| Symbolic Regression Benchmark - Mixed PolyExp 4D Dataset | |
| ========================================================= | |
| Problem Setting | |
| --------------- | |
| Learn a closed-form symbolic expression `f(x1, x2, x3, x4)` that predicts the target `y`. | |
| This is a higher-dimensional dataset (4 input features) combining polynomial interactions with exponential decay. The function involves cross-terms between variables and Gaussian-like damping, making it more challenging than the 2D variants. | |
| Input Format | |
| ------------ | |
| - Your `Solution.solve` receives: | |
| - `X`: numpy.ndarray of shape `(n, 4)` containing feature values | |
| - `y`: numpy.ndarray of shape `(n,)` containing target values | |
| - Dataset columns: `x1, x2, x3, x4, y` | |
| Output Specification | |
| -------------------- | |
| Implement a `Solution` class in `solution.py`: | |
| ```python | |
| import numpy as np | |
| class Solution: | |
| def __init__(self, **kwargs): | |
| pass | |
| def solve(self, X: np.ndarray, y: np.ndarray) -> dict: | |
| """ | |
| Args: | |
| X: Feature matrix of shape (n, 4) | |
| y: Target values of shape (n,) | |
| Returns: | |
| dict with keys: | |
| - "expression": str, a Python-evaluable expression using x1, x2, x3, x4 | |
| - "predictions": list/array of length n (optional) | |
| - "details": dict with optional "complexity" int | |
| """ | |
| # Example: fit a symbolic expression to the data | |
| expression = "x1 + x2 + x3 + x4" # placeholder | |
| return { | |
| "expression": expression, | |
| "predictions": None, # will be computed from expression if omitted | |
| "details": {} | |
| } | |
| ``` | |
| Expression Requirements: | |
| - Must be a valid Python expression string | |
| - Use variable names: `x1`, `x2`, `x3`, `x4` | |
| - Allowed operators: `+`, `-`, `*`, `/`, `**` | |
| - Allowed functions: `sin`, `cos`, `exp`, `log` | |
| - Numeric constants are allowed | |
| Dependencies (pinned versions) | |
| ------------------------------ | |
| ``` | |
| pysr==0.19.0 | |
| numpy==1.26.4 | |
| pandas==2.2.2 | |
| sympy==1.13.3 | |
| ``` | |
| Minimal Working Examples | |
| ------------------------ | |
| **Example 1: Using PySR (recommended)** | |
| ```python | |
| import numpy as np | |
| from pysr import PySRRegressor | |
| class Solution: | |
| def __init__(self, **kwargs): | |
| pass | |
| def solve(self, X: np.ndarray, y: np.ndarray) -> dict: | |
| model = PySRRegressor( | |
| niterations=50, # more iterations for 4D | |
| binary_operators=["+", "-", "*", "/"], | |
| unary_operators=["sin", "cos", "exp", "log"], | |
| populations=20, | |
| population_size=40, | |
| maxsize=30, # larger for 4D complexity | |
| verbosity=0, | |
| progress=False, | |
| random_state=42, | |
| ) | |
| model.fit(X, y, variable_names=["x1", "x2", "x3", "x4"]) | |
| # Get best expression as sympy, convert to string | |
| best_expr = model.sympy() | |
| expression = str(best_expr) | |
| # Predictions | |
| predictions = model.predict(X) | |
| return { | |
| "expression": expression, | |
| "predictions": predictions.tolist(), | |
| "details": {} | |
| } | |
| ``` | |
| **Example 2: Manual expression (simple baseline)** | |
| ```python | |
| import numpy as np | |
| class Solution: | |
| def __init__(self, **kwargs): | |
| pass | |
| def solve(self, X: np.ndarray, y: np.ndarray) -> dict: | |
| # Simple linear combination as baseline | |
| x1, x2, x3, x4 = X[:, 0], X[:, 1], X[:, 2], X[:, 3] | |
| # Fit coefficients via least squares | |
| A = np.column_stack([x1, x2, x3, x4, np.ones_like(x1)]) | |
| coeffs, _, _, _ = np.linalg.lstsq(A, y, rcond=None) | |
| a, b, c, d, e = coeffs | |
| expression = f"{a:.6f}*x1 + {b:.6f}*x2 + {c:.6f}*x3 + {d:.6f}*x4 + {e:.6f}" | |
| predictions = a * x1 + b * x2 + c * x3 + d * x4 + e | |
| return { | |
| "expression": expression, | |
| "predictions": predictions.tolist(), | |
| "details": {} | |
| } | |
| ``` | |
| PySR API Notes (v0.19.0) | |
| ------------------------ | |
| - `model.fit(X, y, variable_names=["x1", "x2", "x3", "x4"])` - use variable_names to match expected output | |
| - `model.sympy()` - returns best expression as sympy object | |
| - `model.predict(X)` - returns predictions array | |
| - `model.equations_` - DataFrame of all discovered equations | |
| - Common parameters: | |
| - `niterations`: number of evolution iterations (more = better but slower) | |
| - `populations`: number of parallel populations | |
| - `maxsize`: maximum expression complexity | |
| - `verbosity=0, progress=False`: suppress output | |
| Expression Format Requirements | |
| ------------------------------ | |
| - Must be a valid Python expression string | |
| - Use variable names: `x1`, `x2`, `x3`, `x4` | |
| - Allowed operators: `+`, `-`, `*`, `/`, `**` | |
| - Allowed functions: `sin`, `cos`, `exp`, `log` (NO `np.` prefix) | |
| - Numeric constants are allowed | |
| - The evaluator uses `sympy.sympify()` to parse your expression | |
| Scoring | |
| ------- | |
| ``` | |
| MSE = (1/n) Σ (y_i - ŷ_i)² | |
| Score = 100 × clamp((m_base - MSE) / (m_base - m_ref), 0, 1) × 0.99^max(C - C_ref, 0) | |
| ``` | |
| - `m_base`: linear regression baseline MSE | |
| - `m_ref`, `C_ref`: reference solution MSE and complexity | |
| - `C = 2 × (#binary ops) + (#unary ops)` | |
| - Lower MSE and lower complexity yield higher scores | |
| Environment | |
| ----------- | |
| Run `set_up_env.sh` to install dependencies. | |