 3:41 pm
Slobodan R Stojanovic Tue Jan 25, 2011 7:54 pm
Dr.Wael Deeb Tue Jan 25, 2011 7:57 pm
Uri Blass Tue Jan 25, 2011 3:42 pm
enrico fagiuoli Tue Jan 25, 2011 6:01 pm
Ulysses P. Wed Jan 26, 2011 7:52 am
Ted Summers Wed Jan 26, 2011 9:50 am
enrico fagiuoli Wed Jan 26, 2011 12:49 pm
Robert Flesher Tue Jan 25, 2011 3:52 pm
Peter Skinner Tue Jan 25, 2011 6:19 pm
Julien MARCEL Tue Jan 25, 2011 6:42 pm
Dr.Wael Deeb Tue Jan 25, 2011 7:14 pm
George Tsavdaris Tue Jan 25, 2011 8:10 pm
John Rissler Tue Jan 25, 2011 10:21 pm
Dr.Wael Deeb Tue Jan 25, 2011 10:47 pm
Fabien Letouzey Wed Jan 26, 2011 5:02 am
Graham Banks Wed Jan 26, 2011 5:10 am
Fabien Letouzey Wed Jan 26, 2011 4:43 am
Graham Banks Wed Jan 26, 2011 4:45 am
Fabien Letouzey Wed Jan 26, 2011 6:17 am
Graham Banks Wed Jan 26, 2011 6:19 am
Graham Banks Wed Jan 26, 2011 6:30 am
Fabien Letouzey Wed Jan 26, 2011 6:52 am
Graham Banks Wed Jan 26, 2011 6:54 am
Rob Osborne Wed Jan 26, 2011 7:00 am
Fabien Letouzey Wed Jan 26, 2011 7:35 am
Milos Stanisavljevic Wed Jan 26, 2011 11:38 am
Eelco de Groot Thu Jan 27, 2011 12:32 am
K I Hyams Wed Jan 26, 2011 12:37 pm
Graham Banks Tue Jan 25, 2011 7:39 pm
Dr.Wael Deeb Tue Jan 25, 2011 7:49 pm
George Tsavdaris Tue Jan 25, 2011 8:03 pm
Dr.Wael Deeb Tue Jan 25, 2011 9:13 pm
Slobodan R Stojanovic Sun Jan 23, 2011 11:15 pm
john dalhem Sun Jan 23, 2011 11:34 pm
Kai Laskos Sun Jan 23, 2011 11:39 pm
john dalhem Sun Jan 23, 2011 11:43 pm
Ricardo Barreira Sun Jan 23, 2011 11:52 pm
Kai Laskos Sun Jan 23, 2011 11:57 pm
john dalhem Mon Jan 24, 2011 1:14 am
Frank Quisinsky Mon Jan 24, 2011 9:05 am
john dalhem Mon Jan 24, 2011 3:58 pm
Frank Quisinsky Mon Jan 24, 2011 4:16 pm
Lar Mader Mon Jan 24, 2011 1:55 am
John Manis Sun Jan 23, 2011 11:59 pm
Robert Flesher Mon Jan 24, 2011 12:51 am
Tom Barrister Wed Jan 26, 2011 12:48 am
Graham Banks Wed Jan 26, 2011 12:51 am
Christopher Conkie Wed Jan 26, 2011 1:02 am
Uri Blass Wed Jan 26, 2011 1:02 am
Fabien Letouzey Wed Jan 26, 2011 5:35 am
Tom Barrister Sat Jan 29, 2011 8:28 pm
Miguel A. Ballicora Mon Jan 24, 2011 12:29 am
Robert Flesher Mon Jan 24, 2011 12:40 am
gerold daniels Mon Jan 24, 2011 12:52 am
Peter C Mon Jan 24, 2011 1:34 am
H.G.Muller Mon Jan 24, 2011 8:37 am
Gian-Carlo Pascutto Mon Jan 24, 2011 10:40 am
Uri Blass Mon Jan 24, 2011 10:56 am
Ricardo Barreira Mon Jan 24, 2011 11:06 am
Dr.Wael Deeb Mon Jan 24, 2011 4:42 pm
Tony Mokonen Sun Jan 30, 2011 9:01 pm
Dr.Wael Deeb Sun Jan 30, 2011 9:22 pm
F. Bluemers Sun Jan 30, 2011 9:30 pm
Peter C Sun Jan 30, 2011 9:36 pm
Gian-Carlo Pascutto Mon Jan 31, 2011 9:50 am
Robert Hyatt Mon Jan 31, 2011 4:10 pm
Miguel A. Ballicora Sun Jan 30, 2011 10:05 pm
Milos Stanisavljevic Mon Jan 31, 2011 12:44 am
Robert Hyatt Mon Jan 31, 2011 4:11 pm
Ted Summers Mon Jan 24, 2011 11:10 am
H.G.Muller Mon Jan 24, 2011 11:25 am
Ted Summers Mon Jan 24, 2011 11:32 am
H.G.Muller Mon Jan 24, 2011 11:43 am
Ted Summers Mon Jan 24, 2011 11:53 am
Don Dailey Wed Jan 26, 2011 11:16 pm
Gian-Carlo Pascutto Mon Jan 24, 2011 12:18 pm
Don Dailey Wed Jan 26, 2011 11:26 pm
Robert Houdart Wed Jan 26, 2011 11:43 pm
Rodolfo Leoni Wed Jan 26, 2011 11:48 pm
Don Dailey Thu Jan 27, 2011 12:35 am
Dann Corbit Thu Jan 27, 2011 12:55 am
Robert Hyatt Thu Jan 27, 2011 1:12 am
Dann Corbit Thu Jan 27, 2011 1:28 am
Matthias Gemuh Thu Jan 27, 2011 5:21 am
Miguel A. Ballicora Thu Jan 27, 2011 5:59 am
Gian-Carlo Pascutto Thu Jan 27, 2011 7:25 am
Matthias Gemuh Thu Jan 27, 2011 8:04 am
Robert Hyatt Thu Jan 27, 2011 6:07 pm
Gerd Isenberg Thu Jan 27, 2011 7:06 pm
Robert Hyatt Thu Jan 27, 2011 8:03 pm
Robert Hyatt Tue Feb 01, 2011 1:48 am
Andranik Khachatryan Tue Feb 01, 2011 8:13 am
Sven Schüle Tue Feb 01, 2011 8:39 am
Andranik Khachatryan Tue Feb 01, 2011 9:54 am
Gian-Carlo Pascutto Tue Feb 01, 2011 10:26 am
Andranik Khachatryan Tue Feb 01, 2011 10:43 am
Gian-Carlo Pascutto Tue Feb 01, 2011 10:52 am
Julien MARCEL Tue Feb 01, 2011 1:56 pm
Ricardo Barreira Tue Feb 01, 2011 5:01 pm
Dr.Wael Deeb Tue Feb 01, 2011 7:05 pm
Vincent Diepeveen Wed Feb 09, 2011 2:15 pm
Dr.Wael Deeb Tue Feb 01, 2011 3:47 pm
Robert Hyatt Tue Feb 01, 2011 8:05 pm
Uri Blass Wed Feb 02, 2011 9:24 am
Robert Hyatt Wed Feb 02, 2011 4:22 pm
Milos Stanisavljevic Wed Feb 02, 2011 8:18 pm
Robert Hyatt Wed Feb 02, 2011 11:35 pm
Milos Stanisavljevic Thu Feb 03, 2011 2:26 am
Martin Wyngaarden Thu Feb 03, 2011 2:38 am
Robert Hyatt Thu Feb 03, 2011 2:43 am
Andranik Khachatryan Thu Feb 03, 2011 11:37 am
Rodolfo Leoni Thu Feb 03, 2011 1:19 pm
Gabor Szots Thu Feb 03, 2011 1:26 pm
Julien MARCEL Thu Feb 03, 2011 1:28 pm
gerold daniels Thu Feb 03, 2011 1:30 pm
Rolf Thu Feb 03, 2011 1:49 pm
Kai Laskos Thu Feb 03, 2011 2:21 pm
Rolf Thu Feb 03, 2011 2:33 pm
Tom Barrister Thu Feb 03, 2011 2:33 pm
gerold daniels Thu Feb 03, 2011 7:24 pm
Leon Coleman Thu Feb 03, 2011 10:41 pm
Robert Hyatt Thu Feb 03, 2011 10:59 pm
Luis Smith Fri Feb 04, 2011 12:11 am
Robert Hyatt Wed Feb 09, 2011 4:11 pm
Rodolfo Leoni Fri Feb 04, 2011 10:36 pm
Kai Laskos Thu Feb 03, 2011 2:58 pm
Damir Desevac Thu Feb 03, 2011 3:51 pm
Osipov Jury Thu Feb 03, 2011 7:51 pm
Damir Desevac Thu Feb 03, 2011 8:23 pm
Robert Hyatt Thu Feb 03, 2011 10:56 pm
Tom Barrister Thu Feb 03, 2011 3:02 am
Andranik Khachatryan Wed Feb 02, 2011 9:53 am
Robert Hyatt Wed Feb 02, 2011 4:24 pm
Milos Stanisavljevic Wed Feb 02, 2011 8:32 pm
Robert Hyatt Wed Feb 02, 2011 11:37 pm
Robert Hyatt Wed Feb 02, 2011 11:33 pm
Vincent Diepeveen Wed Feb 09, 2011 1:43 pm
Robert Hyatt Wed Feb 09, 2011 2:34 pm
Vincent Diepeveen Wed Feb 09, 2011 2:46 pm
Robert Hyatt Wed Feb 09, 2011 4:15 pm
Don Dailey Thu Jan 27, 2011 6:15 am
Robert Hyatt Thu Jan 27, 2011 6:16 pm
Andranik Khachatryan Thu Jan 27, 2011 12:56 am
Robert Houdart Thu Jan 27, 2011 1:20 am
Gian-Carlo Pascutto Thu Jan 27, 2011 7:21 am
Robert Hyatt Thu Jan 27, 2011 8:06 pm
Robert Hyatt Thu Jan 27, 2011 1:07 am
Mark Rawlings Wed Jan 26, 2011 1:55 am
H.G.Muller Mon Jan 24, 2011 11:10 am
Slobodan R Stojanovic Mon Jan 24, 2011 2:42 pm
Dr.Wael Deeb Mon Jan 24, 2011 4:36 pm
Alexander Schmidt Tue Jan 25, 2011 6:14 am
H.G.Muller Tue Jan 25, 2011 9:35 am
Gian-Carlo Pascutto Tue Jan 25, 2011 10:04 am
Dr.Wael Deeb Tue Jan 25, 2011 10:12 am
Julien MARCEL Tue Jan 25, 2011 10:18 am
Dr.Wael Deeb Tue Jan 25, 2011 10:32 am
K I Hyams Tue Jan 25, 2011 10:50 am
Roger Brown Tue Jan 25, 2011 12:20 pm
Sven Schüle Tue Jan 25, 2011 12:42 pm
H.G.Muller Tue Jan 25, 2011 12:52 pm
Gabor Szots Tue Jan 25, 2011 12:57 pm
H.G.Muller Tue Jan 25, 2011 1:04 pm
Gian-Carlo Pascutto Tue Jan 25, 2011 1:06 pm
H.G.Muller Tue Jan 25, 2011 1:21 pm
Gian-Carlo Pascutto Tue Jan 25, 2011 1:31 pm
H.G.Muller Tue Jan 25, 2011 1:54 pm
Gian-Carlo Pascutto Tue Jan 25, 2011 2:05 pm
H.G.Muller Tue Jan 25, 2011 2:30 pm
Matthias Gemuh Tue Jan 25, 2011 10:20 am
Dr.Wael Deeb Tue Jan 25, 2011 10:32 am
DE VOS Walter Tue Jan 25, 2011 10:37 am
Uri Blass Tue Jan 25, 2011 11:09 am
Ted Summers Tue Jan 25, 2011 11:11 am
Roger Brown Tue Jan 25, 2011 12:23 pm
H.G.Muller Tue Jan 25, 2011 12:44 pm
DE VOS Walter Wed Jan 26, 2011 12:43 pm
Robert Hyatt Thu Jan 27, 2011 1:13 am
Wim Sjoho Tue Jan 25, 2011 11:43 am
H.G.Muller Tue Jan 25, 2011 12:23 pm
Wim Sjoho Tue Jan 25, 2011 12:44 pm
Gian-Carlo Pascutto Tue Jan 25, 2011 12:59 pm
H.G.Muller Tue Jan 25, 2011 1:02 pm
Robert Flesher Tue Jan 25, 2011 1:31 pm
H.G.Muller Tue Jan 25, 2011 2:03 pm
Robert Hyatt Tue Jan 25, 2011 10:18 pm
Robert Hyatt Tue Jan 25, 2011 10:16 pm
J. Wesley Cleveland Wed Jan 26, 2011 7:26 am
Alexander Schmidt Tue Jan 25, 2011 9:42 pm
H.G.Muller Tue Jan 25, 2011 10:00 pm
Alexander Schmidt Wed Jan 26, 2011 6:51 am
Chan Rasjid Wed Jan 26, 2011 12:04 am
Christopher Conkie Wed Jan 26, 2011 12:15 am
Fabien Letouzey Wed Jan 26, 2011 5:11 am
Christopher Conkie Wed Jan 26, 2011 9:50 am
Frank Quisinsky Wed Jan 26, 2011 2:19 pm
Andres Valverde Wed Jan 26, 2011 3:24 pm
Frank Quisinsky Wed Jan 26, 2011 3:40 pm
Alexander Schmidt Wed Jan 26, 2011 4:21 pm
Frank Quisinsky Wed Jan 26, 2011 4:27 pm
Alexander Schmidt Wed Jan 26, 2011 6:49 am
Sven Schüle Tue Jan 25, 2011 12:34 pm
Alexander Schmidt Tue Jan 25, 2011 5:25 pm
Charles Daniel Tue Jan 25, 2011 5:49 pm
Robert Hyatt Tue Jan 25, 2011 10:23 pm
Martin Sedlak Fri Jan 28, 2011 11:58 am
Robert Hyatt Sat Jan 29, 2011 2:35 am
Djordje Vidanovic Tue Jan 25, 2011 6:17 pm
Fabien Letouzey Mon Jan 24, 2011 5:03 pm
Dr.Wael Deeb Mon Jan 24, 2011 5:04 pm
H.G.Muller Mon Jan 24, 2011 5:47 pm
Fabien Letouzey Tue Jan 25, 2011 4:03 pm
Mark Young Mon Jan 24, 2011 1:39 am
Mike Scheidl Mon Jan 24, 2011 2:03 am
Matthias Gemuh Mon Jan 24, 2011 4:53 am
Paulo Soares Mon Jan 24, 2011 2:37 am
Ruxy Sylwyka Mon Jan 24, 2011 9:28 am
Tom Giampietro Mon Jan 24, 2011 3:27 am
Mark Young Mon Jan 24, 2011 3:52 am
George Speight Thu Feb 03, 2011 5:41 am
George Speight Thu Feb 03, 2011 7:16 am
George Speight Thu Feb 03, 2011 7:15 pm
George Speight Thu Feb 03, 2011 7:26 pm
Albert Silver Mon Jan 24, 2011 4:04 am
Tom Giampietro Mon Jan 24, 2011 4:30 am
Frank Quisinsky Mon Jan 24, 2011 8:49 am
Albert Silver Mon Jan 24, 2011 2:06 pm
Albert Silver Mon Jan 24, 2011 3:08 pm
Tony Mokonen Sun Jan 30, 2011 11:16 pm
Tom Giampietro Mon Jan 24, 2011 5:16 pm
Gino Figlio Mon Jan 24, 2011 5:11 am
Tom Giampietro Mon Jan 24, 2011 5:15 am
Gino Figlio Mon Jan 24, 2011 5:28 am
M ANSARI Mon Jan 24, 2011 5:37 am
Graham Banks Mon Jan 24, 2011 5:52 am
Frank Quisinsky Mon Jan 24, 2011 7:48 am
Fabien Letouzey Mon Jan 24, 2011 5:26 pm
DE VOS Walter Mon Jan 24, 2011 8:03 am
Gabor Szots Mon Jan 24, 2011 8:51 am
Mark Young Mon Jan 24, 2011 4:35 pm
Ruxy Sylwyka Mon Jan 24, 2011 9:12 am
Robert Hyatt Mon Jan 24, 2011 2:41 pm
H.G.Muller Mon Jan 24, 2011 3:42 pm
Robert Hyatt Mon Jan 24, 2011 4:20 pm
Ricardo Barreira Mon Jan 24, 2011 4:21 pm
Robert Hyatt Tue Jan 25, 2011 8:06 pm
Fabien Letouzey Mon Jan 24, 2011 5:53 pm
Matthias Gemuh Mon Jan 24, 2011 6:15 pm
Swaminathan Mon Jan 24, 2011 7:07 pm
Robert Hyatt Tue Jan 25, 2011 4:24 pm
Dr.Wael Deeb Mon Jan 24, 2011 4:29 pm
Robert Hyatt Tue Jan 25, 2011 4:26 pm
Dr.Wael Deeb Tue Jan 25, 2011 5:43 pm
Robert Hyatt Tue Jan 25, 2011 7:59 pm
Dr. Alexander Schmidt Mon Jan 24, 2011 6:07 pm
Slobodan R Stojanovic Mon Jan 24, 2011 6:23 pm
Ulysses P. Mon Jan 24, 2011 7:36 am
Ted Summers Mon Jan 24, 2011 10:19 am
Robert Hyatt Mon Jan 24, 2011 4:25 pm
Dr.Wael Deeb Mon Jan 24, 2011 4:33 pm
Sven Schüle Mon Jan 24, 2011 8:21 pm
Ulysses P. Mon Jan 24, 2011 11:20 pm
Robert Houdart Mon Jan 24, 2011 11:46 pm
Robert Hyatt Tue Jan 25, 2011 8:01 pm
Robert Hyatt Mon Jan 24, 2011 4:23 pm
Frank Quisinsky Mon Jan 24, 2011 4:33 pm
Robert Hyatt Tue Jan 25, 2011 10:30 pm
Ulysses P. Mon Jan 24, 2011 11:33 pm
Robert Hyatt Tue Jan 25, 2011 10:31 pm
Ted Summers Tue Jan 25, 2011 7:52 pm
Tom Giampietro Mon Jan 24, 2011 1:53 pm
Frank Quisinsky Mon Jan 24, 2011 8:23 am
Fabien Letouzey Mon Jan 24, 2011 5:30 pm
Frank Quisinsky Mon Jan 24, 2011 5:56 pm
Uri Blass Mon Jan 24, 2011 8:56 am
Kai Laskos Mon Jan 24, 2011 11:07 am
Adam Hair Tue Jan 25, 2011 3:08 am
Kai Laskos Tue Jan 25, 2011 3:48 am
Adam Hair Tue Jan 25, 2011 4:12 am
Kai Laskos Wed Jan 26, 2011 12:30 am
Adam Hair Wed Jan 26, 2011 1:01 am
H.G.Muller Mon Jan 24, 2011 9:42 am
Julien MARCEL Mon Jan 24, 2011 9:49 am
Ruxy Sylwyka Mon Jan 24, 2011 9:57 am
Slobodan R Stojanovic Mon Jan 24, 2011 2:25 pm
H.G.Muller Mon Jan 24, 2011 3:16 pm
Eelco de Groot Mon Jan 24, 2011 3:57 pm
Gian-Carlo Pascutto Mon Jan 24, 2011 4:18 pm
H.G.Muller Mon Jan 24, 2011 4:26 pm
Slobodan R Stojanovic Mon Jan 24, 2011 5:09 pm
Matthias Gemuh Mon Jan 24, 2011 10:04 am
Chan Rasjid Mon Jan 24, 2011 10:21 am
H.G.Muller Mon Jan 24, 2011 11:19 am
H.G.Muller Mon Jan 24, 2011 10:47 am
Julien MARCEL Mon Jan 24, 2011 11:21 am
Gian-Carlo Pascutto Mon Jan 24, 2011 11:31 am
Julien MARCEL Mon Jan 24, 2011 11:43 am
H.G.Muller Mon Jan 24, 2011 11:35 am
Julien MARCEL Mon Jan 24, 2011 11:48 am
Ben-Hur Carlos Langoni Mon Jan 24, 2011 10:30 am
H.G.Muller Mon Jan 24, 2011 11:05 am
K I Hyams Mon Jan 24, 2011 11:51 am
H.G.Muller Mon Jan 24, 2011 3:26 pm
Ben-Hur Carlos Langoni Mon Jan 24, 2011 11:52 am
H.G.Muller Mon Jan 24, 2011 12:16 pm
Robert Flesher Mon Jan 24, 2011 12:35 pm
Fabien Letouzey Mon Jan 24, 2011 5:43 pm
Robert Houdart Mon Jan 24, 2011 1:52 pm
Matthias Gemuh Mon Jan 24, 2011 3:18 pm
Roberto Munter Mon Jan 24, 2011 5:57 pm
Frank Quisinsky Mon Jan 24, 2011 3:45 pm
Fabien Letouzey Mon Jan 24, 2011 4:55 pm
Julien MARCEL Mon Jan 24, 2011 4:59 pm
Dr.Wael Deeb Mon Jan 24, 2011 5:02 pm
Frank Quisinsky Mon Jan 24, 2011 5:08 pm
Roger Brown Mon Jan 24, 2011 6:34 pm
Fabien Letouzey Mon Jan 24, 2011 6:41 pm
Robert Hyatt Mon Jan 24, 2011 7:59 pm
Ruxy Sylwyka Mon Jan 24, 2011 2:01 pm
Robert Flesher Mon Jan 24, 2011 7:29 pm
Dr.Wael Deeb Mon Jan 24, 2011 7:34 pm
Tom Giampietro Mon Jan 24, 2011 8:59 pm
Dr.Wael Deeb Mon Jan 24, 2011 9:06 pm
john dalhem Mon Jan 24, 2011 7:38 pm
Robert Flesher Mon Jan 24, 2011 7:41 pm
Dr.Wael Deeb Mon Jan 24, 2011 7:42 pm
Chan Rasjid Mon Jan 24, 2011 7:43 pm
Julien MARCEL Mon Jan 24, 2011 7:46 pm
Dr.Wael Deeb Mon Jan 24, 2011 7:48 pm
Matthias Gemuh Mon Jan 24, 2011 7:55 pm
Robert Hyatt Mon Jan 24, 2011 7:58 pm
Mark Young Mon Jan 24, 2011 8:52 pm
Graham Banks Mon Jan 24, 2011 9:29 pm
Ted Summers Mon Jan 24, 2011 9:53 pm
Graham Banks Mon Jan 24, 2011 9:58 pm
Ted Summers Mon Jan 24, 2011 10:00 pm
Mark Young Mon Jan 24, 2011 10:08 pm
H.G.Muller Mon Jan 24, 2011 10:19 pm
Matthias Gemuh Mon Jan 24, 2011 10:27 pm
Miguel A. Ballicora Mon Jan 24, 2011 10:34 pm
M ANSARI Mon Jan 24, 2011 10:38 pm
Miguel A. Ballicora Mon Jan 24, 2011 10:44 pm
Mark Young Mon Jan 24, 2011 10:47 pm
H.G.Muller Tue Jan 25, 2011 8:39 am
Ricardo Barreira Tue Jan 25, 2011 10:32 am
Julien MARCEL Tue Jan 25, 2011 10:39 am
Graham Banks Tue Jan 25, 2011 10:44 am
Robert Flesher Tue Jan 25, 2011 12:19 pm
H.G.Muller Tue Jan 25, 2011 12:04 pm
Gian-Carlo Pascutto Tue Jan 25, 2011 1:59 pm
H.G.Muller Tue Jan 25, 2011 2:20 pm
Tony Mokonen Mon Jan 31, 2011 10:20 am
Tony Mokonen Tue Feb 01, 2011 1:25 am
Robert Hyatt Tue Jan 25, 2011 10:48 pm
Chan Rasjid Wed Jan 26, 2011 12:24 am
Christopher Conkie Wed Jan 26, 2011 12:31 am
Chan Rasjid Wed Jan 26, 2011 12:37 am
Ryan Benitez Wed Jan 26, 2011 12:38 am
Graham Banks Wed Jan 26, 2011 1:02 am
Christopher Conkie Wed Jan 26, 2011 1:28 am
Christopher Conkie Wed Jan 26, 2011 1:48 am
Ruxy Sylwyka Wed Jan 26, 2011 11:16 am
Dann Corbit Wed Jan 26, 2011 1:17 am
M ANSARI Wed Jan 26, 2011 1:43 am
Robert Hyatt Thu Jan 27, 2011 1:18 am
Chan Rasjid Thu Jan 27, 2011 6:55 am
Fabien Letouzey Thu Jan 27, 2011 10:12 am
Gian-Carlo Pascutto Thu Jan 27, 2011 11:02 am
Fabien Letouzey Thu Jan 27, 2011 11:29 am
Fabien Letouzey Thu Jan 27, 2011 12:15 pm
Rolf Thu Jan 27, 2011 2:04 pm
Christopher Conkie Thu Jan 27, 2011 2:12 pm
Andranik Khachatryan Thu Jan 27, 2011 2:16 pm
Ted Summers Thu Jan 27, 2011 2:30 pm
Gabor Szots Thu Jan 27, 2011 3:22 pm
Volker Pittlik Thu Jan 27, 2011 4:23 pm
Julien MARCEL Thu Jan 27, 2011 4:39 pm
Don Dailey Thu Jan 27, 2011 4:43 pm
Julien MARCEL Thu Jan 27, 2011 4:45 pm
Don Dailey Thu Jan 27, 2011 9:16 pm
Andranik Khachatryan Thu Jan 27, 2011 11:07 pm
Fabien Letouzey Thu Jan 27, 2011 4:43 pm
Christopher Conkie Thu Jan 27, 2011 4:52 pm
gerold daniels Thu Jan 27, 2011 3:22 pm
Damir Desevac Thu Jan 27, 2011 4:00 pm
Johan Havegheer Thu Jan 27, 2011 5:09 pm
Rob Osborne Thu Jan 27, 2011 5:49 pm
Damir Desevac Thu Jan 27, 2011 6:00 pm
Matthias Gemuh Thu Jan 27, 2011 6:54 pm
Damir Desevac Thu Jan 27, 2011 7:14 pm
Roger Brown Thu Jan 27, 2011 5:18 pm
Rolf Thu Jan 27, 2011 5:36 pm
Robert Hyatt Thu Jan 27, 2011 6:21 pm
Ted Summers Thu Jan 27, 2011 6:30 pm
Robert Hyatt Thu Jan 27, 2011 8:08 pm
Damir Desevac Thu Jan 27, 2011 9:13 pm
Rolf Thu Jan 27, 2011 7:57 pm
K I Hyams Thu Jan 27, 2011 7:08 pm
Robert Hyatt Thu Jan 27, 2011 6:19 pm
Chan Rasjid Thu Jan 27, 2011 11:02 am
Miguel A. Ballicora Mon Jan 24, 2011 10:25 pm
Roger Brown Mon Jan 24, 2011 10:25 pm
Graham Banks Mon Jan 24, 2011 10:35 pm
Matthias Gemuh Mon Jan 24, 2011 10:50 pm
Graham Banks Mon Jan 24, 2011 11:04 pm
Matthias Gemuh Mon Jan 24, 2011 11:13 pm
Tom Giampietro Tue Jan 25, 2011 12:00 am
Sune Fischer Tue Jan 25, 2011 12:40 am
Dann Corbit Tue Jan 25, 2011 12:49 am
Roger Brown Tue Jan 25, 2011 1:06 am
Dann Corbit Tue Jan 25, 2011 2:01 am
Robert Houdart Tue Jan 25, 2011 1:14 am
Sune Fischer Tue Jan 25, 2011 1:55 am
Robert Houdart Tue Jan 25, 2011 2:37 am
Robert Hyatt Tue Jan 25, 2011 10:57 pm
Sune Fischer Wed Jan 26, 2011 2:05 am
Fabien Letouzey Wed Jan 26, 2011 5:57 am
Matthias Gemuh Wed Jan 26, 2011 6:17 am
Sune Fischer Wed Jan 26, 2011 12:33 pm
Matthias Gemuh Wed Jan 26, 2011 1:34 pm
Sune Fischer Wed Jan 26, 2011 2:04 pm
Robert Hyatt Wed Jan 26, 2011 6:14 pm
Robert Hyatt Wed Jan 26, 2011 6:06 pm
Gian-Carlo Pascutto Wed Jan 26, 2011 6:56 am
Rob Osborne Wed Jan 26, 2011 7:04 am
Fabien Letouzey Wed Jan 26, 2011 6:12 am
Zach Wegner Wed Jan 26, 2011 6:36 am
Uri Blass Wed Jan 26, 2011 6:58 am
Ryan Benitez Wed Jan 26, 2011 7:47 am
Sune Fischer Wed Jan 26, 2011 12:18 pm
Robert Hyatt Wed Jan 26, 2011 6:19 pm
Fabien Letouzey Wed Jan 26, 2011 7:11 pm
Robert Hyatt Thu Jan 27, 2011 1:21 am
Fabien Letouzey Thu Jan 27, 2011 5:16 am
Robert Hyatt Wed Jan 26, 2011 5:56 pm
Julien MARCEL Wed Jan 26, 2011 6:03 pm
Robert Hyatt Wed Jan 26, 2011 6:29 pm
Julien MARCEL Wed Jan 26, 2011 6:38 pm
Sune Fischer Wed Jan 26, 2011 10:36 pm
Matthias Gemuh Wed Jan 26, 2011 11:16 pm
Robert Hyatt Thu Jan 27, 2011 1:25 am
Robert Houdart Mon Jan 24, 2011 11:34 pm
Matthias Gemuh Mon Jan 24, 2011 11:44 pm
Robert Houdart Mon Jan 24, 2011 11:49 pm
Graham Banks Mon Jan 24, 2011 11:50 pm
DE VOS Walter Tue Jan 25, 2011 8:51 am
Gabor Szots Tue Jan 25, 2011 6:20 am
Dr.Wael Deeb Tue Jan 25, 2011 9:54 am
Gabor Szots Tue Jan 25, 2011 10:14 am
John Manis Mon Jan 24, 2011 11:09 pm
Mark Young Mon Jan 24, 2011 11:17 pm
Ingo Bauer Mon Jan 24, 2011 11:19 pm
Mark Young Mon Jan 24, 2011 11:43 pm
Graham Banks Mon Jan 24, 2011 11:49 pm
Robert Houdart Tue Jan 25, 2011 12:13 am
Tom Giampietro Tue Jan 25, 2011 12:16 am
Graham Banks Tue Jan 25, 2011 12:20 am
Kai Laskos Tue Jan 25, 2011 12:27 am
Graham Banks Tue Jan 25, 2011 12:29 am
Albert Silver Tue Jan 25, 2011 2:07 am
Kai Laskos Tue Jan 25, 2011 2:17 am
Albert Silver Tue Jan 25, 2011 2:23 am
Kai Laskos Tue Jan 25, 2011 2:39 am
Albert Silver Tue Jan 25, 2011 3:35 am
Kai Laskos Tue Jan 25, 2011 3:57 am
Albert Silver Tue Jan 25, 2011 4:16 am
Albert Silver Tue Jan 25, 2011 12:17 am
Gabor Szots Tue Jan 25, 2011 6:27 am
Robert Houdart Tue Jan 25, 2011 8:52 am
Gabor Szots Tue Jan 25, 2011 9:18 am
Alex Brown Tue Jan 25, 2011 9:27 am
Gabor Szots Tue Jan 25, 2011 9:43 am
Robert Houdart Tue Jan 25, 2011 9:51 am
Gabor Szots Tue Jan 25, 2011 10:10 am
Robert Houdart Tue Jan 25, 2011 10:55 am
Gabor Szots Tue Jan 25, 2011 11:07 am
Robert Houdart Tue Jan 25, 2011 11:28 am
Ted Summers Tue Jan 25, 2011 11:33 am
Gabor Szots Tue Jan 25, 2011 12:13 pm
Tom Giampietro Mon Jan 24, 2011 11:57 pm
John Manis Tue Jan 25, 2011 12:02 am
Graham Banks Tue Jan 25, 2011 12:05 am
Steve B Tue Jan 25, 2011 12:23 am
Roger Brown Tue Jan 25, 2011 1:23 am
Kai Laskos Tue Jan 25, 2011 1:39 am
Slobodan R Stojanovic Tue Jan 25, 2011 2:16 am
DE VOS Walter Tue Jan 25, 2011 8:37 am
Robert Hyatt Tue Jan 25, 2011 10:38 pm
Robert Flesher Mon Jan 24, 2011 9:09 pm
Mark Young Mon Jan 24, 2011 9:26 pm
Paulo Soares Mon Jan 24, 2011 11:01 pm
Tom Giampietro Tue Jan 25, 2011 4:14 am
Dr.Wael Deeb Tue Jan 25, 2011 9:50 am
Ben-Hur Carlos Langoni Tue Jan 25, 2011 10:32 am
Dr.Wael Deeb Tue Jan 25, 2011 10:39 am
Ruxy Sylwyka Tue Jan 25, 2011 11:01 am
Robert Flesher Tue Jan 25, 2011 12:39 pm
Steven Atkinson Tue Jan 25, 2011 2:09 pm
Dr.Wael Deeb Tue Jan 25, 2011 2:13 pm
Robert Hyatt Tue Jan 25, 2011 4:28 pm
H.G.Muller Tue Jan 25, 2011 4:57 pm
Roger Brown Tue Jan 25, 2011 9:17 pm
Fabien Letouzey Wed Jan 26, 2011 4:47 am
Kai Laskos Wed Jan 26, 2011 4:52 am
Roger Brown Wed Jan 26, 2011 12:15 pm
Robert Flesher Tue Jan 25, 2011 3:10 pm
Martin Wyngaarden Tue Jan 25, 2011 3:14 pm
Djordje Vidanovic Tue Jan 25, 2011 7:28 pm
Oliver Uwira Thu Jan 27, 2011 5:36 pm
Vincent Diepeveen Sat Jan 29, 2011 3:40 pm
Robert Flesher Sat Jan 29, 2011 6:12 pm
William O Sat Jan 29, 2011 8:21 pm
Vincent Diepeveen Sat Jan 29, 2011 10:21 pm
Vincent Diepeveen Sat Jan 29, 2011 11:12 pm
Julien MARCEL Sat Jan 29, 2011 9:24 pm
Vincent Diepeveen Sat Jan 29, 2011 10:40 pm
Julien MARCEL Sat Jan 29, 2011 10:53 pm
Sven Schüle Sat Jan 29, 2011 11:13 pm
Vincent Diepeveen Sat Jan 29, 2011 11:39 pm
Christopher Conkie Sat Jan 29, 2011 11:58 pm
Graham Banks Sun Jan 30, 2011 12:01 am
Christopher Conkie Sun Jan 30, 2011 12:08 am
F. Bluemers Sun Jan 30, 2011 12:35 am
Christopher Conkie Sun Jan 30, 2011 12:39 am
F. Bluemers Sun Jan 30, 2011 12:43 am
Christopher Conkie Sun Jan 30, 2011 1:01 am
George Speight Thu Feb 03, 2011 4:25 am
Vincent Diepeveen Sun Jan 30, 2011 12:05 am
Robert Hyatt Sun Jan 30, 2011 2:37 am
Robert Flesher Tue Feb 08, 2011 3:45 pm
Robert Flesher Tue Feb 08, 2011 3:55 pm
Dr.Wael Deeb Tue Feb 08, 2011 4:41 pm
Robert Flesher Tue Feb 08, 2011 5:11 pm
Evgenii Manev Sat Apr 16, 2011 1:38 pm
Jump to: Select a forum Computer Chess Club Forums----------------Computer Chess Club: General TopicsComputer Chess Club: Tournaments and MatchesComputer Chess Club: Programming and Technical DiscussionsComputer Chess Club: Engine Origins Other Forums----------------Chess Thinkers ForumForum Help and Suggestions
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum
| 14,801
| 33,793
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.0625
| 3
|
CC-MAIN-2013-20
|
latest
|
en
| 0.964914
|
https://smart-answers.com/mathematics/question1939494
| 1,601,441,652,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2020-40/segments/1600402118004.92/warc/CC-MAIN-20200930044533-20200930074533-00231.warc.gz
| 588,546,289
| 33,876
|
, 12.11.2019 03:31, humphreybrittany42
Both the american revolution of 1776 and the french revolution of 1789 were partially caused by
Answers: 2
Other questions on the subject: Mathematics
Mathematics, 21.06.2019 17:30, groundcontrol
The diameter of a sphere is 4 centimeters. which represents the volume of the sphere? 32 cm 8.7 cm 547 cm 167 cm
Answers: 2
Mathematics, 21.06.2019 18:00, phillipsk5480
Express in the simplest form: (x^2+9x+14/x^2-49) / (3x+6/x^2+x-56)
Answers: 3
Mathematics, 21.06.2019 18:00, ashleyivers3
Alocal ice cream shop tracks the amount of ice cream they sell each day, along with the high temperature of that day (in°c). the table shows a sample of 10 days from one particular month. which of the following best describes the relationship between high temperature and ice cream sales?
