学习笔记
| # | Title | Solutions |
|---|---|---|
| 1143 | longest-common-subsequence | 递归(Go,Py),动态规划(Go,Py),动态规划2(Go,Py) |
| 213 | house-robber-ii | 动态规划(Go,Py) |
| 62 | unique-paths | 动态规划(Go,Py) |
| 63 | unique-paths-ii | 动态规划(Go,Py) |
| 120 | triangle | 动态规划(Go,Py) |
| 53 | maximum-subarray | 动态规划(Go,Py),分治(Go,Py) |
| 152 | maximum-product-subarray | 动态规划(Go,Py) |
| 322 | coin-change | 动态规划(Go,Py) |
| 198 | house-robber | 动态规划(Go,Py) |
| 121 | best-time-to-buy-and-sell-stock | 动态规划(Go,Py) |
| 91 | decode-ways | 动态规划(Go,Py) |
| 123 | best-time-to-buy-and-sell-stock-iii | 动态规划(Go,Py),动态规划2(Go,Py) |
| 309 | best-time-to-buy-and-sell-stock-with-cooldown | 动态规划(Go,Py) |
| 188 | best-time-to-buy-and-sell-stock-iv | 动态规划(Go,Py) |
| 714 | best-time-to-buy-and-sell-stock-with-transaction-fee | 动态规划(Go,Py) |
| 279 | perfect-squares | 动态规划(Go,Py) |
| 518 | coin-change-2 | 动态规划(Go,Py) |
| 221 | maximal-square | 动态规划(Go,Py) |
| 621 | task-scheduler | 数组(Go,Py) |
| 647 | palindromic-substrings | 动态规划(Go,Py), 中心扩展(Go,Py) |
| 403 | frog-jump | 深度优先搜索(Go,Py), 动态规划(Go,Py) |
题解
1143. longest-common-subsequence
- 递归
- 动态规划:
- dp[i][j] = dp[i-1][j-1] + 1 或 max(dp[i][j-1], dp[i-1][j])
- 动态规划空间优化:
- 用一个变量pre保存dp[i-1][j-1]可以实现空间负载度降维
- dp[j] = pre+1 或者 max(dp[j], dp[j-1])
62. unique-paths
- 动态规划:
- dp[i][j] = 1 if (i==0 or j ==0) else dp[i-1][j] + dp[i][j-1]
120. triangle
- 动态规划: 倒序递推:
53. maximum-subarray
动态规划: dp[i] = nums[i] + max(0, dp[i-1])
分治:
152. maximum-product-subarray
- 动态规划: 用两个变量分别记录当前最小乘积和最大乘积
322. coin_change
- 动态规划: 建立一个极值数组: dp = [amount+1] *(amount+1); dp[i] = min(dp[i], dp[i-c]+1)
198. house-robber
- 动态规划:
213. house-robber-ii
- 动态规划:
- 两次动态规划dp(nums[:-1])、dp(nums[1:]),取两者之间的较大值
91. decode-ways
- 动态规划: 首先需要将这道题类比爬楼梯问题,可能只能走两步,可能只能走一步,可能一步两步都可能走
- 特殊处理s[i] == '0'
- 如果s[i-1] in ('1', '2'), 即走两步: dp[i+1] = dp[i-1]
- 否则不合法
- 当s[i-1] == '1' 或者 (s[i-1] == '2' && '1' <= s[i] <= '6'), 即走一步或两步: dp[i+1] = dp[i] + dp[i-1]
- 否则走一步 dp[i+1] = dp[i]
- 特殊处理s[i] == '0'
123. best-time-to-buy-and-sell-stock-iii
- 动态规划:
- 定义一个三维数组:第i天第j次买(0)或者卖(1)
- 递推公式
- 第0天 dp[i][j][1] = -prices[i]
- 第1~n天
- dp[i][j][1] = max(dp[i-1][j][1], dp[i-1][j-1][0]-prices[i])
- dp[i][j][0] = max(dp[i-1][j][0], dp[i-1][j][1]+prices[i])
- 动态规划二: 因为最多只有两次交易,所以只需要定义四个变量 dp11(第一次买入)、dp10(第一次卖出)、dp21(第二次买入)、dp20(第二次卖出)
- 第0天:
- dp11 = -prices[0]
- dp10 = 0
- dp21 = -prices[0] (当做第0天买入两次卖出一次)
- dp20 = 0 (当做第0天买入两次卖出两次)
- 第1~n天:
- dp11 = max(dp11, -prices[i])
- dp10 = max(dp10, dp11+prices[i])
- dp21 = max(dp21, dp10-prices[i])
- dp20 = max(dp20, dp21+prices[i])
309. best-time-to-buy-and-sell-stock-with-cooldown
- 动态规划:
- 定义一个二维数:第i天是否买(1)或卖(0)
- 递推
- 第0,1天
- dp[0][1] = -prices[0]
- dp[1][0] = max(dp[0][0], dp[0][1]+prices[1])
- dp[1][1] = max(dp[0][1], dp[0][0]-prices[1])
- 第2~n天
- dp[i][1] = max(dp[i-1][1], dp[i-2][0]-prices[i])
- dp[i][0] = max(dp[i-1][0], dp[i-1][1]+prices[i])
- 第0,1天
309. best-time-to-buy-and-sell-stock-iv
- 动态规划: #123的通用情况
714. best-time-to-buy-and-sell-stock-with-transaction-fee
- 动态规划: 每一天只有持有和不持有两个状态,且只和前一天有关,故可以用两个变量hold和not_hold即可
- not_hold = max(not_hold, hold+prices[i])
- hold = max(hold, not_hold-prices[i]-fee)
279. perfect-squares
- 动态规划: 类似于换硬币问题
518. coin-change-2
- 动态规划
221. maximal-square
- 动态规划: dp[i][j]代表以(i,j)为右下角的正方形边长
- i == 0 or j == 0: dp[i][j] = int(matrix[i][j])
- dp[i][j] = min(dp[i][j-1], dp[i-1][j], dp[i-1][j-1]) + 1
621. task-scheduler
- 数组:
- 用一个长度为26的数组counter记录每种task的次数
- 排序找到最大次数的task: counter[-1]
- 则 res = (counter[-1]-1) * (n+1) + 1 + x (x为其他的task出现次数也等于counter[-1])
- 当任务种类比较多时可能出现res < len(tasks), 这是结果为len(tasks)
647. palindromic-substrings
- 动态规划: dp[i][j]代表[i,j]区间的子串是否是回文子串:s[i] == s[j] && (j - i < 2 || dp[i + 1][j - 1])
- 中心扩展: 长度为n的字符串会生成2n-1个中心点,其中l=i/2, r == l+ i%2
403. frog-jump
- 深度优先
- 动态规划
- dp[i][k] = dp[j][k] || dp[j][k-1] || dp[j][k+1]; k = stones[i]-stones[j],k必定<=j+1