学习笔记
| # | Title | Solutions |
|---|---|---|
| 32 | longest-valid-parentheses | 动态规划(Go,Py),栈(Go,Py),贪心(Go,Py) |
| 64 | minimum-path-sum | 动态规划(Go,Py) |
| 72 | edit-distance | 动态规划(Go,Py) |
| 85 | maximal-rectangle | 动态规划(Go,Py) |
| 115 | distinct-subsequences | 动态规划(Go,Py) |
| 58 | length-of-last-word | 逆序迭代(Go,Py) |
| 709 | to-lower-case | 迭代(Go,Py) |
| 8 | string-to-integer-atoi | 迭代(Go,Py) |
| 14 | longest-common-prefix | 迭代(Go,Py) |
| 344 | reverse-string | 双指针(Go,Py) |
| 541 | reverse-string-ii | 迭代(Go,Py) |
| 557 | reverse-words-in-a-string-iii | 迭代(Go,Py) |
| 917 | reverse-only-letters | 双指针(Go,Py) |
| 438 | find-all-anagrams-in-a-string | 暴力(Go,滑动窗口(Go,Py) |
| 125 | valid-palindrome | 双指针(Go,Py) |
| 680 | valid-palindrome-ii | 双指针夹逼(Go,Py) |
| 5 | longest-palindromic-substring | 动态规划(Go,Py),中心扩展(Go,Py) |
题解
32. longest-valid-parentheses
- 动态规划:
- 记录s[i] == ')'的dp[i]
- 当s[i-1] == '(': dp[i] = dp[i-2] + 2
- 当s[i-1] == '('且dp[i-1] > 0: dp[i] = dp[i-1] + dp[i-dp[i-1]-2] + 2
- 记录s[i] == ')'的dp[i]
- 栈:
- 用栈记录下标,初始加一个
-1的值[-1] - 当s[i] == '('时,i入栈, 否则弹出栈顶元素,之后当前栈顶即为左边界:len = i - stack[len(stack)-1] 3: 贪心:
- 用left和right分别记录左右括号的数量
- 先从左向右遍历,遇到'('则left++,否则right++,当left==right为可能的解,right>left时将left/right重置为0
- 从右向左遍历亦然
- 用栈记录下标,初始加一个
72. edit-distance
- 动态规划:
- 当word1[i-1] == word2[j-1]时 dp[i][j] = dp[i-1][j-1],否则 min(dp[i - 1][j - 1], dp[i][j - 1], dp[i - 1][j]) + 1
85. maximal-rectangle
- 动态规划:
- 使用三个数组left[n], right[n],height[n]分别记录当前的左右边界和高
115. distinct-subsequences
- 动态规划:
- 当s[i-1] != t[j-1]时: dp[i][j] = dp[i-1][j] (不取s[j]) 否则 dp[i][j] = dp[i-1][j] + dp[i-1][j-1]