Answers: 3
Mathematics, 21.06.2019 19:30, autumnplunkett09
Runner ran 1 4/5 miles on monday and 6 3/10 on tuesday. how many times her monday’s distance was her tuesdays distance
Answers: 1
Do you know the correct answer?
Both the american revolution of 1776 and the french revolution of 1789 were partially caused by...
Questions in other subjects:
Total solved problems on the site: 7692876
| 364
| 1,212
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.609375
| 3
|
CC-MAIN-2020-40
|
latest
|
en
| 0.899427
|
misstarynstudents.wordpress.com
| 1,529,940,260,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2018-26/segments/1529267868135.87/warc/CC-MAIN-20180625150537-20180625170537-00457.warc.gz
| 657,898,395
| 21,506
|
## Miss Taryn's Great Grade 4 Class
#### On this blog, you will see what happens in our class…
Our learning goal: To deepen our understanding of fractions and begin to become familiar with decimal notation.
Estimated Unit Length: Four – Five Weeks
Our plan to achieve our learning goal:
Our summative: Students will be given their “time capsule” from their first day of their unit and have the opportunity to add their new learning.
• model equivalent fractions
• understand the relationship between fractions, decimals
• read, write, compare and order fractions
• model addition and subtraction of fractions with related denominator
Common Core Math Standards
#### Extend understanding of fraction equivalence and ordering.
CCSS.MATH.CONTENT.4.NF.A.1
Explain why a fraction a/b is equivalent to a fraction (n × a)/(n × b) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.
CCSS.MATH.CONTENT.4.NF.A.2
Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.
#### Build fractions from unit fractions.
CCSS.MATH.CONTENT.4.NF.B.3
Understand a fraction a/b with a > 1 as a sum of fractions 1/b.
CCSS.MATH.CONTENT.4.NF.B.3.A
Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.
CCSS.MATH.CONTENT.4.NF.B.3.B
Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: 3/8 = 1/8 + 1/8 + 1/8 ; 3/8 = 1/8 + 2/8 ; 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8.
CCSS.MATH.CONTENT.4.NF.B.3.C
Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.
CCSS.MATH.CONTENT.4.NF.B.4
Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.
#### Understand decimal notation for fractions, and compare decimal fractions.
CCSS.MATH.CONTENT.4.NF.C.5
Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100.2 For example, express 3/10 as 30/100, and add 3/10 + 4/100 = 34/100.
CCSS.MATH.CONTENT.4.NF.C.6
Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram.
CCSS.MATH.CONTENT.4.NF.C.7
Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model.
Extra Practice at Home:
To help students prepare for the transition to Middle School (where they are expected to be much more independent and self-organized with their learning at home) I will be sharing resources for extra practice at home directly with students via their school email.
(However, if you would like to still be in the loop, I am happy to BCC you on those weekly emails so you can help encourage your child to make responsible choices about their learning)
### One thought on “New Math Unit – Fractions and Decimals”
1. Randa says:
Yes dear I would love to be bcc on his work and to do extra practice at home.
Thank you in deed
Randa
Sent from my iPhone
>
Like
| 970
| 3,994
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.53125
| 5
|
CC-MAIN-2018-26
|
latest
|
en
| 0.85893
|
https://in.mathworks.com/matlabcentral/profile/authors/2231846-farzad
| 1,582,917,350,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2020-10/segments/1581875147628.27/warc/CC-MAIN-20200228170007-20200228200007-00182.warc.gz
| 409,881,029
| 21,981
|
Community Profile
##### Last seen: 6 days ago
149 total contributions since 2014
View details...
Contributions in
View by
Question
How to calculate the derivate of an equation ?
Hi All I have the crack energy equation : In which R and G are numbers , also c and m. N is loading cycle : so it's a signa...
1 month ago | 1 answer | 0
### 1
Question
How should I use the function Circfit ?
Hi All How do I use the function Circfit ? the size and class of inputs is not clear
2 months ago | 1 answer | 0
### 1
Question
How to concatenate 2 time series that both start from zero?
Hi all How to concatenate 2 time series that both start from zero? Given that both of them have the same time step? Example : ...
2 months ago | 0 answers | 0
### 0
Question
How could I get the coordinates of the circumscribed circle giving the 3 points coords ?
Hi All I have the coordinates of 3 points thrgouh which, a circle should pass . Having the coordinates of the points in 3D, how...
2 months ago | 2 answers | 0
### 2
Question
Where is the logic failure in my code ?
Hi All I have a matrix n x 1 called X , in which I want to move it up or down along vertical axis when I plot it vs time , in...
2 months ago | 1 answer | 0
### 1
Question
Why do I get Excel error when using writetable command ?
Hi All I have the TT parameter as : [c1,hist,edges,rmm,idx] = rainflow(Z,t); TT = array2table(c,'VariableNames',{'Count','Ran...
2 months ago | 1 answer | 0
### 1
Question
How to include header text in a Table when writing to Excel?
Hi All I have to write a table after converting it to array , to Excel . as you can see in the following example taken from ...
2 months ago | 1 answer | 0
### 1
Question
Why doesn't Timetable command accept my time,data input?
Hi All I use the command TT = timetable(t,X); but I get the following error, despite having defined t as a nx1 matrix an...
2 months ago | 1 answer | 0
### 1
Question
How can I make the cycle range symmetric around zero in rainflow ?
Hi All I am using rainflow( x, 'ext') but the cycle ranges are not symmetric around zero. How can I make matlab do that ?...
2 months ago | 1 answer | 0
### 1
Question
How to calculate passband and stopband coefficients for signal filtering?
Hi All using the following code, I need that my passband frequency be 250 Hz , and the Stop Band at 512 Hz. how do I calcul...
2 months ago | 1 answer | 0
### 1
Question
Which ode should I choose for 2 sets of differential equations?
Hi all I have a set of 2 differential equations ( regardless of what they are or what they do) I just want to discuss the possi...
2 months ago | 0 answers | 0
### 0
Question
How to run an existing matlab file from Python ?
Hi All there is an example question on mathworks on how to run a matlab code from Python, but it doesn't explain how to run an ...
3 months ago | 0 answers | 0
### 0
Question
How to find the translations and rotations in a new Coordinate system?
Hi All How can I find the relateive translations and rotations of a point in a new Coordinate system when I know its translat...
3 months ago | 0 answers | 0
### 0
Question
How to get all of the roots of a syatem of second order equation ?
Hi all I'm solving a set of second order equations that can have more than one root(answer) that can satisfy a certain condit...
4 months ago | 1 answer | 0
### 1
Question
The result of rotation matrix rotx(angle) with a coordinate does not give the desired result
Hello All I have a point with coordinates : x y z : 0.00 60.00 225 and want to rotating it around the global ...
4 months ago | 1 answer | 0
### 1
Question
How to check the internal solution results of Fsolve to know where the matrix dimension assignment has problem?
Hi All I am solving a set of 2nd order equations via fsolve. But it seems like that already in the first equation I have got ...
4 months ago | 1 answer | 0
### 1
Question
How to remove the integration constants from the integrated random signal ?
Hi All After integrating a random signal , How do I know the integration constants like after the second integration to know ...
5 months ago | 1 answer | 0
### 1
Question
How to use find-peaks function and keep the FRF of the signal the same
Hi I want to reduce the number of samples from a signal by filterting the small amplitude peaks, but I don't want the FRF of t...
7 months ago | 0 answers | 0
### 0
Question
Can MATLAB convert text file to RPC III format ?
Hi all is there a toolbox in MATLAB to convert txt or csv or xlsx format to RPC III file format ?
7 months ago | 1 answer | 0
### 1
Question
Can't open and write an Excel file that should be created by MATLAB
I have to write some large amount of data using xlswrite and since they are multiple files, they are written one by one . meanin...
8 months ago | 0 answers | 0
### 0
Question
Why do I get no solution found in Fsolve despite the results match my nonlinear equations ?
Hi All I am solving a set of Non Linear equations. when I put the solution results in each of my equations, the result is zero ...
8 months ago | 1 answer | 0
### 1
Question
How do I calculate the numerical Jacobian for a set of six non linear equations ?
Hi All how do I calculate the Jacobian matrix for the following equations based on the example I put afterwards ? please don't...
8 months ago | 1 answer | 0
### 1
Question
Do I need to reset Fsolve Parameters if I use Fsolve twice in my code ?
Hi All If I have to use Fsolve twice in my code, do I need to reset any paramter ? [x,fval,exitflag,output] = fsolve(fun,x...
8 months ago | 1 answer | 0
### 1
Question
3D plot gives empty figure
Hi all I have 4 matrices of 4x4 size. I do for n=1:size(P1,1) plot3(P1(n,2),P1(n,3),P1(n,4)) hold on ...
8 months ago | 0 answers | 0
### 0
Question
How to replace my optimset with equivalent optimoptions ?
Hi all using Fsolve, I am getting into difficulties and want to use Jacobian and Hessian as well , but first I need to pass f...
8 months ago | 1 answer | 0
### 1
Question
Why doesn't atan2 (u,v) give me the right angle of two simple vectors?
Hi All I was using the atan2(u,v) to calculate the angles between vectors, untill I checked it for u=[0,0,0] v= [1,1,1] doi...
8 months ago | 1 answer | 0
### 1
Question
How not to repeat the whole code after the try catch loop ?
Hi all is there a line to indicate the main code between the try catch loop to avoide rewriting it ?
8 months ago | 1 answer | 0
### 1
Question
How to run Matlab from python to run an m.file in a specific folder?
Hi All there is a tutorial on how to run matlab from python , but it does not say how to run an .m file from a specific folder,...
8 months ago | 0 answers | 0
### 0
Question
Matlab doesn't write on excel after the first loop in try catch
Hi all I use try catch to force matlab to continue the loop and in each loop I have the parameters to write to excel files. B...
8 months ago | 2 answers | 0
### 2
Question
Error in using try catch
Hi All I have a loop to be forced to continue , and I get an error after the first cycle , since in the beginning of each tr...
8 months ago | 1 answer | 0
| 1,878
| 7,191
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3
| 3
|
CC-MAIN-2020-10
|
latest
|
en
| 0.877555
|
https://www.coursehero.com/file/6010733/recursionFall09/
| 1,490,523,344,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2017-13/segments/1490218189198.71/warc/CC-MAIN-20170322212949-00085-ip-10-233-31-227.ec2.internal.warc.gz
| 877,340,447
| 89,673
|
recursionFall09
# recursionFall09 - Recursion We suppose that you have seen...
This preview shows pages 1–3. Sign up to view the full content.
Recursion We suppose that you have seen iterative methods in the prerequisite courses. Methods using a loop such as for loops, while loops, or do-while loops are considered to be iterative . Often we can compute the same result using recursion (without using a loop.) In some cases, using recursion enables you to give a natural, straight forward, simple solution to a program that would otherwise be difficult to solve. What is a recursive method? -A method that invokes itself (direct recursion) Example: public void methodA() { methodA(); } Of course the methodA keeps calling itself and this will generate an infinite recursion. Thus we need a stopping condition where it does not call itself. Recursion should have: - recursive case(s) - base case(s) (non-recursive part, stopping condition) If there is no base case, there will be no way to terminate the recursive path. infinite recursion
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Example: For a given positive integer n (i.e., n = 1, 2, 3, 4, …), the method sum is defined by: sum(n) = 1+2+ … + n Using a loop (iterative), this can be computed using a variable that shows the accumulated value for the sum. (here the variable is “result”) public static int sum(int n) { int result = 1; for (int i=2; i<=n; i++) result = result + i; //in this line, “result” on the right hand side is the old value of result, containing the sum from 1 to (i-1) //and the “result on the left hand side if the new value containing the sum from 1 to i.
This is the end of the preview. Sign up to access the rest of the document.
## This note was uploaded on 11/09/2010 for the course CSE 71682 taught by Professor Nakamura during the Spring '10 term at ASU.
### Page1 / 9
recursionFall09 - Recursion We suppose that you have seen...
This preview shows document pages 1 - 3. Sign up to view the full document.
View Full Document
Ask a homework question - tutors are online
| 512
| 2,121
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.546875
| 4
|
CC-MAIN-2017-13
|
longest
|
en
| 0.867834
|
http://www.scribd.com/doc/151756687/Book-of-Proof
| 1,394,791,132,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2014-10/segments/1394678692158/warc/CC-MAIN-20140313024452-00031-ip-10-183-142-35.ec2.internal.warc.gz
| 492,238,871
| 36,692
|
Welcome to Scribd, the world's digital library. Read, publish, and share books and documents. See more ➡
Standard view
Full view
of .
×
1.1 Introduction to Sets
1.2 The Cartesian Product
1.5 Union, Intersection, Difference
1.7 Venn Diagrams
1.8 Indexed Sets
1.9 Sets that Are Number Systems
2.2 And, Or, Not
2.4 Biconditional Statements
2.5 Truth Tables for Statements
2.6 Logical Equivalence
2.7 Quantifiers
2.8 More on Conditional Statements
2.9 Translating English to Symbolic Logic
2.10 Negating Statements
2.11 Logical Inference
2.12 An Important Note
3.1 Counting Lists
3.3 Counting Subsets
3.4 Pascal’s Triangle and the Binomial Theorem
4.1 Theorems
4.3 Direct Proof
4.5 Treating Similar Cases
Contrapositive Proof
5.1 Contrapositive Proof
5.2 Congruence of Integers
5.3 Mathematical Writing
6.2 Proving Conditional Statements by Contradiction
6.3 Combining Techniques
Proving Non-Conditional Statements
7.1 If-and-Only-If Proof
7.2 Equivalent Statements
7.3 Existence Proofs; Existence and Uniqueness Proofs
7.4 Constructive Versus Non-Constructive Proofs
Proofs Involving Sets
8.1 How to Prove a∈A
8.2 How to Prove A⊆B
8.3 How to Prove A=B
8.4 Examples: Perfect Numbers
9.2 Disproving Existence Statements
Mathematical Induction
10.1 Proof by Strong Induction
10.2 Proof by Smallest Counterexample
10.3 Fibonacci Numbers
11.1 Properties of Relations
11.2 Equivalence Relations
11.3 Equivalence Classes and Partitions
12.1 Functions
12.2 Injective and Surjective Functions
12.3 The Pigeonhole Principle
12.4 Composition
12.5 Inverse Functions
12.6 Image and Preimage
Cardinality of Sets
13.1 Sets with Equal Cardinalities
13.2 Countable and Uncountable Sets
13.3 Comparing Cardinalities
13.4 The Cantor-Bernstein-Schröeder Theorem
Conclusion
Solutions
Index
0 of .
Results for:
P. 1
Book of Proof
# Book of Proof
Ratings: (0)|Views: 36|Likes:
### Availability:
See More
See less
07/04/2013
pdf
text
original
Pages 7 to 47 are not shown in this preview.
Pages 54 to 95 are not shown in this preview.
| 617
| 2,014
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4
| 4
|
CC-MAIN-2014-10
|
latest
|
en
| 0.708066
|
https://www.gradesaver.com/textbooks/math/algebra/algebra-and-trigonometry-10th-edition/chapter-1-1-5-complex-numbers-1-5-exercises-page-119/59
| 1,568,616,067,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2019-39/segments/1568514572491.38/warc/CC-MAIN-20190916060046-20190916082046-00213.warc.gz
| 882,943,278
| 12,937
|
## Algebra and Trigonometry 10th Edition
$$-2\sqrt3$$
We know that $i=\sqrt{-1}$ and that $i^2=-1$. We also know that standard form is $a\pm bi$, where a and b are real numbers. Thus, simplifying the equation, we find: $$\sqrt6i\cdot \sqrt2i \\ \\ -\sqrt{12} \\ -2\sqrt3$$
| 96
| 273
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.765625
| 4
|
CC-MAIN-2019-39
|
longest
|
en
| 0.805945
|
http://oeis.org/A266633
| 1,607,091,614,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2020-50/segments/1606141737946.86/warc/CC-MAIN-20201204131750-20201204161750-00621.warc.gz
| 67,694,939
| 4,030
|
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.
Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate
Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
A266633 Number of 4Xn arrays containing n copies of 0..4-1 with no element 1 greater than its north, west, southeast or southwest neighbor modulo 4 and the upper left element equal to 0. 1
2, 13, 64, 438, 3265, 27626, 266481, 2864371, 35114131, 464035512, 6667852532, 98820516955, 1532710572338, 23969806110837, 385047836389356, 6188649148695409, 101271861590190111, 1654630392726835980 (list; graph; refs; listen; history; text; internal format)
OFFSET 1,1 COMMENTS Row 4 of A266632. LINKS R. H. Hardin, Table of n, a(n) for n = 1..22 EXAMPLE Some solutions for n=4 ..0..3..1..1....0..2..1..3....0..2..1..3....0..2..0..2....0..2..0..2 ..0..2..1..3....3..1..0..2....3..1..3..2....3..1..3..1....3..1..3..2 ..3..2..0..3....2..0..3..1....1..0..2..0....1..3..2..0....2..0..3..1 ..2..1..0..2....1..3..2..0....0..2..1..3....3..2..1..0....1..3..1..0 CROSSREFS Cf. A266632. Sequence in context: A211067 A296435 A127531 * A037745 A037626 A160459 Adjacent sequences: A266630 A266631 A266632 * A266634 A266635 A266636 KEYWORD nonn AUTHOR R. H. Hardin, Jan 01 2016 STATUS approved
Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.
Last modified December 4 09:15 EST 2020. Contains 338921 sequences. (Running on oeis4.)
| 630
| 1,821
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.203125
| 3
|
CC-MAIN-2020-50
|
latest
|
en
| 0.737516
|
https://forum.arduino.cc/t/voltmeter-with-arduino/79081
| 1,660,608,740,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2022-33/segments/1659882572215.27/warc/CC-MAIN-20220815235954-20220816025954-00069.warc.gz
| 253,957,769
| 5,047
|
# Voltmeter with Arduino
Good morning
I have to read a negative voltage with respect to the ground in a dual power supply and send it to a LCD screen. I know about the resistor divider to reduce voltage to 5V. max but what happen if I connect the negative voltage to the A/D converter and the ground of the power supply to the ground of Arduino? It reads a negative voltage?
Hoping the question is clear I am waiting for a kind reply.
Thank you
what happen if I connect the negative voltage to the A/D converter and the ground of the power supply to the ground of Arduino?
You fry the arduino.
Is the power supply floating with respect to the arduino supply?
If so then connect the arduino ground to the negative of the supply, and the potential divider trick to measure the ground (which will be the negative voltage) and the positive rail which will be the positive rail voltage plus the negative rail voltage.
If they have all the same GND (there is, not floating), there's another possible trick: "resistor divider" from the positive supply to the negative supply. Since you know the positive supply and resistor divider, you can calculate the negative supply. The resistors must be calculated such that the "divided voltage" is above GND in your target voltage interval. The expression for this special resistor divider is
Vout = Vpos - (Vpos - Vneg) / (Rtop + Rbottom) * Rtop
Example
Rtop = Rbottom = 10K, Vpos = 10V, Vneg = -10V => Vout = 10V - (10V - (-10V)) / 20K x 10K = 0 V
Now let's say Rtop = 1K: Vout = 10V - (10V - (-10V)) / 11K x 1K ~ 1.818V which the Arduino can perfectly read.
You'll have to solve the equation in order to Vneg to get your value.
Add protection resistor-zener and capacitor to the analog input. You must do your math to make sure you can achieve whatever measuring requirements you have.
| 451
| 1,835
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.734375
| 4
|
CC-MAIN-2022-33
|
latest
|
en
| 0.89039
|
https://it.scribd.com/document/406801144/EM68-Determining-Vibration-an-Excel-pdf
| 1,579,564,722,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2020-05/segments/1579250601040.47/warc/CC-MAIN-20200120224950-20200121013950-00038.warc.gz
| 504,570,023
| 81,731
|
Sei sulla pagina 1di 2
# 144996 Mag r3.
## Determining Vibration Severity
tic re
Ar atu
le
Fe
Robert X. Perez based on ISO 10816 that can be used to assess the
Machinery Consultant vibration severity of a rotating machine. The method
San Antonio, Texas uses baseline and current vibration levels as well as a
criticality factor.
A previous article [1] described a general machine The nature of the operation and the risk matrix (Table 1)
evaluation approach for casing vibration measurements indicate that the pump has a low criticality (K= 2.51). This
based on accepted assessment methods. A general method information is used in the Vibration Severity Calculator.
was developed to enable users to make machine-specific Low is selected on the criticality pull down menu (Table 2).
decisions that account for machine construction and The severity level is 2.218, just inside the Plan to Repair
criticality. A dimensionless number termed the Severity region. There is plenty of time to plan a repair.
Level S allows consistent comparisons of mechanical
condition across diverse machine populations. The Severity Table 2. Vibration Severity Calculation
Level regions are defined as for a Centrifugal Process Pump.
S<1 = newly commissioned levels
S>1 but <2 = watch for upward trends Variable Value Description
S>2 but <3 = plan for repair V 0.46Actual vibration level (ips rms)
S>3 = failure is imminent, prepare to shut down a 0.15Newlycommissioned vibration level (ips rms)
The meaning and importance of (a), a term used in the ISO K 2.51Criticality factor
Casing Vibration Severity guidelines [2], was also described. r 3.067Vibration ratio
The author has developed an Excel spreadsheet [3] that S 2.218 Severity
assesses severity levels based on input values and provides a Recommendation Plan to repair
recommended course of action. The spreadsheet contains a
Calculator page and a Risk Matrix page. Examples are given Example #2
to illustrate the proper use of the calculator. A 750 HP induction motor driving a centrifugal fan had an
initial vibration level of 0.08 IPSrms (a) at the motor
Example #1 outboard vertical (MOBV) position. The MOBV vibration
A 20 HP centrifugal process pump had an initial vibration level was 0.30 IPSrms (V) after a year of operation. When
level of 0.15 IPSrms (a) at the inboard horizontal (PIBH) the motor/fan train is down, the unit can operate at only
position. After two years of operation, the PIBH vibration 50% of the rated production. There is very little safety or
level was 0.46 IPSrms (V). The pump is fully spared and environmental risk if a catastrophic failure occurs.
does not represent a significant safety or environmental risk. Table 1 indicates that this is a medium criticality motor (K
= 2). The Vibration Severity Calculator (Table 3) and
Table 1. Machine Criticality vs K. Medium on the criticality pull down menu indicate that the
K = 2.51 for general purpose or low criticality machines severity level is 2.907. This places the motor just outside the
K = 2.00 for larger but spared machines (medium criticality) Prepare to Shutdown region. Management should be alerted
K = 1.73 for high criticality machines that the motor is nearing the Prepare for Shutdown region
and that plans should be made for an immediate shutdown.
1
Vibrations Vol 28 No 4 December 2011
144996 Mag r3.qxp:109847 Vibration mag (11/03) 2/11/13 12:31 PM Page 2
## Table 3. Vibration Severity Calculation Table 4. Vibration Severity Calculation
for a Centrifugal Process Pump. for a Steam Turbine.
## Variable Value Description Variable Value Description
V 0.3Actual vibration level (ips rms) V 0.42Actual vibrationlevel (ips rms)
a 0.08Newlycommissioned vibration level (ips rms) a 0.125Newlycommissioned vibration level (ips rms)
K 2Criticality factor K 1.73Criticality factor
r 3.750Vibration ratio r 3.360Vibration ratio
S 2.907 Severity S 3.211 Severity
Recommendation Plan to repair Recommendation Prepare for shutdown
Example #3 Conclusion
A 2,000 HP special-purpose steam turbine drives a critical Thus, it can be concluded that, if the field vibration level
centrifugal process pump. At startup the vibration level was (V), the new commissioned level (a), and the criticality level
0.125 IPSrms (a) at the turbine outboard horizontal (TOBH) are known, the severity level of a machine can be
position. After three years of operation, the TOBH vibration determined by using the calculator in the Excel spreadsheet.
level had increased to 0.42 IPSrms (V). If the driven pump is This method can be applied to most classes of machines
not available, the process unit will have to shut down. In monitored using casing vibration readings. Use these criteria
addition, if the pump shuts down without warning, damage only if they make sense for your equipment types and
to downstream process equipment is possible. criticality levels.
The risk matrix in the Excel workbook indicates that this
is a high criticality steam turbine (k = 1.73). The Vibration References
Severity Calculator and High on the criticality pull down 1. Perez, Robert X., “Generalized Approach to Casing
menu show that the severity level is 3.211 (Table 4). The Vibration Assessments, Vibrations, 27 (4), VI Press, Inc.
steam turbine is inside the Plan to Shutdown region. (Dec 2010).
Management should be alerted to the risk and prepare for an
immediate shutdown. 2. ISO 10816, Mechanical vibration − evaluation of machine
vibration by measurements on non-rotating parts, Second
Edition 2009.
## 3. Perez, Robert X., The Vibration Severity Calculator.
2
Vibrations Vol 28 No 4 December 2011
| 1,350
| 5,614
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.90625
| 3
|
CC-MAIN-2020-05
|
latest
|
en
| 0.884409
|
https://www.statology.org/nas-introduced-by-coercion-in-r/
| 1,713,550,344,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-18/segments/1712296817442.65/warc/CC-MAIN-20240419172411-20240419202411-00069.warc.gz
| 902,893,317
| 12,202
|
# How to Fix in R: NAs Introduced by Coercion
One common warning message you may encounter in R is:
```Warning message:
NAs introduced by coercion
```
This warning message occurs when you use as.numeric() to convert a vector in R to a numeric vector and there happen to be non-numerical values in the original vector.
To be clear, you don’t need to do anything to “fix” this warning message. R is simply alerting you to the fact that some values in the original vector were converted to NAs because they couldn’t be converted to numeric values.
However, this tutorial shares the exact steps you can use if you don’t want to see this warning message displayed at all.
### How to Reproduce the Warning Message
The following code converts a character vector to a numeric vector:
```#define character vector
x <- c('1', '2', '3', NA, '4', 'Hey')
#convert to numeric vector
x_num <- as.numeric(x)
#display numeric vector
x_num
Warning message:
NAs introduced by coercion
[1] 1 2 3 NA 4 NA```
R converts the character vector to a numeric vector, but displays the warning message NAs introduced by coercion since two values in the original vector could not be converted to numeric values.
### Method #1: Suppress Warnings
One way to deal with this warning message is to simply suppress it by using the suppressWarnings() function when converting the character vector to a numeric vector:
```#define character vector
x <- c('1', '2', '3', NA, '4', 'Hey')
#convert to numeric vector, suppressing warnings
suppressWarnings(x_num <- as.numeric(x))
#display numeric vector
x_num
[1] 1 2 3 NA 4 NA```
R successfully converts the character vector to a numeric vector without displaying any warning messages.
### Method #2: Replace Non-Numeric Values
One way to avoid the warning message in the first place is by replacing non-numeric values in the original vector with blanks by using the gsub() function:
```#define character vector
x <- c('1', '2', '3', '4', 'Hey')
#replace non-numeric values with 0
x <- gsub("Hey", "0", x)
#convert to numeric vector
x_num <- as.numeric(x)
#display numeric vector
x_num
[1] 1 2 3 4 0```
R successfully converts the character vector to a numeric vector without displaying any warning messages.
| 554
| 2,254
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.734375
| 3
|
CC-MAIN-2024-18
|
latest
|
en
| 0.76207
|
https://www.rdocumentation.org/packages/userfriendlyscience/versions/0.5-2/topics/scaleStructure
| 1,521,297,791,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2018-13/segments/1521257645177.12/warc/CC-MAIN-20180317135816-20180317155816-00006.warc.gz
| 856,018,407
| 7,018
|
# scaleStructure
0th
Percentile
##### scaleStructure
The scaleStructure function (which was originally called scaleReliability) computes a number of measures to assess scale reliability and internal consistency.
If you use this function in an academic paper, please cite Peters (2014), where the function is introduced.
Keywords
utilities, univar
##### Usage
scaleStructure(dat=NULL, items = 'all', digits = 2, ci = TRUE, interval.type="normal-theory", conf.level=.95, silent=FALSE, samples=1000, bootstrapSeed = NULL, omega.psych = TRUE, poly = TRUE)
scaleReliability(dat=NULL, items = 'all', digits = 2, ci = TRUE, interval.type="normal-theory", conf.level=.95, silent=FALSE, samples=1000, bootstrapSeed = NULL, omega.psych = TRUE, poly = TRUE)
##### Arguments
dat
A dataframe containing the items in the scale. All variables in this dataframe will be used if items = 'all'. If dat is NULL, a the getData function will be called to show the user a dialog to open a file.
items
If not 'all', this should be a character vector with the names of the variables in the dataframe that represent items in the scale.
digits
Number of digits to use in the presentation of the results.
ci
Whether to compute confidence intervals as well. If true, the method specified in interval.type is used. When specifying a bootstrapping method, this can take quite a while!
interval.type
Method to use when computing confidence intervals. The list of methods is explained in ci.reliability. Note that when specifying a bootstrapping method, the method will be set to normal-theory for computing the confidence intervals for the ordinal estimates, because these are based on the polychoric correlation matrix, and raw data is required for bootstrapping.
conf.level
The confidence of the confidence intervals.
silent
If computing confidence intervals, the user is warned that it may take a while, unless silent=TRUE.
samples
The number of samples to compute for the bootstrapping of the confidence intervals.
bootstrapSeed
The seed to use for the bootstrapping - setting this seed makes it possible to replicate the exact same intervals, which is useful for publications.
omega.psych
Whether to also compute the interval estimate for omega using the omega function in the psych package. The default point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability (because it has more options for computing confidence intervals, not always requiring bootstrapping), whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). The psych estimate usually (perhaps always) results in higher estimates for omega.
poly
Whether to compute ordinal measures (if the items have sufficiently few categories).
##### Details
This function is basically a wrapper for functions from the psych and MBESS packages that compute measures of reliability and internal consistency. For backwards compatibility, in addition to scaleStructure, scaleReliability can also be used to call this function.
##### Value
An object with the input and several output variables. Most notably:
##### References
Dunn, T. J., Baguley, T., & Brunsden, V. (2014). From alpha to omega: A practical solution to the pervasive problem of internal consistency estimation. British Journal of Psychology, 105(3), 399-412. doi:10.1111/bjop.12046
Eisinga, R., Grotenhuis, M. Te, & Pelzer, B. (2013). The reliability of a two-item scale: Pearson, Cronbach, or Spearman-Brown? International Journal of Public Health, 58(4), 637-42. doi:10.1007/s00038-012-0416-3
Gadermann, A. M., Guhn, M., Zumbo, B. D., & Columbia, B. (2012). Estimating ordinal reliability for Likert-type and ordinal item response data: A conceptual, empirical, and practical guide. Practical Assessment, Research & Evaluation, 17(3), 1-12.
Peters, G.-J. Y. (2014). The alpha and the omega of scale reliability and validity: why and how to abandon Cronbach's alpha and the route towards more comprehensive assessment of scale quality. European Health Psychologist, 16(2), 56-69.
Revelle, W., & Zinbarg, R. E. (2009). Coefficients Alpha, Beta, Omega, and the glb: Comments on Sijtsma. Psychometrika, 74(1), 145-154. doi:10.1007/s11336-008-9102-z
Sijtsma, K. (2009). On the Use, the Misuse, and the Very Limited Usefulness of Cronbach's Alpha. Psychometrika, 74(1), 107-120. doi:10.1007/s11336-008-9101-0
Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach's alpha, Revelle's beta and McDonald's omega H: Their relations with each other and two alternative conceptualizations of reliability. Psychometrika, 70(1), 123-133. doi:10.1007/s11336-003-0974-7
omega, alpha, and ci.reliability.
##### Aliases
• scaleStructure
• scaleReliability
##### Examples
## Not run:
# ### This will prompt the user to select an SPSS file
# scaleStructure();
# ## End(Not run)
### Load data from simulated dataset testRetestSimData (which
### satisfies essential tau-equivalence).
data(testRetestSimData);
### Select some items in the first measurement
exampleData <- testRetestSimData[2:6];
### Use all items
scaleStructure(dat=exampleData);
### Use a selection of three variables (without confidence
### intervals to save time
scaleStructure(dat=exampleData, items=c('t0_item2', 't0_item3', 't0_item4'),
ci=FALSE);
### Make the items resemble an ordered categorical (ordinal) scale
ordinalExampleData <- data.frame(apply(exampleData, 2, cut,
breaks=5, ordered_result=TRUE,
labels=as.character(1:5)));
### Now we also get estimates assuming the ordinal measurement level
scaleStructure(ordinalExampleData, ci=FALSE);
Documentation reproduced from package userfriendlyscience, version 0.5-2, License: GPL (>= 2)
### Community examples
Looks like there are no examples yet.
| 1,455
| 5,812
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.53125
| 3
|
CC-MAIN-2018-13
|
latest
|
en
| 0.676247
|
https://fr.maplesoft.com/support/help/view.aspx?path=updates%2FMaple2019%2FPerformance
| 1,660,910,850,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2022-33/segments/1659882573667.83/warc/CC-MAIN-20220819100644-20220819130644-00326.warc.gz
| 259,171,729
| 48,911
|
Performance - Maple Help
Performance
Maple 2019 improves the performance of many routines.
factor
Maple 2019 includes performance improvements for factoring sparse multivariate polynomials with integer coefficients. See factor for more details.
