Dorothydu's picture
Add files using upload-large-folder tool
26c564a verified

学习笔记

# Title Solutions
1143 longest-common-subsequence 递归(Go,Py),动态规划(Go,Py),动态规划2(Go,Py)
213 house-robber-ii 动态规划(Go,Py)
62 unique-paths 动态规划(Go,Py)
63 unique-paths-ii 动态规划(Go,Py)
120 triangle 动态规划(Go,Py)
53 maximum-subarray 动态规划(Go,Py),分治(Go,Py)
152 maximum-product-subarray 动态规划(Go,Py)
322 coin-change 动态规划(Go,Py)
198 house-robber 动态规划(Go,Py)
121 best-time-to-buy-and-sell-stock 动态规划(Go,Py)
91 decode-ways 动态规划(Go,Py)
123 best-time-to-buy-and-sell-stock-iii 动态规划(Go,Py),动态规划2(Go,Py)
309 best-time-to-buy-and-sell-stock-with-cooldown 动态规划(Go,Py)
188 best-time-to-buy-and-sell-stock-iv 动态规划(Go,Py)
714 best-time-to-buy-and-sell-stock-with-transaction-fee 动态规划(Go,Py)
279 perfect-squares 动态规划(Go,Py)
518 coin-change-2 动态规划(Go,Py)
221 maximal-square 动态规划(Go,Py)
621 task-scheduler 数组(Go,Py)
647 palindromic-substrings 动态规划(Go,Py), 中心扩展(Go,Py)
403 frog-jump 深度优先搜索(Go,Py), 动态规划(Go,Py)

题解

1143. longest-common-subsequence

  1. 递归
  2. 动态规划:
  • dp[i][j] = dp[i-1][j-1] + 1 或 max(dp[i][j-1], dp[i-1][j])
  1. 动态规划空间优化:
  • 用一个变量pre保存dp[i-1][j-1]可以实现空间负载度降维
  • dp[j] = pre+1 或者 max(dp[j], dp[j-1])

62. unique-paths

  1. 动态规划:
  • dp[i][j] = 1 if (i==0 or j ==0) else dp[i-1][j] + dp[i][j-1]

120. triangle

  1. 动态规划: 倒序递推:

53. maximum-subarray

  1. 动态规划: dp[i] = nums[i] + max(0, dp[i-1])

  2. 分治:

152. maximum-product-subarray

  1. 动态规划: 用两个变量分别记录当前最小乘积和最大乘积

322. coin_change

  1. 动态规划: 建立一个极值数组: dp = [amount+1] *(amount+1); dp[i] = min(dp[i], dp[i-c]+1)

198. house-robber

  1. 动态规划:

213. house-robber-ii

  1. 动态规划:
  • 两次动态规划dp(nums[:-1])、dp(nums[1:]),取两者之间的较大值

91. decode-ways

  1. 动态规划: 首先需要将这道题类比爬楼梯问题,可能只能走两步,可能只能走一步,可能一步两步都可能走
    • 特殊处理s[i] == '0'
      • 如果s[i-1] in ('1', '2'), 即走两步: dp[i+1] = dp[i-1]
      • 否则不合法
    • 当s[i-1] == '1' 或者 (s[i-1] == '2' && '1' <= s[i] <= '6'), 即走一步或两步: dp[i+1] = dp[i] + dp[i-1]
    • 否则走一步 dp[i+1] = dp[i]

123. best-time-to-buy-and-sell-stock-iii

  1. 动态规划:
  • 定义一个三维数组:第i天第j次买(0)或者卖(1)
  • 递推公式
    • 第0天 dp[i][j][1] = -prices[i]
    • 第1~n天
      • dp[i][j][1] = max(dp[i-1][j][1], dp[i-1][j-1][0]-prices[i])
      • dp[i][j][0] = max(dp[i-1][j][0], dp[i-1][j][1]+prices[i])
  1. 动态规划二: 因为最多只有两次交易,所以只需要定义四个变量 dp11(第一次买入)、dp10(第一次卖出)、dp21(第二次买入)、dp20(第二次卖出)
  • 第0天:
    • dp11 = -prices[0]
    • dp10 = 0
    • dp21 = -prices[0] (当做第0天买入两次卖出一次)
    • dp20 = 0 (当做第0天买入两次卖出两次)
  • 第1~n天:
    • dp11 = max(dp11, -prices[i])
    • dp10 = max(dp10, dp11+prices[i])
    • dp21 = max(dp21, dp10-prices[i])
    • dp20 = max(dp20, dp21+prices[i])

309. best-time-to-buy-and-sell-stock-with-cooldown

  1. 动态规划:
  • 定义一个二维数:第i天是否买(1)或卖(0)
  • 递推
    • 第0,1天
      • dp[0][1] = -prices[0]
      • dp[1][0] = max(dp[0][0], dp[0][1]+prices[1])
      • dp[1][1] = max(dp[0][1], dp[0][0]-prices[1])
    • 第2~n天
      • dp[i][1] = max(dp[i-1][1], dp[i-2][0]-prices[i])
      • dp[i][0] = max(dp[i-1][0], dp[i-1][1]+prices[i])

309. best-time-to-buy-and-sell-stock-iv

  1. 动态规划: #123的通用情况

714. best-time-to-buy-and-sell-stock-with-transaction-fee

  1. 动态规划: 每一天只有持有和不持有两个状态,且只和前一天有关,故可以用两个变量hold和not_hold即可
  • not_hold = max(not_hold, hold+prices[i])
  • hold = max(hold, not_hold-prices[i]-fee)

279. perfect-squares

  1. 动态规划: 类似于换硬币问题

518. coin-change-2

  1. 动态规划

221. maximal-square

  1. 动态规划: dp[i][j]代表以(i,j)为右下角的正方形边长
  • i == 0 or j == 0: dp[i][j] = int(matrix[i][j])
  • dp[i][j] = min(dp[i][j-1], dp[i-1][j], dp[i-1][j-1]) + 1

621. task-scheduler

  1. 数组:
  • 用一个长度为26的数组counter记录每种task的次数
  • 排序找到最大次数的task: counter[-1]
  • 则 res = (counter[-1]-1) * (n+1) + 1 + x (x为其他的task出现次数也等于counter[-1])
  • 当任务种类比较多时可能出现res < len(tasks), 这是结果为len(tasks)

647. palindromic-substrings

  1. 动态规划: dp[i][j]代表[i,j]区间的子串是否是回文子串:s[i] == s[j] && (j - i < 2 || dp[i + 1][j - 1])
  2. 中心扩展: 长度为n的字符串会生成2n-1个中心点,其中l=i/2, r == l+ i%2

403. frog-jump

  1. 深度优先
  2. 动态规划
    • dp[i][k] = dp[j][k] || dp[j][k-1] || dp[j][k+1]; k = stones[i]-stones[j],k必定<=j+1