|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
|
|
import torch |
|
|
from torch.nn.modules.loss import _Loss |
|
|
|
|
|
from monai.utils import LossReduction |
|
|
|
|
|
|
|
|
def spatial_gradient(x: torch.Tensor, dim: int) -> torch.Tensor: |
|
|
""" |
|
|
Calculate gradients on single dimension of a tensor using central finite difference. |
|
|
It moves the tensor along the dimension to calculate the approximate gradient |
|
|
dx[i] = (x[i+1] - x[i-1]) / 2. |
|
|
Adapted from: |
|
|
DeepReg (https://github.com/DeepRegNet/DeepReg) |
|
|
|
|
|
Args: |
|
|
x: the shape should be BCH(WD). |
|
|
dim: dimension to calculate gradient along. |
|
|
Returns: |
|
|
gradient_dx: the shape should be BCH(WD) |
|
|
""" |
|
|
slice_1 = slice(1, -1) |
|
|
slice_2_s = slice(2, None) |
|
|
slice_2_e = slice(None, -2) |
|
|
slice_all = slice(None) |
|
|
slicing_s, slicing_e = [slice_all, slice_all], [slice_all, slice_all] |
|
|
while len(slicing_s) < x.ndim: |
|
|
slicing_s = slicing_s + [slice_1] |
|
|
slicing_e = slicing_e + [slice_1] |
|
|
slicing_s[dim] = slice_2_s |
|
|
slicing_e[dim] = slice_2_e |
|
|
return (x[slicing_s] - x[slicing_e]) / 2.0 |
|
|
|
|
|
|
|
|
class BendingEnergyLoss(_Loss): |
|
|
""" |
|
|
Calculate the bending energy based on second-order differentiation of ``pred`` using central finite difference. |
|
|
|
|
|
For more information, |
|
|
see https://github.com/Project-MONAI/tutorials/blob/main/modules/bending_energy_diffusion_loss_notes.ipynb. |
|
|
|
|
|
Adapted from: |
|
|
DeepReg (https://github.com/DeepRegNet/DeepReg) |
|
|
""" |
|
|
|
|
|
def __init__(self, normalize: bool = False, reduction: LossReduction | str = LossReduction.MEAN) -> None: |
|
|
""" |
|
|
Args: |
|
|
normalize: |
|
|
Whether to divide out spatial sizes in order to make the computation roughly |
|
|
invariant to image scale (i.e. vector field sampling resolution). Defaults to False. |
|
|
reduction: {``"none"``, ``"mean"``, ``"sum"``} |
|
|
Specifies the reduction to apply to the output. Defaults to ``"mean"``. |
|
|
|
|
|
- ``"none"``: no reduction will be applied. |
|
|
- ``"mean"``: the sum of the output will be divided by the number of elements in the output. |
|
|
- ``"sum"``: the output will be summed. |
|
|
""" |
|
|
super().__init__(reduction=LossReduction(reduction).value) |
|
|
self.normalize = normalize |
|
|
|
|
|
def forward(self, pred: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Args: |
|
|
pred: the shape should be BCH(WD) |
|
|
|
|
|
Raises: |
|
|
ValueError: When ``self.reduction`` is not one of ["mean", "sum", "none"]. |
|
|
ValueError: When ``pred`` is not 3-d, 4-d or 5-d. |
|
|
ValueError: When any spatial dimension of ``pred`` has size less than or equal to 4. |
|
|
ValueError: When the number of channels of ``pred`` does not match the number of spatial dimensions. |
|
|
|
|
|
""" |
|
|
if pred.ndim not in [3, 4, 5]: |
|
|
raise ValueError(f"Expecting 3-d, 4-d or 5-d pred, instead got pred of shape {pred.shape}") |
|
|
for i in range(pred.ndim - 2): |
|
|
if pred.shape[-i - 1] <= 4: |
|
|
raise ValueError(f"All spatial dimensions must be > 4, got spatial dimensions {pred.shape[2:]}") |
|
|
if pred.shape[1] != pred.ndim - 2: |
|
|
raise ValueError( |
|
|
f"Number of vector components, i.e. number of channels of the input DDF, {pred.shape[1]}, " |
|
|
f"does not match number of spatial dimensions, {pred.ndim - 2}" |
|
|
) |
|
|
|
|
|
|
|
|
first_order_gradient = [spatial_gradient(pred, dim) for dim in range(2, pred.ndim)] |
|
|
|
|
|
|
|
|
if self.normalize: |
|
|
spatial_dims = torch.tensor(pred.shape, device=pred.device)[2:].reshape((1, -1) + (pred.ndim - 2) * (1,)) |
|
|
|
|
|
energy = torch.tensor(0) |
|
|
for dim_1, g in enumerate(first_order_gradient): |
|
|
dim_1 += 2 |
|
|
if self.normalize: |
|
|
g *= pred.shape[dim_1] / spatial_dims |
|
|
energy = energy + (spatial_gradient(g, dim_1) * pred.shape[dim_1]) ** 2 |
|
|
else: |
|
|
energy = energy + spatial_gradient(g, dim_1) ** 2 |
|
|
for dim_2 in range(dim_1 + 1, pred.ndim): |
|
|
if self.normalize: |
|
|
energy = energy + 2 * (spatial_gradient(g, dim_2) * pred.shape[dim_2]) ** 2 |