> $\mathrm{vars}≔\left[\mathrm{seq}\left({x}_{i},i=1..8\right)\right]$
${\mathrm{vars}}{≔}\left[{{x}}_{{1}}{,}{{x}}_{{2}}{,}{{x}}_{{3}}{,}{{x}}_{{4}}{,}{{x}}_{{5}}{,}{{x}}_{{6}}{,}{{x}}_{{7}}{,}{{x}}_{{8}}\right]$ (1.1)
>
${g}{≔}{555}{}{{x}}_{{1}}^{{4}}{}{{x}}_{{2}}{}{{x}}_{{3}}^{{2}}{}{{x}}_{{5}}^{{3}}{}{{x}}_{{6}}^{{2}}{}{{x}}_{{7}}{}{{x}}_{{8}}^{{2}}{+}{771}{}{{x}}_{{1}}^{{4}}{}{{x}}_{{2}}{}{{x}}_{{3}}{}{{x}}_{{4}}^{{2}}{}{{x}}_{{6}}^{{3}}{}{{x}}_{{8}}^{{4}}{+}{584}{}{{x}}_{{1}}^{{3}}{}{{x}}_{{2}}{}{{x}}_{{3}}^{{4}}{}{{x}}_{{6}}{}{{x}}_{{7}}^{{6}}{+}{930}{}{{x}}_{{1}}^{{3}}{}{{x}}_{{4}}^{{3}}{}{{x}}_{{5}}{}{{x}}_{{6}}^{{3}}{}{{x}}_{{7}}{}{{x}}_{{8}}^{{4}}{-}{778}{}{{x}}_{{1}}^{{2}}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{3}}{}{{x}}_{{4}}{}{{x}}_{{7}}^{{8}}{}{{x}}_{{8}}{-}{642}{}{{x}}_{{1}}^{{2}}{}{{x}}_{{3}}^{{2}}{}{{x}}_{{4}}^{{2}}{}{{x}}_{{5}}{}{{x}}_{{6}}^{{6}}{}{{x}}_{{7}}{}{{x}}_{{8}}{+}{897}{}{{x}}_{{1}}^{{2}}{}{{x}}_{{4}}^{{2}}{}{{x}}_{{6}}{}{{x}}_{{7}}^{{5}}{}{{x}}_{{8}}^{{5}}{-}{73}{}{{x}}_{{1}}{}{{x}}_{{2}}{}{{x}}_{{3}}^{{4}}{}{{x}}_{{4}}{}{{x}}_{{6}}^{{5}}{}{{x}}_{{7}}{}{{x}}_{{8}}^{{2}}{+}{396}{}{{x}}_{{1}}{}{{x}}_{{2}}{}{{x}}_{{6}}^{{11}}{}{{x}}_{{8}}^{{2}}{+}{728}{}{{x}}_{{2}}^{{6}}{}{{x}}_{{4}}^{{3}}{}{{x}}_{{5}}^{{2}}{}{{x}}_{{6}}{}{{x}}_{{8}}^{{3}}{-}{981}{}{{x}}_{{2}}^{{5}}{}{{x}}_{{3}}{}{{x}}_{{4}}^{{4}}{}{{x}}_{{7}}{}{{x}}_{{8}}^{{4}}{-}{45}{}{{x}}_{{2}}^{{3}}{}{{x}}_{{3}}{}{{x}}_{{4}}^{{4}}{}{{x}}_{{5}}^{{5}}{}{{x}}_{{7}}{}{{x}}_{{8}}{-}{173}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{3}}{}{{x}}_{{4}}^{{3}}{}{{x}}_{{6}}^{{6}}{}{{x}}_{{7}}{}{{x}}_{{8}}^{{2}}{+}{369}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{5}}^{{3}}{}{{x}}_{{6}}^{{4}}{}{{x}}_{{7}}^{{5}}{}{{x}}_{{8}}{+}{190}{}{{x}}_{{2}}{}{{x}}_{{4}}^{{5}}{}{{x}}_{{5}}^{{3}}{}{{x}}_{{7}}{}{{x}}_{{8}}^{{5}}{-}{257}{}{{x}}_{{3}}^{{9}}{}{{x}}_{{5}}^{{2}}{}{{x}}_{{6}}^{{3}}{}{{x}}_{{7}}{+}{227}{}{{x}}_{{3}}^{{2}}{}{{x}}_{{4}}^{{7}}{}{{x}}_{{7}}^{{4}}{}{{x}}_{{8}}^{{2}}{+}{83}{}{{x}}_{{3}}{}{{x}}_{{4}}{}{{x}}_{{6}}^{{11}}{}{{x}}_{{8}}^{{2}}{+}{809}{}{{x}}_{{5}}^{{3}}{}{{x}}_{{6}}{}{{x}}_{{7}}^{{2}}{}{{x}}_{{8}}^{{9}}{-}{921}{}{{x}}_{{1}}^{{6}}{}{{x}}_{{2}}^{{3}}{}{{x}}_{{4}}^{{5}}{-}{466}{}{{x}}_{{1}}^{{2}}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{3}}^{{4}}{}{{x}}_{{6}}{}{{x}}_{{8}}^{{5}}{-}{265}{}{{x}}_{{1}}^{{2}}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{5}}^{{2}}{}{{x}}_{{6}}^{{5}}{}{{x}}_{{7}}^{{2}}{}{{x}}_{{8}}{-}{394}{}{{x}}_{{1}}{}{{x}}_{{2}}{}{{x}}_{{3}}^{{2}}{}{{x}}_{{4}}^{{3}}{}{{x}}_{{5}}^{{2}}{}{{x}}_{{6}}^{{4}}{}{{x}}_{{7}}{+}{898}{}{{x}}_{{1}}{}{{x}}_{{3}}^{{5}}{}{{x}}_{{6}}^{{4}}{}{{x}}_{{7}}^{{2}}{}{{x}}_{{8}}^{{2}}{-}{916}{}{{x}}_{{1}}{}{{x}}_{{4}}{}{{x}}_{{6}}^{{8}}{}{{x}}_{{7}}^{{3}}{}{{x}}_{{8}}{-}{583}{}{{x}}_{{2}}^{{3}}{}{{x}}_{{4}}{}{{x}}_{{5}}^{{8}}{}{{x}}_{{7}}^{{2}}{-}{932}{}{{x}}_{{3}}^{{4}}{}{{x}}_{{7}}^{{10}}{-}{588}{}{{x}}_{{4}}^{{4}}{}{{x}}_{{6}}^{{7}}{}{{x}}_{{7}}^{{2}}{}{{x}}_{{8}}{+}{989}{}{{x}}_{{4}}^{{3}}{}{{x}}_{{5}}^{{6}}{}{{x}}_{{6}}^{{2}}{}{{x}}_{{7}}^{{2}}{}{{x}}_{{8}}{+}{330}{}{{x}}_{{1}}^{{2}}{}{{x}}_{{2}}^{{3}}{}{{x}}_{{4}}{}{{x}}_{{5}}^{{2}}{}{{x}}_{{6}}^{{3}}{}{{x}}_{{8}}^{{2}}{+}{510}{}{{x}}_{{1}}^{{2}}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{4}}^{{2}}{}{{x}}_{{6}}^{{2}}{}{{x}}_{{8}}^{{5}}{+}{587}{}{{x}}_{{1}}^{{2}}{}{{x}}_{{5}}^{{2}}{}{{x}}_{{7}}^{{7}}{}{{x}}_{{8}}^{{2}}{+}{430}{}{{x}}_{{1}}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{4}}^{{6}}{}{{x}}_{{5}}{}{{x}}_{{6}}{}{{x}}_{{7}}^{{2}}{+}{67}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{3}}^{{3}}{}{{x}}_{{4}}^{{3}}{}{{x}}_{{5}}{}{{x}}_{{8}}^{{4}}{-}{296}{}{{x}}_{{1}}^{{3}}{}{{x}}_{{2}}^{{6}}{}{{x}}_{{3}}{}{{x}}_{{4}}{}{{x}}_{{7}}{-}{799}{}{{x}}_{{1}}^{{3}}{}{{x}}_{{2}}{}{{x}}_{{3}}{}{{x}}_{{5}}^{{3}}{}{{x}}_{{7}}^{{3}}{}{{x}}_{{8}}{+}{717}{}{{x}}_{{1}}^{{2}}{}{{x}}_{{2}}^{{5}}{}{{x}}_{{4}}{}{{x}}_{{6}}^{{2}}{}{{x}}_{{8}}^{{2}}{+}{550}{}{{x}}_{{1}}^{{2}}{}{{x}}_{{2}}{}{{x}}_{{5}}^{{2}}{}{{x}}_{{7}}{}{{x}}_{{8}}^{{6}}{-}{417}{}{{x}}_{{1}}^{{2}}{}{{x}}_{{3}}^{{2}}{}{{x}}_{{4}}{}{{x}}_{{5}}^{{4}}{}{{x}}_{{6}}{}{{x}}_{{8}}^{{2}}{-}{991}{}{{x}}_{{2}}^{{7}}{}{{x}}_{{3}}{}{{x}}_{{4}}{}{{x}}_{{5}}^{{2}}{}{{x}}_{{6}}{-}{672}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{3}}^{{2}}{}{{x}}_{{4}}{}{{x}}_{{6}}^{{5}}{}{{x}}_{{7}}^{{2}}{-}{434}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{4}}^{{2}}{}{{x}}_{{5}}{}{{x}}_{{7}}^{{6}}{}{{x}}_{{8}}{+}{399}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{4}}{}{{x}}_{{5}}^{{5}}{}{{x}}_{{6}}{}{{x}}_{{7}}{}{{x}}_{{8}}^{{2}}{-}{23}{}{{x}}_{{2}}{}{{x}}_{{3}}^{{6}}{}{{x}}_{{4}}^{{2}}{}{{x}}_{{6}}{}{{x}}_{{7}}{}{{x}}_{{8}}{-}{500}{}{{x}}_{{1}}^{{5}}{}{{x}}_{{3}}^{{3}}{}{{x}}_{{4}}{}{{x}}_{{5}}^{{2}}{-}{630}{}{{x}}_{{1}}{}{{x}}_{{2}}{}{{x}}_{{3}}{}{{x}}_{{4}}^{{6}}{}{{x}}_{{6}}{}{{x}}_{{7}}{-}{513}{}{{x}}_{{1}}{}{{x}}_{{2}}{}{{x}}_{{3}}{}{{x}}_{{4}}{}{{x}}_{{5}}^{{4}}{}{{x}}_{{7}}{}{{x}}_{{8}}^{{2}}{+}{322}{}{{x}}_{{2}}{}{{x}}_{{4}}^{{3}}{}{{x}}_{{5}}^{{2}}{}{{x}}_{{7}}^{{4}}{}{{x}}_{{8}}{-}{933}{}{{x}}_{{3}}{}{{x}}_{{4}}^{{4}}{}{{x}}_{{5}}^{{3}}{}{{x}}_{{8}}{+}{545}{}{{x}}_{{5}}^{{2}}{}{{x}}_{{6}}{}{{x}}_{{7}}^{{5}}$ (1.2)
>
${h}{≔}{-}{474}{}{{x}}_{{1}}^{{5}}{}{{x}}_{{3}}^{{4}}{}{{x}}_{{4}}^{{3}}{}{{x}}_{{5}}{}{{x}}_{{6}}^{{2}}{+}{429}{}{{x}}_{{1}}^{{4}}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{3}}{}{{x}}_{{6}}^{{4}}{}{{x}}_{{7}}^{{3}}{}{{x}}_{{8}}{-}{188}{}{{x}}_{{1}}^{{3}}{}{{x}}_{{2}}{}{{x}}_{{3}}^{{2}}{}{{x}}_{{4}}^{{3}}{}{{x}}_{{6}}^{{3}}{}{{x}}_{{7}}^{{2}}{}{{x}}_{{8}}{-}{197}{}{{x}}_{{1}}^{{3}}{}{{x}}_{{2}}{}{{x}}_{{3}}{}{{x}}_{{4}}{}{{x}}_{{5}}^{{3}}{}{{x}}_{{6}}^{{3}}{}{{x}}_{{7}}{}{{x}}_{{8}}^{{2}}{-}{464}{}{{x}}_{{1}}^{{2}}{}{{x}}_{{2}}{}{{x}}_{{3}}^{{3}}{}{{x}}_{{4}}^{{3}}{}{{x}}_{{6}}{}{{x}}_{{7}}^{{4}}{}{{x}}_{{8}}{-}{495}{}{{x}}_{{1}}^{{2}}{}{{x}}_{{3}}^{{4}}{}{{x}}_{{5}}{}{{x}}_{{6}}^{{2}}{}{{x}}_{{7}}^{{6}}{+}{725}{}{{x}}_{{1}}{}{{x}}_{{2}}^{{6}}{}{{x}}_{{5}}^{{4}}{}{{x}}_{{7}}^{{4}}{+}{811}{}{{x}}_{{1}}{}{{x}}_{{2}}^{{3}}{}{{x}}_{{3}}{}{{x}}_{{4}}^{{4}}{}{{x}}_{{5}}^{{4}}{}{{x}}_{{6}}{}{{x}}_{{7}}{-}{26}{}{{x}}_{{1}}{}{{x}}_{{2}}{}{{x}}_{{3}}^{{3}}{}{{x}}_{{4}}^{{4}}{}{{x}}_{{5}}^{{2}}{}{{x}}_{{6}}{}{{x}}_{{7}}^{{3}}{+}{470}{}{{x}}_{{2}}^{{3}}{}{{x}}_{{5}}^{{7}}{}{{x}}_{{7}}^{{3}}{}{{x}}_{{8}}^{{2}}{+}{159}{}{{x}}_{{2}}{}{{x}}_{{3}}^{{4}}{}{{x}}_{{5}}^{{4}}{}{{x}}_{{8}}^{{6}}{-}{631}{}{{x}}_{{1}}^{{5}}{}{{x}}_{{2}}^{{3}}{}{{x}}_{{3}}{}{{x}}_{{4}}^{{4}}{}{{x}}_{{7}}{-}{910}{}{{x}}_{{1}}^{{4}}{}{{x}}_{{4}}^{{3}}{}{{x}}_{{6}}{}{{x}}_{{7}}^{{4}}{}{{x}}_{{8}}^{{2}}{+}{527}{}{{x}}_{{1}}^{{3}}{}{{x}}_{{2}}{}{{x}}_{{3}}^{{5}}{}{{x}}_{{5}}^{{2}}{}{{x}}_{{8}}^{{3}}{+}{558}{}{{x}}_{{1}}^{{3}}{}{{x}}_{{2}}{}{{x}}_{{3}}^{{3}}{}{{x}}_{{4}}^{{5}}{}{{x}}_{{7}}^{{2}}{-}{168}{}{{x}}_{{1}}^{{3}}{}{{x}}_{{4}}^{{4}}{}{{x}}_{{6}}^{{3}}{}{{x}}_{{8}}^{{4}}{+}{920}{}{{x}}_{{1}}^{{2}}{}{{x}}_{{2}}^{{6}}{}{{x}}_{{4}}^{{2}}{}{{x}}_{{7}}^{{3}}{}{{x}}_{{8}}{-}{672}{}{{x}}_{{1}}{}{{x}}_{{2}}^{{4}}{}{{x}}_{{4}}^{{3}}{}{{x}}_{{6}}^{{5}}{}{{x}}_{{8}}{+}{201}{}{{x}}_{{1}}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{4}}^{{9}}{}{{x}}_{{6}}{}{{x}}_{{8}}{+}{660}{}{{x}}_{{1}}{}{{x}}_{{2}}{}{{x}}_{{5}}^{{6}}{}{{x}}_{{6}}^{{5}}{}{{x}}_{{7}}{+}{153}{}{{x}}_{{1}}{}{{x}}_{{5}}^{{8}}{}{{x}}_{{7}}^{{2}}{}{{x}}_{{8}}^{{3}}{-}{628}{}{{x}}_{{2}}^{{6}}{}{{x}}_{{3}}{}{{x}}_{{4}}^{{3}}{}{{x}}_{{5}}^{{3}}{}{{x}}_{{8}}{+}{771}{}{{x}}_{{2}}^{{3}}{}{{x}}_{{4}}^{{2}}{}{{x}}_{{5}}^{{9}}{-}{710}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{4}}^{{6}}{}{{x}}_{{5}}^{{2}}{}{{x}}_{{7}}^{{4}}{+}{392}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{5}}^{{7}}{}{{x}}_{{8}}^{{5}}{+}{211}{}{{x}}_{{2}}{}{{x}}_{{4}}^{{6}}{}{{x}}_{{5}}{}{{x}}_{{6}}^{{3}}{}{{x}}_{{8}}^{{3}}{-}{997}{}{{x}}_{{3}}^{{3}}{}{{x}}_{{4}}{}{{x}}_{{5}}^{{5}}{}{{x}}_{{6}}^{{2}}{}{{x}}_{{7}}{}{{x}}_{{8}}^{{2}}{-}{968}{}{{x}}_{{3}}{}{{x}}_{{5}}{}{{x}}_{{7}}^{{12}}{-}{160}{}{{x}}_{{1}}^{{4}}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{5}}^{{2}}{}{{x}}_{{8}}^{{5}}{-}{488}{}{{x}}_{{1}}^{{3}}{}{{x}}_{{3}}{}{{x}}_{{5}}^{{2}}{}{{x}}_{{7}}^{{7}}{+}{554}{}{{x}}_{{1}}^{{2}}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{3}}^{{3}}{}{{x}}_{{4}}^{{6}}{-}{687}{}{{x}}_{{1}}^{{2}}{}{{x}}_{{2}}{}{{x}}_{{4}}^{{2}}{}{{x}}_{{5}}{}{{x}}_{{6}}^{{3}}{}{{x}}_{{7}}^{{2}}{}{{x}}_{{8}}^{{2}}{+}{665}{}{{x}}_{{1}}{}{{x}}_{{2}}^{{3}}{}{{x}}_{{3}}^{{3}}{}{{x}}_{{4}}^{{3}}{}{{x}}_{{8}}^{{3}}{+}{870}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{3}}^{{6}}{}{{x}}_{{5}}^{{3}}{}{{x}}_{{7}}{}{{x}}_{{8}}{-}{160}{}{{x}}_{{2}}^{{2}}{}{{x}}_{{5}}^{{4}}{}{{x}}_{{7}}^{{7}}{+}{136}{}{{x}}_{{2}}{}{{x}}_{{3}}^{{2}}{}{{x}}_{{4}}^{{2}}{}{{x}}_{{6}}{}{{x}}_{{7}}^{{6}}{}{{x}}_{{8}}{-}{487}{}{{x}}_{{1}}^{{4}}{}{{x}}_{{2}}{}{{x}}_{{3}}^{{5}}{}{{x}}_{{5}}{}{{x}}_{{8}}{+}{549}{}{{x}}_{{1}}{}{{x}}_{{2}}^{{3}}{}{{x}}_{{3}}^{{2}}{}{{x}}_{{4}}^{{3}}{}{{x}}_{{5}}{}{{x}}_{{6}}^{{2}}{&minu}$
| 5,339
| 8,771
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 4, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.734375
| 3
|
CC-MAIN-2022-33
|
longest
|
en
| 0.256649
|
https://www.o.vg/unit/specific-heat-capacity/Btu-IT-pound-degree-Celsius-to-kilojoule-kilogram-degree-Celsius.php
| 1,726,110,454,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-38/segments/1725700651420.25/warc/CC-MAIN-20240912011254-20240912041254-00876.warc.gz
| 852,206,504
| 10,678
|
Convert Btu (IT)/Pound/°C to Kilojoule/Kilogram/°C | kJ/(kg·°C) to Btu(IT)/(lb·°C)
# document.write(document.title);
## Btu(IT)/(lb·°C) to kJ/(kg·°C) Converter
From Btu(IT)/(lb·°C) to kJ/(kg·°C): 1 Btu(IT)/(lb·°C) = 2.3259979112539 kJ/(kg·°C);
From kJ/(kg·°C) to Btu(IT)/(lb·°C): 1 kJ/(kg·°C) = 0.429923 Btu(IT)/(lb·°C);
## How to Convert Btu (IT)/Pound/°C to Kilojoule/Kilogram/°C?
As we know One Btu(IT)/(lb·°C) is equal to 2.3259979112539 kJ/(kg·°C) (1 Btu(IT)/(lb·°C) = 2.3259979112539 kJ/(kg·°C)).
To convert Btu (IT)/Pound/°C to Kilojoule/Kilogram/°C, multiply your Btu(IT)/(lb·°C) figure by 2.3259979112539.
Example : convert 25 Btu(IT)/(lb·°C) to kJ/(kg·°C):
25 Btu(IT)/(lb·°C) = 25 × 2.3259979112539 kJ/(kg·°C) = kJ/(kg·°C)
To convert Kilojoule/Kilogram/°C to Btu (IT)/Pound/°C, divide your kJ/(kg·°C) figure by 2.3259979112539.
Example : convert 25 kJ/(kg·°C) to Btu(IT)/(lb·°C):
25 kJ/(kg·°C) = 25 ÷ 2.3259979112539 Btu(IT)/(lb·°C) = Btu(IT)/(lb·°C)
## How to Convert Kilojoule/Kilogram/°C to Btu (IT)/Pound/°C?
As we know One kJ/(kg·°C) is equal to 0.429923 Btu(IT)/(lb·°C) (1 kJ/(kg·°C) = 0.429923 Btu(IT)/(lb·°C)).
To convert Kilojoule/Kilogram/°C to Btu (IT)/Pound/°C, multiply your kJ/(kg·°C) figure by 0.429923.
Example : convert 45 kJ/(kg·°C) to Btu(IT)/(lb·°C):
45 kJ/(kg·°C) = 45 × 0.429923 Btu(IT)/(lb·°C) = Btu(IT)/(lb·°C)
To convert Btu (IT)/Pound/°C to Kilojoule/Kilogram/°C, divide your Btu(IT)/(lb·°C) figure by 0.429923.
Example : convert 45 Btu(IT)/(lb·°C) to kJ/(kg·°C):
45 Btu(IT)/(lb·°C) = 45 ÷ 0.429923 kJ/(kg·°C) = kJ/(kg·°C)
## Convert Btu (IT)/Pound/°C or Kilojoule/Kilogram/°C to Other Specific Heat Capacity Units
Btu (IT)/Pound/°C Conversion Table
Btu(IT)/(lb·°C) to J/(kg·K) 1 Btu(IT)/(lb·°C) = 2325.9979112539 J/(kg·K) Btu(IT)/(lb·°C) to J/(kg·°C) 1 Btu(IT)/(lb·°C) = 2325.9979112539 J/(kg·°C) Btu(IT)/(lb·°C) to J/(g·°C) 1 Btu(IT)/(lb·°C) = 2.3259979112539 J/(g·°C) Btu(IT)/(lb·°C) to kJ/(kg·K) 1 Btu(IT)/(lb·°C) = 2.3259979112539 kJ/(kg·K) Btu(IT)/(lb·°C) to kJ/(kg·°C) 1 Btu(IT)/(lb·°C) = 2.3259979112539 kJ/(kg·°C) Btu(IT)/(lb·°C) to kJ/(g·°C) 1 Btu(IT)/(lb·°C) = 0.0023259979112539 kJ/(g·°C) Btu(IT)/(lb·°C) to cal(IT)/(g·°C) 1 Btu(IT)/(lb·°C) = 0.55555529711134 cal(IT)/(g·°C) Btu(IT)/(lb·°C) to cal(IT)/(g·K) 1 Btu(IT)/(lb·°C) = 0.55555529711134 cal(IT)/(g·K) Btu(IT)/(lb·°C) to cal(th)/(g·°C) 1 Btu(IT)/(lb·°C) = 0.55592745677714 cal(th)/(g·°C) Btu(IT)/(lb·°C) to cal(th)/(g·K) 1 Btu(IT)/(lb·°C) = 0.55592745677714 cal(th)/(g·K) Btu(IT)/(lb·°C) to kcal(IT)/(kg·°C) 1 Btu(IT)/(lb·°C) = 0.55555529711134 kcal(IT)/(kg·°C) Btu(IT)/(lb·°C) to kcal(th)/(kg·°C) 1 Btu(IT)/(lb·°C) = 0.55592745677714 kcal(th)/(kg·°C) Btu(IT)/(lb·°C) to kcal(IT)/(kg·K) 1 Btu(IT)/(lb·°C) = 0.55555529711134 kcal(IT)/(kg·K) Btu(IT)/(lb·°C) to kcal(th)/(kg·K) 1 Btu(IT)/(lb·°C) = 0.55592745677714 kcal(th)/(kg·K) Btu(IT)/(lb·°C) to kgf·m/(kg·K) 1 Btu(IT)/(lb·°C) = 237.18577745317 kgf·m/(kg·K) Btu(IT)/(lb·°C) to kgf·m/(kg·°C) 1 Btu(IT)/(lb·°C) = 237.18577745317 kgf·m/(kg·°C) Btu(IT)/(lb·°C) to kgf·m/(g·K) 1 Btu(IT)/(lb·°C) = 0.23718665900638 kgf·m/(g·K) Btu(IT)/(lb·°C) to kgf·m/(g·°C) 1 Btu(IT)/(lb·°C) = 0.23718665900638 kgf·m/(g·°C) Btu(IT)/(lb·°C) to lbf·ft/(lb·°R) 1 Btu(IT)/(lb·°C) = 432.31586819035 lbf·ft/(lb·°R) Btu(IT)/(lb·°C) to lbf·ft/(lb·°F) 1 Btu(IT)/(lb·°C) = 432.31586819035 lbf·ft/(lb·°F) Btu(IT)/(lb·°C) to Btu(IT)/(lb·°F) 1 Btu(IT)/(lb·°C) = 0.55555529711134 Btu(IT)/(lb·°F) Btu(IT)/(lb·°C) to Btu(th)/(lb·°F) 1 Btu(IT)/(lb·°C) = 0.55592745677714 Btu(th)/(lb·°F) Btu(IT)/(lb·°C) to Btu(IT)/(lb·°R) 1 Btu(IT)/(lb·°C) = 0.55555529711134 Btu(IT)/(lb·°R) Btu(IT)/(lb·°C) to Btu(th)/(lb·°R) 1 Btu(IT)/(lb·°C) = 0.55592745677714 Btu(th)/(lb·°R) Btu(IT)/(lb·°C) to cal(IT)/(lb·°R) 1 Btu(IT)/(lb·°C) = 453.5920897463 cal(IT)/(lb·°R) Btu(IT)/(lb·°C) to cal(IT)/(lb·°F) 1 Btu(IT)/(lb·°C) = 453.5920897463 cal(IT)/(lb·°F) Btu(IT)/(lb·°C) to kcal(IT)/(lb·°F) 1 Btu(IT)/(lb·°C) = 0.45359285267362 kcal(IT)/(lb·°F)
Btu (IT)/Pound/°C Conversion Table
Btu(IT)/(lb·°C) to kcal(IT)/(lb·°R) 1 Btu(IT)/(lb·°C) = 0.45359285267362 kcal(IT)/(lb·°R) Btu(IT)/(lb·°C) to cal(th)/(lb·°R) 1 Btu(IT)/(lb·°C) = 453.89575342561 cal(th)/(lb·°R) Btu(IT)/(lb·°C) to cal(th)/(lb·°F) 1 Btu(IT)/(lb·°C) = 453.89575342561 cal(th)/(lb·°F) Btu(IT)/(lb·°C) to kcal(th)/(lb·°F) 1 Btu(IT)/(lb·°C) = 0.45389523240208 kcal(th)/(lb·°F) Btu(IT)/(lb·°C) to kcal(th)/(lb·°R) 1 Btu(IT)/(lb·°C) = 0.45389523240208 kcal(th)/(lb·°R) Btu(IT)/(lb·°C) to J/(lb·°F) 1 Btu(IT)/(lb·°C) = 1899.0985362495 J/(lb·°F) Btu(IT)/(lb·°C) to J/(lb·°R) 1 Btu(IT)/(lb·°C) = 1899.0985362495 J/(lb·°R) Btu(IT)/(lb·°C) to kJ/(lb·°F) 1 Btu(IT)/(lb·°C) = 1.8990982106098 kJ/(lb·°F) Btu(IT)/(lb·°C) to kJ/(lb·°R) 1 Btu(IT)/(lb·°C) = 1.8990982106098 kJ/(lb·°R) Btu(IT)/(lb·°C) to cal(IT)/(oz·°R) 1 Btu(IT)/(lb·°C) = 28.349504446145 cal(IT)/(oz·°R) Btu(IT)/(lb·°C) to cal(IT)/(oz·°F) 1 Btu(IT)/(lb·°C) = 28.349504446145 cal(IT)/(oz·°F) Btu(IT)/(lb·°C) to kcal(IT)/(oz·°F) 1 Btu(IT)/(lb·°C) = 0.028377174517297 kcal(IT)/(oz·°F) Btu(IT)/(lb·°C) to kcal(IT)/(oz·°R) 1 Btu(IT)/(lb·°C) = 0.028377174517297 kcal(IT)/(oz·°R) Btu(IT)/(lb·°C) to cal(th)/(oz·°R) 1 Btu(IT)/(lb·°C) = 28.368484589101 cal(th)/(oz·°R) Btu(IT)/(lb·°C) to cal(th)/(oz·°F) 1 Btu(IT)/(lb·°C) = 28.368484589101 cal(th)/(oz·°F) Btu(IT)/(lb·°C) to kcal(th)/(oz·°F) 1 Btu(IT)/(lb·°C) = 0.028377174517297 kcal(th)/(oz·°F) Btu(IT)/(lb·°C) to kcal(th)/(oz·°R) 1 Btu(IT)/(lb·°C) = 0.028377174517297 kcal(th)/(oz·°R) Btu(IT)/(lb·°C) to J/(oz·°F) 1 Btu(IT)/(lb·°C) = 118.69365909709 J/(oz·°F) Btu(IT)/(lb·°C) to J/(oz·°R) 1 Btu(IT)/(lb·°C) = 118.69365909709 J/(oz·°R) Btu(IT)/(lb·°C) to kJ/(oz·°F) 1 Btu(IT)/(lb·°C) = 0.11862589347395 kJ/(oz·°F) Btu(IT)/(lb·°C) to kJ/(oz·°R) 1 Btu(IT)/(lb·°C) = 0.11862589347395 kJ/(oz·°R) Btu(IT)/(lb·°C) to CHU/(lb·°C) 1 Btu(IT)/(lb·°C) = 0.55555529711134 CHU/(lb·°C) Created @ o.vg Free Unit Converters
## FAQ
### What is 9 Btu (IT)/Pound/°C in Kilojoule/Kilogram/°C?
kJ/(kg·°C). Since one Btu(IT)/(lb·°C) equals 2.3259979112539 kJ/(kg·°C), 9 Btu(IT)/(lb·°C) in kJ/(kg·°C) will be kJ/(kg·°C).
### How many Kilojoule/Kilogram/°C are in a Btu (IT)/Pound/°C?
There are 2.3259979112539 kJ/(kg·°C) in one Btu(IT)/(lb·°C). In turn, one kJ/(kg·°C) is equal to 0.429923 Btu(IT)/(lb·°C).
### How many Btu(IT)/(lb·°C) is equal to 1 kJ/(kg·°C)?
1 kJ/(kg·°C) is approximately equal to 0.429923 Btu(IT)/(lb·°C).
### What is the Btu(IT)/(lb·°C) value of 8 kJ/(kg·°C)?
The Btu (IT)/Pound/°C value of 8 kJ/(kg·°C) is Btu(IT)/(lb·°C). (i.e.,) 8 x 0.429923 = Btu(IT)/(lb·°C).
### Btu(IT)/(lb·°C) to kJ/(kg·°C) converter in batch
Cite this Converter, Content or Page as:
"" at https://www.o.vg/unit/specific-heat-capacity/Btu-IT-pound-degree-Celsius-to-kilojoule-kilogram-degree-Celsius.php from www.o.vg Inc,09/12/2024. https://www.o.vg - Instant, Quick, Free Online Unit Converters
| 3,482
| 6,859
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.546875
| 4
|
CC-MAIN-2024-38
|
latest
|
en
| 0.522186
|
http://faculty.gvsu.edu/goldenj/MotionIntro.html
| 1,571,289,683,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2019-43/segments/1570986672723.50/warc/CC-MAIN-20191017045957-20191017073457-00476.warc.gz
| 73,041,626
| 1,960
|
## Motion Introduction
This sketch is for a pretty open-ended investigation of motions, in the spirit of Euclid. There are many relationships in the sketch.
1) Make lists of which polygons are congruent to each other. How do you recognize them? No dragging yet. When your lists are complete, try dragging shapes. When you hit an original, it will move all of its images. Was your list correct?
Euclid thought of the motions as how you got from one shape to a congruent shap. Every pair of congruent shapes is linked by a single motion. So he decided that four motions were needed: the famous three being slide (translation), flip (reflection) and turn (rotation). The other, less popular, motion is a glide reflection.
2) Pick one of the congruent shape families. Identify the motion that moves each shape in the family to all of its congruent images. There should be 10 motions to figure out for each family.
3) Click the Show Lines button. For the same shapes as in (2), identify which shapes are reflections of each other across these lines.
4) Synthesis: how is it possible that shapes are moved with different motions to each other (as in 2) and are also all made by reflections of each other (as in 3)?
Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)
Posted at mathhombre.blogspot.com.
John Golden, Created with GeoGebra
| 331
| 1,453
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.484375
| 3
|
CC-MAIN-2019-43
|
latest
|
en
| 0.955295
|
https://savvycalculator.com/fractal-dimension-calculator/
| 1,725,704,515,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-38/segments/1725700650826.4/warc/CC-MAIN-20240907095856-20240907125856-00103.warc.gz
| 491,706,494
| 47,646
|
# Fractal Dimension Calculator
## Introduction
Fractals are fascinating mathematical objects that exhibit complex, self-replicating patterns at different scales. Calculating the fractal dimension is a crucial aspect of studying these structures. The Fractal Dimension Calculator is a valuable tool that simplifies the determination of a fractal’s dimension, allowing researchers and enthusiasts to delve deeper into the world of fractal geometry.
## Formula:
The fractal dimension quantifies the complexity of a fractal. There are various methods to calculate it, but one commonly used formula is the Box Counting Dimension, often referred to as the Minkowski-Bouligand dimension. The formula is as follows:
D = log(N) / log(1 / ε)
Where:
• D is the fractal dimension.
• N is the number of scaled-down copies (or boxes) required to cover the fractal.
• ε (epsilon) is the scaling factor, which represents the size of the boxes relative to the original fractal.
## How to Use?
Using a Fractal Dimension Calculator is straightforward:
1. Select or Generate a Fractal: Choose a fractal image or generate one using fractal generation software.
2. Scale the Image: The scaling factor (ε) is a crucial parameter. You need to decide how much you want to zoom in on the fractal. Smaller values of ε will reveal finer details, but require more computational resources.
3. Count the Boxes: Cover the fractal with boxes of size ε, counting how many boxes are needed to completely cover it. This step can be automated using image processing software or specialized algorithms.
4. Calculate the Fractal Dimension: Input the values of N and ε into the Fractal Dimension Calculator, which will provide you with the fractal’s dimension.
## Example:
Let’s say you have a fractal image, and you choose ε to be 0.01 (meaning you’re zooming in quite a bit). You count 500 boxes required to cover the fractal. Using the formula:
D = log(500) / log(1 / 0.01)
D = log(500) / log(100)
D ≈ 2.69
The fractal’s dimension, in this case, is approximately 2.69.
## FAQs?
1. What is a fractal dimension?
• The fractal dimension quantifies the complexity and self-similarity of a fractal object. It provides insight into how the fractal structure fills space.
2. Are there other methods to calculate fractal dimension?
• Yes, there are several methods, including the Hausdorff dimension, correlation dimension, and information dimension. The choice of method depends on the characteristics of the fractal.
3. Can I calculate the fractal dimension of any image?
• The image should ideally represent a self-similar or self-affine structure. Fractal dimension calculations are most meaningful for objects that exhibit such properties.
## Conclusion:
The Fractal Dimension Calculator is a powerful tool for researchers, mathematicians, and artists exploring the captivating world of fractals. Understanding the dimension of fractal patterns can lead to insights in various fields, from natural phenomena to computer-generated art. By simplifying the calculation process, this calculator encourages further exploration of these mesmerizing mathematical structures, unlocking new realms of creativity and understanding.
| 677
| 3,201
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.75
| 4
|
CC-MAIN-2024-38
|
latest
|
en
| 0.867561
|
http://math.stackexchange.com/questions/99307/physics-undecidable-problem-in-zfc
| 1,469,280,335,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2016-30/segments/1469257822598.11/warc/CC-MAIN-20160723071022-00269-ip-10-185-27-174.ec2.internal.warc.gz
| 171,161,790
| 19,970
|
# Physics undecidable problem in ZFC.
Is there a physical problem that is undecidable in Zermelo-Fraenkel-Choice set theory? Something related with free abelian groups and Whitehead problem perhaps?
-
How could any physical problem possibly be formulated in set theory except in idealised form? One could argue that any undecidability would be a side-effect of idealisation rather than anything inherent to the problem itself. – Zhen Lin Jan 15 '12 at 17:10
@ZhenLin: One could ask whether there is a physical theory such that which experimental predictions the theory makes is independent of ZFC. However, that just moves the problem to what qualifies as "a physical theory". It is easy to postulate toy "theories" that explicitly depend on, say, the Continuum Hypothesis. – Henning Makholm Jan 15 '12 at 17:51
Does infinitely divisible objects does exist? This is a reasonable question for physicist, but a silly question for mathematician. – Norbert Jan 15 '12 at 18:05
It would be amazing if there were a physical theory that relied on extra-ZFC axioms. Then one could make a case for what new axioms should be included in ZFC based on the outcome of experiments. – Grumpy Parsnip Jan 16 '12 at 21:36
The concept of undecidability itself is an idealization. For example, you can define undecidability in terms of Turing machines, but a Turing machine has an infinite amount of memory, and there are only finitely many atoms in the observable universe. – Ben Crowell Jan 17 '12 at 3:02
There are numerous questions about the nature of the solutions to specific differential equations that are computationally undecidable, and which therefore admit numerous specific instances whose solution has a nature independent of ZFC or of any other fixed consistent theory.
For example, in the paper Boundedness of the domain of definition is undecidable for polynomial ODEs, the authors Graca, Buescu and Campagnolo prove that the question of whether the differential equation $\frac{dx}{dt}=p(t,x)$ with initial conditiion $x(t_0)=x_0$, where $p$ is a vector of polynomials, has a solution with unbounded domain or not, is computationally undecidable.
My point is that whenever a problem like this is computationally undecidable, then it follows that infinitely many specific instances of it are also provably undecidable in any fixed consistent true theory, such as PA or ZFC (or ZFC + large cardinals). The reason is that if a consistent true theory were able to settle all but finitely many instances of the question, then the original problem would be decidable by the algorithm that simply searched for proofs. One can write down a very specific polynomial ODE, such that one cannot prove or refute in ZFC whether it has an unbounded solution or not.
I think there are many other similar examples. I recall hearing in my graduate student days about similar examples, such as the question of whether a given dynamical system is chaotic or not, is also undecidable in general. Therefore these other questions also admit numerous instances of ZFC independence.
