File size: 7,105 Bytes
4c61b7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
"""
Model Utility Functions
"""
import torch
import torch.nn as nn
def interpolate_trajectory(t_eval, t_query, traj, dim_batch=1):
"""
Interpolate trajectory (z or x) at t_query based on t_eval and traj.
Args:
t_eval: [T] time grid of ODE solution
t_query: [B, L] query times for each batch
traj: [T, B, D] trajectory (z or x)
dim_batch: batch dimension (default 1)
Returns:
interp: [B, L, D]
"""
B, L = t_query.shape
T = t_eval.shape[0]
indices_flat = torch.searchsorted(t_eval, t_query.flatten(), right=False)
indices = torch.clamp(indices_flat, 0, T - 2).reshape(B, L)
t_left = t_eval[indices]
t_right = t_eval[indices + 1]
batch_indices = torch.arange(B, device=t_eval.device).unsqueeze(1).expand(-1, L)
traj_left = traj[indices, batch_indices, :]
traj_right = traj[indices + 1, batch_indices, :]
weight = ((t_query - t_left) / (t_right - t_left + 1e-8)).unsqueeze(-1)
interp = traj_left + weight * (traj_right - traj_left)
return interp
def interpolate_external_input(t_eval, t_batch, ut_batch, external_input_dim):
"""
Interpolate external input at t_eval times using existing interpolate_trajectory function.
Args:
t_eval: [T] evaluation times
t_batch: [B, L] relative time batches (not used, for API consistency)
ut_batch: [B, L_u, U+1] external input batch with time as last dimension
external_input_dim: dimension of external input
Returns:
u_interp: [T, B, U] interpolated external inputs
"""
if ut_batch is None or external_input_dim == 0:
return None
u_batch = ut_batch[:, :, :external_input_dim] # [B, L_u, U]
t_u_batch = ut_batch[:, :, external_input_dim] # [B, L_u]
B, L_u, U = u_batch.shape
T = len(t_eval)
# 简单粗暴:用第一个batch的时间网格,假设所有batch时间一致
t_u = t_u_batch[0, :] - t_batch[0] # [L_u]
t_query = t_eval.unsqueeze(0).expand(B, -1) # [B, T]
traj = u_batch.permute(1, 0, 2) # [L_u, B, U]
# 直接调用 interpolate_trajectory
result = interpolate_trajectory(t_u, t_query, traj) # [B, T, U]
# 转置成需要的格式 [T, B, U]
return result.permute(1, 0, 2)
def create_vector_field_with_external_input(base_vector_field, u_interp, t_eval):
"""
Universal wrapper to add external input to any vector field.
Args:
base_vector_field: Original vector field function
u_interp: [T, B, U] interpolated external inputs (None if no external input)
t_eval: [T] evaluation times
Returns:
Enhanced vector field function that includes external input
"""
if u_interp is None:
return base_vector_field
def vector_field_with_input(t, state):
t_idx = torch.searchsorted(t_eval, t, right=False)
t_idx = torch.clamp(t_idx, 0, len(t_eval) - 1)
u_t = u_interp[t_idx, :, :] # [B, U]
return base_vector_field(t, state, u_t)
return vector_field_with_input
class VectorFieldWithInput(nn.Module):
def __init__(self, base_vector_field: nn.Module, u_interp, t_eval):
"""
base_vector_field: nn.Module, takes (t, state, u_t) and outputs dx/dt
u_interp: [T, B, U] external inputs sampled on t_eval (None if no input)
t_eval: [T] monotonically nondecreasing time grid corresponding to u_interp
"""
super().__init__()
self.base_vector_field = base_vector_field
self.register_buffer("t_eval", t_eval) # 注册成 buffer, 会跟随 device 移动
if u_interp is not None:
self.register_buffer("u_interp", u_interp)
else:
self.u_interp = None
def forward(self, t, state):
if self.u_interp is None:
# 无外部输入,保持三输入形式
return self.base_vector_field(t, state)
T = self.t_eval.shape[0]
t_scalar = torch.as_tensor(t, dtype=self.t_eval.dtype, device=self.t_eval.device)
# Clamp to endpoints
if t_scalar <= self.t_eval[0]:
u_t = self.u_interp[0, :, :] # [B, U]
elif t_scalar >= self.t_eval[-1]:
u_t = self.u_interp[-1, :, :]
else:
idx_right = torch.searchsorted(self.t_eval, t_scalar, right=False)
idx_right = torch.clamp(idx_right, 1, T - 1)
idx_left = idx_right - 1
t_left = self.t_eval[idx_left]
t_right = self.t_eval[idx_right]
u_left = self.u_interp[idx_left, :, :]
u_right = self.u_interp[idx_right, :, :]
w = (t_scalar - t_left) / (t_right - t_left + 1e-8)
u_t = u_left + w * (u_right - u_left)
# 传给原始 vector field(恢复三参数形式,不再拼接)
return self.base_vector_field(t, state, u_t)
def create_vector_field_with_external_input(base_vector_field, u_interp, t_eval):
return VectorFieldWithInput(base_vector_field, u_interp, t_eval)
# def create_vector_field_with_external_input(base_vector_field, u_interp, t_eval):
# """
# Wrap a vector field to inject time-varying external input u(t) via linear interpolation.
# Args:
# base_vector_field: callable(t, state, u_t) -> dx/dt
# u_interp: [T, B, U] external inputs sampled on t_eval (None if no input)
# t_eval: [T] monotonically nondecreasing time grid corresponding to u_interp
# Returns:
# vector_field_with_input(t, state): calls base_vector_field with linearly
# interpolated u(t) aligned to t_eval.
# """
# if u_interp is None:
# return base_vector_field
# T = t_eval.shape[0]
# def vector_field_with_input(t, state):
# # Ensure t is a tensor on the same device/dtype as t_eval
# t_scalar = torch.as_tensor(t, dtype=t_eval.dtype, device=t_eval.device)
# # Clamp to endpoints: constant extension outside [t_eval[0], t_eval[-1]]
# if t_scalar <= t_eval[0]:
# u_t = u_interp[0, :, :] # [B, U]
# elif t_scalar >= t_eval[-1]:
# u_t = u_interp[-1, :, :] # [B, U]
# else:
# # Find the right interval [t_left, t_right] with t_left <= t < t_right
# idx_right = torch.searchsorted(t_eval, t_scalar, right=False)
# # Guarantee we have both neighbors
# idx_right = torch.clamp(idx_right, 1, T - 1)
# idx_left = idx_right - 1
# t_left = t_eval[idx_left]
# t_right = t_eval[idx_right]
# u_left = u_interp[idx_left, :, :] # [B, U]
# u_right = u_interp[idx_right, :, :] # [B, U]
# # Linear interpolation weight in [0,1]
# w = (t_scalar - t_left) / (t_right - t_left + 1e-8)
# # Linear interpolation of u(t)
# u_t = u_left + w * (u_right - u_left) # [B, U]
# # Call the original vector field with interpolated control
# return base_vector_field(t, state, u_t)
# return vector_field_with_input
|