|
|
else: |
|
|
energy = energy + 2 * spatial_gradient(g, dim_2) ** 2 |
|
|
|
|
|
if self.reduction == LossReduction.MEAN.value: |
|
|
energy = torch.mean(energy) |
|
|
elif self.reduction == LossReduction.SUM.value: |
|
|
energy = torch.sum(energy) |
|
|
elif self.reduction != LossReduction.NONE.value: |
|
|
raise ValueError(f'Unsupported reduction: {self.reduction}, available options are ["mean", "sum", "none"].') |
|
|
|
|
|
return energy |
|
|
|
|
|
|
|
|
class DiffusionLoss(_Loss): |
|
|
""" |
|
|
Calculate the diffusion based on first-order differentiation of ``pred`` using central finite difference. |
|
|
For the original paper, please refer to |
|
|
VoxelMorph: A Learning Framework for Deformable Medical Image Registration, |
|
|
Guha Balakrishnan, Amy Zhao, Mert R. Sabuncu, John Guttag, Adrian V. Dalca |
|
|
IEEE TMI: Transactions on Medical Imaging. 2019. eprint arXiv:1809.05231. |
|
|
|
|
|
For more information, |
|
|
see https://github.com/Project-MONAI/tutorials/blob/main/modules/bending_energy_diffusion_loss_notes.ipynb. |
|
|
|
|
|
Adapted from: |
|
|
VoxelMorph (https://github.com/voxelmorph/voxelmorph) |
|
|
""" |
|
|
|
|
|
def __init__(self, normalize: bool = False, reduction: LossReduction | str = LossReduction.MEAN) -> None: |
|
|
""" |
|
|
Args: |
|
|
normalize: |
|
|
Whether to divide out spatial sizes in order to make the computation roughly |
|
|
invariant to image scale (i.e. vector field sampling resolution). Defaults to False. |
|
|
reduction: {``"none"``, ``"mean"``, ``"sum"``} |
|
|
Specifies the reduction to apply to the output. Defaults to ``"mean"``. |
|
|
|
|
|
- ``"none"``: no reduction will be applied. |
|
|
- ``"mean"``: the sum of the output will be divided by the number of elements in the output. |
|
|
- ``"sum"``: the output will be summed. |
|
|
""" |
|
|
super().__init__(reduction=LossReduction(reduction).value) |
|
|
self.normalize = normalize |
|
|
|
|
|
def forward(self, pred: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Args: |
|
|
pred: |
|
|
Predicted dense displacement field (DDF) with shape BCH[WD], |
|
|
where C is the number of spatial dimensions. |
|
|
Note that diffusion loss can only be calculated |
|
|
when the sizes of the DDF along all spatial dimensions are greater than 2. |
|
|
|
|
|
Raises: |
|
|
ValueError: When ``self.reduction`` is not one of ["mean", "sum", "none"]. |
|
|
ValueError: When ``pred`` is not 3-d, 4-d or 5-d. |
|
|
ValueError: When any spatial dimension of ``pred`` has size less than or equal to 2. |
|
|
ValueError: When the number of channels of ``pred`` does not match the number of spatial dimensions. |
|
|
|
|
|
""" |
|
|
if pred.ndim not in [3, 4, 5]: |
|
|
raise ValueError(f"Expecting 3-d, 4-d or 5-d pred, instead got pred of shape {pred.shape}") |
|
|
for i in range(pred.ndim - 2): |
|
|
if pred.shape[-i - 1] <= 2: |
|
|
raise ValueError(f"All spatial dimensions must be > 2, got spatial dimensions {pred.shape[2:]}") |
|
|
if pred.shape[1] != pred.ndim - 2: |
|
|
raise ValueError( |
|
|
f"Number of vector components, i.e. number of channels of the input DDF, {pred.shape[1]}, " |
|
|
f"does not match number of spatial dimensions, {pred.ndim - 2}" |
|
|
) |
|
|
|
|
|
|
|
|
first_order_gradient = [spatial_gradient(pred, dim) for dim in range(2, pred.ndim)] |
|
|
|
|
|
|
|
|
if self.normalize: |
|
|
spatial_dims = torch.tensor(pred.shape, device=pred.device)[2:].reshape((1, -1) + (pred.ndim - 2) * (1,)) |
|
|
|
|
|
diffusion = torch.tensor(0) |
|
|
for dim_1, g in enumerate(first_order_gradient): |
|
|
dim_1 += 2 |
|
|
if self.normalize: |
|
|
|
|
|
|
|
|
|
|
|
g *= pred.shape[dim_1] / spatial_dims |
|
|
diffusion = diffusion + g**2 |
|
|
|
|
|
if self.reduction == LossReduction.MEAN.value: |
|
|
diffusion = torch.mean(diffusion) |
|
|
elif self.reduction == LossReduction.SUM.value: |
|
|
diffusion = torch.sum(diffusion) |
|
|
elif self.reduction != LossReduction.NONE.value: |
|
|
raise ValueError(f'Unsupported reduction: {self.reduction}, available options are ["mean", "sum", "none"].') |
|
|
|
|
|
return diffusion |
|
|
|