-
I don't think this works, for the reasons given by Zhen Lin. The problem discussed by Graca et al. includes lots of idealizations. For example, the abstract refers explicitly to the real number system. But the real number system is an idealization. Real-world physical measurements always have limited precision. We don't even know whether spacetime is infinitely divisible, as $\mathbb{R}^n$ is; it's likely that at the Planck scale, spacetime is granular. – Ben Crowell Jan 17 '12 at 2:47
@Ben, in principle, you're right, but in practice, physicists are always writing down differential equations and saying, "this gives the motion of a simple harmonic oscillator" or whatever, and ignoring any possible granularity of spacetime. I think the problem wants to be interpreted as, in the models commonly used by physicists, are there any problems undecidable in ZFC? – Gerry Myerson Jan 17 '12 at 3:51
@Gerry Myerson: The abstract of the Graca paper specifically refers to $\mathbb{R}^n$. Suppose that there is undecidability when you construct a differential equation over the reals, but none when you construct the analogous difference equation over a discrete lattice? These two mathematical constructs are then physically indistinguishable when the lattice spacing is small enough, and the undecidability is clearly something to do with mathematical idealizations rather than physics. – Ben Crowell Jan 18 '12 at 5:27
@Ben, I concede your point that the undecidability has to do with the mathematical idealization - but I believe there are situations in which every working physicist would use the same, "canonical" idealization. I don't think anyone working on the motions of the Earth-Moon-Sun system under gravity would consider writing difference equations over a discrete lattice. I think the question still makes sense if asked as whether there are problems where the canonical mathematical model leads to undecidability. – Gerry Myerson Jan 18 '12 at 5:43
@GerryMyerson: I agree that if you impute this interpretation to the question, then it has the answer you claim. But under this interpretation, I think it's a question about the sociology of science, not a question about the philosophical foundations of science. It seems to me that the OP intended to ask a question that he thought had implications for the philosophical foundations of science. – Ben Crowell Jan 19 '12 at 15:58
| 1,222
| 5,463
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.578125
| 3
|
CC-MAIN-2016-30
|
latest
|
en
| 0.931648
|
http://mathoverflow.net/feeds/question/80267
| 1,371,722,370,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2013-20/segments/1368711240143/warc/CC-MAIN-20130516133400-00037-ip-10-60-113-184.ec2.internal.warc.gz
| 153,242,826
| 2,427
|
Guessing game with guess cost - MathOverflow most recent 30 from http://mathoverflow.net 2013-06-20T09:59:32Z http://mathoverflow.net/feeds/question/80267 http://www.creativecommons.org/licenses/by-nc/2.5/rdf http://mathoverflow.net/questions/80267/guessing-game-with-guess-cost Guessing game with guess cost Alex R. 2011-11-07T03:54:06Z 2011-11-07T03:59:59Z <p>This is a question about <a href="http://projecteuler.net/problem=328BlockquoteBlockquote" rel="nofollow">Problem 328</a> on the website Project Euler. A description of the problem is provided in the previous link. I was wondering if there has been any research done on this question. In particular, I am interested in <em>analytic</em> results about the cost function in the problem. Thus far, this question has been highly resistant to any analytic results on my part. Notice that I am NOT asking for an algorithm that solves this question. Let me first establish some terminology.</p> <p>First let's generalize the game to an interval $[a,b]$ instead of just $[1,n]$. Define $C(a,b)$ to be the best-worst-case cost of searching through interval [a,b]. The most obvious recursive approach to the problem would be to notice that if the first guess is $p$, then:</p> <p>$C(a,b) = \min_{p\in [a,b]} ( p + \max${ $C(a,p-1),C(a,p+1)$ } $)$</p> <p>From here on, i'll refer to the first guess $p$ as the "pivot." Notice that any strategy of guesses can be defined as a binary tree $T$ where a leftward branch represents "your guess is higher than the hidden number" and the rightward represents "your guess is lower than the hidden number." In this way we can catalog the best-worst-case strategies, $T_1,\ldots,T_k$.</p> <blockquote> <p>Question 1: can it be shown that the pivots of $T_i$ are all the same? </p> </blockquote> <p>While the answer to question 1 is likely "no" without further assumptions, let me add this: I think that it may be possible to say "yes" if we allow reorganization of the sub-trees of $T_i$, by moving the desired pivot to the top of the tree. That leaves the question of what is the asymptotic number of pivots is for $C(1,n)$ for large $n$?</p> <p>In my current algorithm I have observed the following behavior of pivots for $C(1,n)$:</p> <p><img src="http://i.imgur.com/BL68Z.jpg" alt="alt text"></p> <p>Basically, the pivot for each successive $n$ goes up by 1 most of the time, except when an unbalancing occurs causing a drop. I suspect that the max function above tends to pick the right interval cost except at the drop points. For those interested, the drop points occur at 4,19,51 and so on, with the interval between drops growing exponentially. </p> <blockquote> <p>Question 2: Can one show that compared to a previous pivot either $p$ must increase exactly by 1 most of the time or otherwise drop? Can these drop points be predicted asymptotically as $n$ grows?</p> </blockquote> <p>Finally, it's easy enough to show right-sided monotonicity: $C(a,b) \leq C(a,b+1)$. What interests me is how $C(a,b)$ relates to $C(a+1,b)$. This would be related to question 2 as sudden switches of inequality here would likely signify a drop. </p>
| 850
| 3,131
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.71875
| 4
|
CC-MAIN-2013-20
|
latest
|
en
| 0.847873
|
http://isarmathlib.org/Topology_ZF_4a.html
| 1,576,409,251,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2019-51/segments/1575541307813.73/warc/CC-MAIN-20191215094447-20191215122447-00545.warc.gz
| 67,019,148
| 5,804
|
# IsarMathLib
## A library of formalized mathematics for Isabelle/ZF theorem proving environment
theory Topology_ZF_4a imports Topology_ZF_4
begin
This theory considers the relations between topology and systems of neighborhood filters.
### Neighborhood systems
The standard way of defining a topological space is by specifying a collection of sets that we consider "open" (see the Topology_ZF theory). An alternative of this approach is to define a collection of neighborhoods for each point of the space.
We define a neighborhood system as a function that takes each point $$x\in X$$ and assigns it a collection of subsets of $$X$$ which is called the neighborhoods of $$x$$. The neighborhoods of a point $$x$$ form a filter that satisfies an additional axiom that for every neighborhood $$N$$ of $$x$$ we can find another one $$U$$ such that $$N$$ is a neighborhood of every point of $$U$$.
Definition
$$\mathcal{M} \text{ is a neighborhood system on } X \equiv (\mathcal{M} : X\rightarrow Pow(Pow(X))) \wedge$$ $$(\forall x\in X.\ (\mathcal{M} (x) \text{ is a filter on } X) \wedge (\forall N\in \mathcal{M} (x).\ x\in N \wedge (\exists U\in \mathcal{M} (x).\ \forall y\in U.\ (N\in \mathcal{M} (y)) ) ))$$
A neighborhood system on $$X$$ consists of collections of subsets of $$X$$.
lemma neighborhood_subset:
assumes $$\mathcal{M} \text{ is a neighborhood system on } X$$ and $$x\in X$$ and $$N\in \mathcal{M} (x)$$
shows $$N\subseteq X$$ and $$x\in N$$proof
from $$\mathcal{M} \text{ is a neighborhood system on } X$$ have $$\mathcal{M} : X\rightarrow Pow(Pow(X))$$ unfolding IsNeighSystem_def
with $$x\in X$$ have $$\mathcal{M} (x) \in Pow(Pow(X))$$ using apply_funtype
with $$N\in \mathcal{M} (x)$$ show $$N\subseteq X$$
from assms show $$x\in N$$ using IsNeighSystem_def
qed
Some sources (like Wikipedia) use a bit different definition of neighborhood systems where the $$U$$ is required to be contained in $$N$$. The next lemma shows that this stronger version can be recovered from our definition.
lemma neigh_def_stronger:
assumes $$\mathcal{M} \text{ is a neighborhood system on } X$$ and $$x\in X$$ and $$N\in \mathcal{M} (x)$$
shows $$\exists U\in \mathcal{M} (x).\ U\subseteq N \wedge (\forall y\in U.\ (N\in \mathcal{M} (y)))$$proof
from assms obtain $$W$$ where $$W\in \mathcal{M} (x)$$ and areNeigh: $$\forall y\in W.\ (N\in \mathcal{M} (y))$$ using IsNeighSystem_def
let $$U = N\cap W$$
from assms, $$W\in \mathcal{M} (x)$$ have $$U \in \mathcal{M} (x)$$ unfolding IsNeighSystem_def , IsFilter_def
moreover
have $$U\subseteq N$$
moreover
from areNeigh have $$\forall y\in U.\ (N\in \mathcal{M} (y))$$
ultimately show $$thesis$$
qed
### Topology from neighborhood systems
Given a neighborhood system $$\{\mathcal{M}_x\}_{x\in X}$$ we can define a topology on $$X$$. Namely, we consider a subset of $$X$$ open if $$U \in \mathcal{M}_x$$ for every element $$x$$ of $$U$$.
The collection of sets defined as above is indeed a topology.
theorem topology_from_neighs:
assumes $$\mathcal{M} \text{ is a neighborhood system on } X$$
defines Tdef: $$T \equiv \{U\in Pow(X).\ \forall x\in U.\ U \in \mathcal{M} (x)\}$$
shows $$T \text{ is a topology }$$ and $$\bigcup T = X$$proof
{
fix $$\mathfrak{U}$$
assume $$\mathfrak{U} \in Pow(T)$$
have $$\bigcup \mathfrak{U} \in T$$proof
from $$\mathfrak{U} \in Pow(T)$$, Tdef have $$\bigcup \mathfrak{U} \in Pow(X)$$
moreover {
fix $$x$$
assume $$x \in \bigcup \mathfrak{U}$$
then obtain $$U$$ where $$U\in \mathfrak{U}$$ and $$x\in U$$
with assms, $$\mathfrak{U} \in Pow(T)$$ have $$U \in \mathcal{M} (x)$$ and $$U \subseteq \bigcup \mathfrak{U}$$ and $$\mathcal{M} (x) \text{ is a filter on } X$$ unfolding IsNeighSystem_def
with $$\bigcup \mathfrak{U} \in Pow(X)$$ have $$\bigcup \mathfrak{U} \in \mathcal{M} (x)$$ unfolding IsFilter_def
} ultimately show $$\bigcup \mathfrak{U} \in T$$ using Tdef
qed
}
moreover {
fix $$U$$ $$V$$
assume $$U\in T$$ and $$V\in T$$
have $$U\cap V \in T$$proof
from Tdef, $$U\in T$$, $$U\in T$$ have $$U\cap V \in Pow(X)$$
moreover {
fix $$x$$
assume $$x \in U\cap V$$
with assms, $$U\in T$$, $$V\in T$$, Tdef have $$U \in \mathcal{M} (x)$$, $$V \in \mathcal{M} (x)$$ and $$\mathcal{M} (x) \text{ is a filter on } X$$ unfolding IsNeighSystem_def
then have $$U\cap V \in \mathcal{M} (x)$$ unfolding IsFilter_def
} ultimately show $$U\cap V \in T$$ using Tdef
qed
} ultimately show $$T \text{ is a topology }$$ unfolding IsATopology_def
from assms show $$\bigcup T = X$$ unfolding IsNeighSystem_def , IsFilter_def
qed
Some sources (like Wikipedia) define the open sets generated by a neighborhood system "as those sets containing a neighborhood of each of their points". The next lemma shows that this definition is equivalent to the one we are using.
lemma topology_from_neighs1:
assumes $$\mathcal{M} \text{ is a neighborhood system on } X$$
shows $$\{U\in Pow(X).\ \forall x\in U.\ U \in \mathcal{M} (x)\} = \{U\in Pow(X).\ \forall x\in U.\ \exists V \in \mathcal{M} (x).\ V\subseteq U\}$$proof
let $$T = \{U\in Pow(X).\ \forall x\in U.\ U \in \mathcal{M} (x)\}$$
let $$S = \{U\in Pow(X).\ \forall x\in U.\ \exists V \in \mathcal{M} (x).\ V\subseteq U\}$$
show $$S\subseteq T$$proof
{
fix $$U$$
assume $$U\in S$$
then have $$U\in Pow(X)$$
moreover
from assms, $$U\in S$$, $$U\in Pow(X)$$ have $$\forall x\in U.\ U \in \mathcal{M} (x)$$ unfolding IsNeighSystem_def , IsFilter_def
ultimately have $$U\in T$$
}
thus $$thesis$$
qed
show $$T\subseteq S$$
qed
### Neighborhood system from topology
Once we have a topology $$T$$ we can define a natural neighborhood system on $$X=\bigcup T$$. In this section we define such neighborhood system and prove its basic properties.
For a topology $$T$$ we define a neighborhood system of $$T$$ as a function that takes an $$x\in X=\bigcup T$$ and assigns it a collection supersets of open sets containing $$x$$. We call that the "neighborhood system of $$T$$"
Definition
$$\text{ neighborhood system of } T \equiv \{ \langle x,\{V\in Pow(\bigcup T).\ \exists U\in T.\ (x\in U \wedge U\subseteq V)\}\rangle .\ x \in \bigcup T \}$$
The next lemma shows that open sets are members of (what we will prove later to be) the natural neighborhood system on $$X=\bigcup T$$.
lemma open_are_neighs:
assumes $$U\in T$$, $$x\in U$$
shows $$x \in \bigcup T$$ and $$U \in \{V\in Pow(\bigcup T).\ \exists U\in T.\ (x\in U \wedge U\subseteq V)\}$$ using assms
Another fact we will need is that for every $$x\in X=\bigcup T$$ the neighborhoods of $$x$$ form a filter
lemma neighs_is_filter:
assumes $$T \text{ is a topology }$$ and $$x \in \bigcup T$$
defines Mdef: $$\mathcal{M} \equiv \text{ neighborhood system of } T$$
shows $$\mathcal{M} (x) \text{ is a filter on } (\bigcup T)$$proof
let $$X = \bigcup T$$
let $$\mathfrak{F} = \{V\in Pow(X).\ \exists U\in T.\ (x\in U \wedge U\subseteq V)\}$$
have $$0\notin \mathfrak{F}$$
moreover
have $$X\in \mathfrak{F}$$proof
from assms, $$x\in X$$ have $$X \in Pow(X)$$, $$X\in T$$ and $$x\in X \wedge X\subseteq X$$ using carr_open
hence $$\exists U\in T.\ (x\in U \wedge U\subseteq X)$$
thus $$thesis$$
qed
moreover
have $$\forall A\in \mathfrak{F} .\ \forall B\in \mathfrak{F} .\ A\cap B \in \mathfrak{F}$$proof
{
fix $$A$$ $$B$$
assume $$A\in \mathfrak{F}$$, $$B\in \mathfrak{F}$$
then obtain $$U_A$$ $$U_B$$ where $$U_A\in T$$, $$x\in U_A$$, $$U_A\subseteq A$$, $$U_B\in T$$, $$x\in U_B$$, $$U_B\subseteq B$$
with $$T \text{ is a topology }$$, $$A\in \mathfrak{F}$$, $$B\in \mathfrak{F}$$ have $$A\cap B \in Pow(X)$$ and $$U_A\cap U_B \in T$$, $$x \in U_A\cap U_B$$, $$U_A\cap U_B \subseteq A\cap B$$ using IsATopology_def
hence $$A\cap B \in \mathfrak{F}$$
}
thus $$thesis$$
qed
moreover
have $$\forall B\in \mathfrak{F} .\ \forall C\in Pow(X).\ B\subseteq C \longrightarrow C\in \mathfrak{F}$$proof
{
fix $$B$$ $$C$$
assume $$B\in \mathfrak{F}$$, $$C \in Pow(X)$$, $$B\subseteq C$$
then obtain $$U$$ where $$U\in T$$ and $$x\in U$$, $$U\subseteq B$$
with $$C \in Pow(X)$$, $$B\subseteq C$$ have $$C\in \mathfrak{F}$$
}
thus $$thesis$$
qed
ultimately have $$\mathfrak{F} \text{ is a filter on } X$$ unfolding IsFilter_def
with Mdef, $$x\in X$$ show $$\mathcal{M} (x) \text{ is a filter on } X$$ using ZF_fun_from_tot_val1 , NeighSystem_def
qed
The next theorem states that the the natural neighborhood system on $$X=\bigcup T$$ indeed is a neighborhood system.
theorem neigh_from_topology:
assumes $$T \text{ is a topology }$$
shows $$(\text{ neighborhood system of } T) \text{ is a neighborhood system on } (\bigcup T)$$proof
let $$X = \bigcup T$$
let $$\mathcal{M} = \text{ neighborhood system of } T$$
have $$\mathcal{M} : X\rightarrow Pow(Pow(X))$$proof
{
fix $$x$$
assume $$x\in X$$
hence $$\{V\in Pow(\bigcup T).\ \exists U\in T.\ (x\in U \wedge U\subseteq V)\} \in Pow(Pow(X))$$
}
hence $$\forall x\in X.\ \{V\in Pow(\bigcup T).\ \exists U\in T.\ (x\in U \wedge U\subseteq V)\} \in Pow(Pow(X))$$
then show $$thesis$$ using ZF_fun_from_total , NeighSystem_def
qed
moreover
from assms have $$\forall x\in X.\ (\mathcal{M} (x) \text{ is a filter on } X)$$ using neighs_is_filter , NeighSystem_def
moreover
have $$\forall x\in X.\ \forall N\in \mathcal{M} (x).\ x\in N \wedge (\exists U\in \mathcal{M} (x).\ \forall y\in U.\ (N\in \mathcal{M} (y)))$$proof
{
fix $$x$$ $$N$$
assume $$x\in X$$, $$N \in \mathcal{M} (x)$$
let $$\mathfrak{F} = \{V\in Pow(X).\ \exists U\in T.\ (x\in U \wedge U\subseteq V)\}$$
from $$x\in X$$ have $$\mathcal{M} (x) = \mathfrak{F}$$ using ZF_fun_from_tot_val1 , NeighSystem_def
with $$N \in \mathcal{M} (x)$$ have $$N\in \mathfrak{F}$$
hence $$x\in N$$
from $$N\in \mathfrak{F}$$ obtain $$U$$ where $$U\in T$$, $$x\in U$$ and $$U\subseteq N$$
with $$N\in \mathfrak{F}$$, $$\mathcal{M} (x) = \mathfrak{F}$$ have $$U \in \mathcal{M} (x)$$
moreover
from assms, $$U\in T$$, $$U\subseteq N$$, $$N\in \mathfrak{F}$$ have $$\forall y\in U.\ (N \in \mathcal{M} (y))$$ using ZF_fun_from_tot_val1 , open_are_neighs , neighs_is_filter , NeighSystem_def , IsFilter_def
ultimately have $$\exists U\in \mathcal{M} (x).\ \forall y\in U.\ (N\in \mathcal{M} (y))$$
with $$x\in N$$ have $$x\in N \wedge (\exists U\in \mathcal{M} (x).\ \forall y\in U.\ (N\in \mathcal{M} (y)))$$
}
thus $$thesis$$
qed
ultimately show $$thesis$$ unfolding IsNeighSystem_def
qed
end
Definition of IsNeighSystem: $$\mathcal{M} \text{ is a neighborhood system on } X \equiv (\mathcal{M} : X\rightarrow Pow(Pow(X))) \wedge$$ $$(\forall x\in X.\ (\mathcal{M} (x) \text{ is a filter on } X) \wedge (\forall N\in \mathcal{M} (x).\ x\in N \wedge (\exists U\in \mathcal{M} (x).\ \forall y\in U.\ (N\in \mathcal{M} (y)) ) ))$$
Definition of IsFilter: $$\mathfrak{F} \text{ is a filter on } X \equiv (0\notin \mathfrak{F} ) \wedge (X\in \mathfrak{F} ) \wedge (\mathfrak{F} \subseteq Pow(X)) \wedge$$ $$(\forall A\in \mathfrak{F} .\ \forall B\in \mathfrak{F} .\ A\cap B\in \mathfrak{F} ) \wedge (\forall B\in \mathfrak{F} .\ \forall C\in Pow(X).\ B\subseteq C \longrightarrow C\in \mathfrak{F} )$$
Definition of IsATopology: $$T \text{ is a topology } \equiv ( \forall M \in Pow(T).\ \bigcup M \in T ) \wedge$$ $$( \forall U\in T.\ \forall V\in T.\ U\cap V \in T)$$
lemma carr_open:
assumes $$T \text{ is a topology }$$
shows $$(\bigcup T) \in T$$
lemma ZF_fun_from_tot_val1:
assumes $$x\in X$$
shows $$\{\langle x,b(x)\rangle .\ x\in X\}(x)=b(x)$$
Definition of NeighSystem: $$\text{ neighborhood system of } T \equiv \{ \langle x,\{V\in Pow(\bigcup T).\ \exists U\in T.\ (x\in U \wedge U\subseteq V)\}\rangle .\ x \in \bigcup T \}$$
lemma ZF_fun_from_total:
assumes $$\forall x\in X.\ b(x) \in Y$$
shows $$\{\langle x,b(x)\rangle .\ x\in X\} : X\rightarrow Y$$
lemma neighs_is_filter:
assumes $$T \text{ is a topology }$$ and $$x \in \bigcup T$$
defines $$\mathcal{M} \equiv \text{ neighborhood system of } T$$
shows $$\mathcal{M} (x) \text{ is a filter on } (\bigcup T)$$
lemma open_are_neighs:
assumes $$U\in T$$, $$x\in U$$
shows $$x \in \bigcup T$$ and $$U \in \{V\in Pow(\bigcup T).\ \exists U\in T.\ (x\in U \wedge U\subseteq V)\}$$
86
31
23
23
| 4,399
| 12,049
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.3125
| 3
|
CC-MAIN-2019-51
|
longest
|
en
| 0.828341
|
https://www.geeksforgeeks.org/sorting-algorithms-visualization-bubble-sort/?ref=rp
| 1,685,551,965,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2023-23/segments/1685224646937.1/warc/CC-MAIN-20230531150014-20230531180014-00697.warc.gz
| 847,121,881
| 37,605
|
GeeksforGeeks App
Open App
Browser
Continue
# Sorting Algorithms Visualization : Bubble Sort
The human brain can easily process visuals in spite of long codes to understand the algorithms. In this article, Bubble sort visualization has been implemented using graphics.h library. As we all know that bubble sort swaps the adjacent elements if they are unsorted and finally the larger one being shifted towards to the end of array in each pass. Sometimes, it becomes difficult to analyze the data manually, but after plotting graphically it is much easier to understand as shown in the figure below.
Approach:
• Even comparing two types of data-set is also difficult with numbers if the size of the array is large.
• The graphical representation of randomly distributed numbers and reverse sorted numbers is shown below.
• The white line is used to represent the length of number (9 being represented by 9 pixels vertically upwards) while its position represents its index in the array.
• Graphically sorting can be shown simply by swapping the lines.
• As we swap the numbers in bubble sort, a different colour line can be used to see the current index in the array (here green colour).
• Here delay() can be increased to see the transition in the graph.
Examples:
```
Random array
Reverse sorted array
```
Pre-defined Functions Used:
• setcurrentwindow():A function which is used to set the size of current window.
• setcolor(n): A function which is used to change the color of cursor by changing the value of n.
• delay(n): A function which is used to delay the program by n milliseconds. It is being used for slowing down the transitions speed
• line(x1, y1, x2, y2): A function which is used to draw an line from point (x1, y1) to point (x2, y2). (0, 0) being the left top corner of the screen and bottom right be (n1, n2) where n1, n2 are the width and height of the current window. There are other graphics which can be applied to this line using setcolor().
Below is the program to visualize the Bubble Sort algorithm:
Implementation
`// C++ program for visualization of bubble sort`` ` `#include "graphics.h"``#include `` ` `using` `namespace` `std;`` ` `// Initialize the size``// with the total numbers to sorted``// and the gap to be maintained in graph``vector<``int``> numbers;``int` `size = 200;``int` `gap = 4;`` ` `// Function for swapping the lines graphically``void` `swap(``int` `i, ``int` `j, ``int` `x, ``int` `y)``{`` ``// Swapping the first line with the correct line`` ``// by making it black again and then draw the pixel`` ``// for white color.`` ` ` ``setcolor(GREEN);`` ``line(i, size, i, size - x);`` ``setcolor(BLACK);`` ``line(i, size, i, size - x); `` ``setcolor(WHITE);`` ``line(i, size, i, size - y); `` ` ` ``// Swapping the first line with the correct line`` ``// by making it black again and then draw the pixel`` ``// for white color.`` ``setcolor(GREEN);`` ``line(j, size, j, size - y);`` ``setcolor(BLACK);`` ``line(j, size, j, size - y);`` ``setcolor(WHITE);`` ``line(j, size, j, size - x);``}`` ` `// Bubble sort function``void` `bubbleSort()``{`` ``int` `temp, i, j;`` ` ` ``for` `(i = 1; i < size; i++) {`` ``for` `(j = 0; j < size - i; j++) {`` ``if` `(numbers[j] > numbers[j + 1]) {`` ``temp = numbers[j];`` ``numbers[j] = numbers[j + 1];`` ``numbers[j + 1] = temp;`` ` ` ``// As we swapped the last two numbers`` ``// just swap the lines with the values.`` ``// This is function call`` ``// for swapping the lines`` ``swap(gap * j + 1,`` ``gap * (j + 1) + 1,`` ``numbers[j + 1],`` ``numbers[j]);`` ``}`` ``}`` ``}``}`` ` `// Driver program``int` `main()``{`` ` ` ``// auto detection of screen size`` ``int` `gd = DETECT, gm;`` ``int` `wid1;`` ` ` ``// Graph initialization`` ``initgraph(&gd, &gm, NULL);`` ` ` ``// setting up window size (gap*size) * (size)`` ``wid1 = initwindow(gap * size + 1, size + 1);`` ``setcurrentwindow(wid1);`` ` ` ``// Initializing the array`` ``for` `(``int` `i = 1; i <= size; i++)`` ``numbers.push_back(i);`` ` ` ``// Find a seed and shuffle the array`` ``// to make it random.`` ``// Here different type of array`` ``// can be taken to results`` ``// such as nearly sorted, already sorted,`` ``// reverse sorted to visualize the result`` ``unsigned seed`` ``= chrono::system_clock::now()`` ``.time_since_epoch()`` ``.count();`` ` ` ``shuffle(numbers.begin(),`` ``numbers.end(),`` ``default_random_engine(seed));`` ` ` ``// Initial plot of numbers in graph taking`` ``// the vector position as x-axis and its`` ``// corresponding value will be the height of line.`` ``for` `(``int` `i = 1; i <= gap * size; i += gap) {`` ``line(i, size, i, (size - numbers[i / gap]));`` ``}`` ` ` ``// Delay the code`` ``delay(200);`` ` ` ``// Call sort`` ``bubbleSort();`` ` ` ``for` `(``int` `i = 0; i < size; i++) {`` ``cout << numbers[i] << ``" "``;`` ``}`` ``cout << endl;`` ` ` ``// Wait for sometime .`` ``delay(5000);`` ` ` ``// Close the graph`` ``closegraph();`` ` ` ``return` `0;``}`
Output:
```1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
| 2,027
| 6,132
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.609375
| 4
|
CC-MAIN-2023-23
|
latest
|
en
| 0.8968
|
http://www.gurufocus.com/term/Dividends+Per+Share/THR/Dividends%2BPer%2BShare/Thermon%2BGroup%2BHoldings%2BInc
| 1,480,725,074,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2016-50/segments/1480698540798.71/warc/CC-MAIN-20161202170900-00462-ip-10-31-129-80.ec2.internal.warc.gz
| 496,638,786
| 28,672
|
Switch to:
Thermon Group Holdings Inc (NYSE:THR)
Dividends Per Share
\$0.00 (TTM As of Sep. 2016)
Thermon Group Holdings Inc's dividends per share for the three months ended in Sep. 2016 was \$0.00. Its dividends per share for the trailing twelve months (TTM) ended in Sep. 2016 was \$0.00. Its Dividend Payout Ratio for the three months ended in Sep. 2016 was 0.00. As of today, Thermon Group Holdings Inc's Dividend Yield is 0.00%.
Please click Growth Rate Calculation Example (GuruFocus) to see how GuruFocus calculates Wal-Mart Stores Inc (WMT)'s revenue growth rate. You can apply the same method to get the average dividends per share growth rate.
Definition
Dividends paid to per common share.
Explanation
1. Dividend payout ratio measures the percentage of the companys earnings paid out as dividends.
Thermon Group Holdings Inc's Dividend Payout Ratio for the quarter that ended in Sep. 2016 is calculated as
Dividend Payout Ratio = Dividends Per Share (Q: Sep. 2016 ) / EPS without NRI (Q: Sep. 2016 ) = 0 / 0.11 = 0.00
2. Dividend Yield measures how much a company pays out in dividends each year relative to its share price.
Thermon Group Holdings Inc Recent Full-Year Dividend History
Amount Ex-date Record Date Pay Date Type Frequency
Thermon Group Holdings Inc's Dividend Yield (%) for Today is calculated as
Dividend Yield = Most Recent Full Year Dividend / Current Share Price = 0 / 19.21 = 0.00 %
Current Share Price is \$19.21.
Thermon Group Holdings Inc's Dividends Per Share for the trailing twelve months (TTM) ended in Today is \$0.
* All numbers are in millions except for per share data and ratio. All numbers are in their local exchange's currency.
Related Terms
Historical Data
* All numbers are in millions except for per share data and ratio. All numbers are in their local exchange's currency.
Thermon Group Holdings Inc Annual Data
Mar09 Mar10 Mar12 Mar13 Mar14 Mar15 Mar16 Dividends Per Share 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Thermon Group Holdings Inc Quarterly Data
Jun14 Sep14 Dec14 Mar15 Jun15 Sep15 Dec15 Mar16 Jun16 Sep16 Dividends Per Share 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Get WordPress Plugins for easy affiliate links on Stock Tickers and Guru Names | Earn affiliate commissions by embedding GuruFocus Charts
GuruFocus Affiliate Program: Earn up to \$400 per referral. ( Learn More)
| 653
| 2,385
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.75
| 3
|
CC-MAIN-2016-50
|
longest
|
en
| 0.853471
|
http://www.webdeveloper.com/forum/showthread.php?260262-cubic-bezier-what-do-the-values-mean&mode=hybrid
| 1,508,753,586,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2017-43/segments/1508187825889.47/warc/CC-MAIN-20171023092524-20171023112524-00185.warc.gz
| 599,769,531
| 16,786
|
# Thread: cubic-bezier -what do the values mean
#### Hybrid View
1. Registered User
Join Date
Feb 2011
Posts
90
## cubic-bezier -what do the values mean
I do understand that ease-in mean that the animation start slow, ease-out ending slow, and ease-in-out starting slow and ending slow.
But what is the meaning of the four values in the cubic-bezier?
w3school say:
cubic-bezier(n,n,n,n) Define your own values in the cubic-bezier function. Possible values are numeric values from 0 to 1.
http://www.w3schools.com/cssref/css3...g-function.asp
But that doesn't explain much?
can anyone explain to me what is the meaning of every value in the cubic-bezier?
2. The reference you quoted says:
"Try the different values in the examples below to understand how it works!" and then gives some examples you can try for yourself.
3. Registered User
Join Date
Feb 2011
Posts
90
I want some deep understanding.
just trying and play wont necessarily give me that.
Does anyone know what this mean?
4. Hi there programAngel
check out some of these links at the Mozilla Developer Network...
| 260
| 1,088
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.5625
| 3
|
CC-MAIN-2017-43
|
longest
|
en
| 0.851006
|
https://oeis.org/A350038
| 1,713,284,221,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-18/segments/1712296817103.42/warc/CC-MAIN-20240416155952-20240416185952-00871.warc.gz
| 404,881,984
| 4,227
|
The OEIS is supported by the many generous donors to the OEIS Foundation.
Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
A350038 Numbers that are the perimeter of a primitive 60-degree integer triangle. 3
18, 20, 35, 36, 45, 56, 77, 84, 90, 104, 110, 120, 126, 135, 143, 170, 176, 182, 189, 198, 209, 210, 216, 221, 252, 260, 264, 266, 270, 272, 273, 297, 299, 323, 350, 351, 360, 368, 374, 378, 380, 390, 396, 425, 432, 437, 459, 462, 464, 468, 476, 494, 495, 506, 527, 551, 561, 570, 575, 585, 594, 608, 612 (list; graph; refs; listen; history; text; internal format)
OFFSET 1,1 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 EXAMPLE b(n) = Sum_{k=1..3} A264826(3*n+k-3). c(n) = Sum_{k=1..3} A201223(3*n+k-3). b(1) = c(1) = 3+7+8 = 18 = a(1). b(2) = c(2) = 5+7+8 = 20 = a(2). b(3) = c(5) = 5+19+21 = 45 = a(5). b(4) = c(3) = 7+13+15 = 35 = a(3). b(5) = c(9) = 7+37+40 = 84 = a(8). b(6) = c(4) = 8+13+15 = 36 = a(4). PROG (Ruby) def A(n) ary = [] (1..n).each{|i| (i + 1..n).each{|j| if i.gcd(j) == 1 && (i - j) % 3 > 0 x, y, z = j * j, i * j, i * i ary << 2 * x + 5 * y + 2 * z ary << 3 * x + 3 * y end } } ary end p A(20).uniq.sort[0..100] CROSSREFS Cf. A024364, A201223, A264826, A350013, A350039. Sequence in context: A186781 A164711 A338195 * A335897 A036170 A064271 Adjacent sequences: A350035 A350036 A350037 * A350039 A350040 A350041 KEYWORD nonn AUTHOR Seiichi Manyama, Dec 10 2021 STATUS approved
Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.
Last modified April 16 12:05 EDT 2024. Contains 371711 sequences. (Running on oeis4.)
| 768
| 1,776
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.5625
| 4
|
CC-MAIN-2024-18
|
latest
|
en
| 0.498557
|
https://plainmath.net/elementary-geometry/79989-given-stepsizes-h
| 1,685,950,014,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2023-23/segments/1685224651325.38/warc/CC-MAIN-20230605053432-20230605083432-00162.warc.gz
| 524,780,754
| 22,217
|
landdenaw
2022-06-29
Given stepsizes ${h}_{1}$ and ${h}_{2}$ , develop a numerical scheme to approximate ${f}^{\mathrm{\prime }\mathrm{\prime }}\left({x}_{0}\right)$ with function values $f\left({x}_{0}\right)$ , $f\left({x}_{0}+{h}_{1}\right)$ and $f\left({x}_{0}+{h}_{2}\right)$ . Under what conditions will your method not work?
Lisbonaid
Step 1
If ${h}_{1}=-{h}_{2}$ , you can use second derivative midpoint formula
${f}^{{}^{″}}\left({x}_{0}\right)=\frac{1}{{h}^{2}}\left[f\left({x}_{0}-h\right)-2f\left({x}_{0}\right)+f\left({x}_{0}+h\right)\right]+o\left({h}^{3}\right)$
If ${h}_{1}\ne -{h}_{2}$ , you can do like this:
$f\left({x}_{0}+{h}_{1}\right)=f\left({x}_{0}\right)+{h}_{1}{f}^{\prime }\left({x}_{0}\right)+\frac{{h}_{1}^{2}}{2}{f}^{{}^{″}}\left({x}_{0}\right)+o\left({h}_{1}^{3}\right)$
$f\left({x}_{0}+{h}_{2}\right)=f\left({x}_{0}\right)+{h}_{2}{f}^{\prime }\left({x}_{0}\right)+\frac{{h}_{2}^{2}}{2}{f}^{{}^{″}}\left({x}_{0}\right)+o\left({h}_{2}^{3}\right)$
Minus the two equations
$f\left({x}_{0}+{h}_{2}\right)-f\left({x}_{0}+{h}_{1}\right)=\left({h}_{2}-{h}_{1}\right){f}^{\prime }\left({x}_{0}\right)+\frac{{h}_{2}^{2}-{h}_{1}^{2}}{2}{f}^{{}^{″}}\left({x}_{0}\right)+o\left({h}_{2}^{3}-{h}_{1}^{3}\right)$
and
${f}^{\prime }\left({x}_{0}\right)=\frac{f\left({x}_{0}+{h}_{2}\right)-f\left({x}_{0}+{h}_{1}\right)}{{h}_{2}-{h}_{1}}+o\left({h}_{2}^{2}-{h}_{1}^{2}\right)$
But, considering the accuracy, in general, we pick ${h}_{1}=-{h}_{2}$ , which cancels out the ${f}^{\prime }\left({x}_{0}\right)$ that has a low accuracy in a certain sense.
An alternative way to find ${f}^{{}^{″}}\left({x}_{0}\right)$ using only $f\left({x}_{0}\right)$ , $f\left({x}_{0}+{h}_{1}\right)$ and $f\left({x}_{0}+{h}_{2}\right)$ and not involving ${f}^{\prime }\left({x}_{0}\right)$ is that you should express ${f}^{\prime }\left({x}_{0}\right)$ with $f\left({x}_{0}\right)$ , $f\left({x}_{0}+{h}_{1}\right)$ and $f\left({x}_{0}+{h}_{2}\right)$ , so a potential formula is
$f\left({x}_{0}+{h}_{1}\right)=f\left({x}_{0}\right)+\frac{{h}_{1}}{{h}_{1}+{h}_{2}}\left[f\left({x}_{0}+{h}_{1}\right)+f\left({x}_{0}+{h}_{2}\right)-2f\left({x}_{0}\right)-\left(\frac{{h}_{2}^{2}-{h}_{1}^{2}}{2}{f}^{{}^{″}}\left({x}_{0}\right)\right)\right]+\frac{{h}_{1}^{2}}{2}{f}^{{}^{″}}\left({x}_{0}\right)$
Kiana Dodson
Step 1
${f}_{1}\approx {f}_{0}+{h}_{1}{f}_{0}^{\prime }+\frac{{h}_{1}^{2}}{2}{f}_{0}^{″},$
${f}_{2}\approx {f}_{0}+{h}_{2}{f}_{0}^{\prime }+\frac{{h}_{2}^{2}}{2}{f}_{0}^{″}.$
Then by elimination of ${f}_{0}^{\prime }$ , you get
${h}_{2}\left({f}_{1}-{f}_{0}\right)-{h}_{1}\left({f}_{2}-{f}_{0}\right)=\frac{{h}_{1}{h}_{2}\left({h}_{1}-{h}_{2}\right)}{2}{f}_{0}^{″}.$
Do you have a similar question?
| 1,204
| 2,708
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 42, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.1875
| 4
|
CC-MAIN-2023-23
|
latest
|
en
| 0.443025
|
http://www.jiskha.com/display.cgi?id=1291075462
| 1,498,382,310,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2017-26/segments/1498128320476.39/warc/CC-MAIN-20170625083108-20170625103108-00595.warc.gz
| 567,674,938
| 3,921
|
PHYSICS
posted by .
1)A picture of width 40 cm weighing 40N hangs from a nail by means of flexible wire attached to the sides of the picture frame. The midpoint of the wire passes over the nail which is 3 cm higher than the points where the wire is attached to the frame. Find the tension of the wire.
• PHYSICS -
the wire on each side supports mg/2
Looking at the force diagram, sinTheta(angle of depression)=(mg/2)/Tension
but tanTheta=3/20 according to the dimensions.
Tension= 20/sinTheta= 20 /sin(arctan.15)
• PHYSICS -
Thank YOu!
Answer This Question
First Name: School Subject: Answer:
Related Questions
More Related Questions
Post a New Question
| 169
| 668
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.109375
| 3
|
CC-MAIN-2017-26
|
latest
|
en
| 0.858651
|
http://math.stackexchange.com/questions/123319/is-this-idea-for-a-proof-that-mathbbq-is-countable-correct
| 1,467,185,995,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2016-26/segments/1466783397636.15/warc/CC-MAIN-20160624154957-00012-ip-10-164-35-72.ec2.internal.warc.gz
| 193,835,283
| 19,489
|
# Is this idea for a proof that $\mathbb{Q}$ is countable correct?
I first show that there exist a injection $f:\mathbb{Q}\rightarrow \mathbb{Z\times Z}$ and then we know that $\mathbb{Z \times Z}$ is a countable set so we deduce that $\mathbb{Q}$ is countable. And such injection is not difficult to get, just simply define $$F\left(\frac{p}{q}\right)=(p,q)$$
-
Honestly, nobody needs that many question marks in the title. – Antonio Vargas Mar 22 '12 at 16:18
Just want to draw attention – jason Mar 22 '12 at 16:18
An extra 17 question marks will not make potential answerers more forthcoming. – anon Mar 22 '12 at 16:19
@jason: do not try to draw attention that way. Please. – Mariano Suárez-Alvarez Mar 22 '12 at 16:20
Well, you have to pick a specific representation of your rational number as $\frac{p}{q}$ for $f$ to be well-defined, but that's pretty easy :) – Thomas Andrews Mar 22 '12 at 16:20
If you can construct such an injection, and you already know that $\mathbb{Z}\times\mathbb{Z}$ is countable, then you are correct.
However, you have to be careful with your definition. Right now, for example, your function is not well-defined, since $\frac{1}{2}$ could be mapped to different pairs depending on how you write it: if you like writing it as $\frac{1}{2}$, then $F(1/2) = (1,2)$. But if you like to write it as $5/10$ (because, after all, $\frac{1}{2}=0.5$), then $F(5/10) = (5,10)$; or if you like negative numbers and write it as $\frac{-1}{-2}$, then $F(-1/-2) = (-1,-2)$.
In other words, you need to be a bit more careful when specifying the definition of your function $F$. Right now, it's not correct.
-
do you mean that i have to specifies that $5/10=1/2=n/2n$and similar for the rest of the rational numbers? – jason Mar 22 '12 at 16:30
@jason: I mean that rational numbers can be expressed as fractions in many different ways. But your function right now depends on how you write the rational, rather than what the rational is. The function should not take different values on the same input depending on how you describe the input. So you need to make sure that your function is defined in terms of what the value is, not how you write it. There are several ways of doing this; one would be to specify a particular way in which the input needs to be written before applying the function. (cont) – Arturo Magidin Mar 22 '12 at 16:32
@jason (cont) Another would be to write a more complicated description of the function that takes into account that rationals may be written in many different ways, so that it describes a single output regardless of how the input is "fed in." I don't want to be more explicit because it would essentially give the game away and this is something you need to struggle a bit with on your own at least once. – Arturo Magidin Mar 22 '12 at 16:34
To extend Arturo's comment, and perhaps suggest a slight modification:
Consider the following way to construct the rational numbers: we define an equivalence relation on $\mathbb Z\times(\mathbb Z\setminus\{0\})$ defined as: $$(r,s)\sim(p,q)\iff r\cdot q=p\cdot s$$
For example, $(1,2)\sim(5,10)$ since $1\cdot10=10=5\cdot2$. We can consider the rational numbers as representatives of these equivalence classes or we can consider them as the equivalence classes.
This means that the number $\dfrac{p}{q}$ is actually the equivalence class of $(p,q)$.
Now consider the function which sends the pair $(p,q)$ to its equivalence class. This is of course a surjective map, and therefore the set of equivalence classes cannot be more than countably infinite.
(Note on the fact that I assume the surjective map has an injective inverse: since the domain of the surjection is well-orderable we can easily define the injective inverse, indeed this is what the OP defined - up to clarification that we take the rational number to be of such and such form, e.g. reduced fraction with positive denominator.)
-
| 1,037
| 3,913
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.875
| 4
|
CC-MAIN-2016-26
|
longest
|
en
| 0.873682
|
lukepernotto.com
| 1,686,272,485,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2023-23/segments/1685224655244.74/warc/CC-MAIN-20230609000217-20230609030217-00721.warc.gz
| 404,396,384
| 25,758
|
## Lessons Learned: Check your math.
The childhood question has been answered of “when will I ever use math?”. There is a surprising amount of math involved in brewing. From conversion of gallons to barrels, to changing units of measurement for heat, energy, and pressure. All of these involve mathematical equations and require a high level of attention to ensure the correct amounts are calculated.
The Lesson Learned: Math plays an important role in brewing and checking your input numbers ensures the equation you are using provides the correct amounts.
I have always been terrible with math. I compensate this by doing a problem twice and if I get the same answer both times I know I have a better chance of certainty that I did the equation correctly. The syllabus for my Applied Engineering in Brewing class included a two page requirements list for submitting math homework. These requirements included boxing answers, using rulers when making straight lines, and using a French curve to make non-straight lines. Buried in the guidance was a key point for the student to look at their answer and think if that answer makes logical sense. For this weeks assignment this point turned out to be extremely valuable.
This week we had our first homework assignment for the class to show that we understand some basics mathematical equations. One of these problems involved calculating the liters per minute of beer made by Molson Coors when given the annual output of beer by the brewery. After I did the math I came up with 1.62 Liters per minute. While that seemed like a large amount on my homebrew system it seemed rather small for a large brewery to be producing just over a liter and a half every minute. I did the equation again and got the same answer. It was only when I went back to look at the original homework assignment page did I realize that the annual output given was 600,000,000 not 6,000 like I had been using. This amount gave me an liters per second output of 1339.6 L/min.
For those interested in figuring out your volume per second based on annual production the equation is in the picture for the post.
How can I apply this lesson: Checking the source of your information is always important. Not only can this result in wildly different flavors in beer if using the wrong amount of malt or hops but also beyond brewing. I’m sure seeking source information has applications for life outside of brewing, but my classes continue so I’m going to focus on that. Check your math and always look to see if the answer makes logical sense.
| 510
| 2,564
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4
| 4
|
CC-MAIN-2023-23
|
latest
|
en
| 0.966154
|
https://www.educative.io/courses/visual-introduction-to-algorithms/selection-sort-pseudocode
| 1,716,188,440,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-22/segments/1715971058222.5/warc/CC-MAIN-20240520045803-20240520075803-00835.warc.gz
| 655,939,532
| 99,480
|
# Selection Sort Pseudocode
There are many different ways to sort the cards. Here's a simple one, called selection sort, possibly similar to how you sorted the cards above:
1. Find the smallest card. Swap it with the first card.
2. Find the second-smallest card. Swap it with the second card.
3. Find the third-smallest card. Swap it with the third card.
4. Repeat finding the next-smallest card, and swapping it into the correct position until the array is sorted.
This algorithm is called selection sort because it repeatedly selects the next-smallest element and swaps it into place.
You can see the algorithm for yourself below. Start by using "Step" to see each step of the algorithm, and then try "Automatic" once you understand it to see the steps all the way through.
| 170
| 782
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.546875
| 3
|
CC-MAIN-2024-22
|
latest
|
en
| 0.924238
|
https://www.fotostudiotex.nl/agency/7042/what-is-the-value-1-cubic-meter-bricks.html
| 1,611,810,101,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2021-04/segments/1610704835901.90/warc/CC-MAIN-20210128040619-20210128070619-00539.warc.gz
| 758,991,448
| 4,992
|
### what is the value 1 cubic meter bricks
Detailed Estimate Slno: Description of work: Nos: Length: , Bricks: 14: 40mm iSS HBG metal: 15: , Rate for one cubic meter: Km 0 - 1: Km 1 - 2:...
Convert Brick, fire clay volume to , square brackets is the item's density in kilogram per cubic meter , 1482 ounce per (cubic inch) [ weight to volume | volume ....
These values for density of some common building materials were collected from sites across the Internet and are generally in , Brick, common red: 120 lb/ft 3 ....
The cubic meter, also called the meter cubed, is the Standard International (SI) unit of volume , WhatIs Search Thousands of Tech Definitions...
Chapter 5 Veneer and Plywood 2 , = 1,500 * 13333 = 2,000 square feet The value 13333 is also found in Table 5-1, , (on a 1 mm basis) or cubic meters...
It may be useful to remember that 1 cubic meter = 353146667 cubic , operating for 1 hour What is the calorific value of , Understanding a UK gas bill v10w ....
Construction Converter , Value to convert: , Substance densities currently available for the construction converter: Brick, chrome, Brick, common red, ....
Bags Per Cubic Metre , NOTE: 1 standard brick measures 230mm L x 110mm W x 76mm H , Easy Estimator combined for email Created Date:...
Specific Gravity Of General Materials Table , As 1000kg of pure water @ 4°C = 1 cubic meter, , Brick, fire clay: 2403: Brick, silica:...
In terms of calorific value it takes 56 , This means that you need about 135 cubic metres of softwood to be the equivalent of 10 cubic metre of ....
1 cubic meter contains how many bricks ALLInterview , 1 cubic meter contains 500 bricks The Standard size of the 1st class brick is 190mm x 90mm x...
, Tons to Cubic Metre , stone, brick, try 16 t/m , Tons to Cubic Metre what is the value of cubic metre to tons?...
1 Number of bricks for 1 cubic meter of brick masonry: For 1m 3 of brick masonry, the number of standard size of bricks required is 494 2 Quantity of mortar for 1m ....
How much cement required for 1 cubic brick , \$how much cement required for 1 cubic brick wall, Rating value: 8 , Number of bricks for 1 cubic meter of brick ....
Quantity of bricks per cubic meter of wall? , How many bricks required in 1 cubic meter of brick work? 500 number of bricks are required for 1C/m...
Volume Conversion table and factors: cubic meter , Quantity : Reference Unit : is equal to : Conversion Factor : Unit : 1...
Convert Brick, common red volume to , square brackets is the item's density in kilogram per cubic meter , 1068 ounce per (cubic inch) [ weight to volume ....
Ready Reckoner - Concrete , Blue area: 1 cubic metre (m³) , Using Brickies Mortar to lay bricks Estimating bags by brick number...
1 cubic metre 1 m 3 1 cm 1 cm 1 cm 1 cubic centimetre 1 cm 3 2 cm 4 cm , 3 A brick is 20 cm long, 12 cm wide and 10 cm high What is its volume? 20 cm 12 cm ,...
Calculating bricks and blocks , A half brick wide wall requires 60 bricks per square metre So the first stage is just to measure the height and length ....
Bricks, blocks and mortar (sand & cement) , required for a given area for metric bricks , suction rate of a brick exceeds the optimum value of 15kg/m2 ....
4 Cubic Meter Skip Bin is your perfect solution to cleaning up medium to large areas in Sydney This Skip Bin Size is 33m x 16m x 095m Order online now! Menu...
1 cubic meter contains how many bricks ALLInterview Categories | Companies , 1 cubic meter contains 500 bricks of size 20cm x 10cm x 10cm...
Solve each problem 1 To reach an underground methane gas , patio with brick, how much will the paving , volume in cubic meters? 3...
Metric system, symbols & units The metric system, , Value: Factor: micro (μ) , = 1 cubic metre (m³) 1000 kilolitres (kL) = 1 megalitre ....
| 998
| 3,762
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.578125
| 3
|
CC-MAIN-2021-04
|
latest
|
en
| 0.796405
|
https://maptools.com/tutorials/plotting/compass-declination
| 1,721,661,325,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-30/segments/1720763517878.80/warc/CC-MAIN-20240722125447-20240722155447-00718.warc.gz
| 323,812,052
| 5,229
|
# Plotting a bearing on a map using a baseplate compass adjusted for declination
### Sighting the bearing
To determine our location we are going to combine two pieces of information on our map. We know that we are somewhere along the shoreline of the lake. Using a compass we can sight a bearing to our cabin across the lake. When we plot the bearing on our map, our location will be where the line between our location and the cabin crosses the shoreline of the lake.
### Determine a rough direction to the target
Use a compass to get a general sense of direction for North, South, East, and West. Identify on of the eight compass points (N, NE, E, SE, S, SW, W, NW) that roughly describes the direction to our sighting target. In our example at the lake, our cabin is NE of our current location. Refer back to this "reality check" occasionally during plotting to make sure what you are doing makes sense.
Our intent is to adjust for the difference between Magnetic North and Grid North on our compass, so that we do not have to make any further adjustments or calculations out in the field. Whenever you move to an area where the declination is different, you will need to readjust your compass. It's a good idea to occasionally check that your compass is adjusted correctly.
These compasses are typically adjusted using a small screw head on the bottom of the baseplate. The screw head drives a small gear which in turn rotates the Orienting Arrow inside the capsule. A small red index line has been moved 5° in the direction labeled "E. Dec." In the view from the top we see the Orienting Arrow is no longer parallel to the Meridian Lines. Instead it points 5° East of North.
On a compass where the Magnetic Needle Orienting Arrow can be moved independently of the rest of the compass capsule, an adjustment for 5° East will look like this:
The Meridian Lines on these compasses are typically printed on the Angular Measurement Ring. Since the entire capsule rotates, this is the only way to keep the Orienting Arrow independent of the Meridian Lines. It is somewhat more difficult to align this style of Meridian Lines, with the north reference lines on your map.
On a compass where the compass capsule is moved relative to the angular measurement ring, an adjustment for 5° East will look like this:
### Sight the bearing to the target
Using our compass we have sighted a bearing to our cabin of 65° from Grid North. The north reference is an integral part of any bearing. Make sure you include it when you say or write a bearing. We can abbreviate to either 65° Grid or just 65°G
### Adjust the north reference to match the map
We want to plot our bearing onto the map relative to Grid North. Since we adjusted our compass to read directly relative to Grid North, no adjustment needs to made to our bearing
If you don't already understand north references and converting between them, you should take a detour to our North Reference Tutorial.
Our bearing was taken from an unknown location, towards a known location. When we plot it on the map, we will start plotting at the known location, and extend the bearing line back towards the unknown location. This is known as a back bearing.
For more information on forward and back bearings, see our tutorial on forward and back bearings.
### Continue this tutorial on plotting a bearing with these links:
Plotting a second and third bearing to confirm your position
Using bearings to locate a distant target
| 728
| 3,479
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.71875
| 3
|
CC-MAIN-2024-30
|
latest
|
en
| 0.927749
|
https://zims-en.kiwix.campusafrica.gos.orange.com/wikipedia_en_all_nopic/A/Rooted_graph
| 1,621,056,571,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2021-21/segments/1620243989812.47/warc/CC-MAIN-20210515035645-20210515065645-00375.warc.gz
| 1,154,535,786
| 10,056
|
# Rooted graph
In mathematics, and, in particular, in graph theory, a rooted graph is a graph in which one vertex has been distinguished as the root.[1][2] Both directed and undirected versions of rooted graphs have been studied, and there are also variant definitions that allow multiple roots.
Rooted graphs may also be known (depending on their application) as pointed graphs or flow graphs. In some of the applications of these graphs, there is an additional requirement that the whole graph be reachable from the root vertex.
## Variations
In topological graph theory, the notion of a rooted graph may be extended to consider multiple vertices or multiple edges as roots. The former are sometimes called vertex-rooted graphs in order to distinguish them from edge-rooted graphs in this context.[3] Graphs with multiple nodes designated as roots are also of some interest in combinatorics, in the area of random graphs.[4] These graphs are also called multiply rooted graphs.[5]
The terms rooted directed graph or rooted digraph also see variation in definitions. The obvious transplant is to consider a digraph rooted by identifying a particular node as root.[6][7] However, in computer science, these terms commonly refer to a narrower notion, namely a rooted directed graph is a digraph with a distinguished node r, such that there is a directed path from r to any node other than r.[8][9][10][11] Authors which give the more general definition, may refer to these as connected (or 1-connected) rooted digraphs.[6]
The Art of Computer Programming defines rooted digraphs slightly more broadly, namely a directed graph is called rooted if it has at least one node that can reach all the other nodes; Knuth notes that the notion thus defined is a sort of intermediate between the notions of strongly connected and connected digraph.[12]
## Applications
### Flow graphs
In computer science, rooted graphs in which the root vertex can reach all other vertices are called flow graphs or flowgraphs.[13] Sometimes an additional restriction is added specifying that a flow graph must have a single exit (sink) vertex as well.[14]
Flow graphs may be viewed as abstractions of flow charts, with the non-structural elements (node contents and types) removed.[15][16] Perhaps the best known sub-class of flow graphs are control flow graphs, used in compilers and program analysis. An arbitrary flow graph may converted to a control flow graph by performing an edge contraction on every edge that is the only outgoing edge from its source and the only incoming edge into its target.[17] Another type of flow graph commonly used is the call graph, in which nodes correspond to entire subroutines.[18]
The general notion of flow graph has been called program graph,[19] but the same term has also been used to denote only control flow graphs.[20] Flow graphs have also been called unlabeled flowgraphs,[21] and proper flowgraphs.[15] These graphs are sometimes used in software testing.[15][18]
When required to have a single exit, flow graphs have two properties not shared with directed graphs in general. Flow graphs can be nested, which is the equivalent of a subroutine call (although there is no notion of passing parameters), and flow graphs can also be sequenced, which is the equivalent of sequential execution of two pieces of code.[22] Prime flow graphs are defined as flow graphs that cannot be decomposed via nesting or sequencing using a chosen pattern of subgraphs, for example the primitives of structured programming.[23] Theoretical research has been done on determining, for example, the proportion of prime flow graphs given a chosen set of graphs.[24]
### Set theory
Peter Aczel has used rooted directed graphs such that every node is reachable from the root (which he calls accessible pointed graphs) to formulate Aczel's anti-foundation axiom in non-well-founded set theory. In this context, each vertex of an accessible pointed graph models a (non-well-founded) set within Aczel's non-well-foundet set theory, and an arc from a vertex v to a vertex w models that v is an element of w. Aczel's anti-foundation axiom states that every accessible pointed graph models a family of (non-well-founded) sets in this way.[25]
## Combinatorial enumeration
The number of rooted undirected graphs for 1, 2, ... nodes is 1, 2, 6, 20, 90, 544, ... (sequence A000666 in the OEIS)
A special case of interest are rooted trees, the trees with a distinguished root vertex. If the directed paths from the root in the rooted digraph are additionally restricted to be unique, then the notion obtained is that of (rooted) arborescence—the directed-graph equivalent of a rooted tree.[7] A rooted graph contains an arborescence with the same root if and only if the whole graph can be reached from the root, and computer scientists have studied algorithmic problems of finding optimal arborescences.[26]
Rooted graphs may be combined using the rooted product of graphs.[27]
## References
1. Zwillinger, Daniel (2011), CRC Standard Mathematical Tables and Formulae, 32nd Edition, CRC Press, p. 150, ISBN 978-1-4398-3550-0
2. Harary, Frank (1955), "The number of linear, directed, rooted, and connected graphs", Transactions of the American Mathematical Society, 78: 445–463, doi:10.1090/S0002-9947-1955-0068198-2, MR 0068198. See p. 454.
3. Gross, Jonathan L.; Yellen, Jay; Zhang, Ping (2013), Handbook of Graph Theory (2nd ed.), CRC Press, pp. 764–765, ISBN 978-1-4398-8018-0
4. Spencer, Joel (2001), The Strange Logic of Random Graphs, Springer Science & Business Media, chapter 4, ISBN 978-3-540-41654-8
5. Harary (1955, p. 455).
6. Björner, Anders; Ziegler, Günter M. (1992), "8. Introduction to greedoids", in White, Neil (ed.), Matroid Applications, Encyclopedia of Mathematics and its Applications, 40, Cambridge: Cambridge University Press, pp. 284–357, doi:10.1017/CBO9780511662041.009, ISBN 0-521-38165-7, MR 1165537, Zbl 0772.05026. See in particular p. 307.
7. Gordon, Gary; McMahon, Elizabeth (1989), "A greedoid polynomial which distinguishes rooted arborescences", Proceedings of the American Mathematical Society, 107 (2): 287–287, doi:10.1090/s0002-9939-1989-0967486-0
8. Ramachandran, Vijaya (1988), "Fast Parallel Algorithms for Reducible Flow Graphs", Concurrent Computations: 117–138, doi:10.1007/978-1-4684-5511-3_8. See in particular p. 122.
9. Okamoto, Yoshio (2003), "The forbidden minor characterization of line-search antimatroids of rooted digraphs", Discrete Applied Mathematics, 131 (2): 523–533, doi:10.1016/S0166-218X(02)00471-7. See in particular p. 524.
10. Jain, Abhinandan (2010), Robot and Multibody Dynamics: Analysis and Algorithms, Springer Science & Business Media, p. 136, ISBN 978-1-4419-7267-5
11. Chen, Xujin (2004), "An Efficient Algorithm for Finding Maximum Cycle Packings in Reducible Flow Graphs", Lecture Notes in Computer Science: 306–317, doi:10.1007/978-3-540-30551-4_28. See in particular p. 308.
12. Knuth, Donald (1997), The Art Of Computer Programming, Volume 1, 3/E, Pearson Education, p. 372, ISBN 0-201-89683-4
13. Gross, Yellen & Zhang (2013, p. 1372).
14. Fenton, Norman Elliott; Hill, Gillian A. (1993), Systems Construction and Analysis: A Mathematical and Logical Framework, McGraw-Hill, p. 319, ISBN 978-0-07-707431-9.
15. Zuse, Horst (1998), A Framework of Software Measurement, Walter de Gruyter, pp. 32–33, ISBN 978-3-11-080730-1
16. Samaroo, Angelina; Thompson, Geoff; Williams, Peter (2010), Software Testing: An ISTQB-ISEB Foundation Guide, BCS, The Chartered Institute, p. 108, ISBN 978-1-906124-76-2
17. Tarr, Peri L.; Wolf, Alexander L. (2011), Engineering of Software: The Continuing Contributions of Leon J. Osterweil, Springer Science & Business Media, p. 58, ISBN 978-3-642-19823-6
18. Jalote, Pankaj (1997), An Integrated Approach to Software Engineering, Springer Science & Business Media, p. 372, ISBN 978-0-387-94899-7
19. Thulasiraman, K.; Swamy, M. N. S. (1992), Graphs: Theory and Algorithms, John Wiley & Sons, p. 361, ISBN 978-0-471-51356-8
20. Cechich, Alejandra; Piattini, Mario; Vallecillo, Antonio (2003), Component-Based Software Quality: Methods and Techniques, Springer Science & Business Media, p. 105, ISBN 978-3-540-40503-0
21. Beineke, Lowell W.; Wilson, Robin J. (1997), Graph Connections: Relationships Between Graph Theory and Other Areas of Mathematics, Clarendon Press, p. 237, ISBN 978-0-19-851497-8
22. Fenton & Hill (1993, p. 323).
23. Fenton & Hill (1993, p. 339).
24. Cooper, C. (2008), "Asymptotic Enumeration of Predicate-Junction Flowgraphs", Combinatorics, Probability and Computing, 5 (3): 215, doi:10.1017/S0963548300001991
25. Aczel, Peter (1988), Non-well-founded sets. (PDF), CSLI Lecture Notes, 14, Stanford, CA: Stanford University, Center for the Study of Language and Information, ISBN 0-937073-22-9, MR 0940014, archived from the original (PDF) on 2016-10-17
26. Drescher, Matthew; Vetta, Adrian (2010), "An Approximation Algorithm for the Maximum Leaf Spanning Arborescence Problem", ACM Trans. Algorithms, 6 (3): 46:1–46:18, doi:10.1145/1798596.1798599.
27. Godsil, C. D.; McKay, B. D. (1978), "A new graph product and its spectrum" (PDF), Bull. Austral. Math. Soc., 18 (1): 21–28, doi:10.1017/S0004972700007760, MR 0494910
• McMahon, Elizabeth W. (1993), "On the greedoid polynomial for rooted graphs and rooted digraphs", Journal of Graph Theory, 17 (3): 433–442, doi:10.1002/jgt.3190170316
• Gordon, Gary (2001), "A characteristic polynomial for rooted graphs and rooted digraphs", Discrete Mathematics, 232 (1–3): 19–33, doi:10.1016/S0012-365X(00)00186-2
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.
| 2,622
| 9,755
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.796875
| 4
|
CC-MAIN-2021-21
|
latest
|
en
| 0.978753
|
http://netprophetblog.blogspot.ca/2011/11/k-nn-prediction.html
| 1,527,148,513,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2018-22/segments/1526794866107.79/warc/CC-MAIN-20180524073324-20180524093324-00232.warc.gz
| 199,837,457
| 17,172
|
## Tuesday, November 15, 2011
### k-NN Prediction
"Andywocky" commented not too long ago on my Prediction by Similarity posting asking whether I'd looked at k-nearest neighbors (k-NN) algorithms. At the time I made the original posting I hadn't, but shortly thereafter I had a "D'oh" moment and realized that what I was doing was re-creating k-NN. So I re-created some of the work I'd done using RapidMiner's k-NN operator.
The basic idea behind k-NN is that we predict the outcome of a new game by finding some number of similar past games, and then use those (say by averaging) to create a prediction for the new game. The "k" in "k-NN" refers to the "some number" of similar past games -- k might be 5 or 50, indicating that we were using the five most similar, or 50 most similar past games. "Nearest Neighbor" is just another way of saying similar. If we think of the games living in a multi-dimensional space -- say a dimension for each statistical value for the game (e.g., rebounds per minute, free throw percentage, etc.) -- then the most similar games are the ones that are the nearest neighbors in this multidimensional space.
There are some subtleties in how this works. For example, team free throw percentage might vary from (say) 50% to 100%, while rebounds per minute might vary from 0.00 to 0.056. If we don't normalize those dimensions, one or the other is likely to be far more important in determining the nearest neighbor than the other. But a reasonable starting approach is to characterize each game with as many statistical properties as we have, normalize those to similar scales, and then predict MOV by averaging the MOVs of k nearest-neighbors.
Here's the result of doing that with k=10. For comparison, I include the performance of the best linear regression predictor based upon the same statistical properties.
Predictor % Correct MOV Error
Best Statistical Predictor72.3%11.04
k-NN, k=1059.7%11.65
This isn't tremendous performance, but we have a few tweaks we can perform. First, we can try varying k to see if some different number of neighbors provides better performance. Some searching around produces the best performance in this case when k=41:
Predictor % Correct MOV Error
Best Statistical Predictor72.3%11.04
k-NN, k=1059.7%11.65
k-NN, k=4171.2%11.44
Interestingly, this shows a lot of improvement in games correct with only modest improvement in MOV error.
Another tweak we can look at is weighting our results. Instead of doing a flat average of the 41 nearest neighbors, we can weight each neighbor's contribution to the answer by how close it is to the new game. We can also try eliminating some of our dimensions to see if accuracy improves. This provides some further improvement:
Predictor % Correct MOV Error
Best Statistical Predictor72.3%11.04
k-NN, k=1059.7%11.65
k-NN, k=4171.2%11.44
k-NN, k=44, weighted subset72.4%11.17
With this tweak k-NN is competitive with the best linear regression. (Although they both trail the best predictors.)
I'm inclined to draw a couple of conclusions from these experiments. First, 40+ neighbors is a large number, suggesting that while games between statistically similar may be broadly comparable, there's not a strong relationship. Conversely, the improvement gained by using weighting suggests that closer is still better. It would seem that good performance with this approach requires a moderate amount of generalization to help "wash out" the random component in game outcomes.
#### 1 comment:
1. Good to see that you have compiled some good and authentic looking predictions. I hope and wish that the matches go by your predictions but anything can happen so lets wait and watch.
| 885
| 3,724
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.34375
| 3
|
CC-MAIN-2018-22
|
latest
|
en
| 0.930614
|
https://chem.libretexts.org/Sandboxes/ccotton2ccbcmdedu/Community_College_of_Baltimore_County_Organic_Chemistry_1/08%3A_Alkenes-_Structure_and_Reactivity/8.07%3A_Sequence_Rules_-_The_E%2CZ_Designation
| 1,685,793,206,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2023-23/segments/1685224649193.79/warc/CC-MAIN-20230603101032-20230603131032-00417.warc.gz
| 189,433,090
| 35,734
|
# 8.7: Sequence Rules - The E,Z Designation
$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$
##### Objectives
After completing this section, you should be able to
1. illustrate, by means of a suitable example, the limitations of the terms cis and trans in naming isomeric alkenes.
2. use the E/Z designation to describe the geometry of a given alkene structure.
3. incorporate the E/Z designation into the IUPAC name of a given alkene.
4. draw the correct Kekulé, condensed or shorthand structure of an alkene, given its E/Z designation plus other necessary information (e.g., molecular formula, IUPAC name).
##### Key Terms
Make certain that you can define, and use in context, the key term below.
• sequence rules (Cahn-Ingold-Prelog rules)
##### Study Notes
The limitations of the cis/trans system are illustrated in the examples given below.
1. From your study of the IUPAC system, you should be able to identify this compound as 4-ethyl-3-methyl-3-heptene, but is it cis or trans?
At first you might say cis, because it appears that two ethyl groups appear on the same side of the double bond. However, the correct answer is trans. The rule is that the designation cis or trans must correspond to the configuration of the longest carbon chain. Tracing out the seven-carbon chain in the compound shown above, you change sides as you pass through the double bond:
So, the full name for this compound is trans-4-ethyl-3methyl-3-heptene.
2. The cis/trans system breaks down completely in a compound such as that shown below. The E/Z system, which is the subject of this section, is designed to accommodate such situations.
In cases where two or more double bonds are present, you must be prepared to assign an E or Z designation to each of the double bonds. For example:
Another use for these sequence rules will be part of the discussion of optical isomerism in Section 9.5.
## E/Z nomenclature
When each carbon in a double bond is attached to a hydrogen and and a non-hydrogen substituent, the geometric isomers can be identified by using the cis-trans nomenclature discussed in the previous section. However, when a double bond is attached to three or four non-hydrogen substituents there are some examples where cis-trans nomenclature is ineffective in describing the substituents orientation in geometric isomers. In these situations the rigorous IUPAC system for naming alkene isomers, called the E/Z system, is used. The E/Z system analyzes the two substituents attached to each carbon in the double bond and assigns each either a high or low priority. If the higher priority group on both carbons in the double bond the same side the alkene is said to have a Z isomer (from German zusammen = together). You could think of Z as Zame Zide to help memorize it. If the higher priority group on opposite sides the alkene has an E isomer (from German entgegen = opposite).
Note, if both substituents an a double bond carbon are exactly the same there is no E/Z isomerizem is possible. Also, if E/Z isomerism is possible, interchanging the substituents attached on double-bond carbon converts one isomer to the other.
Substituent priority for the E,Z system is assigned using the Cahn–Ingold–Prelog (CIP) sequence rules. These are the same rules used to assign R/S configurations to chiral centers in Section 5.5. A brief overview of using CIP rules to determine alkene configuration is given here but CIP rules are discussed in greater detail in Section 5.5.
##### Note
The priority rules are often called the Cahn-Ingold-Prelog (CIP) rules, after the chemists who developed the system
### Rule 1) The "first point of difference" rule
First, determine the two stubstitents on each double-bond carbon separately. Rank these substituents based on the atom which directly attached to the double-bond carbon. The substituent whose atom has a higher atomic number takes precedence over the substituent whose atom has a lower atomic number.
Which is higher priority, by the CIP rules: a C with an O and 2 H attached to it or a C with three C? The first C has one atom of high priority but also two atoms of low priority. How do these "balance out"? Answering this requires a clear understanding of how the ranking is done. The simple answer is that the first point of difference is what matters; the O wins.
To illustrate this, consider the molecule at the left. Is the double bond here E or Z? At the left end of the double bond, Br > C. But the right end of the double bond requires a careful analysis.
At the right hand end, the first atom attached to the double bond is a C at each position. A tie, so we look at what is attached to this first C. For the upper C, it is CCC (since the triple bond counts three times). For the lower C, it is OHH -- listed in order from high priority atom to low. OHH is higher priority than CCC, because of the first atom in the list. That is, the O of the lower group beats the C of the upper group. In other words, the O is the highest priority atom of any in this comparison; thus the O "wins".
Therefore, the high priority groups are "up" on the left end (the -Br) and "down" on the right end (the -CH2-O-CH3). This means that the isomer shown is opposite = entgegen = E. And what is the name? The "name" is (E)-2-Bromo-3-(methoxymethyl)hex-2-en-4-yne.
### Rule 2)
If the first atom on both substituents are the identical, then proceed along both substituent chains until the first point of difference is determined.
### Rule 3)
Remember that atoms involved in multiple bonds are considered with a specific set of rules. These atoms are treated as if they have the same number of single-bond atoms as they have attached to multiply bonded atoms.
An easy example which shows the necessity of the E/Z system is the alkene, 1-bromo-2-chloro-2-fluoro-1-iodoethene, which has four different substituents attached to the double bond. The figure below shows that there are two distinctly different geometric isomers for this molecule neither of which can be named using the cis-trans system.
Consider the left hand structure. On the double bond carbon on the left, the two atoms attached to the double bond are Br and I. By the CIP priority rules, I is higher priority than Br (higher atomic number). Now look at carbon on the right. The attached atoms are Cl and F, with Cl having the higher atomic number and the higher priority.
When considering the relative positions of the higher priority groups, the higher priority group is "down" on the left double bond carbon and "down" at right double bond carbon. Since the two higher priority groups are both on the same side of the double bond ("down", in this case), they are zusammen = together. Therefore, this is the (Z) isomer. Similarly, the right hand structure is (E).
##### Example 7..61: Butene
cis-2-butene (Z)-2-butene trans-2-butene (E)-2-butene
The Figure above shows the two isomers of 2-butene. You should recognize them as cis and trans. Let's analyze them to see whether they are E or Z. Start with the left hand structure (the cis isomer). On C2 (the left end of the double bond), the two atoms attached to the double bond are C and H. By the CIP priority rules, C is higher priority than H (higher atomic number). Now look at C3 (the right end of the double bond). Similarly, the atoms are C and H, with C being higher priority. We see that the higher priority group is "down" at C2 and "down" at C3. Since the two priority groups are both on the same side of the double bond ("down", in this case), they are zusammen = together. Therefore, this is (Z)-2-butene.
Now look at the right hand structure (the trans isomer). In this case, the priority group is "down" on the left end of the double bond and "up" on the right end of the double bond. Since the two priority groups are on opposite sides of the double bond, they are entgegen = opposite. Therefore, this is (E)-2-butene.
## E/Z will work – even when cis/trans fails
In simple cases, such as 2-butene, Z corresponds to cis and E to trans. However, that is not a rule. This section and the following one illustrate some idiosyncrasies that happen when you try to compare the two systems. The real advantage of the E/Z system is that it will always work. In contrast, the cis/trans system breaks down with many ambiguous cases.
##### Example 7.6.2
The following figure shows two isomers of an alkene with four different groups on the double bond, 1-bromo-2-chloro-2-fluoro-1-iodoethene.
(Z)-1-bromo-2-chloro-2-fluoro-1-iodoethene (E)-1-bromo-2-chloro-2-fluoro-1-iodoethene
It should be apparent that the two structures shown are distinct chemicals. However, it is impossible to name them as cis or trans. On the other hand, the E/Z system works fine... Consider the left hand structure. On C1 (the left end of the double bond), the two atoms attached to the double bond are Br and I. By the CIP priority rules, I is higher priority than Br (higher atomic number). Now look at C2. The atoms are Cl and F, with Cl being higher priority. We see that the higher priority group is "down" at C1 and "down" at C2. Since the two priority groups are both on the same side of the double bond ("down", in this case), they are zusammen = together. Therefore, this is the (Z) isomer. Similarly, the right hand structure is (E).
## E/Z will work, but may not agree with cis/trans
Consider the molecule shown at the left.
This is 2-bromo-2-butene -- ignoring the geometric isomerism for now. Cis or trans? This molecule is clearly cis. The two methyl groups are on the same side. More rigorously, the "parent chain" is cis.
E or Z? There is a methyl at each end of the double bond. On the left, the methyl is the high priority group -- because the other group is -H. On the right, the methyl is the low priority group -- because the other group is -Br. That is, the high priority groups are -CH3 (left) and -Br (right). Thus the two priority groups are on opposite sides = entgegen = E.
##### Note
This example should convince you that cis and Z are not synonyms. Cis/trans and E/Z are determined by distinct criteria. There may seem to be a simple correspondence, but it is not a rule. Be sure to determine cis/trans or E/Z separately, as needed.
## Multiple double bonds
If the compound contains more than one double bond, then each one is analyzed and declared to be E or Z.
##### Example 7.6.3
The configuration at the left hand double bond is E; at the right hand double bond it is Z. Thus this compound is (1E,4Z)-1,5-dichloro-1,4-hexadiene.
## The double-bond rule in determining priorities
##### Example 7.6.4
Consider the compound below
This is 1-chloro-2-ethyl-1,3-butadiene -- ignoring, for the moment, the geometric isomerism. There is no geometric isomerism at the second double bond, at 3-4, because it has 2 H at its far end.
What about the first double bond, at 1-2? On the left hand end, there is H and Cl; Cl is higher priority (by atomic number). On the right hand end, there is -CH2-CH3 (an ethyl group) and -CH=CH2 (a vinyl or ethenyl group). Both of these groups have C as the first atom, so we have a tie so far and must look further. What is attached to this first C? For the ethyl group, the first C is attached to C, H, and H. For the ethenyl group, the first C is attached to a C twice, so we count it twice; therefore that C is attached to C, C, H. CCH is higher than CHH; therefore, the ethenyl group is higher priority. Since the priority groups, Cl and ethenyl, are on the same side of the double bond, this is the Z-isomer; the compound is (Z)-1-chloro-2-ethyl-1,3-butadiene.
##### Example 7.6.5
The configuration about double bonds is undoubtedly best specified by the cis/trans notation when there is no ambiguity involved. Unfortunately, many compounds cannot be described adequately by the cis/trans system. Consider, for example, configurational isomers of 1-fluoro-1-chloro-2-bromo-2-iodo-ethene, 9 and 10. There is no obvious way in which the cis/trans system can be used:
A system that is easy to use and which is based on the sequence rules already described for the R,S system works as follows:
1. An order of precedence is established for the two atoms or groups attached to each end of the double bond according to the sequence rules of Section 19-6. When these rules are applied to 1-fluoro- 1-chloro-2-bromo-2- iodoethene, the priority sequence is:
• at carbon atom 1, C1 > F
• at carbon atom 2, I > Br
1. Examination of the two configurations shows that the two priority groups- one on each end- are either on the same side of the double bond or on opposite sides:
priority groups on opposite sides (E) configuration priority groups on same side (Z) configuration
The Z isomer is designated as the isomer in which the top priority groups are on the same side (Z is taken from the German word zusammen- together). The E isomer has these groups on opposite sides (E, German for entgegen across). Two further examples show how the nomenclature is used:
## Exercises
##### Exercise $$\PageIndex{1}$$
Which of the following sets has a higher ranking?
a) -CH3 or -CH2Br
b) -Br or -Cl
c) -CH=CH2 or -CH=O
a) -CH2Br
b) -Br
c) -CH=O
##### Exercise $$\PageIndex{2}$$
Place the following sets of substituents in each group in order of lowest priority (1st) to highest priority (4th)
a) -CH(CH3)2, -CH2CH3, -C(CH3)3, -CH3
b) -NH2, -F, -Br, -CH3
c) -SH, -NH2, -F, -H
a) (lowest priority) -CH3 < -CH2CH3 < -CH(CH3)2 < -C(CH3)3 (highest priority)
b) (lowest priority) -CH3 < -NH2 < -F < -Br (highest priority)
c) (lowest priority) -H < -NH2 < -F < -SH (highest priority)
##### Exercise $$\PageIndex{3}$$
Label the following alkenes as E, Z, or neither.
The higher priority group is highlighted in red.
a) E
b) E
c) E
d) Z
e) neither (both isopropyls on the right have the same priority)
##### Exercise $$\PageIndex{4}$$
Name the following alkenes.
The higher priority group is highlighted in red.
a) (Z)-4-ethyl-5-methyloct-3-ene or (Z)-4-ethyl-5-methyl-3-octene
b) 3-ethyl-6-methyl-4-propylhept-3-ene or 3-ethyl-6-methyl-4-propyl-3-heptene
c) (E)-2-chloro-4-bromo-5-ethyl-7-methyldec-4-ene or (E)-2-chloro-4-bromo-5-ethyl-7-methyl-4-decene
8.7: Sequence Rules - The E,Z Designation is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
| 4,057
| 15,319
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.546875
| 4
|
CC-MAIN-2023-23
|
latest
|
en
| 0.551719
|
https://it.mathworks.com/matlabcentral/cody/problems/46-which-doors-are-open/solutions/1174040
| 1,606,163,811,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2020-50/segments/1606141164142.1/warc/CC-MAIN-20201123182720-20201123212720-00152.warc.gz
| 343,659,550
| 17,046
|
Cody
# Problem 46. Which doors are open?
Solution 1174040
Submitted on 28 Apr 2017 by Josiah Swim
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.
### Test Suite
Test Status Code Input and Output
1 Pass
x = 1; y_correct = 1; assert(isequal(which_doors_open(x),y_correct))
2 Pass
x = 3; y_correct = 1; assert(isequal(which_doors_open(x),y_correct))
3 Pass
x = 100; y_correct = [1 4 9 16 25 36 49 64 81 100]; assert(isequal(which_doors_open(x),y_correct))
### Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
| 192
| 653
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.53125
| 3
|
CC-MAIN-2020-50
|
latest
|
en
| 0.756634
|
https://dinnickandhowells.com/do-math-417
| 1,675,545,029,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2023-06/segments/1674764500154.33/warc/CC-MAIN-20230204205328-20230204235328-00334.warc.gz
| 235,119,309
| 6,514
|
# The problem solver
In this blog post, we will show you how to work with The problem solver. Let's try the best math solver.
## The Best The problem solver
The problem solver is a software program that supports students solve math problems. To solve for x and y intercepts, you need to set the equation equal to zero and then solve for x and y. To do this, you first need to determine what the equation is and then use the appropriate mathematical operations to solve for the x and y intercepts.
The word problem is one of the most basic and essential math skills. The ability to solve word problems is the single most important skill that you can develop as a student, and it will serve you for your entire life. The best way to learn how to solve math word problems is by practicing with examples. To help with this, there are a number of apps available that can be used to practice solving word problems. Some of these include Word Problems by Mathway, Word Problems by PandaFun, Word Problems by iTutor, Word Problems by MathUsee and MathUsee Basic. All of these apps provide a variety of different types of word problems that you can practice solving. By practicing with examples over and over again, you will eventually be able to see patterns and recognize when you are making mistakes. Once you are able to do this, it will become much easier for you to solve word problems on your own in the future.
A new app called "Equation Solver" promises to help students with their math homework. The app, which is available for free on the App Store, allows users to input an equation and then see step-by-step solutions. While the app may be helpful for some students, it is important to remember that it is not a substitute for a good math teacher.
Math problems may be difficult for some, but there is an easier way to do them. You can use a camera to help you solve math problems. You can take lots of pictures of the problem and then look at the pictures together with your child. You can also record the sounds of numbers being tapped out on a table or keyboard. When you have a recording of the problem sounds, you can play it back and ask your child to describe the problem in detail. This will help your child understand what they are doing more clearly and it may also help them solve the problem quicker than they otherwise would. When taking photos, make sure that you pose the subject correctly so that the camera focuses correctly. Also make sure that the background is not blurry or distracting. One of the best ways to teach kids math is through play.
## Math checker you can trust
The second-best application I've ever downloaded after Duolingo. I was quite stressed out when I had to take college algebra for college but with the app, I've literally been able to get everything in math as well as understand it. Amazing application only reason I've managed to get through the past three months of college algebra. Merci beaucoup. 🥰 *if you want to use it accurately it's best to write down the solutions by hand on a book for ease of use*
Yesenia Lopez
This app is very helpful especially if you’re struggling in math or any other subject. All you simply do is take a picture and it helps you solve it. 100% satisfied and would definitely recommend
Renata Scott
| 689
| 3,293
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.046875
| 3
|
CC-MAIN-2023-06
|
latest
|
en
| 0.961068
|
https://www.taxslayer.com/support/KnowledgebaseArticle1461.aspx?language=1&page=1&path=Rents-and-Royalties-Schedule-E-%25-of-Ownership-and-Depreciation&q=home%20office
| 1,481,003,224,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2016-50/segments/1480698541883.3/warc/CC-MAIN-20161202170901-00039-ip-10-31-129-80.ec2.internal.warc.gz
| 938,524,781
| 7,532
|
Fast, Secure, and Always Accurate!
## Rents and Royalties Schedule E % of Ownership and Depreciation
Percent of ownership designates your share of the amount of rental or royalty income you are reporting.
Example:
Steve has a 3% ownership stake in a property being drilled for oil. He receives a royalty check and statement for \$150. He should input his percent of ownership as 100% and claim the \$150 royalty. This is because 100% of his check belongs to him, his portion had been pre-determined.
Example:
Mr. and Mrs. Kim co-own a vacation property with another couple. The property generated a total yearly rental income of \$20,000. Mr. and Mrs. Kim can show their % of ownership as 50% and input the full income received in the rental of the property of \$20,000. This will give them rental income of \$10,000 for tax purposes. Additionally all the expenses they input for the property should also be stated in full, as they will get a deduction against their income of ½ of all the expenses entered. 50% of all the expenses recorded on the return will be allocated to their portion of the income from the property.
When completing your Schedule E in the program, the TaxSlayer system will calculate the amount of your income and expense by taking your percent of ownership and multiplying it by the total amount of rental or royalty income and expense recorded.
Depreciation:
When entering in your depreciation on your rental property you need to take only the portion of the asset that belongs to you. This is not allocated using your % of ownership.
Example:
Mr. and Mrs. Kim’s rental property has a cost value of \$150,000 with a land value of \$20,000. They will be depreciating their 50% ownership of this property beginning on the date it became available for rental. They will input in the depreciation section of the Sch E…. Asset – Rental Vacation Property… Cost = (50%(\$150,000 - \$20,000)) or \$65,000. The cost is stated as the fair market value at the time the asset became available for rental. They will depreciate that property using MACRS 27.5 years depreciation for the time they own the property.
Depreciation is the annual deduction you must take to recover the cost or other basis of business or investment property having a useful life substantially beyond the tax year.
*Land is not depreciable.
Please refer to the IRS publication 527 for answers to all your specific questions regarding residential and vacation rental property pub 527.
To access Schedule E within our program, please log into your account and select Federal Section > Income > Enter Myself > Rents and Royalties.
| 564
| 2,629
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.609375
| 3
|
CC-MAIN-2016-50
|
latest
|
en
| 0.966477
|
https://pakmcqs.com/mathematics-mcqs/by-mixing-two-brands-of-tea-and-selling-the-mixture-at-the-rate-of-rs-177-per-kg-a-shopkeeper-makes-a-profit-of-18-if-to-every-2-kg-of-one-brand-costing-rs-200-per-kg-3-kg-of-the-other-brand-is-a
| 1,675,875,925,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2023-06/segments/1674764500837.65/warc/CC-MAIN-20230208155417-20230208185417-00829.warc.gz
| 473,611,343
| 22,922
|
A. Rs. 110
B. Rs. 120
C. Rs. 140
D. None of these
Explanation:
Let the cost of the brand be Rs. X per kg.
C.P. of 5 kg = (2 * 200 + 3 * x) = Rs. (400 + 3x)
S.P of 5 kg = Rs. (5 * 177) = Rs. 885
[885 – (400 + 3x)]/(400 + 3x) * 100 = 18
24250 – 150x = 3600 + 27x
177x = 20650 => x = 116 2/3
So, cost of the other brand = Rs. 116.66.
Mathematics Mcqs
Mathematics Mcqs - Maths Mcqs are very important for every test. prepare for NTS, FPSC, PPSC, SPSC, CSS, PMS Test Preparation. and all other testing services. Most of the test syllabus contain Mathematics test portion. Here you will find most important Mathematics Mcqs. here these Mcqs will help you getting good marks in this Section. Here you will find most important Mcqs of Mathematics from Basic to Advance. some of the most important sub categories are: Average, Percentage, Problem on Ages, Time and Distance, HCF and LCM, Logarithms, Discount, Interest, Ratio & Proportion, Decimal Fraction and other.
MATHEMATICS MCQS
1. Basic Maths Mcqs 17. Arithmetic Mcqs
2. Average Mcqs 18. Boats and Streams
3. Compound Interest 19. Areas
4. Height and Distance Mcqs 20. Discount Mcqs
5. Men Food Mcqs 21. interest Mcqs
6. Mixtures and Allegations 22. Mensuration
7. Partnership 23. Odd Man Out Series Mcqs
8. Pipes and Cisterns 24. Volumes
9. Permutations and Combinations 25. Probability
10. Problems on L.C.M and H.C.F 26. Problems on Numbers
11. Profit and Loss Mcqs 27. Quadratic Equations
12. Races and Games 28. Ratio and Proportion
13. Simple Equations 29. Simplification and Approximation
14. Stocks and Shares Mcqs 30. Time & Distance Mcqs
15. Time and Work Mcqs 31. Volume and Surface Area Mcqs
16. Percentage Mcqs 32. -
Profit and Loss Mcqs
Profit and Loss Mcqs for Preparation with detailed explanation.
IF YOU THINK THAT ABOVE POSTED MCQ IS WRONG.
| 557
| 1,815
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.46875
| 4
|
CC-MAIN-2023-06
|
longest
|
en
| 0.743103
|
https://plainmath.org/post-secondary/calculus-and-analysis/differential-equations
| 1,726,253,833,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-38/segments/1725700651535.66/warc/CC-MAIN-20240913165920-20240913195920-00680.warc.gz
| 411,559,936
| 30,181
|
# Solve System of Differential Equations with Expert Help
Recent questions in Differential Equations
Jonalito Juan2023-05-12
## A body falls from rest against resistance proportional to the square root of the speed at any instant. If the body attains speed V1 and V2 feet per second, after 1 and 2 seconds in motion, respectively, find an expression for the limiting velocity.
Eliza Shields 2023-04-01
## The Laplace transform of $u\left(t-2\right)$ is (a) $\frac{1}{s}+2$(b) $\frac{1}{s}-2$(c) ${e}^{2}\frac{s}{s}\left(d\right)\frac{{e}^{-2s}}{s}$??
Gianna Johnson 2023-04-01
## The Laplace transform of the product of two functions is the product of the Laplace transforms of each given function. True or False
nepojamanuszc 2023-03-23
## 1 degree on celsius scale is equal to A) $\frac{9}{5}$ degree on fahrenheit scaleB) $\frac{5}{9}$ degree on fahrenheit scaleC) 1 degree on fahrenheit scaleD) 5 degree on fahrenheit scale
inframundosa921 2023-03-21
## The Laplace transform of $t{e}^{t}$ is A. $\frac{s}{\left(s+1{\right)}^{2}}$ B. $\frac{1}{\left(s-1{\right)}^{2}}$ C. $\frac{s}{\left(s+1{\right)}^{2}}$ D. $\frac{s}{\left(s-1\right)}$
enrosca0fx 2023-01-03
## What is the Laplace transform of $t\mathrm{cos}t$ into the s domain?
Aydin Welch 2022-12-20
## Find the general solution of the given differential equation:${y}^{″}-2{y}^{\prime }+y=0$
Hailee S.2022-12-19
## The rate at which a body cools is proportional to the difference in temperature between the body and its surroundings. If a body in air at 0℃ will cool from 200℃ 𝑡𝑜 100℃ in 40 minutes, how many more minutes will it take the body to cool from 100℃ 𝑡𝑜 50℃ ?
Hailee S.2022-12-19
## A body falls from rest against a resistance proportional to the velocity at any instant. If the limiting velocity is 60fps and the body attains half that velocity in 1 second, find the initial velocity.
unecewelpGGi 2022-11-25
## What's the correct way to go about computing the Inverse Laplace transform of this?$\frac{-2s+1}{\left({s}^{2}+2s+5\right)}$I Completed the square on the bottom but what do you do now?$\frac{-2s+1}{\left(s+1{\right)}^{2}+4}$
hemotropS7A 2022-11-25
## How to find inverse Laplace transform of the following function?$X\left(s\right)=\frac{s}{{s}^{4}+1}$I tried to use the definition: $f\left(t\right)={\mathcal{L}}^{-1}\left\{F\left(s\right)\right\}=\frac{1}{2\pi i}\underset{T\to \mathrm{\infty }}{lim}{\int }_{\gamma -iT}^{\gamma +iT}{e}^{st}F\left(s\right)\phantom{\rule{thinmathspace}{0ex}}ds$or the partial fraction expansion but I have not achieved results.
phumzaRdY 2022-11-25
## How do i find the lapalace transorm of this intergral using the convolution theorem? ${\int }_{0}^{t}{e}^{-x}\mathrm{cos}x\phantom{\rule{thinmathspace}{0ex}}dx$
klupko5HR 2022-11-25
## Find the inverse Laplace transform of $\frac{{s}^{2}-4s-4}{{s}^{4}+8{s}^{2}+16}$
vegetatzz8s 2022-11-25
## How can I solve this differential equation? :
Ghillardi4Pi 2022-11-24
## Сalculate which equation represents a line that passes through $\left(5,1\right)$ and has a slope of StartFraction one-half EndFraction?
Alberanteb4T 2022-11-24
## inverse laplace transform - with symbolic variables:$F\left(s\right)=\frac{2{s}^{2}+\left(a-6b\right)s+{a}^{2}-4ab}{\left({s}^{2}-{a}^{2}\right)\left(s-2b\right)}$My steps:$F\left(s\right)=\frac{2{s}^{2}+\left(a-6b\right)s+{a}^{2}-4ab}{\left(s+a\right)\left(s-a\right)\left(s-2b\right)}$$=\frac{A}{s+a}+\frac{B}{s-a}+\frac{C}{s-2b}+K$$K=0$$A=F\left(s\right)\ast \left(s+a\right)$
hemotropS7A 2022-11-24
## How to find the Direct Discrete Laplace Transform of $\left(\genfrac{}{}{0}{}{2n}{n}\right)$
ingerentayQL 2022-11-24
| 1,290
| 3,658
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 29, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.390625
| 3
|
CC-MAIN-2024-38
|
latest
|
en
| 0.686479
|
https://subs.emis.de/LIPIcs/frontdoor_29c2.html
| 1,719,284,961,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2024-26/segments/1718198865545.19/warc/CC-MAIN-20240625005529-20240625035529-00255.warc.gz
| 480,212,577
| 3,595
|
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2019.1
URN: urn:nbn:de:0030-drops-112165
URL: https://drops.dagstuhl.de/opus/volltexte/2019/11216/
Go to the corresponding LIPIcs Volume Portal
### The Query Complexity of Mastermind with l_p Distances
pdf-format:
### Abstract
Consider a variant of the Mastermind game in which queries are l_p distances, rather than the usual Hamming distance. That is, a codemaker chooses a hidden vector y in {-k,-k+1,...,k-1,k}^n and answers to queries of the form ||y-x||_p where x in {-k,-k+1,...,k-1,k}^n. The goal is to minimize the number of queries made in order to correctly guess y.
In this work, we show an upper bound of O(min{n,(n log k)/(log n)}) queries for any real 1<=p<infty and O(n) queries for p=infty. To prove this result, we in fact develop a nonadaptive polynomial time algorithm that works for a natural class of separable distance measures, i.e., coordinate-wise sums of functions of the absolute value. We also show matching lower bounds up to constant factors, even for adaptive algorithms for the approximation version of the problem, in which the problem is to output y' such that ||y'-y||_p <= R for any R <= k^{1-epsilon}n^{1/p} for constant epsilon>0. Thus, essentially any approximation of this problem is as hard as finding the hidden vector exactly, up to constant factors. Finally, we show that for the noisy version of the problem, i.e., the setting when the codemaker answers queries with any q = (1 +/- epsilon)||y-x||_p, there is no query efficient algorithm.
### BibTeX - Entry
```@InProceedings{fernndezv_et_al:LIPIcs:2019:11216,
author = {Manuel Fern{\'a}ndez V and David P. Woodruff and Taisuke Yasuda},
title = {{The Query Complexity of Mastermind with l_p Distances}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
pages = {1:1--1:11},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-125-2},
ISSN = {1868-8969},
year = {2019},
volume = {145},
editor = {Dimitris Achlioptas and L{\'a}szl{\'o} A. V{\'e}gh},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
URL = {http://drops.dagstuhl.de/opus/volltexte/2019/11216},
URN = {urn:nbn:de:0030-drops-112165},
doi = {10.4230/LIPIcs.APPROX-RANDOM.2019.1},
annote = {Keywords: Mastermind, Query Complexity, l_p Distance}
}
```
Keywords: Mastermind, Query Complexity, l_p Distance Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019) Issue Date: 2019 Date of publication: 17.09.2019
DROPS-Home | Fulltext Search | Imprint | Privacy
| 802
| 2,713
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.5625
| 3
|
CC-MAIN-2024-26
|
latest
|
en
| 0.820345
|
https://usq.edu.au/academic-success-planner/trigonometry/trigonometric-rules/step1
| 1,621,292,347,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2021-21/segments/1620243991870.70/warc/CC-MAIN-20210517211550-20210518001550-00025.warc.gz
| 596,498,978
| 3,697
|
Contact The Learning Centre
# Pythagoras' Theorem and other Trigonometric Rules
### Pythagoras’ Theorem
Pythagoras' Theorem (for a right angled triangle) can be written as: $\mbox{(perpendicular height)}^2 + \mbox{(base)}^2 = \mbox{(hypotenuse)}^2$
Consider now the right angle triangle with an angle of $$\theta$$:
Pythagoras' Theorem now can be written as:
\begin{eqnarray*}
a^{2} + b^{2} &=& c^{2}
\end{eqnarray*}
For example, find the missing side of a triangle with hypotenuse of $$10$$ and a base of $$6$$.
\begin{eqnarray*}
a^{2}+ b^{2} &=& c^{2} \\
a^{2}+6^{2}&=&10^{2} \\
a^{2}&=& 100 - 36 \\
a^{2}&=& 64 \\
a&=& \sqrt{64} \\
&=& 8
\end{eqnarray*}
| 242
| 664
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.09375
| 4
|
CC-MAIN-2021-21
|
latest
|
en
| 0.518072
|
https://gateoverflow.in/562/gate1992-02-vii
| 1,544,676,785,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2018-51/segments/1544376824448.53/warc/CC-MAIN-20181213032335-20181213053835-00469.warc.gz
| 633,521,981
| 21,523
|
1.5k views
Choose the correct alternatives (more than one may be correct) and write the corresponding letters only:
A $2-3$ tree is such that
1. All internal nodes have either $2$ or $3$ children
2. All paths from root to the leaves have the same length.
The number of internal nodes of a $2-3$ tree having $9$ leaves could be
1. $4$
2. $5$
3. $6$
4. $7$
edited | 1.5k views
$4 \rightarrow$ When each leaf has $3$ childs. So $9/3 = 3$ Internal nodes, Then one internal node those internal nodes.
$7 \rightarrow$ When each leaf has $2$ childs & one leaf out of $4$ get $3$ childs. Ex $\rightarrow 8/4 = 2$ child per internal node. Then one of that internal node get extra third child. Then $2$ internal nodes to connect these $4$. Then $1$ internal node to connect this $2$. So $4+2+1 = 7$.
No other way is possible.
edited by
0
We are also considering root as an internal node right?
+1
is there any specific procedure for this ques....?????????
0
6 also possible ans
+3
@srestha plz check bcoz it not satisfy this which is given in question All paths from root to the leaves have the same length.
0
yes thanks
0
What do you mean by leaf has child?
0
I think he meant non-leaf
In 2-3 Tree for 9 leaves, internal nodes can be 4 or 7
+1
In the second diagram you have made 10 leaves . Plz see it .Question is asking about 9 leaves only.
+1
@ashwina, yes you are correct, that was a mistake. please assume 9 leaf nodes in the 2nd tree.
Am getting only 4 and 7 4-> complete 3 ary-tree 7-> almost complete binary tree ...almost in the sense one of penultimate level node has 3 children
0
Same here.
+1 vote
Ans should be 4 and 7
1
2
| 491
| 1,645
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.921875
| 4
|
CC-MAIN-2018-51
|
longest
|
en
| 0.923956
|
http://www.chegg.com/homework-help/questions-and-answers/-q3551035
| 1,371,614,227,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2013-20/segments/1368707440693/warc/CC-MAIN-20130516123040-00031-ip-10-60-113-184.ec2.internal.warc.gz
| 370,404,179
| 8,028
|
## RLC Circuit phasor question
• b
• Anonymous commented
pls rate me 1st!!
• here:
omega, w = 6pi10^9
Inductance = wL = 6pi10^9 *1 = 6pi10^9 ohm
capacitance = 1/wc = 10^10/6pi10^9 = 10/6pi
R = 10^7 ohm
Impedance = [R^2 + (Xc-Xl)^2]^0.5 = Z
I = 100/Z
• Anonymous commented
pls rate me !!
Reactance coil: 18.849.555.921,54 j
Reactance capacitor: -0,53 j
Total reactance: 18.849.555.921,01 j
Series-resonance-angular-frequency: 100.000,00 Hz
Series-resonance-frequency: 15.915,49 Hz
f: 89,97°
Z: 10000000 + 18.849.555.921,01 j = 18.849.558.573,59 ? 89,97°
Current: 0.00 cos(?t + -134,97°) A
voltage across capacitor = IXc = 0
| 280
| 634
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.765625
| 3
|
CC-MAIN-2013-20
|
longest
|
en
| 0.661311
|
http://mathhelpforum.com/differential-equations/126504-help-de-problem-print.html
| 1,527,118,055,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2018-22/segments/1526794865830.35/warc/CC-MAIN-20180523215608-20180523235608-00062.warc.gz
| 202,444,675
| 4,801
|
# Help with this DE problem
Show 40 post(s) from this thread on one page
Page 1 of 2 12 Last
• Jan 31st 2010, 02:22 PM
whitepenguin
Help with this DE problem
Hi
I got a problem in DE too
I checked all the possible methods that I've learned so far includes Linear, Homogeneous,Bernoulli, and exact equation however none of them worked for me
$\displaystyle y' = \frac{y}{3x - y^2}$
Please give me just a little hint on this.
Thank you
• Jan 31st 2010, 03:50 PM
Krizalid
Put $\displaystyle y=\sqrt xt$ and that'd turn the ODE into a separable one.
• Jan 31st 2010, 03:56 PM
whitepenguin
Hi, can you tell me how you know to put it that way? Is there any general method for this kind of problem?
Thank you
• Jan 31st 2010, 04:29 PM
Krizalid
mm, i didn't know, i just made that substitution and it worked out! :)
• Jan 31st 2010, 04:48 PM
whitepenguin
So I guess I'm pretty dumb, coz I've been thinking about that since yesterday...(Crying)
• Jan 31st 2010, 04:49 PM
Krizalid
no, don't say that.
apply the substitution, what do you get?
• Jan 31st 2010, 05:43 PM
whitepenguin
Yes, I was be able to solve the problem using your substitution.
so.. the seprable form is this...
$\displaystyle \frac {6 - 2v^2}{v-3+v^2}dv = \frac {dx}{x}$
Thank you.
BTW.
I got another I.V.P where I found $\displaystyle c = \sqrt4$ , I end up with c= +-2
which one should I choose?
• Jan 31st 2010, 05:45 PM
Krizalid
$\displaystyle \sqrt4=2,$ and not $\displaystyle -2.$
did you stop to think how a positive function could deliver a negative value?
• Jan 31st 2010, 05:51 PM
whitepenguin
Quote:
Originally Posted by Krizalid
did you stop to think how a positive function could deliver a negative value?
Im not sure what you're asking
an you give me a little explain? ,why is it not negative?
I found the SOLN , and plug back to orginal problem, with both case c=+-2
,looks like both satify the problem.....
I dont really understand...
And what about uniqueness ... ???? I though they said IVP is unique soln, but... I found 2 C's....(Thinking)
• Feb 1st 2010, 08:30 PM
snaes
general solution
Hi, i read over this post i think i know how to find a "general solution" for this probelm. Its actually a specific case for this problem, but it'll help you find an integrating factor in the form $\displaystyle x^ay^b$. where "a" and "b" are constants.
Get equation in exact form:
$\displaystyle (M)dx+(N)dy=0$
$\displaystyle (-y)dx+(3x-y)dy=0$
Make this fraction =1
$\displaystyle \dfrac{M_y-N_x}{N\dfrac{a}{x}-M\dfrac{b}{y}}=1$
By making "a" and "b" appropriot values this should make the fraction 1. Thereby giving you the values of "a" and "b"to fill in the integrating factor $\displaystyle x^ay^b$.
This should make the equation turn into an "exact differential equation"
Hope this helps!
*Note: I havent tried this for your specific problem, but this is the solution my professor has taught us and has worked for me on other problems.
• Feb 1st 2010, 08:32 PM
Krizalid
that's funny, you got the same result as me and i've never studied well exact equations. :D
• Feb 2nd 2010, 04:00 AM
Calculus26
For another approach
http://www.mathhelpforum.com/math-he...c06ef73a-1.gif
rewrite
dx/dy = (3x-y^2)/y
dx/dy -(3/y)x = -y
use integrating factor 1/y^3
x/y^3 = 1/y + c
x = y^2 + cy^3
• Feb 2nd 2010, 09:36 AM
whitepenguin
Quote:
Originally Posted by snaes
Hi, i read over this post i think i know how to find a "general solution" for this probelm. Its actually a specific case for this problem, but it'll help you find an integrating factor in the form $\displaystyle x^ay^b$. where "a" and "b" are constants.
Get equation in exact form:
$\displaystyle (M)dx+(N)dy=0$
$\displaystyle (-y)dx+(3x-y)dy=0$
Make this fraction =1
$\displaystyle \dfrac{M_y-N_x}{N\dfrac{a}{x}-M\dfrac{b}{y}}=1$
By making "a" and "b" appropriot values this should make the fraction 1. Thereby giving you the values of "a" and "b"to fill in the integrating factor $\displaystyle x^ay^b$.
This should make the equation turn into an "exact differential equation"
Hope this helps!
*Note: I havent tried this for your specific problem, but this is the solution my professor has taught us and has worked for me on other problems.
Hi, can you put it in a little detail? How do you get $\displaystyle 3x-y^2$ to $\displaystyle 3x - y$
• Feb 2nd 2010, 09:44 AM
whitepenguin
Quote:
Originally Posted by Calculus26
For another approach
http://www.mathhelpforum.com/math-he...c06ef73a-1.gif
rewrite
dx/dy = (3x-y^2)/y
dx/dy -(3/y)x = -y
use integrating factor 1/y^3
x/y^3 = 1/y + c
x = y^2 + cy^3
So you make this look like a linear eqn?
I thought it should be dy/dx?
Im confused tho, coz y is a function has x .... or may be i'm wrong
Can you give me an explain
Thanks
• Feb 2nd 2010, 01:13 PM
Calculus26
I just inverted the equation to get x as a fn of y to make the solution a simple linear ODE.
Show 40 post(s) from this thread on one page
Page 1 of 2 12 Last
| 1,554
| 4,934
|
{"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.828125
| 4
|
CC-MAIN-2018-22
|
latest
|
en
| 0.919204
|
http://reference.wolfram.com/language/tutorial/NDSolveDAE.html
| 1,534,496,453,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2018-34/segments/1534221211935.42/warc/CC-MAIN-20180817084620-20180817104620-00028.warc.gz
| 315,511,314
| 55,735
|
# Numerical Solution of Differential-Algebraic Equations
## Introduction
In general, a system of ordinary differential equations (ODEs) can be expressed in the normal form,
The derivatives of the dependent variables are expressed explicitly in terms of the independent transient variable and the dependent variables . As long as the function has sufficient continuity, a unique solution can always be found for an initial value problem where the values of the dependent variables are given at a specific value of the independent variable.
With differential-algebraic equations (DAEs), the derivatives are not, in general, expressed explicitly. In fact, derivatives of some of the dependent variables typically do not appear in the equations. For example, the following equation
does not explicitly contain any derivatives of . Such variables are often referred to as algebraic variables.
The general form of a system of DAEs is
Solving systems of DAEs often involves many steps. The flow chart shown below indicates the general process associated with solving DAEs in NDSolve.
Flow chart of steps involved in solving DAE systems in NDSolve.
Generally, a system of DAEs can be converted to a system of ODEs by differentiating it with respect to the independent variable . The index of a DAE is the number of times needed to differentiate the DAEs to get a system of ODEs.
The DAE solver methods built into NDSolve work with index-1 systems, so for higher-index systems an index reduction may be necessary to get a solution. NDSolve can be instructed to perform that index reduction. When a system is found to have an index greater than 1, NDSolve generates a message and number of steps need to be taken in order to solve the DAE.
As a first step for high-index DAEs, the index of the system needs to be reduced. The process of differentiating to reduce the index, referred to as index reduction, can be done in NDSolve with a symbolic process.
The process of index reduction leads to a new equivalent system. In one approach, this new system is restructured by substituting new (dummy) variables in place of the differentiated variables. This leads to an expanded system that then can be uniquely solved. Another approach for restructuring the system involves differentiating the original system number of times until the differentials for all the variables are accounted for. The preceding differentiated systems are treated as invariants.
In order to solve the new index-reduced system, a consistent set of initial conditions must be found. A system of ODEs in normal form, , can always be initialized by giving values for at the starting time. However, for DAEs it may be difficult to find initial conditions that satisfy the residual equation ; this amounts to solving a nonlinear algebraic system where only some variables may be independently specified. This will be discussed in further detail in a a later section. Furthermore, the initialization needs to be consistent. This means that the derivatives of the residual equations also need to be satisfied. Commonly, higher-index systems are harder to initialize. In this case NDSolve cannot, in general, see how the components of interact and is thus not able do an automatic index reduction. NDSolve, however, has a number of different methods, accessible via options, to perform index reduction and find a consistent initialization of DAEs.
The remainder of this document is structured in the following manner: first, some terminology around indices of DAEs is introduced. Following that, the next section treats solving of index-1 DAEs. Next, methods for index reduction of higher-order index DAEs are presented. Consistent initialization of DAEs is treated subsequently. In addition to the examples in the sections mentioned so far, an entire last section with additional examples is given.
This loads packages that will be used in the examples.
In[7]:=
## Index of a DAE
For a general DAE system , the index of the system refers to the minimum number of differentiations of part or all the equations in the system that would be required to solve for uniquely in terms of and . Note that there are many slightly different concepts of index in the literature; for the purpose of this document the preceding concept will be used.
Consider the following DAE
In order to get a differential equation for , the first equation must be differentiated once. This leads to the new system
The differentiated system now contains , which must be accounted for. To get an equation for , the second equation must now be differentiated three times. This leads to
Since part of the system had to be differentiated three times to get a derivative equation for , the index of the DAE is 3. The final differentiated system is said to be an index-0 system. To see ODEs that are obtained by the differentiations, you can perform appropriate substitutions, in this case subtracting the second equation from the first. The resulting equation can be written as
Similarly, the index-1 system can be found by differentiating the second equation twice, resulting in the following system
It is typical to reduce the index of the system to 1, since the underlying integration routines can handle them efficiently.
The index of a DAE may not always be obvious. Consider a system that may exhibit index-1 or index-2 behavior, depending on what the initial conditions are.
A system of DAEs with three equations, but only one differential term.
In[13]:=
For this DAE, the initial conditions are not free; the second equation requires that be either 0 or 1.
If , then the two remaining equations make an index-1 system, since differentiation of the third equation gives a system of two ODEs
While the initial condition for , the initial condition for can be varied.
Solve the system of DAEs starting with a specified initial condition for and with .
In[14]:=
Out[14]=
In[15]:=
Out[15]=
On the other hand, if , then the two remaining equations make an index-2 system. Differentiating the third equation gives , and substituting into the first equation gives , which needs to be differentiated to get an ODE
There are also no additional degrees of freedom in the initial conditions, since and .
Solve the system of DAEs starting with .
In[16]:=
Out[16]=
In[17]:=
Out[17]=
Both the number of initial conditions needed and the index of a DAE may influence the actual solution being found.
## Treatment of Differential Equations
In order to solve a differential equation, NDSolve converts the user-specified system into one of three forms. This step is quite important because depending on how the system is constructed, different integration methods are chosen.
You may specify in which form to represent the equations by using the option Method->{"EquationSimplification"->simplification}. The following simplification methods can be specified for the "EquationSimplification" option.
Automatic try to solve the system symbolically in the form ; if a solution cannot be found or takes too long, try simplifying using the "MassMatrix" or "Residual" methods; this is the default "Solve" solve the system symbolically in the form if possible "MassMatrix" reduce the system to the form if possible "Residual" subtract right-hand sides of equations from left-hand sides to form a residual function
Equation simplification methods.
Consider the system
By default, an attempt is made to solve for the derivatives explicitly in terms of the independent and dependent variables and . For efficiency purposes, NDSolve first attempts to try to find the explicit system by using LinearSolve. If that fails, however, then the system is solved symbolically using Solve.
NDSolve automatically tries to put the system in an explicit form.
In[19]:=
Out[20]=
Using the "Solve" method is the same as the default when a symbolic solution is found.
Generate a system of the form using the option "MassMatrix".
In[21]:=
Out[22]=
In[23]:=
Out[23]//MatrixForm=
Generate a system of the form using the option "Residual".
In[24]:=
Out[25]=
When the system is put in a residual form, the derivatives are represented by a new set of variables that are generated to be unique symbols. You can get the correspondence between these working variables and the specified variables using the "Variables" and "WorkingVariables" properties of NDSolveStateData.
Show correspondence between working and specified variables.
In[26]:=
Out[26]=
The process of generating an explicit system of ODEs may sometimes become expensive due to the symbolic treatment of the system. For this reason, there is a time constraint of one second put on obtaining the equations. If that time is exceeded, then NDSolve generates a message and attempts to solve the system as a DAE.
Define variables and equations for a nonlinear system.
In[27]:=
Solve using the default equation simplification strategy.
In[30]:=
Out[30]=
The following method options can be specified to the simplification methods to better control the behavior of "EquationSimplification".
option name default value "TimeConstraint" 1 maximum time in seconds allowed for Solve to explicitly solve for the derivatives "SimplifySystem" False whether to simplify by obtaining analytic solutions for as many dependent variables as possible
As indicated by the message, NDSolve did not solve explicitly for the derivatives because Solve had exceeded the default time constraint of one second. The amount of time that NDSolve spends on obtaining an explicit expression can be controlled using the option "TimeConstraint".
Use the suboption option "TimeConstraint" to control the amount of time in seconds NDSolve spends on obtaining an explicit expression.
In[31]:=
Out[31]=
In the preceding example, due to the square terms in the first equation, four possible solutions are encountered. When solving as a DAE, the numerical solution will only follow one of these solution branches, depending on how it is initialized.
To demonstrate the usage of the method option "SimplifySystem", consider the following example:
.
An analytic solution for the above system can be obtained by substituting into the first equation to get a solution for , which in turn is substituted into the second equation to give a solution for . The final solution for the system is
.
NDSolve cannot solve this system without first performing index reduction of the system and forming a new equivalent system of ODEs. This could prove to be expensive. When the suboption "SimplifySystem" is turned on, NDSolve detects any variable for which an analytic expression/solution can be found and performs repeated substitutions back into the original system. This results in the original system being either simplified or in some cases (like the above) getting back analytic solutions.
Solve the above DAE with "SimplifySystem"->True.
In[13]:=
Out[13]=
If an analytic solution does not exist for certain variables, then NDSolve will return an interpolating function as the solution.
Solve a system where analytic solutions can only be found for some of the dependent variables.
In[14]:=
Out[14]=
With the suboption turned on, constant parameters can also be directly substituted into the system.
Solve an ODE that contains constant parameters as part of the system.
In[15]:=
Out[15]=
## DAE Solution Methods
There are a variety of solution methods built into NDSolve for solving DAEs.
Two methods work with the general residual form of index-1 DAEs, .
• IDA(Implicit Differential-Algebraic solver from the SUNDIALS package) based on backward differentiation formulas (BDF)
• StateSpaceimplicitly solves for derivatives to use an underlying ODE solver
If the system has index higher than 1, both of these solvers typically fail. To accurately solve such systems, index reduction is needed. Note that index-1 systems can be reduced to ODEs, but it is often more efficient to use one of the solvers above.
NDSolve also has some solvers that work with DAEs that can be reduced to special forms.
• MassMatrixfor DAEs of the form
The following subsections describe some aspects of using these methods for DAEs.
### ODEs with Invariants
It is common to encounter DAEs of the form
where is an invariant that is consistent with the differential equations.
When a system of DAEs is converted to ODEs via index reduction, the equations that were differentiated to get the ODE form are consistent with the ODEs, and it is typically important to make sure those equations are well satisfied as the solution is integrated.
Such systems have more equations than unknowns and are overdetermined unless the constraints are consistent with the ODEs. NDSolve does not handle such DAEs directly because it expects a system with the same number of equations and dependent variables. In order to solve such systems, the "Projection" method built into NDSolve handles the invariants by projecting the computed solution onto after each time step. This ensures that the algebraic equations are satisfied as the solution evolves.
An example of such a constrained system is a nonlinear oscillator modeling the motion of a pendulum.
This defines the equation, invariant constraint, and starting condition for a simulation of the motion of a pendulum.
In[32]:=
Note that the differential equation is effectively the derivative of the invariant, so one way to solve the equation is to use the invariant.
NDSolve does not solve this system directly, as indicated by the message.
In[35]:=
Out[35]=
Using the "Projection" time integration method gets a solution that satisfies the invariant at the time steps.
In[36]:=
Out[36]=
Plot the invariant at the time steps; it is satisfied nearly to machine precision.
In[37]:=
Out[37]=
### Solving Systems with a Mass Matrix
When the derivatives appear linearly, a differential system can be written in a form
where is a matrix often referred to as a mass matrix. Sometimes is also referred to as a damping matrix. If the matrix is nonsingular, then it can be inverted and the system can be solved as an ODE. However, in the presence of a singular matrix, the system can be solved as a DAE. In either case, it may be advantageous to take advantage of the special form.
The system describing the motion of a particle on a cylinder
can be expressed in mass matrix form with
Define system variables, equations, and initial conditions.
In[19]:=
Solve the system in the form using the option "MassMatrix".
In[22]:=
In[23]:=
Out[23]=
## Index Reduction for DAEs
The built-in solvers for DAEs in NDSolve currently handle index-1 systems of DAEs fully automatically. For higher-index systems, an index reduction is necessary to get to a solution. This index reduction can be performed by giving appropriate options to NDSolve.
NDSolve uses symbolic techniques to do index reduction. This means that if your DAE system is expressed in the form , where NDSolve cannot see how the components of interact and compute symbolic derivatives, the index reduction cannot be done, and for this reason NDSolve does not do index reduction, by default.
For an example, consider the classic DAE describing the motion of a pendulum:
where there is a mass at the point constrained by a string of length . is a Lagrange multiplier that is effectively the tension in the string. For simplicity in the description of index reduction, take . The figure shows the schematic of the pendulum system.
Sketch of the forces acting on a pendulum.
If the index of the system is not obvious from the equations, one thing to do is try it in NDSolve, and if the solver is not able to solve it, in many cases it is able to generate a message indicating what the index appears to be for the initial conditions specified.
Define equations and a complete set of initial values for the constrained pendulum system.
In[9]:=
Try to solve the constrained pendulum system.
In[20]:=
Out[20]=
The message indicates that the index is 3, indicating that index reduction is necessary to solve the system. Note that a complete consistent initialization is used here to avoid possible issues with initialization. This aspect of the solution procedure is treated in "Consistent Initialization of DAEs" with more detail.
The option setting Method->{"IndexReduction"->{irmeth,iropts}} is used to specify that NDSolve uses index reduction method irmeth with general index reduction options iropts.
None no index reduction (default) Automatic choose the method automatically "Pantelides" graph-based Pantelides algorithm "StructuralMatrix" structural matrix-based algorithm
Index reduction methods.
The following options can be given for all index reduction methods.
"ConstraintMethod" Automatic how to handle constraints from specified system "IndexGoal" Automatic index to reduce to (1 or 0)
Options for index reduction.
Solve using automatically chosen methods of index reduction.
In[21]:=
Out[21]=
In[22]:=
Out[22]=
Index reduction is done by differentiating equations in the DAE system. Suppose that an equation eqn is differentiated during the process of index reduction so that deqn=eqn is included in the system in place of eqn. Once the differentiation has been done, the differentiated equations comprise a fully determined system and can be solved on their own. However, it is typically important to incorporate the original equations in the system as constraints. How this is done is controlled by the "ConstraintMethod" index reduction option.
None do not keep the original equations as constraints and just solve with the differentiation equations "DummyDerivatives" use the method of Mattson and Soderlind [MS93] to replace some derivatives with algebraic variables (dummy derivatives) "Projection" reduce the index to 0 to get an ODE and use the "Projection" time integration method with the original equations that were differentiated as invariants
Constraint methods.
Use index reduction and solve with the differentiated equations.
In[23]:=
Compare how well the constraint is satisfied for the two solutions.
In[24]:=
Out[24]=
In the numerical solution with just the differentiated equations, the length of the pendulum is drifting away from 1. Incorporating the original equations into the solution as constraints is an important aspect of index reduction.
The next two sections will describe index reduction algorithms, followed by an explanation of constraint methods that can be used in NDSolve.
### Index Reduction Algorithms
NDSolve has two algorithms for doing index reduction, the Pantelides and the structural matrix methods. Both of these methods use the symbolic form of the equations to determine which equations to differentiate and then use symbolic differentiation to get the differentiated system.
Both methods make use of the concept of structural incidence in the equations; in particular, if variable appears explicitly in equation , then is termed incident in . The structural incidence matrix is the matrix with elements if is incident in and otherwise . A DAE system has structural index 1 if the structural incidence matrix can be reordered so that there are 1s along the diagonal. The existence of such a reordering means that there is a matching between equations and variables such that there is one equation for every variable.
The Pantelides algorithm works with a graph based on the incidence that can be very efficient even for extremely large systems.
Note that the structural index may be smaller than the actual index of the system. In the real system, terms that are structurally present may vanish along some solutions or the Jacobian matrix may be singular. The structural matrix method tries to take into account the possibility of singularities in the Jacobian and will do a better job of index reduction for some systems, but at the cost of greater computational expense.
The next section introduces a command for getting the structural incidence matrix that is useful for the descriptions of the Pantelides and structural matrix algorithms that follow in the subsequent sections.
#### Structural Incidence
NDSolve`StructuralIncidenceArray[eqns,vars] return a SparseArray that has the pattern of the structural incidence matrix for the variables vars in the equations eqns
Getting the structural incidence.
Get the structural incidence matrix for the system , for the variables , .
In[25]:=
Out[25]=
In[26]:=
Out[26]//MatrixForm=
Note that the SparseArray contains just the nonzero pattern that uses less memory and indicates it represents the pattern of incidence. It can be converted to a SparseArray with 1s using ArrayRules.
Define a command to convert pattern arrays to 1s and 0s.
In[27]:=
In[28]:=
Out[28]=
In[29]:=
Out[29]=
In[30]:=
Out[30]//MatrixForm=
The system has structural index 1, since no reordering is needed to avoid zeros along the diagonal.
If the structural incidence with respect to the derivative variables can be arranged to avoid zeros on the diagonal, then the system is index 0.
Get the structural incidence matrix for the system , for the variables , .
In[31]:=
Out[31]//MatrixForm=
There is no reordering that will avoid zeros on the diagonal. However, if the second equation is differentiated it is possible.
Get the structural incidence matrix for the system , with the second equation differentiated for the variables , .
In[32]:=
Out[32]//MatrixForm=
The differentiated system has structural index 0, verifying that the original system was index 1.
Consider the constrained pendulum (2) as another example.
Get the structural incidence matrix for the constrained pendulum system with respect to the highest-order derivatives that appear.
In[33]:=
Out[33]//MatrixForm=
The matrix cannot be reordered to avoid zeros on the diagonal, so the index is greater than 1.
Note that the function NDSolve`StructuralIncidenceArray just does a literal matching on the FullForm of the expression to check for the incidence. It does not do any checking to see if your equations or variables are properly formed.
This tests the literal presence of the symbols x and y in each of the equations.
In[34]:=
Out[34]//MatrixForm=
This is a full matrix because the FullForm of x'[t] is Derivative[1][x][t] that contains x.
#### Pantelides Method
The method proposed by Pantelides [P88] is a graph theoretical method that was originally proposed for finding consistent initialization of DAEs. It works with a bipartite graph of dependent variables and equations, and when the algorithm can find a traversal of the graph, then the system has been reduced to index at most 1. A traversal in this sense effectively means an ordering of variables and equations so that the graph's incidence matrix has no zeros on the diagonal.
When the bipartite graph does not have a complete traversal, the algorithm effectively augments the path by differentiating equations, introducing new variables (derivatives of previous variables) in the process. Unless the original system is structurally singular, the algorithm will terminate with a traversal. Generally, the algorithm does only the differentiations needed to get the traversal, but since it is a greedy algorithm, it is not always the minimal number.
It is beyond the scope of this documentation to describe the algorithm in detail. The implementation built into the Wolfram Language follows the algorithm outlined in [P88] fairly closely. It uses Graph to efficiently implement the graph computations and symbolically differentiates the equations with D when differentiation is called for.
When there is a traversal of the system, it is then possible to find an ordering for the variables and equations such that the incidence matrix is in block lower triangular (BLT) form. The BLT form is used in setting up the dummy derivative method for maintaining constraints and also in the "StateSpace" time integration method. A description of the BLT ordering is included in "State Space Method for DAEs".
To begin index reduction on the constrained pendulum system (2), consider the variables . Generally, start with the highest-order derivative that appears in the equations. As a reminder, the pendulum equations are
and the graph incidence matrix with respect to the highest-order derivative is
The incidence matrix is constructed by checking the presence of a variable in an equation. If the variable exists in the equation, a weight of 1 is given; if not then 0 is specified. So checking for the variables in the first equation gives (as seen in the first row of the incidence matrix).
From the first incidence matrix, it is found that there is no traversal. The last equation is differentiated twice
The incidence matrix is now
This can be reordered so that there is no zero on the diagonal by swapping the first and last equations, resulting in the incidence matrix
The resulting system has index 1 since still appears as an algebraic variable and does not contain a derivative in the differentiated system. Differentiating the system one more time will provide a differential system for . Therefore, the index of the original system is indeed 3.
As a first approach, the system with the twice-differentiated equation can be solved directly.
Solve the system with the twice-differentiated equation.
In[35]:=
Out[35]=
Plot quantities that should be invariant, based on the originally specified equations.
In[36]:=
Out[36]=
The original pendulum length constraint is not being satisfied well; in fact, it stretches! The constraints are not satisfied well because the new system does not identically represent the original system. This can be seen by the fact that the new system does not contain the original constraint of , but rather its differentiated equations.
To model the original dynamics of the system with the new system, additional equations must be satisfied. However, including additional equations leads to more equations than unknowns. To address this issue, the method of dummy derivatives is used, so that the index-reduced system becomes balanced.
The Pantelides algorithm is efficient because it can use graph algorithms with well-controlled complexity even for very large problems. However, since it is based solely on incidence, there can be issues with systems that lead to Jacobians that are singular. The structural matrix method may be able to resolve such cases, but may have larger computational complexity for large systems.
#### Structural Matrix Method
The structural matrix algorithm is an alternative to the Pantelides algorithm. The structural matrix method follows from the work of Unger [UKM95] and Chowdhary et al. [CKL04]. The graph-based algorithms such as the Pantelides algorithm rely on traversals to perform index reduction. However, they do not account for the fact that sometimes there may be variable cancellations in a particular system. This leads to the algorithm underestimating the index of the system. If a DAE has not been correctly reduced to an index-0 or index-1 system, then the numerical integration may fail or may produce an incorrect result.
As an example of variable cancellation that is not taken into account by Pantelides's method, consider the following DAE
.
To perform index reduction, as a first step the second equation is differentiated once, giving
.
The Pantelides algorithm stops after the first differentiation because it finds derivatives for the variables and finds a traversal. Since all the derivatives are found from the first differentiation, the Pantelides algorithm estimates the index of the system to be 0. An index-0 system is equivalent to a system of ODEs. The Jacobian of the derivatives for the differentiated system is found to be
and is clearly singular. By simple substitutions, it is possible to see that the differentiated system is equivalent to
.
This implies that in order to get a system of ODEs, a second differentiation must be done for the second equation. This results in the final system
.
The above system has a nonsingular Jacobian for the derivatives. The above system is now correctly index 0 and a system of ODEs can be formed from it. Since two differentiations were required, the actual index of the system is 2 (instead of 1).
Unlike the Pantelides algorithm, the structural matrix method accounts for all cancellations associated with the linear terms. The steps of the method are demonstrated using the pendulum example (2) described as a first-order system
As a first step, two matrices and are constructed. The matrices are incidence matrices associated with the derivatives and the variables , respectively. For the above system, the matrix is given as
The matrix above contains a as some of its entries. The is used as a placeholder, indicating that the variables in that equation (row) are present in the equation in a nonlinear fashion. Notice that for the second equation, the terms and appear as products. Therefore, the first and last columns in the second row are marked with a .
Once the matrices are constructed, the objective is to try and convert the system of DAEs into a system of ODEs. In order to do that, the rank of the matrix must be full. To achieve this, equations that need to be differentiated are first identified. In this case, it is the last equation. After differentiation, the structural matrices are
The last column of the matrix has changed due to the differentiations. To see this more clearly, consider the last equation in (3). Differentiating the equation gives . Notice now that the terms are present in the equation and appear in a nonlinear manner. Therefore the incidence row associated with the derivatives is , and the incidence row associated with the variables is .
The next step involves matrix factorization in the form of Gaussian elimination for the matrix . The elements in the last row of can be eliminated by making use of rows 1 and 3. This elimination also affects the rows of the matrix . Multiplying the first row of with and subtracting it from the last row leads to
Multiplying the third row with and subtracting it from the last row gives
The matrix is still rank deficient and therefore the above steps must be repeated. A second iteration leads to the system
A third iteration leads to the system
The matrix is now a full-rank matrix. Therefore the iterations are stopped. Since three iterations were needed to get a full-rank matrix for , the index of the system is 3. Note that unlike the Pantelides method, the structural matrix algorithm explicitly operates on the incidence matrices.
The next examples demonstrate the advantage and differences of the structured matrix method over the Pantelides algorithm. Consider the linear system
.
Set up the equations and initial conditions.
In[37]:=
Try solving the system using the Pantelides algorithm.
In[39]:=
Out[39]=
This fails because there is a singular Jacobian matrix. Very commonly the messages NDSolve::nderr or NDSolve::ndcf are issued by the solver when the DAE's index is greater than 1.
Solve the system using the structural matrix method for index reduction.
In[40]:=
Out[40]=
The exact solutions are and . Comparing the exact and numerical results, it is found that the computed solution is quite accurate.
In[41]:=
Out[41]=
Next, consider the effect of under- or overestimating the index of a system. Consider the linear system
.
Set up the equations, initial conditions, and variables.
In[42]:=
The exact solution for all the variables is . This is an index-4 system. The Pantelides algorithm estimates the index to be 2.
Attempt to solve the system using the Pantelides algorithm for index reduction.
In[48]:=
The solver encounters a convergence failure because the Jacobian is singular.
Solve the system using the structural matrix algorithm for index reduction.
In[49]:=
Out[49]=
There are certain tests that NDSolve performs to determine which index reduction method to use. For this case, using the option Automatic, NDSolve picks the structural matrix algorithm.
Solve the system by setting the "IndexReduction"->Automatic.
In[50]:=
Out[50]=
If the system is forced to be treated as index 0, integration can be performed. However, in the absence of incorrect estimation of the index, the results can be wildly off because the solution is being computed for a completely different manifold.
Solve the system as an index-0 system using the Pantelides algorithm.
In[51]:=
Out[51]=
Since the exact solution is known for this problem, it is desirable to see the difference between the numerical solution and the exact result.
In[52]:=
Out[52]=
Due to the underestimation of the index of the system, the necessary differentiations are not carried out, leading to the solution's being approximated on an incorrect manifold. The structural matrix method, on the other hand, is able to correctly identify the index of the system.
Plot the result of the system as obtained using "StructuralMatrix".
In[53]:=
Out[53]=
Solve the system as an index-0 system using the structural matrix method.
In[54]:=
In[55]:=
Out[55]=
The structural matrix method does handle such systems much better. It is, however, important to note that there is a price to be paid for the rigor of accounting for cancellations. The structural matrix method relies on generating, maintaining, and operating on matrices, which has a significant computational overhead compared to the Pantelides algorithm. The algorithm is therefore only suited for small-to-medium-scale problems.
### Constraint Methods
#### Dummy Derivatives
The purpose of the dummy derivative method is to introduce algebraic variables so that the combined system of original equations and equations that have been differentiated for index reduction is not overdetermined.
Consider the pendulum system (2) again.
This solves the system using the index reduction with dummy derivatives built into NDSolve.
In[56]:=
Out[56]=
Note that for this example the "ConstraintMethod"->"DummyDerivatives" was included for emphasis and is not needed, since trying to use dummy derivatives is the default.
Plot quantities that should be invariant based on the originally specified equations.
In[57]:=
Out[57]=
Now the constraints are very well satisfied.
The main idea behind the dummy derivative method of Mattson and Söderlind [MS93] is to introduce new variables that represent derivatives, thus making it possible to reintroduce constraint equations without getting an overdetermined system.
Recall the index-reduced equations for the system (2) were
with the two constraints from the third equation and its first derivative
Let and be algebraic variables that replace and , respectively. Then, with the constraints included, the entire system in these variables is given by
and the incidence matrix with variables is
that can be reordered to have a nonzero diagonal.
Reorder the incidence matrix.
In[58]:=
Out[60]//MatrixForm=
In general, the algorithm can be applied to any index-reduced DAE; however, while integrating the system, the solver may encounter singularities.
Try to integrate the system with manually introduced dummy derivatives replacing and . (Using dummy derivatives is the default so no option setting is needed.)
In[61]:=
Out[61]=
The above system cannot complete integration because the system becomes singular when .
This plots the solution as far as it was computed.
In[62]:=
Out[62]=
From the plot it can be seen that NDSolve is getting stuck when is becoming 0. When is 0, several terms drop out, the incidence matrix becomes singular, and a nonzero diagonal can no longer be found, so the dummy derivative system effectively has index along solutions that go through .
Consider an alternative dummy derivative replacement, i.e. and to replace and . Unfortunately, the system with this replacement becomes singular at .
The remedy is to use dynamic state selection such that and replace and when is away from 0 and switch dynamically to the system using and to replace and when Null becomes too small. NDSolve automatically uses WhenEvent with state replacement rules to handle dynamic state selection with dummy derivatives if necessary. The exact details of the dynamic state selection are beyond the scope of this tutorial. A detailed explanation can be found in Mattson and Soderlind [MS93].
#### Projection
The alternative to using dummy derivatives is to reduce the index to 0 so there is a system of ODEs and use projection to ensure that the original constraints are satisfied.
For the pendulum system (2), the index of the system is 3. This means that in order to get an ordinary differential equation for all the variables, the first and second equations must be differentiated once, while the third equation must be differentiated three times. This results in
that can be solved for the derivatives , , and . (NDSolve will also reduce the system to first order automatically.)
In order to correctly represent the dynamics of the system, the first differentiated equation must also be taken into account. These equations are
The above equations are treated as invariant equations that must be satisfied at each time step. Since the ODE system was derived from differentiating these equations, the constraints are guaranteed to be consistent with the ODEs, so the system can be solved using the "Projection" time integration method with the constraints as invariants.
Solve the ODEs using the "Projection" method.
In[63]:=
Out[63]=
This can be done automatically the built-in index reduction in NDSolve directly.
This solves the system using the index reduction with projection built into NDSolve.
In[64]:=
With this method, the original constraints are typically satisfied up to the local tolerances for NDSolve specified by the PrecisionGoal and AccuracyGoal options.
The system has additional invariants that should also be satisfied. One of these is the conservation of energy that can be expressed by . Because the projection method only projects at the ends of the time steps, this is the most appropriate place to do the comparison.
This gets the energy for a solution at the time steps and plots the energy for the dummy derivative and projection solutions.
In[65]:=
In[66]:=
In[67]:=
Out[67]=
### Index Reduction of Partial Differential Algebraic Equations (PDAE):
Consider the following system of partial differential equations:
.
In the above system, the second PDE does not contain a time derivative component for any of the variables. Therefore, NDSolve cannot solve this system using method of lines because the resulting mass-matrix will be singular and the system has an index of 1. To reduce the index of the system, the above system is represented in a matrix-vector form as
.
The terms represent the matrices obtained by discretizing the spatial derivatives and the terms represent the vectors obtained by discretizing the variables at discrete spatial intervals . Index reduction is performed on the new system using the index-reduction methods described above. The resulting index-reduced system is
.
The spatial derivatives are now reintroduced back into the system to give
.
The resulting system can then be solved using traditional methods available in NDSolve.
Define the system.
In[129]:=
Solve the system by doing index reduction on the PDAE.
In[132]:=
Out[132]=
Note that 200 points were used for the spatial discretization because the default spatial grid spacing based on the constant initial condition is insufficient to handle the variation the solution develops over time.
Plot the solution.
In[133]:=
Out[133]=
It is important to note that the index reduction is performed in the time derivative, so no new boundary conditions are needed or added to the system. However, if the PDAE is found to be of high index, then additional initial conditions may be needed.
## Consistent Initialization of DAEs
A system of differential algebraic equations (DAEs) can be represented in the most general form as
,
which may include differential equations and algebraic constraints. In order to obtain a solution for , a set of consistent initial conditions for and is needed to start the integration. A necessary condition for consistency is that the initial conditions satisfy However, this condition alone may not be sufficient, since differentiating the original equations produces new equations that also need to be satisfied by the initial conditions. The task therefore is to try and find initial conditions that satisfy all necessary consistency conditions. The problem of finding consistent initial conditions can be one of the most difficult parts of solving a DAE system.
Consider the following linear DAE problem:
.
The DAE has derivatives for . This would suggest that in order to uniquely solve this problem, initial conditions for need to be specified. However, you cannot specify any arbitrary initial conditions to the variables, since there is a unique set of consistent initial conditions. Differentiating the algebraic equation once leads to Substituting in the second equation gives the solution for . Differentiating and substituting into the first equation gives the solution for This shows that the solution for the DAE system is fixed, and therefore the initial conditions are also fixed, and the only consistent set of initial conditions for is It is important to note that the constraints on the initial conditions are not obvious, in general making the problem of finding consistent initial conditions quite challenging.
In some cases, you may just want to get a consistent initialization for a DAE problem and not compute the solution further. This can be done with NDSolve by specifying the endpoint of the time integration to be the same as the time where the initial condition is specified. Such a step is generally helpful when you need to examine just the starting conditions without having to perform the complete integration.
This computes initial conditions for a system of DAEs.
In[68]:=
Out[68]=
In[69]:=
Out[69]=
NDSolve provides several methods for DAE initialization. The method m can be specified using Method->{"DAEInitialization"->m}.
Automatic determine the method to use automatically "Collocation" use a collocation method; this algorithm can be used for initialization of high-index systems "QR" use a QR decomposition-based algorithm for index-1 systems "BLT" use a Block Lower Triangular ordering (BLT) approach for index-1 systems
Methods for DAE initialization.
The collocation method is designed to handle the DAE system as a residual black box and tries to achieve the objective of satisfying the residual over a small interval near the point of initialization. This feature allows the method to be used to handle initialization of high-index systems. However, since the algorithm does not analyze the DAE system, the structure of the system cannot be exploited for computational efficiency. This makes the algorithm slower than the other methods.
The QR and BLT methods are designed specifically to be used for index-1 and index-0 systems. The QR method relies on decomposing the Jacobian of the derivative to generate two decoupled subsystems such that the initial conditions for the variables and their derivatives are computed iteratively. This makes the method quite efficient and robust.
The BLT method relies on examining the structure of the DAE system and splits the original system into a number of smaller subsystems such that each of these subsystems can be solved efficiently. This method results in dealing with much smaller Jacobian matrices (compared to the entire system) and thus is computationally efficient for large systems.
The following sections give details about how NDSolve obtains consistent initial conditions for DAEs using different algorithms.
### Collocation Method
The basic collocation algorithm makes use of expanding the dependent variables in terms of basis functions as
In order to obtain and , one tries to enforce the condition that is satisfied at collocation points, , in time. To achieve this, the implicit DAE is linearized as
where and denote the Jacobian of with respect to and , respectively:
,
.
Applying this linearization to collocation points in time, a system of linear equations is obtained for the coefficients , which is solved iteratively using Newton's method.
where is obtained using a line search method. If there are coefficients and collocation points, then you are dealing with an × system of linear equations in (5).
For high-index systems that have not index reduced, NDSolve automatically tries to initialize the system using the collocation algorithm. Consider the pendulum system (2)
In order to start integration of the system, the initial conditions for must be known. For such systems, would represent some physical property and could be assigned reasonable values. However, the value of might not be easy to find. NDSolve can be used here to determine the appropriate values.
Obtain a consistent set of initial conditions for the pendulum DAE.
In[70]:=
Out[70]=
In[71]:=
Out[71]=
In[72]:=
Out[72]=
Notice that only partial initial conditions were given and the algorithm correctly computes all the required initial conditions.
The default settings for the collocation method have been chosen to handle initialization for a wide variety of systems; however, in some cases it is necessary to change the settings to find a consistent Initialization. The following options may be used to tune the algorithm.
collocation method option name default value "CollocationDirection" Automatic chooses the direction in which the collocation points are placed; possible options include "Forward", "Backward", "Centered", "Automatic" "CollocationPoints" Automatic number of collocation points to be used; using suboption "ExtraCollocationPoints", more grid points are added while keeping the approximation order fixed "CollocationRange" Automatic range over which the collocation points are distributed "DefaultStartingValue" Automatic starting value used for unspecified components in the nonlinear iterations; option can be a one-element value ig/{ig} or a list of two numbers {ig1,ig2}, where ig1,ig2 are the starting values for the variable and its derivative, respectively "MaxIterations" 100 maximum number of iterations to be performed
"Collocation" method options.
The next sections discuss these options in more detail and show in what circumstances they may help to find consistent initial conditions.
#### Collocation Direction
In order to perform the initialization, a set of collocation points is selected. The points can be placed on both sides, front, or back of the point of interest, using the options "Centered", "Forward", or "Backward", respectively. The following table describes the effect of choosing one of these options.
"Forward" collocation performed over the range "Backward" collocation performed over the range "Centered" collocation performed over the range
"CollocationDirection" suboptions.
The term above refers to the time at which the initial condition is computed. The term is the offset value. By default, NDSolve automatically chooses the direction in which the collocation is performed.
The collocation direction becomes important when dealing with discontinuities.
In[73]:=
In this case, at time , is discontinuous.
NDSolve automatically sets the option for "CollocationDirection".
In[74]:=
Out[74]=
In[75]:=
Out[75]=
Applying a "CollocationDirection" of "Centered" will cause the solution to diverge.
In[76]:=
Out[76]=
However, using the "Forward" or "Backward" direction, you can get correct convergence by avoiding the discontinuous derivative.
In[77]:=
Out[77]=
In most cases, NDSolve automatically determines what the direction should be. However, if it is known that there could be discontinuities in a specific direction, then it can be avoided by using this setting. This in turn helps in reducing the computational time for NDSolve.
#### Collocation Points
The option "CollocationPoints" refers to the number of collocation points as indicated in (5) that will be used in the series approximation (4). Depending on the collocation points, the order of the series in (4) is determined. The order of the series is . The collocation points are essentially the Chebyshev points distributed over the collocation range.
To illustrate the effect of "CollocationPoints", consider the following index-3 example.
In[78]:=
The solution to the preceding DAE can be found analytically. The exact consistent initial conditions are as follows.
In[81]:=
Out[81]//TableForm=
The default setting for the method "CollocationPoints" finds the correct initialization.
In[82]:=
In[83]:=
Out[83]//TableForm=
A manual setting of collocation points is possible. Setting "CollocationPoints"->2 is equivalent to setting in (4). This means that the solution is approximated using constant and linear basis functions.
Do the initialization using constant and linear basis functions.
In[84]:=
In[85]:=
Out[85]//TableForm=
Even though the iterations converged, the results are not the correct consistent initial conditions. No message is issued because they satisfy the specified equations sufficiently well.
Test the initial conditions in the specified equations.
In[86]:=
Out[86]=
Recall that for higher-index equations, consistent initial conditions should also work with the differentiated system.
Increasing the number of collocation points and thus allowing higher-order basis functions allows the algorithm to converge to the expected result.
Try solving the initialization problem with a range of collocation points.
In[87]:=
Plotting the results as a function of the collocation points gives an indication of how the solution converges. Red, Green, and Blue correspond to the variables x1, x2, x3, respectively.
In[88]:=
Out[90]=
Since the order of the approximation is determined by the collocation points , the resulting linearized system obtained in (4) will result in a square matrix, and the resulting system of linear equations can be solved efficiently using LinearSolve. However, it is quite possible that the resulting linear system may be ill conditioned or singular. Such systems are known to be sensitive and therefore can result in an unstable iteration. To resolve this issue, it is often desirable to solve an overdetermined system of equation using LeastSquares.
Using the suboption "ExtraCollocationPoints", the order of the series approximation is kept equal to in (4), but the value of in (5) is modified to , where is the extra collocation points. This, therefore, leads to an overdetermined system of equations in (5), which is solved using the least-squares method.
Initialize with an overdetermined system.
In[91]:=
Out[92]//TableForm=
#### Collocation Range
For very high-index systems that have not undergone index reduction, the use of a much higher collocation order might be required, along with a specification of the range in which the collocation should take place. By default, the collocation range is computed based on the working precision and the number of basis functions used in expansion.
For an example, an index-6 system for which an exact solution can be found will be used.
Define variables and equations for an index-6 linear system of DAEs.
In[93]:=
Find the exact solution for this case using DSolve.
In[96]:=
Out[96]=
Make a table of the initial conditions.
In[97]:=
Out[97]//TableForm=
The default options for the initialization compute an incorrect result for some of the terms.
In[98]:=
Out[99]//TableForm=
Typically it is necessary to use an approximation with an order higher than the index of the system. Since this is an index-6 system, you must rely on a higher-order approximation in (4). As mentioned in the previous subsection, this can be done using the option "CollocationPoints".
Initialize using sufficient points for an order-15 approximation.
In[100]:=
Out[101]//TableForm=
A solution is found, but there are significant errors from the exact consistent initial conditions. The reason for the large error is that for this example the default points are too close together and so there is noticeable numerical round-off error.
Initialize using 15 collocation points spread over an extended collocation range of length 1 to avoid numerical round-off errors.
In[102]:=
Out[103]//TableForm=
There is a close relationship between "CollocationPoints" and "CollocationRange". The collocation range is computed based on the number of collocation points so as to avoid excessive round-off errors and to accommodate higher-precision computations. Unless explicitly specified, the "CollocationRange" is computed as , where is the setting of the WorkingPrecision option and is the setting of the "CollocationPoints" method option.
#### Specifying Initial Conditions
One of the main differences between ODEs and DAEs is that in order to integrate a system of ODEs, initial conditions for all the variables must be provided. On the other hand, for a DAE, some of these initial conditions may be fixed and must be computed directly from the system. To elaborate, consider the ODE
The initial conditions can be arbitrarily specified for the preceding system. Now consider a modification of the same system given as
This system is a DAE, but the dynamics are identical to the ODE system. The major difference now is that the initial conditions and are not fixed, but rather are determined by the algebraic equation.
The preceding example is simple enough that some determination can be made as to which variables are fixed and perhaps the initial conditions manually computed. However, as the system gets more complicated and large, you must rely on additional tools.
In certain cases, the initial conditions are completely determined by the system of equations. To illustrate this case, consider the following linear DAE system
.
Though the system contains two derivatives, the solution and the initial conditions are completely determined by the system. No additional information is needed.
Initialize the system with no initial conditions specified.
In[104]:=
In[106]:=
Out[106]=
Get the consistent initial conditions.
In[107]:=
Out[108]=
In[109]:=
Out[109]=
It is important to note that it is often not possible to know which conditions are fixed and which ones are free. One approach that could be taken to gain some insight into the correct initial conditions and the order of magnitude of the initial conditions is to put the DAE equations directly into NDSolve without initial conditions and manipulate the options for the method "DAEInitialization".
Consider the pendulum system (2) represented as a first-order system. In order to uniquely define the state of the system, only two initial conditions are needed.
In[110]:=
First, consider the case when no initial conditions are given for this DAE system. By default, the starting guess is taken to be 1 for all variables that have not been specified. Since no index reduction is performed, NDSolve automatically chooses the collocation algorithm.
In[113]:=
Out[113]=
In[114]:=
Out[114]//TableForm=
It is observed that the algorithm was able to find one possible set of initial conditions out of the infinitely many possible sets. At this point, it is of course very sensitive to the starting guesses. It is also important to note that convergence of the iterations is not guaranteed.
The initial starting guess can be changed using the option "DefaultStartingValue" for the collocation method. If an initial starting guess of -1 is used, then a different set of valid solutions will be found.
In[115]:=
Out[116]//TableForm=
As mentioned earlier, two initial conditions are sufficient to fix the state of the system. For the pendulum case, the value of and fixes the system.
Compute the initial condition for the pendulum system with two states fixed.
In[117]:=
Out[118]//TableForm=
If the state is truly fixed, then the system should theoretically be insensitive to the starting initial guess.
Compute the initial conditions with different starting values.
In[119]:=
Out[119]=
For certain systems, the computation of initial conditions is sensitive to the starting guess. To demonstrate, consider the following system.
In[120]:=
For this problem with x2[t]0, the general solution is {x1[t]x1[0]+t2/2,x2[t]0,x3[t]t}, so it is necessary to give x1[0] to determine the solution. By using a default value of 1 as the starting guess, the algorithm is forced to change the specified initial condition.
In[121]:=
Out[122]=
The code essentially switches to a different solution branch.
In[123]:=
Out[123]=
This happens because the default starting guess for the state is 1. During the Newton iterations, the system becomes singular because the second equation is identically satisfied, and as a result the iterations diverge. To avoid complete failure, the algorithm is forced to modify the specified condition of .
To avoid this behavior, a "better" starting guess can be given. Using a starting guess of -1, the iterations converge to the expected consistent initial condition.
In[124]:=
Out[125]=
In[126]:=
Out[126]=
### QR Method
The QR decomposition method is based on the work of Shampine [S02]. This algorithm is intended for index-1 or index-0 systems. The algorithm makes use of the efficient QR decomposition technique to decouple the system variables and their derivatives. In doing so, at each iteration step the solution of one system is broken down into two smaller systems of equations. For an -variable DAE system, the QR algorithm needs to handle at most a matrix of size as opposed to a matrix of size if the collocation method is used. In most cases, the algorithm only needs to handle matrices much smaller than . This makes the method quite efficient in handling very large systems. A brief description of the underlying algorithm is provided in this section.
Given an index-reduced system of the form , the system can first be linearized about an initial guess and as
.
A QR decomposition is performed on the Jacobian matrix such that , where is an orthogonal matrix, is an upper triangular matrix and is a permutation matrix. For DAEs, the matrix will not have a full row-rank. Depending on the rank of the matrix , the linearized system is then written as
.
The transformed system is solved in two steps:
.
Once the components are found, the transformed variables are converted back into the original form, using the permutation matrix, and the process is repeated until convergence.
The QR method can be called from the method "DAEInitialization", using Method->{"DAEInitialization"->{"QR",qropts}}, where qropts are options for the QR method.
"DefaultStartingValue" Automatic starting value for unspecified components in the nonlinear iterations; option can be a one-element value ig/{ig}, or a list of two numbers {ig1,ig2}, where ig1,ig2 are the starting values for the variable and its derivative, respectively "MaxIterations" 100 maximum iterations
Options for QR initialization.
Consider the pendulum example.
In[127]:=
Given that this is a high-index DAE, an index reduction must be performed on the system. Once the system has been reduced to index 1/0, all the variables and their derivatives must be initialized.
Solve the pendulum DAE using automatic index reduction and the QR algorithm for initialization.
In[129]:=
Out[129]=
In[130]:=
Out[130]=
In the preceding example, the initial conditions are given such that they lead to a consistent set of starting values. In the event that the initial conditions are not consistent, the algorithm attempts to find consistent starting values.
Solve the pendulum DAE using the QR algorithm with inconsistent initial conditions.
In[131]:=
Out[131]=
In[132]:=
Out[132]=
Examine the modified initial conditions.
In[133]:=
Out[133]=
In[134]:=
Out[134]=
By specifying the option "DefaultStartingValue", the initial guess used for the iteration is changed. For inconsistent initial conditions, this may lead to a different consistent set.
Solve the pendulum DAE using QR and the option "DefaultStartingValue".
In[135]:=
In[136]:=
Out[136]=
Examine the modified initial conditions obtained using a different starting guess.
In[137]:=
Out[137]=
In[138]:=
Out[138]=
### BLT Method
The BLT method is based on transforming an index-reduced system into a block lower triangular form and then solving subsets of the system iteratively. The subsets themselves are solved using a GaussNewton method. This is sometimes advantageous because the index reduction algorithm that generates the index-reduced system tends to already have a block lower triangular form and it reduces the computational complexity by working with smaller subsystems with correspondingly smaller matrix computations. The algorithm also checks for inconsistent initial conditions and attempts to correct them.
The BLT method can be called from the method "DAEInitialization", using Method->{"DAEInitialization"->{"BLT",bltopts}}, where bltopts are options for the BLT method.
"DefaultStartingValue" Automatic starting value for unspecified components in the nonlinear iterations; option can be a one-element value ig/{ig}, or a list of two numbers {ig1,ig2}, where ig1,ig2 are the starting values for the variable and its derivative, respectively "MaxIterations" 100 maximum iterations
Options for BLT.
To see the advantage of using the BLT method, it is important to recognize that the index reduction algorithm leads to an expanded system of equations that are index 1 or index 0. Consider the following chemical systems example that describes an exothermic reaction.
In[139]:=
In[141]:=
The original DAE consists of four equations, while the index-reduced system consists of eight equations. The index-reduced equations are as follows.
In[143]:=
Out[143]//MatrixForm=
Note that the expanded system now contains dummy derivatives. The expanded system can be analyzed further to see the structure of the system.
Generate an incidence matrix for the index-reduced system.
In[144]:=
Out[147]//MatrixForm=
Find the block triangular ordering of the system.
In[148]:=
Out[149]//TableForm=
This indicates that the expanded system can actually be solved sequentially. Therefore, rather than having one system of nine equations, a single equation can be solved sequentially. From an initialization perspective, setting t->0 would allow for the initialization of the variables.
In[150]:=
Out[151]//TableForm=
This is the main principle behind the initialization using the BLT method. The BLT method is found to be especially useful and computationally efficient when dealing with large systems having a lower triangular form.
Solve the chemical system, using BLT for initialization.
In[152]:=
In[153]:=
Out[153]=
For cases with inconsistent initial conditions, the BLT method can suitably modify the initial conditions. It is, however, important to note that the results that obtained from the BLT method and the QR method may be different. Consider the pendulum example with inconsistent initial conditions.
In[154]:=
Solve the pendulum DAE using the QR algorithm and inconsistent initial conditions.
In[156]:=
In[157]:=
Out[157]=
Solve the pendulum DAE using the BLT algorithm and inconsistent initial conditions.
In[158]:=
In[159]:=
Out[159]=
### Inconsistent Initial Conditions
One of the main challenges in DAE system formulations and their solution is the fact that the starting initial conditions must be consistent. At the outset, this might seem straightforward, but for high-index DAE systems, you can easily encounter hidden conditions/equations that the initial conditions must also satisfy. If NDSolve encounters initial conditions that it finds to be inconsistent, it will attempt to correct them.
To illustrate the points about hidden constraints and inconsistent initial conditions, consider the pendulum system (2).
As a first case, consider when the initial conditions violate the algebraic constraint for the system. This is done by intentionally setting the initial condition for , so that it always violates the constraint .
Define inconsistent initial conditions.
In[160]:=
If this system is given to NDSolve, an NDSolve::ivres message is generated, indicating that the initial conditions were found to be inconsistent. It then attempts to find a consistent initial condition using the inconsistent value as a starting guess for its iterations.
Find a consistent set of initial conditions using the inconsistent values as an initial guess.
In[161]:=
Out[163]//TableForm=
Sometimes, it may not be clear if the specified conditions might be consistent or not. It may seem that the initial conditions satisfy the constraints, but may not satisfy the hidden constraint.
Specify initial conditions for the pendulum system.
In[164]:=
These initial conditions satisfy the equation but fail to satisfy the implicit constraint . This constraint is not obvious because it is hidden and is only found by index reduction. The collocation algorithm does not perform index reduction and operates on the original equations. Even in the absence of an index-reduced system, the collocation algorithm is able to detect an inconsistency in the initial conditions and attempts to rectify it.
Obtain a consistent set of initial conditions.
In[165]:=
Out[167]//TableForm=
### DAE Reinitialization with Events
Consider a system of two equations with a discrete variable where a state change is made at .
Define the system variables and equations.
In[168]:=
Solve the system with an event to do the state change.
In[171]:=
Out[172]=
In the preceding example, initial conditions for and are given. The initialization code automatically computes the consistent initial condition . At time , an event is triggered that says that the discrete variable should be changed from 1 to 2. At time , a reinitialization of the variables needs to take place. The variable is called a modified variable. The following strategy is adopted during reinitialization:
1. Keep all the state, discrete, and modified variables fixed. If a state variable has a derivative fixed (or specified to be changed), then that variable can be changed.
2. If strategy 1 fails to reinitialize, then keep the state variables and modified variables fixed and allow other variables and their derivatives to change.
3. If strategy 2 fails, then the modified variables and the state variables with derivatives in the DAE are kept fixed. All other variables and their derivatives can be changed.
4. If strategy 3 fails, then only the modified variables are kept fixed and all the state variables and their derivatives are allowed to change.
Just before the reinitialization, the values of , , and are as follows.
Get the values just before the event at .
In[173]:=
Out[173]=
Based on the outlined strategy, at time , using strategies 1 and 2, it is required that , , and do not change. Given that , this clearly violates the algebraic equation . Strategies 1 and 2 therefore fail.
Strategy 3 requires that variables with derivatives should not change. Therefore is kept fixed (along with ) and is allowed to change. This modifies the value of as shown in the plot (the blue line).
Get the reinitialized values just after the event at .
In[174]:=
Out[174]=
WhenEvent allows for simultaneous and sequential evaluation of event actions, including state changes.
After each state change, even for the same event, the DAE is reinitialized using the preceding strategy, so if possible, it is more efficient to just give one rule for the state changes needed. The final state when there are multiple state changes done at the same event time may be different because the new values are used in each subsequent evaluation and setting and for DAEs these values may depend on the reinitialization. Consider the previous problem with additional events.
Solve the problem with three rules given for the state changes that will be evaluated in sequence.
In[175]:=
Out[176]=
To see why the solution is different from the one preceding, it is necessary to follow the sequence of settings. First is set to 2 and the DAE is reinitialized before evaluating the other settings. This reinitialization changes the value of to 2 since that is how the strategy finds a solution consistent with the residual. Execution of the second action sets to 2 (the current value of ), but this is inconsistent with the residual, so since is an algebraic variable its value is set to 4 (). Finally, setting to resets to 2, and to avoid modifying the newly set algebraic variable, the value of is reset to 1.
One way to see the sequence of changes is to put in Print commands between the settings.
Print the variable values between settings.
In[177]:=
Out[178]=
Solve, switching the last two settings.
In[179]:=
Out[180]=
So a different sequence of settings leads to a different solution.
With a single rule there is only one initialization, so if all of the variables are set, the values given should be consistent, or reinitialization strategy may fail or not give the expected values.
Attempt to set all variables to values inconsistent with the DAE using a single rule.
In[181]:=
Out[181]=
Here , , and are fixed. This is a very restrictive constraint, and all the strategies fail.
Setting a variable to its current value within a single rule in effect forces it to stay the same.
Change to 2 and force to remain the same at .
In[182]:=
Out[183]=
Since stays the same, is forced to change.
## DAE Examples
### Torus Problem
This is a test problem taken from Campbell and Moore [CM95]. The DAE describes the motion of a particle in 3D. This is an index-3 DAE with three position variables, three velocity variables, and one constraint. The solution manifold is four dimensional, and the exact solution is given by
.
Define parameters and functions to use for the solution.
In[184]:=
Define the system equations and variables.
In[188]:=
An exact solution is known.
In[190]:=
Out[191]=
Solve and visualize the system.
In[192]:=
Out[192]=
In[193]:=
Out[193]=
Compare the solution between the analytic and computed solution.
In[194]:=
In[195]:=
Out[195]=
### Discharge of Pressure from a Tank
This is a simplified model of a dynamic process in petrochemical engineering. The details of this model can be found in Hairer et. al. [HLR89]. This is an index-2 system.
Define the parameters for the system.
In[196]:=
Define the equations and the variables.
In[198]:=
Solve and visualize the solution.
In[200]:=
Out[200]=
In[201]:=
Out[201]=
### Non-Flexible Slider Crank
This example is a simple constrained multibody system. The system consists of a crank of mass m1, which is hinged on a fixed surface, a slider of mass m3, and a connecting rod of mass m2. The slider is constrained to move only in the horizontal plane. Due to the masses of the individual components, the moments of inertia would have to be considered during the construction of the system. A schematic of the problem is shown following. The system can be completely defined using the two angles.
In[202]:=
The state of the slider-crank mechanism can be described completely by two angles and the distance of the slider from the origin.
Define the variables.
In[203]:=
Define the force that is exerted on the slider.
In[204]:=
The equations of motion are derived by resolving the forces and applying Newton's law and . The crank and connecting rod have mass and therefore inertia.
Define the differential system.
In[205]:=
The algebraic equations define the geometry of the system.
In[209]:=
Define the physical parameters for the system. Here and are the moment of inertia.
In[210]:=
Solve and visualize the system.
In[211]:=
In[212]:=
Out[212]=
Define functions for animating the slider crank.
In[24]:=
Animate the motion of the system.
In[213]:=
Out[213]=
### Slider Crank with Spring Damper Attaching the Links.
This is an extension of the simple slider crank mechanism. A spring and damper system is attached between the crank and the connecting rod. This spring constrains the range of motion of the crank, while the damper slowly brings the system to a steady state. The schematic of the system is given following.
In[214]:=
The state of the slider-crank mechanism can be described completely by two angles and the distance of the slider from the origin.
Define the variables.
In[215]:=
Define the force that is exerted on the slider.
In[216]:=
The equations of motion are derived by resolving the forces and applying Newton's law and . The crank and connecting rod have mass and therefore inertia.
Define the differential system.
In[217]:=
Define the algebraic constraints.
In[221]:=
Define the parameters for the system.
In[222]:=
Solve and visualize the system.
In[223]:=
Out[224]=
Define functions for generating the animation.
In[11]:=
Animate the motion of the slider-crank system with a spring and damper. Due to the damper and spring, the motion eventually comes to rest in the horizontal plane.
In[225]:=
Out[225]=
The two-link planar robotic arm is a frictionless, constrained mechanical system. The system consists of two links attached to each other through a joint, such that one end of the first link is held fixed, while the trajectory at the end of the second link is specified. The following figure shows a schematic of the system.
In[226]:=
The system can be completely defined using the angles between the links. Additional details of this system can be found in Ascher et al. [ACPR94].
Define the variables.
In[227]:=
Define the trajectory that the end of the robot arm must follow. This corresponds to defining the position of . The motion is a
In[228]:=
The equations of motion are derived by resolving the forces and applying Newton's law. The differential equations are derived for the angles. The Cartesian coordinates and are therefore represented in terms of the angle.
Define the differential equations.
In[229]:=
Define the parameters associated with the system.
In[232]:=
Solve and visualize the system.
In[233]:=
Out[234]=
In[235]:=
Out[235]=
Animate the motion of the robotic arm constrained to move on a specified curve.
In[236]:=
Out[237]=
### n-Pendulum Problem
Construct a function for generating an -pendulum system.
In[238]:=
Generate a two-pendulum system.
In[240]:=
Solve and visualize the pendulum system.
In[242]:=
Out[243]=
Visualize the chaotic trajectory of the second pendulum rod.
In[244]:=
Out[244]=
### Transistor-Amplifier Circuit
Define the parameters for the transistor-amplifier circuit.
In[245]:=
Solve and visualize the DAE system.
In[255]:=
Out[256]=
### Akzo-Nobel Chemical Reaction
The following system describes a chemical process in which two species, FLB and ZHU, are mixed while is constantly added to the system. The chemical names are fictitious. Details of the system and the dynamics associated with it can be found in [N93]. The reaction equations follow. Associated with each reaction, there are rates of reaction, which are specified. The algebraic constraint comes from the last reaction, which requires FLB and ZHU and its mixture to maintain a constant relationship.
Define the reaction rates and the parameters of the chemical reaction.
In[257]:=
Generate the rate equations for the system.
In[264]:=
Solve and visualize the system.
In[267]:=
Out[268]=
### Car-Axis Problem
The car-axis model is a simple multibody system that is designed to simulate the behavior of a car axis on a bumpy road. A schematic of the system is shown following. The model consists of two wheels: the left wheel is assumed to be moving on a flat surface, while the right wheel moves over a bumpy surface. The bumpy surface is modeled as a sinusoid. The left and right wheels transfer their motion to the chassis of the car through two massless springs as shown following. The chassis of the car is modeled as a bar of mass M. Additional details of this model can be found in Mazzia et. al. [MM08]. This is an index-3 system.
In[269]:=
The left tire at is always on a flat surface, while the right tire periodically goes over a bump.
Define the motion of the right wheel as it goes over the bump.
In[270]:=
The distance between the wheels must always remain fixed and the car chassis must always have a fixed length.
In[271]:=
Derive the equations of motion using Newton's law.
In[272]:=
Define the parameters associated with the system.
In[278]:=
Solve and visualize the solution.
In[280]:=
In[281]:=
Out[281]=
### Combined Elliptic-Parabolic PDE in 1D
The following is a synthetic example for solving a parabolic and an elliptic PDE that are coupled together in a nonlinear fashion. Spatial discretization of the PDEs results in a system that contains a significant number of algebraic variables. The equations are set up such that the analytic solution exists for the system. The details of the coupled system are given following.
Null
Null
Discretize the spatial component of the PDE using method of lines and construct a system of ODEs from the governing equations. These form the differential equations.
In[282]:=
Specify the boundary conditions for the system. These form the algebraic equations of the system.
In[289]:=
Specify the initial conditions of the system.
In[292]:=
Solve the PDE as a DAE system.
In[294]:=
Visualize the solution.
In[296]:=
Out[298]=
### Multispecies Food Web Model (Combined Elliptic-Parabolic PDE in 2D)
This example is a model of the multispecies food web [B86]. Unlike the typical predator-prey problem, there is a spatial component of this problem. The predator-prey relationships are defined over a 2D spatial domain via a series of diffusion parameters. The general coupled PDE is given by
.
In this system, the first species are the prey and the next species are the predators. The specific case of is considered here. This means that there is one predator and one prey species. The spatial domain is discretized with a 20×20 mesh. This means that there are 2×400 variables in the final DAE system. A uniform distribution of the predators is specified initially. This is leads to a inconsistent initial condition that is corrected by the built-in algorithms.
Define the parameters needed for the model.
In[299]:=
Generate the finite difference differentiation matrices for the first and second derivatives. Generate the Laplacian matrix from it.
In[311]:=
Define the species in the food web.
In[313]:=
Generate the equations for the model.
In[314]:=
Define the initial conditions for the model.
In[317]:=
Simulate the food web model.
In[318]:=
Plot of the corrected/modified initial conditions. The predator distributions are changed.
In[320]:=
Out[321]=
Visualization of the solution at and .
In[322]:=
Out[323]=
In[324]:=
Out[325]=
Animation of the evolution of the solution over time shows that a steady state is reached quite fast for the given parameters.
In[326]:=
Out[326]=
### Andrews's Squeezer Mechanism
The Andrews squeezer mechanism is a multibody system containing seven different links. The dimensions of the various links and their specifications are given following. The system can be completely defined using seven angles. The angles are labeled q1q7 in the following system. Additionally, there are six algebraic constraints associated with the link dimensions and connections. This leads to a 14-dimensional, index-3 system. Details of the system can be found in Hairer and Wanner [HW96].
The dimensions associated with the various links are shown below. The seven links are labeled K1K7.
The notation for the parameters used in the model and their description can be found in Hairer and Wanner [HW96].
Clear some of the parameters.
In[327]:=
Define the parameters.
In[328]:=
The motion of the system can be defined using seven angles. The angles are defined as here. The equations of motion can be derived using Hamiltonian principles resulting in a system of equations of the form where is a mass matrix, is a vector of forces, is a vector of constraints, and are Lagrange multipliers.
Define the variables for angles and Lagrange multipliers.
In[333]:=
Define the mass matrix associated with the system.
In[336]:=
Define the various forces associated with the system.
In[337]:=
In[343]:=
Define the constraint vector associated with the various links.
In[344]:=
Construct the equations and the constraint equations with particular values of the parameters.
In[345]:=
Define the initial state of the system to be at rest with a particular set of angles.
In[346]:=
Solve the system and plot the angles and the forces. The motion of the links becomes faster as time progresses. The lines are color coded based on the color of the links.
In[347]:=
In[348]:=
Out[348]=
In[349]:=
Out[349]=
Visualize the motion of the mechanism.
In[350]:=
Out[350]=
| 17,074
| 81,344
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.78125
| 4
|
CC-MAIN-2018-34
|
latest
|
en
| 0.92675
|
https://www.physicsforums.com/threads/calculating-the-pulling-force-of-a-2t-car-over-100m-in-10s.389419/
| 1,695,920,322,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2023-40/segments/1695233510427.16/warc/CC-MAIN-20230928162907-20230928192907-00511.warc.gz
| 1,030,633,752
| 14,044
|
# Calculating the Pulling Force of a 2t Car Over 100m in 10s
• Makara
## Homework Statement
A car with mass of 2t, from starting point travels a distance of 100m for 10s. How much is the pulling force of the car?
Which means that:
m=2t=2000kg
s=100m
t=10s
F-pulling=?
How to find it? :P
Newton's second law, says that F = m a, where a is the acceleration (I assume it is taken to be constant).
How can you find the acceleration from the given data?
| 139
| 456
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.328125
| 3
|
CC-MAIN-2023-40
|
latest
|
en
| 0.945191
|
https://www.jiskha.com/display.cgi?id=1315518441
| 1,503,292,352,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2017-34/segments/1502886107490.42/warc/CC-MAIN-20170821041654-20170821061654-00210.warc.gz
| 906,934,933
| 3,697
|
# chemistry
posted by .
how to convert from 40.grams to tons
## Similar Questions
1. ### chemistry
Given a solution in moles per litre how would you convert to parts per million)ppm.) could you help,no other information given apart from solution contains a known concentation of aluminium mols/L. Convert mols to grams. That will …
2. ### chemistry
determine the number of grams of NH3 produced by the reaction of 3.5g of hydrogen gas. 1. Write the equation and balance it. N2 + 3H2 ==> 2NH3 2. Convert 3.5 g H2 gas to mols. mols = grams/molar mass. 3. Convert mols H2 gas to mols …
3. ### chemistry
i am given 2.60*10 to the 15th power short tons (which 1 short ton equals to 2000 lb) and i am suppose to convert that into metric tons in which I have that( 1 metric ton equals to 1000 kg) I need help in knowing the steps to work …
4. ### Chemistry
A few questions...how many grams are in 48.7x10^24?
5. ### Chemistry
Posted by Angeline on Monday, April 20, 2009 at 5:35pm. A few questions...how many grams are in 48.7x10^24?
6. ### chemistry
Acetic acid (CH3COOH) reacts with isopentyl alcohol (C5H12O) to yield the ester isopentyl acetate which has the odour of bananas. If the yield from the reaction is 45%, how many grams of isopentyl acetate are formed when 3.90 g of …
7. ### Chemistry H.
Assume that the nucleus of the fluorine atom is a sphere with a radius of 5 x 10 ^ -13 cm. Calculate the density of matter in the fluorine nucleus in grams/cm^3. Now convert your answer to tons per cubic centimeter, knowing that there …
8. ### Math
Ventura Coal mined 6 ⅔ tons on Monday, 7 ¾ tons on Tuesday, and 4 ½ tons on Wednesday. If the goal is to mine 25 tons this week, how many more tons must be mined?
9. ### Math
Ventura Coal mined 6 ⅔ tons on Monday, 7 ¾ tons on Tuesday, and 4 ½ tons on Wednesday. If the goal is to mine 25 tons this week, how many more tons must be mined?
10. ### math
Ventura Coal mined 6 ¨ø tons on Monday, 7 ¨ú tons on Tuesday, and 4 ¨ö tons on Wednesday. If the goal is to mine 25 tons this week, how many more tons must be mined?
More Similar Questions
| 614
| 2,100
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.609375
| 3
|
CC-MAIN-2017-34
|
latest
|
en
| 0.911746
|
https://gmatclub.com/forum/world-s-scariest-moment-35898.html?fl=similar
| 1,508,727,112,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2017-43/segments/1508187825510.59/warc/CC-MAIN-20171023020721-20171023040721-00137.warc.gz
| 695,039,807
| 45,414
|
It is currently 22 Oct 2017, 19:51
### GMAT Club Daily Prep
#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized
for You
we will pick new questions that match your level based on your Timer History
Track
every week, we’ll send you an estimated GMAT score based on your performance
Practice
Pays
we will pick new questions that match your level based on your Timer History
# Events & Promotions
###### Events & Promotions in June
Open Detailed Calendar
# World's Scariest Moment
Author Message
TAGS:
### Hide Tags
GMAT Club Legend
Affiliations: HHonors Diamond, BGS Honor Society
Joined: 05 Apr 2006
Posts: 5926
Kudos [?]: 2196 [0], given: 7
Schools: Chicago (Booth) - Class of 2009
GMAT 1: 730 Q45 V45
### Show Tags
28 Sep 2006, 12:49
So scary.
Do I do it ?
Attachments
worldscariest.jpg [ 70.14 KiB | Viewed 1244 times ]
Kudos [?]: 2196 [0], given: 7
SVP
Joined: 31 Jul 2006
Posts: 2302
Kudos [?]: 481 [0], given: 0
Schools: Darden
### Show Tags
28 Sep 2006, 12:51
What's the worst thing that could happen?
Kudos [?]: 481 [0], given: 0
GMAT Club Legend
Affiliations: HHonors Diamond, BGS Honor Society
Joined: 05 Apr 2006
Posts: 5926
Kudos [?]: 2196 [0], given: 7
Schools: Chicago (Booth) - Class of 2009
GMAT 1: 730 Q45 V45
### Show Tags
28 Sep 2006, 12:53
pelihu wrote:
What's the worst thing that could happen?
A virus jumps out of my machine and into the application, the submission of the application corrupts the student database, Harvard finds the culprit, sues me for \$500MM. CNN picks up the story, I'm called a hacker, and every single school in the world decides to reject me. I spend the rest of my days alone and homeless living in an alley behind Kellogg.
Well, ok, maybe not that.
Actually I havent done it becuase I dont know if I'm supposed to hit submit whenever my app is done - even if my recs aren't all in yet - or if I need to wait.
Kudos [?]: 2196 [0], given: 7
VP
Joined: 02 Jun 2006
Posts: 1257
Kudos [?]: 107 [0], given: 0
### Show Tags
28 Sep 2006, 12:59
You gotta stop reading all those hacker books and novels.... you've way too active an imagination for someone going to business school
Relax, you've got everything covered; run through your checklist once again and just click the thing. You are set... (easy for me to say .. right?)
rhyme wrote:
pelihu wrote:
What's the worst thing that could happen?
A virus jumps out of my machine and into the application, the submission of the application corrupts the student database, Harvard finds the culprit, sues me for \$500MM. CNN picks up the story, I'm called a hacker, and every single school in the world decides to reject me. I spend the rest of my days alone and homeless living in an alley behind Kellogg.
Well, ok, maybe not that.
Actually I havent done it becuase I dont know if I'm supposed to hit submit whenever my app is done - even if my recs aren't all in yet - or if I need to wait.
Kudos [?]: 107 [0], given: 0
GMAT Club Legend
Affiliations: HHonors Diamond, BGS Honor Society
Joined: 05 Apr 2006
Posts: 5926
Kudos [?]: 2196 [0], given: 7
Schools: Chicago (Booth) - Class of 2009
GMAT 1: 730 Q45 V45
### Show Tags
28 Sep 2006, 13:03
haas_mba07 wrote:
You gotta stop reading all those hacker books and novels.... you've way too active an imagination for someone going to business school
Relax, you've got everything covered; run through your checklist once again and just click the thing. You are set... (easy for me to say .. right?)
I've checked it a billion times. Its ready to go. I just need the admissions office to answer their phone and tell me if i can submit before all my recs are in, or if I need to wait.
Worst case, I wait till monday. They will all be in then.
Kudos [?]: 2196 [0], given: 7
GMAT Club Legend
Affiliations: HHonors Diamond, BGS Honor Society
Joined: 05 Apr 2006
Posts: 5926
Kudos [?]: 2196 [0], given: 7
Schools: Chicago (Booth) - Class of 2009
GMAT 1: 730 Q45 V45
### Show Tags
29 Sep 2006, 13:43
HBS is in.
Good lord was it hard to push that button.
Kudos [?]: 2196 [0], given: 7
SVP
Joined: 31 Jul 2006
Posts: 2302
Kudos [?]: 481 [0], given: 0
Schools: Darden
### Show Tags
29 Sep 2006, 13:47
That's awesome, good luck. I wish some of my apps were done
Kudos [?]: 481 [0], given: 0
GMAT Club Legend
Affiliations: HHonors Diamond, BGS Honor Society
Joined: 05 Apr 2006
Posts: 5926
Kudos [?]: 2196 [0], given: 7
Schools: Chicago (Booth) - Class of 2009
GMAT 1: 730 Q45 V45
### Show Tags
29 Sep 2006, 15:10
pelihu wrote:
That's awesome, good luck. I wish some of my apps were done
With your profile you should submit a hand written note saying "Hi, it's me." I think you'd get accepted anyway.
Kudos [?]: 2196 [0], given: 7
29 Sep 2006, 15:10
Display posts from previous: Sort by
# World's Scariest Moment
Moderators: OasisGC, aeropower, bb10
Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.
| 1,570
| 5,222
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.890625
| 3
|
CC-MAIN-2017-43
|
latest
|
en
| 0.877094
|
https://www.education.vic.gov.au/childhood/professionals/health/Pages/bmicalculate.aspx
| 1,579,736,344,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2020-05/segments/1579250607596.34/warc/CC-MAIN-20200122221541-20200123010541-00428.warc.gz
| 858,322,161
| 13,363
|
# Calculating and plotting BMI
Having obtained an accurate weight and height for a child, it is then possible to calculate their BMI and plot this onto the correct BMI chart. BMI charts are valid for children aged 2 years upwards and they are gender specific.
## How to plot BMI
Once the BMI is calculated, the next step is to plot it onto the gender specific BMI chart, to find out the BMI percentile.
### Gender specific BMI charts
Boys and girls have separate BMI charts because their body compositions differ. It is very important that the correct BMI chart is used, otherwise a child may be incorrectly categorised.
### Steps in plotting BMI
Plotting BMI is very similar to plotting height and weight on a centile chart. The instructions below provide the main steps in plotting BMI:
1. Select the correct BMI chart (i.e. Girls’ chart or Boys’ chart).
2. Have the child’s calculated BMI ready.
3. Know the child’s exact age.
4. On the BMI chart, track along the X axis (bottom line) to find the age of the child.
5. Track up the Y axis (side line) to find the BMI for the child.
6. Join the lines for the child’s age and BMI.
7. Make a cross or dot at the point at which the age and BMI lines meet.
8. Make a note of the BMI percentile as you would for height or weight, such as:
• “on the 75th percentile”
• “just below the 50th percentile”
• “between the 85th and 95th percentile”.
### Things to watch out for when plotting BMI
The main points to look out for when plotting BMI are:
• the BMI is correct
• the correct chart is being used (BMI is gender specific)
• the child is two or more years of age
• the BMI is plotted against the correct age.
Once the BMI percentile has been plotted it is worth double-checking that the point you have made on the percentile chart is for the correct age and the correct BMI. This will only take a relatively quick glance over the chart.
## Interpreting the BMI chart
### Healthy weight range
Most of the children you see will be a healthy weight for their height. Children with a healthy weight have a BMI between the 5th and 85th percentile.
Encouragement and healthy lifestyle advice should be given to all parents, even if their children are a healthy weight. Based on current statistics, at least half of all children will be overweight by the time they themselves become parents.
### Interpretation of BMI percentiles
Below the 5th percentile
Child may be failing to thrive. However, a proportion of children will be naturally thin and healthy.
You will need to use your clinical judgment to determine whether a low BMI is indicative of concurrent illness.
Between the 5th and 85th percentile
This is the healthy BMI range.
On or above the 85th percentile but below the 95th percentile
This is the overweight BMI range.
On or above the 95th percentile
This is the obese BMI range (although care should be taken to limit the use of the word obese with parents as it is generally unacceptable. Generally obese children should be referred to as being overweight when talking to parents).
For information on the ways to discuss a child's BMI with their parents, see Discussing BMI with parents.
### What inaccuracies can occur with BMI?
The following extract is taken from the Community Paediatric Review “Body Mass Index (BMI) for children”, Volume 15 Number 1, May 2006.
The extract demonstrates how inaccuracies in weighing and/or measuring a child, and/or calculating BMI can impact on their placement on the BMI percentile chart.
CPR Extract
Jenny is 4 years old. She weighs 18.5 kg and her height is 102.4 cm. Using these figures her BMI is 17.6kg/m2 which is in the 90th percentile and classifies Jenny as overweight.
Variation detailsCalculationBMIPercentileClassification
Actual BMI18.5 ÷ 1.024 ÷ 1.02417.690thOverweight
Weight overstated by 0.5kg19 ÷ 1.024 ÷ 1.02418.195thObese
Height understated by 1.2cm18.5 ÷ 1.012 ÷ 1.01218.195thObese
Weight understated by 1.5kg17 ÷ 1.024 ÷ 1.02416.275thNormal
Height overstated by 2.5cm18.5 ÷ 1.049 ÷ 1.04916.875thNormal
Weight divided by height once18.5 ÷ 1.02418.195thObese
There are four stages in acquiring the BMI percentile for each child, these are:
• obtaining an accurate weight
• obtaining an accurate height
• calculating the BMI
• plotting the BMI.
Inaccuracies or errors at any one of the stages can cause the child to be wrongly classified and lead to inappropriate management. It is vital to ensure that each stage is correct. Practicing each stage in real life situations will assist with proficiency and minimise the likelihood of errors.
| 1,092
| 4,587
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 2.9375
| 3
|
CC-MAIN-2020-05
|
latest
|
en
| 0.88727
|
https://www.physicsforums.com/threads/ball-wall-collision-problem.951999/
| 1,685,360,226,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2023-23/segments/1685224644855.6/warc/CC-MAIN-20230529105815-20230529135815-00284.warc.gz
| 1,036,501,230
| 16,362
|
# Ball-Wall collision problem
• PhysicsIsKillingMe
#### PhysicsIsKillingMe
Problem goes: A rubber ball, traveling in a horizontal direction, strikes a vertical wall. It rebounds at right angles to the wall. The graph below illustrates the variation of the ball’s momentum p with time t when the ball is in contact with the wall.
Which of the following statements is true?
A) The shaded area is equal to the force exerted by the wall on the ball.
B) The shaded area is equal to the force exerted by the ball on the wall.
C) The gradient is equal to the force exerted by the wall on the ball.
D) The gradient is equal to the force exerted by the ball on the wall.
The right answer is C. I understand how the gradient in any momentum vs time graph is the force, but I don’t understand why it’s by the wall on the ball instead of the ball on the wall.
| 199
| 853
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.203125
| 3
|
CC-MAIN-2023-23
|
latest
|
en
| 0.886731
|
http://www.math.vt.edu/people/plinnell/Teaching/Algprelims/Aug14/index.html
| 1,513,231,985,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2017-51/segments/1512948541253.29/warc/CC-MAIN-20171214055056-20171214075056-00453.warc.gz
| 418,545,764
| 2,555
|
Algebra Prelim, August 2014
Do all problems
1. Let p be a prime, let G be a finite group, let P be a Sylow p-subgroup of G, and let X denote all elements of G with order a power of p (including 1).
(a)
Show that P acts by conjugation on X (so for gP and xX, we have g·x = gxg-1).
(b)
Show that {z} is an orbit of size 1 if and only if z is in the center of P.
(c)
If p divides | G|, prove that p divides | X|.
2. Let p be a prime and let G be a finite p-group. Prove that if H is a maximal subgroup of G, then HG and | G/H| = p. (Hint: use induction on | G|, so the result is true for proper quotients of G and consider HZ. Maximal means H has largest possible order with HG.)
3. Let R be a noetherian UFD with the property whenever x1,..., xnR such that no prime divides all xi, then x1R + ... + xnR = R. Prove that R is a PID. (Hint: consider gcd.)
4. Let M be an injective ℤ-module and let q be a positive integer. Prove that Mℤ/qℤ = 0.
5. Let M be a finitely generated ℂ[x]-module. Suppose there exists a submodule N of M such that NM and NM. Prove that there exists c∈ℂ such that (x -c)MM and (x -c)MM.
6. Let f (x) = (x5 + x3 +1)(x4 + x + 1)∈𝔽2[x], and let K be a splitting field for f over 𝔽2. ( 𝔽2 denotes the field with two elements.)
(a)
Show that x2 + x + 1 is the only irreducible polynomial of degree 2 in 𝔽2[x].
(b)
Let K be a splitting field for f over 𝔽2, let α∈K be a root of x5 + x3 + 1, and let β∈K be a root of x4 + x + 1. Determine [𝔽2(α,β) : 𝔽2]
(c)
Determine Gal(K/𝔽2). (Galois group)
7. Compute the character table of S3×ℤ/3ℤ.
Peter Linnell 2014-08-06
| 557
| 1,588
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 3.5
| 4
|
CC-MAIN-2017-51
|
latest
|
en
| 0.858753
|
http://mathforum.org/t2t/discuss/message.taco?thread=7499&n=7
| 1,477,318,126,000,000,000
|
text/html
|
crawl-data/CC-MAIN-2016-44/segments/1476988719638.55/warc/CC-MAIN-20161020183839-00366-ip-10-171-6-4.ec2.internal.warc.gz
| 157,459,764
| 2,929
|
Teacher2Teacher Q&A #7499
Teachers' Lounge Discussion: Curious about fractions
T2T || FAQ || Ask T2T || Teachers' Lounge || Browse || Search || T2T Associates || About T2T
View entire discussion
[<< prev] [ next >>]
From: MathFreak
To: Teacher2Teacher Public Discussion
Date: 2004091203:05:00
Subject: Why it works
WHY IT WORKS- I think it works because the product of two numbers is also the product of the L.C.M and H.C.F. of the two numbers. Say 1/28+ 1/42 LCM of 28 and 42: 28=2^2*3^0* 7^1 42=2^1*3^1*7^1 LCM= 2^2*3^1*7^1=4*3*7=84 HCF=2^1*3^0*7^1=2*1*7=14 HCF*LCM=2^2*2^1*3^1*3^0*7^1*7^1=28*42 Therefore,1/28+1/42= 1/84 *(3+2)=5/84 as also 1/LCM*HCF times (3*HCF+2*HCF)= 1/28*42 times(42+28) Since 3HCF+2HCF=5HCF=5*14=42+28=70. Hope this helps! Mathfreak
Teacher2Teacher - T2T ®
| 361
| 789
|
{"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0}
| 4.125
| 4
|
CC-MAIN-2016-44
|
longest
|
en
| 0.616813
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.